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We consider Discontinuous Galerkin approximations of advection-diffusion equations with anisotropic
and discontinuous diffusivity, and propose the symmetric weighted interior penalty (SWIP) method. The
originality of method consists in its capability to handle in an automated fasion internal layers resulting
from a locally vanishing diffusivity. The analysis yields convergence results for the natural energy norm
that are optimal (with respect to mesh-size) and robust (fully independent of the diffusivity). The conver-
gence results for the advective derivative are optimal with respect to mesh-size and robust for isotropic
diffusivity, as well as for anisotropic diffusivity in the dominant advection regime. In the dominant dif-
fusivity regime, an optimal convergence result for the the L2-norm is also recovered. Numerical results
are presented to illustrate the performance of the scheme.

Keywords: discontinuous Galerkin, vanishing diffusion, anisotropic diffusion

1. Introduction

Since their introduction over thirty years ago [19, 16], Discontinuous Galerkin (DG) methods have
emerged as an attractive tool to approximate numerous PDEs in the engineering sciences. Here we are
primarily interested in advection–diffusion equations with anisotropic (e.g., tensor-valued) and hetero-
geneous (e.g., non-smooth) diffusivity. Such equations are encountered, for instance, in groundwater
flow models which constitute the motivation for the present work.

The analysis of DG methods to approximate advection–diffusion equations is extensively covered
in [15]. This work already addresses anisotropic and heterogeneous diffusivity. However, one particular
aspect that deserves further attention is the locally vanishing diffusivity case, i.e., the limiting case
where the diffusivity becomes arbitrarily small in some parts of the computational domain. Indeed, in
this case it is well-known that the presence of an advective field can trigger internal layers. Specifically,
in the locally vanishing diffusivity limit, the solution becomes discontinuous on the interfaces where
the normal component of the advective field measured from the vanishing-diffusivity region towards
the nonvanishing-diffusivity region is nonnegative. This situation has been analyzed in [10] and, more
recently, in [5]. In the presence of internal layers resulting from vanishing diffusivity, all the usual
DG methods meet with difficulties since they have been designed to weakly enforce continuity of the
discrete solution across mesh interfaces. One possible remedy is to modify the DG method at the
interfaces affected by internal layers, as already proposed in [15] and, more recently, in [9]. However,
this approach is not fully satisfactory since it requires a priori knowledge of the interface in question.
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For simple problems the interface is easy to locate, but it can become difficult whenever nonlinear
models with solution-dependent diffusivity are used, or in the presence of free-boundary problems.

The aim of the present work is to design a DG method that can handle internal layers resulting
from locally vanishing diffusion in an automated fashion. The key ingredient is the use of weighted
instead of arithmetic averages in the design of certain terms in the DG method. The idea of utilizing
weighted averages stems from the mortar finite-element method originally proposed by Nitsche [17, 18].
This method imposes weakly the continuity of fluxes between different regions. Various authors have
highlighted the possibility of using an average with weights that differ from one half; see [21, 14, 12,
13] where several mortaring techniques are presented to match conforming finite elements on possibly
nonconforming computational meshes. The weighted averages are introduced as a generalization of the
standard average and the analysis is carried out in the general framework. However, the cited works do
not consider any connection between the weights and the coefficients of the problem. This dependency
was investigated recently in [3] for isotropic advection–diffusion problems, using a weighted interior
penalty technique with mortars which, when applied elementwise, yields a DG method. It was shown
in [3] that a specific choice of weights improves the stability of the numerical scheme in the locally
vanishing diffusivity limit. The reason why weighted averages are needed to properly handle internal
layers is rooted in the dissipative structure of the underlying Friedrichs’s system. The design of the
corresponding DG bilinear form, where dissipation at the discrete level is enforced by a consistency
term involving averages, has been recently proposed in [8] for the general case, and in [6] for advection–
diffusion equations in the locally vanishing diffusivity limit.

In the present work, we extend the DG method implicitly derived in [3] for isotropic diffusivity to
anisotropic problems. This task is not as simple as it may appear on first sight since the presence of
internal layers now depends on the spectral structure of the diffusion tensor on both sides of each mesh
interface. The spectral structure also raises the question of the appropriate choice of the penalty term at
each mesh interface. The analysis presented below will tackle these issues.

We design and analyze one specific DG method with weighted averages, namely the Symmetric
Weighted Interior Penalty (SWIP) method, obtained by modifying the well-known (Symmetric) Interior
Penalty (IP) method [2, 1]. Many other well-known DG methods, including the Local Discontinuous
Galerkin method [4] and the Nonsymmetric Interior Penalty Galerkin method [20], can also be modified
to fit the present scope; for brevity, these developments are omitted herein.

This paper is organized as follows: Section 2 presents the setting under scrutiny and formulates the
SWIP method, while Section 3 contains the error analysis in the natural energy norm for the problem.
The error estimate is robust, with respect to both locally vanishing and anisotropic diffusivity. Section 4
is concerned with the error analysis of the advective derivative. The estimate is again robust with respect
to locally vanishing diffusivity, but the constant can in some cases depend on local anisotropies. Numer-
ical results are presented in Section 5 and illustrate the benefits of using weighted interior penalties to
approximate advection–diffusion equations with locally vanishing and anisotropic diffusivity. Finally,
Section 6 contains some concluding remarks.

2. The SWIP method

Let Ω be a domain in R
d with boundary ∂Ω in space dimension d ∈ {2,3}. We consider the following

advection-diffusion equation with homogeneous Dirichlet boundary conditions:
{

−∇·(K∇u)+β ·∇u+ µu = f in Ω ,

u = 0 on ∂Ω .
(1)
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Here µ ∈ L∞(Ω), β ∈ [W 1,∞(Ω)]d , the diffusion tensor K is a symmetric, positive definite field in
[L∞(Ω)]d,d and f ∈ L2(Ω). The regularity assumption on β can be relaxed, but is sufficient for the
present purpose. The weak formulation of (1) consists of finding u ∈ H1

0 (Ω) such that

(K∇u,∇v)0,Ω +(β ·∇u,v)0,Ω +(µu,v)0,Ω = ( f ,v)0,Ω ∀v ∈ H1
0 (Ω) (2)

where (·, ·)0,Ω denotes the L2-scalar product on Ω . Henceforth, we assume that

µ − 1
2 ∇·β > µ0 > 0 a.e in Ω . (3)

Furthermore, we assume that the smallest eigenvalue of K is bounded from below by a positive (but
possibly very small) constant. Then, owing to the Lax–Milgram Lemma, (2) is well–posed.

Let {Th}h>0 be a shape-regular family of affine triangulations of the domain Ω . The meshes Th
may possess hanging nodes. For simplicity we assume that the meshes cover Ω exactly, i.e., Ω is a
polyhedron. A generic element in Th is denoted by T , hT denotes the diameter of T and nT its outward
unit normal. Set h = maxT∈Th hT . We assume without loss of generality that h 6 1. Let p > 1. We
define the classical DG approximation space

Vh = {vh ∈ L2(Ω);∀T ∈ Th,vh|T ∈ Pp} (4)

where Pp is the set of polynomials of total degree less than or equal to p. Henceforth, we assume that
the diffusivity tensor K is piecewise constant on Th. This assumption, which is reasonable in the context
of groundwater flow models, can be generalized by assuming a smooth enough behaviour of K inside
each mesh element. For the sake of simplicity, these technicalities are avoided.

We say that F is an interior face of the mesh if there are T−(F) and T +(F) in Th such that F =
T−(F)∩T +(F). We set T (F) = {T−(F),T +(F)} and let nF be the unit normal vector to F pointing
from T−(F) towards T +(F). The analysis hereafter does not depend on the arbitrariness of this choice.
Similarly, we say that F is a boundary face of the mesh if there is T (F) ∈Th such that F = T (F)∩∂Ω .
We set T (F) = {T (F)} and let nF coincide with the outward normal to ∂Ω . All the interior (resp.,
boundary) faces of the mesh are collected into the set F i

h (resp., F ∂Ω
h ) and we let Fh = F i

h ∪F ∂Ω
h .

Henceforth, we shall often deal with functions that are double-valued on F i
h and single-valued on F ∂Ω

h .
This is the case, for instance, of functions in Vh. On interior faces, when the two branches of the function
in question, say v, are associated with restrictions to the neighboring elements T ∓(F), these branches
are denoted by v∓ and the jump of v across F is defined as

[[v]]F = v−− v+. (5)

On a boundary face F ∈F ∂Ω , we set [[v]]F = v|F . Furthermore, on an interior face F ∈F i
h, we define the

standard (arithmetic) average as {v}F = 1
2 (v− + v+). The subscript F in the above jumps and averages

is omitted if there is no ambiguity.
The L2-scalar product and its associated norm on a region R ⊂ Ω are indicated by the subscript 0,R.

For s > 1, a norm (seminorm) with the subscript s,R designates the usual norm (seminorm) in H s(R).
When the region R is the boundary of a mesh element ∂T and the arguments in the scalar product or
the norm are double-valued functions, it is implicitly assumed that the value considered is that of the
branch associated with the restriction to T . For s > 1, H s(Th) denotes the usual broken Sobolev space
on Th and for v ∈ H1(Th), ∇hv denotes the piecewise gradient of v, that is, ∇hv ∈ [L2(Ω)]d and for all
T ∈ Th, (∇hv)|T = ∇(v|T ). It is also convenient to set V (h) = H2(Th)+Vh.
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The formulation of the SWIP method requires two parameters. As in the formulation of the usual IP
method we introduce a single- and scalar-valued function γ defined on Fh. The purpose of this function
is to penalize jumps across interior faces and values at boundary faces. Additionally, we define a scalar-
and double-valued function ω on F i

h. This function, which is not present in the usual IP method, is
used to evaluate weighted averages of diffusive fluxes. On an interior face F ∈ F i

h, the values taken by
the two branches of ω are denoted by (ω|F)∓, or simply ω∓ if there is no ambiguity. Henceforth, it is
assumed that for all F ∈ F i

h,

ω− +ω+ = 1. (6)

For v ∈V (h), we define the weighted average of the diffusive flux K∇hv on an interior face F ∈ F i
h as

{K∇hv}ω = ω−(K∇hv)− +ω+(K∇hv)+. (7)

For convenience, we extend the above definitions to boundary faces as follows: on F ∈ F ∂Ω
h , ω is

single-valued and equal to 1, and we set {K∇v}ω = K∇v.
The SWIP bilinear form Bh(·, ·) is defined on V (h)×V (h) as follows

Bh(v,w) = (K∇hv,∇hw)0,Ω +((µ −∇·β )v,w)0,Ω − (v,β ·∇hw)0,Ω

+ ∑
F∈Fh

(

(γ [[v]], [[w]])0,F − (nt
F{K∇hv}ω , [[w]])0,F − (nt

F{K∇hw}ω , [[v]])0,F
)

+ ∑
F∈F i

h

(β ·nF{v}, [[w]])0,F + ∑
F∈F ∂Ω

h

1
2 (β ·nF v,w)0,F . (8)

The SWIP bilinear form can equivalently be expressed, after integrating the advective derivative by
parts, as

Bh(v,w) = (K∇hv,∇hw)0,Ω +(µv,w)0,Ω +(β ·∇hv,w)0,Ω

+ ∑
F∈Fh

(

(γ [[v]], [[w]])0,F − (nt
F{K∇hv}ω , [[w]])0,F − (nt

F{K∇hw}ω , [[v]])0,F
)

− ∑
F∈F i

h

(β ·nF{w}, [[v]])0,F − ∑
F∈F ∂Ω

h

1
2 (β ·nF v,w)0,F . (9)

Both (8) and (9) will be used in the analysis. The discrete problem consists of finding uh ∈Vh such that

Bh(uh,vh) = ( f ,vh)0,Ω ∀vh ∈Vh. (10)

The penalty parameter γ is defined as

∀F ∈ Fh, γ = α
γK

hF
+ γβ , (11)

where α is a positive scalar (α can also vary from face to face) and where

∀F ∈ F
i
h, γK = (ω−)2δ−

Kn +(ω+)2δ+
Kn (12)

∀F ∈ F
∂Ω
h , γK = δKn, (13)

∀F ∈ Fh, γβ = 1
2 |β ·nF |, (14)
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with δ∓
Kn = nt

F K∓nF if F ∈ F i
h and δKn = nt

F KnF if F ∈ F ∂Ω
h . Note that the choice for γβ amounts to

the usual upwind scheme to stabilize the advective derivative.
For the error analysis in the energy norm (see Section 3), no other assumption than (6) is made for

the weights. In particular, it is possible to choose ω∓ = 1
2 , in which case the SWIP bilinear form Bh

reduces to the standard IP bilinear form with the penalty parameter scaling as the standard average of
the diffusion in the normal direction; this method has been analyzed in [11]. Note also that the choice
made in [15] for the penalty parameter is different since it involves the maximum eigenvalue of K.

For the error analysis in the advective derivative (see Section 4), a specific choice of the weights
differing from ω∓ = 1

2 has to be made to yield robust error estimates with respect to the diffusivity.
Specifically, we shall set

ω− =
δ+

Kn

δ+
Kn +δ−

Kn
, ω+ =

δ−
Kn

δ+
Kn +δ−

Kn
, (15)

and thus

∀F ∈ F
i
h, γK =

δ+
Knδ−

Kn

δ+
Kn +δ−

Kn
. (16)

Note that with this choice γK = ω−δ−
Kn = ω+δ+

Kn, and that 2γK is the harmonic average of the normal
component of the diffusion tensor across the interface. Observe also that γK 6 inf(δ−

Kn,δ
+
Kn), a point that

becomes important to ensure even the consistency of the method when the diffusivity is actually allowed
to vanish locally, see [6].

3. Error analysis in the energy norm

The goal of this section is to establish an error estimate for the SWIP method in the energy norm, the
estimate being robust with respect to both locally vanishing and anisotropic diffusion. The analysis is
performed by establishing coercivity, consistency and continuity properties for the SWIP bilinear form
in the spirit of Strang’s Second Lemma [7].

Without loss of generality, we assume that the problem data have been normalized so that ‖β‖[W 1,∞(Ω)]d

is of order unity. We also assume that ‖µ‖L∞(Ω) 6 1 since we are not interested in strong reaction
regimes. In the sequel, the symbol . indicates an inequality involving a positive constant C indepen-
dent of the size of the mesh family and of the diffusion tensor. The constant may depend on the advection
field β , the reaction term µ , and the shape-regularity parameter of the mesh family. In the analysis we
will make use of the following inverse trace and inverse inequalities: For all T ∈ Th and for all vh ∈Vh,

‖vh‖0,∂T . h
−

1
2

T ‖vh‖0,T , (17)

‖∇hvh‖0,T . h−1
T ‖vh‖0,T , (18)

which result from the shape regularity of the mesh family {Th}h>0.
For a function v ∈V (h), we consider the following jump seminorms

|[[v]]|2σ = ∑
F∈Fh

|[[v]]|2σ ,F , |[[v]]|2σ ,F = (σ [[v]], [[v]])0,F , (19)

with σ := γβ , σ := γK or σ := γ . The natural energy norm with which to equip V (h) is

‖v‖h,B = ‖v‖0,Ω +‖κ∇hv‖0,Ω + |[[v]]|γ (20)
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where κ denotes the (unique) symmetric positive definite tensor-valued field such that κ 2 = K a.e. in
Ω .

LEMMA 3.1 (Coercivity) Assume that α in (11) is large enough. Then, the bilinear form Bh is ‖·‖h,B-
coercive, i.e., for all vh ∈Vh,

Bh(vh,vh) & ‖vh‖
2
h,B. (21)

Proof. Let vh ∈Vh. Taking v = w = vh in (8) yields

Bh(vh,vh) = ‖κ∇hvh‖
2
0,Ω +(µvh,vh)0,Ω − ((∇·β )vh,vh)0,Ω − (vh,β ·∇hvh)0,Ω

+ |[[vh]]|
2
γ − ∑

F∈Fh

2(nt
F{K∇vh}ω , [[vh]])0,F

+ ∑
F∈F i

h

(β ·nF{vh}, [[vh]])0,F + ∑
F∈F ∂Ω

h

1
2 (β ·nF vh,vh)0,F . (22)

Integrating by parts the fourth term on the right hand side of (22) and owing to hypothesis (3), we obtain

(µvh,vh)0,Ω − ((∇·β )vh,vh)0,Ω − (vh,β ·∇hvh)0,Ω (23)

+ ∑
F∈F i

h

(β ·nF{vh}, [[vh]])0,F + ∑
F∈F ∂Ω

h

1
2 (β ·nF vh,vh)0,F = ((µ − 1

2 ∇·β )vh,vh)0,Ω & ‖vh‖
2
0,Ω .

Consider now the sixth term in the right-hand side of (22). Let F ∈ Fh. First, observe that owing to
Young’s inequality

|2(nt
F ω∓(K∇hvh)

∓, [[vh]])0,F | = |2((κ∇hvh)
∓,ω∓κ∓nF [[vh]])0,F |

6 hF α0‖(κ∇hvh)
∓‖2

0,F +
1

α0

(

(ω∓)2δ∓
Kn

hF
[[vh]], [[vh]]

)

0,F

where α0 > 0 can be chosen as small as needed. Using the trace inverse inequality (17) and the definition
of γK (12)-(13) yields

|2(nt
F{K∇hvh}ω , [[vh]])0,F | . α0‖κ∇hvh‖

2
0,T (F) +

1
α0hF

|[[vh]]|
2
γK ,F .

Choosing α in (11) to be large enough yields

‖κ∇hvh‖
2
0,Ω + |[[vh]]|

2
γ − ∑

F∈Fh

2(nt
F{K∇hvh}ω , [[vh]])0,F & ‖κ∇hvh‖

2
0,Ω + |[[vh]]|

2
γ . (24)

Combining (24) with (23) we obtain (21). �

LEMMA 3.2 (Consistency) Let u solve (2) and let uh solve (10). Assume that u ∈ H2(Th). Then

∀vh ∈Vh, Bh(u−uh,vh) = 0 (25)

Proof. Let vh ∈Vh. Since u is continuous by assumption and vanishes on ∂Ω , using (9) yields

Bh(u,vh) = (K∇u,∇hvh)0,Ω +(µu,vh)0,Ω +(β ·∇u,vh)0,Ω − ∑
F∈Fh

(nt
F{K∇u}ω , [[vh]])0,F .
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Using the fact that nt
F K∇u is continuous on interior faces yields nt

F{K∇u}ω = (ω− + ω+)nt
F K∇u =

nt
F K∇u owing to (6). Hence, integrating by parts leads to

(K∇u,∇hvh)0,Ω − ∑
F∈Fh

(nt
F{K∇u}ω , [[vh]])0,F = − ∑

T∈Th

(∇·(K∇u),vh)0,T .

As a result,

Bh(u,vh) = ∑
T∈Th

(−∇·(K∇u)+β ·∇u+ µu,vh)0,T = ( f ,vh)0,Ω = Bh(uh,vh),

yielding (25). �

We now establish a continuity property for the SWIP bilinear form Bh. To this purpose, we introduce
on V (h) the norm

‖v‖
h,

1
2

= ‖v‖h,B +

(

∑
T∈Th

‖v‖2
0,∂T

)

1
2

+

(

∑
T∈Th

hT‖κ∇hv‖2
0,∂T

)

1
2

. (26)

Let V⊥
h = {v ∈V (h),∀vh ∈Vh,(v,vh)0,Ω = 0}.

LEMMA 3.3 (Continuity) The following holds:

∀(v,wh) ∈V⊥
h ×Vh, |Bh(v,wh)| . ‖v‖

h,
1
2
‖wh‖h,B. (27)

Proof. Let (v,wh) ∈V⊥
h ×Vh. The first two terms in (8) are easily bounded as

|(K∇hv,∇hwh)0,Ω |+ |((µ −∇·β )v,wh)0,Ω | . ‖v‖h,B‖wh‖h,B.

To bound the third term, let β be the piecewise constant, vector-valued field equal to the mean value of
β on each T ∈ Th. Then,

(v,β ·∇hwh)0,Ω = (v,β ·∇hwh)0,Ω +(v,(β −β )·∇hwh)0,Ω

= (v,(β −β )·∇hwh)0,Ω

since β ·∇hwh ∈Vh and v ∈V⊥
h . Moreover, since β ∈ [W 1,∞(Ω)]d ,

∀T ∈ Th, ‖β −β‖[L∞(T )]d . hT

so that the inverse inequality (18) yields

|(v,β ·∇hwh)0,Ω | . ‖v‖0,Ω‖wh‖0,Ω 6 ‖v‖h,B‖wh‖h,B.

Furthermore, proceeding as in the proof of Lemma 3.1 yields, for all F ∈ Fh,

|(nt
F{K∇hv}ω , [[wh]])0,F | .

(

∑
T∈T (F)

h
1
2
T ‖κ∇hv‖0,∂T

)

h
−

1
2

F |[[wh]]|γK ,F
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and

|(nt
F{K∇hwh}ω , [[v]])0,F | . h

−
1
2

F |[[v]]|γK ,F‖κ∇hwh‖0,T (F)

so that

∑
F∈Fh

(

|(nt
F{K∇v}ω , [[wh]])0,F |+ |(nt

F{K∇wh}ω , [[v]])0,F |
)

. ‖v‖
h,

1
2
‖wh‖h,B.

For the remaining terms, we obtain

∑
F∈Fh

|(γ [[v]], [[wh]])0,F |+ ∑
F∈F i

h

|(β ·nF{v}, [[wh]])0,F |+ ∑
F∈F ∂Ω

h

| 1
2 (β ·nF v,wh)0,F |

. |[[v]]|γ |[[wh]]|γ + ∑
F∈F i

h

‖{v}‖0,F |[[wh]]|γβ ,F 6 ‖v‖
h,

1
2
‖wh‖h,B.

This completes the proof since ‖·‖h,B 6 ‖·‖
h,

1
2

. �

THEOREM 3.1 Let Πhu be the L2-projection of u onto Vh. Then,

‖u−uh‖h,B . ‖u−Πhu‖
h,

1
2
. (28)

Proof. Owing to Lemmata 3.1, 3.2 and 3.3,

‖uh −Πhu‖h,B .
Bh(uh −Πhu,uh −Πhu)

‖uh −Πhu‖h,B
.

Bh(u−Πhu,uh −Πhu)

‖uh −Πhu‖h,B

. ‖u−Πhu‖
h,

1
2
. (29)

We complete the proof by applying the triangle inequality and using the fact that ‖·‖h,B 6 ‖·‖
h,

1
2

. �

COROLLARY 3.1 Set λM,K := max(1,λK), where λK indicates the maximum eigenvalue of K on Ω .
Then, if the exact solution u is in H p+1(Th),

‖u−uh‖h,B . λ
1
2

M,Khp‖u‖H p+1(Th). (30)

Proof. Use Theorem 3.1 and standard approximation properties for the L2-orthogonal projector Πh. �

We now prove that when the domain Ω has elliptic regularity and the diffusion is not too small, the
error estimate in the L2-norm can be improved by using the Aubin-Nitsche duality argument. To this
purpose, we introduce the following dual problem: seek ψ ∈ H1

0 (Ω) such that

(K∇v,∇ψ)0,Ω +(β ·∇v,ψ)0,Ω +(µv,ψ)0,Ω = (v,u−uh)0,Ω ∀v ∈ H1
0 (Ω). (31)

We assume that elliptic regularity holds in the broken H2-norm, namely that

‖ψ‖H2(Th) . λ−1
m,K‖u−uh‖0,Ω (32)

where λm,K denotes the lowest eigenvalue of K on Ω .
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THEOREM 3.2 In the above framework,

‖u−uh‖0,Ω 6
λ

1
2

M,K

λm,K
h
(

‖u−uh‖h,B + inf
wh∈Vh

‖u−wh‖h,B+

)

(33)

where for all v ∈V (h),

‖v‖h,B+ = ‖v‖h,B +

(

∑
T∈Th

h2
T‖∇hv‖2

0,T

)

1
2

+

(

∑
T∈Th

hT‖κ∇hv‖2
0,∂T

)

1
2

. (34)

Proof. Step (i): observe that for all v ∈V (h), using (8) yields

Bh(v,ψ) = (K∇hv,∇ψ)0,Ω +((µ −∇·β )v,ψ)0,Ω − (v,β ·∇ψ)0,Ω − ∑
F∈Fh

(nt
F{K∇ψ}ω , [[v]])0,F

= ∑
T∈Th

(v,−∇·(K∇ψ)−β ·∇ψ +(µ −∇·β )ψ)0,T = (v,u−uh)0,Ω . (35)

Step (ii): define on V (h) the norm

‖v‖h,1 = ‖v‖
h,

1
2

+

(

∑
T∈Th

h−2
T ‖v‖2

0,T

)

1
2

(36)

and let us prove that for all (v,w) ∈V (h)×V (h),

|Bh(v,w)| . ‖v‖h,B+‖w‖h,1. (37)

Indeed, indicating by Ti, 1 6 i 6 8 the eight terms on the right-hand side of (9), and proceeding as in the
proof of Lemma 3.3, it is clear that ∑i6=3 |Ti| . ‖v‖h,B+‖w‖

h,
1
2

. Moreover,

|T3| = |(β ·∇hv,w)0,Ω | . ∑
T∈Th

‖∇hv‖0,T‖w‖0,T = ∑
T∈Th

hT‖∇hvh‖0,T h−1
T ‖w‖0,T 6 ‖v‖h,B+‖w‖h,1.

Hence, (37) holds.
Step (iii): taking v = u−uh in (35), applying Lemma 3.2 and using (37) yields for all ψh ∈Vh,

‖u−uh‖
2
0,Ω = Bh(u−uh,ψ) = Bh(u−uh,ψ −ψh) . ‖u−uh‖h,B+‖ψ −ψh‖h,1.

Using standard interpolation results leads to

inf
ψh∈Vh

‖ψ −ψh‖h,1 . λ
1
2

M,Kh‖ψ‖H2(Th),

and taking into account (32) yields

‖u−uh‖0,Ω .
λ

1
2

M,K

λm,K
h‖u−uh‖h,B+ . (38)
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Using the inverse inequalities (17) and (18), we infer that for all vh ∈Vh,

‖vh‖h,B+ . ‖vh‖h,B +‖vh‖0,Ω +‖κ∇hvh‖0,Ω . ‖vh‖h,B. (39)

Applying the triangle inequality together with (39) leads to

‖u−uh‖h,B+ 6 ‖u−wh‖h,B+ +‖uh −wh‖h,B+

. ‖u−wh‖h,B+ +‖uh −wh‖h,B

. ‖u−wh‖h,B+ +‖u−uh‖h,B. (40)

where wh is arbitrary in Vh. Substituting (40) into (38) yields (33). �

COROLLARY 3.2 If the exact solution u is in H p+1(Th), then

‖u−uh‖0,Ω .
λM,K

λm,K
hp+1‖u‖H p+1(Th). (41)

Proof. Use Theorem 3.2, Corollary 3.1 and standard approximation properties of Vh. �

4. Error analysis for the advective derivative

For vanishing diffusion it is no longer possible to control the advective derivative by means of Theorem
3.1. The goal of this section is to obtain a control of the error in the advective derivative that is robust
with respect to the diffusivity. We will see that this goal can be achieved in the isotropic case. More-
over, in the anisotropic case we establish an estimate that is fully independent of the diffusivity in the
advection-dominant regime.

We introduce the following norm on V (h),

‖v‖h,Bβ = ‖v‖h,B +‖v‖h,β (42)

where

‖v‖h,β =

(

∑
T∈Th

hT‖β ·∇hv‖2
0,T

)

1
2

. (43)

The aim of this section is to obtain a convergence result in the ‖·‖h,β -norm. To this purpose, the first
step is to derive a stability property for the SWIP bilinear form Bh in this norm.

LEMMA 4.1 (Stability) Define

∀T ∈ Th, ∆K,T =

{

1 if ‖β‖[L∞(T )]d &
λM,T
hT

λM,T
λm,T

otherwise
(44)

where λM,T and λm,T are respectively the maximum and the minimum eigenvalue of K|T . Set ∆K =
maxT∈Th ∆K,T . Then,

inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

Bh(vh,wh)

‖vh‖h,Bβ‖wh‖h,Bβ
& ∆−1

K . (45)
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REMARK 4.1 We stress the fact that the inf-sup condition is robust in the isotropic case and in the
anisotropic case for dominant advection. Note also that the anisotropies are local to the mesh element,
i.e., ratios of eigenvalues between adjacent elements are not considered. To achieve this result, the
key point (see the control of |[[πh]]|

2
γK

in the proof below) is that the choice (15) for the weights yields
γK 6 inf(δ−

Kn,δ
+
Kn).

Proof. Step (i): let vh ∈Vh and set S = supwh∈Vh\{0}
Bh(vh,wh)
‖wh‖h,Bβ

. Owing to Lemma 3.1, we infer that

‖vh‖
2
h,B . S‖vh‖h,Bβ , (46)

so it only remains to control the advective derivative.
Step (ii): let πh ∈ Vh be such that for all T ∈ Th πh|T = hT β ·∇hvh where β is defined in the proof of
Lemma 3.3. Let us prove that

‖πh‖h,Bβ . ∆
1
2

K ‖vh‖h,Bβ . (47)

The inverse inequality (18) and the regularity of β yield for all T ∈ Th,

‖πh‖0,T . hT‖β ·∇hvh‖0,T +hT‖vh‖0,T , (48)

while the inverse inequality (17) yields for all F ∈ Fh

|[[πh]]|
2
γβ ,F . ∑

T∈T (F)

‖πh‖
2
0,∂T . ∑

T∈T (F)

(

hT‖β ·∇hvh‖
2
0,T +hT‖vh‖

2
0,T
)

.

Hence,

‖πh‖0,Ω + |[[πh]]|γβ . ‖vh‖h,Bβ .

Let us estimate h
−

1
2

F |[[πh]]|γK ,F for all F ∈ Fh. Observe first that γK = ω∓δ∓
Kn 6 δ∓

Kn if F ∈ F i
h and

γK = δKn if F ∈ F ∂Ω
h . Hence, if there is T ∈ Th(F) such that ‖β‖[L∞(T )]d &

λM,T
hT

, then

h−1
F |[[πh]]|

2
γK ,F 6 h−1

F λM,T‖[[πh]]‖
2
0,F 6 ∑

T∈T (F)

(

hT‖β ·∇hvh‖
2
0,T +hT‖vh‖

2
0,T
)

.

Otherwise, for all F ∈ F i
h,

h−1
F γK [[πh]]

2 . hF γK

(

((β ·∇hvh)
−)2 +((β ·∇hvh)

+)2
)

. hF

(

δ−
K,n((β ·∇hvh)

−)2 +δ+
K,n((β ·∇hvh)

+)2
)

,

and similarly for F ∈ F ∂Ω
h . Hence, using the trace inverse inequality (17),

h−1
F |[[πh]]|

2
γK ,F . ∑

T∈T (F)

λM,T‖∇hvh‖
2
0,T . ∑

T∈T (F)

λM,T

λm,T
‖κ∇hvh‖

2
0,T
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Hence, |[[πh]]|γ . ∆
1
2

K ‖vh‖h,Bβ . Furthermore, since κ is piecewise constant,

‖κ∇hπh‖0,T = hT‖β ·∇h(κ∇hvh)‖0,T . ‖κ∇hvh‖0,T ,

implying that ‖κ∇hπh‖0,Ω . ‖vh‖h,β . Finally, the advective derivative of πh is controlled by

‖πh‖
2
h,β . ∑

T∈Th

h−1
T ‖πh‖

2
0,T . ‖vh‖

2
h,Bβ ,

owing to (48). This proves (47).
Step (iii): we can now examine the term ‖vh‖

2
h,β by making use of (9):

‖vh‖
2
h,β = Bh(vh,πh)− (K∇hvh,∇hπh)0,Ω − (µvh,πh)0,Ω

+ ∑
T∈Th

(β ·∇hvh,hT β ·∇hvh −πh)0,T + ∑
F∈F i

h

(β ·nF{πh}, [[vh]])0,F

+ ∑
F∈F ∂Ω

h

1
2 (β ·nF vh,πh)0,F − ∑

F∈Fh

(γ [[vh]], [[πh]])0,F

+ ∑
F∈Fh

(

(nt
F{K∇hvh}ω , [[πh]])0,F +(nt

F{K∇hπh}ω , [[vh]])0,F
)

= Bh(vh,πh)+T1 +T2 +T3 +T4 +T5 +T6 +T7 +T8.

We observe that

|Bh(vh,πh)| 6 S‖πh‖h,Bβ 6 S∆
1
2

K ‖vh‖h,Bβ .

It is also clear that

|T1|+ |T2|+ |T6|+ |T7|+ |T8| . ‖vh‖h,B‖πh‖h,B . S
1
2 ∆

1
2

K ‖vh‖
3
2
h,Bβ .

Furthermore, using the inverse inequality (17) together with (48) yields

|T4|+ |T5| . |[[vh]]|γβ

(

∑
T∈Th

‖πh‖
2
0,∂T

)

1
2

. |[[vh]]|γβ

(

∑
T∈Th

h−1
T ‖πh‖

2
0,T

)

1
2

. ‖vh‖h,B‖vh‖h,Bβ . S
1
2 ‖vh‖

3
2
h,Bβ .

Finally,

|T3| 6 ∑
T∈Th

hT |(β ·∇hvh,(β −β )·∇hvh)0,T | . ∑
T∈Th

h2
T‖β ·∇hvh‖0,T‖∇hvh‖0,T

. ∑
T∈Th

hT‖β ·∇hvh‖0,T‖vh‖0,T . ‖vh‖h,Bβ‖vh‖0,Ω . S
1
2 ‖vh‖

3
2
h,Bβ .

Hence,

‖vh‖
2
h,Bβ . ‖vh‖

2
h,B + ∑

T∈Th

hT‖β ·∇hvh‖
2
0,T

. S‖vh‖h,Bβ +S∆
1
2

K ‖vh‖h,Bβ +S
1
2 ∆

1
2

K ‖vh‖
3
2
h,Bβ +S

1
2 ‖vh‖

3
2
h,Bβ .
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Applying Young’s inequality yields ‖vh‖h,Bβ . S∆K , and thus (45). �

Proceeding as above, the following result is readily inferred:

THEOREM 4.1 In the above framework,

‖u−uh‖h,Bβ . ∆K inf
vh∈Vh

‖u− vh‖h,
1
2 β

, (49)

where, for all v ∈V (h),

‖v‖
h,

1
2 β

= ‖v‖h,β +

(

∑
T∈Th

‖v‖2
0,∂T

)

1
2

+

(

∑
T∈Th

hT‖κ∇hv‖2
0,∂T

)

1
2

. (50)

In particular, if the exact solution u is in H p+1(Th) and ‖β‖[L∞(T )]d &
λM,T
hT

∀T ∈ Th, then

‖u−uh‖
2
h,β . hp+

1
2 ‖u‖H p+1(Th). (51)

5. Numerical tests

5.1 A test case with discontinuous coefficients

To verify the convergence of the SWIP method and to make quantitative comparisons between this and
other IP methods, we consider the test problem proposed in [3], featuring discontinuous coefficients
and where the exact solution is known analytically. We split the domain Ω = [0,1]× [0,1] into two
subregions: Ω1 = [0, 1

2 ]× [0,1], Ω2 = [ 1
2 ,1]× [0,1]. The diffusivity tensor K is constant within each

subregion, and defined as

K(x,y) =

(

ε(x) 0
0 1.0

)

where ε(x) is a discontinuous function across the interface x = 1
2 . Indicating with the subscript 1 (resp.

2) the restriction to the subdomain Ω1 (resp. Ω2), we will consider different values of ε1, while ε2 is set
equal to 1. Setting β = (1,0)t , µ = 0 and f = 0, the exact solution is independent of the y-coordinate,
and is exponential with respect to the x-coordinate. The following conditions must be satisfied at the
interface between the two subdomains:

lim
x→ 1

2
−

u(x,y) = lim
x→ 1

2
+

u(x,y), and lim
x→ 1

2
−
−ε1∂xu(x,y) = lim

x→ 1
2

+
−∂xu(x,y).

Setting u(0,y) = 1, u(1,y) = 0 and applying the matching conditions, we obtain the value of the exact
solution at the interface:

u
( 1

2 ,y
)

=
exp( 1

2ε1
)

1− exp( 1
2ε1

)

(

exp( 1
2ε1

)

1− exp( 1
2ε1

)
+

1
1− exp( 1

2 )

)−1

.

As a result, the exact solution in each subdomain can be expressed as

u1(x,y) =
u( 1

2 ,y)− exp( 1
2ε1

)+(1−u( 1
2 ,y))exp( x

ε1
)

1− exp( 1
2ε1

)
,

u2(x,y) =
−exp( 1

2 )u( 1
2 ,y)+u( 1

2 ,y)exp(x− 1
2 )

1− exp( 1
2 )

.
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5.2 Accuracy of the SWIP method

Just like any discontinuous Galerkin method based on interior penalties, the precise setting of the SWIP
method depends on the definition of the penalty parameter α which has to be large enough in order to
obtain a well posed discrete formulation. In the following numerical tests we have used α = 1.0 for P1
elements and α = 4.0 for P2.

We apply the SWIP method to the test case presented in the previous section. In order to assess
the accuracy of the SWIP method with respect to the mesh-size h, we consider a family of uniform
triangulations {Th}h>0 which are conforming with respect to the interface between Ω1 and Ω2. These
triangulations are obtained starting from a uniform partition of ∂Ω in sub-intervals of length h = 0.1,
h = 0.05, h = 0.025 and h = 0.0125 respectively. The numerical results obtained with ε1 = 0.1 are
found in Tables 1 and 2. Since the exact solution u is sufficiently smooth locally, and the computational
mesh is conforming with respect to the interface where ε(x) is discontinuous, we expect that our method
satisfies the order of convergence in the norms ‖ · ‖h,B, ‖ · ‖h,β and ‖ · ‖0,Ω provided by the theory (see
(30), (51) and (41)). These properties are clearly verified by the numerical experiments, where the order
of convergence is computed with respect to the last two rows of each table.

5.3 SWIP versus IP

We compare the performance of the SWIP method with respect to two IP methods differing in their
choice of the penalty parameter. The first method, indicated by IP-A, corresponds to the SWIP method
with weights ω∓ = 1

2 . The penalty parameter γK is thus the arithmetic average of the diffusion in the
direction normal to the face. This method was analyzed in [11]. The second method (IP-B), proposed
in [15], differs from IP-A in the choice of penalty parameter: here γK is the arithmetic average of the
maximum eigenvalue of K on the triangles sharing the face F .

We consider the test case proposed in Section 5.1 on a uniform triangulation Th characterized by

TABLE 1 Convergence rates of the SWIP method (p = 1)

h ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω

0.1000 1.62e-01 1.49e-01 6.94e-03
0.0500 7.96e-02 5.45e-02 2.11e-03
0.0250 3.67e-02 1.87e-02 4.80e-04
0.0125 1.70e-02 6.37e-03 1.21e-04
order 1.11 1.55 1.98

TABLE 2 Convergence rates of the SWIP method (p = 2)

h ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω

0.1000 2.31e-02 2.15e-02 6.80e-04
0.0500 4.63e-03 3.31e-03 4.29e-05
0.0250 1.17e-03 5.93e-04 5.20e-06
0.0125 2.95e-04 1.05e-04 6.41e-07
order 1.99 2.49 3.02
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h = 0.05. The quantitative analysis is based on the norms ‖·‖h,B, ‖·‖h,β , ‖·‖0,Ω and the indicator

M = max(|max
Ω

(uh)−max
Ω

(u)|, |min
Ω

(uh)−min
Ω

(u)|) (52)

which quantifies overshoots and undershoots of the calculated solution. The numerical results are found
in Tables 3 and 4 and in Figure 2, while the exact and the calculated solutions are shown in Figure 1.
These results show that the SWIP scheme performs better than the considered IP methods, particularly
when the computational mesh is not completely adequate to capture the singularities of the exact solu-
tion. This is evident in the case of ε1 = 5e-3 where the weights permit sharper discontinuities in the
calculated solution, leading to smaller oscillations in the internal layer. Indeed, the indicator M shows
that the maximal and the minimal values of the exact solution are closely respected. This is not the case
for the other IP methods, where the solution is forced to be almost continuous. As can be observed in
Figure 1, this limitation promotes the instability of the approximate solution in the neighborhood of the
internal layer. The spurious oscillations generated in this case lead to an overshoot of about 40%.

The robustness of the SWIP method with respect to standard IP schemes is also confirmed by further
numerical tests concerning vanishing values of ε1. In Figure 2 we see that as the diffusivity decreases the
difference between the IP methods and the SWIP method augments. Comparing the error measures, the
SWIP method performs favourably with respect to the IP methods as the internal layer becomes sharper.
These observations are confirmed by Figure 3, where we compare the SWIP and the IP-A methods in
the case of ε1 = 1e-6. The solution computed by the SWIP method is very close to the exact solution,
whereas the IP-A is unstable in the neighborhood of the internal layer.

5.4 A test case with genuine anisotropic properties

To conclude the sequence of numerical tests, we consider a test case with genuine anisotropic properties.
Because of the complexity of the problem, it is not possible to compute analytically the exact solution.
Consequently, the comparison between the SWIP and the IP methods will only be qualitative.

We consider the unit square Ω = [0,1]× [0,1] split into four subdomains: Ω1 = [0, 1
2 ]× [0, 1

2 ], Ω2 =

[ 1
2 ,1]× [0, 1

2 ], Ω3 = [ 1
2 ,1]× [ 1

2 ,1] and Ω4 = [0, 1
2 ]× [ 1

2 ,1]. The diffusion tensor K takes different values

TABLE 3 The accuracy of the SWIP and the IP methods: ε1 = 5e-2

method ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω M
SWIP 1.583e-01 1.505e-01 4.586e-03 9.555e-04
IP-A 1.483e-01 1.403e-01 5.153e-03 5.882e-03
IP-B 1.338e-01 1.378e-01 5.903e-03 5.882e-03

TABLE 4 The accuracy of the SWIP and the IP methods: ε1 = 5e-3

method ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω M
SWIP 4.917e-01 1.280 1.474e-02 6.594e-02
IP-A 5.886e-01 1.303 4.973e-02 4.373e-01
IP-B 6.625e-01 1.634 7.553e-02 4.173e-01
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FIG. 1. Graphical comparison between the methods SWIP and IP-A. The test case with ε1 = 5e-2 is reported on the left while
the case with ε1 = 5e-3 is on the right. In both cases ε2 = 1. Each column shows the one-dimensional exact solution u(x) of the
test problem (top) and the numerical approximation uh obtained with the methods SWIP (center) and IP-A (bottom), by means of
piecewise-linear elements (p = 1). The case IP-B has been omitted since it is qualitatively equivalent to IP-A.
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FIG. 2. The norm ‖·‖0,Ω and the indicator (52) (denoted with M) are plotted for the values ε1 = 2−i, i = 0, . . . ,16. The methods
SWIP, IP-A and IP-B are compared with respect to these indicators.
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in each subregion:

K(x,y) =

(

1e−6 0
0 1.0

)

for (x,y) ∈ Ω1, Ω3,

K(x,y) =

(

1.0 0
0 1e−6

)

for (x,y) ∈ Ω2, Ω4.

For the advection term we consider a solenoidal field β = (βx,βy)
t with βx = −10(2y− 1)(1− (2x−

1)2) and βy = −40y(2x − 1)(y − 1). We note that the field is oriented along the normal of the in-
terfaces x = 1

2 and y = 1
2 where K(x,y) is discontinuous, in the direction of increasing diffusion.

Examining the variations along a radius originated in the center of Ω , the forcing term f (x,y) =
10−2 exp(−(

√

(x−0.5)2 +(y−0.5)2 − 0.35)2/0.005) is a Gaussian hill with center at r = 0.35. Fi-
nally, we choose µ = 1. For the simulations, we consider a uniform mesh characterized by h = 0.025.
This mesh is conforming with respect to the discontinuity of K.

A qualitative representation of the data is found in Figure 4. Similarly to what happens for the
test case described in Section 5.1, the orientation of the advection field at the interfaces where K is
discontinuous in combination with a change from a dominant advective to a dominant diffusive regime,
induces quite steep internal layers.

In Figure 5 we compare the solutions obtained with the SWIP and the IP methods. The contour plots
of the numerical solutions confirm that the methods at hand behave differently in the neighborhood of
the interfaces where the tensor K is discontinuous. We observe that the SWIP scheme approximates
the internal layers by means of jumps, while the IP schemes attempt to recover a numerical solution
which is almost continuous. Since the computational mesh is insufficiently refined, the scheme IP-A
generates some slight undershoots near the interfaces where K is discontinuous. For the IP-B method the
oscillations generated by the approximation of the internal layer are much more evident and propagate
quite far from the interfaces. This behavior can be explained by observing that this type of penalty
does not distinguish between the principal directions of diffusion. Consequently, an excessive penalty
is applied along the direction of low diffusivity.

To strengthen these conclusions, we also consider a numerical test where the advection field is the
opposite of the one reported in Figure 4, i.e. it rotates clockwise. Following this advection field along
the interfaces between subregions, the diffusivity decreases. These conditions lead to an exact solution
which is continuous in the neighborhood of the interfaces. In this case, we expect that the SWIP, the
IP-A and IP-B methods behave similarly. Indeed, this is confirmed by the numerical results reported in
Figure 5, on the right hand side. Although the SWIP method enforces the continuity between elements
in a weaker way with respect to IP-A and IP-B, it provides a solution that is comparable with the others.

6. Concluding remarks

The SWIP method analyzed in this paper is a DG method with weighted averages designed to ap-
proximate satisfactorily advection-diffusion equations with anisotropic and possibly locally vanishing
diffusivity. A thorough a priori analysis has been carried out, yielding robust and optimal error estimates
that have been supported by numerical evidence. The SWIP method is an interesting alternative to other
IP methods in the presence of internal layers caused by locally vanishing diffusivity, since these are
approximated more sharply without increasing the computational complexity.
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FIG. 4. The test case with genuine anisotropic properties. At the top, an illustration of the domain and its subregions together
with a synoptic description of the diffusivity tensor. The advection field β and the forcing term f are shown bottom left and right
respectively.
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FIG. 5. The test cases of section 5.4. The rotating field is counterclockwise on the left (see figure 4) and clockwise on the right.
The solution obtained by the SWIP scheme is reported on the top while the ones relative to the interior penalty methods IP-A and
IP-B are depicted below.
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[5] J.-P. Croisille, A. Ern, T. Lelièvre, and J. Proft. Analysis and simulation of a coupled hyperbolic/parabolic model
problem. J. Numer. Math., 13(2):81–103, 2005.

[6] D.A. Di Pietro, A. Ern, and J.-L. Guermond. Discontinuous Galerkin methods for anisotropic diffusion with
advection. SIAM J. Numer. Anal., 2006. submitted.

[7] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements, volume 159 of Applied Mathematical Sciences.
Springer-Verlag, New York, NY, 2004.

[8] A. Ern and J.-L. Guermond. Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory. SIAM J.
Numer. Anal., 44(2):753–778, 2006.

[9] A. Ern and J. Proft. Multi-algorithmic methods for coupled hyperbolic-parabolic problems. Int. J. Numer. Anal.
Model., 1(3):94–114, 2006.

[10] F. Gastaldi and A. Quarteroni. On the coupling of hyperbolic and parabolic systems: analytical and numerical
approach. Appl. Numer. Math., 6(1-2):3–31, 1989/90. Spectral multi-domain methods (Paris, 1988).

[11] E. H. Georgoulis and A. Lasis. A note on the design of hp-version interior penalty Galerkin finite element methods
IMA J. Numer. Anal., 26(2):381–390, 2006.

[12] B. Heinrich and S. Nicaise. The Nitsche mortar finite-element method for transmission problems with singularities.
IMA J. Numer. Anal., 23(2):331–358, 2003.

[13] B. Heinrich and K. Pietsch. Nitsche type mortaring for some elliptic problem with corner singularities. Computing,
68(3):217–238, 2002.

[14] B. Heinrich and K. Pönitz. Nitsche type mortaring for singularly perturbed reaction-diffusion problems. Comput-
ing, 75(4):257–279, 2005.
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