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Abstract

We study the existence and the uniqueness of the solution to a class
of Fokker-Planck type equations with irregular coefficients, more precisely
with coefficients in Sobolev spaces W

1,p. Our arguments are based upon
the DiPerna-Lions theory of renormalized solutions to linear transport
equations and related equations [6]. The present work extends the results
of our previous article [17], where only the simpler case of a Fokker-Planck
equation with constant diffusion matrix was addressed. The consequences
of the present results on the well-posedness of the associated stochastic
differential equations are only outlined here. They will be more thoroughly
examined in a forthcoming work [18].
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1 Introduction

We study in this article the existence and the uniqueness of solutions to a
large class of Fokker-Planck type equations with irregular coefficients, namely
equations of the form

∂t p− bi∂i p− aij∂
2
ij p = 0, (1.1)

(or equations of similar forms) with coefficients bi and aij that only have Sobolev
(typically W 1,p) regularity. Our work is a follow-up of our previous work [17]
where the same equations were considered, in the particular case when aij is
constant. The present work is, like [17], based upon the theory of renormalized
solutions and its ingredients, introduced by R. Di Perna and the second author
in [6] for linear transport equations (that is, [aij ] ≡ 0 in (1.1)). The theory was
subsequently extended to other types of equations (such as Boltzmann-type
equations) in other works of the same authors.

Because several of our arguments are reminiscent of those of [6] and [17],
and because such arguments might require some tedious details, we only focus
in the present article on the key issues, and the key manipulations. The reader
is spared some unnecessary technicalities. We refer to the previous works for
all the detailed arguments. Likewise, for pedagogic purposes, we concentrate on
the most illustrative settings. Some specific paragraphs placed after our main
arguments and results aim to mention some (among the numerous possible)
variants and extensions.

As in [17] (and also in [6]), the well-posedness of the partial differential equa-
tion (1.1) has immediate consequences on the well-posedness of the associated
differential equations. When [aij ] ≡ 0, this differential equation is an ordinary
differential equation, see [6] and [17, Section 4]. When [aij ] 6≡ 0, symmetric,
nonnegative, the corresponding equations are stochastic differential equations

with dispersion matrix σik such that [aij ] =
1

2
σikσjk: see below and also [17,

Section 5]. For the sake of brevity, we will postpone our investigation of such
questions until a future publication [18]. We concentrate here on all questions
related to the partial differential equation per se. We however wish to provide
the reader of the present article with a complete and self contained view of the
relevant issues, and also strongly motivate our choices of mathematical setting.
This is why we will mention in Section 3 how the partial differential equations
we manipulate here and the stochastic differential equations are intimately con-
nected. We recall some well-known facts and also indicate (which is new) how
we intend to proceed and use our results to show the well-posedness of some
stochastic differential equations with irregular coefficients.

There is a number of settings where equations of the type (1.1) arise with ir-
regular coefficients, and varying diffusion matrices [aij ] (thus the need to extend
our previous results of [17]). Our interest in such theoretical questions stems
from the specific setting of complex fluid flows modelling, which we mention in
Section 4.

For reasons that will be clear below, and which are precisely related to our
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motivation regarding the associated stochastic differential equations, we shall
mainly concentrate throughout the article on the case when [aij ] is a symmetric,

nonnegative, possibly degenerate N ×N matrix, that writes [aij ] =
1

2
σikσjk for

some possibly non-symmetric N × K matrix σik. This situation is often the
physically relevant one, and is also, as a matter of fact, the most difficult one
mathematically. The cases when [aij ] is symmetric definite positive, or sym-
metric with σ symmetric, are indeed easier. In the former case, the solution is
immediately more regular, due to a parabolic regularization effect. In the lat-
ter case, some intermediate calculations related to estimates and regularization
techniques simplify. Much of the technology developed here is directed towards
treating the “difficult” case. See Remark 20 on this matter. On the other hand,
the case of a non-symmetric matrix [aij ] will not be considered.

Our article is organized as follows. To start with, we emphasize in Section 2
the key mathematical ingredients of our arguments. They come from [6, 17].
We also state there the most illustrative result of the present article. Next, we
outline the relation with the differential equations (section 3) and give some
motivation (section 4), as announced above. Section 5 is the central part of our
work. We show the well-posedness of a particular equation (1.1) that is of diver-
gence form. We first give some formal manipulations that are the bottom line
of our arguments, next perform the rigorous proofs. Several variants of our set-
tings and our arguments are possible, and we collect some of them in Section 6.
In Section 7, we indicate the necessary modifications to treat other equations
of the form (1.1), specifically Fokker-Planck (forward Kolmogorov) equations or
backward Kolmogorov equations. Finally, motivated by the comparison with the
“classical” setting, we investigate in Section 8 the case of Lipschitz coefficients
in (1.1), along with some related issues.

2 Key ingredients and main result

2.1 Transport equations

Our techniques of proof throughout this article are reminiscent of those intro-
duced by R. Di Perna and the second author in [6] (and subsequent articles) in
order to establish the existence and uniqueness of solutions to linear transport
equations

∂t f − bi∂i f = 0, (2.1)

with Sobolev coefficients. For pedagogic purposes, let us begin by recalling the
main ingredients of the approach. The proof falls in two major steps.

The first step consists in establishing formal a priori estimates on the tenta-
tive solution f . This is performed by multiplying the equation by some function
β′(f) (where β is some convenient renormalization function) and integrating by
parts. Formally, this procedure yields

d

dt

∫
β(f) +

∫
(div b )β(f) = 0. (2.2)
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Therefore, when div b is L∞, we obtain
∫
β(f) bounded for all times if it is

bounded at initial time. In particular β(f) = |f |p (1 ≤ p < +∞) yields formal
Lp bounds on the solution. Besides, the L∞ bound is obtained by application
of the maximum principle. Note that, throughout this section we assume, for
simplicity and clarity of exposition, that b does not depend on time.

Using this first step, existence (which is the “easy” part) is readily proved.
The transport coefficient b is regularized by convolution b ε = ρε ? b , using
some regularizing kernel ρε = ε−Nρ(ε−1 ·), with ρ ∈ D(IRN ), ρ ≥ 0,

∫
ρ = 1.

The linear transport equation

∂t fε − (bi)ε∂i fε = 0, (2.3)

admits a unique solution fε, by standard arguments. The above formal a priori
estimate (2.2) can be rigorously established on fε:

d

dt

∫
β(fε) +

∫
(div b )β(fε) = 0, (2.4)

along with the L∞ bound. As the equation is linear, passing to the (weak)
limit provides a solution to (2.1) in an appropriate functional space, typically
L1 ∩ L∞ when the initial condition f(t = 0, ·) lies in that space. For this to
hold, we only need bi ∈ L1

loc and div b ∈ L∞. The natural weak formulation of
the equation (2.1) also readily follows from the above argument.

The second major step is a regularization procedure. It is based upon the
so-called commutation lemma, which basically claims that

[ρε,b · ∇](f) := ρε ? (b · ∇f) − b · ∇(ρε ? f)
ε→0
−→ 0, (2.5)

in L1
loc when b ∈W

1,1
loc and f ∈ L∞ (for instance). We refer to Lemma 1 below

for a precise statement. The need for some Sobolev regularity on b may be
formally understood in the following manner: the above commutator basically
involves a quantity of the form

∫
f(y) (b (y) − b (x)) · ∇ρε(x− y) dy (2.6)

where ρε converges in distribution to the Dirac mass, thus the need for evaluating
b (y) − b (x) in terms of y − x for y − x small. Uniqueness readily follows from
this commutation lemma by convolution: considering f = g − h the difference
of two solutions to (2.1), one convoluates the transport equation (2.1) with ρε,
next obtain the same equation set on fε up to an error term:

∂t fε − bi∂i fε = [ρε,b · ∇](f), (2.7)

We multiply both sides by β′(fε) and integrate over the whole space. Letting
next ε go to zero, (2.2) is obtained, which immediately gives f = 0 (because
it is zero at initial time). Thus uniqueness holds. In the above argument,
some cut-off functions are needed, for the integrals over the whole space to be
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conveniently treated. Boundary terms are then taken care of using appropriate
growth conditions at infinity for b . We however omit such technicalities in the
present oversimplified outline.

A summary of the above argument could be as follows. The main two
ingredients are

• an a priori estimate,

• a regularization procedure.

For these two steps to be possible,

• some global bounds on div b (typically div b ∈ L∞) are necessary for a
priori estimates to hold,

• some local, typically W 1,p, regularity on b is needed for regularization,

• in addition to this, some technical assumptions are needed, regarding

growth at infinity on b (typically
b

1 + |x|
∈ L1 + L∞) for integration

by parts over the whole space to be rigorously performed.

The intuitive belief follows that, whenever the above two essential steps (a
priori estimate and regularization) may be carried out, existence and uniqueness
hold. Several results in the vein of [6], including [17] and the present work, show
that this heuristic belief indeed holds true.

2.2 Fokker-Planck equations

In [17], we have studied the parabolic equation

∂t f − bi∂i f −
1

2
∆f = 0. (2.8)

Following the above two steps, it is immediately seen that the presence of the
regularizing second order operator −∆ yields a better regularity on the solution
f than in the pure transport case. Indeed, the formal a priori estimate obtained

from β(f) = f2

2 reads

d

dt

∫
f2

2
+

∫
(div b )

f2

2
+

∫
|∇f |2 = 0. (2.9)

Some L2([0, T ], H1) bound on f is deduced. This H1 regularity can be in turn
used in the regularization step. The term (2.6) indeed writes (up to a term in
div b ) ∫

(b (y) − b (x)) · ∇f(y) ρε(x− y) dy. (2.10)

We see that a L2 regularity on b is now sufficient to proceed, without the need
for a W 1,p regularity. The details are worked out in [17, Section 5], where
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we proved that existence and uniqueness of the solution to the equation (2.8)
holds in L∞([0, T ], L1 ∩ L∞) ∩ L2([0, T ], H1) when b = b 1 + b 2, b 1 ∈ W

1,1
loc ,

b 2 ∈ L2
loc, div b ∈ L∞ and

b

1 + |x|
∈ L1 + L∞.

Remark 1 Some variants and extensions are also indicated in the same work.
Alternately, an extension of the standard equation (2.1) in another direction is
also examined in [17]. It is the specific case of the transport equation

∂t f(t, x1, x2)−b 1(x1)·∇x1
f(t, x1, x2)−b 2(x1, x2)·∇x2

f(t, x1, x2) = 0, (2.11)

with b 1 ∈ W 1,1
x1

and b 2 ∈ L1
x1

(W 1,1
x2

). In other words we only have partial
W 1,1 regularity of b 2 in the x1 variable. Some consequences of this result on
the theory of generalized flows for ordinary differential equations are presented
in [17, Section 4]. In particular, the relevance for a specific physical problem is
mentionned there. We will return to this in Section 4.

The purpose of the present work is to more thorougly investigate the appli-
cation of the above methodology to parabolic type equations. The immediate
generalization of (2.8) is

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0 (2.12)

corresponding to a varying dispersion matrix σ, while (2.8) corresponds to a
constant dispersion matrix σ. More generally, the case of several variants of
(1.1) will be examined.

On the basis of the above outline, it is immediate to realize thatH1 regularity
is expected on the solution f as soon as the second order differential operator

−
1

2
σikσjk∂

2
ij is positive definite. This will be the purpose of Section 6.3. Even

if the operator is only nonnegative and possibly degenerate, we will see that
we can still proceed, and find some relatively general setting for (2.12) to be
well-posed.

The following result exemplifies many results in this direction. It is a par-
ticular case of the general Proposition 5, proved in Section 7.

From Proposition 5 [Section 7 of the present work]
Set bσi = bi −

1
2∂j (σikσjk) for all 1 ≤ i ≤ N . Assume bσ and σ are time-

independent and satisfy:

bσ ∈
(
W

1,1
loc (IRN )

)N

, div bσ ∈ L∞(IRN ),
bσ

1 + |x|
∈
(
L1 + L∞(IRN )

)N

σ ∈
(
W

1,2
loc (IRN )

)N×K

,
σ

1 + |x|
∈
(
L2 + L∞(IRN )

)N×K
.

Then, for each initial condition in L2 ∩ L∞, equation (2.12), that is

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0
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has a unique solution in the space
{
f ∈ L∞([0, T ], L2 ∩ L∞), σt∇f ∈ L2([0, T ], L2)

}
.

Several variants and extensions of the above result will also be considered
throughout the present article.

The consequence of Proposition 5 on the well-posedness of some stochastic
differential equations with irregular coefficients will hardly be approached here.
As announced above, it is the specific purpose of the companion article [18].
Anticipating on [18], we however would like to briefly comment on such issues,
for they motivate the present work and have important connections with the
specific settings we choose for developping our arguments. This is the purpose
of the next section.

To close this section (and slightly anticipating on the contents of the next
one), let us mention some, important, related works. The result by Di Perna
and the second author on existence and uniqueness for transport equations for
Sobolev regular vector fields has been generalized in a series of works by L. Am-
brosio and collaborators to BV vector fields (see [1, 2, 3] for various aspects). In
the same vein, the result mentionned above on transport equations of the partic-
ular form (2.11) has also been generalized to BV vector fields by N. Lerner [16].
As regards parabolic type equations like (2.12), a recent work1 by A. Figalli [10]
shows existence and uniqueness for two main settings: a) uniformly definite
positive, lipschitz regular in time, matrices σσT and L∞ vector fields, or b)
space-independent matrices σσT and BV vector fields. Other assumptions (like
growth at infinity and control of the divergence) are basically similar to those
above. Interestingly, in all these works, when coming to the well-posedness
of the associated (ordinary or stochastic) differential equations, the viewpoint
adopted is somewhat different from that of the works [6, 17]: the connection
is performed through the introduction of an adequate measure on the space of
paths (see the works mentioned above for more details). For obvious reasons,
this viewpoint, alternate from ours, seems to be particularly convenient for the
adaptation to the stochastic setting and the notion of martingale solutions, as
exemplified in [10]. We shall return to this in [18].

On the other hand, the adaptation of the specific results contained in the
present work to the case of BV vector fields should be an interesting, amenable,
extension.

3 Relation with differential equations

3.1 Ordinary differential equations

It is well known that, in the case of regular coefficients b (which we again
for simplicity consider time-independent), solving the linear transport equation

1The authors are grateful to A. Figalli for communicating a preprint version of [10].
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(2.1)
∂t f − bi∂i f = 0

is closely related to solving for all initial conditions x the ordinary differential
equation: {

Ẋ = b (X),
X(t = 0) = x.

(3.1)

More precisely, the connection between the partial differential equation (2.1)
and the differential equation (3.1) is ensured by the method of characteristics,
also called method of lines. When X(t, x) denotes the solution to (3.1), then
the solution to (2.1) starting from the initial condition f0 at time t = 0 reads

f(t, x) = f0(X(t, x)). (3.2)

Conversely, successively solving the transport equation (2.1) with as initial con-
dition all coordinates fields provides the solution X to (3.1).

This correspondence for regular fields b was extended by R. Di Perna and
the second author in [6] in order to define a notion of generalized flow of so-
lutions for ordinary differential equations with Sobolev coefficients. To cut
a long story short, it was proved in [6] that for b ∈ W 1,1, div b ∈ L∞,

b

1 + |x|
∈
(
L1 + L∞

)N
, one may define a solution flow for (3.1, precisely be-

cause, under the same assumptions, one may solve (2.1). Furthermore, it was
proved in [19] that for all L1 fields b (satisfying the other two condition above),
the existence and uniqueness of the generalized flow is equivalent to the exis-
tence and uniqueness of the solution to the transport equation. Any additional
property that ensures one of the two facts then implies the other fact.

Remark 2 Let us mention that some specific remarks and extensions on the
above questions will be the subject of [13].

3.2 Stochastic differential equations

A similar line of thought may be followed for stochastic differential equations.
Our intent is only to provide the reader not familiar to the field with a rapid
introduction of the key connections between second order partial differential
equations and stochastic differential equations . We therefore omit here all
technicalities related to the rigorous setting of stochastic differential equations,
and proceed somewhat formally. We refer to the excellent textbooks [14, 15,
23, 24, 25] for all the very important mathematical details of all the aspects
adressed here. Of course, the present section is no more than a brief, convenient,
surrogate to such treatises.

3.2.1 Regular coefficients

It is well known that there are two notions of solutions to the stochastic differ-
ential equation

dXt = b (Xt) dt+ σ(Xt) dWt. (3.3)
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The solution is strong if it exists for a given probability space (Ω,F ,Ft, IP), a
given brownian motion Wt, and a given initial condition X0. It is said weak if
(Ω,F ,Ft, IP), Wt, and the law of X0 are part of the solution.

For strong solutions, the right notion of uniqueness is pathwise uniqueness
(that states the uniqueness of Xt for (Ω,F ,Ft, IP), Wt, X0 given). For weak
solutions, even if pathwise uniqueness may be defined in an analogous manner,
a more appropriate notion of uniqueness is uniqueness-in-law, stating that any
two weak solutions sharing the same initial distribution at initial time have the
same law for all times.

Additionnaly, under appropriate regularity conditions on the coefficients, the
existence of a weak solution to the equation is equivalent to the existence of a
solution to the Martingale problem of Stroock and Varadhan. The uniqueness
in law of the weak solution is also equivalent to the unique solvability of the
Martingale problem for any fixed initial distribution.

To illustrate all the above, let us recall the following two prototypical results
of existence and uniqueness, for regular coefficients b and σ.

Theorem 1 from [15, p 289] Suppose that b and σ satisfy the growth con-
dition

b

1 + |x|
∈ L∞(IRN ), (3.4)

and
σ(x)

1 + |x|
∈
(
L∞(IRN )

)N×K
. (3.5)

Suppose they satisfy the global Lipschitz condition

∥∥b (x) − b (y)
∥∥

IRN +
∥∥σ(x) − σ(y)

∥∥
IRN×K ≤ K ‖x− y‖IRN (3.6)

Then there exists a unique (strong) solution to the stochastic differential equation
(5.1).

Theorem 2 [25, p170] Suppose b is measurable and satisfies the growth con-
dition

b

1 + |x|
∈ L∞(IRN ). (3.7)

Suppose in addition that σ(x)σt(x) is continuous, positive definite for all x ∈
IRN , and satisfies the growth condition

σ(x)σt(x)

1 + |x|2
∈
(
L∞(IRN )

)N×N
. (3.8)

Then there exists a unique solution to the martingale problem.
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The relation to partial differential equations of the form (1.1) may now be
outlined. Two basic facts need to be recalled. They will be useful to understand
our motivation in the sequel.

When b and σ are lipschitz (more precisely satisfy the assumptions of The-
orem 1 above), a strong solution to (3.3) exists, pathwise unique. Besides, a
solution to

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0

uniquely exists for all continuous initial condition f0. The notion of solution
is that of viscosity solutions, and the solution is continuous for all times. The
Feynmann-Kac representation formula (essentially a generalization to (3.2))

f(t, x) = IE (f0(Xt(x))) (3.9)

gives the connection between the two viewpoints. On the other hand, weak
solutions may also be understood in terms of a partial differential equation.
The most illustrative connection is that a weak solution is unique in law as soon
as one may uniquely solve the Fokker-Planck equation

∂t p− div (pb ) −
1

2
∂2

ij (σikσjkp) = 0. (3.10)

In addition, the existence of a solution to

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0

in an appropriate functional space implies the uniqueness of the solution of the
Martingale problem for each initial condition.

3.2.2 Irregular coefficients

In [17], we extended the connection between uniqueness in law for (3.3) and
uniqueness for (3.10) to the case of a constant dispersion matrix σ and a Sobolev
drift vector b . More precisely, we proved that for σ ≡ IId and, again, b ∈(
W

1,1
loc

)N

, div b ∈ L∞,
b

1 + |x|
∈
(
L1 + L∞

)N
,

• we can uniquely solve the Fokker-Planck equation (3.10),

• we may define a generalized flow of solutions to (3.3), strong in the prob-
ability sense (which amounts to solving the SDE for almost all initial
conditions),

• these strong solution flows all share the same law, which is the unique
solution to (3.10).

In addition, we proved that we may also uniquely solve the Fokker-Planck
equation (3.10) for b ∈ L2 + W 1,1 (along with the other two conditions). We
however pointed out in [17, p128] that for such a drift vector b the notion of
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generalized solutions to (3.3) was to be extended before we are in position to
claim that, in that case, we have a unique-in-law solution to (3.3), weak in the
sense of probability and generalized in the sense of the Di Perna Lions theory.
The reason for this (temporary) obstruction is related to our very method of
proof in [17]. We circumvent the difficulty of directly defining a generalized flow
for stochastic differential equations specifically using that, when σ ≡ IId, the
stochastic differential equation can be recasted as an ordinary differential equa-
tion parameterized by the randomness (see the discussion below). Correspond-
ingly, the generalized flow for the stochastic differential equation is obtained
from that of the ordinary differential equation. Now the latter only exists when
b ∈W 1,1. On the other hand, when b ∈ L2, only a direct strategy, specifically
using the regularizing nature of the stochastic term, may allow to define the
flow. This goes beyond the simple case σ ≡ IId and is not completed in [17].

To state it otherwise, the following questions remained unsolved in [17]:

• in the case of constant dispersion matrix σ,

– the pathwise uniqueness of (generalized) strong solutions to (3.3)
when b has Sobolev regularity,

– the existence and uniqueness-in-law of (generalized) weak solutions
to (3.3) when b is, say, L2,

• in the case of varying dispersion matrix σ: all questions related to existence
and uniqueness.

The purpose of the work [18] will be to address such issues using the results
of the present article on Fokker Planck type equations.

For questions related to pathwise uniqueness, obviously a more demanding
issue than uniqueness-in-law, we will make use of the Fokker-Planck equation
in a space of doubled dimension. This important tool is briefly reviewed in the
following section.

For questions related to a varying dispersion matrix σ, we will have to com-
pletely revisit the approach adopted in [17]. It is intuitively easy to see why
the case of a varying dispersion matrix σ is significantly more difficult that
the case when it is constant, as regards uniqueness issues. The following for-
mal arguments hopefully illustrate this. As is well known, proving unique-
ness is basically substracting one equation to the other. In the case when
σ is constant dXt = b (Xt) dt + σ dWt and dYt = b (Yt) dt + σ dWt yield
d(Xt − Yt) = (b (Xt) − b (Yt)) dt. The brownian motion cancels out and
we are left with an ordinary differential equation set on stochastic processes.
In other terms, proving uniqueness is studying the linear tangent operator,
which is a simple object when σ is constant. The same argument, again put
differently, consists in writing d(Xt − σWt) = b ((Xt − σWt) + σWt) dt in-
stead of dXt = b (Xt) dt + σ dWt . We explicitly use this in [17] to define the
generalized flows of stochastic differential equations with constant σ from the
existing generalized flows of ordinary differential equations. All previous argu-
ments unfortunately collapse when σ varies. The previous computation gives
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d(Xt −Yt) = b (Xt)−b (Yt)) dt+(σ(Xt)−σ(Yt)) dWt. Likewise, the connec-
tion between the stochastic differential equation and the ordinary differential
equation is unclear. A last facet of the above striking difference that we would
like to emphasize is the following. Generalized flows correspond to solutions
defined for almost all initial conditions. Proving their existence amounts to
ensuring that, as time advances, the set of singular initial conditions remains
of Lebesgue measure zero. When σ is constant, the brownian motion does
not significantly perturb the evolution of such singularities. It simply “shifts”
trajectories. On the other hand, a dispersion matrix σ(Xt) strongly modifies
trajectories, and this modification has to be understood and controlled.

3.3 A tool for pathwise uniqueness

One important ingredient of our forthcoming work [18] is the consideration of a
Fokker-Planck type equation in a space of doubled dimension. This will allow
us to prove pathwise uniqueness. Let us briefly mention here our strategy.

It is well known, and has been recalled above, that the unique solvability of
the Fokker-Planck equation implies the uniqueness-in-law of the solution of the
stochastic differential equation. This is standard for regular coefficients. The
case of less regular drift vectors (with σ ≡ Id though) has also been mentioned
above.

We now indicate a possible way for establishing pathwise uniqueness, which
allows for generalizations to less regular coefficients. In order to prove pathwise
uniqueness for (3.3)

dXt = b (Xt) dt+ σ(Xt) dWt,

it is possible to consider the following Fokker-Planck equation

∂p(t, x, y)

∂t
+ div x(p(t, x, y)b (x)) + div y(p(t, x, y)b (y))

−
1

2

∂2

∂xi∂xj
(σik(x)σjk(x) p) −

∂2

∂xi∂yj
(σik(x)σjk(y) p)

−
1

2

∂2

∂yi∂yj
(σik(y)σjk(y) p) = 0, (3.11)

with solution p = p(t, x, y). This equation is of course the Fokker Planck equa-
tion associated with the stochastic differential equation

d

(
Xt

Yt

)
= B(Xt,Yt) + Σ(Xt,Yt)d

(
Wt

Wt

)
(3.12)

set in IR2N while (3.3) is set in IRN , with coefficients

B(x, y) =

(
b (x)
b (y)

)
and Σ(x, y) =

(
σ(x) 0
σ(y) 0

)
(3.13)



3 RELATION WITH DIFFERENTIAL EQUATIONS 14

Likewise, (3.11) can be written in the more compact form

∂p

∂t
+ div x,y(pB(x, y)) −

1

2
D2(Σ(x, y)Σt(x, y)p) = 0 (3.14)

with B(x, y) as in (3.13) and

ΣΣt =

(
σ(x)σt(x) σ(x)σt(y)
σ(y)σt(x) σ(y)σt(y)

)
(3.15)

As it stands, the double Fokker-Planck equation (3.11) appears of course as a
particular case of a standard Fokker-Planck equation.

Note, which will be important for the sequel, that its dispersion matrix Σ
given by (3.13) is by construction non-symmetric and that ΣΣt in (3.15) is, by
construction again, degenerate. This is the main mathematical reason why we
mainly concentrate here on symmetric possibly degenerate diffusion matrices
coming from non-symmetric matrices σ (only considering full rank dispersion
matrices or symmetric σ for the sake of comparison). Our arguments and results
will then readily apply to the double Fokker-Planck equation, and thus open the
way to pathwise uniqueness results. In fact, there is another reason for mainly
considering degenerate diffusion matrices, related to the specific physical context
that originally motivates this work. We want our setting to cover the classical
(that is, non doubled!) Fokker-Planck equation for some flows of complex fluids
where, indeed, the diffusion is degenerate. This will be seen in Section 4.

Arguments based on such types of Fokker-Planck equation in a space of
doubled dimension are well known (see [25, p 198]). They have already been
used in [12] and [4], for purposes similar to those of the present work.

We are now in position to briefly sketch why uniqueness of the solution to
(3.14) may imply pathwise uniqueness for the original stochastic differential
equation (3.3). We simply remark that for Xt(x) and Yt(y) two solutions to
(3.3) (respectively starting from x and y), the joint law of (Xt(x),Yt(y)) solves
(3.14). So does the joint law of (Xt(x),Xt(y)). By uniqueness, these two laws
are therefore equal to one another. Formally taking the limit y −→ x, we obtain
Xt(x) = Yt(x) and thus pathwise uniqueness.

Alternately, one may use the adjoint viewpoint. Instead of the Fokker-Planck
equation (3.11), one may consider its adjoint form, namely the backward Kol-
mogorov equation:

∂f

∂t
− bi(x)

∂f

∂xi
− bi(y)

∂f

∂yi

−
1

2
σik(x)σjk(x)

∂2f

∂xi∂xj
− σik(x)σjk(y)

∂2f

∂xi∂yj

−
1

2
σik(y)σjk(y)

∂2f

∂yi∂yj
= 0 (3.16)

with solution f = f(t, x, y). Owing to the Feynmann-Kac formula (that is the
stochastic version of (3.2)), the function f(t, x, y) = IE(|Xt(x)−Yt(y)|

2) solves
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equation (3.16) with initial condition ψ0(x, y) = |x−y|2, when Xt(x) and Yt(y)
are again two solutions to (3.3), starting from x and y respectively. A simple
computation then shows that, for some suffificently large constant C (depending
on the Lipschitz continuity of b and σ, a property which implies the uniqueness
of the solution to (3.16)), the function ψ(t, x, y) = eCt|x− y|2 is a supersolution
to (3.16). It follows that IE(|Xt(x)−Yt(y)|

2)) ≤ eCt|x−y|2 for all times. Taking
x = y yields pathwise uniqueness.

Both arguments (on (3.14) and on (3.16)) of course hold for regular (say
Lipschitz) coefficients b and σ. The purpose of our work [18] will be to try and
extend the arguments so as to treat “general” coefficients b and σ. Depend-
ing on our assumptions on b and σ, existence and uniqueness of generalized
stochastic flows for stochastic differential equations (3.3) will be studied, either
in law (arguing on (3.14)), or pathwise (arguing on (3.10)).

4 Motivation: Modelling of polymeric fluids

As mentioned in the introduction, there are many situations when stochastic
differential equations (and correspondingly Fokker-Planck type equations) arise
with irregular drift vectors b and dispersion matrix σ. Fluid mechanics is a
field where this is often the case. The specific application that has originally
motivated our work is the multiscale modelling of complex fluid flows.

Our first contribution [17] was already motivated by the so-called micro-
macro modelling of infinitely dilute solutions of flexible polymers. In such fluids,
the macroscopic equations of conservation of mass and momentum are coupled
with a kinetic mesoscopic description of the evolution of the microstructures.
The macroscopic velocity field, which has no particular reason to be regular
(and which, in any event, is not regular at the discretization level because it is
typically a finite element approximation) enters as a parameter the stochastic
differential equation or the Fokker-Planck equation describing the evolution of
the microstructure. In the case of flexible polymers, a typical equation arising
in this context reads

dRt + u · ∇xRt = (∇uRt −∇V (Rt)) dt+ dWt. (4.1)

In (4.1), u denotes the macroscopic velocity of the fluid, x is the macroscopic
space variable, Rt is a vector-valued random variable that is implicitly indexed
by the macroscopic variable x and describes the statistical state of the mi-
crostructure at macropoint x. It is typically the end-to-end vector of the poly-
meric chain. The term u ·∇xRt models the transport of the microstructures by
the fluid, the term ∇uRt models their elongation, the potential V is a potential
of entropic nature, and dWt is a brownian motion that models the permanent
collisions of the chain with the solvent molecules. More details on this model
and on those we will briefly introduce below may be found in the excellent
(mathematically oriented) textbook [21] and the recent monography [22].

In [17], we explained how a rigorous meaning can be given to (4.1) even
though the velocity field u is not regular. The bottom line of our argument
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is to simultaneously integrate (4.1) along the characteristic lines, in order to
eliminate the transport term u ·∇xRt (we thus adopt a Lagrangian viewpoint),
and also handle the right-hand side of (4.1) as a stochastic differential equation
with “irregular” coefficients. In fact, we consider the system formed by (4.1)
and

{
dX(t) = u(X(t)) dt,
dRt(X(t)) = (∇uRt(X(t)) −∇V (Rt(X(t)))) dt+ dWt

(4.2)

as a mixed stochastic/deterministic equation that we treat as a whole. The
strategy for giving a meaning to this system is then a combination of the exis-
tence and uniquess result for a transport equation of the “mixed” form (2.11)
and the existence and uniqueness result for Fokker-Planck equations with con-
stant diffusion matrix (2.8). The relevant partial differential equation, written
with obvious notation, is

∂t f(t, x, r)−b x(t, x) ·∇xf(t, x, r)−b r(t, x, r) ·∇rf(t, x, r)−
1

2
∆rf(t, x, r) = 0.

As the strategy above does not pose any specific problem once the key ingredi-
ents are present, we have not presented any detailed argument in [17].

Unfortunately the above result does not cover all physically relevant cases.
There exists e.g. a category of polymeric fluids that, as opposed to flexible
polymers, are more appropriately modelled by rigid rods. For such polymers,
(4.1) is to be replaced (see [21, p 249]) by

dXt =

((
IId −

Xt ⊗ Xt

‖Xt‖2

)
A(t,Xt) −

N − 1

2
B2 Xt

‖Xt‖2

)
dt

+B
(
IId −

Xt ⊗ Xt

‖Xt‖2

)
dWt. (4.3)

For simplicity and in order to concentrate on the crucial difference with (4.1)
we have omitted the transport term in the left-hand side. In (4.3), Xt denotes
the rigid-rod vector, IId denotes the Identity matrix of size N , B is a fixed
parameter, dWt is a N dimensional Brownian motion, and A is the vector of
size N defined by

A(t,Xt) = ∇u(t, y)Xt −∇V (Xt), (4.4)

As in (4.1), V is the potential of the entropic force the polymer is subjected to.

It is immediate to understand that the projection operator IId−
Xt ⊗ Xt

‖Xt‖2
aims

to preserve the length of Xt in time (thus the “rigidity” of the rod).

The major difference with (4.1) is that the dispersion matrix σ of (4.3) is
no longer a constant. The existence of a varying dispersion matrix σ = σ(Xt)
motivates the whole present study. In addition, for all ζ ∈ IRN ,

1

B2
(σσtζ, ζ) =

‖x‖2‖ζ‖2 − (x, ζ)2

‖x‖2
,
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where (·, ·) denotes the euclidean scalar product on IRN and ‖ · ‖ the associated
norm. It follows that σσt cannot be positive definite, whatever x ∈ IRN . This is
a second motivation for focusing on possibly degenerate matrices, in addition to
the point made above on the structure of the doubled Fokker-Planck equation.

Of course, the above dispersion matrix σ(Xt) is to be considered for nor-
malized Xt (or Xt close to be of unit norm) since equation (4.3) propagates
forward in time the normalization. In the vicinity of such normalized Xt, the
dispersion matrix is a regular function of Xt. The techniques of the present
article, although needed for the irregular drift in (4.3), are thus not specifically
required for the dispersion. This is however an interesting case to consider,
perhaps thinking to other contexts.

To conclude with these modelling issues, let us mention that the full general-
ity of physically relevant cases is not covered yet even when considering varying
dispersion matrices σ = σ(Xt). Another case of practical interest, in the spirit
of the modelling seen above, is the modelling of liquid crystal polymers (see
[21, p 253]). Basically, the stochastic differential equation involved in such a
modelling reads:

dXt =

[(
IId −

Xt ⊗ Xt

‖Xt‖2

) (
∇u(t, y)Xt −

1

2
B2(Xt)∇Ve(Xt)

+
1

2
∇(B2)(Xt)

)
−B2(Xt)

Xt

‖Xt‖2

]
dt

+ B(Xt)
(
IId −

Xt ⊗ Xt

‖Xt‖2

)
dWt

(4.5)

Again, the equation preserves the length of the random process Xt. It is sig-
nificantly more complicated than equation (4.3). Indeed, two functions present
in the equation, namely the potential Ve and the diffusion parameter B induce
a substantial additional difficulty. The potential Ve models the effective inter-
action of the rod under consideration with the other rods, an interaction that is
very important for liquid crystals. On the other hand, contrary to the situation
of (4.3), the diffusion parameter B is not fixed, and the configuration depen-
dence of the parameter B accounts for the fact that the rotational diffusivity of
the rod depends on the orientation with respect to the other rods. The point is
that both the potential Ve and the diffusion parameter B not only depend on
Xt, but depend on certain averages of Xt in the following way:

Ve(Xt) = Cte IE(
∥∥Xt × Xt

∥∥), (4.6)

B(Xt) =
Cte

IE(
∥∥Xt × Xt

∥∥)
. (4.7)

This makes the stochastic differential equation (4.5) nonlinear in the sense of
MacKean as its coefficients depend on averages of the solution itself. The setting
considered in the present article does not cover this case.



5 THE FOKKER-PLANCK EQUATION OF DIVERGENCE FORM 18

5 The Fokker-Planck equation of divergence form

5.1 Some preliminaries

Let us begin with some notation. Fix a probability space (Ω,F ,Ft, IP,Wt)
with a standard K-dimensional Brownian motion Wt, a drift vector b ∈ IRN ,
a dispersion matrix σ ∈ IRN×K . To the generic stochastic differential equation

dXt = b (Xt) dt+ σ(Xt) dWt (5.1)

that componentwise writes dXi
t = b i(Xt) dt+σij(Xt) dW

j
t , 1 ≤ i ≤ N , we may

first associate two partial differential equations. The Fokker-Planck (or forward
Kolmogorov) equation

∂t p+ ∂i (pbi) −
1

2
∂2

ij (σikσjk p) = 0 (5.2)

and its adjoint equation, the backward Kolmogorov equation

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0. (5.3)

The parameter fields in the above equations are the drift vector b and the
matrix σ. Throughout this section, and unless otherwise stated, they will be
assumed to depend on space and not on time: b = b (x), σ = σ(x). Unless there
is a risk of confusion, we will not explicitly mention their space dependence.

In the sequel (see Section 7), rather than the drift vector b itself, the fol-
lowing vector field

bσ = b −
1

2
div (σσt) (5.4)

i.e. in coordinates bσi = bi −
1
2 ∂j

(
σikσjk

)
, will play a crucial role for the study

of equations (5.2) and (5.3). Its divergence reads

div bσ = ∂i bi −
1

2
∂2

ij

(
σikσjk

)
(5.5)

Note that this modified drift vector bσ is (in general) different from the drift
vector that is obtained when considering the Stratonovich form of the stochastic
differential equation (5.1), namely

dXt = bStrat (Xt) dt+ σ(Xt) ◦ dWt (5.6)

where

(bStrat )i = bi −
1

2
σjk∂j σik (5.7)

The difference writes (bσ − bStrat )i = − 1
2 σik ∂j σjk.

In addition to (5.2) and (5.3), a third partial differential equation, formally
connected to (5.1), may be considered:

∂t p+ ∂i (pbi) −
1

2
∂i (σikσjk∂j p) = 0. (5.8)
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This equation, that we will call here the Fokker-Planck equation of divergence
form, is the easiest one to deal with (as compared to (5.2) and (5.3)) when it
comes to existence and uniqueness issues. This owes to the fact that its second
order differential operator ∂i (σikσjk∂j p) has a self-adjoint form. The study of
(5.8) is the purpose of the present section. We will indicate in Section 7 the
necessary modifications of our arguments to address the same issues for (5.2)
and (5.3) respectively. Note that the equation in divergence form (5.8) was
extensively studied by H. Osada in [20], in a different perspective though. In
the latter work, a general matrix aij replaces σikσjk. Importantly, this matrix
is assumed positive definite (but not necessarily symmetric). The aij are only
assumed measurable. The coefficients bi of the drift vector are taken of the
form bi = ∂i cij , with all cij measurables. The consideration of the divergence
form (5.8) is motivated in [20] by specific fluid mechanics applications (vortex
processes,...).

Before we get to the heart of the matter, it is interesting to ask whether
there is a connection, better than purely formal, between the partial differential
equation (5.8) and the stochastic differential equation (5.1). The connection
between the Fokker-Planck equation (5.2) and (5.1) is clear: by the Ito rule,
the law of Xt solution to (5.1) is the solution to (5.2) starting from the law of
Xt|t=0. That between the backward Kolmogorov equation (5.3) and (5.1) is also
clear: the Feynman-Kac formula tells us that IE(ϕ(Xx

t )) is the solution to (5.3)
starting from ϕ when Xx

t is the solution to (5.1) starting from x. What about
(5.8)? The only argument we are aware of in this direction is the following one,
specific to the one-dimensional setting.

We begin by noticing that, for y fixed in IR, and Xy
t the solution to (5.1)

starting from y at initial time, p(t, x; y) = IE(δ(x−Xy
t )) is the solution to (5.2)

supplied with the initial condition p(t = 0, x; y) = δ(y − x).
Recall the proof of the elementary fact. By the Feynman-Kac formula, we

know that, for x fixed, the solution q(t, y;x) to

{
∂t q − b ∂yq −

1
2σ

2∂yq = 0
q(t = 0, y;x) = δ(x− y)

(i.e. (5.3) with initial condition δ(x− ·)) is q(t, y;x) = IE(δ(x−Xy
t )) where Xy

t

the solution to (5.1) starting from y at initial time. On the other hand, u being
fixed, the solution p(t, z;u) to

{
∂t p+ ∂z(bp) −

1
2∂zz(σ

2p) = 0
p(t = 0, z;u) = δ(u− z)

(i.e. (5.2) with initial condition δ(u − ·)) is the law of Xu
t (solution to (5.1)

starting from u at initial time). Thus,

∫
p(t, z;u)ϕ(z) dz = IE(ϕ(Xu

t )),
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for all regular ϕ. Applying this (formally) to ϕ = δ(x− ·) and u = y, we obtain

p(t, x; y) =

∫
q(t, z; y)δ(x− z) dy = IE(δ(x− Xy

t )) = q(t, y;x).

Thus p(t, x; y) = IE(δ(x− Xy
t )) is the solution to

{
∂t p+ ∂x(bp) − 1

2∂xx(σ2p) = 0
p(t = 0, x; y) = δ(y − x)

which is our claim.
We now specifically use the one dimensional setting and introduce

F (t, x; y) =

∫ x

−∞

p(t, z; y) dz,

which is in fact F (t, x; y) = IP(Xy
t < x), because p(t, z; y) = IE(δ(z−Xy

t )). The
equation satisfied by F is obtained by integrating (5.2) from −∞ to x:

∂t F (t, x; y) + b(x)∂xF (t, x; y) −
1

2
∂x(σ2∂xF (t, x; y)) = 0

that is (5.8), with the initial condition F (0, x; y) =

∫ x

−∞

p(0, z; y) dz = 1y<x.

We have thus shown that IP(Xy
t < x) is the solution to (5.8) starting from 1y<x.

This establishes a natural connection between Xt and (5.8).

5.2 A priori estimate

Following the strategy outlined in the introduction, we begin by showing on
(5.8) some formal a priori estimates. We formally multiply (5.8)

∂t p+ ∂i (pbi) −
1

2
∂i (σikσjk∂j p) = 0

by p and integrate on the whole space to get:

d

dt

∫
p2

2
+

∫
p∂i (pbi) −

∫
1

2
∂i (σikσjk∂j p) p = 0.

Integrating by parts the last two terms, we obtain

d

dt

∫
p2

2
+

∫
p2

2
div b +

1

2

∫ ∣∣σt(x)∇p
∣∣2 = 0. (5.9)

This estimate is somehow the key estimate that will play a central role through-
out the article. Assuming

div b ∈ L∞ (5.10)

we obtain p ∈ L∞([0, T ], L2 ∩ L∞), σt∇p ∈ L2([0, T ], L2). The same assump-
tion (5.10) also allows to get a L∞ bound on p using the maximum principle.
Therefore the solution p is expected to belong to the space

X2 =
{
p ∈ L∞([0, T ], L2 ∩ L∞), σt∇p ∈ L2([0, T ], L2)

}
. (5.11)

This holds of course provided the initial condition lies in L2 ∩ L∞.
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Remark 3 In fact, we may remark that the condition

inf div b > −C (5.12)

is sufficient to argue on (5.9). This is true throughout this article.

Remark 4 We may also multiply (5.8) by β′(p) and obtain

d

dt

∫
β(p) +

∫ (
pβ′(p) − β(p)

)
div b +

1

2

∫
β′′(p)

∣∣σt(x)∇p
∣∣2 = 0. (5.13)

This may lead to a Lp theory, instead of the above L2 theory. See Section 6 for
further remarks.

5.3 Regularization

We now convoluate equation (5.8) with some regularizing kernel

ρε = ε−Nρ(ε−1 ·), with ρ ∈ D(IRN ), ρ ≥ 0,

∫
ρ = 1,

and obtain

∂t ρε ? p+ ρε ? ∂i (pbi) −
1

2
ρε ? ∂i (σikσjk∂j p) = 0. (5.14)

Throughout this article, we will employ the notation (already introduced here
in the previous section):

[ρε, c](f) = ρε ? (cf) − c (ρε ? f),

for a differential operator c. We shall also denote pε = ρε ? p. Using this
notation, we thus have:

ρε ? ∂i (pbi) = ρε ? ((∂i bi)p) + ρε ? (bi∂i p)

= [ρε, ∂i bi](p) + [ρε, bi∂i ](p) + ∂i (bipε)

= Qε + ∂i (bipε) (5.15)

where we have defined

Qε = [ρε, ∂i bi](p) + [ρε, bi∂i ](p). (5.16)

Likewise,

ρε ? ∂i (σikσjk∂j p) = ∂i (ρε ? (σikσjk∂j p))

= ∂i ([ρε, σikσjk∂j ](p)) + ∂i (σikσjk∂j pε)

= ∂i (σik[ρε, σjk∂j ](p) + [ρε, σik](σjk∂j p))

+∂i (σikσjk∂j pε)

= ∂i (σik[ρε, σjk∂j ](p)) + [ρε, ∂i σik](σjk∂j p)

+[ρε, σik∂i ](σjk∂j p) + ∂i (σikσjk∂j pε)

= ∂i (σikRε) + Sε + Tε + ∂i (σikσjk∂j pε) (5.17)
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where we have set

Rε = [ρε, σjk∂j ](p), Sε = [ρε, ∂i σik](σjk∂j p), Tε = [ρε, σik∂i ](σjk∂j p)
(5.18)

We thus obtain from (5.14) the equation (5.8) set on pε but with an error term
in the right-hand side:

∂t pε +∂i (pεbi)−
1

2
∂i (σikσjk∂j pε) = −Qε +

1

2
(∂i (σikRε) + Sε + Tε) . (5.19)

Remark 5 Note that in the above manipulations we have essentially used the
following two basic formulae, that can be readily proved:

∂ ([ρε, a](f)) = [ρε, (∂a)](f) + [ρε, a∂](f), (5.20)

[ρε, a b ∂](f) = a [ρε, b ∂](f) + [ρε, a](b ∂f), (5.21)

for any f , and any two scalar fields a and b whenever all the above terms make
sense. The generalization to vector-valued fields a and b is straightforward.

With a view to preparing the proof of the uniqueness of the solution to (5.8),
we now examine the right-hand side of (5.19). As in [17], our main tool is the
following commutation lemma:

Lemma 1 (see [6, Lemma II.1] and [17, Lemma 5.1])

Let f ∈ Lr
loc(IR

N ) and let c ∈
(
W

1,α
loc (IRN )

)N
. Set

1

β
=

1

r
+

1

α
.Then, as

ε −→ 0,
[ρε, c · ∇](f) −→ 0 in L

β
loc(IR

N ), (5.22)

and
[ρε,div c ](f) −→ 0 in L

β
loc(IR

N ). (5.23)

If ∇f ∈ L2
loc(IR

N ) and c ∈
(
Lα

loc(IR
N )
)N

, then the same conclusion holds

for
1

β
=

1

2
+

1

α
.

Remark 6 In fact (5.23) only requires an assumption slightly weaker than

c ∈
(
W

1,α
loc (IRN )

)N
, namely div c ∈

(
Lα

loc(IR
N )
)N

.

Using the above lemma, we immediately see that, when b ∈ W 1,1 and
div b ∈ L∞, we may claim the convergence to zero of the first order error term

Qε = [ρε, ∂i bi](p) + [ρε, bi∂i ](p)
ε→0
−→ 0, in L1

loc (5.24)

This convergence holds uniformly in time, because p is L∞ and b is time in-
dependent. This term was the standard term, and we now get to the, non
standard, second order term. Applying again the above lemma, we have:

Rε = [ρε, σjk∂j ](p)
ε→0
−→ 0, in L2

loc, (5.25)
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as soon as σ ∈
(
W

1,2
loc

)N×K

. Again, this convergence holds uniformly in time,

for p ∈ L∞([0, T ], L2). Likewise,

Sε = [ρε, ∂i σik](σjk∂j p)
ε→0
−→ 0, in L1

loc, (5.26)

when σ is again W 1,2 and σt∇p ∈
(
L2
)N

. With respect to time, the convergence
(5.26) holds in L2, because σt∇p ∈ L2([0, T ], L2). Regarding the last term, we
have

Tε = [ρε, σik∂i ](σjk∂j p)
ε→0
−→ 0, in L1

loc, (5.27)

also in L2 with respect to time for the same reason as regards (5.26). Setting

Uε = −Qε +
1

2
Sε +

1

2
Tε,

we now collect all these convergences in (5.19),

∂t pε + ∂i (pεbi) −
1

2
∂i (σikσjk∂j pε) = Uε +

1

2
∂i (σikRε) ,

with Uε
ε→0
−→ 0 in L∞ + L2([0, T ], L1

loc)

and Rε
ε→0
−→ 0 in L∞([0, T ], L2

loc), (5.28)

under the conditions

b ∈W
1,1
loc , div b ∈ L∞, σ ∈

(
W

1,2
loc

)N×K

, σt∇p ∈
(
L2
)N

. (5.29)

We are now in position to prove our first existence and uniqueness result, on
(5.8).

5.4 Existence and uniqueness

Based on the formal a priori estimate (5.9), we first define our notion of solution.

5.4.1 Setting of the equation

Let us be given an initial condition p0 ∈ L2 ∩ L∞(IRN ), we wish to build a
solution p to the equation in L∞([0, T ], L2 ∩ L∞(IRN )) satisfying in addition

σt∇p ∈ (
(
L2([0, T ], L2(IRN ))

)N
. Then the mathematical sense we give to equa-

tion (5.8) is the following

−

∫ T

0

∫

IRN

p
∂ϕ

∂t
−

∫

IRN

p0ϕ(0, ·) −

∫ T

0

∫

IRN

pb · ∇ϕ

+
1

2

∫ T

0

∫

IRN

σt∇p . σt(x)∇ϕ = 0, (5.30)

for all smooth ϕ with compact support in [0, T [×IRN . The above makes sense
for

b ∈ (L1
loc(IR

N ))N , σ ∈ (L2
loc(IR

N ))N . (5.31)
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5.4.2 Existence

Establishing existence of solution for (5.8) is, as announced in the introduction,
the “easy” part. For this purpose, we first regularize the drift vector b and the
dispersion matrix σ by considering b ε = ρε ? b , σε = ρε ? σ and the equation

∂t p+ ∂i (p(bε)i) −
1

2
∂i ((σε)ik(σε)jk∂j p) = 0

for which, by standard arguments, a solution p = pε exists. Using the a priori
estimates, which are here not only formal but rigourous, we readily obtain that
pε is a bounded sequence in X2 (defined in (5.11)), provided we assume div b ∈
L∞. Extracting a subsequence, we pass to the limit and obtain a solution to
(5.8), in the mathematical sense mentioned above.

5.4.3 Uniqueness

As regards uniqueness, we first argue, for pedagogic purposes, when the equation
is posed on [0, 1]N ⊂ IRN , with periodic boundary conditions. In this manner,
we do not have to worry about boundary terms in integration by parts, and all
local regularities and integrabilities are immediately global. We will explain, in
a second stage, how our arguments have to be modified to treat the case of the
whole space IRN .

By linearity of the equation, we know that proving uniqueness amounts to
proving that a solution p to (5.8) starting from zero at initial time, and belonging
to
{
p ∈ L∞([0, T ], L2 ∩ L∞), σt∇p ∈ L2([0, T ], L2)

}
, necessarily vanishes for

all times.
Convoluating (5.8) by ρε as in the previous section, we have

∂t pε + ∂i (pεbi) −
1

2
∂i (σikσjk∂j pε) = Uε +

1

2
∂i (σikRε) ,

where pε = ρε ? p and the properties of Uε and Rε are defined in (5.28). Multi-
plying by pε and integrating by part on the unit cube, we obtain:

d

dt

∫

[0,1]N

p2
ε

2
+

1

2

∫

[0,1]N
p2

εdiv b +
1

2

∫

[0,1]N

∣∣σt(x)∇pε

∣∣2

=

∫

[0,1]N
Uε pε −

1

2

∫

[0,1]N
(σt(x)∇pε) . Rε (5.32)

Recalling that the initial value is zero, we integrate in time from 0 to t and
obtain (in fact this is also a direct consequence of our notion of solutions):

∫

[0,1]N

p2
ε

2
(t) +

1

2

∫ t

0

∫

[0,1]N
p2

εdiv b +
1

2

∫ t

0

∫

[0,1]N

∣∣σt(x)∇pε

∣∣2

=

∫ t

0

∫

[0,1]N
Uε pε −

1

2

∫ t

0

∫

[0,1]N
(σt(x)∇pε) . Rε (5.33)
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We have ∣∣∣∣
∫

IRN

p2
εdiv b

∣∣∣∣ ≤ ‖div b ‖L∞(IRN )

∫

IRN

p2
ε. (5.34)

and of course ∫ t

0

∫

[0,1]N

∣∣σt(x)∇pε

∣∣2 ≥ 0 (5.35)

On the other hand, since pε is bounded in L∞ and σt∇pε is bounded in L2, the
right-hand side goes to zero with ε in view of the convergences (5.28). Letting
ε go to zero, we thus obtain:

∫

[0,1]N

p2

2
≤ C

∫ t

0

∫

[0,1]N
p2,

and we finally get p ≡ 0, which concludes the proof.

To address the case of the whole space IRN , we have to specify some growth
conditions at infinity for both b and σ, in addition to the assumptions (5.29)
which were sufficient for the periodic case. These growth conditions will appear
in our argument below.

We first introduce a nonnegative smooth cut-off function φR such that φR = φ
( ·

R

)
,

φ ≡ 1 on the ball of radius R, φ vanishes outside the ball of radius 2. Note we

then have ∇φR =
1

R
∇φ
( ·

R

)
. Next, we essentially redo the above proof, multi-

plying this time the equation by pεφR and integrating over the space IRN . Using
the same manipulations as above, but this time keeping track of all boundary
terms, we obtain

d

dt

∫

IRN

p2
ε

2
φR +

1

2

∫

IRN

p2
ε φR div b +

1

2

∫

IRN

∣∣σt(x)∇pε

∣∣2φR

=
1

2

∫

IRN

p2
ε b∇φR −

1

2

∫

IRN

pε σ
t(x)∇pε · σ

t(x)∇φR

+

∫

[0,1]N
Uε pεφR −

1

2

∫

IRN

(σt(x)∇pε) . RεφR

−
1

2

∫

IRN

pε(σ
t(x)∇φR) . Rε (5.36)

Of course, the terms with φR will in the end give the main contributions. They
are treated as in the periodic case above. We therefore focus on the terms in
∇φR. First, we note

∣∣∣∣
1

2

∫

IRN

p2
ε b∇φR

∣∣∣∣ =

∣∣∣∣
1

2

1

R

∫

R≤|x|≤2R

p2
ε b (∇φ)

( ·

R

)∣∣∣∣

≤ C

∥∥∥∥
b

1 + |x|

∥∥∥∥
L∞

‖∇φ‖L∞

∫

|x|≥R

p2
ε. (5.37)
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This goes to zero as R −→ +∞, uniformly in ε ≤ 1, and L∞ in time. Likewise,
∣∣∣∣
∫

IRN

pε σ
t(x)∇pε · σ

t(x)∇φR

∣∣∣∣ ≤ C

∥∥∥∥
σ

1 + |x|

∥∥∥∥
L∞

‖∇φ‖L∞

∫

|x|≥R

|pε| |σ
t∇pε|

(5.38)
also goes to zero as R −→ +∞, uniformly in ε ≤ 1.

These two terms can be collected into a term W (t, ε, R) that goes to zero as
R −→ +∞, uniformly in ε ≤ 1 and L1 in time (because of (5.28)).

Regarding the last term of (5.36), we denote it by V (t, ε, R) and bound it
as follows

|V (t, ε, R)| =

∣∣∣∣
∫

IRN

pε(σ
t(x)∇φR) . Rε

∣∣∣∣

≤ C

∥∥∥∥
σ

1 + |x|

∥∥∥∥
L∞

‖∇φ‖L∞

∫

|x|≤2R

|pε| |Rε| (5.39)

We thus recover (5.32) up to this remainder term V (t, ε, R)+W (t, ε, R), and
thus, instead of (5.33):

∫

[0,1]N

p2
ε

2
φR(t) +

1

2

∫ t

0

∫

[0,1]N
p2

εdiv b φR +
1

2

∫ t

0

∫

[0,1]N

∣∣σt(x)∇pε

∣∣2φR

=

∫ t

0

∫

[0,1]N
Uε pε −

1

2

∫ t

0

∫

[0,1]N
(σt(x)∇pε) . Rε

+

∫ t

0

V (s, ε, R) ds

+

∫ t

0

W (s, ε, R) ds (5.40)

We then fix η > 0. We may find R large enough so that, uniformly in ε ≤ 1, we
have ∣∣∣∣

∫ t

0

W (s, ε, R)ds

∣∣∣∣ ≤ η

for all t ≤ T . For such a radius R, we let ε go to zero. The first three terms of
the right-hand side of (5.40) then vanish, owing to (5.39) and the convergences
(5.28) established above. In the limit we thus obtain

∫

IRN

p2

2
φR ≤ η + C

∫ t

0

∫

IRN

p2 φR

thus ∫ t

0

∫

IRN

p2 φR ≤
η

C
(eCt − 1).

We now let R go to infinity and obtain

∫ t

0

∫

IRN

p2 ≤
η

C
(eCt − 1).
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It remains to let η go to zero, and we finally get p ≡ 0, which concludes the
proof of the following proposition.

Proposition 1 [Fokker-Planck equation of divergence form] Assume b
and σ are time-independent and satisfy:

b ∈
(
W

1,1
loc

)N

, div b ∈ L∞,
b

1 + |x|
∈ (L∞)

N
(5.41)

σ ∈
(
W

1,2
loc

)N×K

,
σ

1 + |x|
∈ (L∞)

N×K
(5.42)

Then, for each initial condition in L2∩L∞, equation (5.8) has a unique solution
in the space

{
p ∈ L∞([0, T ], L2 ∩ L∞), σt∇p ∈ L2([0, T ], L2)

}
.

Remark 7 It should be noticed that the above conditions on the growth at infin-
ity of b and σ contained in (5.41)-(5.42) agree with the conditions (3.7)-(3.8)
of Theorem 2 (recalled in Section 3.2) on the martingale problem. They also
agree with the conditions (3.4)-(3.5) of Theorem 1 on pathwise existence and
uniqueness (recalled in Section 3.3).

Remark 8 In Section 8.1 below, we shall comment upon the optimality of the
W 1,2 regularity of the dispersion matrix σ.

Remark 9 A consequence of the above theorem is a stability result for solutions
to (5.8). We skip the statement of this stability result, which is similar to those
of [6, Theorem II.4] and [17, Theorem 3.1].

6 Variants and extensions

As announced above, we collect in this section several variants and extensions of
the previous arguments, which allow to prove existence and uniqueness results
similar to Proposition 1, all on equation (5.8). On the other hand, Section 7
will present the application of our arguments to equations different from (5.8).

6.1 Immediate extensions

6.1.1 Growth at infinity

We first would like to extend our result to the case when the growth at infinity
of b and σ is somewhat more general that the (1 + |x|)L∞ behavior assumed
in (5.41)-(5.42).

For this purpose we return to (5.37)-(5.38)-(5.39), successively. We may
write, instead of (5.37)

∣∣∣∣
∫

IRN

p2
ε b∇φR

∣∣∣∣ =

∣∣∣∣
1

R

∫

R≤|x|≤2R

p2
ε b (∇φ)

( ·

R

)∣∣∣∣

≤ C ‖pε‖
2
L∞ ‖∇φ‖L∞

∫

|x|≥R

∣∣∣∣
b

1 + |x|

∣∣∣∣ , (6.1)
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whenever this last term makes sense and conclude our argument of Section 5.4
without any further change (Note that the right-hand side of (6.1), as that
of (5.37), converges to zero L∞ in time). By linearity we may thus extend
Proposition 1 to the case

b

1 + |x|
∈ L1 + L∞ (6.2)

Likewise, (5.38) may be replaced by

∣∣∣∣
∫

IRN

pε σ
t(x)∇pε · σ

t(x)∇φR

∣∣∣∣

≤ C ‖pε‖L∞ ‖∇φ‖L∞

∫

|x|≥R

∣∣∣∣
σ

1 + |x|

∣∣∣∣ |σ
t∇pε|

≤ C ‖pε‖L∞ ‖∇φ‖L∞

∥∥σt∇pε

∥∥
L2

(∫

|x|≥R

∣∣∣∣
σ

1 + |x|

∣∣∣∣
2)1/2

, (6.3)

when we assume
σ

1 + |x|
∈ L2. Again, the right-hand side of (6.3) goes to zero

as R −→ +∞, in the L1 sense in time, exactly as that of (5.38).
Under the same assumption on σ, we also have, instead of (5.39)

|V (t, ε, R)| =

∣∣∣∣
∫

IRN

pε(σ
t(x)∇φR) . Rε

∣∣∣∣

≤ C ‖pε‖L∞ ‖∇φ‖L∞

∫

|x|≤2R

∣∣∣∣
σ

1 + |x|

∣∣∣∣ |Rε| (6.4)

and the argument proceeds further (for R fixed sufficiently large, the term van-
ishes in the limit ε −→ 0). Therefore

σ

1 + |x|
∈ L2 + L∞ (6.5)

also allows to conclude.

Remark 10 Note that the assumption
σ

1 + |x|
∈ L1 does not a priori allow to

conclude. It seems impossible, in this case, to control the term

∫

IRN

pε σ
t(x)∇pε ·

σt(x)∇φR in a manner similar to (5.38) or (6.3). On the other hand, the term
V (t, ε, R) (which is in fact treated as a term at finite distance) may be easily
handled. This should not be a surprising fact. Assumption (6.5) is the natural

assumption, since it exactly means
a

1 + |x|2
∈ L1 + L∞.

6.1.2 L1 theory

In all Section 5 we have assumed that the initial condition p0 is L2 ∩ L∞ and
have thus constructed a L2 theory, as exemplified by the a priori estimate (5.9).
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Let us indicate here the modification of our argument needed to address the case

p0 ∈ L1 ∩ L∞. (6.6)

To obtain the propagation of the L1 regularity, we first make use of the a priori
estimate (5.13) for a sequence of convex regular functions β converging to the
absolute value function, and deduce from

d

dt

∫
β(p) +

∫ (
pβ′(p) − β(p)

)
div b ≤ 0,

that
d

dt

∫
|p| ≤

∫
|p| |div b | . (6.7)

This, (5.9) and the L∞ bound on p obtained from the maximum principle, show
that

p ∈ X1 :=
{
p ∈ L∞([0, T ], L1 ∩ L∞), σt∇p ∈ L2([0, T ], L2)

}
, (6.8)

for all times.
Since it only makes use of bounds on p that are local in space, the regulariza-

tion argument of Section 5 is not modified. For the same reason, the existence
proof is not modified either, apart from (of course) the functional space that is
considered (X1 instead of X2). The notion of solution is modified correspond-
ingly. As regards uniqueness, it can be verified that the global L1 integrability
of p does not allow for any (even slight) simplification of the argument made,
nor any improvement of the assumptions on b and σ.

6.1.3 Time-dependent b and σ

We mentioned very early in the present article that the case of time-independent
drift vectors b and dispersion matrix σ was considered for simplicity. As was
the case in [6, 17] and many other works, time-dependent coefficients may be
dealt with, as soon as all the regularity and integrability assumptions we made
are taken in the L1 sense in time. More precisely, it is well known, and first
proved in [6], that we may assume

b ∈
(
L1([0, T ],W 1,1

loc (IRN ))
)N

, div b ∈ L1([0, T ], L∞(IRN )),

b

1 + |x|
∈
(
L1([0, T ], L1 + L∞(IRN ))

)N
(6.9)

(instead of (5.41) for time-independent drift vectors) and all the results on
transport equations are preserved, up to slight modifications of the proofs. The
crucial step is the consideration of the error term Qε defined in (5.16). It is easily
shown that a L1 dependence of ‖div b ‖L∞ and ‖∇b ‖L1

loc

allows to conclude that

Qε vanishes in L1([0, T ], L1
loc) as ε goes to zero. We have shown in [17] that the

same setting is also convenient for (5.8) when σ ≡ IId. And since the above proof
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of Proposition 1 mimicks the arguments of [6, 17], this again holds true here
(Note that all terms in b and σ are treated separately in the above argument).

The slight novelty regards the time-dependence of σ. We claim that the
assumption

σ ∈
(
L2([0, T ],W 1,2

loc )
)N×K

,
σ

1 + |x|
∈
(
L2([0, T ], L2 + L∞(IRN ))

)N×K

(6.10)
allows to conclude to existence and uniqueness. Let us make this precise.

It is immediate to note that the time-dependence of σ does not modify at all
the a priori estimate. In the regularization step, we only have to consider the er-
ror terms Rε, Sε =, Tε. Let us begin with the last two, Sε = [ρε, ∂i σik](σjk∂j p)
and Tε = [ρε, σik∂i ](σjk∂j p). The least we can ask is that they vanish in

L1([0, T ], L1
loc(IR

N )). For this to hold true, since we only know that σt∇p is
L2([0, T ], L2(IRN )), we need that the W 1,2 regularity of σ holds in the L2 sense

in time, that is σ ∈
(
L2([0, T ],W 1,2

loc )
)N×K

. The same assumption allows to

treat the term Rε = [ρε, σjk∂j ](p), that vanishes in L2([0, T ], L2
loc(IR

N )) then,

and thus can be conveniently integrated against σt∇pε ∈ L2([0, T ], L2(IRN ))K .
In the uniqueness proof, the above argument shows that all terms at finite

distance may be treated. For the terms containing ∇φR, the same L2 depen-

dence in time of the assumption on
σ

1 + |x|
allow to conclude, as is easily seen

when considering the right-hand sides of (5.38), (5.39), (6.3), (6.4).

All the above extensions are summarized in the following

Proposition 2 [FP equation of divergence form, general case] Assume
b and σ satisfy:

b ∈
(
L1([0, T ],W 1,1

loc (IRN ))
)N

, div b ∈ L1([0, T ], L∞(IRN )),

b

1 + |x|
∈
(
L1([0, T ], L1 + L∞(IRN ))

)N
(6.11)

σ ∈
(
L2([0, T ],W 1,2

loc (IRN ))
)N×K

,
σ

1 + |x|
∈
(
L2([0, T ], L2 + L∞(IRN ))

)N×K

(6.12)
Then, for each initial condition in L1 ∩L∞ (resp. L2 ∩L∞), equation (5.8) has
a unique solution in the space

{
p ∈ L∞([0, T ], L1 ∩ L∞)(resp. L∞([0, T ], L1 ∩ L∞)),

σt∇p ∈ L2([0, T ], L2)

}
.

Remark 11 Note that only σ ∈
(
L1([0, T ],W 1,2

loc )
)N×K

does not allow to con-

clude. Again, as in Remark 10, this is a natural fact.
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Remark 12 The generalization of the results of the present work to drift vectors
b that are BV functions, in the spirit of the works [1, 2, 3, 16], is an interesting
open question.

6.2 A Girsanov transform in law

We now investigate an extension of Proposition 1 very different in spirit from
the extensions considered above. The specific interest of this extension is that
it has an intimate connection with some questions in the theory of stochastic
differential equations.

We intend to prove:

Proposition 3 [Girsanov transform] All the results of Proposition 2 hold
true when σ satisfies (6.12) and

b = b̃ + σ θ, θ ∈ L2([0, T ], L2 + L∞(IRN ))K , b̃ satisfies (6.11). (6.13)

The proof of Proposition 3 is rather straightforward. First we indicate how
the proof of the a priori estimate is modified. We remark that

∫ T

0

∫
bi∂i

p2

2
=

∫ T

0

∫
b̃i∂i

p2

2
+

∫ T

0

∫
σikθk . ∂i p p

=

∫ T

0

∫
b̃i∂i

p2

2
+

∫ T

0

∫
σt∇p . θp

where the correction term is estimated using Hölder inequality:

∣∣∣∣
∫ T

0

∫
σt∇p . θp

∣∣∣∣ ≤

∫ T

0

∥∥σt∇p
∥∥

L2(IRN )
‖θ‖L2+L∞(IRN ) ‖p‖L∞(IRN )

≤
∥∥σt∇p

∥∥
L2([0,T ],L2(IRN ))

‖θ‖L2([0,T ],L2+L∞(IRN )) × . . .

‖p‖L∞([0,T ],L2∩L∞(IRN )) .

Consequently, this correction term does not modify the a priori estimate (5.8).
Second, the regularization procedure requests the consideration of the addi-

tional error term

ρε ? σikθk . ∂i p− σikθk . ∂i pε = [ρε, σikθk . ∂i ](p),

= θk[ρε, σik . ∂i ](p) + [ρε, θk](σik∂i p),

= θ . Yε + Zε, (6.14)

We have

Yε = [ρε, σ
t∇](p)

ε−→0
−→ 0, in L2([0, T ], L2

loc(IR
N ))K (6.15)

because σ ∈ L2([0, T ],W 1,2
loc (IRN ))N×K and p is L∞([0, T ]× IRN ). On the other

hand,

Zε = [ρε, θ](σ
t∇p)

ε−→0
−→ 0, in L1([0, T ], L1

loc(IR
N )) (6.16)
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because σt∇p ∈ L2([0, T ], L2(IRN ))K and θ ∈ L2([0, T ], L2
loc(IR

N ))K . These
two convergences show that the error term (6.14) vanishes, as ε goes to zero, in
L1([0, T ], L1

loc(IR
N )). This allows to perform the regularization step as above.

Third, we have to check that the modification to (6.1) namely

∫ T

0

∫

IRN

p2
ε σ θ .∇φR ≤ C ‖∇φ‖L∞

∫

|x|≥R

p2
ε

∣∣∣∣
σ

1 + |x|
θ

∣∣∣∣ , (6.17)

vanishes for R large enough, uniformly in ε. This holds because ∇φ is L∞, and

p2 ∈ L∞([0, T ], L1 ∩ L∞(IRN )),
σ

1 + |x|
∈
(
L2([0, T ], L2 + L∞(IRN ))

)N×K
,

θ ∈ L2([0, T ], L2 + L∞(IRN ))K .

This concludes the proof of Proposition 3.

Remark 13 Note that the assumption (6.2) on b , and the assumptions (6.5)
on σ and (6.13) on θ are consistent with one another, since when comparing σθ
to b , we have:

σ

1 + |x|
∈ L2 + L∞ and θ ∈ L2 + L∞ yields

σθ

1 + |x|
∈ L1 + L∞,

which “agrees” with (6.2).

Remark 14 When we wish to consider p ∈ L1 + L∞ instead of p ∈ L2 + L∞,
as in Section 6.1.2, it is simple to deal with θ ∈ L2(IRN ). Indeed,

∣∣∣∣
∫ T

0

∫
σikθk . ∂i p

∣∣∣∣ ≤
∥∥σt∇p

∥∥
L2([0,T ],L2(IRN ))

‖θ‖L2([0,T ],L2+L∞(IRN )) , (6.18)

and thus (6.7) is valid, up to a correction term that does not modify the argu-
ment. On the other hand, the adaptation is unclear for θ ∈ L2 + L∞(IRN ).

Remark 15 We do not know how to treat a case when
θ

1 + |x|
∈ L2 + L∞.

It is now useful to explain how we may interpret, in terms of probability
theory, the invariance of our assumptions on b with respect to the addition of
σ θ. For this purpose, we recall the well known Girsanov theorem. Consider
(Xt,Wt) a solution to the stochastic differential equation

dXt = (b (Xt) + σ θ(Xt)) dt+ σ(Xt)dWt, (6.19)

for b , σ regular and θ in L2. Next we may set

Wt = Wt +

∫ t

0

θ(Xs) ds, (6.20)
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which is a (K-dimensional) brownian motion under the probability IPθ defined
by

dIPθ

dIP
= exp

(∫ t

0

θ(Xs) . dWs−
1

2

∫ t

0

|θ|2(Xs) ds

)
(6.21)

Then, (Xt,Wt) is a (weak) solution to the stochastic differential equation

dXt = b (Xt) dt+ σ(Xt)dWt. (6.22)

The Girsanov transform therefore amounts to replacing the drift vector b by
b −σ θ so that each given trajectory Xt still solves the equation (but for another
brownian, now implicitly depending on Xt).

In our context, the invariance with respect to the addition of σ θ could thus
be seen as a Girsanov transform for laws rather than trajectories.

6.3 Full rank dispersion matrices

A specific argument may be done when the matrix σσt is uniformly positive
definite i.e. there exists some constant C0 > 0 such that

∣∣σt(t, x)ζ
∣∣2≥ C0

∣∣ζ
∣∣2 for all ζ ∈ IRN and for almost all (t, x) ∈ IR+ × IRN . (6.23)

Let us as above begin with the formal a priori estimate. Inequality (6.23)
clearly implies that ∫

IRN

∣∣σt∇p
∣∣2 ≥ C0

∫

IRN

∣∣∇p
∣∣2, (6.24)

and thus, assuming div b ∈ L1([0, T ], L∞(IRN )), the a priori estimate (5.9)
implies that the natural functional space to consider is

X2,def =
{
p ∈ L∞([0, T ], L2 ∩ L∞) ∩ L2([0, T ], H1), σt∇p ∈ L2([0, T ], L2)

}
,

(6.25)
instead of (5.11).

We now turn to the regularization step. With such a H1 integrability on
the solution, it is well known from [17] that the regularization step can then
accomodate a drift vector that is only L2([0, T ], L2

loc(IR
N )) and not necessarily

W 1,1 in space (see the last assertion of Lemma 1). The error term for the first
order operator is thus expressed as (5.15) and treated as in [17]. As regards the
error term associated to the second order operator, we write, instead of (5.17),

ρε ? ∂i (σikσjk∂j p) − ∂i (σikσjk∂j pε) = ∂i ([ρε, σikσjk∂j ](p)) (6.26)

where we now denote by ∂iRε the right-hand side. If we next assume

σ ∈ L∞([0, T ], L∞
loc(IR

N )N×K

we see, by application of Lemma 1, that

Rε = [ρε, σikσjk∂j ](p)
ε−→0
−→ 0, in L2([0, T ], L2

loc(IR
N )) (6.27)
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Multiplying the regularized equation by pεφR and integrating in space and
time yields the following specific contribution

∫ T

0

∫
[ρε, σikσjk∂j ](p) ∂i (pφR) =

∫
Rε(φR ∂i p+ p ∂i φR) (6.28)

where both terms of the right-hand side are shown to vanish when ε goes to
zero (for R fixed) because

φR ∈W 1,∞, p ∈ L2([0, T ], H1(IRN )), Rε
ε−→0
−→ 0 inL2([0, T ], L2

loc(IR
N )).

Consequently, the regularization may be performed, and the rest of the argu-
ment for existence and uniqueness follows unchanged. The following proposition
is thus proved.

Proposition 4 [Positive definite diffusion matrices] Assume that the ma-
trix σσt is uniformly positive definite (i.e. that (6.23) holds) and that




b ∈ L2([0, T ], L2
loc(IR

N ))N ,
b

1 + |x|
∈
(
L1([0, T ], L1 + L∞(IRN ))

)N
,

div b ∈ L1([0, T ], L∞(IRN ))

σ ∈ L∞([0, T ], L∞
loc(IR

N )N×K ,
σ

1 + |x|
∈
(
L2([0, T ], L2 + L∞(IRN ))

)N×K

(6.29)
Then, for each initial condition in L1 ∩L∞ (resp. L2 ∩L∞), equation (5.8) has
a unique solution in the space

{
p ∈ L∞([0, T ], L2 ∩ L∞)(resp. L∞([0, T ], L1 ∩ L∞)),

p ∈ L2([0, T ], H1), σt∇p ∈ L2([0, T ], L2)

}
.

Remark 16 Instead of the two assumptions b ∈ L2([0, T ], L2
loc(IR

N ))N , div b ∈
L1([0, T ], L∞(IRN )) we may equivalently assume

b ∈ L2([0, T ], L2(IRN ))N ,

(note the global L2 integrability). This owes to the majoration:
∣∣∣∣
∫ T

0

∫
b .∇f f

∣∣∣∣ ≤ ‖b ‖L2([0,T ],L2(IRN )) ‖∇f‖L2([0,T ],L2(IRN )) ‖f‖L∞([0,T ]×IRN )) ,

(6.30)
which then allows for establishing the a priori estimate. On the other hand, the
regularization step is not modified since it consists of a local argument.

Remark 17 All the extensions of the results of the previous section may be
applied mutatis mutandis to the above proposition. Also, by linearity, we may
consider a drift vector that is a sum of b 1 satisfying the assumptions of Propo-
sition 4 and b 2 satisfying those of Proposition 2 (or of its extension Proposi-
tion 3).
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7 Adaptation to Fokker-Planck type equations

We devote this section to the adaptation of the above results (on (5.8)) to the
Fokker-Planck equation (5.2) and the backward Kolmogorov equation (5.3). Ac-
tually, it will be seen that the adaptation is straightforward, up to a modification
of the drift vector b into the drift vector bσ defined in (5.4).

Considering that

−
1

2
∂2

ij (σikσjk p) = −
1

2
∂i (σikσjk∂j p) −

1

2
∂i (∂j (σikσjk) p) (7.1)

the Fokker-Planck equation (5.2)

∂t p+ ∂i (pbi) −
1

2
∂2

ij (σikσjk p) = 0

may be written as

∂t p+ ∂i

(
p (bi −

1

2
∂j (σikσjk))

)
−

1

2
∂i (σikσjk∂j p) = 0

that is

∂t p+ ∂i (pbσi ) −
1

2
∂i (σikσjk∂j p) = 0. (7.2)

This is equation (5.8) with bσ instead of b .
Likewise, we remark that the second order operator of the backward Kol-

mogorov equation (5.3)

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0.

may be written as

−
1

2
σikσjk∂

2
ij f = −

1

2
∂i (σikσjk∂j f) +

1

2
∂i (σikσjk) ∂j f. (7.3)

Thus (5.3) also reads as

∂t f − (bi −
1

2
∂j (σikσjk)) ∂i f −

1

2
∂i (σikσjk∂j f) = 0,

that is

∂t f − bσi ∂i f −
1

2
∂i (σikσjk∂j f) = 0. (7.4)

This latter equation is the adjoint of equation (5.8), where the drift vector b
has been replaced by bσ . This can also be proved directly from (7.2) using that
(5.3) and (5.2) are adjoint from one another.

It follows from the above observations that our results readily apply to (5.2),
and, up to the passage to adjoint, to (5.3). We thus have.
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Proposition 5 [Fokker-Planck equation] Assume b and σ satisfy:

bσ ∈
(
L1([0, T ],W 1,1

loc (IRN ))
)N

, div bσ ∈ L1([0, T ], L∞(IRN )),

bσ

1 + |x|
∈
(
L1([0, T ], L1 + L∞(IRN ))

)N
(7.5)

and (6.12). Then, for each initial condition in L1 ∩ L∞ (resp. L2 ∩ L∞), the
Fokker-Planck equation (5.2) has a unique solution in the space

{
p ∈ L∞([0, T ], L1 ∩ L∞) (resp. L∞([0, T ], L1 ∩ L∞)),

σt∇p ∈ L2([0, T ], L2)

}
.

Corollary 1 [Backward Kolmogorov equation] The same conclusion holds
mutatis mutandis for equation (5.3).

Remark 18 It is unclear to us how to interpret the “natural” assumption ap-
pearing in Proposition 5 on the modified drift vector bσ in terms of the theory of
stochastic differential equations. Why is it that this assumption does not spon-
taneously hold on the original drift vector b nor on the Stratanovich drift vector
bStrat (even if of course it can be translated in terms of the latter). This ques-
tion could be addressed in the light of the relation between ordinary differential
equations and stochastic differential equations (see [8, 9, 26, 27]).

Remark 19 To follow up on the previous remark, let us emphasize that we are
not able to prove the results of Proposition 5 when b , instead of bσ , satisfies
(7.5). See however the two arguments in Section 8.1 that go in this direction.

Of course, all the extensions of our results are still valid modulo the trans-
formation of the drift vector by addition of σθ as in Proposition 3.

An interesting extension is the following. We know from Proposition 3 that
whenever we are able to treat (b , σ) we are also able to treat (b + σ θ, σ), with
θ ∈ L2([0, T ], L2 + L∞(IRN ))K (from (6.13)). So we may apply this to (5.2)
written in the form (7.2). We therefore know Proposition 5 extends to any
bσ + σ θ for convenient θ. Substracting (5.7) to (5.4), we see that

(bσ − bStrat )i = −
1

2
σik ∂j σjk = σ θ,

with θ = − 1
2 ∂j σjk ∈ L2([0, T ], L2(IRN ))K as soon as σ ∈ L2([0, T ],W 1,2 +

W 1,∞(IRN ))N×K Therefore, we may also conclude on the equation (5.2) with
an assumptions on the drift vector bStrat in place of those on bσ .

Of course, the same holds for (7.4)

We may also extend Proposition 4 (and the Remarks 16 and 17) to the
setting of equations (5.2) and (5.3), simply replacing again b by bσ .
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8 The Lipschitz case, and related issues

Assumption (7.5) states that bσ = b − 1
2 div (σσt) needs to be W 1,1, with

its divergence controlled. Thus it implicitly contains a condition on second
derivatives of σ (even if such derivatives are not all derivatives, and in addition
are aggregated with derivatives of the drift vector b ). The question arises so
as to know whether the existence and uniqueness result also holds for (5.2) and
(5.3) in the absence of any such condition involving any second derivatives of
σ. Of course, this is related to the treatment of the original drift vector b as
noticed in Remarks 18 and 19.

In particular, it is of interest to test our techniques of proof on the classical
case of Lipschitz regular coefficients bi and σik. In principle, this case is “the best
case scenario”, as recalled in Section 3.2.2. Our arguments above do not cover
this case, precisely because of the need for some control on some second order
derivatives of σ . Section 8.2 below show the type of results we are nevertheless
able to establish in that situation, slightly modifying other assumptions (on the
initial condition in particular).

Before we get to this Lipschitz case, we make in Section 8.1 several remarks
on how to avoid assumptions on second order derivatives. The first remark,
contained in the next section, turns out to be useful for the Lipschitz case,
although it is important to note that this estimate is not restricted to the
Lipschitz setting.

8.1 First order derivatives of σ

8.1.1 A specific version of the a priori estimate

First, we concentrate on the term that transforms (5.8) into (5.2), that is the
last term of (7.1):

−
1

2
∂i (∂j (σikσjk) p).

A simple calculation shows that the corresponding term in the a priori estimate
may be decomposed in the following manner:

1

2

∫
∂j (σikσjk) ∂i

f2

2
=

∫
(∂i σik) (σjk∂j f) f

+
1

4

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
f2. (8.1)

Indeed, we have, integrating by parts,

1

2

∫
(∂j σik)σjk ∂i

f2

2
= −

1

2

∫
(∂i σjk) (∂j σik)

f2

2
−

1

2

∫
σjk ∂

2
ij σik

f2

2
, (8.2)

and likewise

1

2

∫
σik(∂j σjk) ∂i

f2

2
= −

1

2

∫
(∂i σik) (∂j σjk)

f2

2
−

1

2

∫
σik ∂

2
ij σjk

f2

2
, (8.3)
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Substracting (8.3) from (8.2) yields

1

2

∫
(∂j σik)σjk ∂i

f2

2
=

1

2

∫
σik(∂j σjk) ∂i

f2

2

−
1

2

∫ (
(∂i σjk) (∂j σik) − (∂i σik)2

) f2

2
.

(8.4)

Equation (8.1) is readily obtained adding

∫
(∂j σik)σjk ∂i

f2

2
to both sides.

It follows that, from (5.2)

∂t p+ ∂i (pbi) −
1

2
∂2

ij (σikσjk p) = 0,

the following L2 energy estimate is obtained

d

dt

∫
f2

2
+

∫
(div b )

f2

2
+

∫
|σt ∇f |2

−

∫
(∂i σik) (σjk∂j f) f −

1

4

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
f2 = 0,

(8.5)

and this form is now preferred to (5.9) with b = bσ . Each of the two new
terms is now treated as follows. The first term may be bounded as follows

∣∣∣∣
∫

(∂i σik) (σjk∂j f) f

∣∣∣∣ ≤ ‖∂i σik‖L2(IRN )

∥∥σt∇f
∥∥

L2(IRN )
‖f‖L∞(IRN ) (8.6)

while the second term is bounded by

∣∣∣∣
∫ (

(∂i σik)2 − (∂j σik)(∂i σjk)
)
f2

∣∣∣∣ ≤ 2 ‖∂i σik‖
2
L2(IRN ) ‖f‖

2
L∞(IRN ) (8.7)

Consequently, assuming e.g.

σ ∈ L2([0, T ],W 1,2(IRN ))N×K ,

we obtain, say,

d

dt

∫
f2

2
+

∫
(div b )

f2

2
+

1

2

∫
|σt ∇f |2 ≤ C (8.8)

for some constant C depending on the data. The conclusions of the a priori
integrability of the solution, namely:

p ∈ L∞([0, T ], L2 ∩ L∞), σt∇p ∈ L2([0, T ], L2)
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are not modified (for any finite final time T of course). A similar argument
holds when

σ ∈ L2([0, T ],W 1,2 +W 1,∞(IRN ))N×K .

No condition on the second derivatives is required at this stage.
Unfortunately, we are not able to perform the regularization in the same

manner, under the only first order assumption above. However, the above argu-
ment and the estimate will play a role in the case of Lipschitz regular coefficients
we will consider in the next section.

Remark 20 Note that all the above work in (8.1) to (8.4) aims to accomodate
the fact that σ is not symmetric. Otherwise, things are much simpler.

8.1.2 On the one-dimensional setting

A second remark that is in order concerns the one-dimensional setting. It
is again related to the issue of symmetry, as Remark 20 above. When the
ambient dimension N is N = 1, then the last term of (7.1) simplifies into

−
1

2
∂i (∂j (σikσjk) p) = − (σ1kσ

′
1k p)

′
, where the prime denotes differentiation

with respect to the only space variable x1. In other terms, the difference in drift
vectors bσ − b is simply σ1kσ

′
1k. It is of the general form σ θ with θk = σ′

1k

square integrable in space as soon as σ ∈ L2([0, T ],W 1,2(IR))K . The same argu-
ment applies to the Stratanovich drift vector bStrat . Consequently, we deduce
from Propositions 2, 3, and 5:

Corollary 2 [One-dimensional setting] In one dimension, assume that any
one of the three drift vector b , bσ or bStrat satisfies

b ∈
(
L1([0, T ],W 1,1

loc (IR))
)
, div b ∈ L1([0, T ], L∞(IR)),

b

1 + |x|
∈
(
L1([0, T ], L1 + L∞(IR))

)
(8.9)

and that σ satisfies

σ ∈
(
L2([0, T ],W 1,2

loc (IR))
)K

,
σ

1 + |x|
∈
(
L2([0, T ], L2 + L∞(IR))

)K
(8.10)

Then, for each initial condition in L1 ∩L∞ (resp. L2 ∩L∞), the Fokker Planck
equation of divergence form (5.8), the Fokker-Planck equation (5.2), and the
backward Kolmogorov equation (5.3) all have a unique solution in the space

{
p ∈ L∞([0, T ], L1 ∩ L∞) (resp. L∞([0, T ], L1 ∩ L∞)),

σt∇p ∈ L2([0, T ], L2)

}
.
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8.1.3 On the one-dimensional setting again

Wee would now like to comment on the W 1,2 Sobolev regularity we impose
on the dispersion matrix σ. We may provide one argument in order to show
some optimality of this assumption. Again, this argument concerns the one-
dimensional setting, and we are not able to extend it to higher dimensions.

We anticipate on the arguments of [18] and momentarily admit that the
results we have proved here on Fokker-Planck type equations have immedi-
ate consequences on the well-posedness of the stochastic differential equations.
More precisely, we admit that the assumption σ ∈W 1,2 allows for proving path-
wise uniqueness for the stochastic differential equation (using the Fokker-Planck
equation in doubled dimension, as introduced in Section 3.3)

Then we remark that the limit case for the Sobolev imbedding in one dimen-
sion precisely reads W 1,2 ↪→ C0,1/2. As a matter of fact, the C0,1/2 Schauder
regularity is the “natural” regularity that allows to show pathwise uniqueness
(and is actually the limit case for this, but we will not show this sharpness here).
The result is well-known (see e.g. [14, 15, 25]). One possible argument is the
following.

Let us consider two (one-dimensional) solutions Xt and Yt of the stochastic
differential equation (3.3) with the same (K-dimensional) brownian motion Wt:

dXt = σ(Xt) dWt, dYt = σ(Yt) dWt,

and the same initial condition. Note that we have assume there is no drift:
b = 0. We next introduce for t ≥ 0 the cut-off function

ψε(t) =

{
t log

(
t
ε

)
− (t− ε) when t ≥ ε

0 otherwise
(8.11)

It is simple to see that this function is convex and twice differentiable, with

ψ′′
ε (t) =

{
1
t when t ≥ ε

0 otherwise.
(8.12)

By the Ito rule, we readily have

ψε(|Xt − Yt|) − ψε(0)

=

∫ t

0

ψ′
ε(|Xs − Ys|) (σ(Xs) − σ(Ys)) dWt

+
1

2

∫ t

0

ψ′′
ε (|Xs − Ys|) (σ(Xs) − σ(Ys))

(
σt(Xs) − σs(Ys)

)
ds

(8.13)

Thus,

ψε(|Xt − Yt|)

−
1

2

∫ t

0

ψ′′
ε (|Xs − Ys|) (σ(Xs) − σ(Ys))

(
σt(Xs) − σt(Ys)

)
ds

= Mt (8.14)
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is a martingale. We now fix δ > 0. Denoting by τ the stopping time

τ = inf {t ≥ 0, |Xt − Yt| ≥ δ} ,

we deduce from (8.14) and the stopping time theorem that

IE

(
ψε(|Xt∧τ − Yt∧τ |)

−
1

2

∫ t∧τ

0

ψ′′
ε (|Xs − Ys|) (σ(Xs) − σ(Ys))

(
σt(Xs) − σt(Ys)

)
ds

)

= IE(Mt∧τ ) = IE(M0) = 0. (8.15)

Since ψ′′
ε is given by (8.12), we have

0 ≤ ψ′′
ε (z) ≤

1

z

for all t ≥ 0, and thus in particular for z = |Xs − Ys|. On the other hand, σ is
assumed C0,1/2 thus

∣∣(σ(Xs) − σ(Ys))
(
σt(Xs) − σt(Ys)

)∣∣ ≤ C |Xs − Ys| ,

for some irrelevant constant C. Therefore (8.15) reads

IE (ψε(|Xt∧τ − Yt∧τ |))

= IE

(
1

2

∫ t∧τ

0

ψ′′
ε (|Xs − Ys|) (σ(Xs) − σ(Ys))

(
σt(Xs) − σt(Ys)

)
ds

)

≤ C t ∧ τ ≤ C t (8.16)

This implies that

IP(τ ≤ t)ψε(δ) = IP(τ ≤ t)ψε(|Xτ − Yτ |) ≤ IE (ψε(|Xt∧τ − Yt∧τ |)) ≤ C t.

Letting ε go to zero, we have ψε(δ) −→ +∞ and thus, keeping t and δ fixed,
we obtain IP(τ ≤ t) = 0 for all times t. This shows IP(τ < +∞) = 0. Since this
holds for all δ, we obtain Xt = Yt and pathwise uniqueness.

8.2 Lipschitz regular coefficients

We are now in position to consider Lipschitz regular coefficients b and σ. In
fact in this specific case, the technique of proof, and the results themselves,
sensitively depend on the regularity of the initial condition. The cases of a H1,
a Lipschitz regular, and a L2 initial condition will be examined in the three
following subsections, respectively.

At this stage of the exposition, the reader is assumed to be familiar with
the basic techniques and ingredients of our work. We will therefore sketch the
proof of the results, only making explicit the significant differences with the
previously considered settings.
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8.2.1 H1 initial conditions

For H1 initial conditions, we are able to prove the.

Proposition 6 [Lipschitz regular coefficients, H1 initial condition] As-
sume b and σ are time-independent and satisfy:

b ∈
(
Liploc(IR

N )
)N

, div b ∈ L∞(IRN ),
b

1 + |x|
∈
(
L1 + L∞(IRN )

)N

σ ∈
(
Lip(IRN )

)N×K
,

σ

1 + |x|
∈
(
L2 + L∞(IRN )

)N×K
,

along with the additional assumption

∂ibj + ∂jbi

2
≤ C Id, (8.17)

in the sense of symmetric matrices, for some constant C independent of x.
Then, for each initial condition in H1, equation (2.12), that is

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0

has a unique solution in the space L∞([0, T ], H1).

Remark 21 Of course the usual extensions are possible: divb bounded from
below, L1 time-dependence, etc. The case of a definite positive matrix σtσ is of
course simpler. Also, the adjoint form of the equation may be considered. We
omit all this here.

To prove the uniqueness statement contained in Proposition 6 (the existence
statement is, as always, the easy part), the key step is the a priori estimate,
which basically consists in proving that the H1 regularity (in space) of the so-
lution at initial time is propagated forward in time, so that the natural solution
space is L∞([0, T ], H1). Once this formal estimate is established, the regulariza-
tion step is straightforward. It is indeed well known that when the solution f is
H1, a transport term c ·∇f may be adequately regularized with b only in Lp

loc,
say. No W 1,1 Sobolev regularity is then needed on c . This is the last statement
of Lemma 1 recalled above. Applying this statement to c = b− 1

2∂j (σikσjk), we
obtain, for Lipschitz b and σ, that c is locally bounded and thus [ρε, c · ∇](f)
vanishes in L2

loc with ε. The other terms of the equation are regularized in the
usual way, as performed in Section 5.3. Uniqueness follows.

So let us outline the proof of the adequate formal H1 a priori estimate.

To begin with, we differentiate equation (2.12) with respect to the m-th
space variable xm:

∂t ∂m f − bi∂
2
imf − (∂m bi) ∂i f −

1

2
∂m (σikσjk) ∂2

ij f −
1

2
σikσjk∂m ∂2

ij f = 0,
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next multiply by ∂m f , sum over m and integrate over the space. This leads to:

1

2

d

dt

∫
|∇f |

2
+

1

2

∫
div b |∇f |

2
−

∫
(∂m bi) ∂i f ∂m f

−
1

2

∫
σikσjk∂m ∂2

ij f∂m f −
1

2

∫
∂m (σikσjk) ∂2

ij f ∂m f = 0.

(8.18)

The first two terms are standard. Note that for the second one, only a control
from below on div b , namely (5.12), is needed, as pointed out in Remarks 3 and
21. The third one can be taken care of, assuming (8.17), which implies

−

∫
(∂m bi) ∂i f ∂m f ≥ −C

∫
|∇f |

2
. (8.19)

The fourth term is treated as follows:

−
1

2

∫
σikσjk∂m ∂2

ij f∂m f =
1

2

∫
σikσjk∂

2
im f∂2

jm f

+
1

2

∫
∂j (σikσjk)∂2

im f∂m f. (8.20)

We henceforth denote by
∫ ∣∣σt∇(∇f)

∣∣2 =

∫ ∑

k

∑

m

(
σik ∂

2
im f

)2
. (8.21)

We then remark, using for each m the identity (8.1) with ∂m f instead of f , and
summing over m,

1

2

∫
∂j (σikσjk)∂2

im f∂m f =

∫
(∂i σik) (σjk∂

2
jm f) ∂m f

+
1

4

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
|∇f |2.

Inserting this in (8.20), we obtain the new expression for the fourth term of
(8.18):

−
1

2

∫
σikσjk∂m ∂2

ij f∂m f

=
1

2

∫ ∣∣σt∇(∇f)
∣∣2 +

∫
(∂i σik) (σjk∂

2
jm f) ∂m f

+
1

4

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
|∇f |2.

(8.22)

and thus, using the Young inequality, the estimation

−
1

2

∫
σikσjk∂m ∂2

ij f∂m f ≥

(
1

2
− η

)∫ ∣∣σt∇(∇f)
∣∣2 − Cη ‖∇σ‖

2
L∞

∫
|∇f |

2
,

(8.23)
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for η small and some irrelevant constant Cη. It remains now to treat the fifth
term of (8.18), indeed by the same technique:

−
1

2

∫
∂m (σikσjk) ∂2

ij f ∂m f = −
1

2

∫
(∂m σik) (σjk ∂

2
ij f) ∂m f

−
1

2

∫
(∂m σjk) (σik ∂

2
ij f) ∂m f

≥ −η

∫ ∣∣σt∇(∇f)
∣∣2 − Cη ‖∇σ‖

2
L∞

∫
|∇f |

2
.

Collecting (8.19) to (8.24) and inserting all of them in (8.18), we obtain the
energy estimate:

1

2

d

dt

∫
|∇f |

2
+

1

4

∫ ∣∣σt∇(∇f)
∣∣2 ≤ C

∫
|∇f |

2
, (8.24)

for some “large” constant C, depending on the various previous constants, C in
(8.17), ‖div b ‖L∞ , and ‖∇σ‖L∞ .

Next, we consider the formal L2 estimate (8.5) obtained above, namely

d

dt

∫
f2

2
+

∫
(div b )

f2

2
+

∫
|σt ∇f |2

−

∫
(∂i σik) (σjk∂j f) f −

1

4

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
f2 = 0,

which gives
1

2

d

dt

∫
f2 +

1

2

∫
|σt ∇f |2 ≤ C

∫
f2, (8.25)

again for some constant C depending on ‖div b ‖L∞ , and ‖∇σ‖L∞ .
The combination of (8.24) and (8.25) shows that, formally,

f ∈ L∞([0, T ], H1),

and the proof can be completed.

Remark 22 In addition to the L∞([0, T ], H1) regularity, we also get from the
above proof ∫ T

0

∫
|σt ∇f |2 +

∫ T

0

∫ ∣∣σt∇(∇f)
∣∣2 <∞.

Remark 23 In fact, we have made use in the above proof of the global Lipschitz
regularity of σ. See indeed equations (8.24) and (8.25). The proof might be
adapted to cover the case when σ is only locally Lipschitz, at the price of putting
some extra growth assumptions on ∇σ at infinity. On the other hand, the local
Lipschitz regularity of b is sufficient, because we have the global controls on
‖div b ‖L∞ and (8.17).
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8.2.2 Lipschitz initial conditions

It is well known that if the coefficients b and σ are Lipschitz regular, and if
the solution of the Fokker-Planck equation (or that of the bacward Kolmogorov
equation) is Lipschitz at initial time, then it is Lipschitz for all time. One way
of proving this, say for the equation (2.12), is to consider the representation
formula for the solution, in terms of the solution of the stochastic differential
equation. The Lipschitz regularity follows.

We are now going to prove this propagation of the Lipschitz regularity, ar-
guing only on the partial differential equation. This will allow us to circumvent
the question of relating the partial differential equation to the stochastic dif-
ferential equation, and also to prove an existence and uniqueness result in the
appropriate class of functions. In other words, we know from probability theory
that in this setting (b , σ and the initial condition all Lipschitz), there exists
at least one solution to the PDE, which is Lipschitz regular for all times. Does
the solution constructed from our a priori + regularization procedure coincide
with that one? The answer turns out to be positive, and this is the purpose of:

Proposition 7 [Lipschitz regular coefficients, H1 initial condition]
Assume the conditions on b and σ contained in the statement of Proposi-

tion 6. Assume that the initial condition f0 is Lipschitz. Then equation equation
(2.12)

∂t f − bi∂i f −
1

2
σikσjk∂

2
ij f = 0

has a unique solution Lipschitz regular in space, for all times. In addition, this
unique solution satisfies the L2 estimate

d

dt

∫
f2 +

∫
|σt ∇f |2 ≤ C

∫
f2. (8.26)

The proof of the above proposition relies on arguments that are now well
known to the reader. The only point we have to make is that the Lipschitz
regularity is propagated forward in time, that is, f(t, x) solution to (2.12) is
Lipschitz-in-x if f0 is.

The formal proof of the Lipschitz regularity is a consequence of the maximum
principle for equation (2.12). We compute ∂t |∇f |

2 using the expression of ∂t f

provided by the equation:

1

2
∂t (∂m f)2 = ∂m f ∂2tmf

= ∂m f bi∂
2
im f + ∂m f ∂m bi∂i f +

1

2
∂m f σikσjk∂m∂

2
ij f

+
1

2
∂m f ∂m (σikσjk)∂2

ij f. (8.27)

We successively treat each term of the right-hand side. First,

∂m f bi∂
2
im f = b · ∇

(
|∇f |2

2

)
(8.28)
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Second, using (8.17),
|∂m f ∂m bi∂i f | ≤ C|∇f |2. (8.29)

Third,

∂m f σikσjk∂m∂
2
ij f = σikσjk ∂

2
ij

(
|∇f |2

2

)
− σikσjk∂

2
im f ∂2

jm f

= σikσjk ∂
2
ij

(
|∇f |2

2

)
−
∣∣σt∇(∇f)

∣∣2 . (8.30)

using notation (8.21). And eventually

∣∣∂m f ∂m (σikσjk)∂2
ij f
∣∣ =

∣∣∂m f (∂m σik)σjk∂
2
ij f + ∂m f (∂m σjk)σik∂

2
ij f
∣∣

≤ |∇f | ‖∇σ‖L∞

∣∣σt∇(∇f ]
∣∣ (8.31)

Collecting all the above, we obtain from (8.27):

∂t

(
|∇f |2

2

)
− b · ∇

(
|∇f |2

2

)
−

1

2
σikσjk ∂

2
ij

(
|∇f |2

2

)
+
∣∣σt∇(∇f)

∣∣2

≤ |∇f | ‖∇σ‖L∞

∣∣σt∇(∇f ]
∣∣ (8.32)

from where we deduce

∂t

(
|∇f |2

2

)
− b · ∇

(
|∇f |2

2

)
−

1

2
σikσjk ∂

2
ij

(
|∇f |2

2

)
≤ C |∇f | , (8.33)

and using the maximum principle, the Lipschitz regularity of f for all times.

Now that we have established the (formal) Lipschitz regularity of the solu-
tion, we argue as follows. We regularize all the data so as to obtain a smooth
solution. This smooth solution satisfies the L2 estimate, and satisfies also the
Lipschitz regularity. Both facts are now rigorous, and not only formal, and hold
independently of the regularization parameter ε. As ε goes to zero, we obtain a
solution to the equation, which still satisfies these two conditions. This shows
the existence in the appropriate class. On the other hand, uniqueness is also
easy: the difference of two such solutions is Lipschitz, and thus the regulariza-
tion step readily carries through.

8.2.3 L2 initial conditions

We conclude this section, and this article, with the case of a L2 initial condition,
and Lipschitz regular b and σ.

First, we may approximate the L2 initial condition f0 by a sequence fn
0 of

Lipschitz functions, converging in L2 to f0. Each of these fn
0 may be taken as an

initial condition for the equation, giving rise to some solution fn(t, x), agreeing
at initial time with fn

0 . All functions fn are Lipschitz and satisfy estimate
(8.5). It is a straightforward consequence of the arguments and results of the
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preceeding section that the sequence of functions fn is converging to some f ,
which solves the equation with initial condition f0. Remark indeed that since we
may regularize Lipschitz solutions, we may estimate the distance between two
such solutions, and prove that the sequence of solutions is a Cauchy sequence in
L∞([0, T ], L2), and σt∇fn is also a Cauchy sequence in L2([0, T ], L2) (because,
at initial time, fn

0 is a Cauchy sequence in L2). Therefore it converges, and, by
the same argument, the limit is shown to be a solution, for initial condition f0,
which satisfies estimate (8.5). This defines the unique prolongation of Lipschitz
solutions to L2 initial conditions.

On the other hand, if we are now given a solution to (2.12) with L2 initial
condition f0, it is not clear that this solution is this unique prolongation, and
thus is unique. All what we are able to prove in this direction is the following.

Considering (8.5), let us denote by

E(T, f) =

∫
f2

2
(T ) +

∫ T

0

∫
(div b )

f2

2
+

∫ T

0

∫
|σt ∇f |2

−

∫ T

0

∫
(∂i σik) (σjk∂j f) f

−
1

4

∫ T

0

∫ (
(∂i σik)2 − (∂j σik)(∂i σjk)

)
f2 (8.34)

We next introduce the following formulation of equation (2.12): f is said to
be a solution in the energy sense to (2.12), with initial condition f0 if, for all
0 ≤ t ≤ T and all smooth functions ϕ(s, x), we have

E(t, f − ϕ) = −

∫ t

0

∫ (
∂t ϕ− bi∂i ϕ−

1

2
σikσjk∂

2
ij ϕ

)
(f − ϕ)

+
1

2

∫
|f0 − ϕ(0, ·)|

2
(8.35)

It may easily be verified that the above formal condition (8.35) amounts to
{
∂t f − bi∂i f − 1

2σikσjk∂
2
ij f = 0,

f(0) = f0,

This owes to the fact that, formally again, because of (8.5) and (8.34),

E(t, f − ϕ) =

∫ t

0

∫ (
∂t − bi∂i −

1

2
σikσjk∂

2
ij

)
(f − ϕ) · (f − ϕ)

+
1

2

∫
|f(0, ·) − ϕ(0, ·)|

2
(8.36)

The condition (8.35) therefore embodies equation (2.12) without explicitly ma-
nipulating the latter.

Then we may show that, given a L2 initial condition f0, we may construct
a solution to (2.12) in the energy sense (8.35), and that this solution is unique
in this class.
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Indeed, approximating f0 by a sequence of Lipschitz functions, we simply
consider the above defined unique prolongation of Lipschitz solutions, starting
from f0. As, again, Lipschitz solutions may be approximated by regularization,
they satisfy (8.35). This shows existence.

As regards uniqueness, we argue as follows. Being given a solution g in
the sense of (8.35), we compare it with the solution f obtained by Lipschitz
approximation. For this purpose, consider fn a sequence of Lipschitz solution
that converges to f , and regularize further these solutions fn by convolution, so
as to obtain fn,ε = fn ? ρε. Clearly, by the arguments of this article,

(
∂t − bi∂i −

1

2
σikσjk∂

2
ij

)
fn,ε −→ 0,

in L2, for n fixed, as ε goes to zero. We next use this smooth function fn,ε as
a test function in (8.35), and obtain, letting ε go to zero:

E(t, g − fn) =
1

2

∫
|g(0) − fn(0)|

2
.

Since g(0) = f0, f
n(0) = fn

0 , and fn
0 converges to f0 as n goes to infinity, we

obtain E(t, g − f) = 0, and thus g = f . This shows the claimed uniqueness.

Remark 24 We do not know whether existence and uniqueness of the solution
may be established, for b and σ lipschitz, f0 ∈ L2 ∩ L∞ (say), even when the
solution is assumed to satisfy the energy estimate (8.5).
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d’équations différentielles ordinaires, [Two remarks on generalized flows
for ordinary differential equations], C.R. Acad. Sc., Paris, Sér. I., Math.,
submitted.

[14] N. Ikeda, S. Watanabe, Stochastic differential equations and diffu-
sions processes, 2nd Edition, North-Holland, 1989.

[15] I. Karatzas, S. Shreve, Brownian motion and stochastic calculus,
Graduate texts in Mathematics, vol. 113, Springer, 1988.

[16] N. Lerner, Transport equations with partially BV velocities, Ann. Sc.
Norm. Super. Pisa Cl. Sci. (5) 3, no. 4, 681–703, 2004.

[17] C. Le Bris, P.L. Lions, Renormalized solutions of some transport equations
with partially W 1,1 velocities and applications, Annali di Matematica pura
ed applicata, volume 183, 97-130, 2004.

[18] C. Le Bris, P.L. Lions, Generalized flows for stochastic differential equations
with irregular coefficients, in preparation.
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