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DOES WASTE-RECYCLING REALLY IMPROVE

METROPOLIS-HASTINGS MONTE CARLO ALGORITHM?

JEAN-FRANÇOIS DELMAS AND BENJAMIN JOURDAIN

Abstract. The waste-recycling Monte Carlo (WR) algorithm, introduced by Frenkel, is
a modification of the Metropolis-Hastings algorithm, which makes use of all the proposals,
whereas the standard Metropolis-Hastings algorithm only uses the accepted proposals. We
prove the convergence of the WR algorithm and its asymptotic normality. We give an
example which shows that in general the WR algorithm is not asymptotically better than
the Metropolis-Hastings algorithm : the WR algorithm can have an asymptotic variance
larger than the one of the Metropolis-Hastings algorithm. However, in the particular case
of the Metropolis-Hastings algorithm called Boltzmann algorithm, we prove that the WR
algorithm is asymptotically better than the Metropolis-Hastings algorithm.

1. Introduction

Let E be a finite or countable set. For ν = (ν(x), x ∈ E) a measure on E and h =
(h(x), x ∈ E) a real function defined on E, we denote 〈ν, h〉 =

∑

x∈E ν(x)h(x) when h is
non-negative or 〈ν, |h|〉 < +∞.

Let π be a probability measure on E such that π(x) > 0 for all x ∈ E and f a real function
defined on E s.t. f is non-negative or 〈π, |f |〉 < +∞. The Metropolis-Hastings algorithm
gives an estimation of 〈π, f〉 as the a.s. limit of the empirical mean of f , 1

n

∑n
k=1 f(Xk), as

n goes to infinity, where X = (Xn, n ≥ 0) is a Markov chain which is reversible with respect
to the probability measure π.

The Markov chain X is built in the following way. Let Q be an irreducible transition
matrix over E : this means that Q ∈ R

E×E
+ is such that for all x ∈ E, Q(x, ·) is a probability

(i.e.
∑

y∈E Q(x, y) = 1) and for all y ∈ E, there exists m ≥ 1 which may depend on (x, y)

s.t. Qm(x, y) > 0. We also assume that for all x, y ∈ E, if Q(x, y) = 0 then Q(y, x) = 0. The
transition matrix Q is called the selection matrix.

For x, y ∈ E such that Q(x, y) > 0, let (ρ(x, y), ρ(y, x)) ∈ (0, 1]2 be such that

(1) ρ(x, y)π(x)Q(x, y) = ρ(y, x)π(y)Q(y, x).

For example, one gets such a function ρ by setting

(2) ρ(x, y) = γ

(

π(y)Q(y, x)

π(x)Q(x, y)

)

, for all x, y ∈ E s.t. Q(x, y) > 0,

where γ is a function with values in (0, 1] such that γ(u) = uγ(1/u). Usually, one takes
γ(u) = min(1, u) for the Metropolis algorithm. The case γ(u) = u/(1 + u) is known as the
Boltzmann algorithm or Baker algorithm.
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For convenience, we set ρ(x, y) = 1 if Q(x, y) = 0. Notice that ρ(x, y) > 0 for all x, y ∈ E.
The function ρ is viewed as an acceptance probability.

Let X0 be a random variable taking values in E with probability distribution ν0. At step n,
X0, . . . , Xn are given. The proposal at step n+1, X̃n+1, is distributed according to Q(Xn, ·).
This proposal is accepted with probability ρ(Xn, X̃n+1) and then Xn+1 = X̃n+1. If it is
rejected, then we set Xn+1 = Xn.

It is easy to check that X = (Xn, n ≥ 0) is a Markov chain with transition matrix P
defined by

(3) P (x, y) =

{

Q(x, y)ρ(x, y) if x 6= y,

1 −∑z 6=x P (x, z) = Q(x, x) +
∑

z 6=x(1 − ρ(x, z))Q(x, z) if x = y.

Furthermore X is reversible w.r.t. to the probability measure π: π(x)P (x, y) = π(y)P (y, x)
for all x, y ∈ E. This properties is also called detailed balance. By summation over y ∈ E,
one deduces that π is an invariant probability for P (i.e. πP = π). The irreducibility of Q
implies that P is irreducible. Since the probability measure π is invariant for P , we deduce
that X is positive recurrent with (unique) invariant probability measure π. In particular, for
any real valued function f defined on E s.t. f is non-negative or 〈π, |f |〉 is finite, the ergodic
theorem (see e.g. [5]) implies that a.s.

lim
n→∞

In(f) = 〈π, f〉,

where

(4) In(f) =
1

n

n
∑

k=1

f(Xk).

The classical estimation of 〈π, f〉 by the empirical mean In(f) makes no use of the proposals

X̃k which have been rejected. Frenkel [3] claims that the efficiency of the estimation can be
improved by including these rejected states in the sampling procedure. He suggests to use
the so-called waste-recycling Monte Carlo (WR) algorithm, which consists in replacing f(Xk)
in In(f) by its conditional expectation knowing the previous step and the proposal, that is

(Xk−1, X̃k). For any h : E → R, let hc denote the real function defined on E2 by the analytic
or equivalent probabilistic formulas

hc(x, x̃) = ρ(x, x̃)h(x̃) + (1 − ρ(x, x̃))h(x)

= E[h(X1)|X0 = x, X̃1 = x̃].(5)

The WR algorithm is then given by the following equivalent formulas:

IWR
n (f) =

1

n

n−1
∑

k=0

f c(Xk, X̃k+1) =
1

n

n−1
∑

k=0

ρ(Xk, X̃k+1)f(X̃k+1) + (1 − ρ(Xk, X̃k+1))f(Xk)

=
1

n

n−1
∑

k=0

E[f(Xk+1)|Xk, X̃k+1].

Notice that the WR algorithm requires the evaluation of f for all the proposals whereas the
Metropolis-Hastings algorithm evaluates f only for the accepted proposals. Other algorithms
using all the proposals, such as the Rao-Blackwell Metropolis-Hasting algorithm, have been
studied, see for example section 6.4.2 in [8] and references therein. In the Rao-Blackwell

Metropolis-Hasting algorithm, the weight of f(X̃k+1) depends on all the proposals X̃1, . . . , X̃n.
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In Section 2.1, we check that Xc = (Xc
n = (Xn, X̃n+1);n ≥ 0) is a Markov chain on E2

with invariant probability

(6) πc((x, x̃)) = π(x)Q(x, x̃) x, x̃ ∈ E.

For any real function g defined on E2, we set 〈πc, g〉 =
∑

x,y∈E

π(x, y)Q(x, y)g(x, y) when g

is non-negative or such that 〈πc, |g|〉 < +∞. We first check that we can apply the ergodic
theorem, in order to deduce the convergence of IWR

n (f) to 〈πc, f c〉. As remarked by Frenkel
in its motivation to introduce the WR algorithm, we have 〈πc, f c〉 = 〈π, f〉, see also (11).
This gives the convergence of the WR algorithm. The detailed proof of the next Proposition
is given in Section 2.2.

Proposition 1.1. Let f be a real valued function defined on E s.t. f is non-negative or
〈π, |f |〉 is finite.

• A.s., lim
n→∞

IWR
n (f) = 〈π, f〉.

• The bias of the WR estimator IWR
n (f) of 〈π, f〉 is the same as the one of the classical

Metropolis-Hastings estimator In(f): E[IWR
n (f)] = E[In(f)].

Let us formally derive the expression of the asymptotic variance of the Metropolis-Hastings
algorithm. The variance of

√
nIn(f) is equal to

1

n

n
∑

k,l=1

Cov(f(Xk), f(Xl)) =
1

n

n
∑

k=1



Var(f(Xk)) + 2

n−k
∑

j=1

Cov(f(Xk), f(Xk+j))



 .

Intuitively it converges to σ(f)2 = Varπ(f(X0)) + 2
∑

j≥1

Covπ(f(X0), f(Xj)) where the sub-

script π means that X0 is distributed according to π. One has

σ(f)2 = Eπ[(f(X0) − 〈π, f〉)2] + 2Eπ



(f(X0) − 〈π, f〉)P
∑

k≥0

P k(f − 〈π, f〉)(X0)





where for R ∈ R
E×E
+ and x ∈ E, we denote Rh(x) =

∑

y∈E R(x, y)h(y) when h : E → R is

non-negative or such that R|h|(x) < +∞. The function F =
∑

k≥0 P
k(f −〈π, f〉) is a formal

solution of the Poisson equation F − PF = f − 〈π, f〉. Plugging F in the formula for σ(f)2

leads to

(7) σ(f)2 = 〈π, (F − PF )2〉 + 2〈π, (F − PF )PF 〉 = 〈π, F 2〉 − 〈π, (PF )2〉.

This intuitive derivation can be made rigorous. We say that a function F : E → R is a
solution to the Poisson equation with f if

(8) ∀x ∈ E, P |F |(x) < +∞ and F (x) − PF (x) = f(x) − 〈π, f〉.

Notice that if F is a solution to the Poisson equation with f , then so is F+a, for any constant
a ∈ R. If E is finite, there exists a unique solution, up to an additive constant, to the Poisson
equation (see Remark 4.2, where the finite and infinite case are considered, see also [5] or
[4]).
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If F is a solution to the Poisson equation with f s.t. 〈π, F 2〉 < ∞, then we have the
following convergence in distribution (see [2] or [5])

√
n

(

1

n

n
∑

k=1

f(Xk) − 〈π, f〉
)

(d)−−−→
n→∞

N (0, σ(f)2),

where N (0, σ2) denotes the Gaussian distribution with mean 0 and variance σ2 and σ(f)2

is given by (7). Notice that σ(f)2 is well defined as soon as 〈π, F 2〉 < ∞. Indeed, Jensen
inequality implies (P |F |)2 ≤ P (F 2) which gives 〈π, (P |F |)2〉 ≤ 〈π, P (F )2〉 = 〈π, F 2〉, where
we used that π is invariant for P in the last equality. This implies that 〈π, (PF )2〉 is well
defined and less than 〈π, F 2〉.

The next Theorem gives the asymptotic variance of the WR estimator.

Theorem 1.2. Let f be a real valued function defined on E s.t. 〈π, |f |〉 is finite and there
exists a solution F to the Poisson equation with f s.t. 〈π, F 2〉 <∞. We have 〈πc, ((PF )c)2〉 ≤
〈πc, (F c)2〉 ≤ 〈π, F 2〉 <∞ and the following convergence in distribution

√
n
(

IWR
n (f) − 〈π, f〉

) (d)−−−→
n→∞

N (0, σWR(f)2),

where
σWR(f)2 = 〈πc, (F c)2〉 − 〈πc, ((PF )c)2〉.

Remark 1.3. For any real function h defined E, we have from Lemma 2.2 that 〈πc, (hc)2〉 ≤
〈πc, (h2)c〉 = 〈π, h2〉. Taking h = F then h = PF , we get 〈πc, (F c)2〉 ≤ 〈π, F 2〉 and
〈πc, ((PF )c)2〉 ≤ 〈π, (PF )2〉. Therefore the comparison of σWR(f)2 with σ(f)2 is not ob-
vious.

As noticed by Frenkel in a particular case, the variance of each term of the sum of IWR
n (f)

is equal or smaller than the variance of each term of the sum of In(f). This is indeed a
consequence of Jensen inequality:

E

[

hc(Xk−1, X̃k)2
]

= E

[

E[h(Xk)|Xk−1, X̃k]
2
]

≤ E[h2(Xk)]

with h = f−〈π, f〉. This and simulations strongly suggest that the variance (resp. asymptotic
variance) of IWR

n should be smaller than the variance (resp. asymptotic variance) of In.
To study the difference between the asymptotic variances σ(f)2 and σWR(f)2 we rewrite

it as follows.

Proposition 1.4. Let f be a real valued function defined on E s.t. 〈π, |f |〉 is finite and there
exists a solution F to the Poisson equation with f s.t. 〈π, F 2〉 <∞. We have

σ(f)2 − σWR(f)2 = Eπ

[

(1 − ρ(X0, X1))
[

(F (X1) − F (X0))
2 − (PF (X1) − PF (X0))

2
]]

= Eπ

[

(1 − s

2
(X0, X1))

[

(F (X1) − F (X0))
2 − (PF (X1) − PF (X0))

2
]]

,

where s(x, y) = ρ(x, y)+ρ(y, x) for (x, y) ∈ E2 and Eπ means that X0 is distributed according
to π.

Using the first formula, we give in Section 3 a simple example such that the asymptotic
variance of the WR estimation is greater than the one of the standard Metropolis-Hastings
algorithm.

Corollary 1.5. The asymptotic variance of the WR algorithm is not smaller in general than
the one of the standard Metropolis-Hastings algorithm.
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Notice the function s(x, y) = ρ(x, y) + ρ(y, x) is symmetric on E2 and 0 < s(x, y) ≤ 2. By
(1), if Q(x, y) > 0, we have

ρ(x, y) =
s(x, y)π(y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)
and ρ(y, x) =

s(x, y)π(x)Q(x, y)

π(x)Q(x, y) + π(y)Q(y, x)
.

Since max(ρ(x, y), ρ(y, x)) ≤ 1, we have s(x, y) ≤ 1 + min

(

π(y)Q(y, x)

π(x)Q(x, y)
,
π(x)Q(x, y)

π(y)Q(y, x)

)

with

equality obtained when ρ is given by (2) and γ(u) = min(1, u). The Metropolis algorithm
(γ(u) = min(1, u)) maximizes the acceptance probabilities.

Under some specific assumption on the function s, the asymptotic variance of the WR
algorithm is smaller or equal to the one of the standard Metropolis-Hastings algorithm, for
all functions f .

Proposition 1.6.

(i) Let φ defined on E be such that 〈π, φ2〉 <∞. We have ∆ ≥ 0, where

(9) ∆ =
1

2
Eπ

[

(φ(X1) − φ(X0))
2 − (Pφ(X1) − Pφ(X0))

2
]

.

(ii) We assume there exists β ∈ (0, 2) such that

(10) s(x, y) = β for all x 6= y ∈ E s.t. Q(x, y) > 0.

Then for all real valued functions defined on E s.t. 〈π, |f |〉 is finite and there exists
a solution F to the Poisson equation with f s.t. 〈π, F 2〉 <∞, we have

σ(f)2 ≥ σWR(f)2,

with strict inequality if f is non constant.

We end this section with some comments on hypothesis (10).

(1) If β = 2, then ρ(x, y) = 1 for x 6= y. Thus all the proposals are accepted that is
P = Q. In this case, WR and Metropolis-Hastings algorithm coincide.

(2) Hypothesis (10) means that (2) holds with γ(u) =
βu

1 + u
. The constant β has to be

smaller than 1 + min
x6=y,Q(x,y)>0

π(y)Q(y, x)

π(x)Q(x, y)
. The so-called Boltzmann algorithm corre-

sponds to β = 1. In Remark 4.3, we provide formulas for σ(f)2 and σWR(f)2. If
β = 1, we also check that P is non-negative (equivalently if E is finite: all the eigen-
values of P belongs to [0, 1]). Let us however recall that the asymptotic performance
of the Boltzmann algorithm is sub-optimal compared to the choice γ(u) = min(1, u),
see [6] or [9].

(3) Assume ρ satisfies (2) for some function γ. Hypothesis (10) is satisfied if there exists a

constant c > 0 s.t. for all distinct x, y ∈ E s.t. Q(x, y) > 0, the quantity
π(x)Q(x, y)

π(y)Q(y, x)
is equal to c or 1/c. For example assume that the transition matrix Q is symmetric and

that π is written as a Gibbs distribution: for all x ∈ E, π(x) = e−H(x) /
∑

y∈E e−H(y)

for some energy function H. Then hypothesis (10) is satisfied if the energy increases
or decreases by the same amount for all the authorized transitions: |H(x) −H(y)| is
constant for all distinct x, y such that Q(x, y) > 0.

Organization of the paper. Section 2 is devoted to the proof of the main results. The
counter-example, which provides a proof of Corollary 1.5 is given in Section 3. The proof
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of Proposition 1.6 is detailed in Section 4. In most of the proofs, we shall give analytical
arguments in order to reach non-specialists in probability theory. We sometimes also provide
an alternative probabilistic argument.

Acknowledgments. We warmly thank Manuel Athènes (CEA Saclay) for presenting the
waste recycling Monte Carlo algorithm to us.

2. Proofs

2.1. Preliminaries. Notice that X c = (Xc
n = (Xn, X̃n+1);n ≥ 0) is a Markov chain on E2.

Its transition matrix, P c, is given by: for x, x̃, y, ỹ ∈ E

P c((x, x̃), (y, ỹ)) =
[

1{y=x̃}ρ(x, x̃) + 1{y=x}(1 − ρ(x, x̃))
]

Q(y, ỹ).

(If x = x̃, then P c((x, x̃), (y, ỹ)) = 1{y=x}Q(y, ỹ).)

Lemma 2.1. The transition matrix P c is irreducible on Ec = {(x, x̃) ∈ E2;Q(x, x̃) > 0}.
The probability measure πc defined by (6) is invariant for P c.

Proof. Let (x, x̃) and (y, ỹ) be such that Q(x, x̃) > 0 and Q(y, ỹ) > 0. By irreducibility of
P , there are m ∈ N

∗ and x1, . . . , xm−1 ∈ E with xi 6= xi+1 for i ∈ {1, . . . ,m − 2} such that
P (x̃, x1)P (x1, x2) · · ·P (xm−2, xm−1)P (xm−1, y) > 0. One has

P c((x̃, x1), (x1, x2))P
c((x1, x2), (x2, x3)) . . . P

c((xm−1, y), (y, ỹ))

= ρ(x̃, x1)Q(x1, x2)ρ(x1, x2)Q(x2, x3) · · · ρ(xm−1, y)Q(y, ỹ).

Multiplying by P c((x, x̃), (x̃, x1)) ≥ ρ(x, x̃)Q(x̃, x1) > 0, one deduces that

P c((x, x̃), (x̃, x1))P
c((x̃, x1), (x1, x2)) · · ·P c((xm−1, y), (y, ỹ)) > 0.

Hence P c is irreducible on Ec.
Let us check that πc is invariant for P c. We have
∑

x,x̃∈E

π(x)Q(x, x̃)P c((x, x̃), (y, ỹ))

=
∑

x∈E

π(x)Q(x, y)ρ(x, y)Q(y, ỹ) +
∑

x̃∈E

π(y)Q(y, x̃)(1 − ρ(y, x̃))Q(y, ỹ)

=





∑

x∈E,x6=y

π(x)P (x, y) + π(y)Q(y, y)ρ(y, y)



Q(y, ỹ) + π(y)

[

1 −
∑

x̃∈E

Q(y, x̃)ρ(y, x̃)

]

Q(y, ỹ)

=

[

∑

x∈E

π(x)P (x, y)

]

Q(y, ỹ)

= π(y)Q(y, ỹ),

where we used (3) for the second and third equalities and the invariance of π for P for the
last. �

Lemma 2.2. For any real function h defined on E, we have 〈πc, |hc|〉 ≤ 〈π, |h|〉. If h is
non-negative or if 〈π, |h|〉 <∞, then we have

(11) 〈πc, hc〉 = 〈π, h〉.
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We have (h2)c − (hc)2 ≥ 0 and

(12) 〈πc, (h2)c − (hc)2〉 =
∑

(x,x̃)∈E2

π(x)P (x, x̃)(1 − ρ(x, x̃))(h(x̃) − h(x))2 ≥ 0.

Proof. If h is non-negative, by (3), we have

Ph(x) =
∑

y 6=x

Q(x, y)ρ(x, y)h(y) +



Q(x, x) +
∑

y 6=x

Q(x, y)(1 − ρ(x, y))



 h(x)

=
∑

y∈E

Q(x, y) [ρ(x, y)h(y) + (1 − ρ(x, y))h(x)]

=
∑

y∈E

Q(x, y)hc(x, y).(13)

Therefore if h is non-negative, since π is invariant for P , we have

〈π, h〉 = 〈π, Ph〉 =
∑

x∈E

π(x)
∑

y∈E

Q(x, y)hc(x, y) = 〈πc, hc〉.

Use |hc| ≤ |h|c to deduce 〈πc, |hc|〉 ≤ 〈πc, |h|c〉 = 〈π, |h|〉. Fubini Theorem implies that (13)
also holds if P |h|(x) < +∞ and that if 〈π, |h|〉 < +∞, then 〈π, h〉 = 〈πc, hc〉.

From a probabilistic point of view, for h non-negative or s.t. 〈π, |h|〉 < +∞, we have

〈πc, hc〉 = Eπ

[

E[h(X1)|X0, X̃1]
]

= Eπ[h(X1)] = 〈π, h〉,

where we used that X1 is distributed according to π under Eπ.
By an easy computation,

(h2)c(x, x̃) − (hc)2(x, x̃) = ρ(x, x̃)(1 − ρ(x, x̃))(h(x̃) − h(x))2.

Since Q(x, x̃)ρ(x, x̃) is equal to P (x, x̃) when x̃ 6= x and h(x̃)−h(x) = 0 otherwise, one easily
deduces (12). �

2.2. Proof of Proposition 1.1. The Markov chain X c is irreducible with invariant prob-
ability measure πc. Let g defined on E2 be s.t. g is non-negative or 〈πc, |g|〉 < ∞. The

ergodic theorem (see e.g. [5]) implies that a.s. lim
n→∞

1

n

n−1
∑

k=0

g(Xk, X̃k+1) = 〈πc, g〉. The first

statement in the Proposition is a consequence of this result for g = f c, since by Lemma 2.2,
〈πc, |f c|〉 < 〈π, |f |〉 and for f non-negative or such that 〈π, |f |〉 < +∞, 〈πc, f c〉 = 〈π, f〉.

Denoting the distribution of Xj by νj, one has using (13) for the second equality

E[f c(Xk, X̃k+1)] =
∑

x,y∈E

νk(x)Q(x, y)f c(x, y) =
∑

y∈E

(

∑

x∈E

νk(x)P (x, y)

)

f(x)

=
∑

y∈E

νk+1(y)f(y) = E[f(Xk+1)].

We can recover this result using a probabilistic approach:

E

[

E[f(Xk+1)|Xk, X̃k+1]
]

= E[f(Xk+1)].

This gives the second statement in the Proposition.
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2.3. Proof of Theorem 1.2. Let g defined on Ec. If G is a solution of the Poisson equation:

(14) ∀(x, x̃) ∈ Ec, P c|G|(x, x̃) < +∞ and G− P cG = g − 〈πc, g〉,
such that 〈πc, G2〉 < +∞, then we have the following convergence in distribution (see [2] or
[5])

√
n

(

1

n

n−1
∑

k=0

g(Xk, X̃k+1) − 〈πc, g〉
)

(d)−−−→
n→∞

N (0, σ2),

with σ2 = 〈πc, G2〉 − 〈πc, (P cG)2〉. We have to apply this result for g = f c.
Thus, to complete the proof, it is enough to check that P cF c = (PF )c. Indeed, using (8)

for the third equality, this ensures that G = F c solves the Poisson equation (14) with g = f c :

F c − P cF c = F c − (PF )c = (F − PF )c = (f − 〈π, f〉)c = f c − 〈π, f〉 = f c − 〈πc, f c〉.
Moreover, 〈π, F 2〉 <∞ implies, thanks to (12) and (11), 〈πc, (F c)2〉 ≤ 〈πc, (F 2)c〉 = 〈π, F 2〉.
Last, by Jensen inequality, (P cF c)2 ≤ P c(F c)2, which combined with the invariance of πc by
P c, implies 〈πc, ((PF )c)2〉 = 〈πc, (P cF c)2〉 ≤ 〈πc, (F c)2〉. Notice this implies that σWR(f)2

is well defined.
Let us prove that P cF c = (PF )c. We have

P cF c(x, x̃) =
∑

y,ỹ∈E2

[

1{y=x̃}ρ(x, x̃) + 1{y=x}(1 − ρ(x, x̃))
]

Q(y, ỹ)F c(y, ỹ)

= ρ(x, x̃)
∑

ỹ∈E

Q(x̃, ỹ)F c(x̃, ỹ) + (1 − ρ(x, x̃))
∑

ỹ∈E

Q(x, ỹ)F c(x, ỹ)

= ρ(x, x̃)PF (x̃) + (1 − ρ(x, x̃))PF (x) = (PF )c(x, x̃),

where we used (13) for the third equality. From a probabilistic point of view, the fact that
F c solves the Poisson equation (14) with g = f c comes from

F c(x, x̃) − P cF c(x, x̃) = E[F (X1)|X0 = x, X̃1 = x̃] − E[E[F (X2)|X1, X̃2]|X0 = x, X̃1 = x̃]

= E[F (X1) − PF (X1)|X0 = x, X̃1 = x̃]

= E[f(X1)|X0 = x, X̃1 = x̃] − 〈π, f〉
= f c(x, x̃) − 〈πc, f c〉.

2.4. Proof of Proposition 1.4. Since π is reversible with respect to P , when X0 is dis-
tributed according to π, then (X0, X1) and (X1, X0) have the same distribution. Therefore
the second equality of Proposition 1.4 easily follows from the first. Let us now prove this first
equality. Using (11), we have

σ(f)2 = 〈π, F 2〉 − 〈π, (PF )2〉 = 〈πc, (F 2)c〉 − 〈πc, ((PF )2)c〉.
Therefore we get

σ(f)2 − σWR(f)2 = 〈πc, (F 2)c − (F c)2〉 − 〈πc, ((PF )2)c − ((PF )c)2〉.
The result is then a consequence of (12). From a probabilistic point of view, we have

σ(f)2 − σWR(f)2 = Eπ[F 2(X1) − (PF )2(X1)] − Eπ[E[F (X1)|X0, X̃1]
2− Eπ[PF (X1)|X0, X̃1]

2]

= Eπ[(F (X1) − E[F (X1)|X0, X̃1])
2]

− Eπ[((PF )(X1) − E[PF (X1)|X0, X̃1])
2]

= Eπ[(F (X1) − F c(X0, X̃1))
2] − Eπ[((PF )(X1) − (PF )c(X0, X̃1))

2].
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One concludes by taking h = F and h = PF in the next equality :

Eπ[(h(X1) − hc(X0, X̃1))
2] = Eπ[E[(h(X1) − hc(X0, X̃1))

2|X0, X̃1]]

= Eπ[ρ(X0, X̃1){(1 − ρ(X0, X̃1))(h(X̃1) − h(X0))}2

+ (1 − ρ(X0, X̃1)){ρ(X0, X̃1)(h(X0) − h(X̃1))}2]

= Eπ[ρ(X0, X̃1)(1 − ρ(X0, X̃1))(h(X̃1) − h(X0))
2]

= Eπ[(1 − ρ(X0, X1))(h(X1) − h(X0))
2].

3. A counter-example

Let P be an irreducible transition matrix on E = {a, b, c}, with invariant probability
measure π s.t. P is reversible w.r.t. π,

P (a, b) > 0, P (a, a) > 0 and P (a, c) 6= P (b, c).

Let f be defined by f(x) = 1{x=c} − P (x, c) for x ∈ E. We have

〈π, f〉 = π(c) −
∑

x∈E

π(x)P (x, c) = 0.

The function F (x) = 1{x=c} solves the Poisson equation (8): F − PF = f − 〈π, f〉.
Let ρ ∈

(

P (a,b)
P (a,a)+P (a,b) , 1

)

. We set

Q(x, y) =











P (a,b)
ρ if (x, y) = (a, b),

P (a, a) − P (a, b)( 1
ρ − 1) if (x, y) = (a, a),

P (x, y) otherwise.

We choose

ρ(x, y) =

{

ρ if (x, y) = (a, b),

1 otherwise.

Since ρ(a, b)π(a)Q(a, b) = ρπ(a)P (a, b)/ρ, we have ρ(x, y)π(x)Q(x, y) = π(x)P (x, y) for all
x, y ∈ E. Equation (1) follows from the reversibility of π for P . Notice also that (2) holds
with γ(u) = min(1, u).

By construction, the matrix P satisfies (3). By Proposition 1.4, we have

σ(f)2 − σWR(f)2 = −π(a)P (a, b)(1 − ρ)(P (b, c) − P (a, c))2 < 0.

Notice that when X0 is distributed according to π and n = 1 (independent drawings
case), then the variance reduction obtained by using the WR conditional expectation, i.e.

f c(X0, X̃1), instead of f(X1) is equal to

〈π, f2〉 − 〈πc, (f c)2〉 = 〈πc, (f2)c − (f c)2〉
= Eπ[(1 − ρ(X0, X1))(f(X1) − f(X0))

2]

= π(a)P (a, b)(1 − ρ)(P (b, c) − P (a, c))2,

where we used (12) with h = f . In this particular case, this quantity is equal to the variance
augmentation in the asymptotic n goes to infinity.

Let us illustrate these results by simulation for the following specific choice

π =
1

10





6
3
1



 , P =
1

60





38 21 1
42 0 18
6 54 0



 , ρ =
4

10
and Q =

1

120





13 105 2
84 0 36
12 108 0



 .
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Then σ(f)2 − σWR(f)2 = −0.010115 amounts to 14% of σ(f)2 ' 0.0728333.
Using N = 10 000 simulations, we give estimations of the variances σ2

n of In(f), σ2
WR,n

of Ic
n(f) and of the difference σ2

n − σ2
WR,n with asymptotic confidence intervals at level 95%.

The initial variable X0 is generated according to the reversible probability measure π.

n σ2
n σ2

WR,n σ2
n − σ2

WR,n

1 [0.1213 , 0.1339] [0.1116 , 0.1241] [0.0091 , 0.0104]
2 [0.0728 , 0.0779] [0.0758 , 0.0815] [-0.0041 , -0.0025]
5 [0.0733 , 0.0791] [0.0798 , 0.0859] [-0.0075 , -0.0058]
10 [0.0718 , 0.0772] [0.0800 , 0.0859] [-0.0094 , -0.0074]
100 [0.0702 , 0.0751] [0.0803 , 0.0858] [-0.0114 , -0.0092]
1000 [0.0719 , 0.0769] [0.0811 , 0.0867] [-0.0105 , -0.0083]

4. Proof of Proposition 1.6 and other results

4.1. Proof of (i) of Proposition 1.6. Notice that for any real function h defined on E s.t.
〈π, h2〉 <∞, we have

Eπ[(h(X1) − h(X0))
2] = Eπ[h(X1)

2 + h(X0)
2 − 2h(X1)h(X0)]

= 2〈π, h2〉 − 2〈π, hPh〉,(15)

where we used that X1 is distributed according to π under Eπ for the last equality. Using
this result for h = φ and h = Pφ, we get

(16) ∆ =
[

〈π, φ2〉 − 〈π, φPφ〉 − 〈π, (Pφ)2〉 + 〈π, (Pφ)(P 2φ)〉
]

.

Recall that π(x) > 0 for all x ∈ E. In order to prove the result, we shall use the spectral
decomposition associated with the matrix R defined by

R(x, y) =
√

π(x)P (x, y)
1

√

π(y)
, x, y ∈ E.

Since P is reversible w.r.t. π, R is symmetric. We consider the Hilbert space `2 = {g ∈
R

E ; ‖g‖ =
∑

x∈E g(x)
2 < ∞} with the scalar product 〈g1, g2〉 =

∑

x∈E g1(x)g2(x). (Notice
this is coherent with the previous definition of 〈·, ·〉.) For any real function g defined on E,
we have

∑

x,y∈E

R(x, y) |g(x)| |g(y)| =
∑

x,y∈E

π(x)P (x, y)
|g(x)|
√

π(x)

|g(y)|
√

π(y)

≤ 1

2

∑

x,y∈E

π(x)P (x, y)

(

g(x)2

π(x)
+
g(y)2

π(y)

)

= ‖g‖2 .

The operator g 7→ Rg is bounded and self-adjoint on `2. As 〈g,Rg〉 ≤ ‖g‖2 for all g ∈ `2, this
implies that the spectrum of R lies in [−1, 1]. Next Lemma implies that 1 is an eigenvalue of
R with eigenspace {c√π, c ∈ R}.

Lemma 4.1. The harmonic functions h for P (resp. g for R) i.e. the solutions to Ph = h
(resp. Rg = g) s.t. 〈π, h2〉 < ∞ (resp. g ∈ `2) are the constants (resp. the functions c

√
π

with c ∈ R).
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Proof. Notice that any constant function h is harmonic for P and such that 〈π, h2〉 <∞.
Let now h be an harmonic function for P s.t. 〈π, h2〉 <∞. We have, using (15),

∑

x,y∈E

π(x)P (x, y)(h(x) − h(y))2 = Eπ[(h(X0) − h(X1))
2] = 2〈π, h(h − Ph)〉 = 0.

As P is irreducible, this implies that h is constant.
Since g is harmonic for R if and only if g =

√
πh with h harmonic for P and then ‖g‖2 =

〈π, h2〉, one easily deduces the statement concerning the harmonic functions for R. �

We first consider the case E finite with cardinal J to get a clear intuition of the result.

Case E finite. The matrix R has J eigenvalues λ1, . . . , λJ , s.t. 1 = λ1 > λ2 ≥ · · · ≥ λJ ≥ −1.
Let e1, . . . , eJ be a family of corresponding orthogonal eigenvectors with norm 1.

We set ϕ =
√
πφ. We have ϕ =

∑

1≤j≤J αjej with αj = 〈ϕ, ej〉 for 1 ≤ j ≤ J . We rewrite

∆ using (16) and the definition of ϕ :

(17) ∆ =
[

〈ϕ,ϕ〉 − 〈ϕ,Rϕ〉 − 〈Rϕ,Rϕ〉 + 〈Rϕ,R2ϕ〉
]

.

Using the orthonormality of e1, . . . , eJ , we get 〈ϕ,ϕ〉 =
∑

1≤j≤J α
2
j , 〈ϕ,Rϕ〉 =

∑

1≤j≤J λjα
2
j ,

〈Rϕ,Rϕ〉 =
∑

1≤j≤J λ
2
jα

2
j and 〈Rϕ,R2ϕ〉 =

∑

1≤j≤J λ
3
jα

2
j . We deduce from (17) and λ1 = 1,

that

(18) ∆ =
∑

1≤j≤J

(1 − λj − λ2
j + λ3

j)α
2
j =

∑

2≤j≤J

(1 − λj)
2(1 + λj)α

2
j ≥ 0.

Case E countable. We shall use the spectral decomposition of R, and we refer to [7] chapter
VII and VIII or to [1] chapter VIII. For any g ∈ `2, there exists a bounded non-negative
measure µg on [−1, 1], called the spectral measure associated with g s.t. if ψ is a measur-
able function defined on [−1, 1] and

∫

ψ(λ)2µg(dλ) < ∞, then g belongs to the domain of

the operator ψ(R), defined by formula VIII-4 in [7] or VIII.3.110 in [1], and ‖ψ(R)g‖2 =
∫

[−1,1] ψ(λ)2µg(dλ). (If E is finite, then we have µg(dλ) =
∑

1≤j≤J〈ej , g〉δλj
(dλ).)

Notice that ϕ =
√
πφ belongs to `2 and that

√
πPφ = Rϕ belongs also to `2. We shall

compute all the quantities of the right hand side of (16):

〈π, φ2〉 = 〈ϕ,ϕ〉 =

∫

[−1,1]
µϕ(dλ),

〈π, (Pφ)2〉 = 〈Rϕ,Rϕ〉 =

∫

[−1,1]
λ2µϕ(dλ).

As ϕ belongs to the domain of R+ I = ψ(R), with ψ(r) = r + 1, we have

〈π, φPφ〉 = 〈ϕ,Rϕ〉 =
1

2

(

‖(R + I)ϕ‖2 −‖Rϕ‖2 −‖ϕ‖2
)

=

∫

[−1,1]
λµϕ(dλ).

As ϕ belongs to the domain of R2 and of R2 +R, we have

〈π, (Pφ)(P 2φ)〉 = 〈Rϕ,R2ϕ〉 =
1

2

(

‖(R2 +R)ϕ‖2 −‖R2ϕ‖2 −‖Rϕ‖2
)

=

∫

[−1,1]
λ3µϕ(dλ).

We deduce from (16), that

(19) ∆ =

∫

[−1,1]
(1 − λ− λ2 + λ3)µϕ(dλ) =

∫

[−1,1]
(1 − λ)2(1 + λ)µϕ(dλ) ≥ 0.

Notice that this last equation replaces (18), but that (17) still holds for E countable.
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4.2. Proof of (ii) of Proposition 1.6. We have σ(f)2 − σWR(f)2 = (2− β)∆. So from (i)
of the Proposition, it remains to prove that ∆ = 0, where φ = F in (9), if and only if f is a
constant.

Since β < 2, there exists x, y ∈ E s.t. Q(x, y) > 0 and ρ(x, y) < 1, and thus P (x, x) > 0.
It is easy to check that this implies that P 2 is irreducible. Indeed, let y ∈ E. There exist
n ≥ 1, x0, . . . , xn ∈ E s.t. x0 = y, xn−1 = xn = x and P (xi, xi+1) > 0 for i ∈ {0, . . . , n− 1}.
We have P 2(x2i, x2i+2) ≥ P (x2i, x2i+1)P (x2i+1, x2i+2) > 0 for 0 ≤ i ≤ bn/2c − 1. We deduce

that (P 2)bn/2c(y, x) ≥ P 2(x0, x2) · · ·P 2(x2bn/2c−2, x2bn/2c) > 0. For z ∈ E, one gets similarly

the existence of m ≥ 1 such that (P 2)m(x, z) > 0. Thus P 2 is irreducible.
Then we prove that this implies that −1 is not an eigenvalue for R.
Let g ∈ `2 be s.t. Rg = −g. This implies that R2g = g. We set h = g/

√
π so that we have

Ph = −h and P 2h = h, i.e. h is an harmonic function for P 2. The probability measure π
is invariant for P 2 and according to Lemma 4.1, the only harmonic functions, h, for P 2 s.t.
〈π, h2〉 <∞ are the constants. Hence we get Ph = h. As h = −Ph, this implies that h = 0.
Therefore −1 is not an eigenvalue of R.

Case E finite. We use notation of Section 4.1. Since −1 is not an eigenvalue of R, we have
λj ∈ (−1, 1) and thus (1−λj)

2(1+λj) > 0 for 2 ≤ j ≤ J . Recall that 1 is an eigenvalue of R
with eigenspace {c√π, c ∈ R}. From (18) we get that ∆ = 0 if and only if ϕ = c

√
π for some

c ∈ R, i.e. F = ϕ/
√
π and therefore f = F − PF + 〈π, f〉 are constant functions.

Case E countable. Since −1 is not an eigenvalue of R, the spectral measure associated with
an element of `2 does not put a mass on {−1}, see Theorem 8 ii) of chapter VIII in [1]. Hence,
we deduce from (19) that ∆ = 0 implies the support of µϕ, with ϕ =

√
πF , is reduced to {1}.

This implies ‖ϕ−Rϕ‖2 =
∫

(1 − λ)2µϕ(dλ) = 0, that is ϕ = Rϕ or equivalently F = PF .
From Lemma 4.1, we get that F is constant.

4.3. Other results. We make some comments on existence and uniqueness for the Poisson
equation (8) in Remark 4.2 and prove in Remark 4.3 that, under assumption (10) with β = 1,
R is non-negative .

Remark 4.2. Let f be a real function defined on E s.t. 〈π, |f |〉 < ∞. This last condition is
automatically satisfied if E is finite. We set g =

√
π(f − 〈π, f〉).

Case E finite. Recall that the eigenvalues of R are such that 1 = λ1 > λ2 ≥ · · · ≥ λJ ≥ −1
and let e1, . . . , eJ be a family of corresponding orthogonal eigenvector with norm 1. We choose

e1 =
√
π. We have 〈e1, g〉 = 0. There exists αj ∈ R, 2 ≤ j ≤ J s.t. g =

∑

2≤j≤J

αj(1 − λj)ej or

equivalently f = 〈π, f〉 +
∑

2≤j≤J

αj(1 − λj)fj, where fj = ej/
√
π.

The function ϕ =
∑

2≤j≤J αjej solves ϕ − Rϕ = g and the function F = ϕ/
√
π =

∑

2≤j≤J αjfj is a solution to the Poisson equation (8). If F ′ is another solution, then F −F ′

is harmonic, and thanks to Lemma 4.1, F − F ′ is constant. Hence there exists, up to an
additive constant, a unique solution to the Poisson equation (8).

Case E countable. Assume that there exists a solution, F , to the Poisson equation (8) s.t.
〈π, F 2〉 < ∞. By Jensen inequality, we have 〈π, (PF )2〉 < ∞ and 〈π, f 2〉 < ∞. Notice that
g belongs to `2 as well as ϕ =

√
πF . We have ϕ − Rϕ = g, which implies that g belongs to

the domain of (I − R)−1. Thus the spectral measure µg on [−1, 1] associated with g is s.t.
∫

[−1,1](1 − λ)−2µg(dλ) <∞. Notice the converse is also true: if 〈π, f 2〉 <∞ (so that g ∈ `2)
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and the spectral measure associated with g, µg, is s.t.
∫

[−1,1](1 − λ)−2µg(dλ) < ∞, then g

belongs to the domain of (I −R)−1 and if we set F = ϕ/
√
π with ϕ = (I −R)−1g, then F is

a solution of the Poisson equation (8) s.t. 〈π, F 2〉 <∞.
Notice that the first statement in Lemma 4.1 implies that 1 is an eigenvalue of R and

that any eigenvector associated with 1 is equal to
√
π up to a multiplicative constant. Then

P1 = 1{1}(R), defined by equation (3.20) in chapter VIII of [1], see also section VIII.4 of

[7], is the orthogonal projector on {c√π, c ∈ R}. As 〈g,√π〉 = 〈π, f〉 − 〈π, f〉 = 0, we

have 0 = 〈g,√π〉2 = ‖P1g‖2 = µg({1}) that is µg({1}) = 0. In particular, if 1 is an
isolated point of the spectrum of R, then the support of µg is a closed subset of [−1, 1)
and

∫

[−1,1](1 − λ)−2µg(dλ) < ∞. Thus if 1 is an isolated point of the spectrum of R, then

condition 〈π, f 2〉 <∞ implies the existence of a solution, F , to the Poisson equation (8) s.t.
〈π, F 2〉 <∞.

If F ′ be another solution s.t. 〈π, F ′2〉 <∞, then F − F ′ is harmonic for P , and thanks to
Lemma 4.1 , F − F ′ is a constant. Hence, if there exists a solution to the Poisson equation
(8) s.t. 〈π, F 2〉 <∞, then this solution is unique up to an additive constant.

Remark 4.3. We keep the notation of the previous Remark and assume (10). We give formulas
for σ(f)2, σWR(f)2 and prove that R is non-negative if β = 1.

We have

σ(f)2 = 〈π, F 2〉 − 〈π, (PF )2〉 = 〈ϕ,ϕ〉 − 〈Rϕ,Rϕ〉 =

∫

[−1,1]
(1 − λ2)µϕ(dλ)

and, if E is finite, σ(f)2 =
∑

2≤j≤J

(1−λ2
j )α

2
j . It is then easy to compute σWR(f)2. Using (19),

we have

σWR(f)2 = σ(f)2 − (2 − β)∆ =

∫

[−1,1]
(1 − λ2)(β − 1 + λ(2 − β))µϕ(dλ),

and, if E is finite, σWR(f)2 =
∑

2≤j≤J

(1 − λ2
j )(β − 1 + λj(2 − β))α2

j .

For the particular case β = 1, which corresponds to γ(u) = u/(1 + u) in (2), we get

σWR(f)2 =

∫

[−1,1]
(1 − λ2)λµϕ(dλ),

and, if E is finite, σWR(f)2 =
∑

2≤j≤J

(1 − λ2
j)λjα

2
j . Since this quantity is non-negative for

the spectral measure µϕ associated with any function ϕ such that ϕ/
√
π is a solution to the

Poisson equation, this suggests that R is non-negative.
We shall prove directly that R is non-negative when β = 1. As β = 1, for x 6= y and

Q(x, y) > 0, we have

R(x, y) =

√

π(x)π(y)Q(x, y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)
.
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Notice that R(x, y) = 0 if Q(x, y) = 0 and x 6= y. We also have, using (3),

R(x, x) = P (x, x) = Q(x, x) +
∑

y 6=x,Q(x,y)>0

Q(x, y)

[

1 − π(y)Q(y, x)

π(x)Q(x, y) + π(y)Q(y, x)

]

= Q(x, x) +
∑

y 6=x,Q(x,y)>0

π(x)Q(x, y)2

π(x)Q(x, y) + π(y)Q(y, x)
.

We deduce that for any function g ∈ `2,

∑

x,y∈E

g(x)g(y)R(x, y) =
∑

x∈E

g(x)2Q(x, x) +
∑

y 6=x,Q(x,y)>0

[g(x)
√

π(x)Q(x, y)]2

π(x)Q(x, y) + π(y)Q(y, x)

+
∑

y 6=x,Q(x,y)>0

[g(x)
√

π(x)Q(x, y)][g(y)
√

π(y)Q(y, x)]

π(x)Q(x, y) + π(y)Q(y, x)

=
∑

x∈E

g(x)2Q(x, x)

+
1

2

∑

y 6=x,Q(x,y)>0

[g(x)
√

π(x)Q(x, y) + g(y)
√

π(y)Q(y, x)]2

π(x)Q(x, y) + π(y)Q(y, x)

≥ 0.

This implies that R is non-negative. In particular the spectrum of R lies in [0, 1], that is the
support of any spectral measure lies in [0, 1].
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