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Abstract
In this work we study a system of non-conservative Burgers type equations modeling the dynamics
of dislocations densities in a crystal. More precisely, we prove that this system admits a global in
time solution, unique in the space H} (R x [0, +00)).
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1 Introduction

1.1 Physical motivations and presentation of the model

Real crystals comprise certain defects in the organization of their crystalline structure called
dislocations. In a particular case where these defects are parallel straight lines in the three-
dimensional space, they can be viewed as points in a plane. Under the effect of exterior con-
straints, dislocations can move in a certain crystallographic direction called the slip direction.
This slip direction is given by a vector called the “Burger’s vector”. The norm of this vector
represents the amplitude of the generated deformation. (We refer to [12] for further physical
explanation).

In this work, we are interested in the study of a the model defined by El Hajj, Forcadel [8,
Lemme 3.1]. In fact, this is a 1-D sub-model of a problem introduced by Groma and Balogh
[11], initially proposed in the two-dimensional case.

This two-dimensional model is characterized by the fact that the dislocations propagate in
the plane (1, x3) just following two Burger’s vectors b with b = (1,0). In this 1-D sub-model
we suppose also that dislocations densities depend only on the variable x = x1 + z2, that
transform the 2-D into a 1-D model (see El Hajj, Forcadel [8] for more modeling details).
More precisely this 1-D model is given by the following coupled equations of non-conservative
Burgers type :

1
%(m,t) =— (a(t) +(pt —p7)(x,t) + a/o (pT — p)(y,t)dy> %(m,t) in D'(R x (0,T)),
_ . B
%(m,t) = (a(t) +(p" = p ) (=, t) + a/o (pT — p—)(y,t)dy> %(m,t) in DR x (0,T)).

(1.1)

The unknowns p* and p~ that appear in the system are scalar valued functions, that we denote

for simplicity by p*. Their spatial derivatives, are the dislocations densities of Burger’s

9P
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vector +b = 4(1,0). The function a = a(t) representing the field of the imposed exterior
constraint, is supposed to be independent of x, and the constant o depends on the elastic
coefficients and the material size.

We consider the following initial conditions for (1.1):



pt(z,t =0) = pt(z) = pi?"(¢) + Loz in R, (1.2)

where poi’p " are 1-periodic functions. We model thus a periodic distributions of the + dislo-

cations, with a spatial period of length 1, each type of + dislocations having a mean density
equal to Lg. In fact, the use of the periodic boundary conditions is a way of regarding what is
going on in the interior of the material away from its boundary.

1.2 A brief review of some related literature

From a mathematical point of view, system (1.1) is related to other similar models, such as
transport equations based on vector fields with low regularity. Such equations were for instance
studied by Diperna, Lions in [7]. They proved the existence and uniqueness of a solution (in
the renormalized sense), for vector fields in L*((0, 4—00);1/1/11)’61 (R™)) whose divergence are in
L'((0,400); L>°(RY)). This study was generalized by Ambrosio [3], who considered vector
fields in L'((0, +00); BVjoe(RY)) with bounded divergence. In the present paper, we work in
dimension N = 1 and prove the existence and uniqueness of solutions of the system (1.1)-(1.2)
with a vector field (i.e. the velocity) only in L>((0,+00), H} .(R)).

We also refer to the works of LeFloch and Liu [13, 14] in which they considered the study in
the framework of functions of bounded variation for a system of the form:

@(x,t)+A(u)%(m,t):0 u(z,t) e U, z € R, t e (0,T),
ot Ox

(1.3)
u(z,0) = up(z) z € R,

where the space of states U is an open subset of R, and A is (p x p) matrix which of class C*
on U. Moreover A(u) have p scalar distinct eigenvalues that we denote by: Aj(u) < Ag(u) <
... < Ap(u). We remark that this condition on the eigenvalues does not enter in our framework
even in the case where o = a = 0, because we have not sign property on p* — p~. LeFloch
and Liu proved that if the initial condition wug is sufficiently close to a constant state, and if
the total variation 7'V (ug) is assumed to be small enough, then system (1.3) admits a unique
solution in L*(R x (0,4+00)) N BV (R x (0,+00)), in the sense of weak entropy solutions with
respect to admissible function (see LeFloch [13, Definition 3.2]).

When the system is hyperbolic and symmetric, this corresponds to the case @« = a = 0 in our
system (1.1), it is proved in Serre [17, Vol I, Th 3.6.1] a result of local existence and uniqueness
in C([0,7); H*(RM))nC([0,T); H*~1(RM)), with s > £ + 1. This result is only local in time,
even in dimension N = 1.

The assumptions of increasing initial conditions was also considered in the study of the Euler
equation for compressible fluids in dimension one. With regard to these studies, we refer to
Chen and Wang [6, Th 3.1] for an existence and uniqueness result in C'(R x [0, +00)) based on
the method of characteristic. This result of Chen and Wang shows that the Euler equation of
compressible fluids does not create shocks, for suitable increasing and C''(R) initial conditions.
In our case, we already knew that solutions of (1.1), are Lipschitz continuous, see El Hajj and
Forcadel [8]. Even if this regularity question is not concerned in the present paper, we may
expect the some C'(R x [0, +00)) regularity of the solution for C''(R) initial data.



1.3 Main result

The main result of this paper is the existence and uniqueness of global in time solutions for
the system (1.1)-(1.2), modeling the dynamics of dislocations densities. This result ensures
the mathematical well-posedness of the Groma-Balogh model [11] in the particular case we are
interested in.

Theorem 1.1 (Existence and uniqueness)
ForallT,Ly >0, a € R and poi € Hlloc(]R) and under the following assumptions:

(H1) pE(z+1) = pg(x) + Lo, (1-periodic function + linear function)

8p6t + .
(H2) v >0, (py non-decreasing)
(H3) a € L*>(0,T)

the system (1.1)-(1.2) admits a unique solution p* € H} (R x [0,T)) such that

Vt € [0,T), the function p*(.,t) : @ — p*(x,t) verifies (H1) and (H2).

The preceding theorem gives a global existence and uniqueness result of the system (1.1). Its
proof is based on the following steps. First of all, we regularize the system (1.1). Then, we
show the uniform a priori estimates in L>((0,T); H. (R)) for this regularized system. These
estimates in one hand, lead to a result of existence for long time solution and on the other hand,
they assure the passage to the limit by compactness. Finally, the demonstration of uniqueness
is done in a direct way.

Theorem 1.2 (Comparison principle for (1.1) with a = 0)

Let a(-) satisfy (H3) and ,oli’, pr € H} (R x [0,T)) be two solutions of the system (1.1)
with o = 0. Moreover, let pi(.,t), pi(.,t) verify (H1) and (H2) for all t € [0,T). Then, if
pE(-,0) < px(-,0) in R, we have pi < pi¥ in R x [0,T).

This comparison result was crucial in a previous work [8], for the demonstration of existence
and uniqueness of Lipschitz solution to problem (1.1), in the sense of viscosity solution, for
Lipschitz initial conditions. Here, the interest of this result is a little bit secondary. Indeed,
thanks to this comparison principle, we have been able to obtain indirectly H. (R x [0,T))
estimates. These estimates in their turn lead to a result of existence in H] (R x [0,T)).

Our work focuses on the study of the dynamics of dislocations densities. In a different direction,
let us quote some recent results on the dynamics of dislocations lines, taken individually, that
are represented by non-local Hamilton-Jacobi equations (see [2, 9] and [1, 4] for local and global

in time results respectively).

Remark 1.3 (Existence and uniqueness for Burgers equation)

We remark that these technics can be applied to the case of classical Burgers equations in
WEP(R % [0,T)) for all 1 < p < +oc.

Indeed, if we consider, for a given function f, and initial data ug, the following equation:

ou 0 ) ,
o 9 (f(u))=0 4in D' (R x (0,7)) L
u(z,0) = up(x) z € R,



then we have the following theorem:

Theorem 1.4 Let p € [1,+00) and f locally lipschitz and convez, then, for all T, Ly > 0, and
ug € WoP(R), verifies (H1) and (H2). The equation (1.4) admits a solution u € W,5P(R x
[0,T)), unique in the class of solutions satisfying (H1) and (H2), for all t € [0,T).

1.4 Organization of the paper

In section 2, we regularize the function a(-) and the initial conditions. After that, we prove
2 +

0
that the system (1.1)-(1.2), modified by the term (e = ) admits local in time solutions (in

the “Mild” sense), by using an application of a fixed point theorem in the space of functions
in C([0,T); H. .(R)) and verifying (H1) for all ¢ € (0,7). Then in section 3, we prove that
the obtained solutions are regular and verify (H2) for all t € (0,7"), with initial conditions
verifying (H2). In section 4, we prove some uniform a priori estimates of the regularized
solution obtained in section 3. Then, thanks to these estimates, we also prove in this section
the existence of global in time solutions. In section 5, we give the demonstration of Theorem
1.1. And in section 6 we prove a comparison principle result of the system (1.1) in the case
« = 0. Finally, in section 7 we give an application of the previous results in the case of the

classical Burgers equation.

2 Existence of solutions for an approximated system

In this paragraph, we prove a theorem of existence of solutions, local in time, for the system

2 +
(1.1) modified by the term e 92

7z
conditions. This approximation brings us back to the study, for every 0 < € < 1, of the following
System:

after the regularization of the function a(-) and the initial

dpte

a +,& 82 +,€ _ ! —,&
p P <a€(t) +(pTF —p7F) —i—a/o (ptF—p— )(y,t)dy> g

ot c Oz

in D'(R x (0,7)),

X

({9p7’€ 82/)7’8 _ € +,e —,€ ! +,e —€ ({9p7’€ : /
5 S = (a )+ —p )+a/0 (P75 =p ™)y t)dy | —5— in D'(Rx(0,T)),
(2.5)

where a® = @ 1., with n.(-) = 1n(2), such that n € C°(R), positive, and [ = 1. The
function a(-) is an extension in R of the function a(-) by 0.

We also consider the regularized initial conditions of the system (2.5):
pE(@,0) = py “(2) = py “P" (@) + Loz = py ™" # () + Loz, (2.6)

We have the following existence local in time result, for the approximated system:



Theorem 2.1 (Short time existence) Assume (H1) and (H3). For all o € R and pi €
H}! (R) there erists

toc * + per
T (HpO ||H1(T)? ||a’”L°°(O,T)aLOaO[36) > O;

such that the system (2.5)-(2.6) admits a solution p™° € C([0,T*); H]

L (R)) with p=°(.,t)
verifying (H1).

For the proof of this theorem (see sub-section 2.3), we need some Notation and Preliminary
results:

2.1 Notation

In what follows, we are going to use the following notation:

€

L p*=ptf—p™~,

9. prewer — pte Lo

3. T = (R/Z) is the [0, 1) periodic interval,

4. let f = (f1, f2) be a vector such that f; € HY(T) for i € {1,2}. The norm of f in
(H'(T))* will be defined by ||f|z7: () = max(| fillzr1(z), || foll 1))

5. Let f be a function from R x (0,7") to R. we note by f(t) = f(.,t) : x — f(z,1).

o +e
Remark 2.2 (Periodicity) According to (H1)-(H2), it is clear that p°, p™=P" and gm
are 1-periodic in space functions.
Under the notation of paragraph 2.1, we know that the system (2.5) is equivalent to:
bilinear term linear term
apzl:,e,per 82pzl:,6,per apzl:,a,per apzl:,e,per )
o T a2 T Ca[PE(t)]T jFae(t)T F LoCalp®(t)] FLoa*(t) in Tx(0,T),
(2.7)
1
where Gl (1)) = (#at) +a [ (o)),
0
with the periodic initial conditions
pEEP (2,0) = pp P () in T (2.8)

2.2 Preliminary results

Lemma 2.3 (Properties of the regularized sequence) Under the hypothesis (H1) and
(H3) and for every pf € H} (R), we have

1. The functions péc’a’per € C™(T) and verify the following estimate:
:l:7 ’. :':7
o0 =" e emy < llog ™ e (my-



2. The function a°(-) € C*°(R) N L>(R) and verifies the following estimate:

lla®|| oo r) < llall oo 0,1y

3. The sequence a°(-) strongly converges to a(-) in L?(0,T). The sequences péc’a’per strongly

converge to poi’per in H'(T).
The proof of this lemma is a classical property of the regularizing sequence (7). )e.

Lemma 2.4 (Mild solution) Assume (H3). For every T >0, if p=5Per ¢ C([0,T); HY(T))
are solutions of the following equation:

FEPeT (1 4) = e .per tae s)ds t —5 (s 7api,€,pe7" s s
P e) = 5005 o [ a(o)isw [ -9) (Caly () 0 ) a
t +,e,per
:F/O S:(t—s) (LoCa[pE(s)] + a(t)apT(s) ds,
(2.9)

where S.(t) = €2 is the heat semi-group, then pHP°" is a solution of the system (2.7)-(2.8)
in the sense of distributions.

For the proof of this lemma, we refer to Pazy [16, Th 5.2. Page 107].

Lemma 2.5 (Fixed point): Let E be a Banach space, B be a continuous bilinear application
from E x E to E and L be a continuous linear application from E to E such that:

1B(z,y)lle < Mllsllylle forall .,y € E,

IL(2)||lg < pllzl|g for all z € E,
where X > 0 and p € (0,1) are given constants. Then, for all zo € E such that

1
—(u—1)2
lzollE < 4)\(/¢ )%,

the equation x = xo + B(x,z) + L(x) admits a solution in E.

For the proof of this lemma we refer to Cannone [5, Lemma 4.2.14].

In order to show the existence of a solution within the framework of Lemma 2.4, we apply
Lemma 2.5 in the space F = (LOO((O,T);HI(’]I‘)))2, where zg, B and L are defined, for u =
(uy,ug), v=(vi,v2) € E, by:

t

- — - -1
To = Se(t)pg,vec + LOZ/O ae(s)ds, where pg,vec = (p(-)hs,pe?”po 75717@7’)7 = < 1 ) ’ (2.10)

Blu,v)(t) = I /Ot S.(t—s) <C’a[u1(s) —ug(s)]g—v(s)> ds, where T — ( Y ) L (@211)

X

L(u)(t) = LO;/O Sc(t — 8)Cqlur(s) — ua(s)]ds + I /0 Se(t —s) (aa(s)%(s)>d5. (2.12)



Lemma 2.6 (Decreasing estimates) If f € L(T) with 2 < q < +o0o and g € L*(T), then
for all t > 0 we have the following estimates:

(i)
[Se(O)(fDpaery < C 2 fllz2em)llgllLe s
(i1
9 smnl|  <oriisabys
ax( € L > ey L2(T)»
(ifi)
0 1
o 0t <o Sl lallaen,
12(T)

where C = C(g) is a positive constant depending on e.

For the proof of this lemma, see Pazy [16, Lemma 1.1.8, Th 6.4.5].

Proposition 2.7 (Bilinear operator): Let Fr = (LOO((O,T);Hl(T)))z. Then for every
T >0, a €R, u= (uj,u2) € Fr and v = (v1,v2) € Fr the bilinear operator B defined in
(2.11), is continuous from Fpx Fp to Fp. Moreover, there exists a positive constant C = C(«a, €)
such that for all u,v € Fr we have:

1
1B(u, v)||pp < CTHullpp |0l 7r-

Proof of Proposition 2.7

We have
11/5 (t—s) ( W ()—m(s)]%(s))ds

/t ov
<
0

S.(t — s) (co, [ur (s) — W@)@@)) Hmm ds

1B, v)()ll 1 (ry =

HY(T)

<[ st -9 (Cotir(s) — ua(o) 52 (9)) o
[ |25t -9 (Catiats) - a1 5) o

Using Lemma 2.6 (i) for the first term and Lemma 2.6 (iii) with ¢ = 4 for the second term, we
can conclude that:

ov
5|

1B, o))y < C / - ICalur(s) = w ()l

t—s 1

t
1
<Csup (fu@lrce) sup (1o0rcry) [ ——ds
0<t<T 0<t<T 0



Then for all ¢t € (0,7T), we have:

1
[B(u,v)E)lgrery < Cta||ull oo 0,111 (1y)2 |01 oo (0,757 (1))2
(2.13)

1
< CTa Jull oo o,y o2 0l oo oy yy2-

Proposition 2.8 (Linear operator): Let Fp = (LC’O((O,T);Hl(']I‘)))2 and a(-) satisfy-
ing (H3). Then for all Ly, T > 0 and uw = (uj,us) € Fr, the linear operator L de-
fined in (2.12), is continuous from Fp to Fr. Moreover, there exists a positive constant
C = C(a, e, [lal| e (0,1, Lo) such that:

1
IL(u)|lpp < CT#||ullpy-
The proof of Proposition 2.8 is similar of the one used in Proposition 2.7.

Lemma 2.9 For all Ly, T > 0 and a(-) satisfying (H3), if

t
Xoe(t) = Lof/ a®(s)ds, t € (0,7),
0

then
[ Xas (oo 0,7))2 < LoT |lall Lo 0,1)-

The proof of Lemma 2.9 is trivial (from Lemma 2.3 (2)).

Lemma 2.10 (Continuity of the semi-group) For all f € W?2(T) and 0 < 6 < t, we have
the following estimates:

(i)
0% f
[(Se(t —0) — Id) f| 2Ty < C(t - 9)”@”9(1‘),

(i)

|(Se(t = 0) = Id) fll 2Ty < 2l fllL2(T)s
where C' = C(g) is a positive constant depending on ¢.
We refer to Pazy [16, Lemma 6.2 Page 151] for the proof of this lemma.

,PET

Lemma 2.11 (Time continuity) Assume (H3). If powec = (pa ™", po ") € (HY(T))?,

then for all T > 0 and u = (uy,uz) € (LOO((O,T);HI(T)))Q, the following applications are
2

(C([0,T); HY(T)))":

(A1): t — X4 (1),
(A2): t — S:(t)P§ vec) Where pf yee = (P =P pg =P,

(A3): t — B(u,u)(t),



(A4): t — L(u)(?),
where X4, B and L are defined in Lemma 2.9, (2.11) and (2.12) respectively.

Proof of Lemma 2.11

The continuity of (A1) is trivial because a € L*°(0,T). From the fact that the semi-group S.(-)
is continuous from [0,7") to (H'(T))? we deduce the continuity of (A2).

It remains to prove the continuity of (A3) and (A4). Indeed, the continuity of (A3) at 0 is
a consequence of inequality (2.13). Now, we are going to prove the continuity of (A3) for all
0 € (0,T). For all ¢, such that 6 < t < min(T, 3), we write t = (1+7)6 and denote 7 = (1—~)8
(where 0 < v < 1) and we write

Blu)t) - Blu(®) = [*(56= )= 56 - ) (Calur(s) - a5 ) ds

+/T€ (S(t—s)— S0 —s)) <Ca[u1(s) — uQ(s)]%(s)> ds

—|—/€ S(t—s) (Ca[ul(s) - uﬁs)]%(s)) ds
I
T ou
_ /0 (S(t — 0) — 14)S(0 — 5)) <Ca[u1(s) - ug(s)]%(s)> ds
Ip)
0 u
+/T ((S(t—60)—1d)S(0 —s)) <C’a[u1(s) - uﬂs)]%(s)) ds

+/€tS(t —5) (Ca[ul(s) - W@)}%@) ds.

We apply Lemma 2.10 (i) and Lemma 2.6 (ii) to find an upper bound to I;. We then apply
Lemma 2.10 (ii) to find an upper bound to I5. After that, we follow the same steps of the proof
of Proposition 2.7 to conclude that:

1B (u, w)(t) = Bu,u)(@)l[ < C(t = 0)]ul? ds

T 1
(L ((0,7);HL(T))? /0 0 — )7

1

0
2
+C||u”(Loo(((],T);Hl(T)))Q/T (0 — S)%

ds

2 / 1
(=TS Jy (47— 5)

After the computation of each integral we deduce that:

+C|ul| ds.




3
014

1 1 2
15000 = Bl )@l < €= 0) (g = ) Wl oy

B 1 _ 1 2
+C((0 it 9)4)Hu”uw((o,T);Hlar))f'

Observing that ¢ — 6 = 8 — 7 = 6 we finally obtain the following inequality:

1B w)(t) = Blu, )]l < C0,7) (= 0% + (¢ = 0)) w0 171y

hence the continuity of (A3). In the same way we get the continuity in time of (44). |}

2.3 Proof of Theorem 2.1

Proof of Theorem 2.1
We rewrite the system (2.9) in the following vectorial form:

. t _ t Oot
Piaclst) = Se00f e+ Lol [ () + Iy [ St —) (ca[;f(sn%(s)) s
0 0

+Loi /0 tSE(t — §)Calp*(s)]ds + Iy /0 tSE(t — ) <a6(s)%(s)> ds.

Such that pf,, is the vector (p™=P", p=5P°") and pf . is the vector (pa =P, pg =P"). 7 and

I; are defined in (2.10) and (2.11) respectively.
This altogether leads to the following equation:

pf)ec('? t) = S€(t)p6,vec + Xae (t) + B(pf)ec’ pf)ec)(t) + L(pf)ec)(t)? (214)

where B is the bilinear application and L is the linear application defined in (2.11) and (2.12)
respectively and X,- is defined in Lemma 2.9. Moreover, according to Lemmas 2.9 and 2.3 we
know that:

||S(t)p6,vec + Xas (t)H(LOO((o,T);Hl(T)))Q < ||p6,vecHH1(T) + LOTHaaHLDO(R)

< |lpovecll 1 (1) + LoT l|al Lo 0,1)-
In order to apply Lemma 2.5, we want, for a well chosen time 7', that the following inequality
holds:

1 1 1
Pvecl i (ry + LoT llal oo,y < T (CT7 —1)?, and CT7 < 1, (2.15)
4

where C' is the largest constant between the two constants computed in Propositions 2.8 and
2.7. For:

1 1
15 Y2
2C7 16C(||pOecllzr (ry + Lollal| <o, 1))

(¥ (1poseellir 2y, allz=o.1s Lo, €) = min < ) . (216)

10



we can easily verify that 7™ satisfies the inequality (2.15). We apply Lemma 2.5 over the space
Fr« = (L>®((0,T%); Hl(’]T)))2, to prove the existence of a solution for the system (2.14) in Fp«.

Then, according to Lemma 2.11, we deduce that the obtained solution is (C/([0,7*); H' (’]T)))2
This proves, by Lemma 2.4, the existence of a solution in the sense of distributions for the
system (2.5)-(2.6) in C([0,T*); H} (R)) that verifies (H1). ||

loc

3 Properties of the solution to the approximated system

In this section we show that, the solutions of system (2.5)-(2.6) obtained in the previous section,
are regular and verify (H2), provided with initial conditions verify (H2).

Lemma 3.1 (Regularity of the solution) Assume (H1), (H3) and pg € H} (R), if p™* €
C([0,7); Hj,

L (R)) are solutions of the system (2.5)-(2.6), then p=° € C®(R x [0,T)).
Proof of Lemma 3.1
If we denote the second term of the system (2.7) by

o +,e,per o +,e,per
+ (> _ g p £ p
faz alp™ ()] = Fa°(t) (Lo = > T Co[p° ()] (7&3 + L0> ,

we know that f;cgﬂ[pe] € L%(T x(0,T)). Moreover, we know that the initial conditions péc’a’per €
C*°(T), which allows us to apply the L? regularity of the heat equation over the system (2.7)-
(2.8) (see Lions-Magenes [15, Th.8.2]). Then we deduce by induction that the solution is
C>(T x [0,7)). 1

Lemma 3.2 (Monotonicity of the solution in space) Assume (H1), (H2), (H3) and
pi € HL (R), if p™° € O(R x [0,T)) are solutions of the system (2.5)-(2.6), then p™*(.,t)

verifies (H2) for all t € (0,T).

Proof of Lemma 3.2

api api,E
First, we remark that if 6—0 > 0, then —2— > 0. Indeed, we have
xr X
o +.,e o +,per o +,per
20 = £ *775+L0 = £ + Lo * e
ox ox ox

o +
= <%) x 1. > 0, because n is positive.

We apply the maximum principle over the derived system of (2.5)-(2.6):
00+ 026+ 20*

-~ _ € € + _ g\t — .
ot € 22 £ (Calp*(t)] +a (t))—ax + (0 07)6 0 in Tx(0,7),
8pi,€
+ _ 9P
9 (‘T?O)_ ax ’
+.e
where 0 = (see Gilbarg-Trudinger [10, Th.8.1])). Since p™° € C®(R x [0,T)), we

x
deduce that = > 0 belongs to T x (0,7). |

11



Corollary 3.3 (Short time existence of non-decreasing regular solutions) For all o €
R and pi € H. (R), under the assumptions (H1), (H2) and (H3), there ewists

+
T*(Ilpo ’pETHHl(T)? lall Lo 0,75 Lo, v, €) > 0,

such that the system (2.5)-(2.6) admits a solution p™° € C°(Rx[0,T*)) with p™°(.,t) verifying
(H1) and (H2).

The proof of Corollary 3.3 is a consequence of Theorem 2.1 and Lemmas 3.1 and 3.2 (with
T=T%).

Remark 3.4 Here, we remark that the case of non-decreasing solutions corresponds to a non-
shock case in Burgers equation. On the other hand, the decreasing solutions represent the shock
case.

4 A priori estimates and long time existence for the approxi-
mated system

In this paragraph, we are going to show some e-uniform estimates on the solutions of the system
(2.5)-(2.6). These estimates will be used in section 4 for the passage to the limit as ¢ tends to
ZE€eTro.

Lemma 4.1 (L? estimates over the space derivatives of the solutions) Assume (H1),
(H2), (H3) and pf € H} (R), if p™° € C®(R x [0,T)) is a solution of the system (2.5)-(2.6)
for all T >0, then

2 2

op~—*°
ox

8p+’€
H ox

)

< BO’

Lo2((0,T);L2(T)) L>=((0,7);L%(T))

2
L2(T>>'
Proof of Lemma 4.1

If we denote p° = p™° — p™° and k° = p™° + p~° then, according to (H1), it is clear that pf,
g

£ £
Ip and Ok > 0.
ox

x x
If we take into consideration the equations of the system (2.5), we can conclude that p° and k°
verify the following system:

2
opg

ox

oy

with By = 8 H -i—H
L2(T) O

are 1-periodic functions. Moreover, by Lemma 3.2, we know that

apa ane _ . 1 . . ok ,
TR ——<p +a/0 podr + a®(t) o B D'(R x (0,7)),

(4.17)
Oke 82ke . 1 . . apa ) ,

12



We derive the first equation of the system (4.17) with respect to z, then we multiply the result

€

0
by Op and finally we integrate in space. For all ¢t € (0,7"), we then obtain:
a2p5(t) 2 L 1 3p€)23k€_/1 6apea2ke
2 dt 12 (T) Ox? L2(T) N 0o Or’ Or 0 P oz 0a?

1 1 a2ke 8p€
(a/o p-+a (t)> T o

Now, we proceed in the same way of the previous equation, but we multiply the second equation
£

of the system (4.17) (0,T"), we obtain:

8k€ 0%6 0 [ ap€)23k6 B /1 L0k 0%p°
2 dt LQ(T) 8372 LQ(T) - 0 837 (930 837 8372
1 1 a2ps Oke
£ 15
— t .
<a/0p+a()>03m23x
1>
Now, we add the two previous equations. Thanks to the periodicity of p° and B we deduce
that:
8/<:€ B 1(8p5)20k:5 B /13 _0p° Ok®
2dt LQ(T) 2dt £2( o Ox O 0 Ox P oz o
1 1 o ape Oke
(a/o 7o) [ (55
L ope 28k:€

< - ( ) <0.
Ox~ Ox —
We integrate in time and we use the fact that p° E C>®(R x [0,7)) and Lemma 2.3. We

obtain in particular
2 2
<9 H 7—/’0) ,
L2(T) L2(T)

Lemma 4.2 (L? estimates of the solutions ) Assume (H1), (H2), (H3) and pg € H] (R),
if pT° € C°(R x [0,T)) are solutions of the system (2.5)-(2.6) for every T > 0, then

€ 2 2

ok®

d(pg +ry)
o (75) 0 0

ox

dp
5 (1)

sup
te(0,T)

+ sup
L2(T) te(0,T)

iy

L2(T)

That leads to the desired result. |}

4Lo(14a2)T

+€HL°°( oryrzo TP 6HLO@( (01)L2(0,1) =8 <Mo +(Bo + llal7 OT))) € ;

Its

where By is defined in Lemma 4.1, and My = (Hpo HL2 01y T Hpo HLz 0 1)>

Proof of Lemma 4.2
We will use the same procedure of the proof of Lemma 4.1. We multiply the first equation of

13



the system (4.17) by p® then we integrate in space. For every t € (0,7"), we obtain:
1d 0p°

1 Ok¢ 1 1 - Ok®
_ £\2 o S 5
5T (%() e /0 (") 5 (a/o P +a (t)>/0 i

Similarly, we multiply the second equation of the system (4.17) by k¢ and we integrate in space.

For every t € (0,7), we obtain:
1 e 1
:_/ peaiks_ (a/ p€+a€(t)>/ kgap
L2(T) 0 Ox 0 0 or

Now, we add the two previous equations and get:

1.d, . d, . Ly o0k 1 _0(p°)?
I Ol + IO o) < [ (095 + 5125
! & £ Eap ! 6ak€
(o frrew) (5 [ o5
1t oks 1 [Lo((p°)%ke
S_i/(pe)Qa __/ ((p) )
0 xr 2 0 (930
1 la(kape)
—|a | p°+a(t )/
( /0 Q 0 Ox
1 la(kepe)
< — c & )
< a/o o +a (t)>/0 e

But we know from (H1) that p® and (k* — 2Lyx) are 1-periodic functions, which implies that:

1 £ € 1 e __ € 1 € 1 £ 1
/ (k% p®) :/ O((k® —2Lox)p°) +2L0/ O(zp®) _ 2L0/ x@p / .
0 ax 0 ax 0 830 0 830 0

2(a® +b%) and (a +b)? < 2(a® + b?)), to

—llo*(O)1Z2m) +&

Ok*®

1d
o (t)

2dt

—[I&=(t )||L2 1) T€

We use Lemmas 4.1, 2.3, and the fact that (ab <
deduce that:

+ ||P€(t)||L2(1r)>

L2 ('ﬂ'))

< 4Lo (Bo+ lall3w(o,r) ) +4Lo(L+ ) (Il67O)l32(r, + 1K (D) 3200, ) -

4 (k)12 ()12 <4L (¢ %" 4
= (1B O200) + 10 OlFacr) < 4Zo (Jad 17O agr) + lallz= o) rl

dp°
an, (HGH% oy + (1207 32y + H 5 ()

Using the previous estimate and the fact that p™° € C®°(R x [0,7)), we finally obtain:

062
Hpa”%w((O,T);L?(T)) + Hkauioo((o,T)p(o,n) <8 <M0 + Bo + HCLH%OO(O,T)> gttoltta)T,
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This leads to the desired result. |

Lemma 4.3 (L? estimate on the time derivatives of the solutions) Assume (H1), (H2),
(H3) and pg € H. (R), if pt° € C°(R x [0,T)) is a solution of the system (2.5)-(2.6) for

loc

every T > 0, then there exists a constant C (T, Lo, a, ||| o (0,1), Mo, Bo) independent of € such
that:

<C.

%
L2(Tx(0,T))

ot

Proof of Lemma 4.3
For the proof of Lemma 4.3, it is sufficient to show that the second term of the system (2.5)

+ 1 apﬂ:,é
fas,aw(t)]:¢(a€<t>+p€+a / pedx> e
0 X

is bounded in L*°((0,T); L*(T)) uniformly in e. Indeed,
1 +,e
Op™
3 & (3
. d
(a()+p +a/0p m) o
8pi,€

C (I ll=xiomy + lal=om) | %5

Hfa:E,a[pe]HLOO((O,T*);LQ(T)) =

Lo2((0,1);L2(T))

Lo (OT)A(T))

We use the Lemmas 4.1, 4.2 and the Sobolev injections to deduce that there exists a constant
C (T, L(], «, ||CL||Loo 0,75 M(), Bo) such that

H af,a[p ]HLoo(((),T);LQ(T)) <C.
dpte OpF

ot ' ot
respectively and we integrate in space. We deduce that for every ¢ € (0,7') we have:

To end up, we multiply the first and the second equations of the system (2.5) by

2 / f:l: 5 apzl:es.
LQ(T as a

We integrate in time and we use the fact that p™° € C(R x [0,7)) for all T' > 0, we get:

s

o 2 apzl:a
ot

Ly 2 dt

2 2

a +.e
/ / fafa p +%
L%T)

We apply Holder’s inequality and the fact that ¢ < 1 and ab < 1(a® + b%), to obtain that:

3P0i ?
ox

api z—:
Ox

_l’__

L2(Tx(0,7)) 2

api,e
1%

L2(T) .

Hapivf i < |l £3= ol H% *Hap()i 2

Ot Nlpzxmy — 5 OO0 e o1 92 llr2m)
B TR Il W [ |
=9 af,a L2(Tx(0,T)) 2 ot L2(Tx(0,T)) O L2(T) .
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that leads to

ey < AWy + |22
5 ot LT (0.T)) =9 af,a L2(Tx(0,T)) oz L2(T)
T, .+ 2 8P0i 2
< 9 H as,a[pa]HLOO((O,T);L2(T)) + H ox =G

where C' (T, Lo,Oé, ||a”Loo(0’T),M0,BQ). I

Remark 4.4 (The sense of the initial conditions) According to Lemma 4.3, we have
ptErer ¢ O([0,T), L2(T)) uniformly in c. This will give a sense to the limit of the initial
conditions.

Theorem 4.5 (Long time existence) Assume (H1), (H2) and (H3), for all Ly, T >
0, a € R and pf € HL,(R), the system (2.5)-(2.6) admits the solutions p™° &
C>®(R x [0,7T)), with p™°(.,t) verifying (H1) and (H2). Moreover, there ezists a constant
C (T, Lo, &, |la|| o 0,1 Mo, Bo) independent of €, with By and My defined in Lemmas 4.1 and

4.2 respectively, such that:

8pi,€

8pi,€
ooz *+ | o

ot

+,e,per

<c, (4.18)
L2(Tx(0,T))

It2

iy

L= ((0,7);L*(T))

+,e,per

where p = pte — Lyz.

Proof of Theorem 4.5

We are going to prove that the local in time solutions obtained by Corollary 3.3 can be extended
to global in time solutions for the same system.

We argue by contradiction: Assume that there exists a maximum time 7},,, such that, we have
the existence of solutions of the system (2.5)-(2.6) in the function space C*°(R X [0, Tinaz))-
For every 6 > 0, we consider the system (2.5) with the initial conditions

=+, ,
p(577fbax = pi €(x7 Tma:v - 6)'

We apply for the second time the same technic of Corollary 3.3 to deduce that there exists a
time

:':7 9. :l:7 I :':7
ngmam(Hp(SﬂifxeTHHl(T)a ||a||L°°(O,T)’ LO’ Q, 5) > 0, where :0577;5;T = p(s,niax - LOxa

such that the system (2.5)-(2.6) admits a solution defined until the time

TO = (Tmaar - 5) + ngmax'

Moreover, according to Lemmas 4.1 and 4.2, we know that p}t;flfafr are d-uniformly bounded in

H'(T). We use (2.16) to deduce that there exists a constant C(e, Tinaz, o, ||al| 0,1y, Lo) > 0
independent of ¢ such that Ty, . > C > 0, then %in% T5 ez = C >0 which implies that

To > Tyae and so a contradiction.
The estimation (4.18) is a consequence of Lemmas 4.1, 4.2 and 4.3. |}
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5 Existence and uniqueness of the solution of (1.1)-(1.2)

In this paragraph, we are going to prove that the system (1.1)-(1.2) admits a unique solution
pt (in the distribution sense) which is the limit as ¢ — 0 of p™° given by Theorem 4.5. In
order to do that, we pass to the limit when e tends to 0 in the system (2.7)-(2.8), and we use
(4.18) in order to assure the compactness. The proof of the uniqueness uses direct arguments.
Proof of Theorem 1.1

We first prove the existence and then establish the uniqueness.

Step 1 (Existence):

Let p™° be the solution of the system (2.5) given by Theorem 4.5. According to (4.18) we know
that p™P¢" are e-uniformly bounded in H'(T x (0, 7)), then we can extract a sub-sequence that
converges weakly in H'(T x (0,7)). Knowing that H'(T x (0,T)) is compact in L?(T x (0, 7)),
this sub-sequence strongly converges in L2(T x (0,T)). If we denote by p™P¢" the limit of this
sub-sequence, we have to prove that p™P¢" + Loz is a solution of the system (1.1)-(1.2) in the
sense of distribution. Indeed, by Lemma 2.3, the term F (Lya®) of the equation (2.7) converges
strongly to (FLoa) in L2(0,T).

The linear term

oz
of the equation (2.7), weakly converges in L}(T x (0,7)) and the reason is, in the one hand
o +.,e,per
that 8_p are e-uniformly bounded in L?(T x (0,7)) that gives us the weak convergence in
x
L?(T x (0,7)) and on the other hand, that a® strongly converges in L2(0,7). Then, the linear
term converges in the sense of distributions (i.e. in D'(T x (0,7))). It remains to prove that
the bilinear term

o +,e,per
7 (LoCale + e )

ap +,e,per
Calp|

of the equation (2.7), also converges in the sense of distributions. We have:

1. The sequence Cy[p°] is compact in L?(T x (0,T)).

+,e,per

2. The functions p are e-uniformly bounded in L?(T x (0,7)),
x

that gives us a strong convergence in L?(T x (0,7')) times a weak convergence in L*(T x (0,T))
and hence a weak convergence of the product in L!(T x (0,7)). This leads, as a consequence,
to the convergence in the distribution sense. This, altogether, shows that p™P¢" + Lox is a
solution in the sense of distribution of the system (1.1)-(1.2) and p*P¢" verifies estimate (4.18).

It remains to prove that the initial condition is satisfied by the limit function p™?¢". In fact,

=+, =+,
+,e,per @ : dap °

o M or

+ e,per

according to the estimate (4.18) on p , we see that p is e-uniformly

bounded in H(T x (0,T)).
From the fact that the injection of H(T x (0, 7)) in C([0,7T); L*(T)) is continuous and compact

by classical arguments, we see that, for all v € L?(T), the application v : U —— / U(0)v is
T

a continuous linear form for U € C([0,T); L?(T)) and hence (p™cP°") — ~(pTPeT) as & — 0,
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because up to a subsequence p=P" converges strongly in C([0,7); L?(T)). This altogether
proves that the solution verifies the initial conditions (1.2).
Step 2 (Uniqueness):

Let pi and pi be two solutions of the system (1.1), such that pi(-,0) = pi(-,0) = p(jf. Ac-
cording to the previous paragraph, we know that pzi verify the estimate (4.18) for i = 1, 2.

If we denote p; = p;” — p;, ki = p +p; for i = 1,2, then it is clear that (p; — p2) and (k1 — ko)
are 1-periodic functions in space and p;, k; verify the following system for ¢ = 1, 2:

Ip;
ot

1
=— <pi +a/ pidx + a(t)> Oki in D'(Rx(0,7)),
0 ox
(5.19)
Ok;
ot

1 .
=— <p,~ + a/ pidz + a(t)> Opi in D'(R x (0,7)).
0 or

We substract the two systems to obtain that:

8(p1 — pz) N /1 3k1 /1 3k2 8(]{1 — ]CQ)
En = p1+ ; p1dx I + [ p2+a ; p2dx %—a(t)T,

O(k1 — ks) /1 Ip1 /1 9p2 9(p1 — p2)
SRR dr | 22 G2 )R
En (Pl +a e ) +|\p2ta ; padx e a(t) o7

The previous system is equivalent to:

4 _ ! 1 —
8(91TPZ) :—<(p1—p2)+a/0 (Pl—pz)dx>%_<p2+a/o pzdx>8(k167mk2)
(k1 — k2)
—a(t)Ta
i ) 1 _
8(]{18775]{2) :_<(p1—p2)—|—a/0 (Pl-ﬂ2)d$>%_<p2+a/o PW)W
_a(t)M
L ox '

We multiply the first equation of this system by (p1 — p2) and we integrate in space to obtain,
for almost every t, that:

gl = = [ (0= Ge) —o ([0i=m) [ (i)
_/01 ((m —p2) <P2+a/01p2> W)

~a) [ 1 (60 - QW)



Similarly, we multiply the second equation by (k; — k2) and we integrate in space to get for
almost every time ¢:

L~ O = — [ (=0~ 022 )0 ([ =) [ 122
_/01 ((k‘1—k‘2) <P2+a/01p2> w>

—af(t) /01 ((k1 - @)W).

We add the two previous equations to obtain, for almost every time ¢:

L (s = p) ey + s~ KOl

_ _/01<(p1 _p2)2%> —a </01(p1 - p2)> /01 ((Pl - Pﬂ%)
(finen) () -t )

-/ 1 (01 =2t~ 222220 g | 1 (5 (o = pa)lis — k2 ).

From the fact that p;, ¢ = 1,2 and (k; — k2) are 1l-periodic functions in space, the previous
equation becomes:

I Ip)

o) (L) [ (o)

I3 1y

—« (/01 (p1 —Pz)> /01 ((/ﬁ - k2)%> - /01 ((Pl — p2)(k1 — /<72)8(p187;[)2)> :

L.
And since % > 0 for i = 1,2, we know that:
T

L+l = —/01 ((m - P2)2%> - 1/01 ((lﬁ - k:g)% (= p2)2)>
= [ (o =rG2) + 1 [ (i oy 2t

[ (e ) <
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Moreover, from (4.18), we have for almost every t:

Ok1
Iy < lalll(er = p2) ()l z2m (1 = p2) (B) 122 ]%w
L2(T)
< Cllor — p2) (1) 2y
Similarly, from (4.18), we have, for almost every ¢, that:
Ip1
Iy < alll(pr = p2) |2l (k1 = ko))l 2y || 5 @)
L2(T)

< C (o1 = p2) B2 gy + 101 = ko) (0) 22 )

Then

@ (101 — 22 0By + 11— k) (O < € (101 = 2)(O By + ks ~ k) Olacr)) -

Now, we integrate in time and we use the fact that p;, k; € C([0,7), L2 (R)), p1(-,0) = pa(-,0)
and k;(-,0) = ka(+,0) to obtain that:

sup (o1 = p2) O Z2(ry + sup (k1 — k) (6) 1 F2(p) < 0.
te(0,T) te(0,T)

This achieves the proof of uniqueness. |

Remark 5.1 In Theorem 1.1, we have proved a result of existence and unigueness in HZIOC(R X
[0,T)) depending on some uniform estimates in this space. These estimates give a sufficient
compactness in order to ensure the passage to the limit as € tends to 0 in the bilinear term.
However, the space I/Vlicl(R x [0,T)) does not give enough compactness. On the other hand,
the space of functions Lj (R x [0,T)) having their derivatives in L>°((0,T); (L'log L'), (R))
requires the minimal properties to ensure the passage to the limit in the bilinear term. The

result of existence in this space will be the core of a paper in preparation.

6 Further properties: comparison principle with case a =0

In this section, we are going to prove a comparison principle result of the system (1.1) in the
case « = 0 (i.e. the Theorem 1.2). In under to do this, first we prove in the following subsection
the same result for the approximate system (2.5). After that, we give the proof of Theorem
1.2.

6.1 Comparison principle for the regularized system with case a =0

Lemma 6.1 (Comparison principle) Let a(-) satisfies (H3) and pi°, p3° € C°(Rx[0,T))
be two solutions of the system (2.5) with « = 0. Moreover, let ,oli’e(.,t), pgt’e(.,t) verify (H1)
and (H2) for all t € [0,T). Then, if pf’a(-,()) < pét’s(-,()) in R, we have pf’a < pét’g n
R x [0,T).
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Proof of Lemma 6.1
We know that pf’a and péc’a verify the following systems:

r ag,e - a;,g,s _ <p1+,e e +a6(t)> ag_f in D'(R x (0,7)),
T P L
T (o) B w0,

respectively.

~+.e

If we denote w®° by g, — ﬁf’e, where,

~Ft.e  +e
Py = P2

we can easily check that w®¢ are solutions of the following system:

e ﬁf’a = pf’ae_“/t with v >0,

owte  Pwhe NG re ~ dwte
S e o = e (e —we) S (5 = e (1))
ow™* 02w _ _ . O0py " P — o ow™*
G g TSt ) SR (5 - e () S
(6.20)

We are interested in the <wk’5($,t)>. Our result follows if we can prove

min
(k,x,t)e{-i-,—}XTX(O,T)
that this minimum is positive. However, this minimum is attained at a point (ko,zo,to) €
{4+, =} x T x [0,T] (because wt< et w¢ are C°(T x (0,T))).
Two cases may occur:
1. In the case ty = 0, we have

min (@b, 1) = 0l (w0, o) = (65" (20,0) = pi" (20,0)) €70 > 0

(k,z,t)e{+,—}xTx(0,T)
and we are done.

2. In the case ty € (0,7], we have: (ko,xo,%0) is @ minimum point, then:

akao,a
gz (@o,t0) =0, (6.21)
Awkoe
T (zo,t0) <0, (6.22)
Owko-e

5 (%0,t0) = 0. (6.23)
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We combine (6.21), (6.22), (6.23) and we take into consideration that w®*° verifies the system
(6.20), we obtain that:

a~k‘0,6
ywkof (zg,t9) > M0 sign(wt e (2o, to) — wF (z0, to)) (we (x0, to) — w™ ¢ (20, to)) Paz
x
8ﬁk0,€
> Vo lwte(xg, tg) — w ™ (zo, to)| 02 > 0.
x

Then ﬁli’e < ﬁzi’e in R x (0,7), which gives pli’e < pgt’s. |
We now give the proof of Theorem 1.2:

6.2 Proof of Theorem 1.2
Let

,per

:l: :l:7
pE(,0) = pEo(e) = pid (2) + Loz and pE(x,0) = pEo(z) = pif"(z) + Lo

If we denote

,per ,per

(@) = i7" #ne(x) + Loz and  pys (x) = py " #ne(x) + Loz,

where 7). is a regularization sequence, we can easily check that pfbe < pgt 5

Moreover, according to the uniqueness of the solution, we know that there exist pli’e, pzj[’6 €
C*(R x [0,T)), verifying (H2) for all ¢t € (0,7, that are solutions of the system (2.5), such

that

+

+ 1' :|:7E _ 1' :l:,&
im pi™%,  py = lim p5 ",
—0 e—0

=
€
:l:, :l:y :l:v i’
p1 " (x,0) = Pl,oa(x) and py*(z,0) = P2,0€(95)-

We apply Lemma 6.1 to obtain that plj[’6 < pgt’e. We pass to the limit as € — 0 to deduce that
+ +
r<ry- |1

Remark 6.2 Thanks to this comparison result, we proved in a previous paper [8] the existence
and the uniqueness of a solution (in the viscosity sense). Here, this comparison result is an
indirect explanation of our estimates obtained in Lemmas 4.1, 4.2 and 4.3 that have ensured
our principal Theorem 1.1.

7 Application in the case of classical Burgers equation

In this paragraph we are going to prove that these technics can be also applied to the classical
Burgers equation, even in the frame of functions in Wlf)’f(R x (0,7)) for all 1 < p < o0,
constituting the proof of Theorem 1.4:

Proof of Theorem 1.4

For the proof of this theorem, it suffices to show an estimation over the space derivatives of the
solution (i.e. a result similar to that of Lemma 4.1).
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First of all, we put ourselves in the hypothesis of Lemma 4.1. We derive the equation (1.4)

p—1
with respect to x, then we multiply it by <8_u> and finally we integrate over (0, 1), since u
z
verifies (H2), we obtain that:

Ll = [ @i (5) - [ i <a>
:—/ola(féﬂ e (5)
L a8 0D e () =

because f is convex, u verifies (H2) and p > 1. To terminate the demonstration, we follow the
same steps of the proof of Theorem 1.1. We remark that here we do not need the L? bound
over the solution and also the compactness in the passage to the limit, because the equation
(1.4) is in the conservative form which was not the case of our study.
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