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Abstract

Various contexts where partial differential equations are useful in finance
are presented, in particular for the pricing of European and American options,
and for calibration. The emphasis is laid on numerical aspects: discretization
methods, algorithms and analysis of the numerical schemes.

1 Introduction

Numerical methods based on partial differential equations (PDEs) in finance are not
very popular. Indeed, the models are usually derived from probabilistic arguments
and Monte Carlo methods are therefore much more natural. Stochastic methods
are also often simpler to implement than the algorithms used for solving the related
PDEs. However, when it is possible to efficiently discretize the PDE (which is not
always the case, the typical counter example being high-dimensional problems, see
Remark 9 below), the algorithms are usually much more efficient. Moreover, the
solution to the partial differential equation gives more information. In the context
of option pricing with constant parameters, one obtains for example the price of the
option for all values of the maturity and for all spot prices, while the probabilistic
formulation typically gives the value of the option for a fixed maturity and a fixed
spot price. In particular, this is useful for computing derivatives of the option’s price
(the so-called “greeks”).

The PDEs obtained in finance have several characteristics. First, they are posed
on a bounded domain in time (0,7"), with typically a singular final condition at the
maturity £ = T, and very often in an unbounded domain in the spot variable, which
leads to impose suitable “boundary conditions” at infinity to get well-posed problems
and to use appropriate numerical approximations (truncation to a bounded domain
and artificial boundary conditions). These PDEs are usually of parabolic type, but
often with degenerate diffusions. Because of operational constraints, the numerical
methods used for the discretization of the PDE must be sufficiently fast and accurate
to be useful in practice. These peculiarities of PDEs in finance explain the need for
up-to-date and sometimes involved numerical methods.



In this paper, we definitely concentrate on numerical issues and try to review
the main numerical methods used for solving PDEs in finance. This presentation
heavily relies on the monograph [3|. Other useful monographs are 39, 36, 55].

The paper is organized as follows. In Section 2, we present the main arguments to
derive a PDE for the price of various European and American options. In Section 3
the finite difference method and the finite element method for the discretization of
such PDEs are introduced, for European options. This is generalized in Section 4
to American options. Finally, Section 5 is devoted to calibration methods.

2 Partial differential equations for option pricing

2.1 A primer: the Black and Scholes model for European
options

The aim of this section is to recall the basic tools needed to derive a PDE in the
context of option pricing, without providing all the detailed assumptions required on
the data to perform this derivation. We refer for example to [36, 39] for a rigorous
mathematical presentation.

We adopt the standard Black and Scholes model (see [9, 42]) with a risky asset
whose price at time ¢ is S; and a risk free asset whose price at time ¢ is S?, such
that:

dS; = Si(udt +odBy), dSP? =rS? dt.

The process B; is a standard Brownian motion defined on a probability space
(Q,F, F:,Q), and p (the mean rate of return), r (the interest rate) and o > 0
(the volatility) are three constants. However, the following can be generalized to
the case where i, r and o > 0 are functions of ¢ and S (under suitable smoothness
assumptions). We introduce the stochastic process W; = B, + £="¢. Under the risk-

g

neutral probability P defined by its Radon-Nikodym derivative with respect to Q
dP

by
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W, is a Brownian motion and S;/S} is a martingale. This is one of the fundamental
property of the stochastic process needed in the following. The process S; satisfies
the following stochastic differential equation (SDE) under P:

Let us now consider a portfolio with H, risky assets and Hy no-risk assets. Its

value at time ¢ is:

We suppose that this portfolio is self-financing (any manipulation on this portfolio,
i.e. any change of the values of H; or H?, is done without any inflows or outflows
of money) which translates into

dP, = H,dS; + H{dS). (3)



The value of a self-financing portfolio changes if and only if the price of the risky
asset changes. Using (3), it is possible to show that P,/S? is also a martingale.

We consider the following problem: for a given function ¢ (the payoff function)
and a given time 7" > 0 (the maturity), is it possible to build a self-financing portfolio
such that Pr = ¢(Sr) ? Classical examples of function ¢ are ¢(S5) = (S — K)4
(vanilla call) or ¢(S) = (S—K)_ (vanilla put), where, for any real z, z, = max(z,0)
and z_ = max(—z,0). The answer is positive (this is typically based on a martingale
representation theorem, the fact that P;/S? is a martingale and the fact that the
payoff ¢(Sr) is Fr-measurable), and it is then possible to show that such a portfolio
has the following value at time t¢:

P=E <exp (— /tTrds) gb(ST)‘]-}) . (4)

By the so-called arbitrage-free principle, P; is actually the “fair price”, at time ¢
of the option which enables its owner to get the payoff ¢(Sr) at time 7. In the
particular context of vanilla options, the solution is analytically known, at least if r
and o are constant: these are the celebrated Black and Scholes formula. However,
in the case when r and o are functions of ¢t and S, (4) cannot be estimated without
a numerical method. We are interested in deterministic numerical methods, based
on a PDE related to (4).

The second fundamental property of the stochastic process .S; required to obtain
a PDE formulation of this problem is a Markov property. Roughly speaking, it states
that the expectation of any function of (S;)o<:<r conditionally to F; is actually a
function of the price S; of the risky asset at time ¢. In our context, this property
shows that P, writes

Pt :p(t75t) (5)

where p is a function of t € [0,7] and S € [0, 00), called the pricing function of the
option. Notice that even if (5) only involves the value of p at point (¢, S;), the pricing
function p is a deterministic function defined for all values of t > 0 and S > 0. By
the Markov property of S;, we also have the following representation formula for p:

pit.a) = (e (= [ ras) otsi) ()

where (Sg’m)tggggp denotes the process solution to (1) starting from x at time ¢

dSy® = Sy*(rdf 4+ odWy), 6 >1, (7)
Sp* = .

By using Itd’s calculus and the fact that P;/S} is a martingale, we then obtain that
p should satisfy the following PDE:

ot o5t 2 g5z =Y (8)

Conversely, it is possible (using again a martingale representation theorem) to show
that if p satisfies (8), then p(¢,S;) is the value of a self-financing port-folio with
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value ¢(S7) at time T. Moreover, one can check that g—g(t, S;) = Hy, which shows
that obtaining an accurate approximation of g—g is important in order to estimate the
quantity of risky asset H,; needed at time ¢ to build the portfolio with value P, (this is
the hedging strategy). This is an example of so-called Feynman-Kac formulae, which
are used in many other contexts (quantum chemistry 13|, transport equations [40|)
either to give a probabilistic interpretation to a PDE, or to recast the computation
of an expectation into a PDE problem.

For the problem (8) to be well posed (i.e. for one and only one solution to exist),
one needs to supply the system with boundary conditions when S = 0 or S — .
More precisely, one needs to make precise in which functional space the function p
is looked for. This will be explained in Section 3.2.

Remark 1 (Maximum principle) From the PDE (8) and the so-called mazimum
principle, it is possible to derive many qualitative properties and a priori bounds on
the price p (like the call-put parity for example, see [3]). Roughly speaking, the
mazimum principle states that if the data (initial condition, boundary conditions,
right-hand side) for the PDE (8) are positive, then the solution is positive. This
property is definitely necessary to hold for a price. It is also an important property to
check on the numerical schemes (which is then called a discrete mazimum principle,
see Remark 6 below).

Remark 2 (Another derivation) It is also possible to derive the PDE without
introducing the risk-neutral probability (see [55]), by considering a portfolio contain-
1mg some options and some risky assets and by using an arbitrage-free argument.

Remark 3 (On the Black and Scholes model) [t is well-known that the Black
and Scholes model for the evolution of the risky asset (1) badly compares with exper-
imental data. We will discuss in Section 5.1 some possible refinements which have
been introduced in order to better fit the observations.

2.2 Other options

The derivation presented in Section 2.1 is prototypical. In particular, the derivation
of a PDE satisfied by the pricing function of an option always relies on the two
fundamental properties stressed above: the martingale and the Markov properties
of a suitable stochastic process. In this section, we present PDEs for the prices of
various options without providing all the details of the derivation.

2.2.1 Basket options

In many cases, the payoff of the option depends on the values of more than one
asset, which typically do not evolve independently. Let us for example consider the
case of two assets, which evolve following the following SDE under the neutral risk
probability
dS} = S} (rdt + o dW}),
{ dS? = SZ (rdt + oodW?).

where W} and W2 are possibly correlated standard Brownian motions. We call p
the correlation of W' and W2 : d(W;, Ws), = pdt. We suppose that the maturity is
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T > 0 and the payoff is ¢(S7}, S%), where ¢ is a given function. It is then possible
to show that the price of the option at time ¢ is p(¢, S}, S?) where p satisfies

Op Op Op 038?29 0352 0% 9?p
8t+r51851+T32852 2 952 2 852+'001025152831632

(T7 51752> (b(Sl,SQ).

_Tp:()v

(9)
Here again, r, o1 and o, may be functions of ¢ and (57, .S2). It is possible to solve such
PDEs by standard numerical methods up to dimension 3 or 4. To derive appropriate
discretization for higher dimension is not an easy task, and is still the subject of
current researches (see Remark 9 below).

2.2.2 Barrier options

Again, let us consider an option on a single asset. For some options, the payoff
becomes 0 if for a time t € [0,7] S; goes below a or above b, where a and b are
two given values, 0 < a < b (the case a = 0 or b = oo can be treated similarly).
Mathematically, the payoff is lyicjo,r], 5,c[a,5@(ST) Where, for any event A C Q, 1,4
denotes the characteristic function of A, and S; satisfies (1). In this case, the relevant
stochastic process for deriving the PDE is Si\,, where 7 = inf{t € [0,T],S; >
bor S; < a} is a stopping time, and, for any real = and y, x Ay = inf(x,y). It can
be checked that Sis, is a Markov process, and that Si., /S, is a martingale. Tt is
then possible to show that the price of the option at time ¢ is p(t A 7, S;r,) where p
is defined for t € [0, 7] and S € [a, b] and satisfies:

0p op  o02S%0%p B
p(T, S) = ¢(5),

plt, a) = p(t,b) = 0.

Here again, r and o may be functions of ¢ and S. Moreover, the generalization to
basket options is straightforward (see Section 2.2.1). In this case, it is possible to con-

.....

where d denotes the number of underlying assets and D is any s1mple connected
domain of R%. The appropriate discretization for general domains D is the finite
element method (see Section 3.2).

2.2.3 Options on the maximum

For some options (the so-called lookback options), the payoff involves the maximum
of the risky asset. For example, it writes ¢(Sr, Mr) where M; = maxo<,<; S, and
S, satisfies (1). One can check that (S, M;) is a Markov process. It is then possible
to show that the price of the option at time ¢ is p(¢, S;, M;) where p is defined for
t €[0,7] and (S, M) € {(S, M) € R?, 0 < S < M} and satisfies:

Op 5 0%p Op B
8_+_S@+ S%—rp—(),
p(T.800) = ¢<s M), (11)

aM(t S,S) =



If the payoff is of the form ¢ (S, M) = M(;B(S/M), it is possible to reduce the problem
to a two dimensional one, (including the time variable). Indeed, one can check by
straightforward computations that p(¢, S, M) = Mw(t, S/M) where w is a function
of t € [0,T] and & € [0, 1] which satisfies:

ow  o* ,0%w

E‘F E 852 +7r 68—5—7“10 0
w(T,§) = ¢(), (12)
w

Notice that this reduction is not generally possible for (¢, .S, M)-dependent interest
rate and volatility (except for very peculiar dependencies).

2.2.4 Options on the average

Some options (the so-called Asian options) involve the average of the risky asset.
More precisely, the payoff writes ¢(Sr, A7) where 4, = 1 fot S, dr and S, satisfies (1).
One can check that (S, A;) is a Markov process. Using this property, it is possible
to show that the price of the option at time ¢ is p(t, S;, A;) where p is defined for
t €[0,7] and (S, A) € [0,00)* and satisfies:

2 2 2
1
o, 75 %+ ro 1 (S—A)@—rv—o

ot oS A (13)
p(T, S, A) = &(S, A).

In some cases (see [48]), it is possible to reduce this problem to a one-dimensional
PDE. More precisely, for fixed strike call (¢(S, A) = (A — K),) or fixed strike put

(¢(S,A) = (K — A)y), we have p(t,S, A) = Sf (t, KﬁtsA/T> where f satisfies

g_i_aze@zf (1 —i—'f’f)g
T

ot 2 o2 o€

F(T.€) = ¢(¢),

and ¢(&) = £_ (vesp. ¢(€) = &;). This reduction of (13) to (14) is also possible for
floating strike call (¢(S, A) = (S—A), ) (resp. for floating strike put (¢(S5, A) = (A—
$)1)) by setting p(t, S, A) = S (1, —£4) and 4(¢) = (1) (resp. $(€) — (1+€).).
However, this reduction is generally not possible for (¢, S, A)-dependent interest rate
and volatility (except for very peculiar dependencies).

=5 (14)

Remark 4 (Bermudean options) As a transition between European and Ameri-
can options, we would like to mention that it is very easy to price Bermudean options
with the PDE approach. For such options, the contract can be exercised only at cer-
tain days between the present time and the maturity. Mathematically, for an option
on a single asset (the spot price is called S) and if ¢ denotes the payoff, the pricing
function satisfies p(t;,S) = max(p(t;, S), #(S)), at each exercising time t;, and (8)
between the ezercising times, (see [24] p.211).



2.3 The case of American options

We have so far presented so-called European options, i.e. some options which enables
its owner to get ¢(S7) at a fixed time 7. On the other hand, American options can
be exercised at any time up to the maturity. Hence the price of an American option
of payoff ¢ and maturity 7" will be the maximum of all possible expectations such
as (6) for stopping times 7 between ¢ and T, that is, for ¢ € [0,7] and = > 0,

plt,x) = sup E (e F o5t (15)

TG’Z—[t’T]

where 7, 1) denotes the set of stopping times 7 of the filtration F;, with values
in [t,T].

2.3.1 The PDE for American options

We now present the main arguments to derive a PDE on p (or more precisely a set
of partial differential inequalities).
Notice first that taking 7 =t in (15) yields the inequality

p(t,z) > ¢(x). (16)

Moreover, we clearly have from (15) p(T, z) = ¢(z).
Let ¢ and 6t be such that 0 <t <t + 6t <T. From (15) we have:

x — [Trds 675:’1
o 0t+5t7»d8p (t + 5@5&_&) — sup E (6 fo d ¢ <S7t_+ t +6t)) ’

TE€T (4 16¢,T)

< o B (s (5

TETt, 1)
t
S e—fo T‘dSp (t, x) ,

5 7St,ac .
where we have used the fact that: S, " = Sht* By Ito’s calculus (taking the

limit ¢ — 0), we thus obtain

dp
_F > 17
g TAP =0 (17)
where we have introduced the linear PDE operator
op 0252 0%p
= —rS2< — ) 1
Ap rSaS 5 aSerTp (18)
Combined with (16), we then obtain
0
min (—8—1; + Ap,p — qb) > 0. (19)

Our aim is now to show that the inequality in (19) is actually an equality. This is
done in several steps, and requires to identify an optimal stopping time 7* for which
the supremum in (15) is obtained. For a fixed (t,z), let us introduce the stopping
time 7* € 7} ) defined by

7% = inf {9 >t p (9, Sg’x) =¢ (ng)} , a.s. (20)
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(notice that 7" < T since p(T,x) = ¢(x)). It can be shown (see Section 2.3.2) that
plt,2) =B (7700 (507)) =B (e 7 iop(r, 51) ) (21)

Using a decreasing property (26) proved below, one then obtains that ! for any
ot > 0,

p(t,z) =E (6_ ke rdsy) (Tg‘t, Sig)) ,  where 75, = (t + dt) AT . (22)

This can be seen as a Dynamic Programming Principle (or Bellman’s principle).
Now if we suppose that p(¢, x) > ¢(x), then for any dt > 0 we have P(7§, > t) = 1.
Considering It6’s formula in (22), and by (17), we obtain (—% + Ap) (6, S5%) =0
fort < 6 < 7}, thus leading to (—% + Ap) (t,z) = 0. This shows that the inequality
in (19) is actually an equality.
Hence the PDE for the American option is

ot
p(T, ZL‘) = ¢(I)v x>0,

: Op B
min <__+Ap7p_¢) _07 te [O7T]7 :CZOJ (23)

where A is defined by (18). The major difference between PDE (23) for American
options and PDE (8) for European options is that (23) is a nonlinear equation. This
makes the theory of existence and uniqueness as well as the numerical approximation
more difficult than for European options.

Remark 5 (Viscosity solutions) In the presentation above, we have used Ité’s
formula, which requires that p is C* in time and C? in the spot variable. This is not
true in general. It is however possible, following the same lines, to prove that p is
a weak solution to (23) in the viscosity sense. For an historical derivation of this
PDE, see [1] or [26], where a variational formulation of (23) is derived (see (57)
below). We also refer to [44] for an infinite horizon related problem, [21] for general
results, [46] for an approach of optimal stopping including jump diffusion processes,
and to [4] for the case of a discontinuous payoff ¢.

2.3.2 Proof of (21)

First, from the definition (15) of p we have, for any stopping time p € T} 1,

e~ ftprdsp (p, S;’x) =ess supE (6_ ftTTngb(Sﬁ’””)} fp> , @.S. (24)

T€T]p, 1]

where 7|, ) denotes the set of stopping times 7 such that p < 7 < T. Then it
is possible to show that (see for instance |37, Eq. (D.7)]), for any stopping time
p e ,]It,T]a

E (e Hrp(p, 547) = sup B (e Frog(s87)) (25)

€T, 1)

!For a European option we would have more simply p(t,z) = E (e_ [t rdsy, (t + dt, S:fét))‘
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We obtain from (25) the decreasing property: for all stopping times p1, p2 € Tp1y,
such that p; > po,

E <€* ftpl rdsp(ph S;,lm)> S E (67 ftP2 rdsp(p27 S;’;)) ) (26)
We deduce from (24) that, for any 7 € 7j.+ 1),
E (1770 (S57) | F) eI riplrt s = e KR (S1), (@)

where the last identity comes from the definition (20) of 7*. Then, for any stopping
time 7 € 7j 1), we have (by decomposing on the events {7 < 7*} and {7 > 7*}),
and using (27) for 7 > 7%):

E (e /im0 (507)) < B (o577 10 (s55,.))

Hence, by taking the supremum over all the stopping times 7 € T} 7,

plt) < sup E(eHT o (s = sup B (e H o (s7). (28)

TE€T[t 1] T<7*, 7€T [t 1]

By (15), the right-hand side of (28) is bounded from above by p(t, x), and thus we
obtain the equality

p(t,z)= sup E <e_ Jrdsg (Six)) . (29)

TT*, TGT[t,T]

In fact the supremum in (29) is reached only for 7 = 7* a.s.. Indeed, for 7 € 7j; 7,
if 7 < 7% and P(7 < 7*) > 0, we have, by the definition of 7*, E (e* ftTrngb(Sf_’m)) <
E (e~ Jmdsp(7, S*)) < p(t,x). This concludes the proof of (21).

3 Pricing European options with PDEs

The aim of this section is to present two classes of methods for solving partial
differential equations with some applications to the PDEs derived in Section 2. We
first introduce the finite difference method which is based on approximation of the
differential operators by Taylor expansions, and then the finite element methods
which belong to the wider class of Galerkin methods and are based on a variational
formulation of the PDE. We try to stress the most important aspects of the numerical
methods, and refer for example to [3] for a more comprehensive presentation.

3.1 The finite difference method

3.1.1 Basic schemes

Let us introduce the finite difference method on the simple PDE (8). Let us first
concentrate on the discretization of (8) with respect to the variable S. The principle
is to divide the interval [0, S.x] into I intervals of length 65 = Spax/I (where Spax



has to be chosen large enough, see below), and to approximate the derivatives by
finite differences. A possible semi-discretization of (8) is: for i € {0,1,..., I},

or; Pign — P 2S? Py — 2P+ P
+1 1+0 i Lig1 + L _,p—0

;TS 559 2 552 ’ (30)
P(T) = ¢(S)),

where S; = i0S denotes the i-th discretization point, and P;(t) is intended to be
an approximation of p(¢, S;). Now, (30) is a system of coupled ordinary differential
equations (ODEs). The generalization to the case of a time and spot dependent r
or ¢ is straightforward.

Notice that for S = 0, Py can be solved independently (since Sy = 0): Fy(t) =
»(0) exp(— ft rds). In order to obtain a solution of the whole system of ODEs,
one needs to deﬁne an appropriate boundary condition at S = Spax. Indeed, (30)
taken at ¢ = I involves P;.; which is a priori not defined. There are basically two
methods to deal with this issue. The first one consists of using some a priori knowl-
edge on the values of p(¢,S) when S is large and making some approximations of
p(t, Smax)- In this case, the value of P; is given as a data (this is a so-called Dirichlet
boundary condition), and the unknowns are (P,)o<;<;—1. For example, in the case
of a put (¢(S) = (S — K)_) (resp. a call (¢(S) = (S — K),)), it is known that
limg .o p(t,S) = 0 (resp., in the limit S — oo, p(t,S) ~ S — K exp(— ftTrds)) SO
that one can set Pr(t) = 0 (resp. P(t) = Smax — K exp(— ftTrds)). The error in-
troduced by these artificial boundary conditions can be estimated. Another method
is based on some knowledge on the asymptotic behavior of the derivatives of p. For
example, in the case of the put, one can use the so-called homogeneous Neumann
boundary condition which writes dp/0S(t, Smax) = 0 at the continuous level, and
M = 0 at the discrete level. In this case, the unknowns are (P;)o<;<;. For
both methods, Sh.x should be chosen sufficiently large. In practice, the quality of
the method may be assessed by measuring how sensitive the result is to the value
of Spax.

Let us now consider the time discretization. Here again, the idea is to divide
the time interval [0, 7] into N intervals of length 6t = T'/N and to replace the time
derivative by a finite difference. Three numerical methods are classically used:

P B PRSP SRR R
N ot ‘ 205 2 652 ! ’
31
Pin+1_Pin+ SP'lT‘Lf'l Pin—l_'_ 252 z+1_2pin+Pin_1 o ( )
PN 6t¢(5) DY YS 2 552 TR (32)
4 PinJrl o Pin N 1(,,,5« PZT_L:EI PZn_ng 0252 P{_f{l 2Pin+1 4 PZn_ng B Tpp-i—l
ot 2\ 255 ' 22S2P 251352 . '
n 2 pn, —2P" 4 P
SZH i1, 99 Linl L Zl—P"):O
+ %5 2 552 T !
\ lDz‘N = (b(SZ)v
(33)
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where P is intended to be an approximation of p(t,, S;), with ¢,, = ndt. Notice that
using the discretization scheme (31) (the so-called explicit Euler scheme), the values
of (PM)g<i<s are explicitly obtained from the values of (P/""')g<;<; . On the con-
trary, in the two other schemes (32) (implicit Euler scheme) or (33) (Crank-Nicolson
scheme), the values of (P]")o<i<s are obtained from the values of (P/""!)y<;<; through
the resolution of a linear system, which is more demanding from the computational
viewpoint. Various numerical methods can be used for solving this linear system:;
here, we cannot describe them in details. Let us simply mention that basically,
there exists two classes of methods: the direct methods which are based on Gaus-
sian elimination, and the iterative methods which consist of computing the solution
as the limit of a sequence of approximations and which only requires matrix-vector
multiplications. The method of choice depends on the characteristics of the problem.

3.1.2 Notions of stability and consistency

In order to analyze the convergence of the three discretization schemes (31), (32)
and (33), and to understand the differences between these schemes, we need to
introduce two important notions. The first notion is the consistency. A numerical
method is said to be consistent if, when the exact solution is plugged into the
numerical scheme, the error tends to zero when the discretization parameters tend
to zero. In our context, it consists of replacing P in (31), (32) or (33) by p(t,, S;),
where p satisfies (8), and to check that the remaining terms tend to zero when 6t and
dS tend to zero. By using Taylor expansions, one can check that for (31) and (32)
(resp. for (33)), the remaining terms are bounded from above by C (6t + §5?) (resp.
by C (6t* + §5?)), where C' denotes a constant which depends on some norms of the
derivatives of p. Therefore (31) and (32) (resp. (33)) are consistent discretization
schemes of order 2 in the spot variable, and of order 1 (resp. 2) in time. The
second important notion is the stability. A numerical method is said to be stable
if the norm of the solution to the numerical scheme is bounded from above by a
constant (independent of the discretization parameters) times the norm of the data
(initial condition, boundary conditions, right-hand side). This property is clearly
satisfied if the numerical method is convergent, i.e. if the numerical approximation
converges to the solution of the PDE when the discretization parameters tend to
zero. A general result states that, conversely, a consistent and stable discretization
scheme is indeed convergent. The estimate of convergence is given by the estimate
of consistency error. For example, the error for the EI scheme is bounded from
above by C (6t + 65?). Notice that the constant C' in these estimates depends on
the solution p: for high-order schemes, one needs more regularity on p. For example,
for some parameters, it may happen that the results obtained with the CN scheme
around ¢ = T are not better than those obtained with an order one scheme (IE or
EE) since the solution is not sufficiently regular in time around ¢ = 7.

To give a precise meaning to all these results would require to specify the norms
used to measure the errors. Let us simply mention that two norms are used in
practice: the stability in L*°-norm (the supremum of the absolute values of the
components) is related to a discrete maximum principle ; and the stability in L*-
norm (the Euclidean norm of the vector) is related to an energy estimate on the
variational formulation. We refer for example to [3| for more details.
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N =1000 I=150 [I=300 [I=600 I =1200
IE 0.165 0.0356  0.00103 0.000452

Table 1: Error on the value of a call in function of the number of intervals / in the
variable S, for the implicit Euler (IE) scheme.

[=500 N=5 N=10 N=20 N=40 N =80 N =160
EE 28.53  0.386 0.398  0.0739 0.0162 0.00714
IE 0.0892 0.0449 0.0225 0.0113 0.00554 0.00226
CN 0.0299 0.00758 0.00103 0.00169 0.00169 0.00168

Table 2: Error on the value of a call in function of the number of time-steps N. We
observe that the Euler explicit (EE) scheme is unstable for N = 5. The convergence
in time of the Crank- Nicolson (CN) scheme is much more faster than for the implicit
Euler (IE) scheme. The remaining error when N is large is due to the discretization
with respect to the variable S.

Remark 6 (Discrete maximum principle) The discrete mazimum principle is
the counterpart at the discrete level of the maximum principle at the continuous level
(see Remark 1). It states that if the data for the numerical schemes are positive,
then the solution is positive. Such schemes are by construction stable in L>-norm.
The numerical methods based on binomial or trinomial trees can be interpreted as
explicit finite difference methods to solve the PDE (8), which naturally satisfy a
discrete maximum principle.

Let us now discuss the properties of the three discretization schemes. We already
mentioned that they are all consistent. On the other hand, it can be shown that
the explicit scheme (31) is stable under an additional assumption (a so-called CFL
condition, see [19]) of the form 6t < C'6.52, where C' denotes a positive constant. The
other two schemes (32) and (33) are unconditionnally stable. In conclusion, with
the explicit scheme, the values of (P/")o<;<; can be very rapidly obtained from the
values of (P"™)g<i<s, but the time step must be sufficiently small with respect to
the spot step to guarantee stability and hence convergence. On the other hand, the
implicit schemes (32) and (33) require the resolution of a linear system at each time-
step, but converge without any restriction on the time-step. This situation is very
general for the parabolic PDEs obtained in finance. In terms of computational costs,
the balance is generally in favor of the implicit schemes, since the CFL condition
appears to be very stringent in practice.

In Tables 1 and 2, we illustrate this analysis by computing the error on the price
of a call with r = 0.1, ¢ = 0.01, K = 100, T = 1, Sy = 100 and Spa.x = 300
for the three discretization schemes (31), (32) and (33), and various values of the
numerical parameters I and N. The reference value (P = 9.51625) is obtained by
the analytic Black and Scholes formula. In particular, one can check that the rates
of convergence with respect to 6t and .5 are indeed those predicted by the analysis.
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Remark 7 (Change of variable) It is well-known that by a change of variable
x =1InS, it is possible to get rid of the dependency in S of the advective and diffusion
terms in (8). It is not better to discretize the PDE after this change of variable, since
it corresponds to take a grid refined near S = 0, which is useless in this case. As we
will see below (see Section 3.2), what actually matters is to refine the grid around
the singularity of p (i.e. around S = K). A finite element approach is better suited
to implement these refinements.

3.1.3 Application to Asian options

We now present a less easy implementation of a finite difference method for pricing
Asian options (see Section 2.2.4 and [23]). More precisely, we focus on computing
numerical solutions to (14) for a fixed strike call:

P(§) =&~ (34)

We have seen in the previous section that a simple finite difference scheme leads to
very satisfactory result when computing the solution of the classical Black-Scholes
equation (8). On the other hand, when one uses a simple finite difference scheme
on (14), very bad results are obtained, especially when the volatility o is small (see
Table 1 in [23]). These bad results are due to the fact that when ¢ is close to zero,
the advective term (7 + r¢) is much larger than the diffusion term o¢?/2 in (14).
This is known to deteriorate the stability of the numerical scheme, particularly
with respect to the L°°-norm. In practice, the numerical solution exhibits some
oscillations and does not satisfy the discrete maximum principle. Moreover, the
finite difference method introduces numerical diffusion which leads to unsatisfactory
results for purely advective equations.

One way to handle this problem is to use a characteristic method (based on the
solution of d¢/dt = —1/T) in order to get rid of the term 1/7". This means that the
following change of variable is introduced:

One can easily show that ¢ is solution of?:

dg o (x—t/T)* g
ot * _2 Ox?
9T z) =¢(x —1) = (1 —x)4.

The PDE (36) satisfied by ¢ is such that when the advective term r (z —t/T)
o*(x —t/T)?

)
—r(x—t/T)a—i:O,

(36)

is small, the diffusion term is also small. As shown below, a finite

difference scheme applied to (36) will indeed lead to satisfactory results.
An important property of the solution to (36) for ¢(§) = £_ is that (see [48])
vE <0,

F(1,6) = (1 = 7T 00) — g (37)

ZNotice that the same equation has been considered by Vecer in [53] using some financial
arguments.
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and therefore, Vo < t/T,

o(t,z) = TiTu Ty (g — ) T)e T, (38)

To prove (37), one can notice that f given by (37) is solution to (14) with ¢(§) = —¢,
and that, due to the fact that the diffusion term is null for £ = 0 and that the
advective term is negative, the solution to (14) for ¢(§) = £ on £ < 0 is the same
as the solution to (14) for ¢(§) = —€ on £ < 0.

To discretize (36), a Crank-Nicolson time scheme is used, with a uniform time
step 6t = T/N. In order to use the fact that ¢ is analytically known on = < t/T
(see (38)), a mesh that properly discretizes the boundary x = t/T is used. Therefore,
the space interval (0, 1) is also discretized with N space steps of length dz = 1/N
(see Figure 1). The mesh is completed be adding J intervals on the right hand side
of x = 1, so that z € (0, Z,nes) With 2,0, = (N+J) dx. The value J = N/2 has been
found to be sufficient to guaranty the independence of the results on the position
of Tpaz-

1 Tmax T

N J

Figure 1: The mesh and the computational domain for the finite difference scheme
used to discretize (36).

Notice that at time ¢, = ndt, the number of unknowns is (N + J — n). This
means that the dimension of the linear system to solve depends on the time-step.

As far as boundary conditions are concerned, we use a Dirichlet boundary con-
dition on = = t/T (using (38)) and an artificial zero Neumann boundary condition
on T = Tyag-

Let us now give some numerical results. In Table 3, a few comparisons of the
results obtained with the characteristic method and other methods are given. The
characteristic method appears to be accurate for both small and large volatilities.
For any values of the parameters, at least 5 digits of precision are obtained in less
than one second. Notice that the Thompson bounds and the characteristic method
are implemented in Premia [2].

3.2 The finite element method

We would like now to introduce the finite element method. This technique is more
flexible than the finite difference method. In particular, it allows for local refinements
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o K Characteristic method Zvan et al. [56] Vecef [53]

0.05 95 11.09409 (N = 300) 11.094 11.094
100 6.7943 (N = 1000) 6.793 6.795
105 2.7444 (N = 3000) 2.748 2.744
0.30 90 16.512 (N = 300) 16.514 16.516
100 10.209 (N = 300) 10.210 10.215
110 5.7304 (N = 1000) 5.729 5.736
o K Thompson [52] (low) Thompson [52] (up)
0.05 95 11.094094 11.094096
100 6.794354 6.794465
105 2.744406 2.744581
0.30 90 16.512024 16.523720
100 10.208724 10.214085
110 5.728161 5.735488

Table 3: Comparisons of the prices for an Asian fixed call obtained with various
methods. Values of parameters: 7' = 1, r = 0.15, Sp = 100, J = N/2. For the
characteristic method, the number of time-steps N > 300 needed to obtain at least
5 digits of precision is given.

of the spot grid (even in dimension greater than one, and possibly based on local
error estimators, see Remark 8 below). This is particularly important for American
options, because the pricing function is singular near the exercise boundary and this
curve is not known a priori. Let us emphasize that the use of a refined mesh around
the singularities of the solution (for example, for vanilla option pricing problems,
around ¢t = T and S = K) is very important in practice to rapidly obtain accurate
results. The finite element method can also be used in a flexible way when the
geometry of the computational domain becomes complex, which may be of interest
for barrier options in dimension greater than one (see Section 2.2.2). Finally, finite
element methods are interesting since they are naturally stable (in L?-norm) and
optimal error bounds (in L?-norm) can be derived.

In Section 3.2.1, we present the finite element method on a simple example,
namely Equation (8). In Section 3.2.2, we show how the finite element method can
be used for more complex options. The use of finite element method for American
options will be presented in Section 4.2.

3.2.1 The finite element method for (8)

The conforming finite element method is based on two ingredients: a so-called vari-
ational formulation of the PDE on a functional space V' and the choice of an ap-
propriate sequence of finite dimensional spaces V;, C V which tends to V' when h
(which is the typical diameter of the cells of the space mesh) tends to 0. Let us
illustrate this on (8).

To derive a variational formulation of (8), the principle is to multiply the equa-
tion by a test function of the spot variable, and to integrate by parts. For these
computations to be well defined, the functions need to be sufficiently smooth. We
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thus introduce the functional spaces H = L*(R;) = {¢ : [0,00) — R, [~ ¢* < oo}
and V = {q € L*(R,), S(0q/0S) € L*(R,)}. Assuming that ¢ is square inte-
grable, a variational formulation of (8) is then (for a S-dependent volatility o): find
p € L*((0,7),V)NC°([0,T], H) such that for all ¢ € V,

o [ (- -se) s e

i)~ 5 asas ) P —Sopg ) Sager f ra=0, (39)
p(T,5) = o(9).

This rewrites: find p € L2((0,7),V) NC°([0,T], H) such that for all ¢ € V,

C;lt /pq a(p,q) =0, (40)
p(T,S) = ¢(5),

where « is the bilinear form

a%52% 9p Oq do\ ,Op
a(p,q)—/ 5 9585 (T — So %) 585q+7“/pq- (41)

Under suitable assumptions on the data (r, o and ¢), it is possible to prove that
this variational problem is well posed (see [3]).

The second step is to introduce a sequence of meshes in the spot variable indexed
by the maximal step h, and related finite dimensional functional spaces V}, C V.
In the case of (39), the problem is posed on an infinite domain and one needs
to first localize the PDE in a finite domain [0, Syax] by using artificial boundary
condition at S = Sy, as already explained for finite difference discretizations (see
Section 3.1.1). We consider for example a zero Neumann boundary condition on
S = Shax: Op/OS(t, Smax) = 0. Then, a mesh of [0, Sy,.x] consists of a finite number
of intervals (S;, S;+1) with Sy = 0 and S; = Spax. We set h = maxo<i<r—1(Sit1—5;)-
The intervals (.S;, S;.1) are called elements. We then need to define a functional space
V}, associated with the mesh. A classical example is the P1 finite element space,
which contains continuous and piecewise affine functions (affine in the elements
(Si, Sit1)) , namely continuous functions which are affine on each interval (S;, S;41),
for 0 < ¢ < I — 1. In this case, a basis of the vector space V} is given by the
0ifi #£j
1ifi = j

so-called hat functions ¢; € V}, such that for 0 <i,j < I, ¢;(S;) = 0,; =

(0;; is the Kronecker symbol). Notice that higher order finite element methods may
be easily obtained by taking continuous and element-wise polynomial functions of
degree k£ > 1.

The discretization in the spot price variable now simply consists in replacing the
functional space V' by the finite dimensional space V}, in (39) or (40) (this is the
principle of Galerkin methods): find p, € C°([0,T1], V},) such that for all ¢, € V4,

i/ (pn 1) = 0
dt Prdn — A\Ph, qn )

ph<T7 S) = <Z5h(5)>

where ¢, is an approximation of ¢ in the space V},. One can take for example ¢,
such that [(¢—¢p)g, = 0 for all ¢, € Vj, (¢, is then the L? projection of ¢ onto V4).

(42)
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Problem (42) is a finite-dimensional problem in space of the form M, dP,/dt = Ay, Py,
where P,(t) is a vector of dimension I containing the values of p, at the nodes of
the mesh (py(t,z) = ZJI.ZO Py ;(t)g;(x)) and My, Aj, are I x I matrices. The matrix
M, (resp. Ap), with (4, j)-th component [ g; g; (resp. a(gj,¢:)) is classically called
the mass (resp. stiffness) matrix, because the finite element method was originally
popularized by the mechanical engineering community. When using the nodal ba-
sis (hat functions), these matrices are very sparse (tridiagonal for one dimensional
problems). Problem (42) is somewhat similar to (30) obtained by the finite dif-
ference method; the two problems (30) and (42) are actually equivalent if a mesh
with uniform space steps is used, and if M), is replaced by a close diagonal matrix
(mass-lumping).

A fundamental result (the Cea’s Lemma) states that the norm of (p — p,,) (the dis-
cretization error) is bounded from above by a constant times the infimum of the
norm of (p — q), over all ¢, € Vj, (the best fit error). Using this result, if V}, gets
closer to V' when h tends to 0, i.e. if the best fit error tends to 0 when h tends
to zero, so does the discretization error. In particular, the finite element discretiza-
tion is thus naturally stable in this norm. A precise meaning for this statement
requires to define the norm and study the best fit error. Let us simply mention
that the norms used in this context are related to the L>-norm introduced for finite
difference schemes. We refer to |3, 47| for the details. In our specific example, it is
possible to prove that, if the payoff function is regular enough, then

P = pullzoso,10,m) + | — Prll 220,170y < Ch,

and that
1P = pullr2or,m < CR.

For the discretization in time, the situation is exactly the same as for the finite
difference method: one can use explicit Euler scheme, implicit Euler scheme or
Crank-Nicolson scheme, and the rate of convergence is O(0t) for the Euler schemes
and O(6t?) for the Crank-Nicolson scheme.

3.2.2 Finite element methods for other options

We have introduced the finite element method in a very simple case. The aim of
this section is to explain how it applies for other options.

Let us first consider basket options, or basket options with barriers, in dimension
2 and 3 (see Sections 2.2.1 and 2.2.2). The derivation of a variational formulation
for (9) is very similar to the one-dimensional case. However, the construction of
the mesh is much more complicated in dimension 2 and 3, than in dimension 1.
It consists of partitioning the domain into non-overlapping cells (elements) whose
shapes are simple and fixed (for example, triangles or quadrilaterals in dimension 2,
or tetrahedra or hexahedra in dimension 3). The functional spaces V), can then
be constructed as in dimension 1, for example by considering continuous piecewise
affine functions. One interest of the finite element method in this context is that it is
possible to mesh any domain D for barrier options. In the finite difference method,
to mesh non quadrilateral (or non hexahedral) domain is complicated.

Let us now consider lookback options (see Section 2.2.3). It is possible to derive
a natural variational formulation for (11). This is the following (written here for a
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constant volatility ): find p : D — R such that, for all ¢ : D — R,

_/0—252@@_/0252@&; L [0S ap o
= | > 2 9SaM |, 2 aMas

2 0S0S
dp (43)
J— 2 —_— —_— p—
+/D(r U)Sasq T/qu 0,

p(T, S, M) = ¢(S7 M)7

where D = {(S, M) € R?, 0 < S < M}. The boundary condition dp/0OM(t, S, S) =
0 is naturally contained in this variational formulation since, by integration by parts
over D:

9P 99 op 94 S@p
2 0S50S p 2 0SOM p 2 OMOS D 95"

/ %52 dp Oq d%5? Op Oq ad%S% Op Oq
D

B / o25?% 9%p 1 op
o 2 as2q V2 Jisan oM T
The first term corresponds to the diffusion term in (11). The second term is an
integral over the boundary {S = M} of D and naturally enforces the boundary
condition dp/OM (t,S,S) = 0. On Figure 2, we represent the price of a fixed strike

call, obtained using the formulation (11), an implicit Euler scheme and P1 finite
elements.

Figure 2: Price of a lookback option for a fixed strike call: ¢(S, M) = (M — K);.
The parameters are: o = 0.3, r = 0.1, K = 100, T' = 1. Computations made with
freeFEM++ [1].

Remark 8 (A posteriori error estimates) A frequently mentioned advantage of
the Monte Carlo methods is that they naturally provide a posteriori error bounds
through an interval of confidence, typically built upon the central limit theorem. It is
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also possible to obtain such a posteriori error estimates in the framework of the finite
element method (this is one additional advantage of this method compared to finite
difference methods). Moreover, these a posteriori estimates have two very important
features:

e they depend on local error indicators

e they can be proved to be reliable and efficient, i.e. the actual error is bounded
above and below by some fixed constants times the a posteriori error, and these
estimates can be made local.

Therefore, in the finite element method, the a posteriori error estimates enable to
refine the mesh in space and time adaptively. We refer to Section 4.2 for a numerical
illustration for American options and to [27, 3] for more details.

Remark 9 (High dimensional problems) In practical problems, options often
wmvolve more than 3 assets. In this case, the PDE is posed in a space of dimension
larger than 4, and the finite element or difference methods cannot be used, since
the number of unknowns typically grows exponentially with respect to the problem’s
dimension. People often call that the curse of dimensionality. Let us mention that
such high-dimensional problems also appear in other scientific fields, like in quan-
tum chemistry for example, and that it is still a subject of current research to build
appropriate discretizations for high-dimensional PDEs. Roughly speaking, the prob-
lem is to find an appropriate sequence of functional spaces Vi, (whose basis is called
a Galerkin basis), such that their dimension do not grow too rapidly with the di-
mension of the problem. One approach is the sparse tensor product [12, 54]. The
main difficulty when using this approach is actually to project the initial condition on
Vi. Another approach used in other contexts for solving high dimensional problems
by deterministic methods is the low separation rank method (see [8]). Let us fi-
nally mention that another possible approach for building appropriate Galerkin basis
would be the reduced basis method, where some solutions for a given set of parame-
ters are used to approzimate the solution for other values of the parameters (see for

example [14]).

4 Pricing American options with PDEs

This section is devoted to the discretization of the system (23) for the price of an
American option. Notice that no closed formula such as the Black-Scholes formula,
are available for American put, or for American call with a dividend rate, so that
efficient discretization of this system is needed even for these simple payoffs.

4.1 The finite difference approach
4.1.1 Some finite difference schemes

We consider a regular mesh discretization S; = 705 and a time discretization ¢,, = ndt
with 0t = % As in the European case, it is natural to consider the following three
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" an approximation of p(t,,S;). In all cases, the
scheme is initialized by P/¥ = ¢(S;). Let A be the matrix such that

iterative numerical schemes for P"

(AP™1), = _TS,Pz‘TEl - Pt 2SR 2Pt 4 P
b ' 208 2 552

The Explicit Euler (EE) scheme for (23) is, forn =N —1,N —2,...,0,

—|—7’Pz~n+1 (44)

n+1 _ n
min ( - % + (AP™),, P! — ng(Si)) =0. (45)

The scheme computes P" = (P");o.... ;1 from the knowledge of P"*! = (P"™),_o ;1.

Similarly, we can propose an implicit Euler (IE) scheme:

n+1 n
min ( - Pléitpl + (AP");, P' — (Sz‘)) =0, (46)

and an (implicit) Crank-Nicolson (CN) scheme

n+1 n
min ( - Pﬁ(sit—P@- + %((AP")i +(AP™Y),), P — ¢(Si)) —0.  (47)

In the case of the EE scheme, it is easy to see that we have the equivalent formulation
P = max (((Is — 6tA)P"Y);, ¢(5)), (48)

where I; denotes the identity matrix.

We now have two new difficulties: first, the well-posedness of the schemes (46)
or (47) is not immediate (for European options, we obtained a linear system, but
this is no longer true for American options), and secondly, studying the convergence
is more difficult.

On way to circumvent the first difficulty is to introduce a splitting method (see |6,
5, 41]). For (23), it writes (a similar modification of (47) could also be considered,
yielding a Crank Nicolson-splitting (CN-S) scheme):

pr+t_ prl
compute P™! st — Zé—tz + (AP™h); =0, (49a)
and then compute P = max(P/"", ¢(S;)). (49b)

Hereafter, (49) will be refered to as the implicit Euler-splitting (IE-S) scheme. The
first step (49a) consists of solving a linear system, as in the European case. The
second step is a projection on the set {v = (v;), v; > ¢(95;), Vi}, as for the EE
scheme (48).

Notice that as for European options, we set the equation on a truncated domain
(0, Smax), and use artificial boundary conditions on S = Sp,.x (see Section 3.1.1).
We refer to [5] for error estimates between the truncated problem on (0, Syax) and
the exact problem.
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4.1.2 An abstract convergence result.

Assuming for the moment that the schemes are well posed, it is possible to study
the convergence in the general framework of finite different schemes for Hamilton-
Jacobi equations. Possibly under some restrictions on the mesh sizes dt and 05,
we can obtain convergence to the viscosity solution of the PDE (23). We refer
to [4, 5] for a short introduction, and to [21] for a more detailed overview. To give a
rough idea of the convergence results involved in such schemes, we consider a general
Hamilton-Jacobi equation of the form

op op p\ _
H(t,l’, 75 % @) _07 (50)

with a terminal condition on p(7,-), where H is assumed to be continuous and
“backward parabolic" in the sense that

if 1/}1 S w2 then H(t7 z,p,u,v, z/}1) Z H(ta z,p,u,v, ¢2)’ (513)
and if uy < uy then H(t, z,p,us,v,v¢) > H(t,z,p,us,v,1). (51b)

Equation (23) indeed writes (50) with, for (¢,5) € (0,7)x (0, Smax), H (t, S, p, u,v,1) =
min(—u — rSv — $025%¢) +rp, p — gb( )), which obviously satisfies (51).

First convergence results were given in the fundamental work of Crandall and
Lions [22] for Lipschitz continuous final condition ¢ (and without 2 dependence
n (50)).

An abstract and general convergence result is given by Barles and Sougani-
dis in [6], which we now summarize. We first assume that H satisfies a com-
parison principle, which can be seen as an extension of the maximum principle
(see Remark 1) to some nonlinear equations. The comparison principle is roughly
the following [21, 4, 46]: assume that u is a subsolution of (50) (resp. superso-

lution), i.e. H <t x,u, %ﬁ,‘gz,g;) < 0 (resp. H <t,x,v,%,%,%> > 0 ) for
(t,S) € (0,T) x (0, Smax), with u < 0 (resp. v > 0) on the boundaries S = S, and
t =T, then u < v everywhere.

Now, suppose that we can write the scheme in the abstract form: Vi € {0,...,I}
Sp(tna Sia P@'na p) =0, (52)

where p = (6t,65), and P stands for (PF)o<k<n, o<j<r- We suppose that (52) admits
at least one solution denoted P,. Then, in the limit when p goes to zero, P, converges
to p solution to (50) if the following conditions are satisfied:

85’2

(1) A stability condition, which reads maxo<,<n, o<i<s |P/"| < C, for some
constant C' independent of N and I (i.e., independent of p).
(17) A consistency condition: for any regular function ¢, and ¢ € R,

2
i St S0t )46, 4 = 1 (15,0, 50 50 58 (1.5)

p—0,t,—t, S;— 315 85 652
(where @ + & = (P(ty, S;) + E)ock<n, 0<j<r). For a weaker statement
see [6].

(7ii) A monotonicity condition, which reads

ﬁ S Q = SP((thi)?Pinvp) Z SP((tN7Si)>Pin7Q)'
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For most standard finantial options, a comparison principle holds. The stability
and consistency conditions are close to the stability and consistency conditions al-
ready introduced in Section 3.1.2 for European options. Hence the new condition to
check is the monotonicity assumption (which is related to the property (51b) satis-
fied by H). It is actually related to a discrete maximum principle (see Remark 6).

Remark 10 (error estimates) Error estimates can also be obtained for the finite
difference schemes (45)—(46)—(47). For example, for the EE scheme, an error es-
timate of order 6S'? in L>®-norm can be proved under a CFL condition and for
Lipschitz initial data [35]. In the context of finite element method (see Section 4.2)
an error estimate of order 0S5 can be proved, but in the weaker L*-norm.

4.1.3 Implementation and convergence of the finite difference schemes.

It is easy to see, in view of (48), that the EE scheme is stable and monotone if the
components of the matrix (I;—6tA) are nonnegative. This is exactly what is needed
to prove a discrete maximum principle in the European case (see Remark 6). This
property holds under a CFL condition of the form §t < C'§S?, C' constant, and with
an appropriate discretization of the advective term. The CN scheme is also stable
and monotone under a CFL-like condition. On the other hand, it can be shown that
the IE-S scheme as well as the IE scheme are stable and monotone without any CFL
condition.

Now let us explain how to solve the implicit schemes (46) or (47) in practice. Let
us consider the IE scheme (46). At each time step, setting b = P"™!, B = I; + 0tA
and g = (¢(5;));, the problem is equivalent to find 2 = P™ such that

min((Bz —b);, (x — g);) =0, Vi. (53)

The Howard algorithm 32| (also called the policy iteration algorithm) is the method
of choice to solve (53). To present this algorithm, we rewrite (53) in the following
form: find x such that,

in ((B(a)z —b(a))) =0, Vi, 54
min (Bla)s — b)) i (54)
where B, ;(a) = { 52] ii Z: _ 0 (where 9, ; is again the Kronecker symbol, i.e.

b; ifa; =0
gi ifa;=1
of B(a)xr — b(«) only depends on the i-th component of «, so that the minimum
for the i-th component in (54) is indeed taken with respect to the i-th component
of a. Thus, for a given x and « realizing the minimum in (54), the component «; is
equal to 0 (resp. to 1) if, at the i-th node, the minimum in (53) is (Bx — b); (resp.
(r — g);). For an initial value® o € {0, 1}/, the algorithm writes as follows: iterate
for k£ > 0,

the (i, j)-th component of ;) and b;(a)) = { . The i-th component

(i) Compute x* such that B(a*)z* = b(a*),

) af“ = arg minaie{ovl}(B(a)x —b(a));.

3A good initial guess is indeed the vector o obtained at the previous time iteration
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We refer to [50] and [10] for some convergence results. Under suitable assumptions

on the matrix B (which are satisfied for the schemes considered above which satisfy

the monotonicity condition), it can be proved that this method converges in at

most [ iterations. In practice, only a very few iterations are needed for solving (46).
This algorithm can also be seen as:

e a Newton’s method on the function F' defined by F;(x) = min((Bx — b);, (v —
9)i). More precisely, it is a semi-smooth Newton’s method applied to the
slantly differentiable function* F.

e a primal-dual algorithm to implement the fully Implicit Euler scheme (46) as
introduced in [31].

Remark 11 (PSOR) Another well-known method for solving (53) is the Projected
Successive Over Relazation (PSOR) method, which is a modification of the Succes-
sive Quer Relazation (SOR) method to solve iteratively systems of linear equations
(see [49]). In its simplest form, it consists of decomposing B = L + U where L
15 a lower triangular matriz and U is an upper triangular matriz with zero coeffi-
cients on the diagonal. The algorithm consists of choosing an initial quess 2° and
then computing iteratively for n > 1, fori =1,...,1, xI' = argmin {(L:c" —(b—
Uz 1)), (2" — g)l} This method converges only if B is a diagonal dominant
matriz, and the convergence is rather slow in practice.

Remark 12 (The one-dimensional case) For the specific case of an American
put option on a single asset, a fast algorithm was proposed by Brennan and Schwartz [11]
for solving (46) and proved to converge in [34]. Also in this case it can be proved
that the region of exercise (namely I'y = {x € Ry, p(t,z) > ¢(x)}), is of the form

[y = [y(t), oo where v is continuous under some regqularity assumption of the data.
Then the Howard algorithm takes a simple form which is known as the front-tracking
algorithm (see for instance [3]). However these algorithms are very specific to the
one-dimensional case and do not apply for general payoff functions.

4.1.4 Numerical results for the American put option

In Table 4, we give numerical results obtained with the IE-S and IE schemes, for
an American put option with »r = 0.1, ¢ = 0.1, K = 100, T" =1, S = 100 and
Smax = 150. We have computed all error values by taking the reference value
P = 1.63380 (obtained with a Cox-Ross-Rubinstein algorithm [20, 39] with N = 105,
CPU-time= 1750s.). In this example, the IE scheme is one digit more accurate
than the IE-S scheme. With these numerical parameters, the EE scheme would
yield bad results since the CFL condition is not respected. The IE scheme has been
implemented using the Howard algorithm. The remaining error when [ is large is
due to the time discretization.

In Table 5, we compare the EE, IE-S and IE schemes. Since the error is of
order of O(dt) + O(65?), we have used parameters N and I such that 6t ~ §5? (i.e.

1 F is slantly differentiable if there exist C' > 0 and a matrix G(z) such that Vz, ||G(2) || < C
and F(z+ h) = F(x) + G(x + h)h + o(h) as h — 0. Here G(z) can be defined by G(z);; = B;; if
(Bx —b); < (z — g):, and G(z);; = J;; otherwise.

23



(N =1000) [I=100 I=200 I=400 [=800 [=1600
IE-S 0.00267  0.0361 0.00180 0.00210 0.00210
IE 0.00379  0.0146 0.00011 0.00024 0.00018

Table 4: Error on the value of an American put in function of the number I of
intervals in the variable S (and for N = 1000).

I =100 [ =200 I =400 I =800 I = 1600
N =100 N =400 N =1600 N =6400 N = 25000

EE 0.00593  0.00069 0.00045 0.00003 0.00003
CPU-time (sec.) 0.01 0.10 0.5 2.6 10.7
IE-S 0.01177  0.00616 0.00098 0.00029 0.00007
CPU-time (sec.) 0.05 0.22 1.23 7.06 44.31
IE 0.00201  0.00181 0.00016 0.00004 0.00001
CPU-time (sec.) 0.2 0.9 7.3 75.0 1033.0

Table 5: Error and CPU-times for the value of an American put as a function of the
number N of time-steps N and the number I of intervals in the variable S.

N =~ [?), and such that the CFL condition is satisfied. We remark that the EE
scheme gives satisfactory results in less than a few seconds. The IE is more accurate
but more costly than IE-S. Hence in view of the CPU-time it is more advantageous
here to use simply the EE or the IE-S scheme. This conclusion holds for a finite
difference discretization, but may be different for a finite element discretization, or
for another set of parameters.

Remark 13 (Markov Chains approximations) Markov Chain schemes [38] are
based on the approximation of the Dynamic Programming principle between times t
and t + 6t and on the use of a spatial interpolation over a mesh (S;). This leads
to another class of schemes that are also in finite difference form. Their conver-
gence can be established by showing the convergence to the Dynamic Programming
equation, or by using the Barles-Souganidis theorem [6]. Finite difference schemes

enter this framework as well as Semi-Lagrangian schemes [15, 28] (an inversed CFL

condition, typically of the form 5S%/5t 95200 can then be needed). Notice that the

Coz-Ross-Rubinstein algorithm [20] can also be seen as a discrete Markov Chain ap-
proximation scheme using a very particular spatial mesh such that no interpolation
appears at the end.

Remark 14 (Portfolio optimization) A portfolio optimization problem (or stochas-
tic optimization problem) is typically of the form

T
t — E Xt,m,a d fftT r(s)ds Xt,m,a 55
pitea) = _max B ([ X at) dus e 0000 (59
where K is compact, and with

{ dX5b* = b(u, z, a(u))du + o(u, z, a(u))dW,, u>t,

t
Xt’x7a =2X.
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The corresponding PDE can be shown to be

2
min (— % %Uz(t, S, a)% —b(t, S, a)g—g +rp— f(t, S,a)) =0

in the viscosity sense (see [45]). Finite difference schemes similar to those presented
above for American options can be applied. Implicit schemes, if considered, can be
solved by the Howard algorithm. This can also be generalized to optimal stopping
time problem, adding in (55) a supremum over stopping times with values in [t, T
(as in (15)). For such general HJB equations, a discretization by a finite element ap-
proach is not always possible because an appropriate variationnal formulation cannot
always be obtained (see [7]).

4.2 The finite element approach

As in the European case, the finite element approach requires a variational formu-
lation of the PDE (23). Let us consider the case of the American put option. Let
V' be the functional space as in (3.2.1) and

K={qeV, ¢>¢}.

We first notice that (23) is equivalent to the set of inequalities® (together with
p(T,5) = ¢(5))
p— ¢ > 07

dp
—— 4+ >
or T =0 (56)

Ip
—— —¢)=0.
(- +40) -0
We can check that this is equivalent (for sufficiently smooth function p) to the
following variational formulation for (23): find p € L?([0, T], K)NC°([0, T], L*(R}))
such that for all ¢ € [0, 7)),

)
quK,—/a—i(q—pHa(nq—p)ZO (57)

where a is the bilinear form (41) defined above (recall that for compactly supported
functions p and ¢, a(p,q) = [ Apg), with the final condition

p(T, S) = (b(S)

Indeed, by writing ¢ —p = (¢ — ¢) — (p — ¢), it is clear that (56) implies (57).
Conversely, choosing a sufficiently large ¢ € K in (57), we obtain that —% +Ap >
0. Taking then ¢ = ¢ in (57), we obtain that (=% + Ap, ¢ —p) > 0, but this
inequality is actually an equality since —% +Ap>0and ¢ —p <0.

Notice that if we take K = V in (57), we recover the variational formulation (40)
for European option. Precise existence and uniqueness results for such variational
inequalities can be found in [7]. For results and applications in the finance context,
we refer to [3].

5Such a problem is called a linear complementarity problem.
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Now, as in Section 3.2.1, we introduce a sequence of finite dimensional functional
spaces V},, C V, such that the functions in V' are better and better approximated by
functions in V}, as h goes to 0. One can for example consider a P1 finite element
space on a mesh (5;)o<i<;. Remember that a basis of V}, is given by a set of functions
(gi)o<i<r- As in Section 3.2.1, the finite element approximation of (57) is obtained
by replacing V by Vj,: find p, € C°([0,T], K N'V},) such that for all ¢t € [0,T),

0
Vg, € KNV, — / %(Qh —pn) +a(pn, an — pr) >0, (58)

with the final condition p,(T") = ¢, where ¢, € V}, is an approximation of ¢.

For time discretization, one can again use the schemes we have introduced in
Section 3.1.1. For example, the implicit Euler scheme applied to (58) is naturally
defined as follows: find p,py ', ... p) in V;, N K such that p) = ¢, (initialization)
and, forn =N —1,...,0:

n+1

Vo e Vin K, [P g e - 20 (69

One can easily check that
qn € Vh NK <« qn € Vh and qh(Si) > qb(SZ), Vi.

Denoting A, and M), the mass and stiffness matrices as in Section 3.2, and reasoning
as for the equivalence between (23), (56) and (57), it can be checked that (59) is
equivalent to solve in R’:

Pn+1 — pn

min <( — M, 5 + Ath)i’ (Pn _ g)l) =0, Vi,
where g; = ¢(S;) and P! = p}(S;). Equivalently, the problem is to find P" such
that

min (((My + 0tA,)P" — M, P"™*Y)  (P" —g),) =0, Vi.

This is a similar problem as for the IE finite difference scheme (see (53)) where the
matrix (I; + 6tA) is now replaced by (M; + 6tAy). It can be solved by the Howard
algorithm presented in Section 4.1.3. For the particular American put problem under
some assumptions on the mesh steps 0t and h, it can also be solved by the Brennan
and Schwartz algorithm or the front-tracking algorithm mentioned in Remark 12
above.

Notice that a Crank-Nicolson scheme can be derived in a similar way. The
expected error (in L:-norm) is (as in the European case) O(h?) + O(dt) for the IE
scheme and O(h?) + O(6t?) for the CN scheme.

We conclude this section by a numerical illustration of the mesh refinement pro-
cedure mentioned in Remark 8 above applied to the pricing of an American option on
two assets. Such an automatic refinement procedure is particularly useful for Amer-
ican options because the pricing function is not smooth at any given time ¢ € [0, T'].
Figures 3 and 4 illustrate such a mesh refinement for a typical two assets American
option with payoff ¢(S1,S2) = (K — max(S, S3))+. The artificial boundary Ty is
{max(S;,S;) = S = 200}. Homogeneous Dirichlet conditions are imposed on I'y.
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We have chosen two examples. In the first example, the parameters are o1 = 0.2,
o9 =0.1, r =0.05, p = —0.6 and K = 100. In the second example, the parameters
are 0y = 09 = 0.2, 7 = 0.05, p = 0 and K = 50. The implicit Euler scheme has been
used with a uniform time step of 1/250 year. For the variables S; and Sy, we have
used adaptive finite elements. For solving the linear complementarity problems, we
have used the Howard algorithm. Mesh adaption in the (S}, S2) variable has been
performed every 1/10 year. In Figure 3, we have plotted the adapted mesh (left)
and the contours of the pricing function (right) one year to maturity for the first ex-
ample. Note that the contours exhibit right angles in the exercise region. In Figure
4, we plot the exercise region one year to maturity for the first example (left) and for
the second example (right). One sees that the exercise boundary has singularities.
It is also visible that the mesh has been adapted near the exercise boundary.
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Figure 3: The adapted mesh and the contours of P one year to maturity. o1 = 0.2,
oy = 0.1, p = —0.6.
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Figure 4: The exercise region one year to maturity. Left: K = 100, oy = 0.2,
09 = 0.1, p=—0.6. Right: K =50, 01 =092 =0.2, p=0.
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5 Calibration

5.1 Limitation of the Black-Scholes model: the need for cal-
ibration

Consider a European style option on a given stock with a maturity 7" and a payoff
function ¢, and assume that this option is on the market. Call p its present price.
Also, assume the risk-free interest rate is the constant . One may associate with p
the so-called implied volatility, i.e. the volatility o;,,, such that the price given by
formula (4) at time ¢ = 0 with o = 0y, coincides with p. If the Black-Scholes model
was sharp, then the implied volatility would not depend on the payoff function ¢.
Unfortunately, for e.g. vanilla European puts or calls, it is often observed that the
implied volatility is far from constant. Rather, it is often a convex function of the
strike price. This phenomenon is known as the wvolatility smile. A possible expla-
nation for the volatility smile is that the deeply out-of-the-money options are less
liquid, thus relatively more expensive than the options in-the-money.

This shows that the critical parameter in the Black-Scholes model is the volatil-
ity 0. Assuming o constant and using (8) often leads to poor predictions of the
options’prices. The volatility smile is the price paid for the too great simplicity of
Black-Scholes’assumptions.

Let us now discuss some of the possible enrichment of the Black-Scholes model that
have been mentioned in Remark 3:

e local volatility models: the volatility is a function of time and of the spot
price, i.e. oy = o(t,S;). With suitable assumptions on the regularity and the
behavior at infinity of the function o, (4) holds, and P, = p(t,S;), where p
satisfies the final value problem (8), in which o varies with ¢ and S. Calibrating
the model consists of tuning the function o in such a way that the prices
computed e.g. with the PDE coincide with the observed prices.

e stochastic volatility models: one assumes that oy = f(y;), where y, is a contin-
uous time stochastic process, correlated or not to the process driving .S;, see

|29] for a nice presentation. Several such models have been proposed, among
which

1. Hull-White model [33]: f(y) = \/y and ¥, is a lognormal process.

2. Scott model: f(y) = /¥ and ¥, is a mean reverting Ornstein-Uhlenbeck
process:
dy; = a(m — y,)dt + BdZ,, (60)

where o and (3 are positive constants, Z; is a Brownian motion.

3. Heston model [30]: f(y) = /¥ and y; is a Cox-Ingersoll-Ross process,

dy, = k(m — y)dt + \\/ydZy, (61)

where x, m and \ are positive constants.

4. Stein-Stein model[51]: f(y) = /¥y and y; is a mean reverting Ornstein-
Uhlenbeck process.
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There are two risk factors, one for the stock price and the other for the volatil-
ity. If the two driving processes are not completely correlated, it is not possible
to construct a hedged portfolio containing simply one option and shares of the
underlying asset. One says that the market is incomplete. Nevertheless, if
one fixes the contribution of the second source of randomness dZ; to the risk
premium, ¢.e. the market price of the volatility risk or the risk premium factor
as a function of £, S; and v, then it is possible to prove that the option’s price
is of the form P, = p(t, S;, y;), where the pricing function satisfies a PDE in
the variables (¢, S,y). The PDE may be degenerate for the values of y corre-
sponding to volatility cancellation. Calibrating the model consists of tuning
the parameters of the process 3; and the function f in order to match the
observed prices.

e Lévy driven spot price: one may generalize the Black-Scholes model by assum-
ing that the spot price is driven by a more general stochastic process, e.g. a
Lévy process [17, 43, 16]. Lévy processes are processes with stationary and in-
dependent increments which are continuous in probability. For a Lévy process
X, on a filtered probability space with probability P*, the Lévy-Khintchine
formula says that there exists a function y : R — C such that

E*(eiuXT) — e—TX(U)

2,2

x(u) = 02u —ifu + /<1(ewz — 1 —uz)v(dz) + / (e — 1)v(dz),

|z|>1

9

for o > 0, 3 € R and a positive measure v on R\ {0} such that [, min(1, 2?)v(dz) <
+00. The measure v is called the Lévy measure of X. We focus on Lévy mea-
sure with a density, v(dz) = k(z)dz. It is assumed that the discounted price

of the risky asset is a square integrable martingale under P*, and that it is
represented as the exponential of a Lévy process:

e TS, = Spe.

The martingale property is that E*(eX") =1, i.e.

0.2

[ e <o amd 5= == [ =1 sk ),

and the square integrability comes from the condition f\z\>1 e*k(z)dz < oo,
With such models, the pricing function for a European option is obtained by
solving a partial integrodifferential equation (PIDE), with a nonlocal term.
Calibrating the model consists of tuning o and the function % in such a way
that the prices computed e.g. with the PIDE match the observed prices,
see [18].

5.2 Local volatility and Dupire’s formula

We consider a local volatility model and call (¢,5) — C(t, S, 7, x) the pricing func-
tion for a vanilla European call with maturity 7 and strike x. It satisfies the final
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value problem:

aC  o?(t,5)S? 9°C oC .
EJF 5 557 +(r—q)5%—r0 =0 in [0,7) x Ry,

C(r,S) = (S—x)4 in R,

(62)
where we have supposed that the underlying asset yields a distributed dividend,
qSydt. By reasoning directly on (4) or by using PDE arguments, it can be proved
that the function (7,z) — C(t, S, 7,2) (now t and S are fixed) satisfies the forward
parabolic PDE:

2
— — —o*(r, x>x2887§ + (r — q)xaa—i +qC =0, (63)
for 7 > ¢t and x € R,. This observation was first made by B. Dupire [25], and the
proof of (63) by PDE arguments can be found in [3].
Using (63) is useful for two reasons:
First, consider a family of calls on the same stock with different maturities and strikes
(1i,25), I € I, where [ is a finite set. Assume that the spot price is known, i.e.,
S = Sp. In order to numerically compute the prices of the calls, i.e. C(0, S, 7;, x;),
i € I, one may solve (63) for max,c; 7; > 7 > 0 and initial data C(r = 0,z) =
(So — ), with e.g. a finite difference or a finite element method. Only one initial
value problem is needed. On the contrary, using (8) would necessitate solving #I
initial value problems. We see that (63) may save a lot of work.
Second, (63) may be used for local volatility calibration. Indeed, if all the possible
vanilla options were on the market, the local volatility in (62) could be computed:

0_2(7_ ZL‘) _ 2%(77 l‘) + (T - Q)w%(Tv l‘) + (]C(’T, (L’)
’ :1:282—0(7' x) '
Ox2 \')

(64)

This is known as Dupire’s formula for the local volatility. In practice, (64) cannot
be used directly because only a finite number of options are on the market.
Assume that the observations are the prices (C;);c; of a family of calls with matu-
rity /strike (7;,2;);e;. Finding a function (7,2) — o(7,x) such that the solution of
(63) with C'(0,2) = (S — ), takes the value C; at (7;,7;), i € I is called an inverse
problem.
A natural idea is to somehow interpolate the observed prices by a sufficiently smooth
function C : [0, max;c; ;] — R, then use (64) with C' = C. For examples, bicubic
splines may be used. This approach has several serious drawbacks:

e it is difficult to design an interpolation process such that %27(; does not take
the value 0, and such that the right hand side of (64) is non negative.

e There is an infinity of possible interpolations of C; at (7, z;), i € I, and for
two possible choices, the volatility obtained by (64) may differ considerably.

We see that financially relevant additional information have to be added to the
interpolation process.
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5.3 Least-square methods

Here, we show how (63) can be used for calibration. The first idea is to use least
squares, i.e. to minimize a functional J : o0 — >, w;|Cs — C (73, 24)|? for o in a
suitable function set ¥, where w; are positive weights, and the pricing function C
is the solution of (63) with C'(0,x) = (Syp — x),. The evaluation of J requires the
solution of an initial value problem. The set > where the volatility is to be found
must be chosen in order to ensure that from a minimizing sequence one can extract
at least a subsequence that converges in >, and that its limit is indeed a solution of
the least square problem. For example, 3 may be a compact subset of a Hilbert space
W (in principle W could be a more general Banach space but it is easier to work in
Hilbert spaces if gradients are needed) such that the mapping J is continuous in W.
In practice, W has a finite dimension and is compactly embedded in the space of
bounded and continuous functions o such that x0,0 is bounded. Thus, the existence
of a solution to the minimization problem is most often guaranteed. What is more
difficult to guarantee is uniqueness and stability: is there a unique solution to the
least square problem? If yes, is the solution insensitive to small variations of the
data? the answer to these questions is no in general, and we say that the problem
is #ll-posed.

As a possible cure to ill-posedness, one usually modifies the problem by minimizing
the functional ¢ — J(o) + Jgr(o) instead of J, where Jg is a sufficiently large
strongly convex functional defined on W and containing some financially relevant
information. For example, one may choose Jr(o) = w|o — |%, where w is some
positive weight, ||.|| is a norm in W and & is a prior local volatility, which may come
from a historical knowledge. The difficulty is that w must not be too large not to
perturb the inverse problem too much, but not too small to guarantee some stability.
The art of the practitioner lies in the choice of Jy.

Once the least square problem is chosen, we are left with proposing a strategy for the
construction of minimizing sequences. If .J and Jg are C! functional, then gradient
methods may be used. The drawbacks and advantages of such methods are well
known: on the one hand, they do not guarantee convergence to the global minimum
if the functional is not convex, because the iterates can be trapped near a local
minimum. On the other hand, they are fast and accurate when the initial guess
is close enough to the minimum. For these reasons, gradient methods are often
combined with techniques that permit to localize the global minimum but that are
slow, like simulated annealing or evolutionary algorithms.

Anyhow, gradient methods require the evaluation of the functional’s gradient. Since
Jr explicitly depends on o, its gradient is easily computed. The gradient of J is
more difficult to evaluate, because the prices C(7;, x;) depend of ¢ in an indirect
way: one needs to evaluate the variations of C(7;,x;) caused by a small variation
of o; calling do the variation of ¢ and dC the induced variation of C, one sees by
differentiating (63) that 0C'(7 = 0,-) = 0 and

(1, 2)

2
0.6C — T 2 50 4 (1 — )20,6C + q6C = 0602202, C. (65)

To express 0. in terms of do, an adjoint state function P is introduced, as the
solution to the adjoint problem: find the function P such that P(7,-) = 0 and for
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T<T,

o2x?

0.P+ 2, (

P) — 8 (P(T - q - qP =2 sz 7—17 ZL‘, Ci)57i7$i7 (66)

el

where 7 is an arbitrary time greater than max;c; 7; and in the right hand side, the
dr, z; denote Dirac functions in time and strike at (7;, ;). The meaning of (66) is
the following:

_/ (aT oz’ U+(r—q)a:8xv+qv) —QZw, (15, 25) — Cy)v(Ty, ;).
Q

(67)
where Q = (0,7) x Ry, and v is any function such that v € L?*((0,7),V) with
v € L*(Q) and 2%02,v € L?(Q). Taking v = 6C in (67) and using (65), one finds

2 wi(C(m,mi) = C)8C (7, 25) =2 wil Ci, @) = ¢3){07,.0,, 6C)

el el

2

= —/ (&50 — %@%3{;50 + (r — q)x0,6C + qéC’) P
Q

= —/ odor*PO2,C.
Q

We have worked in a formal way, but all the integrations above can be justified.
This leads to the estimate

‘5J+/ aéa:cQP@igﬁC‘ < cHéaH%m(Q)
Q

which implies that J is differentiable, and that its differential at point o is given by

o) i /Q o1 P(0)02,C(0),

where P(o) satisfies (66), and C(o) satisfies (63). We see that the gradient of J
can be evaluated. When (63) is discretized with e.g. finite elements, all what has
been done can be repeated (with a discrete adjoint problem), and the gradient of
the functional can be evaluated in the same way. Let us stress that the gradient
DJ (o) is computed exactly, which would not be the case with e.g. a finite difference
method.

Local volatility can also be calibrated with American options, but it is not possible
to find the analogue of Dupire’s equation. Thus, in the context of a least square
approach, the evaluation of the cost function requires the solution of #1/ variational
inequalities, which is computationally expensive, see [3]. In this case, it is also
possible to find necessary optimality conditions involving an adjoint state.
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