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Abstract. In this work we construct and analyze a Discontinuous Galerkin method to solve
advection-diffusion-reaction PDEs with anisotropic and semi-definite diffusion. The method is de-
signed so as to automatically detect the so-called elliptic-hyperbolic interface without requiring any
further intervention. The key idea of the method is the use of weighted average and jump operators
to ensure consistency. The error analysis provides optimal estimates in the broken graph norm and is
consistent with well-known results when the problem is either hyperbolic or uniformly elliptic. The
theoretical results are supported by numerical evidence.
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1. Introduction. Discontinuous Galerkin (DG) methods were originally intro-
duced to solve transport equations in [21, 22, 25] and later extended to problems in-
volving second-order elliptic operators in [3, 26, 1]. For many years, the development
and analysis of DG methods have followed two somewhat parallel routes according to
the hyperbolic or elliptic nature of the problem at hand. A unifying viewpoint has
recently been proposed in a series of papers [11, 9, 10], where the authors rely on the
Friedrichs framework originally proposed in [15] to perform an abstract analysis valid
for a variety of (linear) PDE systems.

The goal of this work is to further enlarge the picture by considering advection-
diffusion-reaction problems with discontinuous, anisotropic, and semi-definite diffu-
sivity. One major difficulty related to such problems is to clarify the notion of elliptic
and hyperbolic subdomains and to devise suitable coupling conditions. This issue has
been investigated by Gastaldi and Quarteroni in [16], where a set of interface con-
ditions is derived through asymptotic analysis for a one-dimensional model problem.
In [20], Houston and co-workers propose and analyze a DG method for PDEs with
non-negative characteristic form in higher space dimensions. The problem of a possi-
bly discontinuous solution across an elliptic-hyperbolic interface is solved by manually
removing some penalty terms. This approach thus relies on the a priori knowledge
of the interface location. In [12], Ern and Proft develop and analyze a method which
also requires the a priori knowledge of the elliptic-hyperbolic interface.

In this work we address the multidimensional case, and we consider anisotropic
tensor-valued diffusivity fields. We derive a multidimensional generalization of the
one-dimensional interface condition introduced in [16]. This condition depend on the
value of the diffusion in the normal direction together with the sign of the normal
component of the advection field. After discussing the well-posedness of the con-
tinuous problem, we propose a DG approximation inspired by the weak formulation
of the continuous problem with boundary and interface conditions weakly enforced.
The bilinear form for the discrete problem is designed so that the correct set of
interface conditions is automatically recovered without identifying a priori the ellip-
tic/hyperbolic interfaces. The bilinear form is strongly consistent, continuous, and
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(in the spirit of Friedrichs) satisfies a positivity requirement (L2-coercivity). All the
stability and error estimates are robust with respect to the possible anisotropy and
discontinuity of the diffusion coefficient. The convergence results are optimal in the
broken graph norm and compatible with those presented in [10, 9] when the problem
is either hyperbolic or uniformly elliptic.

The material is organized as follows. In §2 we analyze the continuous problem.
After presenting the setting under scrutiny, we state the interface conditions and pro-
pose a continuous bilinear which enforces interface and boundary conditions weakly.
A well-posedness result is proved under mild density assumptions. In §3 we focus our
attention on the discrete problem. We introduce the discrete setting, discuss the de-
sign of the discrete bilinear form, and show how our design constraints shape the form
of the consistency and penalty terms. The convergence of the method is proved in §4
and the main results are stated in Theorems 4.5 and 4.7. Implementation issues are
addressed in §5 and variants of the method are also introduced. §6 is devoted to nu-
merical experiments illustrating the performance of the proposed method. Concluding
remarks are reported in §7.

2. The continuous problem. In this section we introduce the model problem
and rewrite it as a first-order PDE system endowed with a Friedrichs-like structure.
The corresponding weak formulation with boundary and interface conditions weakly
enforced will serve as a base for the design of the DG method constructed in §3.

2.1. The PDE setting. Let Ω ⊂ R
d be a bounded, open, and connected Lips-

chitz domain with boundary ∂Ω and outward normal n, and let PΩ
def
= {Ωi}N

i=1 be a
partition of Ω into Lipschitz connected subdomains. The problem investigated in this
work consists of the following scalar-valued PDE:

∇·(−ν∇u+ βu) + µu = f, (2.1)

with data f ∈ L2(Ω). Suitable boundary conditions are prescribed on ∂Ω, as specified
later in this section. The following assumptions are made on the coefficients:

(i) ν ∈ [L∞(Ω)]d,d is a positive semi-definite tensor field, meaning that it is
symmetric and, for all r ∈ R

d and a.e. x ∈ Ω, rtν(x)r ≥ 0. Furthermore, we assume
that ν is piecewise constant on the partition PΩ and that the problem is normalized
in order to have ‖ν‖[L∞(Ω)]d,d ≤ 1;

(ii) β ∈ [C1(Ω)]d;
(iii) µ ∈ L∞(Ω) is such that µ+ 1

2∇·β ≥ µ0 with µ0 > 0.
Throughout the rest of this work, the symbols . and & will be used for inequali-
ties that hold up to a real positive multiplicative constant that is independent of ν
(and discretization parameters like the meshsize) but may depend on β and µ (and
regularity parameters of the mesh family considered later on).

We introduce the symbol Γ to denote the union of the inner boundaries of the
subdomains Ωi, i.e.,

Γ
def
= {x ∈ Ω; ∃i1, i2 ∈ {1, . . . , N}, i1 6= i2, x ∈ ∂Ωi1 ∩ ∂Ωi2}. (2.2)

The unit outward normals to Ωi1 and Ωi2 are denoted by n1 and n2. We shall also
denote with n the two-valued field on Γ such that, for x ∈ ∂Ωi1 ∩ ∂Ωi2 , n|Ωij

= nj ,

j ∈ {i1, i2}. The following convention will be used throughout the rest of this work:
For all x ∈ Γ, the two indices i1, i2 such that x ∈ ∂Ωi1 ∩ ∂Ωi2 are chosen such that
(ntνn)(x)|Ωi1

≥ (ntνn)(x)|Ωi2
.
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In the same spirit, for any two-valued function ϕ on Γ, we denote by ϕ1 the value
of ϕ which is defined on the side of Ωi1 and by ϕ2 the value of ϕ which is defined on
the side of Ωi2 . Mean values and jumps across Γ are defined as follows:

{ϕ} def
= 1

2 (ϕ1 + ϕ2), [[ϕ]]
def
= ϕ1 − ϕ2. (2.3)

Since we are not requiring that ν be uniformly positive definite, the mathematical
nature of the PDE can change over the domain. To account for this, we define

Γ ⊃ I
def
= {x ∈ Γ; (ntνn)(x)|Ωi1

> 0 and (ntνn)(x)|Ωi2
= 0}. (2.4)

The following simple Lemma will be frequently invoked in the paper:

Lemma 2.1. Let ν be a d×d positive semi-definite matrix, then

∀r ∈ R
d, (νr = 0) ⇔ (rtνr = 0).

For any x in I , we refer to Ωi1 as the elliptic side of I at x and we refer to Ωi2 as
the hyperbolic side of I at x. Observe that the terms elliptic and hyperbolic are used
in a broad sense. Indeed, the diffusivity may not be positive definite in the elliptic
side, but still have a non-zero component in the normal direction and viceversa for a
hyperbolic side.

Let κ
def
= ν1/2. From the assumptions on ν it follows that also κ is bounded

and positive semi-definite. We now rewrite (2.1) in mixed form by introducing the
auxiliary unknown σ so that

{

σ + κ∇u = 0, in Ω†,

∇·(κσ + βu) + µu = f, in Ω,
(2.5)

and we require the following continuity property to hold

[[u]] = 0 on I+. (int1)

The new symbols appearing in the above equations are defined as follows:

Ω† def
= Ω \ I, I+ def

= {x ∈ I ; β·n1 > 0}, I−
def
= {x ∈ I ; β·n1 < 0}. (2.6)

The reader is referred to Figures 6.1(a)–6.1(b) for some examples. Observe that σ
is only defined in Ω†. Indeed, u may be discontinuous across I , in which case κ∇u
can not be defined in a distributional sense. According to (int1), the continuity of
u across I is only demanded on the portion of I where the advection field flows from
the elliptic side to the hyperbolic side. Also, since the second equation in (2.5) holds
in the whole domain Ω,

{(κσ + βu)·n} = 0 on Γ. (int2)

Similarly, the first equation in (2.5) implies that, formally, [[u]] = 0 across Γ \ I . By
combining (int1)–(int2) on I+ and using Lemma 2.1 together with the continuity of
β, we observe that (int1) amounts to enforcing nt

1κ1∇u1 = 0 on I+.
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2.2. Asymptotic justification. In one space dimension, (int1)–(int2) yield
the interface conditions derived by Gastaldi and Quarteroni in [16] and used in [7,
12]. These conditions are deduced by considering the following regularized problem
supplemented with suitable boundary conditions:

(−νu′ε + βuε)
′ + µuε − εu′′ε = f.

Under the hypothesis that β is a non-zero constant, it is proved that, as ε → 0, uε

converges in L2(Ω) to the so-called viscosity solution of (2.5) which satisfies (int1)–
(int2).

As an example, consider Ω = (0, 1) partitioned into Ω1
def
= (0, 1

3 ), Ω2
def
= ( 1

3 ,
2
3 ),

Ω3
def
= ( 2

3 , 1). Take f = 0, µ = 0, β = 1, and set ν|Ω1∪Ω3
= 1 and ν|Ω2

= ε.
The viscosity solution of (2.5) corresponding to the Dirichlet boundary conditions
u(0) = 1, u(1) = 0 is

u|Ω1
= 1, u|Ω2

= 1, u|Ω3
= 1 − e(x−1). (2.7)

It can be verified that this solution satisfies (int1)-(int2), so that u is continuous at
x = 1

3 and discontinuous at x = 2
3 .

Let us mention at this point that there is a theoretical difficulty in the above
regularization process if the advection field is zero and µ = 0. In this case, the limit
solution can be shown to be

u|Ω1
= 1, u|Ω2

= 1, u|Ω3
= 3(1 − x). (2.8)

Comparing (2.8) with (2.7), we conclude that the limit process limε→0,β→0 is not
uniform.

In higher space dimensions, we assume that (int1)-(int2) can be obtained by
means of a regularization process and there is no ambiguity on the limit provided
µ+ 1

2∇·β ≥ µ0 > 0 . The goal of the present paper is not to justify (int1)-(int2) but
to show that these conditions yield a well-posed problem which we propose to solve
approximately using a DG method.

2.3. The functional setting. We now cast the above problem in an appropriate
functional setting. To this end, we set

Lu
def
= L2(Ω), Lσ

def
= [L2(Ω†)]d, L

def
= Lσ × Lu.

For every element z ∈ L, we denote by zσ ∈ Lσ and zu ∈ Lu the two components of
z induced by the decomposition L = Lσ × Lu. We additionally require the following
density assumption to hold:

S
def
= {τ ∈ Lσ; κτ ∈ [D(Ω†)]d} is dense in Lσ. (2.9)

Many relevant problems satisfy this hypothesis. Let

W
def
= {z ∈ L; κ∇zu ∈ Lσ ,∇·(κzσ + βzu) ∈ Lu},

where all the derivatives are understood in the weak sense, and consider the following
operators:

K : L 3 z 7→ (zσ, µzu) ∈ L,

A : W 3 z 7→ (κ∇zu,∇·Φ(z)) ∈ L,



DG METHODS FOR ANISOTROPIC SEMI-DEFINITE DIFFUSION 5

where, for all y ∈ W , Φ(y)
def
= κyσ + βyu. When equipped with the following norm:

‖y‖2
W

def
= ‖y‖2

L + ‖Ay‖2
L,

W is clearly a Hilbert space, K ∈ L(L;L) and A ∈ L(W ;L). We refer to W as the
graph space of A and the norm of W is called the graph norm. Note that functions
in W satisfy (int2) but not necessarily (int1). We shall also make use of the formal
adjoint of A, say Ã ∈ L(W ;L):

Ã : W 3 z 7→ (−κ∇zu, (∇·β)zu −∇·Φ(z)) ∈ L.

2.4. Boundary operators. Following [9, 11], we consider the operator D :
W −→W ′ defined by

〈Dz, y〉W ′,W
def
= (Az, y)L − (z, Ãy)L.

Clearly, D ∈ L(W ;W ′) and D is a boundary operator in the following sense:
Lemma 2.2. For all (z, y) ∈ W ×W smooth enough for the integrals to make

sense,

〈Dz, y〉W ′,W =

∫

∂Ω

[Φ(z)·nyu + Φ(y)·nzu − (β·n)zuyu] −
∫

I

(β·n1)[[z
u]][[yu]] (2.10)

Proof. Integrating by parts over Ω† yields

〈Dz, y〉W ′,W =

∫

I

2
{

zuntκyσ+yuntκzσ+(β·n)zuyu
}

+

∫

∂Ω

[

zuntκyσ+yuntκzσ+(β·n)zuyu
]

.

We conclude using the fact that on I , nt
1κ1z

σ
1 = −β·n1[[z

u]] and nt
2κ2 = 0, so

that 2 {zuntκyσ+yuntκzσ+β·nzuyu} = −(β·n1)[[z
u]]yu

1 −(β·n1)[[z
u]]yu

1 +(β·n1)y
u
1 z

u
1 +

(β·n2)y
u
2 z

u
2 = −(β·n1)[[z

u]][[yu]].
In other words, if z and y are smooth enough, D admits the following integral

representation:

〈Dz, y〉W ′,W =

∫

∂Ω

ztDy −
∫

I

(β·n1)[[z
u]][[yu]], D def

=

[

0 κn

(κn)t β·n

]

,

When the traces of z and y are not in L2(∂Ω ∪ I), the above integrals have to be
understood in some duality sense that we do not try to identify here.

Still following [9, 11], we assume that there is a second boundary operator M
defined as follows for all (z, y) ∈ W ×W smooth enough for the integrals to make
sense:

〈Mz, y〉W ′,W
def
=

∫

∂Ω

[αΦ(z)·nyu−αΦ(y)·nzu+|β·n|zuyu]+

∫

I

|β·n|[[zu]][[yu]], (2.11)

with α ∈ {−1,+1}. The choice α = +1 (resp., α = −1) is used to enforce Dirichlet
(resp., Neumann) boundary conditions. The operatorM is also used to enforce (int1);
see Lemma 2.3 below. Furthermore, (2.11) can be rewritten as

〈Mz, y〉W ′,W =

∫

∂Ω

ztMy +

∫

I

|β·n|[[zu]][[yu]], M def
=

[

0 −ακn
α(κn)t |β·n|

]

,
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The adjoint of M is defined by

〈M∗y, z〉W ′,W
def
= 〈Mz, y〉W ′,W , ∀(y, z) ∈ W ×W. (2.12)

2.5. Boundary conditions strongly enforced. We are now in a suitable po-
sition to introduce the following two subspaces of W , which we equip with the graph
norm ‖·‖W :

V
def
= Ker(M −D), V ∗ def

= Ker(M∗ +D).

We henceforth assume that V and V ∗ are such that

D(V )⊥ = V ∗, D(V ∗)⊥ = V,

where for all E ⊂W ′, E⊥ is the polar set of E composed of all the elements of W that
are in the kernel of all the linear forms in E. This hypothesis essentially asserts the
existence of surjective trace operators on I and ∂Ω and allows to prove the following

Lemma 2.3. The following characterizations of V and V ∗ hold:
(i) If α = +1,

V = {w ∈W ; [[wu]]|I+ = 0, wu|{x∈∂Ω; κn6=0 or β·n<0} = 0},
V ∗ = {w ∈ W ; [[wu]]|I− = 0, wu|{x∈∂Ω; κn6=0 or β·n>0} = 0};

(ii) If α = −1,

V = {w ∈W ; [[wu]]|I+ = 0, Φ(w)·n = 1
2 (β·n+ |β·n|)wu},

V ∗ = {w ∈W ; [[wu]]|I− = 0, Φ(w)·n = 1
2 (β·n− |β·n|)wu}.

Consider the bilinear forms a0 ∈ L(W × L; R), a∗0 ∈ L(W × L; R) such that

a0(z, y)
def
= (Kz, y)L + (Az, y)L, ∀(z, y) ∈ W × L, (2.13)

a∗0(z, y)
def
= (Kz, y)L + (Ãz, y)L, ∀(z, y) ∈ W × L. (2.14)

Lemma 2.4 (L-coercivity). a0 and a∗0 are L-coercive in the following sense:

∀y ∈ V, a0(y, y) ≥ ‖yσ‖2
Lσ

+ µ0‖yu‖2
Lu

+ 1
2‖[[y

u]]‖2
L2(|β·n|;I∪∂Ω). (2.15)

∀y ∈ V ∗, a∗0(y, y) ≥ ‖yσ‖2
Lσ

+ µ0‖yu‖2
Lu

+ 1
2‖[[yu]]‖2

L2(|β·n|;I∪∂Ω). (2.16)

Proof. Using the definition of D and V , we infer, for all y ∈ V ,

((K +A)y, y)L = ((K + 1
2 (A+ Ã)y, y)L + ( 1

2 (A− Ã)y, y)L

= ‖yσ‖2
Lσ

+ ((µ+ 1
2∇·β)yu, yu)Lu

+ 1
2 〈My, y〉W ′,W .

The desired result then follows from the construction of M . Proceed similarly to
prove (2.16).

Consider the following problem: For f ∈ Lu,

{

Find z̃ ∈ V such that, for all y ∈ L,

a0(z̃, y) = (f, yu)Lu
.

(2.17)
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Theorem 2.5. The problem (2.17) is well-posed.
Proof. According to the so-called Banach-Nečas-Babuška (BNB) theorem stated

in [8, §2.1.3], the statement amounts to proving that the following conditions hold:

∀z ∈ V, sup
y∈L\{0}

a0(z, y)

‖y‖L
& ‖z‖V , (bnb1)

∀z ∈ V, (∀y ∈ L, a0(z, y) = 0) =⇒ (y = 0). (bnb2)

(i) Let us prove (bnb1). Let z ∈ V and set S
def
= supy∈L\{0}

a0(z,y)
‖y‖L

. Using the

definition of the L2-norm, we deduce

S & sup
y∈L\{0}

(Az, y)L

‖y‖L
− ‖z‖L & ‖Az‖L − ‖z‖L.

Then Lemma 2.4 gives

‖z‖L .
a0(z, z)

‖z‖L
. S =⇒ ‖z‖L + ‖Az‖L . S.

i.e., ‖z‖V . S, which proves (bnb1).
(ii) Let us prove (bnb2). Assume that y ∈ L is such that a0(z, y) = 0 for all

z ∈ V . (1) Take z = (zσ , 0) with zσ ∈ S and observe that z is a member of V . Then
using z to test (2.13) we obtain

a0((z
σ , 0), y) = 〈yσ − κ∇yu, zσ〉[D(Ω†)]d = 0, ∀zσ ∈ S,

meaning that yσ−κ∇yu = 0 in Ω† owing to the density hypothesis (2.9). This equality
implies that κ∇yu ∈ Lσ. (2) Use z = (0, zu) with zu ∈ D(Ω) as a test function in
(2.13) and observe that again z is a member of V . A distributional argument gives

〈(µ+ ∇·β)yu −∇·(κyσ + βyu), zu〉D(Ω) = 0.

Owing to the regularity assumptions on µ and β listed in §2.1 we conclude that
∇·(κyσ + βyu) ∈ L2(Ω), i.e., y is a member of W and

(K + Ã)y = 0.

(3) We then deduce that, for all z ∈ V ,

〈Dz, y〉W ′,W = ((K +A)z, y)L − ((K + Ã)y, z)L = 0,

i.e., y is a member of D(V )⊥ = V ∗. In conclusion a∗0(y, w) = 0 for all w ∈ L and
y ∈ V ∗. Finally, the L-coercivity of a∗0 (see Lemma 2.4) implies that y = 0.

2.6. Boundary and interface conditions weakly enforced. Having in mind
that in DG methods boundary conditions are weakly enforced, we introduce the fol-
lowing bilinear form:

a(z, y)
def
= a0(z, y) + 1

2 〈(M −D)z, y〉W ′,W , ∀(z, y) ∈ W ×W. (2.18)

Clearly, all the terms above are well-defined and a ∈ L(W ×W ; R). In what follows
we shall consider the following problem: For f ∈ Lu,

{

Find z ∈ W such that, for all y ∈W,

a(z, y) = (f, yu)Lu
.

(2.19)
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Theorem 2.6 (Well-posedness). Problem (2.19) is well-posed and the solutions
to (2.17) and (2.19) coincide.

Proof. It is clear that the unique solution to (2.17) solves (2.19). Moreover, for
all y ∈W ,

a(y, y) = ((K +A)y, y)L + 1
2 〈(M −D)y, y〉W ′,W

= ((K + 1
2 (A+ Ã))y, y)L + 1

2 ((A− Ã)y, y)L + 1
2 〈(M −D)y, y〉W ′,W

≥ ‖zσ‖2
Lσ

+ µ0‖zu‖2
Lu

+ 1
2‖[[z

u]]‖2
L2(|β·n|;I∪∂Ω),

that is to say, a is L-coercive. This immediately implies that the solution to (2.19) is
unique.

3. The discrete problem. In this section we develop the DG approximation
of our model problem following a constructive approach.

3.1. The discrete setting. Let {Th}h>0 be a family of affine meshes of Ω
compatible with the partition PΩ, which, for simplicity of exposition, is supposed to
be made up of polyhedra. Elements are not necessarily simplices and the matching of
interfaces is not required. We denote by F i

h the set of element interfaces, i.e., F ∈ F i
h

if F is a (d− 1)-manifold and there are T1, T2 ∈ Th such that F = ∂T1 ∩∂T2. The set
of the faces that separate the mesh from the exterior of Ω is denoted with F∂

h , i.e.,
F ∈ F∂

h if F is a (d − 1)-manifold and there is T ∈ Th such that F = ∂T ∩ ∂Ω. The

set of all the faces is denoted with Fh, i.e., Fh
def
= F i

h ∪F∂
h . Moreover, for a given face

F ∈ Fh, we introduce the set Th(F )
def
= {T ∈ Th; F ⊂ ∂T}. The diameters of T ∈ Th,

F ∈ Fh, and Th(F ) are denoted by hT , hF , and hTh(F ), respectively. Without loss of
generality, we assume that h ≤ 1.

For a non-negative integer p, we define the space of scalar-valued polynomial
functions possibly discontinuous across element faces, that is

Ph,p
def
= {vh ∈ L2(Ω); ∀T ∈ Th, vh|T ∈ Pp(T )}, (3.1)

where Pp(T ) denotes the set of d-variate polynomials of total degree at most p on T .
Let pu and pσ two non-negative integers such that pu − 1 ≤ pσ ≤ pu and define the
following spaces:

Σh = [Ph,pσ
]d, Uh = Ph,pu

, Wh = Σh × Uh.

According to the assumptions listed in §2.1 and since {Th}h>0 is compatible with
PΩ, we have that

ν ∈ [Ph,0]
d,d and κ ∈ [Ph,0]

d,d. (3.2)

As in the continuous case, the behavior of the solution across an interface is determined
by the diffusion in the normal direction. For F i

h 3 F = ∂T1 ∩ ∂T2 we then define the
two-valued field

λi
def
=
√

ntνn|Ti
, i ∈ {1, 2}, (3.3)

where we denote with n the two-valued field on F such that n|Tj
= nj , j ∈ {1, 2}.

Without loss of generality, we shall always assume that the index i ∈ {i1, i2} is chosen

so that λ1 ≥ λ2. Similarly, for a boundary face F ∈ F∂
h , we let λ

def
=

√
ntνn.
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The mesh family {Th}h>0 is assumed regular in the sense that

hTh(F ) . hF , (3.4)

‖∇vh‖[L2(T )]d . h−1
T ‖vh‖L2(T ), ∀T ∈ Th, ∀vh ∈ Ph,p (3.5)

‖vh‖L2(F ) . h
−1/2
F ‖vh‖L2(Th(F )), ∀F ∈ Fh, ∀vh ∈ Ph,p. (3.6)

The inverse and trace inequalities (3.5) and (3.6) can be applied component-wise to
the functions in Σh.

3.2. Design of the DG bilinear form. The goal of this section is to construct a
discrete DG counterpart of the bilinear form a defined in (2.18) matching the following
constraints: (i) it should satisfy a discrete version of Lemma 2.4 (L-coercivity) and
be strongly consistent. Moreover, (ii) it should not require the elliptic-hyperbolic
interface I to be identified a priori. Indeed, since computers work in finite precision
arithmetic, it may happen in practice that ntνn takes a small value instead of being
exactly zero, so that I is possibly difficult to identify; (iii) it should include suitable
stabilizing terms to weakly enforce boundary and interface conditions.

Let Hs(Th)
def
= {v ∈ L2(Ω); v ∈ Hs(T ), ∀T ∈ Th} equipped with the usual broken

Sobolev norm denoted by ‖ · ‖Hs(Th) and define

W (h)
def
= W ∩ [H1(Th)]d+1 +Wh.

Let Γh
def
=
⋃

F∈Fi
h
F . We introduce a two-valued weight function ω such that

[L2(Γh)]2 3 ω = (ω1, ω2), ω1 + ω2 = 1 for a.e. x ∈ Γh. (3.7)

For all y ∈ W (h), yu admits a (possibly two-valued) trace on every F ∈ F i
h. Then,

for all F i
h 3 F = ∂T1 ∩ ∂T2 and for a.e. x ∈ F we define the weighted average and

weighted jump as follows:

{yu}ω
def
= ω1y

u
1 + ω2y

u
2 , [[yu]]ω

def
= 2(ω2y

u
1 − ω1y

u
2 ), (3.8)

where, for a.e. x ∈ F , yu
i (x) = limy→x y

u(y)|Ti
, i ∈ {1, 2}. When ω = ( 1

2 ,
1
2 ), the usual

average and jump operators are recovered and subscripts are omitted. The normal
trace of Φ(y) is also well-defined on all F ∈ F i

h, and similar definitions for {Φ(y)·n}ω

and [[Φ(y)·n]]ω can be introduced. Furthermore, the following algebraic formula holds:

{ab} = {a} {b}ω + 1
4 [[a]]ω[[b]]. (3.9)

Let Ih denote the discrete counterpart of the manifold I , i.e.,

Ih
def
= {F ∈ F i

h; λ1 > 0 and λ2 = 0}.

To facilitate the discussion, we suppose that the sign of β·n is constant on every
interface F belonging to F i

h. In such a case, we can identify two subsets of Ih, say
I+

h and I−
h , which represent discrete versions of I+ and I−. The sets Ih, I±

h and the
above assumption will eventually turn out to be unnecessary. They are introduced to
help the reader follow the design of the DG bilinear form.

Let us now introduce the discrete bilinear form associated with the boundary
contributions of M . For all F ∈ F∂

h , define a self-adjoint operator MF such that, for
all (z, y) ∈W (h) ×W (h),

(MF (z), y)L,F
def
= −α(zu, κyσ·n)Lu,F + α(κzσ·n, yu)Lu,F + (Muu

F (zu), yu)Lu,F .
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Moreover, MF is assumed to satisfy the following consistency conditions:

Ker(M−D) ⊂ Ker(MF −D), Ker(M + D) ⊂ Ker(MF + D). (3.10)

The correct form for Muu
F will be discussed later. For the moment being, we only

require that Muu
F be non-negative so that it makes sense to define

|yu|2M,F
def
= (Muu

F (yu), yu)Lu,F , |yu|2M
def
=
∑

F∈F∂
h
|yu|2M,F ,

The |·|M seminorm will be used to measure the error due to the weak enforcement of
boundary conditions.

As a starting point, let us consider the bilinear form that should be used if the
diffusivity were strictly positive definite and if H1-conforming elements were used (see
[8]): For all (z, y) ∈W (h) ×W (h), set

a
(−1)
h (z, y)

def
=
∑

T∈Th

[(Kz, y)L,T + (Az, y)L,T ] + 1
2

∑

F∈F∂
h

((MF −D)z, y)L,F . (3.11)

Obviously, this bilinear form is not suitable, since the diffusivity is semi-definite and
non-conforming elements are used. Instead we should consider the discrete counter-

part of the bilinear form a defined in (2.18). Accordingly, we define a
(0)
h such that,

for all (z, y) ∈W (h) ×W (h),

a
(0)
h (z, y)

def
= a

(−1)
h (z, y) +

∑

F∈I+

h

((β·n)[[zu]], [[yu]])Lu,F . (3.12)

This bilinear form is not suitable either. In particular, it is not L-coercive. To regain
L-coercivity we have to account for jumps across element interfaces.

Let us assume for the time being that we dispose of a weight function ω satisfying
(3.7), and, for all F ∈ F i

h, define the bilinear χF,ω such that, for all F ∈ F i
h,

χF,ω(z, y)
def
= ({Φ(z)·n} , {yu}ω)Lu,F + ([[zu]], 1

4 [[Φ(y)·n]]ω − β·n1

2 {yu})Lu,F . (3.13)

Then the following discrete analogous of the integration by parts formula proved in
Lemma 2.2 holds:
∑

T∈Th

[(Az, y)L,T−(z, Ãy)L,T ]=
∑

F∈F∂
h

(Dz, y)L,F +
∑

F∈Fi
h

2 [χF,ω(z, y)+χF,ω(y, z)] . (3.14)

Indeed, let LHS the left-hand side of (3.14) and observe that

LHS =
∑

F∈F∂
h

(Dz, y)L,F + 2
∑

F∈Fi
h

∫

F

[{Φ(z)·nyu}+{Φ(y)·nzu}−{(β·n)zuyu}] .

Apply (3.9) to the averages involving Φ(z) and Φ(y), and observe that, owing to the
definition of the unweighted jump and average operators, we have {(β·n)zuyu} =
β·n1

2 [[zu]] {yu} + β·n1

2 [[yu]] {zu}.
To get a hint at what should be done to regain L-coercivity, let y ∈ W (h) and

proceed as in the proof of Lemma 2.4 to obtain the following expression for a
(0)
h (y, y):

a
(0)
h (y, y) =

∑

T∈Th

(K + 1
2 (A+ Ã)y, y)L,T + 1

2

∑

F∈F∂
h

(MF y, y)L,F

+
∑

F∈I+

h

(β·n[[yu]], [[yu]])Lu,F +
∑

F∈Fi
h

[χF,ω(y, y)+χF,ω(y, y)].
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This expression suggests that, in order to ensure L-coercivity in a consistent way, the
following bilinear form should be considered:

a
(1)
h (z, y)

def
= a

(0)
h (z, y) − 2

∑

F∈Fi
h

χF,ω(z, y). (3.15)

Indeed, in the expression of χF,ω(z, y), the unknown z appears in terms that are
consistent on all F ∈ F i

h\Ih according to (int1)–(int2). As we shall see, an additional
condition on the weighting function ω will ensure consistency on all F ∈ Ih. With
such a choice, it is clear that, for all y ∈ W (h) and for all ω satisfying (3.7),

a
(1)
h (y, y) ≥ ‖yσ‖2

Lσ
+ µ0‖yu‖2

Lu
+ 1

2 |y
u|2M + 1

4‖[[y
u]]‖2

L2(|β·n|;I+

h
)
.

We now turn our attention to the strong consistency requirement. We want to
make sure that whenever the first argument of the discrete form is a member of

V ∩W (h), all the terms that are not related to a
(0)
h disappear. From this point on,

we shall suppose that the weight function is designed so that

∀F ∈ Ih, ∀x ∈ F, ω(x) = (1, 0). (3.16)

This implies that, for all F in Ih and all yu ∈ Uh, {yu}ω = yu
1 , i.e.,

1
4 [[Φ(y)·n]]ω − β·n1

2 {yu} = β·n1

2 yu|T2
− β·n1

2 {yu} = −β·n1

2 [[yu]].

Then the following simplification occurs: For all (z, y) ∈ W (h) ×Wh,

χF,ω(z, y) = ({Φ(z)·n} , yu|T1(F ))Lu,F − (β·n1

4 [[zu]], [[yu]])Lu,F .

As a result, whenever z is a member of V ∩W (h), we obtain that for all yh ∈ Wh,

a
(1)
h (z, yh) = a0(z, yh) +

∑

F∈I−
h

(β·n1

2 [[zu]], [[yu]])Lu,F .

Since z may possibly jump across I−
h , the last term in the right-hand side is clearly

inconsistent. To remedy this, consider

a
(2)
h (z, y)

def
= a

(1)
h (z, y) −

∑

F∈I−
h

(β·n1

2 [[zu]], [[yu]])Lu,F . (3.17)

Since β·n1 ≤ 0 on I−
h , the extra term reinforces the L-coercivity of a

(1)
h . As a

consequence, a
(2)
h inherits the L-coercivity property of a

(1)
h . Moreover, it is strongly

consistent in the sense that, for all (z, yh) ∈ (V ∩W (h))×Wh, a
(2)
h (z, yh) = a0(z, yh).

Note that a
(2)
h requires Ih be a priori identified, which is contrary to our second

design requirement. To remedy this, observe that a
(2)
h can be rewritten as

a
(2)
h (z, y) = a

(−1)
h (z, y) − 2

∑

F∈Fi
h

χF,ω(z, y) +
∑

F∈Ih

( |β·n|2 [[zu]], [[yu]])Lu,F ,

where we recognize upwind penalty terms on Ih. This remark suggests to consider
the following bilinear form instead:

a
(3)
h (z, y)

def
= a

(−1)
h (z, y) − 2

∑

F∈Fi
h

χF,ω(z, y) +
∑

F∈Fi
h

( |β·n|2 [[zu]], [[yu]])Lu,F , (3.18)
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where the sole difference with respect to (3.17) is that upwind stabilization terms
are now present on all the interfaces. The terms we have added are non-negative

and consistent, so that a
(3)
h is L-coercive and strongly consistent in the sense precised

above. Moreover, Ih does not appear in the definition of a
(3)
h , thus fulfilling the second

design requirement.
To complete the design, it remains only to add stabilizing terms to weakly enforce

boundary and interface conditions. For this purpouse we finally modify a
(3)
h as follows:

ah(z, y)
def
= a

(−1)
h (z, y) − 2

∑

F∈Fi
h

χF,ω(z, y) +
∑

F∈Fi
h

(SF ([[zu]]), [[yu]])Lu,F ,

where the upwind stabilization terms appearing in (3.18) are replaced by an interface
operator SF such that

SF =
|β·n|

2
, for all F ∈ Fh such that λ2 = 0. (3.19)

We henceforth assume that MF and SF are defined as follows: For all F ∈ F∂
h and

for all F ∈ F i
h, respectively,

Muu
F

def
=

|β·n|
2

+
α+ 1

2

λ2

hF
, SF

def
=

|β·n|
2

+
λ2

2

hF
, (3.20)

where α ∈ {−1,+1}. Observe that λ2 is by definition the minimum of λ1 and λ2.
following the reasoning in [9, §2.5]. The choice (3.20) is clearly compatible with
the design constraint (3.19). Moreover, the definition of MF is consistent with its
continuous counterpart, i.e., (3.10) holds.

To summarize, the expression of the final discrete bilinear form is

ah(z, y)
def
=
∑

T∈Th

[(Kz, y)L,T + (Az, y)L,T ] + 1
2

∑

F∈F∂
h

(MF (z) −Dz, y)L,F

− 2
∑

F∈Fi
h

[

({Φ(z)·n} , {yu}ω)Lu,F + ([[zu]], 1
4 [[Φ(y)·n]]ω − β·n1

2 {yu})Lu,F

]

+
∑

F∈Fi
h

(SF ([[zu]]), [[yu]])L,F ,

(3.21)

with MF and SF defined by (3.20). To satisfy condition (3.16), the weighting function
ω is chosen as follows:

ω
def
=

{

( λ1

2{λ} ,
λ2

2{λ} ), if λ1 > 0,

( 1
2 ,

1
2 ), otherwise.

(3.22)

Although other expressions for ω are possible, this one has the advantage of being
simple and ensuring robustness of the estimates. A similar choice is made in [5, 13].

The discrete problem is now formulated as follows:
{

Seek zh ∈ Wh such that

ah(zh, yh) = (f, yu
h)Lu

, ∀yh ∈Wh.
(3.23)

Observe that the σ-component of the unknown can be eliminated locally since the
jumps of this quantity across element interfaces are not penalized; see, e.g., [10, §4.4].
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Remark 3.1. The use of non-symmetric weights in DG methods has been high-
lighted in several articles (see e.g., [14, 18, 17, 19]). Although some of the above cited
works point out that the use of weights may lead to higher performance in terms
of accuracy, they do not consider any connection between the weights and the coef-
ficients of the problem. This dependency has recently been investigated in [5, 13],
where the authors show that the use of a particular weighted average improves the
stability of the numerical scheme in the semi-definite diffusivity limit. In the present
case, resorting to weighted average and jump operators is required by our asking the
method to select the proper interface conditions automatically .

4. Convergence analysis. In this section we carry out the convergence analysis
of the discrete problem (3.23). The main results are Theorem 4.5 and Theorem 4.7.

4.1. Basic convergence estimates. For all y ∈ W (h), we introduce the fol-
lowing seminorm:

|yu|2J,F
def
= (SF ([[yu]]), [[yu]])Lu,F , |yu|2J

def
=

∑

F∈Fi
h

|yu|2J,F . (4.1)

The space W (h) is equipped with the following discrete norm:

‖y‖2
h,κ

def
= ‖y‖2

L + |yu|2J + |yu|2M +
∑

T∈Th

‖κ∇yu‖2
Lσ,T . (4.2)

The following two lemmata follow from the design procedure outlined in §3.2.
Lemma 4.1 (Consistency). Let z solve (2.5) and zh solve (3.23). Assume, more-

over, that z ∈ [H1(Th)]d+1. Then,

∀yh ∈Wh, ah(z − zh, yh) = 0.

Lemma 4.2 (L-coercivity). For all h and for all y in W (h),

ah(y, y) & ‖y‖2
L + |yu|2J + |yu|2M .

In order to estimate the L2-norm of the diffusive derivative κ∇zu we need the fol-
lowing

Lemma 4.3 (Stability). The following bound holds:

∀zh ∈Wh, ‖zh‖h,κ . sup
yh∈Wh\{0}

ah(zh, yh)

‖yh‖h,κ
.

Proof. Let zh ∈Wh and set S
def
= supyh∈Wh\{0}

ah(zh,yh)
‖yh‖h,κ

.

(1) Owing to Lemma 4.2,

‖zh‖2
L + |zu

h |2M + |zu
h |2J . ah(zh, zh) . S‖zh‖h,κ. (4.3)

(2) Control of B
def
=
∑

T∈Th
‖κ∇zu

h‖2
Lσ,T . Let πσ

h ∈ Σh be the field such that, for

all T ∈ Th, πσ
h |T

def
= κ∇zu

h |T . From the definition of ah it follows that

B=ah(zh, (π
σ
h , 0))−(zσ

h , π
σ
h)Lσ

+
∑

F∈F∂
h

1+α
2 (κnzu

h , π
σ
h)Lσ,F+1

2

∑

F∈Fi
h

([[zu
h ]], [[ntκπσ

h ]]ω)Lu,F .
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Let Ri, i ∈ {1, 2, 3} denote the last three terms in the right-hand side. The first term
is bounded from above as follows

|R1| ≤ ‖zσ
h‖Lσ

‖πσ
h‖Lσ

. ‖zσ
h‖2

Lσ
+ γB,

where γ can be chosen as small as needed.
The second term vanishes if α = −1. If α = +1, use trace inequality (3.6) together
with (3.20) to get

|R2| .
∑

F∈F∂
h

h
−

1
2

F |(ntνnzu
h , z

u
h)Lu,F |

1
2 ‖πσ

h‖Lσ,Th(F ) .
∑

F∈F∂
h

|zu
h |M,F ‖πσ

h‖Lσ,Th(F ).

Consequently, |R2| . |zu
h |2M + γB. According to (3.22), for all F i

h 3 F = ∂T1 ∩ ∂T2,

‖[[ntκπσ
h ]]ω‖Lu,F =

λ1λ2

{λ} ‖[[(ntκ/λ)πσ
h ]]‖Lu,F . h

− 1
2

F

λ1λ2

{λ} ‖πσ
h‖Lσ,Th(F ).

Using the above relation together with (3.20) yields

|R3| .
∑

F∈Fi
h

λ1

{λ}

(

λ2
2

hF
‖[[zu

h ]]‖2
Lu,F

)

1
2

‖πσ
h‖Lσ,Th(F ) . |zu

h |2J + γB.

The above bounds with γ = 1
6 together with Lemma 4.2 give

1
2

∑

T∈Th

‖κ∇zσ
h‖2

Lσ,T . ah(zh, (π
σ
h , 0)) + ah(zh, zh) . S‖zh‖h,κ, (4.4)

where we used the fact that, by definition, ‖(πσ
h , 0)‖h,κ = ‖πσ

h‖Lσ
≤ ‖zh‖h,κ. Observe

that, owing to the choice of the weight function ω, the above estimate is robust with
respect to the possible discontinuity and anisotropy of ν.

(3) Equations (4.3)–(4.4) yield ‖zh‖2
h,κ . S‖zh‖h,κ, i.e., the desired result.

Let us now introduce

W⊥
h

def
= {y ∈W (h); ∀wh ∈Wh, (y, wh)L = 0}. (4.5)

Moreover, we define the following norm on W (h):

|]y[|2 def
= ‖y‖2

h,κ +
∑

T∈Th

[

hT

h2
T

‖yu‖2
Lu,T + hT ‖yσ‖2

Lσ,∂T +
∑

F∈∂T

hF

hF
‖yu‖2

Lu,F

]

, (4.6)

where, for all T ∈ Th and for all F ∈ Fh, we have defined

hT
def
= max(‖ν‖[L∞(T )]d,d , hT ), hF

def
=

{

max(λ2
1, hF ), if F ∈ F i

h,

max(λ2, hF ), if F ∈ F∂
h .

(4.7)

The last property needed to prove convergence is stated in the following
Lemma 4.4 (Continuity). The following holds:

∀(z, yh) ∈ W⊥
h ×Wh, ah(z, yh) . |]z[|‖yh‖h,κ.
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Proof. Let (z, yh) ∈W⊥
h ×Wh. Using the integration by parts formula (3.14), we

obtain

ah(z, yh) =
∑

T∈Th

(z, (K + Ã)yh)L,T + 2
∑

F∈Fi
h

χF,ω(y, z)

+ 1
2

∑

F∈F∂
h

(MF (z) + Dz, yh)L,F +
∑

F∈Fi
h

(SF ([[zu]]), [[yu
h ]])Lu,F . (4.8)

We now derive bounds for the four terms in the right-hand side, say R1, . . . , R4. For
the first one we have

|(z, (K + Ã)yh)L,T | .

(zσ, yσ
h − κ∇yu

h)Lσ,T + (zu, µyu
h −∇·(κyσ

h) − β·∇yu
h − (β − β)·∇yu

h)Lu,T

where, for all T ∈ Th, β|T is the mean value of the field β over T . Observe that, since
κ∇yu

h ∈ Σh, β·∇yu
h ∈ Uh and z ∈ W⊥

h , (zσ , κ∇yu
h)Lσ

= 0 and (zu, β·∇yu
h)Lu

= 0. As
a result,

|R1| . ‖z‖L‖yh‖L +
∑

T∈Th

[

‖zu‖Lu,Th
−1
T ‖κyσ

h‖Lσ,T + (zu, (β − β)·∇yu
h)Lu,T

]

. ‖z‖L‖yh‖L +
∑

T∈Th

[

h
1/2
T

hT
‖zu‖Lu,T ‖yσ

h‖Lσ,T + ‖β‖[C1(Ω)]d‖yu
h‖Lu,T ‖zu‖Lu,T

]

,

and, therefore, |R1| . |]z[|‖yh‖L. The second term R2 can be simplified as follows:

|R2|=2
∑

F∈Fi
h

[

({zu}ω,
{

ntκyσ
h

}

)Lu,F + 1
4 ([[ntκzσ]]ω, [[y

u
h ]])Lu,F +(β·n1

2 {zu} , [[yu
h ]])Lu,F

]

Let R2,i, i = 1, . . . , 3 be the addends of R2. Using the definition of the weight function
ω, (3.22), together with the inverse trace inequality (3.6) and definition (4.7), we infer

|R2,1| .
∑

F∈Fi
h

h
1
2
F h

−
1
2

F (‖zu
1 ‖Lu,F + ‖zu

2 ‖Lu,F ) ‖yσ
h‖Lσ,Th(F ),

|R2,2| .
∑

F∈Fi
h

λ1

{λ}h
1
2
F (‖zσ

1 ‖Lσ,F + ‖zσ
2 ‖Lσ,F )λ2h

−
1
2

F ‖[[yu
h ]]‖Lu,F

.
∑

F∈Fi
h

h
1
2
F (‖zσ

1 ‖Lσ,F + ‖zσ
2 ‖Lσ,F ) |yu

h |J,F ,

|R2,3| . (‖zu
1 ‖Lu,F + ‖zu

2 ‖Lu,F ) |yu
h |J,F . h

1
2
F h

−
1
2

F (‖zu
1 ‖Lu,F + ‖zu

2 ‖Lu,F ) |yu
h |J,F .

The third term is expanded as follows:

|R3|=
∑

F∈F∂
h

[

1−α
2 (zu, ntκyσ

h)Lu,F + 1+α
2 (ntκzσ, yu

h)Lu,F + 1
2 ((Muu

F + β·n)zu, yu
h)Lu,F

]

.
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Let R3,i, i = 1, . . . , 3 be the addends of R3. If α = −1, R3,2 = 0 and using (4.7) and
(3.6) we infer that

|R3,1| .
∑

F∈F∂
h

λh
−

1
2

F ‖zu‖Lu,F ‖yσ
h‖Lσ,Th(F ) .

∑

F∈F∂
h

h
1
2
F h

−
1
2

F ‖zu‖Lu,F ‖yσ
h‖Lσ,Th(F ),

whereas, if α = +1, R3,1 = 0 and (3.20) implies that

|R3,2| .
∑

F∈F∂
h

h
1
2
F ‖zσ‖Lσ,Fλh

−
1
2

F ‖yu
h‖Lu,F .

∑

F∈F∂
h

h
1
2
F ‖zσ‖Lσ,F |yu

h |M,F .

Finally, (3.20) yields |R3,3| . |zu|M |yu
h |M .

For the fourth term we immediately have |R4| ≤ |zu|J |yu
h |J . The desired result is

obtained collecting the above bounds.
Let πh be the L2-projection onto Wh. Upon collecting the above results (consis-

tency, stability, and continuity) and observing that z−πhz ∈ W⊥
h , the Second Strang

Lemma immediately yields the following convergence result:
Theorem 4.5 (Convergence). Let z solve (2.19) and zh solve (3.23). Assume

that z ∈ [H1(Th)]d+1. Then,

‖z − zh‖h,κ . |]z − πhz[|.

Owing to the regularity of the mesh family {Th}h>0, the following interpolation
property holds: For all z ∈ [Hrσ(Th)]d ×Hru(Th),

|]z − πhz[| .

(

∑

T∈Th

h2sσ+2
T ‖zσ‖2

[Hsσ (T )]d + hTh
2su

T ‖zu‖2
Hsu (T )

)

1
2

+

(

∑

F∈Fh

hFh
2su−2
F ‖zu‖2

Hsu (Th(F ))

)

1
2

,

(4.9)

where sσ
def
= min(rσ , pσ +1) and su

def
= min(ru, pu+1). Since pu−1 ≤ pσ and provided

(rσ , ru) ≥ (pσ + 1, pu + 1), the above interpolation error is of order hpu , i.e.,

|]z − πhz[| . hpu‖z‖[Hpσ+1(Th)]d×Hpu+1(Th). (4.10)

Remark 4.1. The above estimate is optimal for the ‖·‖h,κ-norm but yields sub-
optimal convergence in the L2-norm. Note, however, that if pσ = pu − 1, the error
estimate is optimal in the L2-norm for zσ

h , but is still suboptimal for the L2-norm of
zu

h .
Remark 4.2. (Positive definite diffusivity) If the diffusivity is such that ν ≥ ν0Id

with ν0 = O(1), the estimate (4.10) can be improved using a duality argument.
Consider the mapping Lu 3 yu 7−→ ψ ∈ V ∗ defined by

(K + Ã)ψ = (0, yu),

and assume the following bound holds:

‖ψu‖H2(Th) + ‖ψσ‖[H1(Th)]d . ‖yu‖Lu
. (4.11)

Adapting the reasoning in [10, §5.3], if ru ≥ pu + 1 and pu ≥ 1, it can be proved that

‖z − zh‖Lu
. hpu+1‖z‖[Hpσ+1(Th)]d×Hpu+1(Th).
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4.2. Improved convergence estimates. Owing to the definition of the ‖·‖h,κ-
norm, the convergence result of Theorem 4.5 does not contain an estimate involving
the advective derivative. Such an estimate can be obtained assuming that

κ is isotropic. (4.12)

Observe that no further assumption is made on the definiteness of κ, i.e., we still
admit that κ may vanish over a portion of the domain. Define the following new
discrete norm on W (h):

‖y‖2
h,κ,β

def
= ‖y‖2

h,κ + ‖yu‖2
h,β with ‖yu‖2

h,β
def
=
∑

T∈Th

hT ‖β·∇yu‖2
Lu,T . (4.13)

Lemma 4.6. Assume that κ satisfies (4.12). Then the following bound holds:

∀zh ∈Wh, ‖zh‖h,κ,β . sup
yh∈Wh\{0}

ah(zh, yh)

‖yh‖h,κ,β
.

Proof. Let zh ∈Wh and set S
def
= supyh∈Wh\{0}

ah(zh,yh)
‖yh‖h,κ,β

.

(1) Proceeding as in Lemma 4.3 and observing that ‖(πσ
h , 0)‖h,κ,β = ‖(πσ

h , 0)‖h,κ,
we conclude that

‖zh‖2
h,κ . S‖zh‖h,κ,β. (4.14)

(2) We define the field Wh 3 πh
def
= (0, πu

h) in such a way that, for all T ∈ Th,
πu

h |T = hTβ·∇zu
h , where β is the mean of β over T . Using (3.5) together with the

regularity of β and the fact that hT ≤ 1, for all T ∈ Th we have

h
−

1
2

T ‖πu
h‖Lu,T ≤ h

1
2
T ‖(β − β)·∇zu

h‖Lu,T + h
1
2
T ‖β·∇zu

h‖Lu,T

≤ h
1
2
T ‖β‖[C1(Ω)]d‖zu

h‖Lu,T + h
1
2
T ‖β·∇zu

h‖Lu,T .

(4.15)

(i) We first show that ‖πh‖h,κ,β . ‖zh‖h,κ,β. According to the above bound, it is
clear that ‖πu

h‖Lu
. ‖zh‖h,κ,β. Commuting the operators κ∇ and β·∇ and applying

the inverse inequality (3.5), we infer that

∑

T∈Th

‖κ∇πu
h‖2

Lu,T =
∑

T∈Th

h2
T ‖β·∇(κ∇zu

h)‖2
Lu,T .

∑

T∈Th

‖κ∇zu
h‖2

Lσ,T .

Moreover, the regularity of β and again (3.5) yield

‖πu
h‖2

h,β .
∑

T∈Th

h3
T

[

‖∂β(β·∇zu
h)‖Lu,T + ‖∂ββ‖[L∞(T )]dh

−1
T ‖zu

h‖Lu,T

]2

.
∑

T∈Th

hT [‖β·∇zu
h‖Lu,T + ‖zu

h‖Lu,T ]2 .

The term |πu
h |J is treated as follows:

|πu
h |2J .

∑

F∈Fi
h

‖|β·n|
1
2 [[πu

h ]]‖2
Lu,F +

∑

F∈Fi
h

‖λ2h
−

1
2

F [[πu
h ]]‖2

Lu,F
def
= R1 +R2.
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Using (3.6) together with (4.15) we immediately conclude that

|R1| .
∑

F∈Fi
h

h−1
F ‖πu

h‖2
Lu,Th(F ) . ‖zh‖2

h,κ,β.

The second term is zero if λ2 = 0. On the other hand, by definition, if λ2 > 0, then
λ1 > 0, i.e., κ is nonzero of both sides of the considered element interface. We proceed
using the trace inequality (3.6) together with assumption (4.12) to get

|R2|.
∑

F∈Fi
h

λ2
2

hF
hF ‖β·∇zu

h‖2
Lu,Th(F ) .

∑

F∈Fi
h

λ2
2‖∇zu

h‖2
Lσ,Th(F ) ≤

∑

F∈Fi
h

‖κ∇zu
h‖2

Lσ,Th(F ),

whence |πu
h |J . ‖zh‖h,κ,β. In a similar way we can prove that |πu

h |M . ‖zh‖h,κ,β.
(ii) Estimate for ‖zu

h‖h,β. Integrating by parts only the diffusive terms and setting

µ̃
def
= µ+ ∇·β, we obtain

‖zu
h‖2

h,β =ah(zh, πh)

+
∑

T∈Th

[

hT (β·∇zu
h , (β−β)·∇zu

h)Lu,T +(zσ
h , κ∇πu

h)Lσ,T −(µ̃zu
h , π

u
h)Lu,T

]

+ 2
∑

F∈Fi
h

[

− 1
4 ([[ntκzσ

h ]]ω, [[π
u
h ]])Lu,F + (β·n1

2 [[zu
h ]], {πu

h})Lu,F

]

−
∑

F∈F∂
h

[

(1+α)(ntκzσ
h , π

u
h)Lu,F +((Muu

F −β·n)zu
h , π

u
h)Lu,F

]

+
∑

F∈Fi
h

(SF ([[zu
h ]]), [[πu

h ]])Lu,F .

Let Ri, i = 1, . . . , 9 be the nine terms in the right-hand side and observe that

|R1| . S‖πh‖h,κ,β . S‖zh‖h,κ,β.

Furthermore,

|R2| .
∑

T∈Th

hT ‖β·∇zu
h‖Lu,T ‖β − β‖[L∞(T )]dh

−1
T ‖zu

h‖Lu,T . γ‖zu
h‖2

h,β + ‖zh‖2
h,κ.

Moreover,

|R3| + |R4| + |R5| + |R9| . ‖zh‖h,κ‖π‖h,κ,β . S
1
2 ‖zh‖

3
2
h,κ,β,

|R6| + |R7| + |R8| . γ‖zh‖h,κ‖π‖h,κ,β . γ‖zu
h‖2

h,β + ‖zh‖2
h,κ.

Hence,

‖zu
h‖2

h,β . S‖zh‖h,κ,β + S
1
2 ‖zh‖

3
2
h,κ,β + ‖zh‖2

h,κ,

whence it follows, using (4.14), that ‖zu
h‖2

h,β . S
2.

By using Lemma 4.6 and proceeding as in the proof of Theorem 4.5, we infer
Theorem 4.7 (Convergence). Let z solve (2.19) and zh solve (3.23). Assume

that z ∈ [H1(Th)]d+1 and that κ satisfies (4.12). Then,

‖z − zh‖h,κ,β . |]z − πhz[|.
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Remark 4.3. (Purely hyperbolic case) A special situation is obtained when the dif-
fusivity is identically zero over the entire domain, since, for all T ∈ Th and for all
F ∈ Fh, hT = hT and hF = hF . In such a case it is readily seen that

‖zu − zu
h‖0,Ω + ‖zu − zu

h‖h,β . hpu+
1
2 ‖zu‖Hpu+1(Th) (4.16)

which is exactly the estimate for the problem investigated in [9, §3.1].

5. Implementation issues. In this section we discuss important implementa-
tion aspects of the method. We show how it can be interpreted in terms of so-called
numerical fluxes so as to compare it with other known approximations techniques
that are defined in these terms in the literature. We also present two variants of the
method that yield substantial computational savings.

5.1. Flux formulation. The notion of (numerical) fluxes is widely used by
engineers. This concept originally introduced in the context of finite volume methods,
naturally extends to discontinuous Galerkin methods. The link between DG methods
and the concept of flux has been explored in [2] for the Laplace equation and in [10]
for more general cases. A number of methods have originally been presented in terms
of fluxes, and it is therefore interesting to recast our formulation in this framework so
as to facilitate comparisons. To this purpose, let us define

φu
∂T (zσ, zu)|F def

=

{

1+α
2 ntκzσ + (β·n)zu +Muu

F zu, if F ∈ F∂
h ,

nt
T {κzσ}ω + (β·nT ) {zu} + (nT ·nF )SF ([[zu]]), if F ∈ F i

h,
(5.1)

φσ
∂T (zu)|F def

=

{

1−α
2 (κn)tzu, if F ∈ F∂

h ,

(κn)t|T {zu}ω, if F ∈ F i
h,

(5.2)

where ω
def
= (1, 1)−ω and nT is the outward normal to the element T . It is possible to

prove (see [10, §4.3] for the details) that the discrete problem (3.23) can be equivalently
reformulated in terms of the following local problems:

{

Seek zh ∈ Wh such that, for all T ∈ Th and for all q ∈ [Ppσ
(T )]d × Ppu

(T ),

(zh, (K + Ã)q)L,T + (φ∂T (zh), q|T )L,∂T = (f, qu)Lu,T .

The above form is known as the flux formulation of (3.23). Observe that the above
flux definitions lead to the use of harmonic averages of the normal component of the
diffusion tensor at mesh interfaces.

5.2. IP variant. In this section we discuss a variant of the method designed
in §3.2 which reduces the size of the local problems to be solved to eliminate the
σ-component of the unknown. The advantages of such a variant are that it is easier
to implement and that the associated matrix pattern is sparser. To this purpose we
introduce the lifting operator defined as follows: For all F ∈ Fh and for all ϕ ∈ L2(F ),
rF,κ(ϕ) ∈ Σh is defined by

∀τh ∈ Σh, (rF,κ(ϕ), τh)Lσ

def
=

{

α+1
2 (ϕn, κτh)Lσ,F , if F ∈ F∂

h ,

(ϕn1, {κτh}ω)Lσ,F , if F ∈ F i
h.

(5.3)

Moreover, we let Rκ(ϕ)
def
=
∑

F∈Fh
rF,κ(ϕ). Observe that, unlike in [2], the lifting

operator depends on the diffusivity. Moreover, for a given face F ∈ Fh, it is clear that
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PSfrag replacements

T

Figure 5.1. Elimination of the σ-component on element T . Stencil for the IP variant of the
method (solid lines) and for the LDG variant (solid and dashed lines).

supp(rF,κ(ϕ)) = Th(F ). In what follows we shall extend the definition of the jump
operator to boundary faces by setting

[[yu]]
def
= yu, ∀F ∈ F∂

h , ∀y ∈ W (h).

The following result holds:
Lemma 5.1. For all F ∈ Fh and for all vh ∈ Uh,

‖rF,κ([[vh]])‖Lσ
.







λh
−

1
2

F ‖vh‖Lu,F , if F ∈ F∂
h ,

λ2h
−

1
2

F ‖[[vh]]‖Lu,F , if F ∈ F i
h.

Proof. Let F ∈ F i
h. Then, using (5.3), (3.22) and (3.6) we have that

‖rF,κ([[vh]])‖2
Lσ

=([[vh]]n1, {κrF,κ([[vh]])}ω)Lσ,F . ‖[[vh]]‖Lu,F
λ1λ2

2 {λ}h
−

1
2

F ‖rF,κ([[vh]])‖Lσ
,

from which the assertion follows readily. The proof is carried out similarly for F ∈ F ∂
h .

Proceeding in a similar way as in [2, §3.2] and using the fact that, owing to
assumption (3.2), κτh is in Σh for all τh ∈ Σh, it is possible to prove that, for all
(σ, u) ∈W (h) and for all (0, v) ∈ W (h),

ah((σ, u), (0, v)) =
∑

T∈Th

[(κ∇u−Rκ([[u]]), κ∇v −Rκ([[v]]))Lσ ,T + (µu, v)Lu,T ]

−
∑

T∈Th

(u, β·∇v)Lu,T +
∑

F∈F∂
h

(Muu
F (u) + (β·n)u, v)Lu,F

+
∑

F∈Fi
h

((β·n1) {u} , [[v]])Lu,F +
∑

F∈Fi
h

(SF ([[u]]), [[v]])Lu ,F .

(5.4)

Notice that σ does not appear in the expression in the right-hand side, i.e., we have
found a de-coupled problem for the sole primal unknown. The expression (5.4) will
henceforth be referred to as LDG variant of the discrete bilinear form because of the
similarity with the method for convection-diffusion systems proposed in [6].

One can verify that, when the basis functions are defined so that their support
is restricted to one element of the triangulation, the stencil resulting from (5.4) is
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composed of all the elements shown in Figure 5.1 (solid and dash lines). But by
having a closer look at (5.4), one realizes that the only term involving the dashed
elements in Figure 5.1 is the following:

∑

T∈Th

(Rκ([[u]]), Rκ([[v]]))Lσ ,T
def
= −ρh(u, v).

Hence, in order to reduce the stencil, it seems reasonable to consider the following
perturbation of ah:

aIP
h (z, y)

def
= ah(z, y) + ρh(zu, yu). (5.5)

Let us define the following semi-norm:

|yu|2LDG
def
=

α+ 1

2

∑

F∈F∂
h

‖λh−
1
2

F yu‖2
Lu,F +

∑

F∈Fi
h

‖λ2h
−

1
2

F [[yu]]‖2
Lu,F , ∀y ∈ W (h). (5.6)

The following lemma is crucial to accommodate the proofs of Lemmata 4.2–4.4 to the
new bilinear form aIP

h :
Lemma 5.2. The following properties, uniform in h, hold:

(i) For all (z, yh) ∈ (V ∩W (h)) ×Wh we have

∀yh ∈Wh, ρh(zu, yu
h) = 0.

(ii) For all y in W (h),

ρh(yu, yu) ≤ CNF |yu|LDG,

NF being the maximum number of faces of one mesh element and C a positive
parameter depending only on the mesh geometry and on the polynomial order of
approximation.

(iii) For all (z, yh) ∈W⊥
h ×Wh,

ρh(z, yh) . |zu|LDG|yu
h |LDG. (5.7)

Proof.
(i) We know that [[zu]] = 0, and, consequently, rF,κ([[zu]]) = 0, on all F ∈ Fh\I−

h .
On the other hand, let I−

h 3 F = ∂T1 ∩ ∂T2 and τh ∈ Σh. Then, since ntκ|T2
= 0

entails λ2 = 0,

nt
1{κτh}ω =

λ2

2 {λ}n
t
1·κτh|T1

+
λ1

2 {λ}n
t
1·κτh|T2

= 0,

i.e., rF,κ([[zu]]) = 0, which gives the desired result.
(ii) The second point can be proved as follows. Observe that

‖Rκ([[yu]])‖2
Lσ

≤
∑

F∈Fh

∑

F ′∈Fh

‖rF,κ([[yu]])‖Lσ
‖rF ′,κ([[yu]])‖Lσ

.

Let F i
h 3 F = ∂T1 ∩ ∂T2. Since supp(rF,κ([[yu]])) = T1 ∪ T2, only a few products in

the right-hand side are non-zero. In particular, the non-zero products are those for
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which F ′ ∈ ∆F , where ∆F
def
= {F ′ ∈ Fh; F ′ ⊂ ∂T1 or F ′ ⊂ ∂T2}. Therefore, the only

terms involving F are

∑

F ′∈∆F

‖rF,κ([[yu]])‖Lσ
‖rF ′,κ([[yu]])‖Lσ

≤ 1
2

∑

F ′∈∆F

(

‖rF,κ([[yu]])‖2
Lσ

+ ‖rF ′,κ([[yu]])‖2
Lσ

)

.

We realize that ‖rF,κ([[yu]])‖2
Lσ

is added at most NF times. The desired result follows
by repeating this argument for the other faces and using Lemma 5.1.

(iii) Deriving (5.7) is a simple application of Lemma 5.1.

Modifying Lemmata 4.2–4.4 so as to hold for aIP
h instead of ah is now simple

in view of the above result. However, observe that, according to the second point of
Lemma 5.2, in order to preserve the L-coercivity, (3.20) should be modified as follows:

Muu
F

def
=

|β·n|
2

+NF η
α+ 1

2

λ2

hF
, SF

def
=

|β·n|
2

+NF η
λ2

2

hF
, (5.8)

where the multiplicative factor η must be strictly greater than the constant C ap-
pearing in (5.7). The term ρh that has been added to simplify the elimination of the
σ-component is thus counterbalanced by adding “more stabilization”. The resulting
method is termed the IP variant because of the similarity with the IP method pro-
posed in [3]. The method recently proposed in [13] also belongs to this class, although
some modifications are introduced in the definition of the penalty parameter.

5.3. BRMPS variant. The parameter C in (5.7), and, consequently, η in (5.8),
is possibly difficult to estimate in practical applications. To solve this problem, we
consider the following alternative expression for the boundary and interface operators:

Muu
F (v)

def
=

|β·n|
2

v +NF ηrF,κ(v), SF (v)
def
=

|β·n|
2

v +NF η{rF,κ(v)}ω. (5.9)

A closer look at the proof of the second point of Lemma 5.2 shows that it is sufficient
to take η > 1 to preserve L-coercivity. Owing to the similarities with the approach
first presented in [4], the resulting numerical method is termed BRMPS variant.

6. Numerical results. In this section we evaluate the performance of the pro-
posed method. The simulations were run using the cheaper variant discussed in §5.3.

6.1. Convergence. In order to assess the theoretical convergence estimates, we
consider the problem described in Figure 6.1(a). Here (r, θ) denote the standard
cylindrical coordinates with the angle θ measured in anti-clockwise sense starting
from the positive x-axis. The domain is taken to be (−1, 1)2 \ [−0.5, 0.5]2, while the
coefficients are set to

κ =

{

π, if 0 < θ < π,

0, if π < θ < 2π,
β =

eθ

r
, µ = 10−3,

where eθ is the unit azimuthal vector. The exact solution for a suitable right-hand
side f is

u =

{

(θ − π)2, if 0 ≤ θ ≤ π,

3π(θ − π), if π < θ < 2π.
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r

(a) Description of the test case of §6.1.
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κ1 =

[

1 0
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κ2 =

[
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]
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(b) Description of the test case of §6.2

(c) Exact solution of the test case of §6.1.

Figure 6.1. Problem setting for the numerical test cases. I+ and I− are plotted in dashed and
dotted line respectively.

Observe that, although piecewise polynomial in θ, the above solution does not belong
to the discrete space Uh since we are solving the problem in cartesian coordinates.
Moreover, according to the interface condition (int1), the solution is continuous across
I+, while only (int2) is verified on I−. We introduce the following norm:

‖u‖2
h,BRMPS

def
= ‖u‖2

Lu
+ |u|2J + |u|2M +

∑

T∈Th

‖κ∇u‖2
Lσ,T .

Let (σh, uh) solve the discrete problem associated with the BRMPS variant. Then,
observing that σh = κ∇uh + R([[uh]]), it can be proved that ‖u − uh‖h,BRMPS is
equivalent to ‖(σ, u)−(σh, uh)‖h,κ. Coherently with the desire to avoid the additional
cost coming from the computation of σh, ‖u−uh‖h,BRMPS was reported in Table 6.1.
The convergence results confirm the sharpness of the estimates derived in §4.1 and
in §4.2. The L2-norm is also reported for completeness, showing that convergence at
order pu + 1 can be expected.
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Table 6.1
Convergence results.

h
Ph,1 Ph,2 Ph,3 Ph,4

err ord err ord err ord err ord
‖u− uh‖h,BRMPS

1/2 3.15e+ 0 7.27e− 1 1.74e− 1 3.99e− 2
1/4 1.63e+ 0 0.95 2.05e− 1 1.83 2.69e− 2 2.70 3.51e− 3 3.51
1/8 8.19e− 1 0.99 5.32e− 2 1.94 3.59e− 3 2.91 2.51e− 4 3.81
1/16 4.08e− 1 1.00 1.34e− 2 1.99 4.54e− 4 2.98 1.63e− 5 3.95
1/32 2.04e− 1 1.00 3.36e− 3 2.00

‖u− uh‖h,β

1/2 1.97e− 0 4.50e− 1 1.13e− 1 2.65e− 2
1/4 7.46e− 1 1.40 9.87e− 2 2.18 1.40e− 2 3.01 1.92e− 3 3.79
1/8 2.73e− 1 1.45 1.90e− 2 2.38 1.44e− 3 3.29 1.06e− 4 4.18
1/16 9.82e− 2 1.48 3.44e− 3 2.46 1.34e− 4 3.43 5.03e− 6 4.40
1/32 3.50e− 2 1.49 6.08e− 4 2.50

‖u− uh‖Lu

1/2 2.92e− 1 3.30e− 2 5.79e− 3 1.17e− 3
1/4 7.49e− 2 1.96 4.75e− 3 2.80 4.62e− 4 3.65 5.50e− 5 4.41
1/8 1.91e− 2 1.97 6.09e− 4 2.96 3.26e− 5 3.83 2.01e− 6 4.77
1/16 4.86e− 3 1.97 7.76e− 5 2.97 2.10e− 6 3.96 6.32e− 8 4.99
1/32 1.23e− 3 1.98 9.82e− 6 2.98

6.2. Strongly anisotropic diffusivity. To demonstrate the behaviour of the
method in the presence of strongly anisotropic diffusivity we consider the test of
Figure 6.1(b). The domain Ω = (0, 1)2 is partitioned into two subdomains where the
diffusivity takes different values; it is definite positive in one region and semi-definite
positive in the other region. The advection field is β = (−5, 0)t and the reaction
coefficient is µ = 1. The solution is discontinuous across the interface I− = {x =
0.75; 0.375 ≤ y ≤ 0.625}. The solutions obtained for different polynomial degrees are
displayed in Figure 6.2, showing that the predicted behaviour is captured accurately.

7. Conclusion. In this work we developed and analyzed a DG method for
advection-diffusion-reaction equations with discontinuous, anisotropic, and semi-definite
diffusivity. The proposed method is capable of treating the semi-definite diffusivity
case owing to our design of the boundary and penalty terms. This is achieved by
resorting to weighted average and jump operators. The convergence analysis yields
estimates that are uniform with respect to the diffusivity. The theoretical results are
supported by numerical evidence.
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[7] J.-P. Croisille, A. Ern, T. Lelièvre, and J. Proft, Analysis and simulation of a coupled
hyperbolic/parabolic model problem, J. Numer. Math., 13 (2005), pp. 81–103.

[8] A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements, vol. 159 of Applied
Mathematical Sciences, Springer-Verlag, New York, NY, 2004.

[9] , Discontinuous Galerkin methods for Friedrichs systems. I. General theory, SIAM J.
Numer. Anal., 44 (2006), pp. 753–778.

[10] , Discontinuous Galerkin methods for Friedrichs systems. II. Second-order elliptic
PDE’s, SIAM J. Numer. Anal., (2006). To appear.

[11] A. Ern, J.-L. Guermond, and G. Caplain, An intrinsic criterion for the bijectivity of Hilbert
operators related to Friedrichs systems, Comm. Partial Differ. Eq., (2006). To appear.

[12] A. Ern and J. Proft, Multi-algorithmic methods for coupled hyperbolic-parabolic problems,



26 D. A. DI PIETRO ET AL.

Int. J. Numer. Anal. Model., 1 (2006), pp. 94–114.
[13] A. Ern, A. F. Stephansen, and P. Zunino, A discontinuous Galerkin method with weighted

averages for advection-diffusion equations with locally vanishing and anisotropic diffusiv-
ity, IMA J. Num. Anal., (2006). Submitted.

[14] J. Freund and R. Stenberg, On weakly imposed boundary conditions for second order prob-
lems, in Proceedings of the International Conference on Finite Elements in Fluids - New
trends and applications, Venice, Italy, 1995.

[15] K.O. Friedrichs, Symmetric positive linear differential equations, Comm. Pure and Appl.
Math., 11 (1958), pp. 333–418.

[16] F. Gastaldi and A. Quarteroni, On the coupling of hyperbolic and parabolic systems: ana-
lytical and numerical approach, App. Num. Math., 6 (1989), pp. 3–31.

[17] B. Heinrich and S. Nicaise, The Nitsche mortar finite-element method for transmission prob-
lems with singularities, IMA J. Numer. Anal., 23 (2003), pp. 331–358.

[18] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner
singularities, Computing, 68 (2002), pp. 217–238.

[19] B. Heinrich and K. Pönitz, Nitsche type mortaring for singularly perturbed reaction-diffusion
problems, Computing, 75 (2005), pp. 257–279.
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