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Abstract
In this paper, we study the global in time existence problem for the Groma-Balogh model
describing the dynamics of dislocation densities. This model is a bi-dimensional model where
the dislocation densities satisfy a system of transport equations where the velocity vector field
is the shear stress in the material, solving the equations of elasticity. This shear stress can be
expressed as some Riesz transform of the dislocation densities. The main tool in the proof of
this result is the existence of an entropy for this system.
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1 Introduction

1.1 Physical motivation and presentation of the model

Real crystals show certain defects in the organization of their crystalline structure, called
dislocations. These defects were introduced in the Thirties by Taylor, Orowan and
Polanyi as the principal explanation of plastic deformation at the microscopic scale of
materials.
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In a particular case where these defects are parallel lines in the three-dimensional space,
their cross-section can be viewed as points in a plane. Under the effect of an exterior
stress, dislocations can be moved. In the special case of what is called “edge disloca-
tions”, these dislocations move in the direction of their “Burgers vector” which has a
fixed direction. (cf J. Hith and J. Lothe [34] for more physical description).

In this work, we are interested in the mathematical study of a model introduced by I.
Groma, P. Balogh in [31] and [32]. In this model we consider two types of dislocations
in the plane (x, ;). Typically for a given velocity field, those dislocations of type (+)
propagate in the direction +b where b = (1,0) is the Burgers vector, while those of type

—

(—) propagate in the direction —b (see Figure 1.1).

_ dislocation of + type
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Figure 1: Groma-Balogh 2D model.

Here the velocity vector field is the shear stress in the material, solving the equations of
elasticity. It turns out that this shear stress can be expressed as some Riesz transform
of the solution (see Section 2). More precisely our non-linear and non-local system of
transport equations is the following:

op™ op™

@) == (RRS (" (.0) = (1) (1)) (. ) in DI(R? x (0,7)),
. . (P)
To@w = (BRI (M) — (1) (@) a%fﬁ(m) in D/(R? x (0,T)).

The unknowns of the system (P) are the scalar functions p™ and p~ at the time ¢ and the
position z = (1, 72), that we denote for simplification by p*. These terms correspond

to the plastic deformations in a crystal. Their derivative in the x; direction (i.e. the
o = Op* : : »
direction of Burgers vector b), 0L represents the dislocation densities of &+ type. The
T



operators Ry (resp. Rs) are the Riesz transformations associated to x; (resp. ) (for a
precise definition of R;, i = 1,2, see Definition 1.1).

In fact, this 2D model has been generalized later in 2003 by 1. Groma, F. Csikor and M.
Zaiser in a model taking into account the back stress describing more carefully boundary
layers (see [33] for further details). The Groma-Balogh model neglects in particular the
short range dislocation-dislocation correlations in one slip direction. For an extension to
multiple slip see S. Yefimov and E. Van der Giessen [53, ch. 5.] and [54]. This multiple
slip version of the Groma-Balogh model presents some analogies with some traffic flow
models (see O. Biham et al. [8] and J. Torok, J. Kertész [51]). See also V. S. Deshpande
et al. [19] for a similar model with boundary conditions and exterior forces. Recently,
A. EL-Azab [21], M. Zaiser, T. Hochrainer [35], [55], [56] and R. Monneau [42] were
interested in modeling the dynamics of dislocation densities in the three-dimensional
space, but many more open questions have to be solved for establishing a satisfactory
three-dimensional theory of dislocations dynamics and for getting rigorous results.

From a technical point of view, (P) is related to other well known models, such as the
transport equation with a low regularity vector field. This equation was studied in the
work of R. J. Diperna, P. L. Lions [20] and L. Ambrosio [4], where the authors showed
the existence and uniqueness of renormalized solutions by considering vector fields in
LY((0,7); WEHRN)) and L1((0, T); BViee(RY)) respectively in both cases with bounded

loc
divergence. On the contrary in system (P), we are only able to prove that for the con-
structed solution, the vector field is in L2((0, T); W,>*(R?)) without any better estimate

on the divergence of the vector field.

We stress out the attention of the reader that there was no any existence and uniqueness
result for (P) . In this paper we prove that (P) admits a “global in time” solution.

More generally in the frame of symmetric hyperbolic system, we refer to the book of
D. Serre [47, Vol I, Th 3.6.1], for a typical result of local existence and uniqueness in
C([0,T); HS(RV))NC*([0,T); H*'(R")), with s > & +1, by considering initial data in
H*(RY). This result remains local in time, even in dimension N = 2.

We can also remark that in the case where we multiply the right side of the two equa-
tions in system (P) by —1, we get a quasi-geostrophic-like system. For those who are
concerned in quasi-geostrophic systems, we refer to P. Constantin et al. [16], to [17] for
certain 2D numerical results. We also refer to J. Wu [52, Th 4.1] for 2D local existence
and uniqueness results in Holder spaces and to A. Cérdoba, D. Cordoba [18], D. Chae,
A. Cérdoba [12] for blow-up results in finite time, in dimension one.

Let us also mention some related Vlasov-Poisson models (see J. Nieto et al. [43] for

instance) and a related model in superconductivity studied by N. Masmoudi et al. [41]
and by L. Ambrosio et al. [5]. These models were derived from some Vlasov-Poison-
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Fokker-Planck models (see for instance T. Goudon et al. [30], and P. Chavanis et al.
|13] for an overview of similar models). It is also worth mentioning that this model is
related to Vlasov-Navier-Stokes equation see T. Goudon et al. [28], |29].

1.2 Main result

In the present paper, we prove a “global in time” existence result for the system (P)
describing the dynamics of dislocation densities.
In this work we consider the following initial conditions:

pi(:cl, Ty, t=0) = poi(xl,:cg) = poi’pe’"(xl, x9) + Ly, (IC)

where p™P¢" is a 1-periodic function in x; and x,. The periodicity is a way of studying

the bulk behavior of the material away from its boundary. Here L is a given positive
constant that represents the initial total dislocation densities of 4 type on the periodic
cell.

First of all we give some results which prove that the bilinear term in (P) is well defined.

Definition 1.1 (Riesz transform)

Let p > 1 and T? = R?/Z?, the periodic square [0,1) x [0,1). If f € LP(T?), we define
R; fori € {1,2} as the Riesz transforms over T? such that the Fourier series coefficients
are given by:

i) co0) (Rif) =0,

ii) o (R.f) = %ckm for k = (ky, k2) € Z2\ {(0,0)},

where cp(f) = | f(z)e 2™ 2d?y,
T2

Definition 1.2 (The space Llog L)
We define Llog L(T?) as the following special case of Zygmund spaces (see C. Bennett
and R. Sharpley [7, Page 243]):

Llog L(T?) = {f € L'(T?) such that / |f|log (e +|f]) < +oo} .
T2
This space is endowed with the norm

||f||LlogL(T2):inf{)\>01 mlog <e+m) gl},
T2 A A

which is due to Luzemburg (see R. A. Adams [1, (13), Page 234]).

For other equivalent definitions of Zygmund spaces (see P. Koosis [38, Page 96|, E. M.
Stein [49, Page 43| and A. Zygmund [57]). We now present the following proposition.



Proposition 1.3 (Meaning of the bilinear term)
Let T >0, f and g be two functions defined on T? x (0,T), such that
fe LY(0,T); Wh2(T?)) and g € L*>°((0,T); Llog L(T?)) then,

fg e LYT? x (0,7)).

The proof of this proposition is given in Subsection 4.2. We can now state our main
result.

Theorem 1.4 (Global existence)
For all T,L > 0 , and for every initial data pi € L2, (R?) with

(HI) p(:;:(zl + 17x2) = Po (x17$2) + Lv a.e. in R2;
(H2) pg (21,20 + 1) = pi(z1,29), a.e. in R?,

0
(H3) Po >0, a.e. in R?
-
(H4) H a,oo < C, with T? = R?/7?,
O Llog L(T?)

the system (P)-(IC) admits solutions p* € L*°((0,T); L3 .(R?)) N C([0,T); L} (R?)) in

the distributional sense. These solutions satisfy (H1), (H2), (H3) and (H4) for a.e.
€ (0,T). Moreover, we have:

(P1) RiR3 (p* —p~) € L*((0,T); W, (R?)).

loc

Remark 1.5 (Bilinear term)
It is clear here that the bilinear term is always defined via (P1) and Proposition 1.3.

Remark 1.6 (Entropy and energy inequalities)
It turns out that the constructed solution also satisfies the following fundamental entropy
inequality (as a consequence of Lemma 7.7), for a.e. t € (0,T),

/Tz Z oy 1108 (8x1 ) / /T (RlR2 (% - %))2 <G, (1)

Ipo™
O Llog L(T?)

oo

Moreover, (at least formally for enough regqular functions) the following energy inequality
holds:

3 [t = 6o+ [ [ @R - ) (4 ) <.

with G = Cs (|l = 95 | 2y )



Remark 1.7 (Bounds on the solution)
If we denote p = pt — p—, then there exists a constant C independent on T, and a
constant Cr depending on T such that,

(E1) [|p* = Laillzoryraerey < Cr, (E2) | R2R3p| (0.7):BM0(T2)) < C,
8p:t 2 P2
(E3) Ot <C, (£4) ||RlepHL2((O,T);W1’2(T2)) <C,
L1 || Loo((0,T); L log L(T2))
Op* 2 2 0p
O |l 2(0,yw-22(12)) Ot || L2(0.ryw—12(12))

where W~12(T?) and W~*2(T?) are respectively the dual spaces of W'*(T?) and
W22(T?). The space BMO is the set of bounded mean oscillation functions that will be
precised in the sequel (see Definition 7.1).

In order to prove our main theorem we regularize the system (P) by the mean of the
viscosity term (¢Ap*) and the initial data (IC) by classical convolution. Then, using
a fixed point Theorem, we prove that our regularized system admits local in time so-
lutions. Moreover, as we get some e-independent a prior: estimates we will be able to
extend our local in time solution into a global one. This turns out to be possible thanks
to the entropy inequality (1.1). Then, joined with other a priori estimates, it will be
possible to prove some compactness properties and pass to the limit as € goes to 0 is the
e-problem.

In a particular sub-case of this model where the dislocation densities depend on a sin-
gle variable x = x; 4 x,, the existence and uniqueness of a Lipschitz viscosity solution
was proved in A. El Hajj, N. Forcadel [23]. Also the existence and uniqueness of a
strong solution in W,2*(R x [0, T')) was proved in A. El Hajj [22]. Concerning the model
of I. Groma, F. Csikor, M. Zaiser [33] which takes into consideration the short range
dislocation-dislocation correlations giving a parabolic-hyperbolic system, let us mention
the work of H. Ibrahim [37] where a result of existence and uniqueness of a viscosity

solution is given but only for a one-dimensional model.

Our study of the dynamics of dislocation densities in a special geometry is related to
the more general dynamics of dislocation lines. We refer the interested reader to the
work of O. Alvarez et al. [3], for a local existence and uniqueness of some non-local
Hamilton-Jacobi equation. We also refer to O. Alvarez et al. [2] and G. Barles, O. Ley
[6] for some long time existence results.



1.3 Organization of the paper

First, in Section 2, we recall the physical derivation of system (P). In Section 3, we give
our notation for the sequel of the paper. In Section 4, we give the proof of Proposition
1.3. We also prove that the bilinear term of our system has a better mathematical
meaning (see Proposition 4.7). Next, in Section 5, we regularize the initial conditions
and we prove that the system (P), modified by a term (¢Ap¥), admits local in time
solutions (in the “Mild” sense). This will be achieved by using an application of a fixed
point Theorem. In Section 6, we prove that the obtained solutions are regular and
increasing for all t € (0,7), for increasing initial data. In Section 7, we prove some
e-uniform a prior: estimates for the regularized solution obtained in Section 6. Then
thanks to these a priori estimates, we prove in Section 8 that the local in time solutions
constructed in Section 6 are in fact global in time for the e-problem. Finally, in Section
9, we achieve the proof of our main Theorem, passing to the limit in the equation as ¢
goes to 0, and using some compactness properties inherited from our a priori estimates.

2 Physical derivation of the model

In this section we explain how to get physically the system (P). We consider a three-
dimensional crystal, with displacement

u = (uy, ug, uz) : R® — R3.
For x = (x1, 29, x3), and an orthogonal basis (ej, €9, €3), we define the total strain by:

8ui i 8Uj
8:@ 8&52

c(u) = %(Vuwvu), e, ei(u) = % ( ) =123
This total strain is decomposed as
e(u) = e(u) + €°,
with £°(u) is the elastic strain and ” the plastic strain which is defined by:
el = g%, (2.2)
with €0 = % (61 ® €3 + €5 ® €7) in the special case of a single slip system where disloca-

tions move in the plane {xy = 0} with Burgers vector b= e;. Here 7 is the resolved
plastic strain, and will be precised later. The stress in the crystal satisfies the equation
of elasticity div o = 0 and is given by,

o=A:e(u), (2.3)
where for 7,7 =1,2, 3,

(A :e(u))y; = 2uef;(u) + Adytr(e®(u)), (2.4)
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and A, 1 > 0 are the constants of Lamé coefficients of the crystal (here, for simplification,
assumed isotropic).

We now assume that we are in a particular geometry where the dislocations are straight
lines parallel to the direction e3 and that the problem is invariant by translation in the
x3 direction. Moreover we assume that us = 0. Then, this problem reduces to a bi-
dimensional problem with u;,us only depending on (z, ;) and so we can express the
resolved plastic strain ~ as

Y=pP =P
op™ - . . . .
where . and . are respectively the densities of dislocations of Burgers vectors
1 1
given by b =e; and b = —e;.

Furthermore, these dislocation densities are transported in the direction of the Burgers
vectors by a velocity. This velocity is given by the resolved shear stress (o : €°) up to

sign of the Burgers vectors. More precisely, we have:
o +
% = +(0: €%e;.Vp&.

Finally, the functions p* and u are solutions of the coupled system (see I. Groma, P.
Balogh [32], [31]),

(dive =0 in R? x (0,7),
o =A:(e(u)—e?) inR*x(0,7),
e(u) =3 (Vu+'Vu) in R? x (0,7),
ep =e(pt —p7) in R2 x (0,7), (2.5)
Op* 0 + 2
5 =2(0:£%e.Vp™ inR* x (0,7),
1.€ in coordinates,
( ..
3 ga” — 0 in R? x (0,7),
j=1,2 9T
Oij = QILLE%(U) + Aéijtr(se(u)) in Rz X (0, T),
1 [0u; = Ou,
gii(u = L4 ]) in R? x (0,7),
8;zl';j = 5 1 0 ) (p+ - P_) in R? x (O,T),
+
\ % — t0190,.Vp* in R? x (0,7),



where the unknowns of the system are p* and the displacement (u1, us).

Then the following lemma holds.

Lemma 2.1 (Equivalence between 2-D systems)
Assume that (uy,us) and p™—p~ are Z*-periodic functions. Then the 2-D problem (2.6),
1s equivalent to the following 2-D problem

o _ 0

_ 2p2 (A — 2
ot Ch (R1R2 (p p )) or, in R* X (07 T):
2.7)
o~ _ 2p2 (o - O~ . o
at - Cl (R1R2 (p P )) axl in R* x (07 T)?
A+
where Cl = 4%

As the constant C is non-negative, rescaling in time in system (2.7), we can replace this
constant by 1.

Proof of Lemma 2.1:

We can rewrite the first equation of (2.5) as

div (2ue(u) + Atr(e(w))ly) = div (2ue? + Mr(eP)1y) .

This implies that:

2 . _
8—362(p —p7)
pAu+ (A4 p)V(div u) = p . (2.8)
9 . _
o PP

We now derive the first equation and the second equation of the previous system with
respect to x1 and x5 respectively. We obtain

8u1 02 82

0z, a—ﬁ(div v) 011024 Pt
pA ) + (A +p) . = p .

gtz O v

ai’g a.f(f% (le U) 83:28x1 (p P )

Now, by adding the two above equations, we get
82

8x10x2 (p

(A +2p)A(div u) = 2p



Applying A™! to this expression we get (div u) that we plug it into (2.8). Which leads
to

8—@( ) (A +p) 0?
_ o AT ) -1_ Y9 4+ -
Au = o . 2()\+2N)VA 90,05 (p™=p). (2.9)
8—331@ —p7)

As, previously, we derive the first equation and the second equation of system (2.10)
with respect to x5 and z; respectively, and obtain

Oy o o

+_ - ot —p~
A _ EPUEID - (210
2 (A+2p) 4
% 8_( + _ —) 9 ( + _ —)
Oy ox? peor 0x3013 po=r
Now, adding the two above equations, we infer that
8u1 8uQ _ ()\ + ,U) _ 84 _
Al c—+-—)=A(p"—p7)—4 AT T —p7). 2.11
<8x2 + axl) (=77 (A +2p) 0r30x3 (" =r7) (211)

Using that

(052 =0 =2t = ( (G + 52) = (0 =) )

together with equation (2.11), this yields

Aup o O _ -
. 0 :_4( A 2 + — 22 + ]
(0:¢%) 020> awon (b7 —p7) = =Ci (RIR3(p* —p7))

Hence we see that the system (2.5) can be rewritten as (2.7). O

Remark 2.2 (Property of the elastic energy)
If we define the elastic energy by

E= %/Rz/m A () ew)),

OF
with €(u) = e(u) — e%(p™ — p~). Then, since by the equation of elasticity Tu = 0, we
u
dp* Op~

> 0 that,
8$1 8$1

can notice if —

dE ¢ 00(p™ —p7) / o (OpF | Op”
—_— = — : e = — — ] <0.
dt /Rz/zz (A c (U)) c ot R2 /72 12 81'1 * 81'1 =0

This formal result indicates that the elastic energy is a non-increasing quantity in this
model. Hence, the elastic energy E is a Lyapunov functional for our dissipative model.
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3 Notation

In what follows, we are going to use the following notation:
Lop=p"—p7,
2. pEPr (1), 29, t) = pt (21, 0, t) — Ly,

3. T = R/Z the periodic interval [0,1), and T? = R?/Z? the periodic square [0, 1) x
[0,1).

4. Let f be a function defined on R? x (0,7) having values in R? we denote by
f&)=f(,t):x— f(x,t).
5. We write [} in place of fol

6. Let F be a Banach space and f = (f1, f2) a vector such that f; € F fori € {1,2}.
The norm of f in E? will be defined as || f||gz = max (|| f1||z, | f2||2)-

7. Throughout the paper, C' is an arbitrary positive constant.

4 Concerning the meaning of the solution of (P)

In this Section we prove Proposition 1.3. This shows that if (P) admits solutions verifying
the conditions of Theorem 1.4, then we can give a mathematical meaning to the bilinear
term. In order to do this, we need to define some functional spaces and recall some of
their properties, that will be used later in our work.

4.1 Properties of some useful Orlicz spaces

We recall the definition of Orlicz spaces and some of their properties. For details, we
refer to R. A. Adams [1, Ch. 8] and M. M. Rao, Z. D. Ren [46].

A real valued function A : [0, +00) — R is called a Young function if it has the following
properties (see R. O’Neil [44, Def 1.1]):

e A is a continuous, non-negative, non-decreasing and convex function.

e A(0)=0and lim A(t) = +o0.

t——+o00

Let A(-) be a Young function. The Orlicz class K 4(T?) is the set of (equivalence classes
of) real-valued measurable function i on T? satisfying

/Tz A(lh(@)]) < +oo.

The Orlicz space L(T?) is the linear hull of K 4(T?) supplemented with the Luxemburg
norm,

11



Endowed with this norm, the Orlicz space L,(T?) is a Banach space. For example if
A(t) = t? for p > 1, the Orlicz space is the usual Lebesgue space LP(T?).

Remark 4.1 (Separability)

If A is Ag-reqular (i.e. there exists a positive constant § such that for allt > 0, A(2t) <
§A(t)), then the Orlicz space La(T?) is separable (see M. M. Rao and Z. D. Ren [46,
Th 1, Page 87]). In particular this holds for Llog L(T?).

Definition 4.2 (Some Orlicz spaces)
For a > 1, we denote by

EXP,(T?), the Orlicz space defined by the function A(t) = e!” — 1.
Another space of interest will be the Zygmund space
Llog? L(T?), the Orlicz space defined by the function A(t) = t(log(e +t))?, for 3 > 0.

Observe that those spaces are Banach spaces and that EXP%(’]IQ) is the dual of

Llog? L(T?), for 0 < 3 < 1 (see C. Bennett and R. Sharpley [7, Def 6.11]). It is
worth noticing that Llog' L(T?) = Llog L(T?).

Let us recall some useful properties of these spaces. The first one is the generalized
Hoélder inequality.

Lemma 4.3 (Generalized Hélder inequality)

i) Let f € EXPy(T?) and g € Llog? L(T?), Then there exists a constant C such that
(see R. O’Neil [44, Th 2.3]),

1£gllercezy < Cllflxpallgll b o)

ii) Let f € EXPy(T?) and g € Llog L(T?). Then there exists a constant C such that
(see R. O’Neil [44, Th 2.3]),

17901003 pomy < O e 9] g e

Remark 4.4
For the proof of this lemma see also M. M. Rao and Z.D. Ren [46, Th 7, Page 64, J.
Hogan et al. [36, Th A.1].

The second property is the Trudinger embedding,

12



Lemma 4.5 (Continuous Trudinger embedding)
We have the following continuous injection (see N. S. Trudinger [50] and R. A. Adams
[1, Th 8. 25]):

W12(T?) — EXPy(T?).

Finally, we have the following embedding.

Lemma 4.6 (Properties of the Zygmund space)
For1l <p< 400, a>1 and 8 > 0 we have the following continuous embedding:

L>(T?) < EXP,(T?) < LP(T?) — Llog” L(T?) — L'(T?).

For the proof, see for instance R. A. Adams |1, Th 8.12].

4.2 Sharp estimate of the bilinear term

Now, we propose to verify with the help of the following proposition that the system (P)
has indeed a sense, and first prove a better estimate than those mentioned in Proposition
1.3. Namely, we have the following.

Proposition 4.7 (Estimate of the bilinear term)
Let T >0, f and g be two functions defined on T? x (0,T), such that,

(1) f € L2((0,T); WH3(T?)),
(2) g € L>=((0,T); Llog L(T?)). Then,
fg € L*((0,T); Llog? L(T?)),

and for a positive constant C, we have:

179N 2 0.7y 2 1088 £eryy = ClF ez mymwrzzyllglloe (o) L10g £r2))-

Proof of Proposition 4.7:
First of all, according to the generalized Holder inequality Lemma 4.3 (ii), we know that

1 (t)g(t) < CIFONExpr) 190 L 105 Lz

[
Llog? L(T?)

Integrating on (0,7"), we infer that,

T T
/ 1F@®g I < C/ LF O Ex po) 190 L 10g Lz
0 0

Llog? L(T?)
Knowing that g € L>((0,T); Llog L(T?)), we have,

1£9l?

2 2
L2((0.T):L log} L(T2)) < C”gHLOO((O,T);LlogL(TZ))HfHL2((o,T);EXP2(1r2))-
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Now, by the Trudinger inequality Lemma 4.5, we get,

I£gl?

2 2
L2((0.T):L log® L(T2)) < C||9HLO<>((0,T);L1ogL(1r2))||f||L2((o,T);WL2(T2))-

Proof of Proposition 1.3:

We proceed as in the proof of Proposition 4.7. We use Lemma 4.3 (i), and integrate
in time, thanks to the Trudinger inequality (Lemma 4.5) and the continuous injection

Llog L(T?) — Llog? L(T?). O
5 Local existence of solutions of a regularized system
In this Section, we prove a local in time existence for the system (P), modified by

the term eAp*, and for smoothed data. This modification brings us to study, for all
0 < e <1, the following system:

opte op™e
e —eAp™ = —(RR3p)T— in D'(R? x (0,7)),
1
(F)
8p—’€ —€ 2P2 € ap_ﬁ : /(TR2
ot —€Ap ' = (R1R2p ) axl in D (R X (OvT))a
where p° = p™° — p7¢, with the following regular initial data:
po(@,0) = py(2) = po P x (@) + (L + e)ay = pp =" (x) + Loy, (1C:)

where 7.(-) = 5n(<), such that 7 € C°(R?) is a non-negative function and [p,n = 1.

Remark 5.1
We consider L. to obtain strongly monotonous initial data poi’a. This condition will be
useful in the proof of Lemma 7.7.

If we let p™Pe" = p*° — [_x,, we know that the system (FP.) is equivalent to,

ap:l:,a ap +,e,per
—eA +.e.per _ R2R2 e\
5 cAr TR 5 -

F L(R{Ryp°) in D'(T? x (0,T)), (PP)

with initial conditions,

pi,e,per(x7 0) = pS‘L’E(SL’) — L.ry = P(;_L’E’per(x). (1CPer)
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Remark 5.2
The properties of the mollifier (n.). and the fact that pi™" € L*(T?) implies that
Py =P e C°°(T?). In particular, py =" € WHP(T?) for all 1 < p < +oc.

The following theorem is a local existence result (in the "Mild" sense) of the regularized
system (P.)-(/C;). This result is achieved in a super-critical space. Here particularly we

chose the space of functions C([0,T); W,

o (Rz)). Later, in Section 6, we will improve
the regularity of the solution.

Theorem 5.3 (Local existence result)
For all initial data pi € L, (R?) verifying (H1) and (H2), there exists

+ er
(”p “P ||W1'%(T2)’L’E) >07

such that the system (P.)-(IC.) admits solutions p=° € C([0,T*); W

loc (R2))7 satzsfymg
(H1) and (H2) for a.e. t € (0,T%).

Before proving Theorem 5.3, let us recall some well known results.

5.1 Useful results

We first start with reformulation of system (PP¢")-(IC?°") as an integral system.

Lemma 5.4 (Mild solutlons are solutions in the distributional sense)
If p==rer € C([0,T); WL3(T2)) are solutions of the following integral problem:

) = S0 L [ St 5) (RER(9) s
(In.)
5 ap +.e,per
# [ s ((RlRQ/f(s)) ) as
0 !
where S.(t) = Si(et), and S, (t) = *® is a the heat semi-group, then p™=P" are solutions
of the system (PP )-(ICP°") in the distributional sense.
For the proof of Lemma 5.4, see A. Pazy |45, Th 5.2, Page 146|.

Remark 5.5
We notice that the product (RIR2p%)

+,e,per

Op is well defined in C([0,T); L3 (T2)) since

or,
C([0,7); Wh2(T2)) — C([0,T); LS(T?)).

Lemma 5.6 (Time continuity)
Let T > 0. If prerer ¢ L°((0,T): WY3(T?)) are solutions of integral problem (In.),
then p==ver € C([0,T); Wh2 (T2)).

15



For the proof of Lemma 5.4, see A. Pazy [45, 7.3, Page 212|.

We now recall the Picard fixed point result which will be applied in Subsection 5.2 to
2
the space £ = <L°°((O, T); Wl’%(Tz))> in order to prove, the existence of solutions.

Lemma 5.7 (Picard Fixed point Theorem)
Let E be a Banach space, B 1s a continuous bilinear application over E X E having
values in E, and A a continuous linear application over E having values in E such that:

1Bz, y)lle < nllzllellylez forall z,ycE,
[A(@)|e < pllzlle for all z € E,

where n > 0 and p € (0,1) are two given constants. Then, for every xo € E verifying

1
< —(1—p)?
Joalls < 40— )

the equation x = xo + B(x,x) + A(x) admits a solution in E.

For the proof of Lemma 5.7, see M. Cannone [10, Lemma 4.2.14].

Lemma 5.8 (Decay estimate)
1 1 1
Let r,p,q > 1. Then, for all functions f € LY(T?) and g € LP(T?), where — < = + —,
r q

3

we have, for Si(t) = e'®, the following estimates:

(1,1 _1
i) 19O (Dl < CEGTT o) 9]l o) for all t > 0,

1,1_1
4=

ZZ) ||V51(t)(fg)||Lr(Tz) S Ct_(§+p q ’")||f||Lq(T2)||g||Lp(T2) fO’f‘ allt > O,

with C = C(r,p,q) is a positive constant.

Proof of Lemma 5.8:

In the special case where ¢ = +o0o and f = 1, these estimates are the classical version of
the L"-LP estimates for the heat semi-group (see A. Pazy [45, Lemma 1.1.8, Th 6.4.5|).
The statement of Lemma 5.8 then follows by Holder inequality:

1/9]

ror2) < || fllzar2) 9]l Locre)
1 1

1
with — = — + —. O
s q p

Here is now, the demonstration of Theorem 5.3.
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5.2 Proof of Theorem 5.3

We rewrite the system (/n.) in the following vectorial form:

_ t _ t a c
o5 (@, t) = S-(t)p5., + Lejl/ Se(t — s) (R{R3p°(s)) ds + Il/ (RIR3p°(s)) a—gv(s)ds,
0 0 1

where S.(t) = Si(et), p; = (0", p= =), g5, = (pg """, 0y "),

_ ~1 0 _ ~1
Il—<0 1>andJ1—<1)

which is equivalent to,

po(, 1) = Se(t)pi, + Blps, p)(t) + Alpy) (1), (5.12)

where B is a bilinear map and A is a linear one defined respectively, for every vector
u = (uy,uz) and v = (vq,vy), as follows:

Blu,v)(t) = I, /O S.(t—s) ((Rng(ul — u)) 5—;’1(5)) ds, (5.13)

t
Au)(t) = Lejl/ Se(t — s) (R{R3(u1 — u2)(s))ds. (5.14)
0
Now, we apply Lemma 5.7 to equation (5.12). First of all, we estimate the bilinear term,

[ 50— 0) (R ) 59 s

S/
0

Then, since W2 (T2) < L*(T2), we have,

1B, 0) (Ol g oy <

5.0t =) (R — ) 5 s

5.0t - ) (R — ) 5 s

t
ORI

We use Lemma 5.8 (i) with r = 4,¢ = 3,p = 2 to estimate the first term and Lemma
5.8 (ii) with r = %, qg=4,p= % to estimate the second term. We get for 0 <¢ < T, and
with constants C' depending on &,

(5.15)

V(0 - ) (R — ) () s

17



t 1 01}
B(u,v)(t 3 SC/ RiRju(s ds
1B )1y = € g 1RO e || 5, ey
¢ 1
_ .
< COEBET(HU(S)H i ry2) OiggT(llv(s)H(Wl,g (1)) /0 . 8)%ds

Here we have used in the second line the property that Riesz transformations are contin-
3

uous from L2 onto itself (see A. Zygmund [57, Vol I, Page 254, (2.6)]) and the Sobolev

injection. Hence we have,

1B (u, v)]] , (5.16)

pe(orrwi ey S TN e oy 8 o) 1 e oy 2 oy
with 7(T") = CyT's for some constant Cy > 0. We estimate the linear term in the same
way to get,

| A(u

(O oyt 32y (5.17)

< Lsn( )”u”Loo ((0,7);(W 2(']1‘2)) )

Moreover, we know by classical properties of heat semi-group (see A. Pazy [45]) that,

||S€(t)pz(€),v||Loo((0’T);(W 3(T2))2) — ”pO v|| ))2 (518)
Now, if we take
1 1 1
(T")7 = min , (5.19)
2COL IGCOHPOUH (Whs 3 3 (T2))2
we can easily verify that we have the following inequalities:
5 1 *\ ) 2 *
165y < gL = L)% and Ln(T) <1, (5.20)

Using inequalities (5.16), (5.17), (5.18), (5.20) and Lemma 5.7 with the space
2 2
E = (LOO((O, T*); Wha (T2))) , we obtain the existence of a solutions p¢ € (LOO((O T); Wha (T2)))

2
for the system (5.12). Next, from Lemma 5.6, we deduce that pS € (C([O, T*); VVloc ('11‘2))>

As a consequence, by Lemma 5.4 we prove that the system (P.)-(IC.) admits some
3
solutions p*° € C([0,T™); I/Vlloc2 (R?)), satisfying (H1) and (H2) a.e. t € [0,T*). O

6 Properties of the solutions of (P.)-(/C:)

In this section, we are going to prove that the solutions of (P.)-(/C.) obtained by
Theorem 5.3 are smooth. Moreover if we assume that the initial data (IC) satisfies
(H3), then the solutions are increasing in x; for all t € (0,7™).

18



Lemma 6.1 (Smoothness of the solution)
Let T > 0. For all initial data p= € L2 (R?) satisfying (H1) and (H2), if p**° €

5 loc
L3

C([0,T); W, 2(R?)) are solutions of the system (P.)-(IC.), then p™* € C*(R?x [0,T)).

loc

Proof of Lemma 6.1:
We denote the second term of the system (PP°") by,

+ 22 e 0P Heper 2 2
[ = :F(Rlepa)a—$1 F L(R{R3p%).
Since W12 (T2) — L5(T?), f*< € L5(T? x (0,T)). Moreover, we know that

+,e,per

Po € C°°(T?). We apply the LP regularity for the heat equation to the system
(PPer)-(ICPe), see J. L. Lions, E. Magenes [40, Th 8.2], and deduce that

:l:7€7
apzl:,e,per ap +,e,per a2p per

5 (T? for {i =12V
o 0 on, 0 owmor, S L(TxOID)fordij=1.2)

We infer now by Sobolev embedding that f*< € Lz(T? x (0,7)). We can then iterate
the previous argument with a better integrability of f*¢. By bootstrap it follows that
pEerer ¢ Co0(T2 x [0, T)). 0

Lemma 6.2 (Strong monotonicity of the solution in z;)
Let T > 0. For all initial data p5 € L2, (R?) satisfying (H1), (H2) and (H3), if p** €

loc
C>(R? x [0,T)) are solutions of system (P.)-(IC.), then 88/) — >0 for allt € (0,7).
x

1

Proof of Lemma 6.2:

. . 0Pt Opy
First of all, remark that if — > 0, then > ¢. Indeed, we have
0:751 0:751
opy° _ Opp ™" opy ™
= e La = L e
8$1 8$1 N + 8$1 * N te
a +
= (ﬁ) *x1.+¢e >0,
0:751
since 7. is non-negative. Let us write the system obtained by derivation of (P.)-(IC.)
a +.e
with respect to 1, that reads for 6%° = P ,
8$1
96~+ +e 22 o 007F 2 P2/ ntoe —eV) pte . 2
ot 83:1
ap:l:,e
6+=(z,0) = =>— in T2
(@.0) = in
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Since p*° € C*(R? x [0,T)) and 6+°(-,0) > ¢, we deduce from the maximum principle
for scalar parabolic equations (see G. Lieberman [39, Th 2.10]), that 6%° > 0 on T? x
(0,7). O

Corollary 6.3 (Short time existence of monotone smooth solutions)
For all initial data pf € L}, (R?) satisfying (H1), (H2) and (H3), and all € > 0, there
ex1sts

T*(llog = |

Wl'%(Tz)’ L7 6) > 07

such that the system (P.)-(IC.) admits solutions p™° € C*°(R? x [0, T*)) verifying (H1),
+.e
(H2) for allt € [0,T*). Moreover >0 for allt € [0, T7).

P
01'1

Corollary 6.3 is a consequence of Theorem 5.3 and of Lemmata 6.1 and 6.2.

7 e-Uniform estimates on the solution of the regular-
ized system

In this Section, we prove some fundamental e-uniform estimates. In the Subsection 7.2
we give some general estimates independent on the system of equations. In the second
Subsection 7.3 we establish a priori estimates on the solutions of system (P.).

7.1 Properties of Hardy space
Definition 7.1

i) Hardy space, (C. Fefferman, E. M. Stein [26]):

The Hardy space H'(T?) is the set of functions f € L*(T?) such that R;f € L'(T?) for
1 =1,2. This space is endowed with the norm

122y = 11l L2 crzy + Z R f || 1r2)-
i=1,2
i) BMO space, (John and Nirenberg, see C. Fefferman [25]):
We say that f € L*(T?) belongs to BMO(T?) if an only if
w0 = sup / ) = ma(Dlds ) < o0 (7.21)

for every ball B C T? where mp(f) = \B| / I

Here || f||mo defines a norm over BMO(T?) quotiented by the constant functions.
Moreover, the space BMO(T?) is the dual of H(T?).
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We refer to P. Koosis [38], R. Coifman, Y. Meyer [15], J. B. Garnett [27] and E. M. Stein
[49] for other definitions of H'(T?) and BMO(T?) . Here, this definition makes a sense
thanks to the definition of the Riesz transform for L? function, and the density in L' of
the spaces L? for p > 1.

The spaces H' and BMO satisfy the following properties:

Lemma 7.2 (Stability of Riesz transform)

(I1) The Riesz transforms R;, for i = 1,2, are linear continuous operators on H!(T?)
onto itself.

(I2) The Riesz transforms R;, fori = 1,2, are linear continuous operators on BMO(T?)
onto itself.

(I3) The Riesz transforms R;, for i = 1,2, are linear continuous operators on LP(T?),
for all 1 < p < 400 onto itself.

For the proof, see R. Coifman, Y. Meyer |15, Chap 5| and A. Zygmund |57, Vol I, Page
254, (2.6)].

Lemma 7.3 (Embeddings)
For 1 < p < +o0, we have the following property:

L>®(T?) — BMO(T?) «— EXP(T?) — L*(T?) — Llog L(T?) — H*(T?) — L'(T?).
For the proof, see C. Bennett and R. Sharpley [7, (7.22) Page 382, (6.11) Page 247].

Lemma 7.4 (Zygmund’s Lemma)
If f >0, then f € Llog L(T?) if and only if f € H'(T?). Moreover, there exists a
constant C' such that,

by < € ([ 1fltog(e + 1 )dnde 1)
T
For the proof, see A. Zygmund [57, Vol. I, Chap 7, (2.8), (2.10)] and P. Koosis [38,
Page 96-97]. See also, E. M. Stein [49, 5.3, Page 128]| for a proof on R". Under the

+
assumptions (H1), (H2), (H3), and (H4), we deduce that 88/)70 € H'(T?).
1

7.2 Useful estimates

Lemma 7.5 (BMO estimate)
If f is a function defined on R* x (0,T) and verifies (H1), (H2) and (H3) for a.e.
t € (0,7, then there ezists a constant C' = C(L) such thalt,

||R1R2fper||L°<>((0,T);BMO(T2)) <0,

where fP" = f — L.
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Proof of Lemma 7.5:
According to (H1) and (H3), we know that for a.e (xo,1)

[ y

8 1

—i—LM <[ &L
82171 0 xT1

We apply a “Poincaré-Wirtinger inequality” in x; and we deduce that there exists a

constant C' = C'(L) such that,

afper
8, T

< C. (7.22)

L= (T2x(0,T))

1
fper . / fperdxl
0

Moreover, Ry Ry ( fP°" — / fPdxy) = Ry Ro(fP°") since, we can check that Ry (/ P day ) =0.
We use Lemmata 7.3 and 7.2 (I2) to obtain that R Ry fP*" € L>((0,T); BMO(T?)). O

Lemma 7.6 (Llog L Estimate)
Let (n.). be a non-negative mollifier, then for all f € Llog L(T?), the function f. = f*n.
satisfies

||f - fE||L10gL('I[‘2) — 0 as e — 0.

For the proof see R. A. Adams [1, Th 8.20].

7.3 A priori Estimates

In this Subsection, we show some e-uniform estimates on the solutions of the system
(P.)-(IC.) obtained in Corollary 6.3. These estimates will be used, on one hand in
Section 8 for the proof of long time existence, and on the other hand, in Subsection 9.2
for ensuring, by compactness, the passage to the limit as € tends to zero.

The first estimate concerns the physical entropy of the system, and is a key result. It
shows that in our model, the dislocations cannot be so concentrated. In other words,
the dislocation densities can always be controlled.

Lemma 7.7 (Entropy estimate)

Let p5 € L2 (R?). Under the assumptions (H1), (H2), (H3) and (H4), if p** €
C>=(R? x [0,T)) are solutions of the system (P.)-(IC.), then there exists a constant C
independent of € such that,

Op*e 0
p i H_ (RyRop”) <c (7.23)
023} Lo ((0,T); L1log L(T2)) Oy L2(T2x(0,T))
a +
with C = C [ || 222 .
O Llog L(T?)
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Proof of Lemma 7.7: ke
First of all, we denote 6% = 8p , 6 =60t —9° and
T

N*(t) = / 0% (1) log (9 (1)).

Using the fact that p™¢ € C=(R? x [0,T)), we can derive N(t) = N*(t) + N~ (t) with
respect to ¢, since 5° > 0 (see Lemma 6.2), and we obtain:

— /T 2 Z(eif)t log(6%°) + /T ] Z(eif)t

/ Z (F(RIR3p%)0™° +5Api ?),, log(6*°)
T2

+

+,e
/ > ( +(R{R3p%)0%°) Zi + NS log(Qi’E))
™ ’
voEe|®
R2R295 Q:I:e _ |
/']T2 ; ) ; T2 9:‘:’5
5\ ge Vo)
:—/TZ(R2R29)9 —52 L gES

vej:s
/ R1R2¢9€ —82/ | 6:|:a| >

Integrating in time we get,

//T (R1R:6°)* < N(0 /Zeia ) log(e + 6%%(0))

Since the initial data (IC) satisfies (H4), we deduce by Lemma 7.6 that there exists a
positive constant C' independent of £ such that,

t
+// (RiR,6°)* < C.
0 T2

Ni(t) = /1r2 05 (t) log(e + 055(t))

Let us now consider,

- / 654 (8) log(e + 65 (1)) + / 0= (1) log(e + 0-°(1)).

2n{0<h+c<e} 2n{*-c>e}

Using that xlog(e + x) < elog(2e) for all 0 < x < e, we deduce that
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NiE(t) < elog(2e) +/ 05<(t) log (264 (1))

T2N{6*c>e}

< elog(2e) + /

’]I‘Q

0= () log(2) + / 652 (1) log(6%<(1))

T2N{0*=>e}

< elog(2e) +1og(2)(L + 1) + N*(t) — / 65 (t) log(6*°(t))

T2N{0<0*c<e}

< C+ N*(1),

where, in the last line we have used that —zlog(z) < 1 for all 0 < z < e. This finally
lead to the following estimate:

t
NY(t) + Ny (1) + / / (RiRa) < C
0 T2
which implies (7.23). O

Remark 7.8 (W'? estimate)
Since we have
9 hope _ 9 O opr _ pof O
a{l}'g R1R2 = R1R2 <8JJ1 Rle) and 8.7}2 R1R2 = R2 8.7}1 R1R2 y
we deduce by Lemma 7.2 (I3), that V (RIR3p°) € L*(T? x (0,T)) uniformly in .

Remark 7.9 (H' estimate)
Given 60*° > 0, we deduce from Lemma 7.4 that 05° € L>((0,T); H'(T?)), uniformly
ineE.

We now present a second a priori estimate.

Lemma 7.10 (L? bound on the solutions)
Let T > 0. Under the condition pi € L} .(R?), and the assumptions (H1), (H2), (H3)

and (HA4), if p©¢ € C®(R? x [0,T)) are solutions of system (P.)-(IC.), then there erists
a constant C' independent of €, but depending on T', such that:

Hpi’e’perHLoo((o,T);L2(1r2)) <0,
with p=&P" = p*¢ — Lay.
Proof of Lemma 7.10:
We want to bound m™*°(zy,t) = [ p™*P* (21, z9,t)dz;. There is no problem of regular-

T
ity since p™° € C<(R? x [0,T)). We integrate equation (PF°") with respect to x;, and
then integrate by parts the first term of the right hand side. This leads to,
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0 . 9*m** 9 00p° ., o n
P €~ — j: yEPDET €
5" € o /T(R R28 )(p m>F)dx;

FL. / (R2R%p%)dw) + m** (R2R§ o
T Oy

Using that p® is a 1-periodic function in x;, the previous equatlon is equivalent to,

)dil?l.

If 1F
gm:l:,s _ 6@ = + /(RzR 8,0 )(p:t,e,per . m:l:,e)dx\ == L /(R2R2p€)d1‘
ot D2 20, ! = b
(7.24)
Let us denote the right hand side by g* = I;*+1. We now show that g* € L?(Tx (0, T)).

Indeed, we have,

~

HIiHH Tx(0,T)) H/ RzRS PP — ) dy
(%1 L2(Tx(0,T))
Ip°

< +,e,per __ - R2R2

<llp lr (T2x(0,T)) 20, LT (01

<C,
0

where for the last line we used Lemma 7.7 to bound ||R?R32 P and the fact

O L2(T2x(0,T))

that the Riesz transforms are continuous from L? onto itself. Furthermore, the bound
on [[p==PT — | L g2 0.1y Tollows from (7.22).

For the term I, recall that 0 < ¢ < 1, hence

[N

2 P2 e
HI2$HL2(’]T><(0,T)) S H(L " 1) /T(RIRzp )dxl L2(Tx(0,T)) S “ 7

where for the last inequality we have used that RIR2p° € L°°((0,T); BMO(T?)) (see
Lemma 7.5) and the embeddings of Lemma 7.3. Therefore, we get,

1
1% | 2 rx .y < C(1+T2).
To end the proof, we multiply equation (7.24) by m™*<, and we integrate in space. This

gives,
2
m:l:,s(t> — /g:l:m:te
L2(T) T

H FEO L2y +

2dt 0o

We integrate in time, to obtain,

25



1
§Hmi7€||2L°°((O,T);L2(’]1‘)) < ||9iHL2(Tx(07T))||mi’€HL2(Tx(07T)) + iHmi’e(O)H%%T)
i E +.e 1 +.e 2
< T2llg™ z2oxorp Iz o,myizamy + 5 1m0 (0) [zaen)

1 1
< T||gi||2LQ(T><(O,T)) + Z||mi’€||2Loo((o,T);L2(T)) + §Hmi’€(0)H2L2(1r)

Therefore
Im= e o,ryiz2ey) < ATNG T2 mxomy) + 2Im = (0) 1 Zeery -

We now bound the term [[m®<(0)||%, . We have,

2
:I:aper
||m LZ(’]I‘ /'/ ZL’1,1’2 de‘l d$2

+
< e * Po per”m(ﬂ?

=+, per
< ” " ||L2(’]1‘2)a
where we have used Hélder’s inequality for the second line, and that ||7.||,1(r2) = 1. This
indicates that for a constant C' independent of ¢, ||m™*|| 1 (o1).22(r)) < C.

Finally, we use estimate (7.22) to deduce that p™=7°" is bounded in L*>((0,7'); L?(T?))
uniformly in e. O

The following estimate will provide compactness in time of the solution, uniform with
respect to ¢ .

Lemma 7.11 (Duality estimate of Riesz transform for the time derivative of
the solution)

Let T > 0. Under the assumptions pz € L? (R?), (H1), (H2), (H3) and (H4),
if pt¢ € C®(R? x [0,T)) are solutions of the system (P.)-(IC.), then for all ¢ €
L2((0,T); Wh2(T?)), there exists a constant C independent of € such that:

0
/ IDR?R? < ap ) ’ < C|’¢HL2((O,T);W1,2(T2)),
T2(0,T) t
where p° = pte — p7°
Proof of Lemma 7.11:

The idea is somehow to bound R?R3

£

dp
ot

) using the available bounds on the right
hand side of the equation (F).
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We will give a proof by duality. First of all, we subtract the two equations of system
(P.) to obtain that,

op° PN A +,e
i (Rlli’zp)(&x1 + 0z +eApT©.

We apply the Riesz transform R?R32, which gives,

Iy
A N I
228P€_ 2 2 22 oy OK° 2 D2 B
R1R; o = —RiR; | (RiRyp )83:1 +eRIR; (AF), (7.25)

with &5 = p™° + p=°. In what follows, we will prove that for a function v €

L*((0,T); W42(T?)), we can bound J; = / I for i = 1,2.
T2 (0,T)

Estimate of J;: to control J;, we rewrite it under the following form:
. Ok? . Ok?
[ mr(mwrng o= [ (@wmrng ) mrw.
T2 % (0,T) 21 T2x(0,T) 21
We use the fact that,
(i) (R?R3p°) is bounded in L>°((0,T); W2(T?)) uniformly in & (by Lemma 7.7),

(ii) gk is bounded in L>((0,T); Llog L(T?)), uniformly in ¢ (by Lemma 7.7).
T
. . . . 2 2 < ake
We deduce from this and from Proposition 4.7, (with f = R{R3p° and g = P ) the
Z1

following estimate:

22 oy O 92 192 Ok*®
(RZR3p°) < ClIBYR;p% || 2 (0.rywr2(r2)
8$1 1 7 ox
L2((0,T);L log L(T2)) LIl L2((0,T):L log L(T2))
£
<C ‘ Ok <C.
O Lo ((0,T);L log L(T2))
We use Lemma 4.3 (i), to deduce that
22 o Ok T\ Lo o
| L] < (RiR5p%)5— | RiR3(¥)
T2 x(0,T) 0xy
<[ mmge 2 IR RS 2
- 01 || 20,y 10g% L(72)) FODEXT D (7.26)

< C|RY R 2o mywr 212y

<C ||"7Z)||L2((O,T);W1’2(T2)) ’
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where we have used the Trudinger embedding (see Lemma 4.5) in the third line and the
fact that Riesz transforms are continuous from W12 onto itself in the last line.
Estimate of J;: to estimate J,, we integrate by parts, to get:

(h:%/ V(RZR2F) - V.
T2 (0,T)
Since R?R3p° is bounded in L?((0,7); W'%(T?)), we deduce that for all 0 < ¢ < 1:

| o] <

[, v w)
TxOT) (7.27)

<C HR%R%pE||L2((O,T);W172(’]1‘2)) ||¢||L2((0,T);W1»2(T2))-

Finally, collecting (7.26) and (7.27) together with (7.25) and the definitions of .J;, for
1 = 1,2, we get that there exists a constant C' independent of € such that,

0p°
/ ¢R%R§(—a )’ < Ol L2o,mywr2(12y)-
T2 % (0,T) 13

Remark 7.12 (W12 estimate)
Let W=Y2(T?) be the dual space of W12(T?). Thanks to the previous lemma we deduce
that there exists a constant C independent of ¢ such that,

dp°
R2R3
e (5)
These three estimates made in Lemmata 7.7, 7.10 and 7.11 are sufficient to obtain the

required compactness. This compactness ensures in Subsection 9.2 the passage to the
limit which allows us to show the existence of solutions.

<C.

L2((0,T);W—12(T?))

Lemma 7.13 (Duality estimate for the time derivative of the solution)
Let T > 0. Under the assumptions py € L?_.(R?), (H1), (H2), (H3) and (H4),

if pt° € C®(R?* x [0,T)) are solutions of the system (P.)-(IC.), then for all ¥ €
L2((0,T); W22(T?)), there exists a constant C' independent of € such that,

apzl:,e
[ o(%5)| < clollammany,
T2x(0,T)

The proof of this lemma is similar to that of Lemma 7.11. The only difference is that
we integrate by parts the viscosity term twice and use the estimate of Lemma 7.10.

Remark 7.14 (The sense of the initial condition)

According to this lemma and Lemma 7.10 , we have p==r € C([0,T), W=2%(T?))
uniformly in & with W—22(T?) is the dual space of W*?(T?). This will give later a sense
to the limit of the initial conditions.
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8 Global existence for the regularized system

In this Section, we will prove the global existence of solutions for the system (P.)-(/C.)
using the previous a priori estimates (proven in Lemmata 7.5 and 7.7).

Before going into the proof, we need the following lemma.

Lemma 8.1 (W' estimate)
For all initial data pt € L7, (R?) satisfying (H1) and (H2), if p=P" € C®(T? x [0,T))

are solutions of the Mild integral problem (In.), then there exists a constant C = C(e, L)
such that,

ap:l:,a
81’1

:I:,e,perH

llp

1
Loo((07T);le%(’]T2)) < B(:]l:—i_CT24 HR%RgpeHLOO((O,T);LS(’]TZ)) (H

+1],
L((0,T):LN(T2))

:l:7 ).
whe’f'@ B(:)t = ||p0 8per||w1,%(rﬂ*2).

Proof of Lemma 8.1:
If we denote p5 = (p™ P, p™=P") and pf , = (pg =P, py =P"), then we have shown that
o5 satisfies (5.12), namely,

Py, t) = S(t)p5., + Blpy, pu)(t) + Alpy)(2), (8.28)

where B and A are defined in (5.13) and (5.14) respectively and where S.(t) = S;(et).
Moreover, using (5.15) with u = v = pf , we get,

st (R ) 200 ) s

t
B Ol sy < [

+/
0

We use now Lemma 5.8 (i) with r = 4,¢ = 2—54,]9 = 1 to estimate the first term, and
Lemma 5.8 (ii) with r = %,q = 8,p = 1 to estimate the second term. It gives for
t € (0,7), that,

(LA(T2))?

V(0 o) (BB (6) () ) ds

[V

(L2(T?))?

o7t

2, s ds

(L1(T2))?

t 1
) /723
(Lir2)2 ) Jo (t —s)2

t
1
B(pE. p5)(¢ <C| —— ||R?R2p°
|| (pvvpv)( )H(Wl,%(Tz))Q— /0 (t—S)% H 1 2P (S)HLS(’]I‘Q)

9P
81‘1

< C sup <HR%R%p€(3)HL8(T2)> sup <‘ (s

0<s<T 0<s<T

29



That leads,

ap5
1B(05, P o L3y S CT# || RIR3p° || poe 0.ysmer2y) H ;
CUe e O || e o mmr croyey.
(8.29)
Similarly, we show that,
£ i £

AW gy any < CTHNRER e 0y, (5.30)
By using (8.29), (8.30) and (5.18), and the equation (8.28) we get the proof. O

Theorem 8.2 (Global existence)

For all T,e > 0 and for all initial data pg € L}, (R?) satisfies (H1), (H2), (H3) and
(H4) the system (P.)-(IC.) admits solutions p™¢ € C™(R? x [0,T)). Moreover, this
solution satisfies (H1), (H2) and (H3) for all t € (0,T) and the estimates given in
Lemmata 7.7, 7.10 and 7.11.

Proof of Theorem 8.2:

In Theorem 8.2, we prove that the local solutions given by Corollary 6.3 can be extended
to some global ones. We argue by contradiction. Suppose that there exists a maximum
time T},4. such that we have the existence of solutions of (P.)-(/C.) in C*(R?*x[0, T},4z))-

For 6 > 0, we reconsider the system (P.) with the initial data

:tv
pé,niax = p:I:,E(:L.’ Tma:c - 5)

we reapply for the second time, the proof of Corollary 6.3, we deduce that there exists
a time

* +,e,per ) +eper _  +e
T5,max(||p5,max ||W1'%(T2)’ L’ E) > 07 where pémax pé,max - Lxl’

such that the system (P.)-(I/C.) admits solutions defined until,
To = (Tnaz — 0) + T§ pran-

Moreover, by Lemmata 8.1, 7.7 and 7.5, we know that pi;ﬁfjr are §-uniformly bounded

in W3 2(T?). By using (5.19), we deduce that there exists a constant C'(e, T},az, L) > 0
independent of § such that Ty, . > C > 0. Then 111511 iglf 1§ naw = C > 0. Hence Ty >

T'naz Which gives the contradiction. O

9 Existence of solutions for the system (P)-(IC)

In this section, we will prove that the system (P)-(IC) admits solutions p* in the dis-
tributional sense. They are the limits of p™¢ given by Theorem 8.2 when ¢ — 0. To do
this, we will justify the passage to the limit as ¢ tends to 0 in the system (P?")-(ICPe")
by using some compactness arguments.
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9.1 Preliminary results

Lemma 9.1 (Trudinger compact embedding)
The following injection (see N. S. Trudinger [50]):

W2(T?) — EX P3(T?),

18 compact, for all 1 < (3 < 2.

For the proof of this lemma see also R. A. Adams [1, Th 8.32].

Lemma 9.2 (Simon’s Lemma)
Let X, B, Y three Banach spaces, where X — B with compact embedding and B — Y
with continuous embedding. If (p"), is a sequence such that,

ap™

||anLq((O,T);B) + ||pn||L1((O,T);X) + HW < C,

L((0,7);Y)

where ¢ > 1 and C' is a constant independent of n, then (p"), is relatively compact in
LP((0,T); B) for all p < q.

For the proof, see J. Simon [48, Th 6, Page 86].

In order to show the existence of system (P) in Subsection 9.2, we apply this lemma
in the particular cases where B = EX P3(T?), X = W'?(T?) and Y = W~1%(T?), for
1< pg<.

Lemma 9.3 (Weak star topology in Llog L)
Let E,.,(T?) be the closure in EX P(T?) of the space of functions bounded on T?. Then
FE.p(T?) is a separable Banach space which verifies,

i) Llog L(T?) is the dual space of Ee.,(T?).
i) EXP5(T?) < E.pp(T?) < EXP(T?) for all § > 1.

For the proof, see R. A. Adams [1, Th 8.16, 8.18, 8.20|.

9.2 Proof of Theorem 1.4
Step 1 (Passage to the limit):

First, by Lemma 7.10 we know that for any 7" > 0, the solutions p™?°" of the sys-
tem (PP")-(IC?") obtained with the help of Theorem 8.2, are e-uniformly bounded in
L*(T? x (0,T)). Hence, as € goes to zero, we can extract a subsequence still denoted
by p5P¢ | that converges weakly in L%(T? x (0,7)) to some limit p*?°". Then we want
to prove that p* = p™P°" + Lz, are solutions of the system (P)-(IC). Indeed, since the
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passage to the limit in the linear term is trivial in D’(T? x (0, 7)), it suffices to pass to
the limit in the non-linear term,

(B RSp7) .
e From Lemmata 7.7 and 7.5 we know that the term (R?R3p°) is e-uniformly
bounded in L2((0,7); W'?(T?)). Then it is in particular e-uniformly bounded in
LY(0.); W(T2)).

e From thes previous point and Lemma 9.1, we know that (R?R3/°) is also e-uniformly
bounded in L*((0,T); EX P3(T?)) for all 1 < 8 < 2.

e From Lemma 7.11, the term R%Rg(%) is e-uniformly bounded in L2((0, T); W—12(T?))

and then in L'((0,T); W—12(T?)).

p

Collecting this, we get that there exists a constant C' independent on ¢ such that p° =
R2R2p° satisfies for some 1 < 3 < 2

a5

17N z20.0y;mx ey + 107 o,y wrzcrny) + HE s ¢

L1((0,7);W=12(T?))

Then Lemma 9.2, with B = EX Py(T?), X = WH*(T?) and Y = W~1%(T?), shows the
relative compactness of (RIR2p°) in L'((0,T); EX P3(T?)), and then using Lemma 9.3,
we have the compactness in L'((0,T); Eepp(T?)).

+,e,per

Moreover, by Lemma 7.7, we have that 8—p is e-uniformly bounded in Z*°((0,T'); L1og L(T?))
ol

which is the dual of L'((0,7); E..,(T?)) by Lemma 9.3 (see T. Cazenave and A.

Haraux [11, Th 1.4.19, Page 17]). Then, this final term converges weakly * in
+,per

0
L>=((0,T); Llog L(T?)) toward 8—/) . That enables us to pass to the limit in the
Z1

bilinear term in the sense

LY(0,T); Eeup(T?)) — strong x L¥((0,T); Llog L(T?)) — weak *.

In what precedes, we have shown that p* = p=P" + Lz, are solutions of the following
equation:

apj: 8p +,per
T =3F(R%R§p)a—$l T L(R;R3p)
op *
= F(R2R2p) =~ .
F (R{R;p) 01,

Therefore p* is solutions of system (P) which has the same bounds as p*°. At this

stage we remark that, by Proposition 4.7, the iecond term of the previous system is
0

in L2((0,T); Llog? L(T?)), which gives that % € L2((0,T); Llog? L(T?)), and then
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p=rr € O([0,T); Llog? L(T?)).

Step 2 (The initial conditions):

It remains to prove the the initial conditions (IC) coincides with p*(-,0). Indeed, from
+.e,per

the estimates of p™P¢" and done in Lemmata 7.10 and 7.13, we see that p*°

ot

is e-uniformly bounded in

WE2((0,7); W2(T?)) — C=([0,T); W22(T?)),

where W~%2(T?) is the dual of W2?%(T?). It follows that, there exists a constant C'
independent on ¢, such that, for all ¢, s € [0,7T):

1
lp==Per () — p= P (8) w2202y < Clt — s]2.
In particular if we set s = 0, we have

Hpi,e,per(t) — p(“)—L’e’peerfz,z(Tz) < C’t%. (9.31)

Now we pass to the limit in (9.31). Indeed, the functions p=°?°" and pj"“"*" are -

uniformly bounded in W2((0,T); W~22(T?)) and W~%2(T?) respectively. Moreover we
know that pePer — p==P" converges weakly in L2(T? x (0,7)) to (p=orer — p=Per).

Therefore, we can extract a subsequence still denoted by (pf<Per — p=P") that
weakly converges in Wh2((0,T); W~22(T2)) to (p£#e" — p*°"). This is possible because
W=22(T?) = (W>2(T?)) and W12?(T?) = (W~52(T?)). In particular this subsequence
converges, for all ¢ € (0,7), weakly * in L>((0,¢); W~2%(T?)), and consequently it
verifies (see for instance H. Brezis |9, Prop. 3.12]),

+,e,per +,e,per

oper =00 (o w22y < CF2.

N

=+ per .
1077 = po " | (0,0, w-22(12)) < liminf [|p

From (9.31) we deduce that

l0=77 () — o llw-22z2) < Ot
Which proves that p*(-,0) = pg in D'(R?). O
Remark 9.4

In step 1. of the proof, we indirectly used the fact that p° is bounded in L*((0,T); W12(T?))

is bounded in L*((0,T);W~Y%(T?)). The usual compactness result (see

L. C. Evans [24, P. 5.9.2] ) asserts that we have compactness of the sequance in
C((0,T); L*(T?)). Here we work in dimension 2, and we use another result which asserts
that we have, in particular, compactness in L'((0,T); EX P3(T?)) for every 1 < 3 < 2.

and
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Remark 9.5 (BMO times H')
We notice, using Lemma 7.5 and Remark 7.9, that we can also define the bilinear term of
our system as the product duality between L*((0,T); H'(T?)) and L*((0,T); BMO(T?)).

Remark 9.6

In our proof, we have indirectly used a kind of compensated compactness technic for
Hardy spaces. This technic allows to pass to the limit in a scalar product B.E “weak
times weak”, if we have some regularity conditions on “div E” and on “curl B” (see R.
Coifman et al. [14]). In our case, we do not have enough regularity to do so.
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