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1. Introduction Let
(
Ω,A, P

)
be a probability space, and let

(
Ξ,BΞ

)
and

(
U,BU

)
be R

n and R
p

with their associated Borel σ-fields. Given a random variable ξ with values in Ξ and a subfield F of A,
which respectively represent the noise and the observation, we are concerned with the following stochastic
optimization problem:

V
(
ξ,F

)
:= min

u∈L2(Ω,A,P;U)
E
[
j(u, ξ)

]
, (1a)

subject to u is F−measurable . (1b)

Here j : U × Ξ → R, and E is the mathematical expectation under probability P.

Remark 1.1 Problem (1) can be easily extended to the sequential control case with direct observation of
the noises. Then, u = (u0, . . . , uT−1), each ut being measurable with respect to the σ-field generated by
the noises prior to t. Practical instances are multi-stage stochastic programming problems:

min
(u,x)

E

[
T−1∑

t=0

Lt+1

(
xt, ut, ξt+1

)
+ K

(
xT

)
]

, (2a)

subject to

{
x0 = f0

(
ξ0

)

xt+1 = ft+1

(
xt, ut, ξt+1

) , (2b)

ut is σ
(
ξ0, . . . , ξt

)
−measurable . (2c)

Two polar cases are worth mentioning.

• The full information case corresponds to F = A. In this case, under technical assumptions
ensuring the interchange of minimization and expectation (see [10, Theorem 14.60]), problem (1)
becomes

E
[
min
u∈U

j(u, ξ)
]
.

Once the noise ξ is discretized by a random variable ξn, the approximate solution is given by
minu∈U j(u, ξn), which returns a ξn-measurable solution, thus an A-measurable one.
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• The open loop case arises when F = {∅, Ω}. In this case, the problem is of deterministic nature
provided that E

[
j(u, ξ)

]
and its gradient are readily available for each u ∈ U . Otherwise, the

stochastic gradient method (see [9]) gives the optimal solution using samples of ξ.

In these two cases, one has to deal with only one stochastic approximation. However, in the general case,
two different components of the problem have to be taken into account in order to discretize (1):

(i) the σ-field F in (1b) must be approximated in order to deal with tractable constraints,

(ii) the expectation in (1a) must be approximated in order to be computable.

Observe that these two points are rather independent, in the sense that there is no reason for one of these
approximations to be deduced from the other. The last point, related to the convergence of measures
and random variables, is somewhat “traditional” in probability theory, whereas the first point is not so
well-known.

Let us recall some results about the space A? of the sub σ-fields of A (see [6] and [5] for further details).
The strong convergence topology on A? is the coarsest topology such that the conditional expectation is
continuous with respect to the σ-field:

lim
n→+∞

Fn =F ⇐⇒ ∀f ∈L1(Ω,A, P; R), lim
n→+∞

‖E [f | Fn] − E [f | F ]‖L1 = 0 .

Note that this definition depends on the probability P. The main properties of A? equipped with the
strong convergence topology are the following.

P1 The strong convergence topology on A? is metrizable.

P2 The set of σ-fields generated by a finite partition of Ω is dense in A?.

P3 If yn −→ y in probability and σ
(
yn

)
⊂ σ

(
y
)
, then σ

(
yn

)
strongly converges to σ

(
y
)
.

According to [8, Theorem 2.3.1], the notion of strong convergence of σ-fields, given using L1(Ω,A, P; R),
can be equivalently defined using Lr(Ω,F , P; U), for r ∈ [1, +∞).

Proposition 1.1 Let r ∈ [1, +∞). The two following statements are equivalent.

• lim
n→+∞

Fn = F .

• ∀f ∈ Lr(Ω,A, P; U), lim
n→+∞

‖E [f | Fn] − E [f | F ]‖Lr = 0.

In this paper, we aim at proving a convergence result for approximations of problem (1). For this, we
first illustrate by an example in what a naive approach ignoring the measurability constraint specificity
may lead to sub-optimality (§ 2). In § 3, we present a convergence result. Contrarily to the two polar
cases of full or null information, the functional J

(
u, ξ

)
:= E

[
j(u, ξ)

]
now plays a central role. The

continuity of J turns out to be crucial for convergence, and is related to the convergence notions used in
the approximation. Ultimately, we review in § 4 the convergence results obtained in [2] and [7] about the
same problem.

2. Counterexample We present here an example illustrating how convergence notions matter in
order to accurately discretize problem (1). This example has already been used to show that the Fortet-
Mourier metric is not a suitable tool when discretizing a stochastic optimal control problem (see [12]
or [11]).

2.1 Formulation and exact solution We consider a two-stage dynamical system whose initial
state x is a random variable on [−1, 1] with uniform distribution. The final state of the system is defined
as

z := x + u + w , (3a)

w being another uniformly distributed random variable on [−1, 1] independent of x and the control u

being a random variable measurable with respect to the initial state x. Let ε > 0 and consider the
following problem:

min
u is σ(x)−measurable

E
[
εu2 + z2

]
. (3b)
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The probability space associated with problem (3) is
(
[−1, 1]2,B[−1,1]2 , µ

)
, where B[−1,1]2 is the Borel σ-

field on [−1, 1]2 and µ is the product of two independent uniform probability laws on [−1, 1]. The random
variables x and w are the two components of the identity application Id[−1,1]2 on [−1, 1]2, the real valued
control variable u being defined on [−1, 1]2. Problem (3) is thus equivalent to:

min
u is σ(x)−measurable

∫

[−1,1]2

(
ε
(
u(x, w)

)2
+
(
x + u(x, w) + w

)2)
µ
(
dxdw

)
. (4)

This problem is a Markovian stochastic optimal control problem which can be solved using dynamic
programming. Introducing the Bellman functions

V1(z) := z2 , V0(x) := min
u∈R

E
[
εu2 + V1(x + u + w)

]
,

we obtain the optimal feedback law u] and the associated optimal cost J ] (:= E [V0(x)]):

u](x) = −
x

1 + ε
, J] =

1

3

(
1 +

ε

1 + ε

)
. (5)

2.2 Discretization Let
(
ζn

)
n∈N∗

be a deterministic sequence of elements in [−1, 1]2, with ζn =(
ζn,1, ζn,2

)
. We make the assumption that the sequence

(
µn

)
n∈N∗

of empirical probability laws associated

with
(
ζn

)
n∈N∗

, that is

µn :=
1

n

n∑

k=1

δζk
,

weakly converges to the probability measure µ (see [3]).

Remark 2.1 Such a sequence
(
ζn

)
n∈N∗

is usually obtained as the realization of a sequence
(
ζn

)
n∈N∗

of

i.i.d. random variables on [−1, 1]2 with law µ. The weak convergence assumption is then, almost surely,
a consequence of the Glivenko-Cantelli theorem.

Let n ∈ N
? ; for any k ∈ {1, . . . , n}, we define

(
x(k)

n , w(k)
n

)
:=

(
2k − 1

n
− 1 +

ζk,1

n
, ζk,2

)
, (6)

and

I(k)
n :=

(
2k − 2

n
− 1,

2k

n
− 1

]
, F (k)

n := I(k)
n × [−1, 1] . (7)

By construction,
(
F

(1)
n , . . . , F

(n)
n

)
is a partition of [−1, 1]2, made of vertical stripes as in Figure 1,

and
(
x

(k)
n , w

(k)
n

)
∈ F

(k)
n ∀k ∈ {1, . . . , n}.

We are now ready to discretize problem (4).

Random variable. Let qn : [−1, 1]2 → [−1, 1]2 be the function defined by

qn

(
x, w

)
:=

n∑

k=1

(
x(k)

n , w(k)
n

)
I
F

(k)
n

(
x, w

)
,

that is qn

(
x, w

)
=
(
x

(k)
n , w

(k)
n

)
if
(
x, w

)
∈ F

(k)
n . We then define the sequence

(
xn, wn

)
n∈N∗

of random
variables by (

xn, wn

)
:= qn

(
x, w

)
. (8)

According to this definition, the discretized random variable
(
xn, wn

)
is constant over each subset F

(k)
n .

Lemma 2.1 The sequence
(
xn, wn

)
n∈N∗

converges in distribution to
(
x, w

)
as n → +∞.
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Figure 1: Partition of [−1, 1]2 and associated sample.

Proof. Consider the empirical distribution function Fn of
(
xn, wn

)
:

Fn

(
x, w

)
=

1

n

n∑

k=1

I[−1,x]×[−1,w]

(
x(k)

n , w(k)
n

)
.

For given x ∈ [−1, 1] and n ∈ N
∗, let k0 be the index such that x ∈ I

(k0)
n (see (7)) and let ν0 be equal

to 0 if x ≤ x
(k0)
n and equal to 1 otherwise. Then,

Fn

(
x, w

)
=

1

n

k0−1∑

k=1

I[−1,w]

(
w(k)

n

)
+

ν0

n
I[−1,w]

(
w(k0)

n

)

=
k0 − 1

n

(
1

k0 − 1

k0−1∑

k=1

I[−1,w]

(
w(k)

n

)
)

+
ν0

n
I[−1,w]

(
w(k0)

n

)
.

The index k0 goes to infinity as n goes to infinity (for any x > −1). We thus conclude that Fn

(
x, w

)

converges to F
(
x, w

)
= (1+x)(1+w)

4 , the distribution function of µ, the uniform probability on the square
[−1, 1]2. �

Information. Since x is the first component of Id[−1,1]2 , the sub σ-field σ(x) of B[−1,1]2 generated by
the random variable x is

F = B[−1,1] ⊗ {∅, [−1, 1]} .

For a given n ∈ N
?, we approximate F by the σ-field Fn generated by the partition

(
F

(1)
n , . . . , F

(n)
n

)
:

Fn = σ
(
F (1)

n , . . . , F (n)
n

)
. (9)

Note that the approximated information constraint “u is Fn−measurable” is equivalent to “u is constant

over each subset F
(k)
n ”, that is constant on each vertical stripe of Figure 1. Such a control variable u is

thus parameterized by the values u
(k)
n taken on each subset F

(k)
n :

u
(
x, w

)
=

n∑

k=1

u(k)
n I

F
(k)
n

(
x, w

)
.

Notice that I
F

(k)
n

(
x, w

)
does not depend upon w, and therefore u

(
x, w

)
depends only upon x.
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Lemma 2.2 The sequence
(
Fn

)
n∈N∗

strongly converges to F as n → +∞.

Proof. Since the values x
(k)
n , k = 1,. . . , n, defined by (6) and taken by the random variable xn

are two by two distinct, then Fn = σ
(
xn

)
. Following Property P3 (page 2), it is sufficient to show

that xn −→ x in probability. This last convergence is obvious from the definition of x
(k)
n . �

2.3 Approximated solution Approximating problem (4) consists in replacing F and
(
x, w

)
by

their discretized versions Fn and
(
xn, wn

)
. The resulting function to be minimized is constant over

each F k
n , and the approximated problem is written accordingly

min(
u
(1)
n ,...,u

(n)
n

)
∈Rn

n∑

k=1

∫

F
(k)
n

(
ε
(
u(k)

n

)2
+
(
x(k)

n + u(k)
n + w(k)

n

)2)
µ
(
dxdw

)
,

which is equivalent to:

min(
u
(1)
n ,...,u

(n)
n

)
∈Rn

n∑

k=1

(
ε
(
u(k)

n

)2
+
(
x(k)

n + u(k)
n + w(k)

n

)2)
. (10)

Given n ∈ N
∗, each u

(k)
n , k = 1, . . . , n, in problem (10) can be optimized separately. The optimal

values are the solutions of a quadratic minimization problem, yielding

û(k)
n = −

x
(k)
n + w

(k)
n

1 + ε
,

and the associated optimal control variable ûn is:

ûn

(
x, w

)
= −

n∑

k=1

x
(k)
n + w

(k)
n

1 + ε
I
F

(k)
n

(
x, w

)
.

To evaluate the quality of the approximation, let us compute the cost Ĵn obtained by plugging the
approximated optimal control variable ûn into the original cost:

Ĵn := E

[
εûn

2 + (x + ûn + w)2
]
. (11)

Lemma 2.3 The sequence
(
Ĵn

)
n∈N

is such that: lim
n→+∞

Ĵn =
2

3
.

Proof. We have:

Ĵn =

∫

[−1,1]2

(
ε
(
ûn(x, w)

)2
+
(
x + ûn(x, w) + w

)2)
µ
(
dxdw

)

=

n∑

k=1

∫

F
(k)
n


ε

(
x

(k)
n + w

(k)
n

1 + ε

)2

+

(
x + w −

x
(k)
n + w

(k)
n

1 + ε

)2

µ

(
dxdw

)
.

Developing the last quadratic term in the previous expression leads to:

Ĵn =
2

3
+

1

n

n∑

k=1

(
x

(k)
n + w

(k)
n

)2

1 + ε
− 2

n∑

k=1

(
x

(k)
n + w

(k)
n

1 + ε

)∫

F
(k)
n

(
x + w

)
µ
(
dxdw

)

=
2

3
+

1

n

n∑

k=1

(
x

(k)
n + w

(k)
n

)2

1 + ε
−

2

n

n∑

k=1

(
2k − 1

n
− 1

)(
x

(k)
n + w

(k)
n

1 + ε

)
.

Using the convergence in distribution of
(
xn, wn

)
n∈N∗

and the fact that
∣∣∣x(k)

n −
(

2k−1
n

− 1
)∣∣∣ ≤ 1

n
holds

for every k, we obtain by (6):

lim
n→+∞

Ĵn =
2

3
.

�
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By definition, Ĵn is the “true” cost associated with the control variable ûn. It is thus comparable with
the optimal cost J ] given by (5). Taking ε ≈ 0, we obtain J ] ≈ 1

3 , whereas the limit given by Lemma 2.3
is equal to 2

3 (this limit does not depend on ε). We conclude that the proposed discretization fails

to asymptotically give the optimal solution of the problem.

Remark 2.2 It is easy to verify that the optimal cost J̃n of problem (10) is such that:

lim
n→+∞

J̃n =
2

3

(
ε

1 + ε

)
.

Once again, this cost is different from J ].1 Note however that J̃n and J ] are not easily comparable, because
the former does not correspond to the evaluation of an admissible control variable for problem (3).

2.4 What has gone wrong? We have used the notion of strong convergence for σ-fields and the
notion of convergence in distribution for random variables, and we have simultaneously discretized the
random variable and the σ-field. As illustrated by the counterexample, this “diagonal” discretization
procedure makes possible to solve each open-loop subproblem using a unique sample of the random
variable: this poor way to compute the underlying conditional expectations explains the convergence
failure.

Remark 2.3 Note however that the convergence notions used here may lead to a positive convergence
result if the approximations of F and ξ are implemented in a nested manner (see § 4).

A feature of this example is the weakness of the convergence notion used for the random variable. If the
sequence

(
xn, wn

)
n∈N∗

defined by (8) converges in distribution to
(
x, w

)
, it is clear that the convergence

does not hold in probability. Indeed, let τ > 0 be given. Consider the norm ‖(x, w)‖ = sup {|x| , |w|}
on [−1, 1]2, and let An be the subset of [−1, 1]2 defined by:

An :=
{
(x, w) ∈ [−1, 1]2 ,

∥∥(xn, wn

)
(x, w) − (x, w)

∥∥ ≤ τ
}

.

The subset An is expressed as the disjoint union of n subsets A
(k)
n , with

A(k)
n := An ∩ F (k)

n =
{

(x, w) ∈ F (k)
n , sup

{∣∣∣x(k)
n − x

∣∣∣ ,
∣∣∣w(k)

n − w
∣∣∣
}
≤ τ

}
.

From the definition of F
(k)
n and An, the subset A

(k)
n is included in a 2

n
× 2τ rectangle. We thus ob-

tain µ
(
A

(k)
n

)
≤ τ

n
, and then µ

(
An

)
≤ τ by summation. This demonstrates that

µ
(∥∥(xn, wn

)
−
(
x, w

)∥∥ > τ
)
≥ 1 − τ .

A quite natural question arising at this point is: can we expect a diagonal convergence if we use an
stronger convergence notion for the random variables? We shall give a positive answer to this question
in the next section.

3. Convergence theorem We go back to the initial problem (1). The framework of the study is
the following.

• The underlying probability space is
(
Ω,A, P

)
, and we consider F a sub σ-field of A,

• The control variable u belongs to the subset ∆
(
F
)

of the F−measurable random variables:

∆(F) :={u ∈ Lr(Ω,A, P; U), u is F−measurable}=Lr(Ω,F , P; U) .

Here, 1 ≤ r < +∞ and Lr(Ω,A, P; U) is equipped with the strong topology.

• The random variable ξ belongs to Lq(Ω,A, P; Ξ), where 1 ≤ q < +∞, equipped with the strong
topology.

• The cost function J , defined on Lr(Ω,A, P; U) × Lq(Ω,A, P; Ξ), is given by:

J
(
u, ξ

)
:= E

[
j(u, ξ)

]
.

Here j is a normal integrand on U ×Ξ, J being the associated integral functional (see[10, Chap-
ter 14]).

1Consider the case ε ≈ 0.
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Using these notations, we want to compute the optimal value V
(
ξ,F

)
of problem (1):

V
(
ξ,F

)
:= min

u∈∆(F)
J
(
u, ξ

)
. (12)

Remark 3.1 There is no additional difficulty in incorporating in ∆(F) pointwise constraints such as
u(ω) ∈ Uad

P-a.s., Uad being a closed convex set of U .

To approximate problem (12), we choose a sequence {Fn}n∈N
of sub σ-fields of A and a sequence

{ξn}n∈N
of random variables in Lq(Ω,A, P; Ξ), and we consider the approximated problem:

V
(
ξn,Fn

)
:= min

u∈∆(Fn)
J
(
u, ξn

)
. (13)

Here is a result which emphasizes the role of adequate probabilistic convergences, with rather strong
assumptions on the criterion. Weaker assumptions may be found in a companion paper [4].

Theorem 3.1

Under the following assumptions:

H1 the sequence {Fn}n∈N
strongly converges to F , and Fn ⊂ F ,

H2 the sequence {ξn}n∈N
converges to ξ in Lq(Ω,A, P; Ξ),

H3 the normal integrand j is such that:

∀(u, u
′) ∈ U

2
, ∀(ξ, ξ′) ∈ Ξ2

,
˛

˛j(u, ξ) − j(u′

, ξ
′)

˛

˛ ≤ α
‚

‚u − u
′
‚

‚

r

U
+ β

‚

‚ξ − ξ
′
‚

‚

q

Ξ
,

the convergence of the approximated optimal costs holds true:

lim
n→+∞

V
(
ξn,Fn

)
= V

(
ξ,F

)
. (14)

Proof.

Step 1: lim sup
n→+∞

V
(
ξn,Fn

)
≤ V

(
ξ,F

)
.

For any u ∈ ∆(F), we define un = E [u | Fn]. Note that u = E [u | F ] P- almost surely. Using Assump-
tion H1 and Proposition 1.1, we obtain the convergence of the sequence {un}n∈N

to u in Lr(Ω,A, P; U).
This implies that the set-valued mapping ∆ is lower semicontinuous ([1, Definition 1.4.2]).

From H3, we then deduce that the integral functional J is continuous and therefore upper semicon-
tinuous.

Using [1, Theorem 1.4.16], we conclude that the marginal function V is also upper semicontinuous:

lim sup
n→+∞

V (ξn,Fn) ≤ V (ξ,F) . (15)

Step 2: lim inf
n→+∞

V
(
ξn,Fn

)
≥ V

(
ξ,F

)
.

Starting from:

J(u, ξn) = J(u, ξ) +
(
J(u, ξn) − J(u, ξ)

)
,

we obtain by minimization over ∆(Fn):

min
u∈∆(Fn)

J(u, ξn) ≥ min
u∈∆(Fn)

J(u, ξ) + min
u∈∆(Fn)

(
J(u, ξn) − J(u, ξ)

)

≥ min
u∈∆(F)

J(u, ξ) + min
u∈∆(F)

(
J(u, ξn) − J(u, ξ)

)
,
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the last inequality being true because Fn ⊂ F implies ∆(Fn) ⊂ ∆(F). We thus obtain:

V (ξn,Fn) ≥ V (ξ,F) + min
u∈∆(F)

(
J(u, ξn) − J(u, ξ)

)
. (16)

From assumptions H2 and H3, the last term in (16) converges to 0 as n goes to infinity, which proves
that V is lower semicontinuous:

lim inf
n→+∞

V (ξn,Fn) ≥ V (ξ,F) . (17)

Gathering (15) and (17) leads to the result. �

The assumptions made in Theorem 3.1 are far from being minimal. More specifically, the continuity
assumption H3 on j is rather restrictive and can be alleviated using the tools of epi-convergence (see [4]).
Nevertheless, the important point is that, to the difference of evaluating an expectation by the Monte
Carlo method, a continuity property on J cannot be obtained by the convergence in distribution. The
discretization process requires a stronger convergence notion, as shown by the following example:

•
(
Ω,A, P

)
=
(
[−1, 1],B[−1,1], µ

)
, µ being the uniform law on [−1, 1], and U = Ξ = Ω,

• j(u, ξ) = uξ,

• ξn(ω) =

{
(−1)n if ω ≥ 0
(−1)n+1 otherwise

, u(ω) =

{
+1 if ω ≥ 0
−1 otherwise.

Being stationary in law, the sequence {ξn}n∈N is converging in distribution, whereas J
(
u, ξn

)
= (−1)n.

From the numerical point of view, problem (13) is a tractable approximation of problem (12) provided
that the range of ξn is finite and that Fn is generated by a finite partition of Ω. Indeed, let

•
(
Ω

(1)
n , . . . , Ω

(n)
n

)
be a partition of Ω generating the σ-field Fn, u

(i)
n denoting the (constant) value

of a Fn-measurable control u on the subset Ω
(i)
n ,

•
(
f

(1)
n , . . . , f

(n)
n

)
be a partition of Ω generated by ξn, ξ

(l)
n denoting the (constant) value of the

random variable ξn on the subset f
(l)
n .

Problem (13) is then equivalent to:

min
(u

(1)
n ,...,u

(n)
n )∈Un

n∑

i=1

n∑

l=1

P
(
Ω(i)

n ∩ f
(l)
n

)
j
(
u(i)

n , ξ(l)
n

)
.

The numerical solution of this last problem is obtained using classical optimization techniques. Note
however that different implementations can be considered, which do not necessarily lead to the “scenario
tree” approach widely used in the field of stochastic programming.

4. Conclusion We have proposed an approximation scheme in which the discretization of the noise
and the discretization of the information are designed independently. It is interesting to compare this
approach with others also taking into account the whole discretization process (noise and information)
for stochastic optimal control problems.

Barty’s approach. In his PhD thesis (in French), K. Barty proves the convergence of a discretization
scheme for problem (1). The result he gives ([2, Theorem IV.28]) makes use of the same notions of
convergence as those used in § 2 for the counterexample, both for the σ-field and the random variable.
Its approach involves two consecutive steps.

(i) The σ-field F is approximated by a σ-field Fk ⊂ F which is generated by a finite partition
Pk = {Ω1, . . . , Ωk} of Ω, and problem (1) is replaced by:

V
(
ξ,Fk

)
= min

u is Fk−measurable
E
[
j(u, ξ)

]
. (18)

The optimal value V
(
ξ,Fk

)
of (18) converges towards the optimal value V

(
ξ,F

)
of (1) as Fk

strongly converges to F ([2, Theorem IV.21]). Note that an Fk−measurable random variable u is
constant over each subset Ωl constituting Pk: such a random variable u is characterized by a k-
uple

(
u1, . . . , uk

)
∈ Uk, and the minimization in (18) is thus performed over a finite dimensional

space.
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(ii) For a given index k, the random variable ξ is approximated by a finitely valued random variable ξn

and problem (18) is replaced by:

V
(
ξn,Fk

)
= min

u is Fk−measurable
E
[
j(u, ξn)

]
. (19)

The optimal value V
(
ξn,Fk

)
of (19) converges with n toward the optimal value V

(
ξ,Fk

)
of (18)

as ξn converges in distribution toward ξ ([2, Theorem IV.26]). Note that this step only involves
open-loop problems, which are approximated using the traditional Monte Carlo approach.

In this approach, the global discretization error
∣∣V
(
ξ,F

)
− V

(
ξn,Fk

)∣∣ is bounded from above by the
sum of two terms:

•
∣∣V
(
ξ,F

)
− V

(
ξ,Fk

)∣∣ : information structure discretization error,

•
∣∣V
(
ξ,Fk

)
− V

(
ξn,Fk

)∣∣ : mean computation discretization error.

Apart form the convergence result itself, this approach enlightens the fact that it is not sufficient to
properly deal with the last term (Monte Carlo) in order to obtain a “good” approximation of problem (1).

The main difference is thus that problem (1) is nestedly approximated in Barty’s approach, whereas
we simultaneously approximate the σ-field and the random variable.

Pennanen’s approach. In [7], T. Pennanen adresses a stochastic optimization problem very similar
to problem (1). He assumes that the observation y is a function2 of the noise ξ:

y = h
(
ξ
)

.

Then the problem can be formulated on the probability space
(
Ξ,BΞ, µ

)
, µ being the probability distribu-

tion of ξ, rather than on the probability space
(
Ω,A, P

)
. Pennanen chooses a quantification operator qn

on Ξ, leading to an approximated random variable ξn

ξn = qn

(
ξ
)

,

and then deduces the information quantization from the noise quantization by setting:

yn = h
(
ξn

)
= h ◦ qn

(
ξ
)

.

Now, there is no reason for the quantified observation yn to be measurable with respect to the initial
observation y. In order to overcome the difficulty, Pennanen assumes that, in terms of sub σ-fields of B,
the following inclusion holds:

σ
(
h ◦ qn

)
⊂ σ

(
h
)

. (20)

Note that condition (20) means that, if two samples ξ and ξ′ of ξ lead to identical observations, so do the
quantified noises qn

(
ξ
)

and qn

(
ξ′
)
. In the dynamic framework of problem (2), this assumption implies

that the sampled trajectories of the noise are organized in a scenario tree.

The main difference is thus that the approximation of the σ-field is intimately related to the approxi-
mation of the random variable in Pennanen’s approach, requiring the additional assumption (20), whereas
these two approximations are designed independently in our approach.3

Ultimately, our approach seems to be more generic as the ones we reviewed. Moreover, it leads to
more general numerical schemes as the scenarios trees widely used in stochastic programming.

Acknowledgments. This paper is based on earlier work by the Systems & Optimization Work-

ing Group (SOWG, École Nationale des Ponts et Chaussées), currently composed with Kengy Barty,
Pierre Carpentier, Jean-Philippe Chancelier, Guy Cohen, Anes Dallagi, Michel De Lara, Babacar Seck
and Cyrille Strugarek.

2an assumption which can be made without loss of generality
3Note however that Pennanen’s approach is also designed to handle extended-real-valued functions.
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