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ABSTRACT: The purpose of this short paper is to revisit the infinite Lie group theoretical frame-
work of hydrodynamics developped by V. Arnold in 1966. First of all, we extend this approach from
the Lie pseudogroup of volume preserving transformations to an arbitrary Lie pseudogroup. Then
we prove that, contrary to what could be believed from the work of Arnold which is of a purely
analytical nature, the same results can be obtained from a purely formal point of view. Finally, we
provide the analogue for both the so-called ”body” and ”space” dynamical equations. We conclude
by showing that even this new approach can be superseded by dynamics on Lie groupoids, along
ideas pioneered by the brothers E. and F. Cosserat or H. Weyl, on the condition to change the
underlying philosophy.
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INTRODUCTION:

In a celebrated paper published in 1966 [1], V. Arnold applies the differential geometry of
infinite dimensional Lie groups to the hydrodynamics of perfect uncompressible fluids. His tech-
nique amounts to use for the Lie pseudogroup of volume preserving diffeomorphisms of a bounded
Riemannian domain, the analytical analogue of the formal methods already developped by H.
Poincaré [13], N.G. Chetaev [5,6], E. and F. Cosserat [7,8,9,11], G. Birkhoff [3] and himself [1,2]
for the dynamics of a rigid body and, more generally, for the dynamics that can be achieved on
any Lie group. It must be noticed that the last reference does not quote the previous ones and
we advise the reader to compare [3, p 205 to 216, in particular the formula on p 215/216] with
[2,Appendice 2, in particular the formula of Th 2.1 on p 326].
The basic tool, which is crucially used, is the so-called ”orthogonal decomposition theorem” of H.
Weyl roughly saying that any vector field on the previous domain can be decomposed uniquely
into the sum of a divergence-free vector field on this domain, tangent to the boundary, and the
gradient of a univalent function.
Since the time we read this paper in the seventies, we have always been convinced that this an-
alytical approach could be replaced by a purey formal approach following, for Lie pseudogroups,
the one already existing for Lie groups, the latter one being the founding stone of gauge theory
[21]. It is only now that we have been able to succeed while revisiting once more Arnold’s paper
in the light of new results recently obtained for the partial differential (PD) optimal control theory
and the corresponding multivariable variational problem with differential constraints [17].
We first present a new interpretation of the dynamics on Lie groups in the form of a differential
sequence called gauge sequence and exhibit the corresponding linearized sequence.
We then extend the preceding results to Lie pseudogroups and obtain the corresponding differential
sequence both with the corresponding variational calculus with constraints. All these results are
new and the particular case of a one-parameter (time) gauging of the Lie pseudogroup of volume
preserving transformations provides the equations of Arnold plus the corresponding ”space” equa-
tions that he did not obtain. The corresponding second section has been deliberately written in a
self-contained way though it relies on tricky calculations involving the implicit function theory.
Finally, revisiting the proof of one key theorem within the previous specific case of hydrodynamics,
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we provide doubts about the usefulness of this approach and hints for using Lie groupoids and Lie
algebroids instead of Lie pseudogroups and Lie algebras of vector fields (For a nice introduction to
Lie groupoids, see [12, appendix]).
In the case of Lie group actions, studying only the linear framework for simplicity while introduc-
ing the Spencer operator, we exhibit the link existing between the linear gauge sequence and the
corresponding Spencer sequence for Lie algebroids [14,15,16,18]. But this is just the generalized
Cosserat theory that we already published [14].
As global actions on manifolds may not exist, all the results in this paper are local ones though
global notations are used for simplicity in order to avoid using explicit open sets and charts.

DYNAMICS ON LIE GROUPS:

This section, which is a summary of results already obtained in [14,15], is provided for fixing
the notations and the techniques leading to the gauge sequence and the corresponding variational
calculus, both with the respective linearized versions.
Let X be a manifold of dimension n with local coordinates x = (x1, ..., xn) and latin indices
i, j = 1, ..., n. A point on X will play the part of n parameters. We denote by T = T (X) the
tangent bundle to X and by T ∗ = T ∗(X) the cotangent bundle to X while ∧rT ∗ is the bundle
of r-forms on X. Let now G be a Lie group of dimension p with identity e, local coordinates
a = (a1, ..., ap) and greek indices ρ, σ, τ . We denote by G = Te(G) the corresponding Lie algebra
with vectors denoted by greek letters λ, µ, ν. As usual, we shall identify a map a : X → G called
gauging of G over X, with its graph X → X × G which is a section of a trivial principal bundle,
and, similarly, use the same notation for a bundle and its sheaf of (local) sections as the back-
ground will always tell the right choice. In particular, when differential operators are involved, the
sectional point of view must automatically be used. Such a convention allows to greatly simplify
the notations at the expense of a slight abuse of language.
If we have a map a : X → G : x → a(x), we obtain the tangent map T (a) : T (X) → Ta(G) : dx →
da = ∂a

∂xdx and we can pull back the image to Te(G) = G by acting with the inverse a−1 of a, either
on the left to get A = a−1da ∈ T ∗ ⊗ G or on the right to get B = daa−1 ∈ T ∗ ⊗ G. Differentiating
a−1a = e, we get a−1da = −ad(a−1) and thus daa−1 = −ad(a−1), that is one obtains B from A by
changing a to a−1 and changing the sign too. Also we obtain symbolically A = a−1Ba = Ad(a)B
by introducing the adjoint map µ = Ad(a)λ obtained by carrying λ ∈ G from e to a on the left
and coming back to µ ∈ G from a to e on the right. For more technical details on the adjoint map,
we refer the reader to [15,p 180].
Another way to present the previous construction is to introduce the Maurer-Cartan left invari-
ant 1-form ω = (ωτ

σ(a)daσ) on G with value in (G) and pull it back on X by T (a) in order
to get A = Aτ

i dxi = ωτ
σ(a(x))∂ia

σ(x)dxi. Finally, using the Maurer-Cartan structure equa-
tions for ω on G, namely dωτ − cτ

ρσωρ ∧ ωσ = 0, and pulling them back on X similarly, we
get a well defined operator T ∗ ⊗ G → ∧2T ∗ ⊗ G : A → dA − [A,A] = F with local coordinates
F τ

ij = ∂iA
τ
j − ∂jA

τ
i − cτ

ρσAρ
i A

σ
j where the c are (care to the sign) the structure constants on G

with Lie algebra bracket ([λ, µ])τ = cτ
ρσλρµσ. We may collect these results in the following theorem:

THEOREM 1: In the previous framework, there exists the so-called gauge sequence:

X ×G → T ∗ ⊗ G → ∧2T ∗ ⊗ G
a → a−1da = A

A → dA− [A,A] = F

REMARK 1: The previous results can be extended to connections on principal bundles and their
curvature [15] but it is important to notice that, in both cases, the group is not acting on the base
space.

REMARK 2: When n = 1, no differential sequence is existing and this is the situation con-
sidered by Arnold for the only ”time” parameter t. In the case of a rigid body moving in R3,
changing slightly the notations with x0 the initial position and x the final position at time t, the
movement of the rigid body is x = a(t)x0 + b(t) and the projection of the speed in the body is
a−1ẋ = a−1ȧx0 + a−1ḃ with standard notation for time derivative. This result brings out at once
the form A appearing for the Lie group of rigid motions where G = (a, b) with parameters a for
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rotations and b for translations. Nevertheless, when n = 2, with parameters the curvilinear abcissa
s and the time t, the above framework is the one adapted to the Kirchoff theory of thin elastic
beams along the work of E. and F. Cosserat for the group of rigid motions [9]. Also, when n = 3,
the two previous operators are exactly described by the brothers Cosserat in the nice reference [11]
which has never been quoted elsewhere. An important but tricky question raised by mechanicians
was thus to understand why the compatibility conditions of Cosserat theory were first order PD
eqations while they were known to be second order PD equations in classical elasticity theory [11].

REMARK 3: The second operator has been introduced by E. Cartan for introducing the so-
called curvature (G is the rotation group) and torsion (G is the translation group), but with no
reference to the first operator [4]. It must be noticed that the ”abstract” group G is not acting
on X. Therefore, if one wants to relate the above framework to electromagnetism (EM), the only
possibility is to consider X as space-time and to call A the 4-EM potential, F the EM field (made
by ~E and ~B combined together), with the necessary condition to have dim(G) = 1. This was the
birth of gauge theory with G = U(1), the unit circle in the complex plane and G the parallel to
the complex axis at he point (1, 0).

It just remains to introduce the previous results into a variational framework. For this, taking
into account Remark 3, we need to consider a lagrangian on T ∗⊗G, that is an action W =

∫
w(A)dx

where dx = dx1 ∧ ... ∧ dxn and to vary it. We obtain successively:

δA = δa−1da + a−1δda
= −(a−1δa)(a−1da) + a−1d(aa−1δa)
= d(a−1δa) + (a−1da)(a−1δa)− (a−1δa)(a−1da)

Setting a−1δa = λ ∈ G = ∧0T ∗ ⊗ G, we thus obtain [13,14,15]:

δA = dλ− [A, λ]

Finally, setting ∂w/∂A = A = (Ai
τ ) ∈ ∧n−1T ∗ ⊗ G, we get:

δW =
∫
AδAdx =

∫
A(dλ− [A, λ])dx

and therefore, after integration by part, the Euler-Lagrange (EL) equations (with no right mem-
bers) [1(13),15]:

∂iAi
τ + cσ

ρτAρ
iA

i
σ = 0

We notice that such a linear operatorfor A has non constant coefficients linearly depending on A.
However, setting δaa−1 = µ, we also have:

δA = −a−1δaa−1da + a−1d((δaa−1)a)
= −a−1δaa−1da + a−1d(δaa−1)a + a−1δaa−1da
= Ad(a)dµ

Therefore, introducing by duality B such that Bµ = Aλ, we get the equivalent form [1 (14),15]:

∂iBi
σ = 0

which is a divergence-like operator.
We let the reader check by himself, as an exercise, the following other formulas for right invariant
objects:

δB = dµ + [B,µ] = Ad(a−1)dλ

where λ is used in place of µ and vice-versa, while a−1 is used in place of a and signs are changed.

Similarly, setting A
a→a−1

−→ A−1 = ada−1 = −B and caring to the sign, we obtain therefore
dB + [B,B] = 0. This formula will be found again later on in a different framework.
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At the end of this section, we provide the ”infinitesimal” linear version of the previous results
for a ”close” to e. Then there is no difference between A and B or between λ and µ, and we get
the linear gauge sequence:

∧0T ∗ ⊗ G d→ ∧1T ∗ ⊗ G d→ ∧2T ∗ ⊗ G

which is just the tensor product by G of a part of the Poincaré sequence for the exterior derivative.

DYNAMICS ON LIE PSEUDOGROUPS:

Before using specific notations for this particular section in a way coherent with the first section,
let us provide an elementary introduction to the local theory of Lie pseudogroups with notations
that will also be used in the third section where they will also be coherent with the notations of
the first section too.

DEFINITION 1: A Lie group of transformations of a manifold X is a lie group G with an action
of G on X better defined by its graph X ×G → X ×X : (x, a) → (x, y = ax = f(x, a)) with the
properties that a(bx) = (ab)x and ex = x, ∀x ∈ X,∀a, b ∈ G.
It is sometimes useful to distinguish the source x from the target y by introducing a copy Y of X
with local coordinates y = (y1, ..., yn). Such groups of transformations have first been studied by S.
Lie in 1880. Among basic examples when n = 1 we may quote the affine group y = ax + b and the
projective group y = (ax+b)/(cx+d) of transformations of the real line. When n = 3 we may quote
the group of rigid motions y = ax + b where now a is an orthogonal 3× 3 matrix and b is a vector.
Such a group is known to preserve the euclidean metric ω = (ωij = ωji) and thus the quadratic
form ds2 = (dx1)2 + (dx2)2 + (dx3)2 = ωijdxidxj . When n = 4 we may quote the conformal group
of space-time with 15 parameters (4 translations, 6 rotations, 1 dilatation, 4 elations) preserving
the Minkowski metric ω or the quadratic form ds2 = (dx1)2 + (dx2)2 + (dx3)2 − c2(dt)2 up to a
function factor, where now c is the speed of light and t the time. Among the subgroups, we may
consider the Weyl group with 11 parameters preserving ω up to a constant factor and the Poincaré
group with 10 parameters preserving ω. We recall that the three Lorentz transformations must be
considered as space-time rotations, the three other rotations being pure space rotations.

Only ten years later, in 1890, S. Lie discovered that the Lie groups of transformations were
only examples of a wider class of groups of transformations, first called infinite groups but now
called Lie pseudogroups.

DEFINITION 2: A Lie pseudogroup Γ of transformations of a manifold X is a group of transfor-
mations y = f(x) solutions of a (in general nonlinear) system of partial differential (PD) equations,
also called system of finite Lie equations.

Roughly, this definition means that, if Πq(X, Y ) with local coordinates (x, yq) = (x, yk, yk
i , yk

ij , ...)
satisfying det(yk

i ) 6= 0 is the q-jet bundle of invertible transformations (just replace derivatives by
symbols !), there is a system Rq ⊂ Πq(X, Y ) defined by equations Φτ (x, yq) = 0 such that, if we
have two solutions that can be composed, the composition is again a solution. However, such a point
of view cannot be tested in actual practice. Instead, the idea is to use sections of Rq, that is maps
fq : (x) → (x, fk(x), fk

i (x), fk
ij(x), ...) satisfying det(fk

i (x)) 6= 0 such that Φτ (x, fq(x) ≡ 0,∀x ∈ X.
Introducing the specific section jq(f) : (x) → (x, fk(x), ∂if

k(x), ∂ijf
k(x), ...) and the composi-

tion jq(g ◦ f) = jq(g) ◦ jq(f) for maps that can be composed, an equivalent definition that can
be tested is that, whenever fq and gq are sections of Rq that can be composed, then gq ◦ fq is
also a section. A similar comment can be done for defining the inverse f−1

q and is left to the reader.

Setting now y = x + tξ(x) + ... and passing to the limit for t → 0, that is to say linearizing Rq

around the q-jet of the identity y = x, we get a linear system Rq ⊂ Jq(T ) for vector fields with solu-
tions Θ ⊂ T satisfying [Θ,Θ] ⊂ Θ. It can be proved, for the same testing type reasons, that such a
system may be endowed with a Lie algebra bracket on sections ξq : (x) → (x, ξk(x), ξk

i (x), ξk
ij(x), ...)

that we shall quickly define (see [14,15] for more details and compare to [12]). Such a bracket
on sections transforms Rq into a Lie algebroid and we have [Rq, Rq] ⊂ Rq. Let us first de-
fine by bilinearity {jq+1(ξ), jq+1(η)} = jq([ξ, η]),∀ξ, η ∈ T . Introducing the Spencer operator
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D : Rq+1 → T ∗ ⊗ Rq : ξq+1 → j1(ξq) − ξq+1 with local components (∂iξ
k − ξk

i , ∂iξ
k
j − ξk

ij , ...), we
obtain the following general formula at order q:

[ξq, ηq] = {ξq+1, ηq+1}+ i(ξ)Dηq+1 − i(η)Dξq+1,∀ξq, ηq ∈ Rq

where i() is the interior multiplication of a 1-form by a vector, and we let the reader check that
such a definition no longer depends on the ”lifts” ξq+1, ηq+1 over ξq, ηq.

EXAMPLE 1: (Affine transformations) n = 1, q = 2, X = R3

With evident notations, the system R2 is defined by the single linear OD equation yxx = 0 and
the sections are defined by fxx(x) = 0. Similarly, the sections of R2 are defined by ξxx(x) = 0. Ac-
cordingly, the components of [ξ2, η2] at order zero, one and two are defined by the totally unusual
successive formulas:

[ξ, η] = ξ∂xη − η∂xξ

([ξ1, η1])x = ξ∂xηx − η∂xξx

([ξ2, η2])xx = ξxηxx − ηxξxx + ξ∂xηxx − η∂xξxx

It follows that ξxx = 0, ηxx = 0 ⇒ ([ξ2, η2])xx = 0 and thus [R2, R2] ⊂ R2.

EXAMPLE 2: (Projective transformations) n = 1, q = 3, X = R3

The system R3 is defined by the single nonlinear OD equation (yxxx/yx) − 3
2 (yxx/yx)2 = 0 and

the sections of R3 are defined by ξxxx(x) = 0. The formulas for the bracket of Lie algebroid
[R3, R3] ⊂ R3 can be derived similarly but involve many more terms.

EXAMPLE 3: (Volume preserving transformations) n arbitrary, q = 1, X = Rn

The systemR1 is defined by the single nonlinear PD equation ∂(y1, ..., yn)/∂(x1, ..., xn) = det(yk
i ) =

1 and the sections of R1 are defined by the single relation ξi
i = 0. Accordingly, we obtain:

([ξ1, η1])k
i = ξr

i ηk
r − ηr

i ξk
r + ξr∂rη

k
i − ηr∂rξ

k
i

When summing on k and i, the first two terms disappear (as in Example 1 !) and we get therefore
[R1, R1] ⊂ R1. We invite the reader to compare this result with the usual way on solutions where
one defines Θ as the kernel of the Lie derivative L(ξ)ω of the (volume) n-form ω = dx1 ∧ ... ∧ dxn

with respect to ξ and then uses the well known formula [L(ξ),L(η)]ω = L([ξ, η])ω,∀ξ, η ∈ T in
order to obtain [Θ,Θ] ⊂ Θ.

REMARK 4: In view of the results of the first section, it is tempting to consider a Lie pseu-
dogroup of transformations as an infinite Lie group of transformations. Such a point of view,
frequently adopted in the past by russian mathematicians (V. Arnold, L.V. Ovsiannikov,...) is at
the opposite of point of view adopted by the american school (D.C. Spencer and coworkers). The
origin of this confusion lies in the fact that the transformations of a few Lie pseudogroups just
depend on a certain number of arbitrary functions. Expanding these functions into Taylor series
close to the value they have at the identity transformation allows to consider the coefficients of
the series as parameters on an infinite Lie group. The best way is by far to obtain results from the
finite number of defining finite or infinitesimal Lie equations, using their sections without using
their solutions. The following tricky example will illustrate this remark.

EXAMPLE 4: Let us consider the Lie pseudogroup of transformations of R2 only depending on
an arbitrary function of a single variable with nonzero derivative:

Γ = {y1 = f(x1), y2 = x2/
∂f(x1)

∂x1
}

It is easy to check that Γ is the set of solutions of the (involutive) nonlinear system:

R1 y1
2 = 0, y2y1

1 = x2 ⇒ ∂(y1, y2)
∂(x1, x2)

= 1
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with corresponding system of infinitesimal Lie equations:

R1 ⊂ J1(T ) ξ1
2 = 0, x2ξ1

1 + ξ2 = 0 ⇒ ξ1
1 + ξ2

2 = 0

We may thus set f(x) = a0 + a1x + ... with a1 6= 0 and f must be the identity f(x) = x whenever
y1 = x1, y2 = x2.
Nevertheless, changing slightly the last system to the following one:

R′
1 y1y2

2 − y2y1
2 = x1, y1y2

1 − y2y1
1 = −x2 ⇒ ∂(y1, y2)

∂(x1, x2)
= 1

does not allow now to have any generic explicit solution. We finally notice that, in the first case
one can check the Lie pseudogroup property by composing explicit solutions while in the second
case the corresponding Lie pseudogroup is the one preserving the geometric object ω = (α, β) where
α = x1dx2 − x2dx1 is a 1-form and β = dx1 ∧ dx2 is a 2-form satisfying the integrability condition
dα = 2β.

From now on in this section, let X be the manifold of parameters as in the first section, let Y
be another manifold of dimension m with coordinates y = (y1, ..., ym) and indices k, l while Z is a
copy of Y with coordinates z = (z1, ..., zm). Let now Γ = ΓY ⊆ aut(Y ) be a Lie pseudogroup of
transformations of Y (not of X) of the form z = f(y) with inverse y = g(z). With a slight abuse
of language, a map f : X → Γ : x → fx(y) = f(y, x) will be identified with a section of X × Γ.
We denote by Rq = Rq(Y ) ⊆ Jq(T (Y )) the corresponding system of infinitesimal Lie equations.
The operator D = DY : T (Y ) → Jq(T (Y ))/Rq(Y ) is a Lie operator, that is an operator such that
Dξ1 = 0,Dξ2 = 0 ⇒ D[ξ1, ξ2] = 0, where the bracket is the standard bracket of vector fields on Y .
Again with a slight abuse of language, if Θ = ΘY ⊆ T (Y ) is the sheaf of germs of solutions of D,
we have [Θ,Θ] ⊂ Θ.

The main problem that we have now to solve is to construct an analogue of the gauge se-
quence with left and right points of view, both with a corresponding variational calculus. For this,
considering fx+dx ◦ f−1

x − id and passing to the limit, we obtain a vector valued 1-form (CARE)
v ∈ T ∗ ⊗ΘZ ⊂ T ∗ ⊗ V (X × Z) called generalized speed and defined by the formula:

v(z, x) =
∂f

∂x
(g(z, x), x)

with no one of the indices for simplicity. Such a definition is just similar to the definition of the
eulerian speed v(x, t) in continuum mechanics for a movement x = f(x0, t) of a point/particle with
position x0 at time t0, x at time t and x + v(x, t)dt at time t + dt. However, the Lie pseudogroup
background is not so evident and the reader may now, as a motivation, get in mind the composition
z → y → z + v(z, x)dx.
Similarly, considering f−1

x ◦ fx+dx − id and passing to the limit, we may obtain the pull-back
u ∈ T ∗ ⊗ΘY ⊂ T ∗ ⊗ V (X × Y ) defined by the formula:

∂f

∂x
(y, x) ≡ v(f(y, x), x) ≡ ∂f

∂y
(y, x)u(y, x)

again with no one of the indices for simplicity as only the tangent mapping is involved.
Conversely, if y = g(z, x), ȳ = ḡ(z, x) ∈ Γ, then, from the implicit function theorem, we get
ȳ = h(y, x) ∈ Γ in general. However, from the identities:

f(g((z, x), x) ≡ z ≡ f̄(ḡ(z, x), x) , f̄(h(y, x), x) ≡ f(y, x) , ḡ(z, x) ≡ h(g(z, x), x)

we deduce the relations:

−v =
∂f

∂y

∂g

∂x
, −v̄ =

∂f̄

∂ȳ

∂ḡ

∂x

and thus:

v(z, x) = v̄(z, x) ⇔ ∂ḡ

∂x
=

∂h

∂y

∂g

∂x
⇔ ∂h

∂x
= 0 ⇔ ȳ = h(y) ∈ Γ
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a result showing the right invariance of the generalized speed.
Exactly as in the previous section, we notice that the passage from v to u just amounts to change
f to g while changing the sign (CARE) as we have indeed the identity:

y ≡ g(f(y, x), x),∀x ∈ X

and, differentiating with respect to x, we get:

∂g

∂z
(z, x)v(z, x) +

∂g

∂x
(z, x) ≡ 0

and thus:

u(g(z, x), x) ≡ −∂g

∂x
(z, x),∀x ∈ X

or equivalently:

u(y, x) ≡ −∂g

∂x
(f(y, x), x),∀x ∈ X

but u, v ∈ T ∗ ⊗Θ do not provide the same sections.

The next important step will be to provide the compatibility conditions. For this, introducing:

vk
i =

∂fk

∂xi
(g(z, x), x)

we successively obtain from the chain rule for derivatives and the above comment:

∂vk
i

∂xj = ∂2fk

∂xi∂yl
∂gl

∂xj + ∂2fk

∂xi∂xj

= ∂vk
i

∂zu
∂fu

∂yl
∂gl

∂xj + ∂2fk

∂xi∂xj

= −vu
j

∂vk
i

∂zu + ∂2fk

∂xi∂xj

Exchanging i and j, then substracting, we get the formula:

∂ivj − ∂jvi + [vi, vj ] = 0

that we may rewrite in the condensed form dv + [v, v] = 0 as v can be considered as an horizontal
form on X × Z. Also, as in the first section, with u in place of A, v in place of B and ∂g

∂x in place
of B−1 = −A, while caring about the sign, we have similarly du− [u, u] = 0.
Collecting these results and taking into account that D is a Lie operator with ∂iD = 0,∀i = 1, ..., n,
we obtain therefore:

THEOREM 2: There exists a differential sequence:

X × Γ −→ T ∗ ⊗Θ −→ ∧2T ∗ ⊗Θ

The hard step in this paper will be to construct the corresponding variational calculus with
constraint. For this, δ being the usual symbol for variation, we may introduce the vertical vector
field η = η(z, x) ∈ Θ such that η(f(y, x), x) = δf(y, x) and we get (compare to [7,14,20]):

δv + η
∂v

∂z
=

∂η

∂x
+ v

∂η

∂z
=

dη

dx
⇒ δv =

∂η

∂x
+ [v, η]

Exactly as above and for a later use, by analogy with continuum mechanics, we may introduce the
Jacobian determinant:

∆(z, x) =
∂(f)
∂(y)

(g(z, x), x) = det(
∂f

∂y
)(g(z, x), x)
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Using the well known formulas for jacobian determinants:

∂(f + df)
∂(y)

/
∂(f)
∂(y)

=
∂(z + vdx)

∂(z)
= 1 +

∂v

∂z
dx + ...

and passing to the limit, we obtain therefore d∆
dx = ∆∂v

∂z and thus:

δ∆ + η
∂∆
∂z

= ∆
∂η

∂z
⇒ δ∆ = ∆

∂η

∂z
− η

∂∆
∂z

In order to overcome the minus sign in this formula and simplify it, we may therefore introduce
the analogue ρ = 1/∆ of the mass per unit of volume and obtain the variation [5,12,18]:

δρ + η
∂ρ

∂z
= −ρ

∂η

∂z
⇒ δρ = −∂(ρηk)

∂zk
.

We notice that such a result could not be obtained in [1] where ∆ = 1 by assumption, though this
is coherent with the divergence-free condition for the speed in this case.

As in the first section, we may also introduce the pull back of η as the vertical vector ξ =
ξ(y, x) ∈ Θ defined by the formula:

η(f(y, x), x) ≡ ∂f

∂y
(y, x)ξ(y, x) ⇔ ∂g

∂z
(z, x)η(z, x) ≡ ξ(g(z, x), x)

exactly as we got u from v but now with δ in place of d. We obain the following tricky theorem,
coherent with the results of the first section but absent from [1,2]:

THEOREM 3: δv = ∂f
∂y

∂ξ
∂x .

Proof: Using the well known result saying that the bracket of vector fields commutes with the
action of any diffeomorphism while working ONLY with (z, x) and CARING ABOUT THE SIGN,
we successively get from the above formulas:

∂g
∂z (z, x)δv = ∂g

∂z
∂η
∂x + ∂g

∂z [v, η]

= ∂g
∂z

∂η
∂x + [∂g

∂z v, ∂g
∂z η]

= ∂g
∂z

∂η
∂x − [ ∂g

∂x , ξ]

= ∂
∂x (∂g

∂z η)− ∂
∂x (∂g

∂z )η − [ ∂g
∂x , ξ]

= ∂ξ
∂x + ∂ξ

∂y
∂g
∂x −

∂
∂z ( ∂g

∂x )η − ∂g
∂x

∂ξ
∂y + η ∂

∂z ( ∂g
∂x )

= ∂ξ
∂x (g(z, x), x)

as we have indeed:

ξ
∂

∂y
= η

∂

∂z
,

d

dx
ξ(g(z, x), x) ≡ ∂ξ

∂x
+

∂ξ

∂y

∂g

∂x

thus ending the proof.
Q.E.D.

By analogy with continuum mechanics, among general action integrals of the form W =∫
w(∂f

∂x , ∂f
∂y )dy∧dx, we shall only consider the action integrals of the form W =

∫
ρ(z, x)w(v(z, x))dz∧

dx and vary them. As in [7(V),14], the best procedure in actual practice is to introduce a ”small”
parameter ε and consider the family f(y, x; ε) ↔ g(z, x; ε) with variation δ = ∂/∂ε also leading to
the previous results when (z, x; ε) are considered as independent variables. Of course, we have to
add the constraint z = fx(y) = f(y, x) ∈ Γ and this will be the delicate point to overcome.
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Introducing V = ∂w
∂v = (Vi

k) or its dual U we get:

δ(ρw) = − ∂

∂zk
(ρwηk) + ρVi

k

∂ηk

∂xi
+ ρVi

kvl
i

∂ηk

∂zl
.

Using x in place of ε for ρ, we get the ”conservation of mass” identity:

∂ρ

∂xi
+

∂

∂zk
(ρvk

i ) ≡ 0

Finally, integrating by part over X × Z exactly as for Eulerian coordinates (x, t) in classical hy-
drodynamics [7,14,20], we obtain the EL equations over X × Z, up to sign:

Eη ≡ ρ(
∂Vi

k

∂xi
+ vl

i

∂Vi
k

∂zl
)ηk = 0, ∀η ∈ Θ

or equivalently over X × Y :

∂U i
k

∂xi
ξk = 0, ∀ξ ∈ Θ.

It is just the solution of this problem that we have already solved for creating PD optimal control
theory. We consider two situations:

1) If D can be parametrized by an operator D−1, then any η ∈ Θ can be written in the form
D−1θ = η for an arbitrary θ ∈ V (X × Z) in the previous variation. Then, denoting by ad the
formal adjoint of an operator and integrating by part with respect to z, we find ad(D−1)E = 0 as
final EL equations.

2) In the general situation, if {Φτ} is a fundamental generating set of differential invariants
of Γ at order q and {ωτ (y)} their value at the identity, the Lie form of the finite Lie equations
defining Γ at order q is Φτ − ωτ (y) = 0 in the sense that we have a defining groupoid of order q.
It follows that the constrained variational calculus for an action density w amounts to vary the
unconstrained action density w + λτ (Φτ − ωτ (y)) where {λτ} are Lagrange multipliers. As the
vertical bundle of the groupoid is isomorphic to the corresponding infinitesimal Lie equations over
the target, changing λ to λ̄ by duality, the variation becomes δw + λ̄Dη. Integrating by part as
usual while caring about the signs, we obtain the EL equations E − ad(D)λ̄ = 0. Finally, we just
need to eliminate the Lagrange multipliers by introducing compatibilty conditions for ad(D) of the
form ad(D−1) and obtain the same EL equations as before but with a slightly different approach.

EXAMPLE 5: When n = 1,m = 3, Y = R3 with Euclidean metric, time t, initial position
x0, final position x and transformations of the form x = f(x0, t), the above v(x, t) is just the
ordinary speed ~v in Euler variables and u(x0, t) its differential pull back in Lagrange variables. If
Γ = aut(Y ) and the action density is the standard kinetic energy w = 1

2ρ~v2 where ρ is the mass
per unit volume, the EL equations become, up to sign [5(V),12]:

ρ~γ ≡ ρ
d~v

dt
≡ ρ(

∂~v

∂t
+ (~v.~∇)~v) ≡ ρ(

∂~v

∂t
+ (~∇∧ ~v) ∧ ~v + ~∇(

1
2
~v2)) = 0.

Now, if Γ is the Lie pseudogroup of volume preserving transformations defined by ∆ = 1 ⇔ ρ = 1,
then Θ is the Lie algebra of divergence-free vector fields and we get:

~γ.~η = 0, ∀η ∈ Θ ⇔ ~∇.~η = 0

In that specific case, D = div can be parametrized by the curl operator, that is ~η = ~∇ ∧ ~θ for an
arbitrary vector field ~θ. As the curl operator is self-adjoint up to sign, introducing the so-called
”vortex” vector ~ω = 1

2
~∇∧ ~v (see below for the numerical factor), we get at once the EL equations

of Arnold, namely:

1
2

~∇∧ ~γ ≡ ∂~ω

∂t
+ [~v, ~ω] = 0

in a purely formal way.
We point out that the numerical factor 1/2 comes from the fact that, in the case of a rigid body
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motion x = a(t)x0 + b(t), then v = ẋ = ȧx0 + ḃ = ȧa−1x + (ḃ − ȧa−1b). An easy computation in
local coordinates then shows that ȧa−1 is a skew-symmetric 3× 3 matrix amounting to the vector
product by the vortex vector ~ω as previously defined.
Otherwise, considering the action density w+λ(∆−1) and varying it, we get δw+λ~∇.~η. Integrat-
ing by part, we get ~γ + ~∇λ = 0 ⇒ ~∇ ∧ ~γ = 0 as before but the Lagrange multiplier λ̄ = ∆λ = λ
now plays the part of the pressure, as well known in fluid dynamics.

EXAMPLE 6: With m = 1, setting z′ = ∂z/∂y and so on, Le Lie form of the group of projective
transformations of the real line is Φ ≡ z′′′

z′ −
3
2 ( z”

z′ )
2 = 0 where Φ is the well known Schwarzian

derivative. Using the prolongation formulas δz = η, δz′ = η′z′ = (δz)′, ... and so on, it is not so
easy to check that δΦ = (z′)2η′′′ and the needed isomorphism is thus λ̄ = (z′)2λ.

EXAMPLE 7: From everybody diving experience or looking at corks on the surface of the sea, a
natural model for swell is well described by water particles moving along circles with radius smaller
and smaller with depth. A parametrized form in the vertical (x, y) plane can be:

x = a + R(b)cos(ωt− ϕ(a)) , y = b + R(b)sin(ωt− ϕ(a))

As we have the well known formula ∂(x,y)
∂(x0,y0)

= ∂(x,y)
∂(a,b) /

∂(x0,y0)
∂(a,b) , the movement is that of an uncom-

pressible fluid iff ∂(x,y)
∂(a,b) = ∂(x0,y0)

∂(a,b) = 1 + RR′ϕ′ + (Rϕ′ + R′)sin does not depend on time, that
is to say ϕ′(a) = −R′/R(b) = k and thus ϕ(a) = ka + c,R(b) = R0e

−kb. In that case, it is not
at all evident to see directly that the movement is NOT stationary in the fixed frame. However,
for proving this result, one just needs to notice that the trajectories are bounded circles while the
stream lines are infinite cycloidal curves (consider the surface of the sea !). Finally, the movement
becomes stationary in the moving frame x̄ = x− ω

k t, ȳ = y associated with a boat ”surfing” on the
crest of a given wave. Indeed, changing the parameters (a, b) to (ā = a− ω

k t, b̄ = b), we notice that
the new parametrization (ā, b̄) → (x̄, ȳ) does not involve time t anymore.

DYNAMICS ON LIE GROUPOIDS:

Let us revisit the variation formula provided by Theorem 3, changing the notations when n = 1,
one parameter t and movement x = f(x0, t) with inverse x0 = g(x, t) as usual in continum me-
chanics where the speed in Eulerian coordinates (x, t) is defined by :

v(f(x0, t), t) ≡
∂f

∂t
(x0, t).

Using space-time coordinates (x1, x2, x3, x4) with x4 = ct and reference speed of light c = 1, we
may divide (dx1, dx2, dx3, dx4) by dt and obtain the extended speed (v1, v2, v3, 1) = (~v, 1) in Special
Relativity with variation (δ~v, 0). Introducing the ”time” variable t0 corresponding to x0 and the
function t0 = g4(x, t), we may finally consider the transformation x = f(x0) with inverse x0 = g(x),
but now on space-time, and try to obtain δv = [v, η] on space-time, on the condition to get rid
of t0. For this we refer to [8,12] as it is out of the scope of this paper. In particular, the strange
form dx ∧ dt is no longer a wedge product of forms but a volume form on space-time as we have
no longer TWO separate manifolds but only ONE, a result leading to relativistic mechanics.
Having in mind the first section where G was an abstract group, we have now a Lie pseudogroup
of transformations of a manifold, a particularly simple example being produced by a Lie group
of transformations defined by the graph X × G → X ×X of an action. In this case, it is known
[14,15] that the (nonlinear) Spencer sequence is isomorphic to the gauge sequence and the Spencer
(nonlinear) sequence is therefore the ONLY candidate for a generalization to cases where no Lie
group action is involved, like the Lie pseudogroup of volume preserving, symplectic or contact
transformations.
We have already explained in many books [14,15] that such an aproach, where sections of Lie
groupoids/jet bundles generalize the gauging approach, is JUST the way to understand the Cosserat
theory of continuum mechanics and Weyl theory of electromagnetism. The only choice remaining
on space-time is to select a convenient ”group candidate” and we refer to the previous books for
discovering why it MUST be the conformal group of space-time endowed with the Minkowski met-
ric.
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Finally, exactly like in the first section, a linearized version exists and we refer the reader to
[16,17,19] for a simple presentation of this framework with applications to field-matter coupling.

Coming back to mathematics for a few lines, there is another differential sequence to be found
in the literature and that we did not speak about, namely the Janet sequence, though it is for sure
the best known differential sequence. For short, if E,F, F0, F1, ... denote vector bundles over X,
we use the same letters for the corresponding sets (sheaves to be exact) of sections and such an
interpretation must be used whenever operators are involved. Starting from a vector bundle E (for
example T ) and a linear differential operator D : E → F : ξ → η, if we want to solve the linear
system with second member Dξ = η even locally, one needs ”compatibility conditions” in the form
D1η = 0. Denoting now F by F0, we may therefore look for an operator D1 : F0 → F1 : η → ζ and
so on. Under assumptions on D which are out of the scope of this paper (involutivity !), the french
mathematician M. Janet has proved in 1920 that such a chain of operators ends after n steps and
we obtain the linear Janet sequence, namely [15]:

0 → Θ → E
D→ F0

D1→ F1
D2→ ...

Dn→ Fn → 0

It follows that we only have at our disposal for any application where group theory seems to be
involved, three linear differential sequences, namely the Janet sequence, the Spencer sequence and
the gauge sequence. As these sequences are made by quite different operators, the use of one
excludes the use of the others.

In order to escape from this dilemna, at the end of this paper and for the sake of clarifying the
key idea of the brothers Cosserat by using these new mathematical tools, we shall explain, in a way
as elementary as possible while using only the linear framework, why THE JANET SEQUENCE
AND THE GAUGE SEQUENCE CANNOT BE USED IN CONTINUUM MECHANICS. By this
way we hope to convince the reader about the need to use another differential sequence, namely the
SPENCER SEQUENCE, though striking it could be. Also we shall use very illuminating examples
in order to illustrate our comments.
First of all we exhibit the isomoprphism existing between the linear gauge sequence and the linear
Spencer sequence. For this, if now G acts on X with a basis ξτ = {ξk

τ∂k} of infinitesimal generators,
we may introduce the bundle Jq(T ) of q-jets of T over X, that is the vector bundle over X with
sections transforming like the derivatives of vector fields up to order q, and the map:

∧0T ∗ ⊗ G → Jq(T ) : λτ (x) → λτ (x)∂µξk
τ (x)

It is known [14,p. 308] that this map becomes injective for q large enough and we may call Rq its
image for such a q. It follows from its definition that Rq ' Rq+1 is a system of infinitesimal Lie
equations of finite type and we get for the Spencer operator [12,15,17]:

D : Rq+1 → T ∗ ⊗Rq : ξq+1 → (∂iξ
k
µ − ξk

µ+1i
) = ∂iλ

τ (x)∂µξk
τ (x)

Accordingly, the linear gauge sequence is isomorphic to the linear Spencer sequence:

0 → Θ → ∧0T ∗ ⊗Rq
D→ ∧1T ∗ ⊗Rq

D→ ∧2T ∗ ⊗Rq

the three isomorphisms being induced by the (local) isomorphism X × G → Rq just described
above. It is essential to notice that, though the linear Spencer sequence and the isomorphisms
crucially depend on the action, by a kind of ”miracle” the linear gauge sequence no longer depends
on the action.
This result proves that the linear Spencer sequence generalizes the linear gauge sequence, with the
major gain that it can be used even for Lie pseudogroups of transformations that are not coming
from Lie groups of transformations, as we shall see eamples in the sequel.

REMARK 5: When n = 3 and we deal with the Lie group of rigid motions, the corresponding EL
equations are nothing else but the formal adjoint of the (first) Spencer operator. Surprisingly, this
is EXACTLY the result found by the brothers Cosserat, namely the so-called stress and couple-
stress equations for Cosserat media [9, p 137,14,16,18,19].
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REMARK 6: The above result, in perfect agreement with the piezzoelectric or photoelastic cou-
pling of elasticity and electromagnetism, CONTRADICTS gauge theory where the lagrangians are
functions on ∧2T ∗ ⊗ G and NOT on T ∗ ⊗ G as in the previous remark [14,16].

Let us consider a (finite) volume
∫

V
dV in R3 limited by a (closed) surface S =

∫
S
dS and let

us introduce the outside unit normal (pseudo) vector ~n = (nj) on S. Let us now suppose that the
surface element dS is acted on by the outside with a force d~F = ~σdS and a couple d~C = ~µdS,
where both ~σ and ~µ linearly depend on ~n through the stress tensor density σ = (σij) and the
couple-stress tensor density µ = (µr,ij = −µr,ji). It must be noticed that, using the standard
Cauchy tetrahedral device, there is no reason ”a -priori” to suppose that the stress tensor is sym-
metric. We also suppose that the volume element dV is acted on by (see later on for the sign) a
force −~fdV and a momentum −~mdV with ~f = (f j) and ~m = (mij = −mji).
Our purpose is now to study the equilibrium of the corresponding torsor fields with respect to an
arbitrary cartesian frame 0x1x2x3.
The equilibrium of forces is satisfied if we have the relation:∫

S

~σdS −
∫

V

~fdV = 0 ⇒
∫

S

σijnidS −
∫

V

f jdV = 0

Using Stokes formula, this is equivalent to the well known stress equations:

∂iσ
ij = f j

This result shows that the surface density of forces ~σ is equivalent, from the point of view of force
equilibrium, to a volume density of forces ~f and this interpretation explains the sign adopted.
Finally, the equilibrium of forces being satisfied, it is known that the equilibrium of momenta
is also satisfied if it is satisfied with respect to an arbitrarily chosen cartesian frame. Hence, in-
troducing the vector ~r = (x1, x2, x3), the equilibrium of momenta is satisfied if we have the relation:∫

S

(~µ + ~r ∧ ~σ)dS −
∫

V

(~m + ~r ∧ ~f)dV = 0

Projecting onto the axis Ox3, we obtain:∫
S

(µr,12 + x1σr2 − x2σr1)nrdS −
∫

V

(m12 + x1f2 − x2f1)dV = 0

Using again Stokes formula and the previous stress equations, we obtain the couple-stress equations:

∂rµ
r,ij + σij − σji = mij

This result shows that the surface density of forces ~σ and couples ~µ is equivalent, from the point
of view of torsor equilibrium, to a volume density of forces ~f and to a volume density of momenta
~m, provided the preceding stress and couple-stress equations are satisfied, and this interpretation
explains the sign adopted.
The combination of the stress AND couple-stress equations have first been exhibited by E. and F.
Cosserat in 1909 [8,9,p137] WITHOUT ANY STATIC EQUILIBRIUM EXPERIMENTAL BACK-
GROUND and we now explain the key argument leading to the same equations just from group
theoretical arguments. Of course, most of the engineering continua such as steel, concrete, glass,
wate,... have the specific ”constitutive laws” µ = 0,m = 0 and we obtain therefore σij = σji, that
is the stress tensor is symmetric, a situation not always encountered in liquid crystals.

First of all, for the reader not familiar with the Spencer operator, we exhibit a similar result
in a quite simpler 1-dimensional situation that will allow to recapitulate all the previous results..

EXAMPLE 8: Let us consider the Lie group of affine transformations of the real line defined
by the group action y = a1x + a2. The corresponding 2-dimensional Lie group G has coordinates
a = (a1, a2) and the group composition law is ab = (a1, a2)(b1, b2) = (a1b1, a1b2 + a2) with inverse
law a−1 = (1/a1,−a2/a1). Accordingly, we have a−1da = ((1/a1)da1, (1/a1)da2) and obtain at
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once the Maurer-Cartan forms ω1 = (1/a1)da1, ω2 = (1/a1)da2 with the two Maurer-Cartan equa-
tions dω1 = 0, dω2 + ω1 ∧ ω2 = 0. Finally, a corresponding basis of infinitesimal generators of the
action may be obtained with ξ1 = x ∂

∂x , ξ2 = ∂
∂x and we have in a coherent way [ξ1, ξ2] = −ξ2,

that is the only non zero structure constant is c2
12 = −1. It follows from the first section that the

resulting EL-equations are either:

∂iAi
1 + A2

iAi
2 = 0 , ∂iAi

2 −A1
iAi

2 = 0

or simply:

∂iBi
1 = 0 , ∂iBi

2 = 0

if we use a pull-back by the adjoint action. In both cases these equations could not have anything
to do with the stress and couple-stress equations previously exhibited.
Let us now deal with the Spencer sequence instead of the gauge sequence in this framework.
First of all, we may consider the above Lie group of transformations as a Lie pseudogroup defined
by the second order system of finite Lie equations yxx = 0. The corresponding system R2 ⊂ J2(T )
of infinitesimal Lie equations is ξxx = 0 and the isomorphisms between the gauge sequence and
the Spencer sequence is induced by the maps:

(λ1(x), λ2(x)) → (ξ(x) = xλ1(x) + λ2(x), ξx(x) = λ1(x), ξxx(x) = 0)

The only two non-zero components of the Spencer operator become:

∂xξ(x)− ξx(x) = x∂xλ1(x) + ∂xλ2(x), ∂xξx(x)− 0 = ∂xξx(x) = ∂xλ1(x)

Equating to zero these two components amounts to have:

∂xλ1 = 0 , ∂xλ2 = 0

Accordingly, gauging λ just amounts to choose an arbitrary section of R2.
The final touch, that could not be in the mind of any reader even on this very simple example, is to
work out the formal adjoint of the Spencer operator. For this, multiplying the first component by
a test function σ(x), the second by a test function µ(x), then summing and integrating by parts,
we get the EL-equations (up to sign) as the kernel of the following operator with second members
(f,m):

∂xσ = f , ∂xµ + σ = m

The comparison with the previous mechanical results needs no comment.

Taking into account this example, we now study the foundation of elasticity theory and we
restrict the study to 2-dimensional (infinitesimal) elasticity for simplicity as the general situation
has already been treated elswhere and we just want to explain why the only founding problem of
elasticity is the choice of an underlying Lie pseudogroup and an adapted differential sequence.

1)The gauge sequence cannot be used:
Looking at the book [9] written by E. and F. Cosserat, it seems at first sight that they just con-
struct the first operator of the nonlinear gauge sequence for one parameter [9, p 7], two parameters
[9, p 66], three parameters [9, p 123] and finally four space-time parameters [9, p 189]. This is
NOT TRUE indeed because, according to the comment done in the first section or Example, the
EL-equations are either a divergence like operator or a linear operator with coefficients depending
on A, a situation not met in the couple-stress equations which is a linear operator with constant
coefficients, not of divergence type. In fact, a carefull study of the book proves that somewhere
the action of the group on the space is used, but this is well hidden among many very technical
formulas (Compare [9] p 136 with [14] p 295).

2)The Janet sequence cannot be used:
This result is even more striking because ALL texbooks of elasticity use it along the same scheme
that we now describe. Indeed, after gauging the translation by defining the ”displacement field”

13



ξ = (ξ1(x), ξ2(x)) of the body, from the initial point x = (x1, x2) to the point y = x + ξ(x),
one introduces the (small) ”deformation tensor” ε = 1/2L(ξ)ω as one half the Lie derivative with
respect to ξ of the euclidean metric ω, namely, in our case, the three components (care):

ε = (ε11 = ∂1ξ
1, ε12 = ε21 = 1/2(∂1ξ

2 + ∂2ξ
1), ε22 = ∂2ξ

2)

From the mathematical point of view, one uses to consider the Lie operatorDξ = L(ξ)ω : T → S2T
∗

(symmetric tensors), sometimes called Killing operator, through the formula:

(Dξ)ij ≡ ωrj∂iξ
r + ωir∂jξ

r + ξr∂rωij = Ωij = 2εij

One may check at once the only generating ”compatibility condition” D1ε = 0, namely:

∂11ε22 + ∂22ε11 − 2∂12ε12 = 0

which is nothing else than the Riemann tensor of a metric, linearized at ω.
However, the main experimental reason for introducing the first operator of this type of Janet
sequence is the fact that the deformation is made from the displacement and first derivatives but
must be invariant under any rigid motion. In the general case it must therefore have (n + n2) −
(n + n(n − 1)/2) = n(n + 1)/2 components, that is 3 when n = 2, and this is the reason why
introducing the deformation tensor ε. For most finite element computations, the action density
(local free energy) w is a (in general quadratic) function of ε and people use to define the stress
by the formula σij = ∂w/∂εij which is not correct because w only depends on ε11, ε12, ε22 when
n = 2 as the deformation tensor is symmetric by construction. Finally, textbooks escape from this
trouble by deciding that the stress should be symmetric and this is a vicious circle because we have
proved it was not an assumption but an experimental result depending on specific constitutive
laws. Accordingly, when n = 2, we should have σijεij = σ11ε11 + (2σ12)ε12 + σ22ε22. Hence, even
if we find the correct stress equations with this convenient duality keeping the factor ”2”, we have
no way to get the stress AND couple-stress equations TOGETHER.

3)Only the Spencer sequence can be used:
Let us construct the formal adjoint of the Spencer operator by multiplying all the (2× 2) + 2 = 6
linearly independent nonzero components by corresponding test functions. For simplifying the
summation, we shall raise and lower the indices by means of the (constant) euclidean metric, set-
ting in particular ξi = ωirξ

r and ξi,j = ωirξ
r
j . Comparing to Example 8, the only nonzero first jets

coming from the 2×2 skewsymmetric infinitesimal rotation matrix of first jets are now ξ1,2 = −ξ2,1

while the second order jets are zero because isometries are linear transformations. We obtain in
the present situation:

σ11∂1ξ1 + σ12(∂1ξ2 − ξ1,2) + σ21(∂2ξ1 − ξ2,1) + σ22∂2ξ2 + µr,12∂rξ1,2

Integrating by parts and changing the sign, we just need to look at the coefficients of ξ1, ξ2 and
ξ1,2, namely:

ξ1 −→ ∂1σ
11 + ∂2σ

21 = f1

ξ2 −→ ∂1σ
12 + ∂2σ

22 = f2

ξ1,2 −→ ∂rµ
r,12 + σ12 − σ21 = m12

in order to get the adjoint operator ad(D) : ∧n−1T ∗ ⊗R∗
1 → ∧nT ∗ ⊗R∗

1 : (σ, µ) → (f,m) relating
for the first time the torsor framework to the Lie coalgebroid R∗

1. These equations are exactly the
three stress and couple-stress equations of 2-dimensional elasticity. In the n-dimensional case, a
similar calculation, left to the reader as an exercise of indices, should produce exactly the n(n+1)/2
stress and couple-stress equations in general. It is now possible to enlarge the group in order to get
more equations, that is as many equations as the number of group parameters. Using the conformal
group of space-time, the 4 elations give rise to 4 nonzero second order jets only which allow to
exhibit the 4 Maxwell equations for the induction ( ~H, ~D) along lines only sketched by H. Weyl in
[20] because the needed mathematics were not available before 1970. But, as we already said, this
is another story !.
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REMARK 7: It becomes now clear that the n2(n2 − 1)/4 first order compatibility conditions
for the Cosserat fields [11] (the so-called torsion and curvature of E. Cartan [4]) are described by
the second Spencer operator in the Spencer sequence while the n2(n2 − 1)/12 second order com-
patibility conditions for the deformation tensor (the so-called Riemann curvature) are described
by the second operator D1 in the Janet sequence. Accordingly, the torsion+curvature of Cartan
is not at all the generalization of the curvature of Riemann, contrary to what is still claimed in
mathematical physics today.

CONCLUSION:

The original approach of V. Arnold to hydrodynamics was based on specific analytic results
only valid for the Lie pseudogroup of volume preserving transformations. We have extended this
approach to an arbitrary Lie pseudogroup, meanwhile showing that the previous results are in
fact purely formal results based on a new approach to duality theory in constrained variational
calculus.
However, we have also found that these techniques, where the ”time” variable is considered as a
simple parameter, were not ”natural” in some sense and could be superseded by the construction
of the nonlinear Spencer sequence for an arbitrary Lie groupoid. This result, explaining the gaug-
ing concept in the jet framework, also achieves the modern interpretation of the works done at
the beginning of the previous century by the brothers E. and F. Cosserat on the foundation of
continuum mechanics and by H. Weyl on the foundation of electromagnetism.
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