
Rapport de recherche du CERMICS 2006-334          Décembre 2006
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Abstract

In this work, we propose a new numerical scheme for the anisotropic mean curvature equation. The solution

of the scheme is not unique, but for all numerical solutions, we provide an error estimate between the continuous

solution and the numerical approximation. This error estimate is not optimal, but as far as we know, this is the

first one for mean curvature type equation. Our scheme is also applicable to compute the solution to dislocations

dynamics equation.
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1 Introduction

Mean curvature motion has been largely studied in terms of both theory and computation, in particular
due to the large number of applications like front propagation, image processing, fluid dynamics...(see for
instance Sethian [25] and Osher, Paragios [22]).

The level set framework has been used in both theoretical and numerical problems. Theoretically, the
mean curvature equation has been well understood using the framework of viscosity solutions by Chen,
Giga, Goto [10] and Evans, Spruck [15]. However, this equation has serious problems for the question of
numerical approximations. Nevertheless, there are several works on this question. First, let us mention the
numerical method of Osher, Sethian [23]. This method is very used in practice but, as far as we know, there
is no convergence result. Another algorithm is the Merriman, Bence, Osher scheme [20] in which motion by
mean curvature is viewed as singular limit of a diffusion equation with threshold. The convergence of this
scheme has been proved by Barles, Georgelin [4] and Evans [14] (see also Ishii [16], Ishii, Pires, Souganidis
[17], and Chambolle, Novaga [9]). A class of convergent schemes for nonlinear parabolic equations including
mean curvature motion have been proposed by Crandall, Lions [12]. Let us mention also the recent work of
Oberman [21]. In this last two works, two different scales are used. The first one is the space step ∆x and
the second one is the size of the stencil ε. As it was point out in [12], these two scales are very important to
approximate degenerate equations like mean curvature equation.

The goal of our work is to propose a new scheme for mean curvature motion and to prove an error estimate
between the continuous solution and its numerical approximation. This error estimate is not optimal, but
as far as we know, this is the first one for complete discretized scheme for mean curvature type motion.

The idea is to use a recent work of Da Lio, Monneau and the author [13] concerning the convergence
of dislocations dynamics to mean curvature motion. Dislocations are linear defects which move in crystals.
Their dynamics can be represented by a non-local first order Hamilton-Jacobi equation (see Alvarez, Hoch,
Le Bouar and Monneau [3]). The first goal of this work is to prove an error estimate between the solution
of dislocations dynamics and the solution of mean curvature motion. To do this, we will use in a more
quantitative way the definition of viscosity solutions for mean curvature motion proposed by Barles, Georgelin
[4] by considering a regularization with quartics.
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The second goal of this work is to propose a numerical scheme for dislocations dynamics. The main
properties of this scheme is that it is implicit (so there is no CFL condition) and uses two different scales.
Moreover, this scheme is not monotone and does not admit a unique solution. It is only “almost monotone”
(see Lemma 5.2). Nevertheless, the fact that it is implicit and the monotonicity of the velocity, allows us to
“freeze” the velocity and to prove a Crandall Lions type [11] error estimate for any solutions (we refer to
Alvarez, Carlini, Monneau and Rouy [1, 2] for error estimate for dislocations dynamics in the non monotone
case). It is also possible to explicit the scheme. In this case, we are able to prove the convergence of the
scheme under a CFL condition, but error estimates in this case are still open. This comes from the fact that
there is no consistency error for the scheme (see Proposition 5.6).

Finally, let us mention some works on error estimate for numerical scheme for Hamilton-Jacobi equations.
For the first order case, we refer to Souganidis [27]. For the second order case, when the Hamiltonian is
convex, we refer to Krylov [18, 19] and Barles, Jakobsen [5, 6]. When the Hamiltonian is uniformly elliptic,
we refer to Caffarelli, Souganidis [8].

Let us now explain how this paper is organized. In Section 2, we state the main results of this work. In
Section 3, we prove the main result concerning mean curvature type motion. Section 4 is devoted to prove
the error estimate between the solution of dislocations dynamics and the one of mean curvature motion.
In Section 5, we study the numerical scheme for dislocations dynamics and we prove an error estimate
between the continuous solution and its numerical approximation. Some numerical simulations are provided
in Section 6.

2 Main Results

2.1 Error estimate for Mean Curvature Motion

In order to propose a numerical scheme for anisotropic mean curvature motion, we will use the work of Da
Lio et al. [13] that we briefly recall here. Given a function g defined on the unit sphere SN−1of R

N by

(2.1) g ∈ Lip(SN−1), g(−θ) = g(θ) ≥ 0, ∀θ ∈ SN−1

we consider kernels c0 ∈ L∞(RN ) ∩W 1,1(RN ) satisfying

(2.2)















c0(x) =
1

|x|N+1
g

(

x

|x|

)

if |x| ≥ 1,

c0(−x) = c0(x) ≥ 0, ∀x ∈ R
N

and we use the following scaling for 0 < ε < e−1

(2.3) cε0(x) =
1

εN+1| ln ε| c0
(x

ε

)

.

The term | ln ε| comes from the bad decay at infinity of the kernel c0 (see [13, Section 4.1]).
We then consider the following auxiliary problem

(2.4)















uε
t (x, t) =

(

(cε0 ? 1{uε(·,t)≥uε(x,t)})(x) −
1

2

∫

RN

cε0

)

|Duε(x, t)| in R
N × (0, T ),

uε(·, 0) = uε
0 in R

N

where uε
t denotes the derivative with respect to the time variable, Duε indicates the gradient of uε with

respect to the space variables, the convolution is done in space only and 1{uε(·,t)≥uε(x,t)} is the characteristic
function of the set {uε(·, t) ≥ uε(x, t)} (which is equal to 1 on the set and 0 outside). This equation arises
in the theory of dislocations dynamics (see Alvarez, Hoch, Le Bouar and Monneau [3]) and uses the Slepčev
formulation [26] to consider the simultaneous evolutions of all the level sets of the function uε. We refer to Da
Lio et al. [13] for the study of this model and in particular to [13, Definition 2.1] for the definition of viscosity
solutions for Problem (2.4). In particular, we recall that we take the indicatrice of {uε(·, t) ≥ uε(x, t)} for
sub-solution and the indicatrice of {uε(·, t) > uε(x, t)} for super-solution.
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The main result of [13] is that, if uε
0 = u0, then the unique solution uε of (2.4) converges locally uniformly

on compact sets to the solution u0 of the following limit equation

(2.5)















u0
t − trace

(

D2u0 ·A
(

Du0

|Du0|

))

= 0 in R
N × (0, T )

u0(·, 0) = u0 in R
N

with

(2.6) A

(

p

|p|

)

=

∫

θ∈SN−2 =SN−1∩{〈x, p

|p|
〉=0}

(

1

2
g(θ) θ ⊗ θ

)

dθ

and where M · A and 〈·, ·〉 denote respectively the product between the two matrices and the usual scalar
product. Our first main result is an error estimate between uε and u0:

Theorem 2.1 (Error estimate for Mean Curvature Motion)
Let N ≥ 1 and T ≤ 1. Assume that u0, u

ε
0 ∈ Lip(RN ), g ∈ Lip(SN−1) and that c0 given in (2.2) satisfies

c0 ∈W 1,1(RN ). Then, there exists a constant K1 depending on N, sup
RN c0, |Dg|L∞(SN−1) and |Du0|L∞(RN )

such that the difference between the solution uε of (2.4) and the solution u0 of (2.5) is given by

(2.7) sup
RN×(0,T )

|uε − u0| ≤ K1

(

T

| ln ε|

)
1
6

+ sup
RN

|uε
0 − u0|.

2.2 Discrete-continuous error estimate for dislocations dynamics

To approximate the solution u0 of (2.5), we then have to approximate the solution uε of (2.4). Up to a
change of variable (see Corollary 3.1), it suffices to approximate the solution u of

(2.8)















ut(x, t) =

(

(c0 ? 1{u(·,t)≥u(x,t)})(x) −
1

2

∫

c0

)

|Du(x, t)| in R
N × (0, T ),

u(·, 0) = ū0 in R
N .

Given a mesh size ∆x1, ...,∆xN ,∆t and a lattice Q∆
T = Q∆ × {0, ..., (∆t)NT } where Q∆ =

{(i1∆x1, ..., iN∆xN ), I = (i1, ..., iN ) ∈ Z
N} and NT is the integer part of T/∆t, we will denote by

(x1, ..., xN , tn) = (xI , tn) the node (i1∆x1, ..., iN∆xN , n∆t) and by vn
I the value of a numerical approxi-

mation of the exact solution u(xI , tn). We set ∆x =
√

∆x2
1 + ...+ ∆x2

N the space mesh size. We shall
assume throughout that ∆x+ ∆t ≤ 1.

The discrete solution v is computed iteratively by solving the implicit scheme

(2.9) v0
I = ũ0(xI),

vn+1
I − vn

I

∆t
= c∆[v]n+1

I G(vn+1)I

where ũ0 is an approximation of ū0 and G(vn+1)I is a suitable approximation of the gradient of vn+1 taken
at point xI . The non-local velocity is the discrete convolution

(2.10) c∆[v]n+1
I = c∆[v](xI , tn+1) =

∑

J∈ZN

c̄0I−J1{vn+1
J

≥vn+1
I

}∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN

with

(2.11) c̄0I =
1

|QI |

∫

QI

c0(x) dx

where QI is the square cell centred in xI

(2.12) QI = [xi1 − ∆x1/2, xi1 + ∆x1/2] × ...× [xiN
− ∆xN/2, xiN

+ ∆xN/2].

Finally, let us define

(2.13) v#(y, tn) =
∑

I

v(xI , tn)χQI
(y)
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where χQI
is the indicator function of QI .

The approximation of the gradient is obtained using the Osher, Sethian scheme [23] (we can also use the
one proposed by Rouy, Tourin [24]). It is monotone, consistent and depends on the sign of the non-local
velocity. Its precised definition is recalled in Section 5.

Since the velocity c∆ is non-local and not continuous, we have to give a sense to the equality in the scheme
(2.9). In fact, we will use the analogue of the Slepčev formulation [26] for discrete sub and super-solution
(see Definition 5.1) and we will use a discrete version of the Perron’s method to construct a discrete solution.
The solution of the scheme is not unique but, for any solutions, we have the following Crandall-Lions type
[11] error estimate:

Theorem 2.2 (Discrete-continuous error estimate for (2.8))
Let N ≥ 1 and T ≤ 1. Assume that ū0, ũ0 ∈W 1,∞(RN ) and that c0 given in (2.2) satisfies c0 ∈W 1,1(RN ).
Assume that ∆x + ∆t ≤ 1. Then there exists a constant K2 > 0 depending only on N , |c0|W 1,1(RN ),
|Dū0|L∞(RN ) and |Dũ0|L∞(RN ) such that the error estimate between the continuous solution u of (2.8) and
any discrete solution v of the finite difference scheme (2.9) is given by

sup
RN×{0,...,tNT

}

|u− v#| ≤ K2

√
T (∆x+ ∆t)

1/2
+ sup

RN

|ū0 − (ũ0)#|

provided ∆x+ ∆t ≤ 1

K2
2

.

Remark 2.3 It is possible to explicit the computation of the gradient, i.e., to replace the term G(vn+1)I by
G(vn)I in the scheme (2.9) and to consider the solution v of

(2.14) v0
I = ũ0(xI),

vn+1
I − vn

I

∆t
= c∆[v]n+1

I G(vn)I .

In this case, as usual, we have to satisfy a CFL condition like for instance

∆t ≤ ∆x

2|c0|L1(RN )

for the Osher Sethian discretisation of the gradient. Under this additional assumption, Theorem 2.2 remains
true with v solution of the scheme (2.14).

2.3 Discrete continuous error estimate for Mean Curvature Motion

Using the above results, we will prove in Section 3 the following theorem:

Theorem 2.4 (Discrete-continuous error estimate for the mean curvature motion)
Let N ≥ 1 and T ≤ 1. Let us denote by vε a solution of (2.9)-(2.10)-(2.11) with initial condition ũε

0 (which
is an approximation of u0) and with cε0 in the place of c0. Assume that u0, ũ

ε
0 ∈W 1,∞(RN ), g ∈ Lip(SN−1)

and that c0 given in (2.2) satisfies c0 ∈ W 1,1(RN ). Assume also that ∆x + ∆t ≤ 1. Then there exists a
constant K3 > 0 depending only on N, sup

RN c0, |Dg|L∞(SN−1), |c0|W 1,1(RN ), |Du0|L∞(RN ) and |Dũε
0|L∞(RN )

such that the error estimate between the continuous solution u0 of (2.5) and its numerical approximation vε

is given by

sup
RN×{0,..,tNT

}

|u0 − vε
#| ≤ K3

(

T

| ln ε|

)1/6

+ sup
RN

|u0 − (ũε
0)#|

where ε ≥ K3(∆x+
√

∆t).

Remark 2.5 If T ≥ 1, since |Du0|L∞(RN×(0,T )) ≤ |Du0|L∞(RN ) and ”|Dvε|L∞(RN )”≤ |Dũε
0|L∞(RN ) (see

Proposition 5.4 for the exact setting), we can iterate the process and get a linear estimate in T , i.e

sup
RN×{0,..,tNT

}

|u0 − vε
#| ≤ K3

| ln ε|1/6
T + sup

RN

|u0 − (ũε
0)#|.
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Remark 2.6 We can truncate the kernel c0 at infinity and consider

c̃R0 (x) =

{

c0(x) if |x| ≤ R,
0 else

In this case, we make an error of order

∫

RN\BR(0)

c0 ≤ K

R
and we can make the computation on a finite

stencil, even if ∆x goes to zero. This is possible, if we choose ε of the same order of ∆x. The condition
ε ≥ K(∆x+

√
∆t) in Theorem 2.4 then implies that we need to impose a CFL condition ∆t ≤ K∆x2 (which

is classical for second order equation).
At the opposite, if we do not impose any CFL condition, we can choose ∆t larger than ∆x2, but we have

to choose ε of the same order of
√

∆t and so to make the convolution on larger and larger stencils as ∆x
goes to zero.

As we mention in the introduction, it is also possible to explicit the computation of the velocity in the
scheme (2.9) and to consider

(2.15) v0
I = ũ0(xI),

vn+1
I − vn

I

∆t
= c∆[v]nIG(vn)I ,

with cε0 in the place of c0 in the definition of c∆.
We can prove the convergence of the scheme (see Theorem 2.7) under the CFL condition

(2.16) ∆t ≤ ε| ln ε|
2|c0|L1(RN )

∆x.

But, in this case, we are not able to prove an error estimate. The reason is that when we implicit the velocity,
it “freezes” it, and then we can use the consistency error on the scheme with given velocity. At the opposite,
for the explicit scheme, we have to control the consistency error of the velocity which is not possible as we
point out in Proposition 5.6.
We define

vε,δ(x, t) = vε(xI , tn) if x ∈ QI , t ∈ [tn, tn+1)

where δ = (∆x,∆t) and vε is the solution of the scheme (2.15)-(2.10)-(2.11) with the kernel cε
0 in the place

of c0. Then we have the following convergence result:

Theorem 2.7 (Convergence of the explicit scheme)
Assume (2.16). Under the assumptions of Theorem 2.4, the function vε,δ converges locally uniformly on
compact sets as δ → 0 to uε solution of (2.4).

Remark 2.8 In Theorem 2.7, if we take the limit δ → 0 and ε → 0 with δ � ε, we will approach the
solution of (2.5). The condition δ � ε implies that, in practice, we have to make the convolution in larger
and larger stencil as δ → 0.

Remark 2.9 In the scheme (2.15), it is possible to implicit the computation of the gradient and thus to
withdraw the CFL condition (2.16) to get the same result as Theorem 2.7.

Notation In what follows, we will denote by K a generic constant, which will then satisfy K + K = K,
K ·K = K, and so on.

3 Numerical scheme for mean curvature motion

3.1 Proof of Theorem 2.4

Using a rescaling argument, we will prove the following corollary of Theorem 2.2:

Corollary 3.1 (Discrete-continuous error estimate for (2.4))
Let us denote by vε a solution of (2.9)-(2.10)-(2.11) with initial condition ũε

0 (which is an approximation of
uε

0) and with cε0 in the place of c0. Under the assumptions of Theorem 2.2, there exists a constant K > 0

5



depending only on |c0|W 1,1(RN ), |Duε
0|L∞(RN ) and |Dũε

0|L∞(RN ) such that the error estimate between the
continuous solution uε of (2.4) and its numerical approximation vε is given by

sup
RN×{0,...,tNT

}

|uε − vε
#| ≤ K

1

ε

√

T

| ln ε|

√

ε∆x+
∆t

| ln ε| + sup
RN

|uε
0 − (ũε

0)#|

provided ε∆x+
∆t

| ln ε| ≤
ε2

K2
.

Proof of Corollary 3.1
First we remark that a simple change of variable gives (for u and v solutions respectively of (2.8) and (2.9))

uε(y, τ) = εu

(

y

ε
,

τ

ε2| ln ε|

)

, uε
0(y) = εū0

(y

ε

)

vε(y, τ) = εv

(

y

ε
,

τ

ε2| ln ε|

)

, ũε
0(y) = εũ0

(y

ε

)

.

Let us denote by x =
y

ε
, t =

τ

ε2| ln ε| , ∆x =
∆y

ε
, ∆t =

∆τ

ε2| ln ε| , T =
Γ

ε2| ln ε| , sn = n∆τ and by NΓ the

integer part of Γ/∆τ . Then, the following inequality holds:

sup
RN×{0,...,sNΓ

}

|uε − vε
#| =ε sup

RN×{0,...,tNT
}

|u− v#|

≤K
√

Γ
√

| ln ε|

√

∆y

ε
+

∆τ

ε2| ln ε| + ε sup
RN

|ū0 − (ũ0)#|

≤K
√

Γ

ε
√

| ln ε|

√

ε∆y +
∆τ

| ln ε| + sup
RN

|uε
0 − (ũε

0)#|

provided that
∆y

ε
+

∆τ

ε2| ln ε| ≤
1

K2
,

i.e.

ε∆y +
∆τ

| ln ε| ≤
ε2

K2
.

This ends the proof of the corollary.

Proof of Theorem 2.4
The proof of Theorem 2.4 is now very easy. Indeed, using Theorem 2.1 and Corollary 3.1, we deduce that

|u0 − vε| ≤|u0 − uε| + |uε − vε|

≤K
(

T

| ln ε|

)
1
6

+
K

ε
√

|lnε|
√
T
√
ε∆x+ ∆t+ sup

RN

|uε
0 − (ũε

0)#| + sup
RN

|uε
0 − u0|.

Taking ε ≥ K(∆x+
√

∆t) implies the prevalence of the first term with respect to the second one and so this
implies the desired estimate for the choice of initial condition uε

0 = u0.

3.2 Proof of Theorem 2.7

The idea of the proof is borrowed from Barles, Souganidis [7]. Let us set

vε = lim sup
δ→0

∗ vε,δ, vε = lim inf
δ→0

∗ v
ε,δ.

We now prove that vε and vε are respectively sub and super-solution of (2.4). Let ϕ ∈ C∞(RN × [0, T ))
such that vε − ϕ reaches a strict maximum at the point (x0, t0) with t0 ∈ (0, T ). Then, there exists δ → 0,

6



(xδ, tδ) → (x0, t0) such that vε,δ − ϕ reaches a maximum at (xδ, tδ). We denote by (xδ
I , t

δ
n) ∈ Q∆

T the node
such that vε,δ(xδ, tδ) = vε,δ(xδ

I , t
δ
n). This implies that, for all (x, t):

vε,δ(x, t) ≤ vε,δ(xδ
I , t

δ
n) − ϕ(xδ, tδ) + ϕ(x, t).

Using the monotony of the scheme for given velocity and the fact that v is solution of the scheme, we get

ϕ(xδ, tδ) − ϕ(xδ, tδ − ∆t)

∆t

≤cε[vε,δ](xδ
I , t

δ − ∆t)

{

G+(D+ϕ(xδ, tδ − ∆t), D−ϕ(xδ, tδ − ∆t)) if c[vε,δ](xδ
I , t

δ − ∆t) ≥ 0
G−(D+ϕ(xδ, tδ − ∆t), D−ϕ(xδ, tδ − ∆t)) if c[vε,δ](xδ

I , t
δ − ∆t) ≤ 0

with

cε[u](x, t) = cε0 ? 1{u(·,t)≥u(x,t)}(x) −
1

2

∫

RN

cε0

and where we have used Lemma 5.5 to obtain the velocity. Sending δ → 0, using Slepčev Lemma [26,
equation (5)] and the consistency of the scheme for given velocity, we get

ϕt(x0, t0) ≤
(

cε0 ? 1{vε(·,t0)≥vε(x0,t0)}(x0) −
1

2

∫

RN

cε0

)

|Dϕ(x0, t0)|.

This proves that vε is a sub-solution of (2.4). The proof for vε is the same and we skip it. Moreover, using
a barrier argument (using the equivalent of Proposition 5.4) we get that vε(·, 0) = vε(·, 0) = uε

0. Then we
have that vε = vε = vε is solution of (2.4). This ends the proof of the theorem.

Remark 3.2 In the scheme (2.15), we have made the choice to take the velocity c∆[v]nI . An another possi-
bility is to take

c̃∆[v]n+1
I =

∑

J∈ZN

c̄0I−J1{vn+1
J

>vn+1
I

}∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN .

This construct two discrete solution v and ṽ. So, we can take any discrete function comprised between ṽ and
v. In fact, this is equivalent to define a discrete solution as a sub and a super-solution as in Definition 5.1.
With this definition, v will be the greater sub-solution and ṽ will be the lower super-solution and Theorem
2.7 will be true for every solutions.

3.3 What happens if we change the kernel?

A natural question is what happens if we change the kernel and if we take a kernel which decrease more
quickly at infinity. For this kind of kernel K0, the natural scaling is the following one (see [13, Section 4.1])

Kε
0(x) =

1

εn+1
K0

(x

ε

)

.

In fact, using the same arguments as the one we use for the proof of Theorem 2.1, we can prove the same

kind of error estimate. For example for K0(x) =
1

|x|n+p
for |x| ≥ 1, with p ≥ 3, we get

|uε − u0| ≤ K
√
εT 1/4.

This is the best estimate for ε small that we can obtain for general kernel, as we can see in Step 3, Case 1
of the proof of Theorem 2.1.

The main difference is that the estimate of Corollary 3.1 is replaced by

sup
RN×{0,...,tNT

}

|uε − vε
#| ≤ K

√
T

ε

√
ε∆x+ ∆t+ sup

RN

|uε
0 − (ũε

0)#| for ε∆x+ ∆t ≤ ε2

K2
.

Finally, we obtain for the choice uε
0 = u0

sup
RN×{0,...,tNT

}

|u0 − (vε)#| ≤ K
√
εT

1
4 + sup

RN

|u0 − ũε
0|

if ε ≥ K
(√

∆x+ (∆t)
1
3

)

. This implies that
∆x

ε
→ 0 as ∆x → 0. So, when ∆x goes to zero, we have to

make the convolution on all the space which can be very expensive in practice. This approach can also be
used for Gaussian kernel and should give the same estimates. In particular, this could give an error estimate
for the equivalent version of the classical Bence, Merriman, Osher [20] algorithm.

7



4 Proof of Theorem 2.1

Before to prove Theorem 2.1, we need some notation. Let us define

F (M,p) = trace

(

M ·A
(

p

|p|

))

and G(M,p) =
−1

|p| F (M,p)

where we recall that A(p) · p = 0 ∀p ∈ SN−1.
Then we have the following fundamental estimate for balls:

Lemma 4.1 (Error estimate for a ball)
Let ϕ ∈ C2(RN ) with Dϕ(x0) 6= 0, be such that the set {ϕ(x) ≥ ϕ(x0)} is a ball of radius R. For

cε0(·) =
1

εn+1| ln ε| c0
( ·
ε

)

, let us define

cε = (cε0 ? 1{ϕ(·)>ϕ(x0)})(x0) −
1

2

∫

Rn

cε0.

Then, there exists a constant K = K(N, sup
Rn c0, |Dg|L∞(SN−1)) > 0 such that for 0 < ε < δ with 0 < δ ≤

R/2, we have
|cε +G(D2ϕ(x0), Dϕ(x0))| ≤ K · e (ε, δ, R)

with

e (ε, δ, R) =
1

| ln ε|

(

1

δ
+

1

R
| ln δ|

)

+
δ

R2
.

This is a straightforward consequence of Da Lio et al. [13, Proposition 4.1] where their Lemma 4.3 is replaced
by a direct estimate for an explicit function h(x′) = R−

√

R2 − |x′|2 with x′ ∈ R
N−1 and |x′| ≤ R.

Proof of Theorem 2.1
Let u0 be the solution of the mean curvature motion (2.5). The idea of the proof is to regularise the function
u0 by a kind of sup-convolution but using quartic penalization and then to plug the regularised function u0,α

into (2.4). This regularisation allows us to control quantitatively the first and the second derivatives in space
of u0,α. This is a quantitative version of the definition of Barles and Georgelin [4] for viscosity solutions of
mean curvature motion where they used this kind of regularisation to prove that one can take test functions
such that Dϕ 6= 0 or Dϕ = 0 and D2ϕ = 0 in the definition of viscosity solutions. This kind of arguments
is also used to obtained the comparison principle for mean curvature type equations.

The proof is decomposed into five steps:

Step 1. Regularisation of u0

By classical estimates for mean curvature type equations, we have

(4.17) ‖Du0‖L∞(RN×(0,T )) ≤ ‖Du0‖L∞(RN ).

We regularise u0 by considering a spatial sup-convolution by quartics

u0,α(x, t) = sup
y∈RN

{

u0(x− y, t) − 1

4α
|y|4
}

(4.18)

= sup
z∈RN

{

u0(z, t) − 1

4α
|z − x|4

}

.(4.19)

Since u0 is Lipschitz continuous, the supremum is reached.

Step 2. Estimate between u0 and u0,α

For x ∈ R
N and t ∈ (0, T ), we denote by x̄ = x̄(x, t) a point where the maximum is reached in (4.19).

Then

(4.20) u0,α(x, t) = u0(x̄, t) − 1

4α
|x̄− x|4 ≥ u0(x, t).
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Therefore

(4.21)
1

4α
|x̄− x|4 ≤ u0(x̄, t) − u0(x, t) ≤ K|x̄− x|

and so

(4.22) |x̄− x| ≤ Kα1/3.

Moreover, by (4.20), we get

(4.23) 0 ≤ u0,α(x, t) − u0(x, t) ≤ u0(x̄, t) − u0(x, t) ≤ K|x̄− x|

Using (4.22) and (4.23), we then deduce for x ∈ R
N and t ∈ (0, T )

(4.24) |u0,α(x, t) − u0(x, t)| ≤ Kα1/3

Before to continue the proof, we need some notation. We now want to compare uε and u0,α. To do that, we
will prove that u0,α ± (f(ε, α)t+Kα

1
3 +sup

RN |uε
0−u0|) are respectively super and sub-solutions of Problem

(2.4) for

f(ε, α) = K

(

1
√

| ln ε|
+

ln | ln ε|
α1/3| ln ε| +

1

α2/3

(

1
√

| ln ε|
+ ε

))

.

Let ψ ∈ C∞(RN × (0, T )) such that u0,α − ψ reaches a global strict maximum at (x0, t0) ∈ R
N × (0, T ).

Since u0,α is semi-convex in the space variable, the functions u0,α is derivable with respect to x at the point
(x0, t0).

Let us denote by

ϕz(x) = u0(z, t0) −
1

4α
|z − x|4.

Then
u0,α(x, t0) = sup

z∈RN

ϕz(x).

We denote by x̄0 a point where the maximum is reached for x = x0 and by ϕ = ϕx̄0
. We then deduce that

(4.25) ψ(x, t0) ≥ u0,α(x, t0) ≥ ϕ(x)

with equality for x = x0. This implies that

(4.26) Dϕ(x0) = Du0,α(x0, t0) = Dψ(x0, t0)

and

(4.27) D2ϕ(x0) ≤ D2ψ(x0, t0).

Moreover, with h = |x̄0 − x0|, we have (by (4.22))

(4.28) h ≤ Kα
1
3 ,

(4.29) |Dϕ(x0)| =
h3

α

and the set {ϕ(x) ≥ ϕ(x0)} is a ball of radius R = h. Let us define the error

e(ϕ) = |cε[ϕ](x0)|Dϕ(x0)| − F (D2ϕ(x0), Dϕ(x0))|

where

cε[ϕ](x0) =
(

cε0 ? 1{ϕ(·)≥ϕ(x0)}

)

(x0) −
1

2

∫

RN

cε0.

Step 3. e(ϕ) ≤ f(ε, α)
We distinguish three cases:
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Case 1. h ≤ 2ε. In this case, we directly have the estimate (using (4.29))

|cε[ϕ](x0)|Dϕ(x0)|| ≤ |cε0|L1(RN )
h3

α
≤
h2|c0|L1(RN )

ε| ln ε|
h

α
≤ K

α2/3

ε

| ln ε|

where we have also used (4.28). Using moreover the fact that

|F (D2ϕ(x0), Dϕ(x0))| ≤
K

h
|Dϕ(x0)| ≤ K

h2

α
,

we then deduce that

e(ϕ) ≤ K

α2/3
ε ≤ f(ε, α).

Case 2. 2ε < h ≤ 2
√

| ln ε|
. Using (4.29) and Lemma 4.1, with δ = h/2, we then deduce that

e(ϕ) ≤ Kh3

α

(

1

| ln ε|

(

1

h
+

1

h
| ln δ|

)

+
1

h

)

≤ Kh

α2/3
≤ K

α2/3

1
√

| ln ε|
≤ f(ε, α).

Case 3. h >
2

√

| ln ε|
. We set δ =

1
√

| ln ε|
. We then have ε < δ < h/2. So by Lemma 4.1, we deduce that

e(ϕ) ≤Kh
3

α

(

1
√

| ln ε|
+

1

h

ln | ln ε|
| ln ε| +

1

h2

1
√

| ln ε|

)

≤K
(

1
√

| ln ε|
+

1

α1/3

ln | ln ε|
| ln ε| +

1

α2/3

1
√

| ln ε|

)

≤f(ε, α).

Step 4. Estimate between u0,α and uε

By construction, we have, since u0,α is a sub-solution of (2.5) (but does not satisfy the initial condition)

ψt(x0, t0) ≤F (D2ψ(x0, t0), Dψ(x0, t0))

≤cε[ϕ](x0)|Dψ(x0, t0)| + F (D2ϕ(x0), Dϕ(x0)) − cε[ϕ](x0)|Dϕ(x0)|
≤cε[u0,α(·, t0)](x0)|Dψ(x0, t0)| + f(ε, α)

where we have used (4.25) for the last line. On the other hand, we have

u0,α(·, 0) −Kα1/3 − sup
RN

|uε
0 − u0| ≤ uε

0

where we have used (4.24) at the limit t = 0. We then deduce that ũ0,α(x, t) = u0,α(x, t) − f(ε, α)t−
Kα1/3 − sup

RN |uε
0 − u0| is sub-solution of (2.4). This implies that ũ0,α ≤ uε and so

(4.30) u0,α − uε ≤ f(ε, α)t+Kα1/3 + sup
RN

|uε
0 − u0|.

Step 5. Estimate between u0 and uε

Using (4.24) and (4.30), we then get

u0 − uε =u0 − u0,α + u0,α − uε ≤ f(ε, α)t+Kα1/3 + sup
RN

|uε
0 − u0|.

But

f(ε, α)t+Kα1/3 =K

(

1
√

| ln ε|
+

ln | ln ε|
α1/3| ln ε| +

1

α2/3

(

1
√

| ln ε|
+ ε

))

t+Kα1/3

≤K
(

T
√

| ln ε|

)
1
3
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for α =
Kt

√

| ln ε|
and t ≤ T ≤ 1. We then get

u0 − uε ≤ K

(

T
√

| ln ε|

)
1
3

+ sup
RN

|uε
0 − u0|.

A lower bound is proved similarly (using the same result as Lemma 4.1 where the set {ϕ(x) ≥ ϕ(x0)}
is replaced by {ϕ(x) > ϕ(x0)}). This implies (2.7) for T ≤ 1. This ends the proof of the theorem.

5 Numerical scheme for dislocations dynamics

5.1 Definitions and preliminary results

We recall here the notation used in the scheme. The discrete solution v is computed iteratively by solving
the implicit scheme

(5.31) v0
I = ũ0(xI),

vn+1
I − vn

I

∆t
= c∆[v]n+1

I G(vn+1)I

where the non-local velocity is defined in (2.10). The approximation of the gradient of vn+1 at the point xI

is given by

G(vn+1)I =

{

G+(D+vn+1
I , D−vn+1

I ) if c∆[v]n+1
I ≥ 0,

G−(D+vn+1
I , D−vn+1

I ) if c∆[v]n+1
I < 0

where G± is a suitable approximation of the Euclidean norm and D±vn(xI) = (D±
x1
vn(xI), ..., D

±
xN
vn(xI))

are the discrete gradients. The terms D±
xi
vn(xI) are the standard forward and backward first order differ-

ences, i.e. for a general function f(xI):

D+
xi
f(xI) =

f(xIi,+) − f(xI)

∆xi
,

D−
xi
f(xI) =

f(xI) − f(xIi,−)

∆xi
,

where

(5.32) Ik,± = (i1, ..., ik−1, ik ± 1, ik+1, ..., iN ).

The approximations of the Euclidean norm G± are those proposed by Osher and Sethian [23] (we can also
use the ones proposed by Rouy, Tourin [24]):

(5.33) G+(P,Q) =





∑

i=1,..,N

max(Pi, 0)
2 +

∑

i=1,..,N

min(Qi, 0)
2





1
2

,

G−(P,Q) =





∑

i=1,..,N

min(Pi, 0)
2 +

∑

i=1,..,N

max(Qi, 0)
2





1
2

.

We recall that the functions G± are Lipschitz continuous with respect to the discrete gradients, i.e.

(5.34) |G±(P1, P2) −G±(P ′
1, P

′
2)| ≤ (|P1 − P ′

1| + |P2 − P ′
2|).

They are consistent with the Euclidean norm

(5.35) G±(P, P ) = |P |,

and G± = G±(P+
1 , ..., P

+
N , P

−
1 , ..., P

−
N ) enjoy suitable monotonicity with respect to each variable

(5.36)
∂G+

∂p+
i

≥ 0,
∂G+

∂p−i
≥ 0,

∂G−

∂p+
i

≥ 0,
∂G−

∂p−i
≥ 0.
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To define discrete solution, we need the following notation

(5.37) c̃∆[v]n+1
I =

∑

J∈ZN

c̄0I−J1{vn+1
J

>vn+1
I

}∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN ,

G̃(vn+1)I =

{

G+(D+vn+1
I , D−vn+1

I ) if c̃∆[v]n+1
I ≥ 0,

G−(D+vn+1
I , D−vn+1

I ) if c̃∆[v]n+1
I < 0

where c̄0 is defined in (2.11). Finally, for simplicity of presentation, let us denote by

s[v]n+1
I = Sign(c∆[v]n+1

I ), s̃[v]n+1
I = Sign(c̃∆[v]n+1

I ).

Definition 5.1 (Numerical sub, super and solution of the scheme)
We say that v is a discrete sub-solution (resp super-solution) of the scheme (2.9) if for all I ∈ Z

N , n ∈ N,
we have

vn+1
I ≤ vn

I + ∆t c∆[v]n+1
I G(vn+1)I

(

resp. vn+1
I ≥ vn

I + ∆t c̃∆[v]n+1
I G̃(vn+1)I

)

.

We say that v is a discrete solution if and only if it is a sub and a super-solution.

Lemma 5.2 (Almost monotonicity of the scheme)
The scheme (2.9) is almost monotone in the following sense. Let v, w be two discrete functions and assume
that there is I such that wI = vI and wJ ≥ vJ for J 6= I. Then

c∆[v]IG(v)I ≤ c∆[w]IG(w)I

and
c̃∆[v]IG(v)I ≤ c̃∆[w]IG(w)I .

Proof of Lemma 5.2
First, we remark that c∆[v]I ≤ c∆[w]I . Then, there is three cases:

1. c∆[v]I ≤ 0 ≤ c∆[w]I . In this case, the result is trivial.

2. 0 ≤ c∆[v]I ≤ c∆[w]I . Using the monotonicity of G, we get that G(v)I ≤ G(w)I . This implies the
result.

3. c∆[v]I ≤ c∆[w]I ≤ 0. Using the monotonicity of G, we get that G(v)I ≥ G(w)I . This implies the
result.

The proof for c̃∆ is the same and we skip it. This ends the proof of the lemma.

The existence of a solution for the scheme is not trivial (since it is implicit and non-local). This is the
subject of the following proposition:

Proposition 5.3 (Existence of solution for the scheme (2.9))
There exists, at least, one discrete solution v of the scheme (2.9) in the sense of Definition 5.1.

Proof of Proposition 5.3
We assume that there exists a solution vn at step n and we will construct a solution vn+1 at step n + 1.
First, we remark that if (vn+1,i)i is a family indexed by i of discrete sub-solution at step n + 1, then
vn+1 = max vn+1,i is still a sub-solution (it suffices to use Lemma 5.2). Moreover, w+ = supQ∆ |vn| and
w− = − supQ∆ |vn| are respectively discrete super and sub-solution of the scheme (2.9). Then, let us define

vn+1 = max{w subsolution at step n+ 1 s.t w ≤ w+}.

Then vn+1 is a discrete sub-solution at step n + 1. Now let us prove that vn+1 is a super-solution. By
contradiction, assume that there is I such that

vn+1
I − vn

I

∆t
< c̃[v]n+1

I Gs̃[v]nI (D+vn+1
I , D−vn+1

I ).
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This implies in particular that vn+1
I < w+. Now, let us consider, the solution wI (in a sense similar to

Definition 5.1) of

wI − vn
I

∆t
= c∆vn+1 [w]I

{

G+(D+
vn+1wI , D

−
vn+1wI) if c∆vn+1 [w]I ≥ 0

G−(D+
vn+1wI , D

−
vn+1wI) if c∆vn+1 [w]I < 0

,

where

c∆vn+1 [w]I =
∑

J∈ZN

c̄0I−J1{vn+1
J

≥wI}
∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN

and D±
vn+1wI = (D±

x1,vn+1wI , ..., D
±
xN ,vn+1wI) with

D+
xi,vn+1wI =

vn+1
Ii,+ − wI

∆xi
,

D−
xi,vn+1wI =

wI − vn+1
Ii,−

∆xi
,

where Ik,± is defined in (5.32). The existence of such a solution comes from the fact that the left hand side
is non-decreasing in wI and the right hand side is non-increasing. Then, it is easy to prove (using Lemma
5.2) that wI > vn+1

I and that w defined by

wJ =

{

wI if J = I
vn+1

J otherwise

is a discrete sub-solution of (2.9) at step n + 1. This contradicts the definition of vn+1 and ends the proof
of the proposition.

Proposition 5.4 (Properties of the discrete solutions)
Assume that ũ0 ∈W 1,∞(RN ). Let us denote by L = |Dũ0|L∞(RN ) and

(5.38) v = sup{v subsolution of (2.9) with initial condition v0 = ũ0, v ≤ |ũ0|L∞(RN )}.

For k ∈ Z
N such that k · ∆X > 0 (with ∆X = (∆x1, ...,∆xN )), the following estimates hold

(5.39)
v(xI , tn) − v(xI + k · ∆X, tn)

k · ∆X ≤ L,

(5.40)
v(xI , tn) − v(xI + k · ∆X, tn)

k · ∆X ≥ −L,

(5.41)

∣

∣

∣

∣

vn+1
I − vn

I

∆t

∣

∣

∣

∣

≤
√
N

2
|c0|L1(RN ) L.

The same estimates hold for

(5.42) v = inf{v supersolution of (2.9) with initial condition v0 = ũ0, v ≥ −|u0|L∞(RN )}.

Proof of Proposition 5.4
For k ∈ Z

N , let us denote by

ũ0,k(xI) = ũ0(xI + k · ∆X) + Lk · ∆X ≥ ũ0(xI)

and by vk the greater sub-solution, with initial condition ũ0,k, i.e.

vk = sup{vk subsolution of (2.9) with initial condition v0
k = ũ0,k, vk ≤ |u0|L∞(RN )}.

First, since the equation does not see the constants, we remark that v − Lk · ∆X is a sub-solution of
(2.9) with initial condition v0 − Lk · ∆X ≤ ũ0,k. So, by definition of vk, we have

v − Lk · ∆X ≤ vk.

13



Moreover, using the fact that the scheme is invariant by translation in space, we deduce that v(xI +k ·∆X, tn)
is the greater sub-solution with initial condition v(xI + k · ∆X, 0) = ũ0,k(xI). We then deduce that

vk(xI , tn) = v(xI + k · ∆X, tn).

This implies that for k · ∆X > 0

v(xI , tn) − v(xI + k · ∆X, tn)

k · ∆X ≤ L.

The proof of (5.40) is similar and we skip it.
To prove (5.41), we use the fact that v is a solution and the two previous estimates. This implies

−
√
N

2
|c0|L1(RN )L ≤ vn+1

I − vn
I

∆t
≤

√
N

2
|c0|L1(RN )L

which is the desired result.

Before to prove Theorem 2.2, we need the following lemma:

Lemma 5.5 (Equivalent formulation for the discrete velocity)
The discrete velocity c∆[v] can be rewritten as

c∆[v]nI =
(

c0 ? 1{v#(.,tn)≥v#(xI ,tn)}

)

(xI) −
1

2
|c0|L1(RN )

where v# is defined in (2.13).

Proof of Lemma 5.5
The idea of the proof is borrowed from Alvarez et al. [2]. Using the definition of the discrete velocity and
c̄0, we get

c∆[v]nI =
∑

J∈ZN

c̄0I−J1{vn
J
≥vn

I
}∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN

=
∑

J∈ZN

∫

QJ−I

c0(y) dy 1{vn
J
≥vn

I
} −

1

2

∑

J∈ZN

∫

QJ

c0(y) dy

=
∑

J∈ZN

∫

QJ

c0(xI − y) 1{vn
J
≥vn

I
} dy − 1

2
|c0|L1(RN )

=
∑

J∈ZN

∫

QJ

c0(xI − y) 1{v#(y,tn)≥v#(xI ,tn)} dy − 1

2
|c0|L1(RN )

=
(

c0 ? 1{v#(·,tn)≥v#(xI ,tn)}

)

(xI) −
1

2
|c0|L1(RN ).

This ends the proof of the lemma.

We now prove Theorem 2.2:
Proof of Theorem 2.2
The proof is an adaptation of the one of Crandall Lions [11], revisited by Alvarez et al. [1]. Nevertheless, for
the reader’s convenience, we give the main steps in order to show the new difficulties due to the non-local
term. The main idea of the proof is the same as the one of comparison principles, i.e. to consider the
maximum of u− v#, to duplicate the variable and to use the viscosity inequalities to get the result.

The proof splits into four steps.
We first assume that

(5.43) ū0(xI) ≥ (ũ0(xI))#, for all I ∈ Z
N .

and we set

(5.44) µ0 = sup
RN

(ū0 − (ũ0)#) ≥ 0.

We denote throughout by K various constant depending only on N , |c0|W 1,1(RN ), |Dū0|L∞(RN ), |Dũ0|L∞(RN )

and µ0.
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Step 1: Estimate on v

We have the following estimate for the discrete solution

(5.45) −Ktn ≤ ū0(x) − v#(x, tn) ≤ Ktn + µ0.

To show this, it suffices to use the estimate (5.41) of Proposition 5.4. This implies that, for x ∈ QI

(with the notation v and v defined in Proposition 5.4)

(ũ0)#(x) −Ktn = v0
I −Ktn ≤ vn

I ≤ vn
I = v#(x, tn) ≤ vn

I ≤ Ktn + v0
I = Ktn + (ũ0)#(x).

This implies the desired estimate.

Before continuing the proof, we need a few notation. We put

µ = sup
RN

(u− v#).

We want to bound from above µ by µ0 plus a constant. For every 0 < α ≤ 1, 0 < γ ≤ 1 and 0 < η ≤ 1, we
set

Mα,γ
η = sup

RN×RN×(0,T )×{0,...,tNT
}

Ψα,γ
η (x, y, t, tn)

with

Ψα,γ
η (x, y, t, tn) = u(x, t) − v#(y, tn) − |x− y|2

2γ
− |t− tn|2

2γ
− ηt− α(|x|2 + |y|2).

We shall drop the super and subscripts on Ψ when no ambiguity arises as concerning the value of the
parameter.

The main difference with the classical Crandall Lions proof, is to consider the function v# in the place
of v in the separation of variables. This allows us to treat the non-local velocity.

Since u is Lipschitz continuous and T ≤ 1, we have

(5.46) |u(x, t)| ≤ K(1 + |x|).

Moreover by Step 1, we have

|v(xi, tn)| ≤|v(xi, tn) − ū0(xi)| + |ū0(xi)|
≤Ktn +K(1 + |xi|)
≤K(1 + |xi|).

We then deduce that Ψ achieves its maximum at some point that we denote by (x∗, y∗, t∗, t∗n).

Step 2: Estimates for the maximum point of Ψ
The maximum point of Ψ enjoys the following estimates

(5.47) α|x∗| + α|y∗| ≤ K

and

(5.48) |x∗ − y∗| ≤ Kγ, |t∗ − t∗n| ≤ (K + 2η)γ.

Indeed, by inequality Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(0, 0, 0, 0) ≥ 0, we obtain

α|x∗|2 + α|y∗|2 ≤u(x∗, t∗) − v#(y∗, t∗n) ≤ K(1 + |x∗| + |y∗|)

≤K +
K2

α
+
α

2
|x∗|2 +

α

2
|y∗|2.

This implies (5.47), since α ≤ 1.

The first bound of (5.48) follows from the Lipschitz regularity in space of u, from the inequality
Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(y∗, y∗, t∗, t∗n) and from (5.47). The second bound of (5.48) is obtained in the same
way, using the inequality Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(x∗, y∗, t∗n, t

∗
n).
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Step 3: A better estimate for the maximum point of Ψ
Inequality (5.47) can be strengthened to

(5.49) α|x∗|2 + α|y∗|2 ≤ K.

Indeed, using the Lipschitz regularity of u, the inequality Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(0, 0, 0, 0), Step 1 and
equation (5.48), yields

α|x∗|2 + α|x∗i |2 ≤u(x∗, t∗) − v#(y∗, t∗n) + u0(y
∗) − u0(y

∗)

≤K(|x∗ − y∗| + t∗) +Kt∗n + µ0 ≤ K.

Step 4 : Upper bound of µ

We have the bound µ ≤ K
√
T (∆x+ ∆t)

1
2 + µ0 if ∆x+ ∆t ≤ 1

K2 .

First, we claim that for η large enough, we have either t∗ = 0 or t∗n = 0. We argue by contradiction.
Then the function (x, t) 7→ Ψ(x, y∗, t, t∗n) achieves its maximum at a point of R

N × (0, T ). Then, using
the fact that u is a sub-solution of (2.8), we deduce that

(5.50) η + p∗t ≤ c[u](x∗, t∗)|p∗x + 2αx∗|

where

c[u](x, t) = c0 ? 1{u(·,t)≥u(x,t)}(x) −
1

2

∫

RN

c0

and

p∗t =
t∗ − t∗n
γ

, p∗x =
x∗ − y∗

γ
.

Since t∗n > 0, we also have Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(x∗, y, t∗, tn) for tn ≥ t∗n − ∆t. This implies

(5.51) v#(y∗, t∗n) − v#(y, tn) ≤ ϕ(y∗, t∗n) − ϕ(y, tn) for tn ≥ t∗n − ∆t

for ϕ(y, tn) = −
(

|x∗−y|2

2γ + |t∗−tn|2

2γ + α|y|2
)

. We denote by x∗I the node such that y∗ ∈ QI∗ (the unit

cube centred in x∗I). We then deduce

ϕ(y∗, t∗n) − ϕ(y∗, t∗n − ∆t)

∆t
≥v#(y∗, t∗n) − v#(y∗, t∗n − ∆t)

∆t

=
v(x∗I , t

∗
n) − v(x∗I , t

∗
n − ∆t)

∆t

≥c̃∆[v](x∗I , t
∗
n)Gs[v](x∗

I ,t∗n)(D+v(x∗I , t
∗
n), D−v(x∗I , t

∗
n))

≥c̃∆[v](x∗I , t
∗
n)Gs[v](x∗

I ,t∗n)(D+ϕ(y∗, t∗n), D−ϕ(y∗, t∗n))

where we have use the monotonicity of G± and (5.51) with tn = t∗n for the last line. We denote by
s∗ = s[v](x∗I , t

∗
n). Straightforward computations of the discrete derivative of ϕ yield

(5.52) p∗t +
∆t

2γ
≥ c̃∆[v](x∗I , t

∗
n)Gs∗

(

p∗x − ∆x

2γ
− α(2y∗ + ∆x), p∗x +

∆x

2γ
− α(2y∗ − ∆x)

)

.

Subtracting the above inequality to (5.50) yields

η ≤∆t

2γ
+ c[u](x∗, t∗)|p∗x + 2αx∗|

− c̃∆[v](x∗I , t
∗
n)Gs∗

(

p∗x − ∆x

2γ
− α(2y∗ + ∆x), p∗x +

∆x

2γ
− α(2y∗ − ∆x)

)

≤∆t

2γ
+ (c[u](x∗, t∗) − c̃∆[v](x∗I , t

∗
n))|p∗x| + αK|x∗|

+ c̃∆[v](x∗I , t
∗
n)

∣

∣

∣

∣

Gs∗

(

p∗x − ∆x

2γ
− α(2y∗ + ∆x), p∗x +

∆x

2γ
− α(2y∗ − ∆x)

)

−Gs∗

(p∗x, p
∗
x)

∣

∣

∣

∣

≤∆t

2γ
+ (c[u](x∗, t∗) − c̃∆[v](x∗I , t

∗
n))|p∗x| + αK|x∗| +K

(

∆x

γ
+ 2α|y∗| + 2α∆x

)
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We now have to bound the term

I =(c[u](x∗, t∗) − c̃∆[v](x∗I , t
∗
n))|p∗x|

=(c0 ? 1{u(·,t∗)≥u(x∗,t∗)}(x
∗) − c0 ? 1{v#(·,t∗n)>v#(y∗,t∗n)}(x

∗
I))|p∗x|.

We have to distinguish two cases:

Case 1. Assume that for γ > 0 fixed
|x∗ − y∗|2

γ
≥ C2

γ for some constant Cγ > 0 and for all α small.

By inequality Ψ(x∗, y∗, t∗, t∗n) ≥ Ψ(x, x, t∗, t∗n), we deduce that

u(x, t∗) − u(x∗, t∗) ≤ v#(x, t∗n) − v#(y∗, t∗n) − |x∗ − y∗|2
2γ

− α(|x∗|2 + |y∗|2) + 2α|x|2.

We then get the inclusion

{u(·, t∗) ≥ u(x∗, t∗)} ∩ {v#(·, t∗n) ≤ v#(y∗, t∗n)} ⊂ {|x|2 ≥ R2
α,γ}

where R2
α,γ = 1

2α

(

|x∗−y∗|2

2γ + α(|x∗|2 + |y∗|2)
)

. We also have

{|x− x∗| ≥ Rα,γ} ⊂ {|x| ≥ R̃α,γ}

where R̃α,γ = Rα,γ − |x∗| → ∞ as α→ 0 (see Da Lio et al. [13, Lemma 2.5]). We then obtain

I ≤(c0 ? 1{v#(·,t∗n)>v#(y∗,t∗n)}(x
∗) − c0 ? 1{v#(·,t∗n)>v#(y∗,t∗n)}(x

∗
I) + c0 ? 1Bc(0,Rα,γ)(x

∗))|p∗x|

≤K
(

|Dc0|L1(RN )|x∗ − x∗I | +
∫

Bc(0,R̃α,γ)

c0(x)dx

)

<K(γ + ∆x) + oα(1)

where we have used (5.48) to bound |p∗x| in the second line.

Case 2. Assume that there exists a subsequence αn > 0 which we still denote by α such that

|x∗ − y∗|2
γ

→ 0 as α→ 0.

We then get that p∗x → 0 as α→ 0. Since the velocities are bounded, we get that I = oα(1).

To sum up, we have shown that
I < K(γ + ∆x) + oα(1).

We then get that

η < K

(

∆x+ ∆t

γ
+ γ

)

+ oα(1).

Putting η∗ = K

(

∆x+ ∆t

γ
+ γ

)

+ oα(1), we then conclude that either t∗ = 0 or t∗n = 0 for η ≥ η∗.

Whenever t∗ = 0, we get for η∗ ≤ η ≤ 1

M =Ψ(x∗, y∗, 0, t∗n) ≤ u0(x
∗) − v#(y∗, t∗n)

≤K|x∗ − y∗| +Kt∗n + µ0

≤Kγ + µ0

The same result holds whenever t∗n = 0. We then deduce that for η = η∗ and (x, tn) ∈ R
N ×{0, ..., tNT

}

u(x, tn) − v#(x, tn) − η∗T − 2α|xI |2 ≤M ≤ Kγ + µ0.

Sending α→ 0, taking the supremum over (x, tn) and choosing γ = T 1/2(∆x+ ∆t)1/2, we get

µ ≤ K(∆x+ ∆t)1/2
√
T + µ0

provided ∆x+ ∆t ≤ 1

K2
. Using the same arguments of Alvarez et al.[1, Theorem 2], we easily deduce

the result in the general case. This ends the proof of Theorem 2.2.
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We now point out that there is no consistency error for the scheme (2.15). If there is a consistency
error, then there will be a consistency error for the velocities, i.e. for all ϕ ∈ C1(RN × (0, T )) with
‖ϕ‖C1(RN×(0,T )) ≤ C then

(5.53) c∆[ϕ|Q∆
T
]nI − c[ϕ](xI , tn) ≤ f(∆x,∆t)

with f(∆x,∆t) → 0 as (∆x,∆t) → 0.

Proposition 5.6 (No consistency error)
There is no consistency error for the scheme (2.15), i.e. equation (5.53) does not hold.

Proof of Proposition 5.6
We have to prove that there exists a constant C0 > 0 such that for all ∆x,∆t > 0 there exists a function ϕ
such that

c∆[ϕ|Q∆
T
]nI − c[ϕ](xI , tn) ≥ C0 and |ϕ|C1(RN×(0,T )) ≤ C.

To see this, it suffices to take a function ϕ which oscillates as shown in Figure 1.

∆x

xI

Figure 1: Graph of the function ϕ defined in R.

Remark 5.7 There is no consistency error, but the scheme is consistent. Indeed, if we fix the function ϕ
in the previous proof, then using Slepčev Lemma [26, equation (5)], we get

lim
∆x→0

c∆[ϕ|Q∆
T
]nI − c[ϕ](xI , tn) = 0.

We now point out that the two scheme (2.9) and (2.15) are not monotone:

Proposition 5.8 (Non monotonicity of the scheme)
The two scheme (2.9) and (2.15) are not monotone for general c̄0.

Proof of Proposition 5.8

1. The implicit scheme (2.9)
We give a simple counter-example in the one dimensional case. We take ũn

i = vn
i = i∆x. The goal is

to construct a sub-solution un+1 and a super-solution vn+1 such that

un+1
i = i∆x+ c1

vn+1
i = i∆x+ c2.

A simple computation gives

c1 = ∆t
∑

j≥0

c̄0j and c2 = ∆t
∑

j>0

c̄0j .

We then deduce that c1 − c2 = ∆tc̄00 > 0 (if c̄00 > 0). This implies that we can construct two different
solutions (the supremum of sub-solutions and the infimum of super-solutions). This implies that the
scheme (2.9) is not monotone.
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2. The explicit scheme (2.15)
We also give a counter-example in the one dimensional case. We take

un
i =







−δ if i = 0
1 − δ if i = −1
0 otherwise

and vn
i =







δ if i = 0
1 − δ if i = −1
0 otherwise

We then have un
i ≤ vn

i for all i ∈ Z. We then prove that un+1
0 > vn+1

0 for δ small enough. First we

remark that c∆[vn]0 ≤ 0 (if
∑

i6=0,−1

c̄0j ≥ c̄00 + c̄0−1), so vn+1
0 ≤ δ. Moreover,

un+1
0 = − δ +

∆t

∆x





∑

j

c̄0j −
1

2

∑

j

c̄0j





√

1 + δ2

≥− δ +
∆t

∆x

(

1

2
|c0|L1(R)

)

>δ

if

δ <
∆t

2∆x

(

1

2
|c0|L1(R)

)

.

This contradicts the monotonicity of the scheme.

This ends the proof of the Proposition.

6 Numerical Simulations

In this section, we provide some numerical simulations. In a first subsection, we explain a method to
solve numerically the implicit scheme (2.9)-(2.10)-(2.11). Then we provide a simple simulation concerning a
collapsing circle, with the implicit scheme and an another one, to highlight the fattening phenomena, with
the explicit scheme.

6.1 How to solve the implicit scheme?

To solve (2.9)-(2.10)-(2.11), we will use an iterative process. Assume that we have a solution vn at step n.

We now want to compute a solution vn+1 at step n+ 1. To do this, for w̃ ∈ R
Q∆

, we denote by w = Φ(w̃)
the solution of the following auxiliary scheme:

(6.54)
wI − vn

I

∆t
= c∆w̃ [w]I

{

G+(D+
w̃wI , D

−
w̃wI) if c∆w̃ [w]I ≥ 0

G−(D+
w̃wI , D

−
w̃wI) if c∆w̃ [w]I < 0

where

c∆w̃ [w]I =
∑

J∈ZN

c̄0I−J1{w̃J≥wI}∆x1...∆xN − 1

2

∑

J∈ZN

c̄0J∆x1...∆xN

and D±
w̃wI = (D±

x1,w̃wI , ..., D
±
xN ,w̃wI) with

D+
xi,w̃

wI =
w̃Ii,+ − wI

∆xi
,

D−
xi,w̃

wI =
wI − w̃Ii,−

∆xi
,

where Ik,± is defined in (5.32). Since the left hand side of (6.54) is non-decreasing in wI and the right
hand side is non-increasing, there exists a unique solution (in a sense similar of Definition 5.1) which can be
computed using a dichotomy process.

The important point is that if w̃ is a sub-solution (resp. super-solution) then w = (wI)I is still a
sub-solution (resp. super-solution) and satisfies wI ≥ w̃I (resp. wI ≤ w̃I) (see the proof of Proposition 5.3).

The idea is then to define w0 = vn − C where the constant C is such that w0 is a sub-solution of (2.9)
and then to construct iteratively wk+1 = Φ(wk). Setting vn+1 = limk→∞ wk, we have that vn+1 is a solution
of (2.9).
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6.2 A collapsing circle

In this subsection, we provide a simple test with the implicit scheme concerning the evolution of a circle.
The goal of this simple simulation is just to check that the circle will disappear with the good time. We take
a circle of radius 1. The parameters are ∆x = 0, 05, ∆t = 0, 01 and ε = 0, 3. Moreover, we take the kernel

cε0 =







1 if |x| ≤ 0, 05
1

| ln ε||x|3 if 0, 05 ≤ |x| ≤ 2

0 if |x| ≥ 2

The initial condition is the distance to the circle. The result is shown in Figure 2.

Figure 2: Evolution of a circle of radius 1 at time 0, 0.1, 0.2, 0.3, 0.4 and 0.49

Numerically, the disappearing time is comprise between 0.49 and 0.50 which correspond to what we
expect theoretically (the real time is 0.50).

6.3 Fattening phenomena

The second test is concerning with the evolution of the 8 to point out the fattening phenomena. This test
have been made with the explicit scheme. We take two circles of radius 0, 58 such that they are tangent in
one point and we look at the evolution of the level set 0 and −0, 06. The parameters are ∆x1 = ∆x2 = 0, 01,
∆t = 0, 0001 and ε = 0, 1. Moreover, we take the kernel

cε0(x) =







0 if |x| ≤ 0, 3
1

| ln ε||x|3 if 0, 05 ≤ |x| ≤ 10
3

0 if |x| ≥ 10
3

The results are provided in Figure 3.
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Figure 3: Evolution of the 8 at time 0, 0.05, 0.1 and 0.15.
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