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SUMMARY

In this work we propose and analyse a discontinuous Galerkin (DG) method for the Stokes problem
based on an artificial compressibility numerical flux. A crucial step in the definition of a DG method
is the choice of the numerical fluxes, which affect both the accuracy and the order of convergence
of the method. We propose here to treat the viscous and the inviscid terms separately. The former
is discretized using the well-known BRMPS method. For the latter, the problem is locally modified
by adding an artificial compressibility term of the form 1

c2
∂p

∂t
for the sole purpose of interface flux

computation. The flux is obtained as the exact solution of a local Riemann problem. The analysis of
the method extends the well-established strategies for the DG discretization of the Laplacian to the
resulting partially coercive problem. Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

Discontinuous Galerkin methods have been gaining an increasing interest in the scientific
computing community since they have proved to be suited for the construction of robust high-
order numerical schemes on arbitrary unstructured and non-conforming grids for a variety
of problems. The application of the DG space discretization to incompressible flows has been
recently considered as well. In a series of papers [12, 9, 10], Cockburn and co-workers introduce
and analyse the LDG method applied to the Stokes, Oseen and Navier-Stokes equations. The
expressions for the numerical fluxes associated to the divergence-free constraint mimic those
introduced for the elliptic term in mixed formulation. A synthetic review can be found in [11].
In [20], Toselli introduces and analyses a hp-DG method for the Stokes problem. Finally, in [19]
Girault and coworkers present and analyse a DG method with non-overlapping domains for
the Stokes and Navier-Stokes problems.
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2 DANIELE A. DI PIETRO

A new formulation for the inviscid fluxes was proposed in [3, 14]. The key idea of the method
is to introduce a local modification of the problem at the elementary interface level. Following
the approach first presented in [5], the authors treat the viscous and inviscid terms separately.
The former is discretized using the BRMPS method introduced in [6] and analysed in [1].
For the latter, a technique similar to the one used for the compressible case is adopted, i.e.,
the fluxes are obtained from the solution of a Riemann problem with initial datum given by
the (discontinuous) solution. In order to obtain a hyperbolic problem, the mass equation is
perturbed by adding an artificial compressibility term of the form

1

c2
∂p

∂t
,

where c > 0 is a parameter to be suitably chosen. This Riemann problem-based method can
be easily extended to the more complicate Oseen and Navier-Stokes cases by simply modifying
the Riemann solver. When applied to the Navier-Stokes equations, it gives raise to non-linear
fluxes, which can only be defined implicitly, while an explicit expression is available in the
other cases. Thorough numerical testing has been provided in [3, 4].

The local artificial compressibility flux displays some advantages with respect to other
methods: (i) the approach can be easily generalized to a variety of incompressible problems,
from the viscosity-dominated Stokes equations to the advection-dominated incompressible
Euler equations; (ii) the approximation of the pressure seems to benefit from this physically
grounded scheme, as pointed out in [3], where a comparison with the schemes proposed in
[12, 9, 10] is presented; (iii) unlike some other DG methods, stability is achieved even when
the same polynomial order is used for both velocity and pressure. This feature may be of some
practical importance from the implementation viewpoint. Moreover, it makes the method
accessible to those practitioners who already dispose of a compressible DG code and want to
be able to perform incompressible computations. Besides this specific advantages, we have the
usual ones associated with the use of discontinuous finite elements such as the possibility of
handling non-conforming meshes in a natural way, the easy implementation of hp-adaptive
versions, etc.

In this work we analyse the local artificial compressibility method applied to the Stokes
problem extending the strategy used in [1] for the purely elliptic case to the resulting partially
coercive problem. To this purpose, inspired by [17], we define two norms, one for continuity
and the other for stability, and prove an inf-sup condition based on the partial coercivity of
the bilinear form as well as on its continuous counterpart. Using the above results, we obtain
error estimates in the energy norm and refine the estimate for the L2-norm of the velocity error
deploying a standard duality argument. A general abstract framework for the analysis of DG
methods for more general three-field Friedrichs’ systems with partial coercivity has recently
been proposed in [18]. To pinpoint the issues related to the inviscid terms, the analysis in the
present work is entirely carried out on the primal formulation of the problem and, recalling
[1], it can be easily extended to other stable and completely consistent DG approximations
of the Laplacian. The most relevant difference from the schemes analysed in [20, 19] is that
the local artificial compressibility perturbation automatically adds a stabilising term for the
pressure which makes the method suitable for equal order approximation.

The paper is organized as follows: in §2 we derive the DG discretization of the Stokes
equations, pointing out the terms where the numerical fluxes appear and showing how they
can be computed by means of a suitable Riemann solver; in §3 we list some preliminary results
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ANALYSIS OF A DG APPROXIMATION OF THE STOKES PROBLEM 3

from the literature and we introduce some hypotheses that are necessary for the subsequent
proofs; in §4 we analyze the discrete problem and prove optimal convergence estimates; in §5
we numerically evaluate the performance of the method and draw some conclusions in §6.

2. Formulation of the method

2.1. Discontinuous Galerkin discretization

We consider the Stokes problem






−∆u + ∇p = f , in Ω,

∇·u = 0, in Ω,

u = 0, on ∂Ω,

(1)

Ω being a bounded connected Lipschitz domain in R
d, d ∈ {2, 3}. Since Dirichlet boundary

conditions are prescribed for u, the pressure is only defined up to a constant. In order to
remove this ambiguity, we further require that

∫

Ω

p dx = 0. (2)

For the proof that problem (1) together with condition (2) is well-posed see, e.g., [16, §4].
To avoid unnecessary complications, we shall henceforth assume that Ω is polygonal and

that Th represents a family of triangulations parametrised by h which cover it exactly. We
denote by F i

h the set of element interfaces, i.e., f ∈ F i
h if f is a (d − 1)-manifold and there

are K+, K− ∈ Th such that f = ∂K+ ∩ ∂K−. The set of the faces that separate the mesh
from the exterior of Ω is denoted with F∂

h , i.e., f ∈ F∂
h if f is a (d − 1)-manifold and there is

K ∈ Th such that f = ∂K ∩ ∂Ω. For a given interface F i
h ∋ f = ∂K+ ∩ ∂K−, we shall note

Th(f)
def
= K+∪K−. Similarly, for a boundary face F∂

h ∋ f = ∂K∩∂Ω, we shall let Th(f)
def
= K.

The set of all the faces is denoted with Fh, i.e., Fh
def
= F i

h ∪ F∂
h .

In order to derive the DG approximation, we introduce the auxiliary variable σ and re-write
the problem as the first order system







σ − ∇u = 0, in Ω,

−∇·σ + ∇p = f , in Ω,

∇·u = 0, in Ω,

u = 0, on ∂Ω.

The weak formulation on the generic element K ∈ Th can be obtained multypling every
equation by a smooth test function and integrating over K,







∫

K

σ:τ dx +

∫

K

∇·τ ·u dx −

∫

∂K

nK ·τ ·u dσ = 0, ∀τ ∈ Σ,

∫

K

σ:∇v dx −

∫

∂K

nK ·σ·v dσ −

∫

K

p∇·v dx +

∫

∂K

pv·nK dσ = 0, ∀v ∈ V,

−

∫

K

u·∇q dx +

∫

∂K

u·nKq dσ = 0, ∀q ∈ Q,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



4 DANIELE A. DI PIETRO

where nK denotes the normal unit vector pointing out of the element K. The above system of
equations makes sense for all (σ,u, p) , (τ ,v, q) ∈ Σ× V ×Q with

Σ
def
= [H1 (Th)]d

2

, V
def
= [H1 (Th)]d, Q

def
= H1 (Th) ,

where, for k ≥ 1, we have set

Hk (Th)
def
= {v ∈ L2 (Ω) ; v|K ∈ Hk (K) , ∀K ∈ Th}.

We shall consider the above space in order for weak derivatives and integrals of traces to make
sense as well as to avoid technical details linked with the use of dualities.

We next introduce the finite dimensional space made up of polynomial functions possibly
discontinuous across element boundaries: For k ≥ 1,

Vh ≡ V k
h

def
= {vh ∈ L2 (Ω) ; vh|K ∈ Pk(K), ∀K ∈ Th}.

The components of the discrete solution are sought in the following spaces:

Σh
def
= [V kσ

h ]d
2

, Vh
def
= [V ku

h ]d, Qh
def
= V

kp

h , (3)

with ku − 1 ≤ kσ ≤ ku and ku − 1 ≤ kp ≤ ku. For future use, we shall introduce the symbols

W
def
= V ×Q and Wh

def
= Vh ×Qh.

Optimal error estimates with respect to the approximation properties of the discrete spaces
are obtained taking kσ = kp = ku − 1. Nevertheless, a common choice is to set kσ = kp = ku.
This results in a slightly increased computational effort, but, in some cases, may be preferable
from the implementation viewpoint. Moreover, when dealing with the complete Navier-Stokes
system, the above choice ensures better convergence results in the low viscosity limit. Indeed,
estimates similar to those obtained for hyperbolic problems were proved in [14] for the
incompressible Euler equations provided the same polynomial degree is used for both velocity
and pressure.

All the results obtained for kp = ku extend directly to the case when kp = ku − 1, which
is more favourable in terms of stability. We shall therefore focus the analysis on the former,
more difficult, case.

Remark 2.1. By definition of the space Vh,

vh ∈ Vh ⇒ ∇vh ∈
[
V k−1

h

]d
⊂
[
V k

h

]d
.

This inclusion property is not enjoyed by standard conforming approximations.

In order to write the discrete problem, we replace the infinite-dimensional spaces with the
discrete ones. Since the test functions are possibly discontinuous across element boundaries, it
is necessary to establish weak inter-element links by introducing numerical fluxes. The resulting
problem reads: Find (σh,uh, ph) ∈ Σh × Vh ×Qh such that






∫

K

σh:τh dx +

∫

K

∇·τ h·uh dx −

∫

∂K

nK ·τh·ûν dσ = 0, ∀τh ∈ Σh,

∫

K

σh:∇vh dx −

∫

∂K

nK ·σ̂·vh dσ −

∫

K

ph∇·vh dx +

∫

∂K

p̂vh·nK dσ = 0, ∀vh ∈ Vh,

−

∫

K

uh·∇qh dx +

∫

∂K

ûdiv·nKqh dσ = 0, ∀qh ∈ Qh,

(4)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
Prepared using fldauth.cls



ANALYSIS OF A DG APPROXIMATION OF THE STOKES PROBLEM 5

xy

P K+

K−

Figure 1. Frame for the computation of the inviscid numerical fluxes at point P.

where ûν and σ̂ indicate the numerical fluxes associated with the viscous term, while p̂ and
ûdiv are the numerical fluxes associated with the incompressibility constraint.

2.2. Numerical fluxes

To complete the formulation of the method, it only remains to devise suitable expressions for
the numerical fluxes. Following [3, 14], we consider the steady case as the limit of a pseudo-
evolutive problem. Let f ∈ F i

h be a generic internal face of the triangulation. In order to
compute the inviscid fluxes at a point P ∈ f , we consider the projection of the problem onto

the normal direction to the face (see Figure 1). For brevity of notation, let u
def
= u·n be the

normal component of the velocity at P and consider a frame such that the x-axis is aligned
with n. The expressions for the inviscid fluxes are then obtained by solving the Riemann
problem associated with the perturbed system







1

c2
∂p

∂t
+
∂u

∂x
= 0,

∂u

∂t
+
∂p

∂x
= 0,

(5)

with discontinuous initial datum given by (u+, p+) and (u−, p−) respectively. The unsteady
pressure term in the box is indeed the local artificial compressibility perturbation that allows
to recover the hyperbolicity of the projected problem. Suitable modifications can be introduced
on boundary faces to account for the weak enforcement of Dirichlet boundary conditions on
the velocity, as briefly discussed below.

The system (5) only accounts for the normal component of the velocity, which is a scalar
irrespectively of the number of space dimensions of the problem, d. In [3] the authors show
that the tangential component of the velocity can be computed independently once the normal
component and the pressure have been determined. However, since the tangential component
will not be relevant for the definition of the numerical fluxes, we omit the details here and
refer the reader to the cited work.

The Riemann problem thus obtained has the structure depicted in Figure 2. The left and
right states correspond to the initial datum. The star region is separated from the left and
right states by two centered waves, which can be either rarefactions or shocks, and it contains
a contact discontinuity, across which the sole tangential component of the velocity may vary.
It was proved in [3] that the solution on the x/t = 0 line of this problem has the following
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t

x

centered wavecentered wave

contact discontinuity

L

∗

R

Figure 2. Structure of the Riemann problem

analytical expression:

u∗ = {u} +
1

2c
[p], p∗ = {p} +

c

2
[u], (6)

where [·] denotes the usual jump operator and {·} is the average operator defined below.
Observe that (i) the sole normal component of udiv appears in the integral in the third line of
(4), which renders the definition of its tangential component unnecessary; (ii) the expressions
of the fluxes can be directly plugged into the steady problem when the tuning parameter c
does not depend on time, since the fluxes themselves are not time-dependent.

We next introduce a few trace operators. Let F i
h ∋ f = K+∩K− be an internal face, and let

ϕ be a tensor field of rank N such that a (possibly two-valued) trace is defined on f . Such an

assumption is verified, e.g., by functions in [Vh]d
N

⊕ [H1 (Th)]d
N

. Let n± denote the outward
normal to K± respectively. Using Einstein’s notation, we define

{ϕ}
def
=
ϕ+ +ϕ−

2
,

([[ϕ]])i1i2...iN+1

def
= ϕ+

i1i2...iN
n+

iN+1
+ ϕ−

i1i2...iN
n−

iN+1
,

([ϕ]n)i1i2...iN−1

def
= ϕ+

i1i2...iN−1jn
+
j + ϕ−

i1i2...iN−1jn
−
j .

An example will clarify the above definitions. For the sake of simplicity, let, ψh be a tensor field
of rank 2 belonging to Σh. Then, {ψh} will be the component-wise algebraic mean between
its trace taken from K+ and that taken from K−. On the other hand, at a given point P ∈ f ,
[[ψh]] will be the third rank tensor whose (i, j, k)th component is given by

([[ψh]])ijk = ψ+
ijn

+
k + ψ−

ijn
−
k .

Finally, [ψh]n will be the vector whose ith component is given by

([ψh]n)i = ψ+
ikn

+
k + ψ−

ikn
−
k ,

where a summation over the saturated index k is understood. These definitions generalize
the ones introduced in [1] and can be extended to boundary faces to account for the weak
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imposition of the Dirichlet conditions on u. In particular, for all f ∈ F∂
h and for all

(q,v, τ ) ∈ L2 (f) × [L2 (f)]d × [L2 (f)]d
2

, we set

[[q]]
def
= 0, {q}

def
= q, {v}

def
= v, [[v]]

def
= v ⊗ n, [v]n

def
= v·n, {τ}

def
= τ .

Let now f ∈ Fh. Following [3] and keeping in mind the discussion above, we define the
numerical fluxes across f as:

ûν = {uh}, σ̂ = {∇huh}+ η{rf([[uh]])}, p̂ = {ph}+
c

2
[uh]n, ûdiv = {uh}+

1

2c
[[ph]], (7)

wher η and c are positive parameters and ∇h indicates the element-wise gradient operator.
For all second rank tensors ϕ ∈ [L2 (f)]d

2

, the lifting operator rf (ϕ) ∈ Σh is defined as the
solution of the following problem: For all f ∈ Fh,

∫

Ω

rf (ϕ):τh dx = −

∫

f

ϕ:{τh} dσ, ∀τh ∈ Σh.

Observe that we are indeed defining one lifting operator for each face. Since the test functions
with non-zero mean on f ∈ Fh are only the ones supported in Th(f), we conclude that the
support of the associated lifting operator rf coincides with Th(f). This definition is perfectly
coherent with the face-based definitions of numerical fluxes given in (7).

Clearly, the inviscid fluxes p̂, ûdiv are directly derived from the solution (6) of the Riemann
problem with initial datum given by

(
u+

h , p
+
h

)
,
(
u−

h , p
−
h

)
.

2.3. The discrete problem

We proceed summing eq. (4) over the elements and counter-integrating by parts the viscous
terms in the momentum equation and the mass equation. For the latter step, the following
formula proved in [1] can be used: For all tensors fields ϕ and φ such that a (possibly two-
valued) trace is defined on all f ∈ Fh,

∑

K∈Th

∫

∂K

ϕ:φ⊗ n dσ =
∑

f∈Fi
h

∫

f

{ϕ}:[[φ]] + {φ}·[ϕ]n dσ +
∑

f∈F∂
h

∫

f

ϕ:φ⊗ n dσ. (8)

To conclude, the auxiliary variable σh can be eliminated proceeding as in [1] to recover the
primal formulation of the problem. The discrete problem then reads: Find (uh, ph) ∈ Wh such
that

B(uh, ph;vh, qh) = G(vh), ∀ (vh, qh) ∈ Wh, (9)

where

B(u, p;v, q)
def
= a(u,v) + b(v, p) − b(u, q) + jν(u,v) + jp(p, q) + jn(u,v),

G(v)
def
=

∫

Ω

g·v dx,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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8 DANIELE A. DI PIETRO

and

a(u,v)
def
=

∫

Ω

∇hu:∇hv dx −
∑

f∈Fh

∫

f

{∇hu}:[[v]] + [[u]]:{∇hv} dσ

=

∫

Ω

∇hu:∇hv dx +
∑

f∈Fh

∫

Ω

∇hu:rf ([[v]]) + rf ([[u]]):∇hv dx,

b(v, p)
def
= −

∫

Ω

p∇h·v dx +
∑

f∈Fh

∫

f

{p}[v]n dσ

jν(u,v)
def
=
∑

f∈Fh

∫

Ω

ηrf ([[u]]):rf ([[v]]) dx,

jn(u,v)
def
=
∑

f∈Fh

∫

f

c

2
[u]n[v]n dσ,

jp(p, q)
def
=
∑

f∈Fh

∫

f

1

2c
[[p]]·[[q]] dσ.

Recalling [1], we know that a sufficient condition for the stability of the discretization of the
Laplacian is that η be greater than the maximum number of faces of one element in the mesh.
A similar condition can be found in the Stokes case as well (see Proposition 4.2). In addition, it
turns out that also the term jn(·, ·) contributes to stabilise the velocity. Furthermore, in what
follows it will become clear that a suitable form for the artificial compressibility parameter
is c = γ/hf with γ > 0. For the sake of simplicity, we shall henceforth assume that both γ
and η are real positive constants. Although possible, more general choices do not seem to be
particularly useful in practice.

2.4. Analogies with other methods

It is worth further investigating the analogy with interior penalty and artificial compressibility
methods. In eq. (9) we recognize two contributions: the first one, involving only volume integral
terms, is exactly the customary mixed formulation of the Stokes problem; the second one,
which gathers up all the boundary integral terms, is responsible for consistency, stability and
the weak enforcement of boundary conditions. Three stabilizing contributions are present,
collected in the bilinear forms jν(·, ·), jn(·, ·) and jp(·, ·). The first and the second terms
penalize, respectively, the jumps of the velocity and of its normal component across element
boundaries. Although, strictly speaking, only the jν(·, ·) term is necessary for the analysis,
numerical experiments show that adding jn(·, ·) seems to enhance the accuracy. Moreover, if
divergence free bases like the ones proposed in [13] were used, this term would penalize the
only divergence contribution left, i.e., the one due to discontinuous normal components. The
last term is in some sense analogous to the traditional artificial compressibility contribution.
As a matter of fact, the matrix B resulting from the discretization of the Stokes problem can
be partitioned into the following four blocks:

B(u, p;v, q) =




B11(u,v) B12(v, p)

−B21(u, q) B22(p, q)



 .

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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ANALYSIS OF A DG APPROXIMATION OF THE STOKES PROBLEM 9

In traditional artificial compressibility methods, the B22 block is the pressure mass matrix
scaled by the inverse of the artificial compressibility parameter c. The method considered in
the present work replaces the pressure mass matrix by the matrix of pressure jumps on the
union of all the faces, which constitutes a consistent perturbation of the problem.

3. Preliminary results

We introduce the notation

h
def
= max

K∈Th

hK , hK
def
= max

f⊂∂K
hf ,

where f is the generic face of K and hf its diameter. For a given h > 0, the triangulation Th

is assumed to match the following conditions:
(i) every element K ∈ Th is affinely equivalent to one of several elements in an arbitrary

but fixed set;
(ii) the triangulation can be 1-irregular but it has to satisfy the following property:

∃σ1 > 0 : 0 <
hK

ρK
≤ σ1, ∀K ∈ Th,

where ρK denotes the diameter of the biggest ball included in K. This property implies that
there exists 0<σK < 1 such that

σK ≤
minf⊂∂K hf

maxf⊂∂K hf
≤ 1, ∀K ∈ Th. (10)

Notice that σK is independent of the meshsize but it depends on the regularity of the mesh.
Whenever possible, the symbols . and & will be used for inequalities that hold up to a real
positive parameter independent of the meshsize h but possibly depending on the polynomial
degrees kσ , ku and kp as well as on the mesh regularity.

We shall consider projection operators satisfying the following

Lemma 3.1 (Projection operator) For all K ∈ Th, let π be a linear continuous operator

from Hs+1 (K), s ≥ 0, onto P
k(K) such that πw = w for all w ∈ P

k(K), k ≥ 0. Then, for all

K ∈ Th,

|w − πw|r,K . h
min(s,k)+1−r
K ‖w‖s+1,K , r ∈ {0, 1, 2},

‖w − πw‖0,∂K . h
min(s,k)+1/2
K ‖w‖s+1,K .

The proof is classical and can be found, e.g., in [7]. With little abuse of notation, we shall
denote with the same symbol π the discontinuous projection operator obtained applying π
element-wise. Among the operators that meet the requirements of Lemma 3.1 we shall select
the L2-orthogonal projector onto the discontinuous space V k

h An operator which meets the
requirements of (see e.g., [16, §1.6.3]), since L2-orthogonality will be needed to prove the
discrete inf-sup condition. When the projection operator is applied to a vector or tensor
quantity, the notation has to be intended component-wise. We shall also assume that the
following H1-stability condition is satisfied:

‖πw‖1,K . ‖w‖1,K , ∀K ∈ Th. (11)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 00:1–6
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10 DANIELE A. DI PIETRO

In order to treat the boundary terms, we shall need the following trace inequality (see [8]):

‖v‖2
0,∂K .

(
h−1

K ‖v‖2
0,K + hK |v|21,K

)
, ∀v ∈ H1 (K) . (12)

Some useful bounds for the trace operators are collected in the following

Lemma 3.2 (Trace operator bounds) Let ϕ ∈ [Hs (Ω)]d
N

be a tensor quantity of rank N
and let ψ ∈ L2 (f) be non-negative for all f ∈ F . Then it holds

∑

f∈Fh

‖ψ1/2{ϕ}‖2
0,f ≤

∑

K∈Th

‖ψ1/2ϕ‖2
0,∂K ,

∑

f∈Fh

‖ψ1/2[[ϕ]]‖2
0,f ≤ 2

∑

K∈Th

‖ψ1/2ϕ‖2
0,∂K ,

∑

f∈Fh

‖ψ1/2[ϕ]n‖
2
0,f ≤ 2

∑

K∈Th

‖ψ1/2ϕ‖2
0,∂K .

Proof. We focus on a generic internal face F i
h ∋ f = ∂K+ ∩ ∂K−, since the assert is trivially

verified for f ∈ F∂
h . The total contribution from K± can be split as follows:
∫

∂K±

ψ{ϕ}2 dσ =

∫

f∈∂K±

ψ{ϕ}2 dσ +

∫

∂K±\f

ψ{ϕ}2 dσ,

where f ∈ ∂K± means that we are regarding the face as belonging to the boundary of element
K±. The total contribution on the face f is, therefore,

∫

f∈∂K+

ψ{ϕ}2 dσ +

∫

f∈∂K−

ψ{ϕ}2 dσ =
1

2

∫

f

(

ψϕ+2
+ ψϕ−2

+ 2ψϕ+ϕ−
)

dσ

≤

∫

f

(

ψϕ+2
+ ψϕ−2

)

dσ

=

∫

f∈∂K+

ψϕ2 dσ +

∫

f∈∂K−

ψϕ2 dσ,

where we have set ϕ± = ϕ|K± and the average operator was expanded according to its
definition. The other formulas can be proved in a similar way. 2

In what follows we shall often use the above lemma with ψ = hf or ψ = 1/hf , which obviously
satisfy the hypotheses. The following lemma was proved in [1]:

Lemma 3.3 (Lifting operator bounds) Let f ∈ Fh and assume that ϕh ∈ [Pk(f)]d
2

.

Then,

‖rf(ϕh)‖2
0,Ω . h−1

f ‖ϕh‖
2
0,f . ‖rf (ϕh)‖2

0,Ω.

A local inverse inequality is assumed to hold for all vh ∈ V k
h , K ∈ Th and 0 < h ≤ 1,

‖vh‖l,K . hm−l
K ‖vh‖m,K . (13)

For the proof we refer the reader to [16].
Finally, we define a shorthand notation for the components of the error inside and outside

the discrete space. Let (u, p) ∈ V ×Q and (uh, ph) ∈ Vh ×Qh. We then let

u− uh = (u − πu) + (πu − uh)
def
= eπ,u + eh,u,

p− ph = (p− πp) + (πp− ph)
def
= eπ,p + eh,p.

(14)
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4. Convergence analysis

4.1. Existence and uniqueness of the discrete solution, Galerkin orthogonality and adjoint

consistency

Expressions for the fluxes that are single-valued on every face of the triangulations are called
conservative. It is not difficult to realize that the numerical fluxes defining the method are
conservative, a property which will be used in the following

Theorem 4.1 (Existence and uniqueness) The problem defined by (9) has a unique

approximate solution (uh, ph) ∈ Wh.

Proof. The proof can be carried out by showing that the only admissible solution to the
homogeneous problem with f ≡ 0 in Ω and u = 0 on ∂Ω is the trivial solution (0, 0). (i) Taking
(vh, qh) = (uh, ph) as a test function in (9) we have that

a(uh,uh) + jν(uh,uh) + jn(uh,uh) + jp(ph, ph) = 0,

which implies that ∇uh|K ≡ 0 on every K ∈ Th, that [[ph]] = 0 across all f ∈ F i
h and that

[[uh]] = 0 across all f ∈ Fh. Since u = 0 on ∂Ω, we conclude that uh ≡ 0. (ii) In order to prove
that the approximate pressure is also zero, we substitute uh = 0 in the momentum equation,
integrate by parts using (8) and deploy the fact that ph is continuous across intefaces to write

0 = a(0,vh) + b(vh, ph) + jν(0,vh) + jn(0,vh)

= −

∫

Ω

ph∇h · vh dx +
∑

f∈Fh

∫

f

{ph}[vh]n dσ

=

∫

Ω

∇hph·vh dx −
∑

f∈Fh

∫

f

[[ph]] · {vh} dσ =

∫

Ω

∇hph·vh dx,

for all vh ∈ Vh. Since ∇hph is in Vh, this entails that ∇ph|K ≡ 0 for all K ∈ Th. The proof
is concluded recalling that we required

∫

Ω ph dx = 0 in order for the pressure to be uniquely
defined and that the jumps of the pressure across internal faces are zero. 2

Theorem 4.2 (Galerkin orthogonality) Let (u, p) ∈
[
H2 (Ω)

]d
× H1 (Ω) be the solution

of the Stokes problem (1) and be (uh, ph) ∈ Wh its approximation obtained solving (9). Then

B(eu, ep;vh, qh) = 0, ∀ (vh, qq) ∈ Wh.

Proof. The assert can be proved as in [1] using the consistency of the numerical fluxes and the
regularity assumptions on the exact solution. By virtue of the latter, the jumps of the solution
on element boundaries are all zero. We therefore have:

B(u, p;vh, qh) = G(vh), ∀ (vh, qh) ∈ Wh.

The proof can be completed by subtracting (9) from the previous equation and accounting for
the linearity of the form B. 2

Notice that the stabilization contribution jp(·, ·) plays an important role in establishing the
unicity of the approximate solution. We conclude by stating a property which will be useful
to obtain an optimal error estimate for the L2-norm of the velocity error.
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12 DANIELE A. DI PIETRO

Remark 4.1. Let (w, r) solve






−∆w + ∇r = λ, in Ω,

∇·w = 0, in Ω,

u = 0, on ∂Ω.

(15)

It is a simple matter to realize that the following adjoint consistency condition holds:

B(w, r;v, q) = B(v,−q;w,−r) = (v,λ)Ω , ∀v ∈ V.

4.2. Norms for the analysis

Let
V(h)

def
= V ⊕ Vh, Q(h)

def
= Q⊕Qh, W(h)

def
= V(h) ×Q(h).

Following an established practice, we introduce two norms, one for the stability and one for
the continuity. For all (v, q) ∈ W(h), we let

|‖ (v, q) ‖|2
def
=

∑

K∈Th

|v|21,K + ‖q‖2
0,Ω + |v|2ν + |v|2n + |q|2p,

|] (v, q) [|2
def
= |‖ (v, q) ‖|2 +

∑

K∈Th

[
h−2

K ‖v‖2
0,K + h2

K |v|22,K + h2
K |q|21,K

]
.

The seminorms associated with the penalty terms are defined as follows:

|v|2ν
def
=
∑

f∈Fh

‖rf ([[v]])‖2
0,Ω, |v|2n

def
=
∑

f∈Fh

h−1
f ‖[v]n‖

2
0,f , |q|2p

def
=
∑

f∈Fh

hf‖[[q]]‖
2
0,f .

Owing to the inverse inequality (13), the above norms are equivalent on the discrete space
Wh, i.e., for all (vh, qh) ∈ Wh,

|‖ (vh, qh) ‖| . |] (vh, qh) [| . |‖ (vh, qh) ‖|. (16)

In what follows we shall therefore assume that c = γ/hf with γ > 0.

Lemma 4.1 (Interpolation) Let π be a projection operator satisfying the assumptions of

Lemma 3.1 and let (v, q) ∈
[
Hs+1 (Th)

]d
×Ht+1 (Th) with s ≥ 1 and t ≥ 0. Then,

|] (v − πv, q − πq) [| .

(
∑

K∈Th

h
2min(s,k)
K ‖v‖2

s+1,K +
∑

K∈Th

h
2min(t,k)+2
K ‖q‖2

t+1,K

)1/2

.

Proof. Observe that, owing to the regularity assumptions on v, [[v]] vanishes across all the
faces. As a consequence, the bounds for the lifting operator rf (ϕ) stated in Lemma 3.3 are
still valid for ϕ = [[v − πv]]. We therefore have

∑

f∈Fh

‖rf ([[v − πv]])‖2
0,Ω .

∑

f∈Fh

‖h
−1/2
f [[v − πv]]‖2

0,f

.
∑

K∈Th

h−1
K ‖v − πv‖2

0,∂K

.
∑

K∈Th

σKh
−1
K

(
h−1

K ‖v − πv‖2
0,K + hK |v − πv|21,K

)

.
∑

K∈Th

h
2min(s,k)
K ‖v‖2

s+1,K ,
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ANALYSIS OF A DG APPROXIMATION OF THE STOKES PROBLEM 13

where we used Lemma 3.3, Lemma 3.2, mesh regularity (10), trace inequality (12) and Lemma
3.1. The rest of the proof can be carried out in a standard way by a repeated use of Lemma
3.1 and of the trace inequality (12). 2

4.3. Continuity

Proposition 4.1 (Continuity) Let (u, p) , (v, q) ∈ W(h) and let π be a projection satisfying

Lemma 3.1. We have that

B(u, p;v, q) . |] (u, p) [| |] (v, q) [|.

Proof. The proof can be carried out bounding each term in the bilinear form B separately. For
the first term, observe that

a(u,v) =
∑

K∈Th

∫

K

∇u:∇v dx+
∑

f∈Fh

∫

f

{∇hu}:[[v]] dσ+
∑

f∈Fh

∫

f

[[u]]:{∇hv} dσ
def
= T1+T2+T3.

Clearly, T1 ≤
∑

K∈Th
|u|1,K |v|1,K . |] (u, 0) [| |] (v, 0) [|. For the second contribution, we use

Lemma 3.2 together with the trace inequality (12) to write

T2 ≤
∑

f∈Fh

‖h
1/2
f {∇hu}‖0,f‖h

−1/2
f [[v]]‖0,f .

(
∑

K∈Th

|u|21,K +
∑

K∈Th

h2
K |u|22,K

)1/2

,

and, finally, T2 . |] (u, 0) [| |] (v, 0) [|. A similar result holds for T3.
The second term reads

b(v, p) = −
∑

K∈Th

∫

K

p∇·v dx +
∑

f∈Fh

∫

f

{p}[v]n dσ = T1 + T2.

For the first contribution we immediately have T1 ≤
∑

K∈Th
‖p‖0,K‖v‖1,K ≤

|] (0, p) [| |] (v, 0) [|. The second contribution can be treated using Lemma 3.3 together with
trace inequality (12) as follows:

T2 ≤
∑

f∈Fh

‖h
1/2
f {p}‖0,f‖h

−1/2
f [v]n‖0,f .

(
∑

K∈Th

‖p‖2
0,K +

∑

K∈Th

h2
K |p|21,K

)1/2

|] (v, 0) [|,

whence T2 . |] (0, p) [| |] (v, 0) [|.
Finally, we immediately have

jν(u,v) + jn(u,v) + jp(p, q) ≤ |] (u, p) [| |] (v, q) [|,

which concludes the proof. 2

4.4. Partial coercivity and discrete inf-sup condition

In this section we prove a partial coercivity result for the velocity and a discrete equivalent of
the continuous inf-sup condition for the Stokes system (1). For all (vh, qh) ∈ Wh, we define
the following seminorm, with respect to which the bilinear form is coercive:

| (vh, qh) |2c
def
=

∑

K∈Th

|v|21,K + |v|2ν + |v|2
n

+ |q|2p.
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14 DANIELE A. DI PIETRO

Proposition 4.2 (Partial coercivity) The bilinear form B satisfies

B(vh, qh;vh, qh) & | (vh, qh) |2c , ∀ (vh, qh) ∈ Wh.

Proof. Plugging (vh, qh) into the definition of the bilinear form B we obtain

B(vh, qh;vh, qh) = a(vh,vh) + jν(vh,vh) + jn(vh,vh) + jp(qh, qh).

From the definition of the form a we have that

a(vh,vh) ≥
∑

K∈Th

|vh|
2
1,K − 2

∑

f∈Fh

∣
∣
∣
∣

∫

f

{∇hvh}:[[vh]] dσ

∣
∣
∣
∣
.

Let T denote the second term in the right hand side. Using Lemma 3.2, inequalities (12) and
(13) we have that

T ≤
∑

f∈Fh

‖h
1/2
f {∇hvh}‖0,f‖h

−1/2
f [[vh]]‖0,f ≤ C

(
∑

K∈Th

|vh|
2
1,K

)1/2

|vh|ν ,

with C a positive parameter independent of the meshsize h. Using the above result together
with the arithmetic-geometric inequality (ab ≤ a2ǫ/2 + b2/(2ǫ)) we conclude that

B(vh, qh;vh, qh) ≥

(

1 −
Cǫ

2

)
∑

K∈Th

|vh|
2
1,K +

(

η −
C

2ǫ

)

|vh|
2
ν + |vh|

2
n + |qh|

2
p,

which gives the desired results provided (i) ǫ is chosen so that the first term in brackets is
positive and η is large enough for the second term in brackets to be positive as well; (ii) we
take Cs = min

(
1 − Cǫ

2 , η −
C
2ǫ

)
. 2

Following the guidelines of the reasoning in [15, Lemma 5.2], it can be proved that a sufficient
condition for the stability is that η be greater than the maximum number of faces of a mesh
element.

The error estimate for the pressure is based on the following proposition, which contains a
discrete equivalent of the inf-sup condition. We recall that, by the continuous inf-sup condition

for the standard Stokes forms, there exists a velocity field u ∈
[
H1

0 (Ω)
]d

satisfying

−

∫

Ω

q∇·u dx ≥ κ‖q‖2
0,Ω, ‖u‖1,Ω ≤ ‖q‖0,Ω, ∀q ∈ Q. (17)

Proposition 4.3 (Discrete inf-sup Condition) There exist positive constants κ1 and κ2

independent of the meshsize such that for all (vh, qh) ∈ Wh there is wh ∈ Vh such that

B(vh, qh;wh, 0) ≥ κ1‖qh‖
2
0,Ω − κ2| (vh, qh) |2c , |‖ (wh, 0) ‖| ≤ ‖qh‖0,Ω.

Proof. Let u be the velocity field for which condition (17) is satisfied for (v, q) = (vh, qh). By
definition of the bilinear form B and deploying the fact that [[u]] = 0 across all f ∈ Fh,

B(vh, qh;πu, 0) ≥ b(u, qh) − |b(u − πu, qh)| − |a(πu,vh)| − |jν(vh, πu)| − |jn(vh, πu)|

def
= b(u, qh) − T1 − T2 − T3 − T4.
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Thanks to (17), we immediately conclude that b(u, qh) ≥ κ‖qh‖
2
0,Ω. We then proceed to bound

the remaining terms. Throughout the rest of the proof, the symbols Ci, i ∈ {1, . . . , 3} will
denote real positive parameters independent of the meshsize h but possibly depending on the
mesh regularity and on the polynomial degrees used in the approximation. Owing to (8),

b(u − πu, qh) =

∫

Ω

(u − πu) · ∇hqh dx

︸ ︷︷ ︸

=0

−
∑

f∈Fh

∫

f

{u− πu}·[[qh]] dσ

.

(
∑

K∈Th

h−2
K ‖u − πu‖2

0,K +
∑

K∈Th

|u − πu|21,K

)1/2

|qh|p

. |]u − πu[| |qh|p . ‖qh‖0,Ω |qh|p,

where we have used the fact that (u− πu) ∈ V⊥
h together with Lemma 3.1 and (17) to write

|] (u − πu, 0) [| . ‖u‖1,Ω . ‖qh‖0,Ω. (18)

We then conclude that

T1 ≤
C1ǫ1

2
‖qh‖

2
0,Ω +

C1

2ǫ1
| (0, qh) |2c .

The second term can be bounded as follows: since u is continuous across interfaces and equal
to zero on boundary faces, deploying the definition of the boundary operator we have that

T2 ≤
∑

K∈Th

∣
∣
∣
∣

∫

K

∇vh:∇(u− πu) dx

∣
∣
∣
∣
+
∑

f∈Fh

∣
∣
∣
∣

∫

Ω

rf ([[vh]]):∇h(u − πu) dx

∣
∣
∣
∣

∑

K∈Th

∣
∣
∣
∣

∫

K

∇vh:∇u dx

∣
∣
∣
∣
+
∑

f∈Fh

∣
∣
∣
∣

∫

Ω

rf ([[vh]]):∇u dx

∣
∣
∣
∣
+
∑

f∈Fh

∣
∣
∣
∣

∫

Ω

rf (u − πu):∇hvh dx

∣
∣
∣
∣

≤

(
∑

K∈Th

|vh|
2
1,K + |vh|

2
ν

)1/2




(
∑

K∈Th

|u − πu|21,K + |u− πu|2ν

)1/2

+ |u|1,Ω





. | (vh, 0) |c (|]u− πu[| + |u|1,Ω) ≤
C2ǫ2

2
‖qh‖

2
0,Ω +

C2

2ǫ2
| (vh, 0) |2c ,

where again we have used (18) to conclude.
Proceeding in a similar way as before we have that

T3 + T4 = |jν(vh,u − πu)| + |jn(vh,u− πu)| ≤
C3ǫ3

2
‖qh‖

2
0,Ω +

C3

2ǫ3
| (vh, 0) |2c .

Collecting the above results, we conclude that

B(vh, qh;u, 0) ≥ (κ− C1ǫ1 − C2ǫ2 − C3ǫ3) ‖q‖
2
0,Ω −

(
C1

ǫ1
+
C2

ǫ2
+
C3

ǫ3

)

| (vh, qh) |c,

for all ǫ1, ǫ2, ǫ3 > 0. On a proper choice of the parameters ǫi we can find two positive values
K1, K2 > 0 independent of the meshsize such that

B(vh, qh;u, 0) ≥ K1‖qh‖
2
0,Ω −K2| (vh, qh) |2c .
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16 DANIELE A. DI PIETRO

Finally, we notice that, by virtue of the regularity of u we have

|‖ (πu, 0) ‖|2 = |πu|21,Ω + |u − πu|2ν + |u− πu|2
n

≤ ‖u‖2
1,Ω + |] (u− πu, 0) [|2 . ‖u‖2

1,Ω ≤ K3‖q‖
2
0,Ω,

where we used eq. (11), Lemma 4.1 and the continuous inf-sup condition. The proof is
completed by taking wh = πu/K3, κ1 = K1/K3 and κ2 = K2/K3. 2

4.5. Error estimates

In this section we obtain a priori error estimates for the velocity and the pressure. In particular,
we show that, when equal order approximation with polynomials of degree k ≥ 1 is used and
the solution is sufficiently regular, the error in the velocity and in the pressure scale respectively
as hk+1 and hk. This result is stated in the following theorem.

Theorem 4.3 (Error estimates) Let (u, p) ∈
[
Hs+1 (Ω)

]d
× Ht+1 (Ω) be the solution of

(1) and let (uh, ph) its approximation obtained solving (9). Assume that the hypotheses on the

mesh listed in §3 are satisfied and that the space setting (3) is chosen for k ≥ 0. Take moreover

c = γ/hf for some γ > 0 and η large enough to ensure stability. Then we have that

|] (u− uh, p− ph) [| . hmin(s,k)‖u‖s+1,Ω + hmin(t,k)+1‖p‖t+1,Ω, (19)

‖u− uh‖0,Ω . hmin(s,k)+1‖u‖s+1,Ω + hmin(t,k)+2‖p‖t+1,Ω, (20)

Proof. We proceed to prove the estimates.
(i) Using Proposition 4.2, Theorem 4.2, Proposition 4.1 and the norm equivalence stated in

(16) we have that

| (eh,u, eh,p) |
2
c . B(eh,u, eh,p; eh,u, eh,p) = B(−eπ,u,−eπ,p; eh,u, eh,p)

. |] (eπ,u, eπ,p) [| |‖ (eh,u, eh,p) ‖|.

It only remains to estimate the L2-norm of the pressure. Using Proposition 4.3 and proceeding
in a similar way as before, we deduce that

‖eh,p‖
2
0,Ω . B(eh,u, eh,p;wh, 0) + | (eh,u, eh,p) |

2
c

. |] (eπ,u, eπ,p) [| |‖ (eh,u, eh,p) ‖| + | (eh,u, eh,p) |
2
c .

Summing the above equations and using Lemma 3.1 we obtain

|‖ (eh,u, eh,p) ‖| . |] (eπ,u, eπ,p) [|.

The estimate (19) is then obtained by using the error decomposition (14) together with Lemma
4.1.

(ii) In order to prove (20), we use a standard duality argument. Consider the homogeneous
Stokes problem (15) with right hand side λ = u − uh. The adjoint consistency condition
discussed in Remark 4.1 gives

B(v,−q;w,−r) = (u − uh,v)Ω , ∀ (v, q) ∈ V ×Q.

Now setting r̃
def
= −r and choosing (v,−q) = (u − uh, p− ph) we conclude that

B(u − uh, p− ph;w, r̃) = ‖u− uh‖
2
0,Ω.
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Let
(
π1w, π0r̃

)
be the piecewise linear and the piecewise constant interpolant of w and r̃

respectively. Then by Theorem 4.2 and the inclusion property of Remark 2.1 we have that
B(u − uh, p− ph;π1w, π0r̃) = 0. As a consequence,

‖u− uh‖
2
0,Ω = B(u − uh, p− ph;w − π1w, r̃ − π0r̃)

. |] (u − uh, p− ph) [| |]
(
w − π1w, r̃ − π0r̃

)
[|.

By virtue of Lemma 4.1, we have |]
(
w − π1w, r̃ − π0r̃

)
[| . h (‖w‖2,Ω + ‖r̃‖1,Ω). Assuming

that the elliptic regularity condition ‖w‖2,Ω +‖r‖1,Ω ≤ ‖λ‖0,Ω holds for the solution of system
(15), we conclude that

|]
(
w − π1w, r̃ − π0r̃

)
[| . h‖u− uh‖0,Ω.

Using this result together with Lemma 4.1 and (19) we obtain the sought estimate. The proof
is thus concluded.
2

An estimate for the L2-norm of the pressure can be obtained from (19), since it is part of
the energy norm |] · [|.

The proofs above fit the case when mixed order elements are used and the polynomial order
for the pressure is one unit lower than that for the velocity. Notice that, in the latter case, the
estimate for the pressure error is also optimal with respect to to the approximation properties
of the space Qh. Finally, the choice c = γ/h is now fully justified by the theory.

5. Numerical results

In this section we provide numerical assessment of the theoretical results derived above. We
consider the same analytical solution of the Stokes problem in the square domain Ω = (−1, 1)2

used in [12], i.e.,

u =

[
− exp(x) (y cos y + sin y)

exp(x)y sin y

]

, p = 2 exp (x) sin y, f = 0.

In order to disambiguate the pressure, it was sufficient to remove one degree of freedom from
the matrix and then re-scale the solution so as to impose the zero average constraint. Even
with such a naive approach no degradation of the solution in the neighbourhood of the removed
degree of freedom was observed. The numerical results collected in Table I were obtained for
c = 1/hf and ηf = 4.1 using uniform rectangular meshes. The resulting linear system was
solved by means of the direct solver in PETSc (see [2]).

The experiments show that the error estimates are sharp, and the expected orders of
convergence are observed for both the pressure and the velocity. The norm of the divergence
can be estimated by simply noticing that it is smaller or equal than the H1-seminorm of the
velocity and, hence, of the triple norm. One would therefore expect to observe convergence
with order k. This theoretical estimate, however, seems over-pessimistic for P

1 elements. The
extent to which the zero-divergence constraint is satisfied inside every element is measured by

‖∇h·uh‖0,Ω
def
=

(
∑

K∈Th

‖∇h·uh‖
2
0,K

)1/2

.
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Table I. Convergence results for k = 1, 2, 3.

Grid ‖eu‖0,Ω ‖ep‖0,Ω ‖∇h·uh‖0,Ω

k size error order error order error order

1
32 × 32 1.00e-3 2.00 7.87e-3 1.09 9.36e-4 1.44
64 × 64 2.52e-4 1.99 3.76e-3 1.07 3.65e-4 1.36

128 × 128 6.36e-5 1.99 1.82e-3 1.04 1.39e-4 1.39

2

16 × 16 9.33e-5 3.01 4.34e-4 1.91 9.63e-4 1.95
32 × 32 1.16e-5 3.01 1.25e-4 1.79 2.48e-4 1.96
64 × 64 1.45e-6 3.00 3.41e-5 1.88 6.29e-5 1.98

3

8 × 8 2.89e-5 4.00 1.18e-4 2.97 2.99e-4 3.05
16 × 16 1.79e-6 4.02 1.56e-5 2.91 3.65e-5 3.03
32 × 32 1.11e-7 4.01 2.12e-6 2.88 4.56e-6 3.00

6. Conclusion

In this work we have analysed a new DG approximation of the Stokes problem first presented in
[3], where only numerical assessment was provided. Following the approach originally proposed
in [5], the viscous and inviscid fluxes were treated separately. The former were computed using
the well-established BRMPS method, while for the latter a local artificial compressibility
perturbation of the problem was introduced at the elementary interface level. The inviscid
fluxes were then computed by solving a suitable Riemann problem. The analysis was carried
out by extending the techniques for the elliptic case presented in [1]. Unlike in [12], the problem
was considered in its primal formulation. Optimal error estimates were found for both the
velocity and the pressure and the results were assessed by thorough numerical testing.
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