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Abstract

We consider stochastic differential equations on the whole space possessing
an invariant along their solutions. The stochastic dynamics therefore evolves
on a hypersurface of the ambiant Euclidean space. Using orthogonal coordi-
nate systems, we show the existence and uniqueness of smooth solutions of the
Kolmogorov equation under some ellipticity conditions over the invariant hyper-
surfaces. If we assume moreover the existence of an invariant measure, we show
the exponential convergence of the solution towards its average. In a second part,
we consider numerical approximation of the stochastic differential equation, and
show the convergence and numerical ergodicity of a class of projected schemes.
In the context of molecular dynamics, this yields numerical schemes that are
ergodic with respect to the microcanonical measure over isoenergy surfaces.
MSC numbers: 60H10, 60H30, 58J65, 65C20.
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1 Introduction

We consider stochastic differential equations in R
N in the Stratonovich sense, of

the form
dX(t) = f(X(t))dt+ σ(X(t)) ◦ dW (t),
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written in coordinates

dXi(t) = f i(X(t))dt+

D∑

ℓ=1

σi
[ℓ](X(t)) ◦ dW [ℓ](t), (1.1)

where f(x) = (f i(x))Ni=1 is an N -dimensional vector vector field, and σ(x) =
(σi

[ℓ](x)), i = 1, . . . , N , ℓ = 1, . . . ,D is a N × D matrix. The vector W (t) with

components W [ℓ], ℓ = 1, . . . ,D, is a standard Brownian motion in R
D. To this

equation corresponds the Itô equation: For i = 1, . . . ,N ,

dXi(t) =



f i(X(t)) +
N∑

j=1

D∑

ℓ=1

1

2
(σj

[ℓ]
∂jσ

i
[ℓ])(X(t))



 dt+

D∑

ℓ=1

σi
[ℓ](X(t))dW [ℓ](t) (1.2)

where ∂jσ
i
[ℓ] denotes the derivative with respect to xj of the function σi

[ℓ](t, x),

x = (x1, . . . , xN ).
We assume in this work that the SDE (1.1) is conservative in the following

sense: There exists a function H(x) defined on R
N such that

∀x ∈ R
N , ∀ ℓ = 1, . . . ,D, 〈∇H(x), f(x)〉 = 0 and 〈∇H(x), σ[ℓ](x)〉 = 0

(1.3)
where for all ℓ = 1, . . . ,D, σ[ℓ](x) is the N -dimensional vector with components

σi
[ℓ], and where 〈 · , · 〉 denotes the Euclidean scalar product on R

N . The vector

field ∇H(x) is the gradient vector of H with respect to the coordinates x =
(x1, . . . , xN ).

Using Itô calculus, it is straightforward to show that ifH(x) is smooth enough
on R

N , we have for all solution X(t) of (1.1)

∀ t ≥ 0, H(X(t)) = H(X(0)). (1.4)

This expresses that the function H is an invariant of (1.1).
Under ellipticity assumptions on the vector fields σ[ℓ], we show below that

the SDE (1.1) exhibits a unique invariant measure over the the manifolds

Σz = {x ∈ R
N |H(x) = z}. (1.5)

In the context of molecular dynamics, if the equation (1.1) is volume preserving

over the whole space R
N , then the invariant measure turns to be the microcanon-

ical probability measure (see for instance [1, 11]),

dν(z) =

(∫

Σz

dΣz

‖∇H‖

)−1
dΣz

‖∇H‖ (1.6)
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where dΣz is the surface measure over the isosurface Σz induced by the Euclidean
metric of R

N .
For a general function H(x), it is very difficult in practice to exhibit an atlas

of the manifolds Σz = {x ∈ R
N |H(x) = z}. The derivation of a numerical

scheme to approximate the solution of (1.1) cannot thus rely on the choice of a
“good” atlas as in [13], and one has to rely on projection step to remain on the
manifold. The numerical analysis then has to be made directly in R

N and the
dynamics of (1.1) has to be understood in a vicinity of a given hypersurface Σz

rather than on the manifold itself.
The Kolmogorov equation associated with the SDE (1.1) writes, using the

summation convention of covariant and contravariant indices

∂tv = Lv where Lv = f i∂iv +
1

2

D∑

ℓ=1

σi
[ℓ]∂i

(
σj

[ℓ]∂jv
)
, (1.7)

where v(t, x) is a function depending on the time t ≥ 0 and x ∈ R
N . We recall

that a solution of (1.7) is given by v(t, x) = E(v(0,X(t))|X(0) = x).
After a possible translation of the function H(x), we can always assume that

the initial value of (1.1) lies on the manifold Σ0 = {x ∈ R
N |H(x) = 0}. In this

work, we will show that we can define smooth solutions of (1.7) in a neighborhood
of this manifold by considering an orthogonal parametrisation of R

N by the
hypersurface Σ0 which is supposed to be a N − 1 dimensional submanifold of
R

N , and the parameter z = H(x) for x ∈ R
N . In such a way, we can parametrise

a domain of R
N by a product Σ0 × (−ε, ε) for small ε, provided that Σ0 is

smooth enough and compact (note that this last hypothesis could be weakened
in the present analysis, but it is in general fulfilled for the problem of computing
averages in molecular dynamics).

In this new coordinate system, the Kolmogorov operator can be seen as an in-

trinsic operator on Σ0 involving the covariant derivative and curvature terms on
Σ0. The coordinate z is then only a smooth parameter in the operator. In partic-
ular, the derivative with respect to the global variable z does not come into play
in the definition of the Kolmogorov operator in orthogonal coordinate. By stan-
dard arguments, we therefore can define a smooth solution in the neighborhood
defined by Σ0 × (−ε, ε), provided that the collection σ[ℓ](x) satisfy conditions so
that the operator L can be viewed as elliptic operator on Σ0, uniformly in z.

We then consider the case where (1.1) is possess a family of invariant measures
on Σz, depending smoothly on z. An important case where this situation occurs
is when (1.1) is volume preserving which means that the constants are in the
kernel of the adjoint of the operator (1.7) which writes

LT v = −∂i(f
iv) +

1

2

D∑

ℓ=1

∂i

(
σi

[ℓ]∂j

(
σj

[ℓ]v
))
. (1.8)
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We will refer to this operator as the Fokker-Planck operator associated with
(1.1). Note that (1.1) will be volume preserving in the case where

∂if
i(x) = 0 and ∀ ℓ = 1, . . . ,D, ∂iσ

i
[ℓ](x) = 0, (1.9)

but this condition is not necessary (see the examples in Section 4).
The motivation for considering such volume and energy preserving systems

arises from computational problems of NVE averages in molecular dynamics
(namely averages with respect to the microcanonical measure (1.6), see for in-
stance [1, 11]). In this situation, for d interacting particles, the phase space
variable decomposes into x = (p1, . . . , pd, q1, . . . , qd) where each qi ∈ R

3 denotes
the position of a particle, and pi its momentum. The energy hamiltonian H(p, q)
is then written

H(p, q) =

d∑

i=1

pT
i pi

2mi
+ U(q1, . . . , qd) (1.10)

where mi is the mass of the i-th particle and U is the potential function.
The principle of molecular dynamics is to simulate numerically the solution

of the corresponding hamiltonian equations

dq

dt
=
∂H

∂p
(p, q) and

dp

dt
= −∂H

∂q
(p, q) (1.11)

which define a volume and energy preserving (deterministic) system. The ergodic

hypothesis states that, it (p(t), q(t)) denotes a solution of (1.11) evolving on a
hypersurface Σz corresponding to the Hamiltonian (1.10), we have for all function
g defined on Σz,

lim
T→∞

1

T

∫ T

0
g(p(t), q(t)) dt =

∫

Σz

g(y)dν(z) (1.12)

where the measure dν(z) in the right-hand side is the microcanonical measure
(1.6).

However, it is well-known that this hypothesis failed in general, in particu-
lar for integrable or close to integrable systems exhibiting hidden stable invari-
ants preserved by symplectic numerical methods (see [14, 5] and the references
therein). At variance the numerical schemes we present below are shown to be
ergodic with respect to the microcanonical measure.

Another context where such families of measures appear is free energy com-
putations by thermodynamic integration [7]. In this case, one needs to sample a
Boltzmann-Gibbs probability measure conditioned to a fixed value of a reaction
coordinate: exp(−βV )|∇ξ|−1dSz where V : R

N → R is the energy, ξ : R
N → R

is the reaction coordinate and Sz = {x ∈ R
N |ξ(x) = z} (ξ plays here the role of

the above function H).
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In a first part of this paper, under an ellipticity assumption on the vector
fields σ[ℓ] and in the case where (1.1) admits an invariant measure, we show the
exponential convergence of the solution of (1.7) towards its average over the mi-
crocanonical measure, uniformly in z for z in a small interval. We moreover show
that all the tangent space derivatives of v(t, x) decay exponentially in time. This
implies in particular the ergodicity of the exact solution of (1.1) and this gives
the equivalent of (1.12) for the stochastic flow of (1.1) in the volume preserving
case.

In a second part of this work, we consider numerical schemes satisfying in
essence two conditions: Consistency with (1.1) and preservation of the energy
H(x). Using the results obtained in Section 2, we show the weak convergence of
such numerical schemes, which gives a new way of computing NVE averages in
the context of molecular dynamics. We conclude by giving examples of schemes
satisfying the above conditions.

The method and analysis we use are closely related to previous works by Talay
and co-workers [22, 13, 20, 21]. The particularity here lies in a systematic use of
differential geometry to understand the properties of the Kolmogorov operator
on a hypersurface of the ambiant space. Let us also mention the analysis made
in [17, 16] where constrained symplectic SDEs and appropriate discretization
schemes are introduced.

In the following, for a given ε > 0, we define the domain

Ωε = {x ∈ R
N |H(x) < ε}.

It defines a neighborhood of the hypersurface Σ0.

2 Analysis of the Kolmogorov operators

The goal of this section is to derive expressions of the operators L and LT in
terms of intrinsic objects defined on the hypersurfaces Σz.

2.1 Orthogonal coordinate system

We can write the Kolmogorov and Fokker-Planck operators as

Lv = f i∇i v +
D∑

ℓ=1

1

2
σi

[ℓ]∇i

(
σj

[ℓ]∇jv
)
.

and LT v = −∇i

(
f iv
)

+

D∑

ℓ=1

1

2
∇i

(
σi

[ℓ]∇j

(
σj

[ℓ]v
))

(2.1)

respectively, where ∇ is the Riemannian connection of R
N associated with the

Euclidean product 〈 · , · 〉. The advantage of these expressions is that they are
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expressed only in term of globally defined objects: The covariant derivative and
the metric tensor. In the Euclidean coordinate system {x1, . . . , xN}, the metric
tensor is the identity tensor, and this expression reduces to (1.7). For a general
local coordinate system {y1, . . . , yN}, the metric is represented by the matrix
gij(y), i, j = 1, . . . , N which are the component of the metric tensor in the
coordinate system {yi}. With this metric tensor are associated the Christoffel
symbols (see for instance [4])

Γk
ij =

1

2
gkm(∂igjm + ∂jgim − ∂mgij), (2.2)

where ∂i denotes the derivative with respect to yi, where gkm are the components
of the inverse of the metric tensor defined by gkmgmℓ = δk

ℓ the Kronecker tensor.
The coordinate system {yi} induces a local basis ∂

∂yi in the corresponding

tangent bundle. For a vector field T = T i ∂
∂yi , the covariant derivative is the

(1, 1) tensor fields with components

∇iT
j = ∂iT

j + Γj
imT

m.

Now an expression like ∇iT
i is the contraction of the previous tensor, and is thus

a function equal to
∇iT

i = ∂iT
i + Γi

imT
m.

It is worth noticing that the right-hand side in this expression a priori depends
on the local coordinate system {yi} while the left-hand side denotes a function
defined globally on R

N . For a function v, the covariant derivative reduces to
∇iv = ∂iv.

In a local coordinate system, we thus see that (2.1) can be written

Lv = f i∂iv +
D∑

ℓ=1

1

2
σi

[ℓ]∂i

(
σj

[ℓ]∂jv
)
.

and

LT v = −∂i

(
f iv
)
− Γi

imf
mv

+
1

2

D∑

ℓ=1

∂i

(
σi

[ℓ]∂j

(
σj

[ℓ]v
))

+
1

2

D∑

ℓ=1

∂i

(
σi

[ℓ]Γ
j
jkσ

k
[ℓ]v
)

+
1

2

D∑

ℓ=1

Γi
imσ

m
[ℓ]∂j

(
σj

[ℓ]v
))

+
1

2

D∑

ℓ=1

Γi
imσ

m
[ℓ]Γ

j
jkσ

k
[ℓ]v
)
. (2.3)

(Recall that for Euclidean coordinates, all the Christoffel symbols vanish).
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We introduce now an orthogonal coordinate system that will reflect the foli-
ation of Ωε by the isosurfaces Σz defined by (1.5).

In the following, we make the following assumption on H:

Hypothesis 1 The function H is smooth, and there exists ε > 0 such that for

all z ∈ (−ε, ε), Σz is compact, and for all x ∈ Σz, ∇H(x) 6= 0. This implies that

for z ∈ (−ε, ε), Σz is a smooth submanifold of R
N of dimension N − 1.

Note that Ωε :=
⋃

z∈(−ε,ε) Σz. We then denote by Fs(x) the flow of the
ordinary differential equation

d

ds
Fs(x) =

∇H(Fs(x))

‖∇H(Fs(x))‖2 , F0(x) = x ∈ R
N , (2.4)

where ‖ · ‖ denotes the Euclidean norm in R
N . Up to a possible reduction of ε,

Hypothesis 1 implies that for all x ∈ Ωε, Fs(x) is well defined for |s| < ε.
Let (U,ϕ) be a local chart on Σ0 with U ⊂ Σ0. The application ϕ : Σ0 ⊃

U → ϕ(U) ⊂ R
N−1 induces local coordinates (yα)N−1

α=1 ∈ ϕ(U) ⊂ R
N−1. In the

following, Greek indices will refer to N − 1 dimensional indices running from 1
to N − 1. We define the application

ϕ(U) × (−ε, ε) ∋ (yα, z) 7→ Φ(yα, z) := Fz ◦ ϕ−1(yα). (2.5)

This is a local coordinate system over the domain Ωε. By construction, we have

∂z

[
H(Φ(yα, z))

]
= 〈∇H(Φ(yα, z)) , ∂zΦ(yα, z)〉

= 〈∇H(Φ(yα, z)),∇H(Φ(yα, z))〉/‖∇H(Φ(yα, z))‖2

= 1

whence for all z ∈ (−ε, ε) and all yα ∈ U ,

H(Φ(yα, z)) = z. (2.6)

Hence, the inverse application of (2.5) is the map

Ωε ∋ x 7→ (ϕ(F−H(x)(x)),H(x)) ∈ ϕ(U) × (−ε, ε) (2.7)

and it is clear that to an atlas on Σ0 corresponds an atlas on Ωε made of the
charts (2.7).

For given (yα, z) ∈ ϕ(U) × (−ε, ε), we denote for simplicity by (Yα, Yz) the
local basis of R

N corresponding to the local basis ( ∂
∂yα ,

∂
∂z ) and we identify the

vector fields Yi, i = α, z with the vectors of R
N , Yα = ∂αΦ and Yz = ∂zΦ.
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The metric tensor gij(y
α, z) splits into the “surfacic” components gαβ and the

“normal” components gαz and gzz. By definition we have

gzz(y
α, z) = 〈Yz(y

α, z), Yz(y
α, z)〉

= 〈∂zΦ(yα, z), ∂zΦ(yα, z)〉

= 1/‖∇H(Φ(yα, z))‖2
.

(2.8)

From (2.6), we deduce that for all β,

〈∇H(Φ(yα, z)), ∂βΦ(yα, z)〉 = 0.

Dividing this expression by ‖∇H(Φ(yα, z))‖2
, we obtain

〈∂zΦ(yα, z)), ∂βΦ(yα, z)〉 = 0.

which means that

gβz = 〈Yβ, Yz〉 = 0.

This expression justifies the name “orthogonal coordinate system” on Ωε.
Finally, we see that

gαβ(yα, z) = 〈Yα, Yβ〉 = 〈∂αΦ, ∂βΦ〉

expands as

gαβ(yα, z) = aαβ +
∑

k≥1

zk

k!
∂k

z gαβ(yα, 0) (2.9)

where aαβ = 〈∂αϕ
−1, ∂βϕ

−1〉 is the metric tensor on Σ0 (the expansion in z comes
from the analyticity in z of the solution Fz(x) of (2.4)).

Using this orthogonal coordinate system, it is easy to show that each ten-
sor field on Ωε can be decomposed into several tensor fields on Σ0 depending
smoothly on z ∈ (−ε, ε). For instance, if ui is a vector field on Ωε, it can be rep-
resented by a couple (uα(y, z), uz(y, z)) ∈ C∞

(
(−ε, ε),Γ(T 1Σ0)×C∞(Σ0)

)
where

Γ(T 1Σ0) denotes the space of vector fields on U and where y = (yα) denotes
a point in Σ0. The proof of this result relies on the special choice of the atlas
defined by (2.7) and this situation is very similar to the case of shells (see [9, 8]).

In the orthogonal coordinate system defined above, the local charts (2.7)
define local coordinates on open subset of Ωε. We denote by

dyi(y, z) := (dyα(y, z),dz(y, z))

the dual basis of the vector field basis Yi(y, z) := (Yα(y, z), Yz(y, z)) defined
above (we identify here yN with z). Hence, local basis for tensor fields on Σ0 can
be expressed as tensor products of dyα(y, 0) and Yα(y, 0).
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As mentioned above, the components of Christoffel symbols do not define a
tensor field on a given manifold. However, using the fact that the metric tensor
satisfies gαz = 0 in orthogonal coordinates, we can easily show the following
result:

Lemma 2.1 Let (y, z) = (yα, z) be a local orthogonal coordinate system induces

by a local chart (U,ϕ) on Σ0 and let Γk
ij be the Christoffel symbols (2.2). Then

the expressions

Γβ
zα(y, z)Yβ(0) ⊗ dyα(y, 0)

Γz
αβ(y, z)dyβ(y, 0) ⊗ dyα(y, 0)

Γz
αz(y, z)dy

α(y, 0)

Γα
zz(y, z)Yα(y, 0)

all define tensor fields on Σ0 depending smoothly on z.

We do not give a proof here, as it is very similar to the situation of shells (see
[9, 8] for similar statements). Roughly speaking, it states that freezing one or
two coefficients of the Christoffel symbol to z in orthogonal coordinates yields
tensor fields.

Let ui be a smooth vector field on Ωε. The covariant derivative of ui in a
local coordinate system is given by

∇iu
j = ∂iu

j + Γj
iku

k

and defines a tensor field on Ωε.
In a local orthogonal basis, this tensor field can be decomposed into four

parts:
∇zu

z = ∂zu
z + Γz

zz(y, z)u
z (2.10)

which defines a function in C∞((−ε, ε), C∞(Σ0)), and similarly

∇zu
α = ∂zu

α + Γα
zβ(y, z)uβ + Γα

zz(y, z)u
z . (2.11)

which defines an element of C∞((−ε, ε),Γ(T 1Σ0)) after using the previous Lemma.
In the following, we denote by Dα the covariant derivative on Σ0, associated

with the metric aαβ . As ∂αu
z = Dαu

z because uz is a scalar function, we obtain
that the expression

∇αu
z = Dαu

z + Γz
αβ(y, z)uβ + Γz

αz(y, z)u
z (2.12)

defines an element of C∞((−ε, ε),Γ(T1Σ0)), where Γ(T1Σ0) denotes the space of
1-form fields on Σ0.

Finally, we write

∇αu
β = ∂αu

β + Γβ
ασ(y, z)uσ + Γβ

αz(y, z)u
z . (2.13)
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But using the expansion (2.9) it can be shown (see [9]) that the expression

Λσ
αβ(y, z) = Γσ

αβ(y, z) − Γσ
αβ(y, 0)

defines a tensor field on Σ0. Note that Γσ
αβ(y, 0) are the Christoffel symbols on

Σ0 associated with the metric aαβ. Consequently, we can write (2.13) as

∇αu
β = Dαu

β + Λβ
ασ(y, z)uσ + Γβ

αz(y, z)u
z , (2.14)

which now makes sense in C∞((−ε, ε),Γ(T 1
1 Σ0)) where Γ(T 1

1 Σ0) denotes the space
of tensor fields of type (1, 1) on Σ0. Note that Λσ

αβ(y, 0) = 0 and that Λσ
αβ(y, z)

is analytic in z.

2.2 Existence of solutions

We express now the operators L and LT in orthogonal coordinate system. Let
f i be a vector field on Ωε such that 〈∇H, f〉 = 0. Written in an orthogonal
coordinate system, this implies that f z = 0. In the following, we write fβ(y, z)
the tangential part of the vector field f viewed as a vector field on the manifold
Σ0 depending smoothly on z. We hence have

f i∇iv = fα(y, z)Dαv(y, z).

Using the equations (2.10) and (2.14), we find

∇j

(
f jv
)

= ∇α (fαv) + ∇z (f zv)

= Dα(fαv) + Λα
ασ(fσv)

(2.15)

where all the tensors are evaluated at the point (y, z) ∈ Σ0 × (−ε, ε). Similarly,
we can write

∇i

(
f i∇j(f

jv)
)

= Dα(fα∇j(f
jv)) + Λα

ασ(fσ∇j(f
jv))

whence using (2.15)

∇i

(
f i∇j(f

jv)
)

= Dα(fαDβ(fβv)) + Dα(fαΛβ
βσ(fσv))

+ Λα
ασ(fσDβ(fβv)) + Λα

ασ(fσΛβ
βσ(fσv)).

In the following, we denote by D the intrinsic operator with components Dα

in a local coordinate system. Using the previous expression, we can easily show
the following result:
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Theorem 2.2 In orthogonal coordinates, the Kolmogorov operator L viewed as

an operator on the manifold Σ0 × (−ε, ε) writes

L(y, z;D)v = fα(y, z)Dαv +
1

2

D∑

ℓ=1

σα
[ℓ](y, z)Dα

(
σβ

[ℓ](y, z)Dβv
)

where σα
[ℓ](y, z) and fα(y, z) are the components of the vector fields σ[ℓ] and f

in orthogonal coordinates. Similarly, the Fokker-Planck operator LT , writes in

orthogonal coordinates

LT (y, z;D)v =
1

2

D∑

ℓ=1

Dα(σα
[ℓ](y, z)Dβ

(
σβ

[ℓ]
(y, z)v)

)

− Dα(fα(y, z)v) + P (y, z;D)v

P (y, z;D) is an intrinsic operator of order 1 on Σ0 depending analytically of z
and such that

P (y, 0;D) = 0.

In the rest of this work, we make the following hypothesis:

Hypothesis 2 For all one-form field ξα ∈ Γ(T1Σ0) and all (y, z) ∈ Σ0×(−ε, ε),

D∑

ℓ=1

σα
[ℓ](y, z)σ

β
[ℓ](y, z)ξαξβ ≥ Λ ξαξα (2.16)

for some Λ independent on z.

This means that L(y, z;D) is elliptic on Σ0, uniformly in z ∈ (−ε, ε).
For a function ϕ on Σ0, and ℓ ≥ 0, we denote by

|Dℓϕ|2 = Dα1Dα2 · · ·DαℓϕDα1
Dα2

· · ·Dαℓ
ϕ

the semi norm of order ℓ of ϕ. Note that the contravariant indices denote a
multiplication by the inverse of the metric tensor aαβ on Σ0: Dα = aαβDβ.

We recall that for k ≥ 0 the Sobolev space Hk(Σ0) on Σ0 is defined as the
space of functions ϕ : Σ0 → R such that for all ℓ, 0 ≤ ℓ ≤ k,

‖Dℓϕ‖
L2

=

∫

Σ0

|Dℓϕ|dΣ0 <∞.

The corresponding norm is written

‖ϕ‖
Hk =

k∑

ℓ=0

‖Dℓϕ‖
L2
.
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On the manifold Σ0, the covariant derivative operator commutes with the
contraction by the metric tensor: Dαϕ = aαβDβϕ = Dβa

αβϕ. However, the
covariant derivative does not commute with itself. For a given one-form fields uα

on Σ0, we have for instance

DαDβuν − DβDαuν = Rαβδνu
δ (2.17)

where uδ = aδσuσ is the contravariant vector-field corresponding to uα, and
where Rαβδν is the curvature tensor on Σ0 depending only on the metric tensor
aαβ (see for instance [4]).

Theorem 2.3 Let v0 ∈ C∞(Σ0× (−ε, ε)). Under the hypothesis 2, the equation

∂tv(t,y, z) = L(y, z;D)v(t,y, z), v(0) = v0 (2.18)

possesses a unique solution v(t,y, z) ∈ C∞((0,+∞) × Σ0 × (−ε, ε)).
Proof. The result is a consequence of a priori bounds for the solution of (2.18).
Let ( · , ·)L2 denote the L2 product on Σ0. If v is a solution, we can write

1
2∂t‖v‖2

L2
= (L(y, z;D)v, v)L2

= −1
2

∑D
ℓ=1 σ

α
[ℓ](y, z)σ

β
[ℓ](y, z)DαvDβv + (Q(y, z;D)v, v)L2

where Q(y, z;D) is an operator of order 1 on Σ0 depending smoothly on z. This
shows that for constants C, c and b depending on ε, we have

1

2
∂t‖v‖2

L2
≤ −C‖Dv‖2

L2
+ c‖Dv‖

L2
‖v‖

L2
+ b‖v‖2

L2
,

whence
∂t‖v‖2

L2
≤M‖v‖2

L2
,

for a constant M depending on ε. This shows the a priori estimate

‖v‖
L2

≤ etM‖v0‖L2
.

Using (2.17), we obtain similar estimates for the derivatives ∂k
z D

ℓv which satisfy
equations of the form

∂t∂
k
z D

ℓv = L(y, z;D)∂k
z Dℓv +R(y, z;D, ∂z)v

where R is an operator of order k + ℓ− 1 in ∂z and Dα. We hence easily obtain
a priori estimates for these derivatives by induction. The uniqueness is clear, as
the equation (2.18) is linear.

2.3 Invariant measure and exponential convergence

Throughout the rest of this section, we assume moreover that there exists a
smooth function ρ(x) > 0 defined on Ωε such that for all x ∈ Ωε, we have

LTρ = 0. (2.19)
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Note that in the case where ρ ≡ 1 the constant function equals to 1 on Ωε, then
(2.19) expresses that the equation (1.1) preserves the volume. In general, this
hypothesis states that ρ is an invariant measure for (1.1). Indeed, for x ∈ Ωε, let
X(t, x) denote the solution of (1.1) starting at x for t = 0. Using (1.4), we have
X(t, x) ∈ Ωε for all time t ≥ 0. Then for all function ϕ(x) with compact support
in Ωε, we have using the Kolmogorov equation

d

dt

∫

Ωε

E(ϕ(X(t, x))ρ(x) dx = 〈L(xi; ∂i)E(ϕ(X(t, x)), ρ(x)〉L2 (Ωε)

= 〈E(ϕ(X(t, x)), LT (xi; ∂i)ρ(x)〉L2(Ωε)

= 0

where 〈·, ·〉L2(Ωε) denotes the L2 product in Cartesian coordinates on Ωε, and

where LT (xi; ∂i) denotes the adjoint of the operator L(xi; ∂i) given by (1.7) in
Cartesian coordinates. In a normal orthogonal coordinate system (yα, z), the vol-
ume form dx is transformed into the measure

√
|gij(y, z)|dyα ∧ dz where |gij(z)|

denotes the determinant of the metric tensor gij(y, z). Using the equations (2.8)
and (2.9), this measure can be written

1

‖∇H‖ dΣz ∧ dz (2.20)

where dΣz is the volume form
√

|gαβ(y, z)|dyα induced by the Euclidean measure
in R

N on the surface Σz. Hence, we can write for all x = (y, z) ∈ Σ0 × (−ε, ε),

ρ(x) dx = µ(y, z) dΣ0 ∧ dz

where

µ(y, z) =
ρ(y, z)

‖∇H(y, z)‖

√
|gαβ(y, z)|
|gαβ(y, 0)| (2.21)

defines a density function on Σ0 depending smoothly on z. In the sequel, we will
often ignore the dependency in y ∈ Σ0, and write µ(z) for µ(y, z). Shortly, we
can write

ρ(x) dx = dµ(z) ∧ dz

where dµ(z) = µ(z)dΣ0. Note that in the case where ρ ≡ 1, then up to a
multiplication by a constant, the measure dµ(0) is the microcanonical measure
on Σ0 (see (1.12)).

Proposition 2.4 For all (y, z) ∈ Σ0×(−ε, ε), let L(y, z;D)∗ denote the adjoint

of L(y, z;D) with respect to the L2 product on the hypersurface Σ0. Let µ(y, z)
the function defined by (2.21). Then for all (y, z) ∈ Σ0 × (−ε, ε), we have

L(y, z;D)∗µ(y, z) = 0. (2.22)
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Remark 2.5 Before giving the proof, let us notice that the operators L∗ (the
adjoint in L2(Σ0)) and LT (the adjoint in L2(Ωε)) do differ in general.

Proof. Let ϕ be a function defined on Ωε ≃ Σ0× (−ε, ε). Let ρ be the function
satisfying (2.19). We have in Cartesian coordinates

〈ρ, L(xi; ∂i)ϕ〉L2(Ωε) = 〈LT (xi; ∂i)ρ, ϕ〉L2(Ωε) = 0.

Written in orthogonal coordinates (y, z) = (xi), this equation reads
∫

Σ0×(−ε,ε)

(
L(y, z;D)ϕ(y, z)

)
µ(y, z)dΣ0dz = 0.

We take now ψ(y, z) = v(y)χ(z) where v is a function on Σ0 and χ(z) a function
on (−ε, ε). We then have using Theorem 2.2

L(y, z;D)ϕ(y, z) = χ(z)L(y, z;D)v(y).

Ignoring the argument y in the equation, we get
∫ ε

−ε
χ(z)dz

∫

Σ0

µ(z)(L(z;D)v)dΣ0 = 0.

As χ(z) is an arbitrary function of z ∈ (−ε, ε), this implies that for all z ∈ (−ε, ε)
and all v ∈ C∞(Σ0),∫

Σ0

µ(z)(L(z;D)v)dΣ0 =

∫

Σ0

v(L(z;D)∗µ(z))dΣ0 = 0.

This yields the result.

Lemma 2.6 Let v(t,y, z) be a solution of the equation ∂tv = L(y, z;D)v. For

all z ∈ (−ε, ε), and all t ≥ 0, we have that

∂t

∫

Σ0

v(t,y, z)2dµ(y, z) = −
D∑

ℓ=1

∫

Σ0

(
σα

[ℓ](y, z)Dαv(t,y, z)
)2

dµ(y, z). (2.23)

Proof. For all smooth function v defined on Σ0 × (−ε, ε), we have on the
manifold Σ0 × (−ε, ε) (ignoring again the argument y ∈ Σ0),

L(z;D)v2 = 2vfα(z)Dαv +

D∑

ℓ=1

σα
[ℓ](z)Dα(vσβ

[ℓ](z)Dβv)

which implies that

L(z;D)v2 = 2vL(z;D)v +

D∑

ℓ=1

(
σα

[ℓ](z)Dαv
)2
.
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Now if v is a solution of ∂tv = Lv, we have

∂t

∫

Σ0

v2dµ(z) = 2〈vL(z;D)v, µ(z)〉

= 〈L(z;D)v2, µ(z)〉 −
D∑

ℓ=1

∫

Σ0

(
σα

[ℓ](z)Dαv
)2

dµ(z),

and the result follows from L(z;D)∗µ(z) = 0.

In the following, we denote by ‖v‖
µ(z)

the weighted norm

‖v‖2

µ(z)
=

∫

Σ0

v2dµ(z). (2.24)

Note that the norms ‖ · ‖
L2(Σ0)

and ‖ · ‖
µ(0)

are not the same. However, as ρ is

a positive function, Σ0 is compact and z ∈ (−ε, ε), there there exist two positive
constants c and C such that for all z ∈ (−ε, ε),

c ≤ µ(z) ≤ C (2.25)

on Σ0 and hence the norms ‖·‖
L2(Σ0)

and ‖·‖
µ(z)

are in fact equivalent uniformly

in z.

Lemma 2.7 Under the hypothesis 2, there exists a constant λ0 depending on Σ0

and ε such that for all function v(z) ∈ C0((−ε, ε),H1(Σ0)) satisfying

∀ z ∈ (−ε, ε),
∫

Σ0

v(z)dµ(z) = 0, (2.26)

then we have

∀ z ∈ (−ε, ε), λ0‖v(z)‖2

µ(z)
≤

D∑

ℓ=1

‖σα
[ℓ](z)Dαv(z)‖2

µ(z)
. (2.27)

Proof. As Σ0 is a compact manifold, there exists a constant a > 0 such that
for all function ϕ ∈ H1(Σ0) satisfying

〈ϕ〉0 :=

∫

Σ0

ϕdΣ0 = 0, (2.28)

we have the Poincaré-Wirtinger inequality (see [4])

a‖ϕ‖2

L2(Σ0)
≤ ‖Dϕ‖2

L2(Σ0)
.

Using (2.16) and (2.25), we have for all such function ϕ

D∑

ℓ=1

‖σα
[ℓ](z)Dαϕ‖2

µ(z)
≥ Λ‖Dϕ‖2

µ(z)
≥ cΛ‖Dϕ‖2

L2(Σ0)
(2.29)
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and hence using again (2.25), we see that there exists a constant b > 0 such that
for all z ∈ (−ε, ε), and all ϕ satisfying (2.28),

b‖ϕ‖2

µ(z)
≤

D∑

ℓ=1

‖σα
[ℓ](z)Dαϕ‖2

µ(z)
.

Now if v(z) ∈ C0((−ε, ε),H1(Σ0)), satisfies (2.26), we can write for all z ∈ (−ε, ε),

b‖v(z) − 〈v(z)〉0‖2

µ(z)
≤

D∑

ℓ=1

‖σα
[ℓ](z)Dαv(z)‖2

µ(z)
. (2.30)

where 〈v(z)〉0 denotes the average (2.28) of v(z). Let z ∈ (−ε, ε), and assume
that ψ satisfies

∫
Σ0
ψ dµ(z) = 0. We have that

‖ψ‖2

µ(z)
= ‖ψ − 〈ψ〉0 + 〈ψ〉0‖2

µ(z)

= ‖ψ − 〈ψ〉0‖
2

µ(z)
+ 2

∫

Σ0

(ψ − 〈ψ〉0)〈ψ〉0dµ(z) + 〈ψ〉20
∫

Σ0

dµ(z)

= ‖ψ − 〈ψ〉0‖2

µ(z)
− 〈ψ〉20

∫

Σ0

dµ(z) ≤ ‖ψ − 〈ψ〉0‖2

µ(z)
.

Applying this formula to ψ = v(z) and combining with (2.30) then yield the
result with λ0 = b.

Theorem 2.8 Let v(t,y, z) be a solution of the equation ∂tv = Lv with initial

value v0(z) ∈ C∞((−ε, ε) × Σ0). Let µ(z) the function defined in (2.21) and

‖ · ‖
µ(z)

the corresponding weigthed L2 norm. Under the assumption (2.16), for

all z ∈ (−ε, ε), and all t ≥ 0, we have that

‖v(t, z) −
∫
v(0, z)dµ(z)‖

µ(z)
≤ ‖v(0, z) −

∫
v(0, z)dµ(z)‖

µ(z)
exp(−γ0t) (2.31)

where γ0 = λ0/2, λ0 being the constant appearing in (2.27). Moreover, for all

J ∈ N, there exist contants γJ and CJ such that for all z ∈ (−ε, ε),

‖DJv(t, z)‖
µ(z)

≤ CJ exp(−γJ t) (2.32)

Proof. We have using (2.22)

∂t

∫

Σ0

v(t, z)dµ(z) = (L(z;D)v(t, z), µ(z))L2 = (v(t, z), L(z;D)∗µ(z))L2 = 0.

This shows that the average of v(t, z) with respect to the measure dµ(z) is con-
stant with respect to t. Now we easily see that L(z;D)1 = 0. Hence the function
w(t, z) = v(t, z) −

∫
v(t, z)dµ(z) satisfies the equation ∂tw = L(z;D)w. The

equation (2.31) is then an easy consequence of the two previous Lemmas.
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To prove (2.32), let us consider first the case where J = 1.
From Lemma 2.6 and (2.16), we have

∂t‖w(t, z)‖2

µ(z)
≤ −Λ‖Dw(t, z)‖2

µ(z)
.

Multiplying this equation by eδt with δ > 0 and integrating from 0 to T , we
obtain ∫ T

0
eδt∂t‖w(t, z)‖2

µ(z)
dt+ Λ

∫ T

0
eδt‖Dw(t, z)‖2

µ(z)
dt ≤ 0.

After integration by part, this shows that

eδT ‖w(T, z)‖2

µ(z)
+ Λ

∫ T

0
eδt‖Dw(t, z)‖2

µ(z)
dt

≤ ‖w(0, z)‖2

µ(z)
+ δ

∫ T

0
eδt‖w(t, z)‖2

µ(z)
dt.

Using (2.31) and taking δ < γ0 shows that there exists a constant M such that
for all z ∈ (−ε, ε), ∫ ∞

0
eδt‖Dw(t, z)‖2

µ(z)
dt ≤M. (2.33)

It is clear that the operator L(z;D) acts on tensor fields, and we have

DαL(z;D)w = L(z;D)(Dαw) + [Dα, L(z;D)]w

where [Dα, L(z;D)] is an operator of order 1 on Σ0 depending smoothly on z,
and involving the curvature tensor on Σ0 (see (2.17)). Hence Dαw(t, v) satisfies
the equation

∂tDαw = L(z;D)(Dαw) + [Dα, L(z;D)]w.

Computations similar to those made in Lemma 2.6 show that there exist positive
constants c1, c2 and c3 independent on z such that

∂t‖Dw(t, z)‖2

µ(z)
≤ −c1‖D2w(t, z)‖2

µ(z)
+ c2‖Dw(t, z)‖2

µ(z)
+ c3‖w(t, z)‖2

µ(z)
.

Multiplying by eγ1t with 0 < γ1 < δ and integrating from 0 to T yields

∫ T

0
eγ1t∂t‖Dw(t, z)‖2

µ(z)
dt+ c1

∫ T

0
eγ1t‖D2w(t, z)‖2

µ(z)
dt

≤ c2

∫ T

0
eγ1t‖Dw(t, z)‖2

µ(z)
dt+ c3

∫ T

0
eγ1t‖w(t, z)‖2

µ(z)
dt ≤ C0 (2.34)

for some constant C0 independent of T and z, where we used (2.33), (2.31) and
the fact that γ1 < δ < γ0. We thus have

eγ1T ‖Dw(T, z)‖2

µ(z)
≤ C0 + ‖Dw(0, z)‖2

µ(z)
+ γ1

∫ T

0
eγ1t‖Dw(t, z)‖2

µ(z)
dt
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and using again (2.33) we conclude that

‖Dw(T, z)‖2

µ(z)
≤ C1 exp(−γ1T )

for a positive constant C1 independent of T and z. This shows (2.32) for J = 1,
as Dv = Dw. Moreover, we derive from (2.34) that

∫ ∞

0
eγ1t‖D2w(t, z)‖2

µ(z)
dt ≤ C0.

The result is then easily shown by induction using computations similar to the
previous ones, with the fact that for all J ∈ N,

DJL(z;D) = L(z;D)DJ + [DJ , L(z;D)]

where [DJ , L(z;D)] is an operator of order J − 1 on Σ0 and depending smoothly
on z.

As Σ0 is a compact manifold, using (2.25) and Sobolev embedding Theorems
(see [4]) we immediately get the following result:

Corollary 2.9 Let v(t,y, z) be a solution of the equation ∂tv = Lv with initial

value v0(y, z) ∈ C∞(Σ0 × (−ε, ε)). Under the assumption (2.16), for all J ∈ N,

there exists constants νJ and MJ depending only on Σ0 and ε such that for all

(y, z) ∈ Σ0 × (−ε, ε), and all t ≥ 0,

|DJv(t,y, z)| ≤MJ exp(−νJ t) (2.35)

Remark 2.10 The previous result give uniform bounds with respect to z ∈
(−ε, ε). This fact is not necessary for the analysis of the properties of the projected

numerical schemes defined below, which requires only the previous estimates on
the manifold Σ0. However, we believe that these uniform bounds should be
necessary to understand the good behaviour of non projected schemes, see for
instance [16].

3 Numerical analysis

We now consider the discretisation of the stochastic differential equation (1.1).
Following [20], we define the sequence

{U [ℓ]
p , ℓ = 1, . . . ,D, p ∈ N}

of i.i.d. random variables satisfying the following conditions

∀p ∈ N, ∀ℓ = 1, . . . ,D, E(U [ℓ]
p )m =

{
0 if m = 1, 3 or 5

1 if m = 2
(3.1)
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and the condition

E(U [ℓ]
p )4 <∞ and E(U [ℓ]

p )6 <∞.

Notice that these last two conditions are in particular satisfied if |U [ℓ]
p | ≤ C a.s.

for a constant C independent of p and ℓ. Examples of such family of random
variables can be found in [20].

Let X0 ∈ Σ0 and a time step h ≤ h0. We assume that we can define a family
{Xp} of random variables satisfying the following conditions:

(C1) ∀ p ∈ N, Xp ∈ Σ0

(C2) Let Xp(θ) = Xp + θ(Xp+1 −Xp), θ ∈ (0, 1). Then

∀p ∈ N, ∀θ ∈ (0, 1), |H(Xp(θ))| < ε.

(C3) In Cartesian coordinates we have

Xi
p+1 = Xi

p +
√
h

D∑

ℓ=1

σi
[ℓ](Xp)U

[ℓ]
p

+ h
(
f i(Xp) +

1

2

D∑

ℓ=1

σj
[ℓ](Xp)∂jσ

i
[ℓ](Xp)

)

+ hwi
p + h3/2ri

p + h2si
p

where for all p, if Fp denotes the σ-algebra generated by the family {X0, . . . ,Xp},
we assume that wi

p, r
i
p and si

p are Fp measurable, and satisfy

• wi
p is a even polynomial in (U

[1]
p , . . . , U

[D]
p ) of degree less than 2 with coef-

ficients depending on Xp, and such that E (wi
p|Xp) = 0.

• ri
p is a odd polynomial in (U

[1]
p , . . . , U

[D]
p ) of degree less than 3 with coeffi-

cients depending on Xp, and such that E (ri
p|Xp) = 0.

• E(|si
p||Xp) < R,

where R does not depend on p ∈ N and on h ≤ h0.
The condition (C1) will be fulfilled for projection schemes in general, while

the condition (C2) is equivalent to the fact that the corresponding piecewise
trajectory lies in the neighbourhood Ωε of Σ0: It will be fulfilled for h sufficiently

small in the case where the random variables U
[ℓ]
p are uniformly a.s. bounded.

The condition (C3) expresses the fact that the scheme is consistent with (1.1).
Note that this condition implies in particular that for a given ℓ ∈ {1, . . . ,D}, we
have using (3.1)

E (wi
pU

[ℓ]
p |Xp) = 0. (3.2)

Note moreover, that the first three terms in the expression of Xp+1−Xp define a
vector in Ωε attached to the point Xp ∈ Σ0. Using (2.10), (2.12) and (2.14), the
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fact that σz
[ℓ] = f z = 0 and the fact that Λβ

ασ(y, 0) = 0, we see that in orthogonal
coordinate system, the tangential part of this vector is

(Xp+1 −Xp)
α =

√
h

D∑

ℓ=1

σα
[ℓ]U

[ℓ]
p + h

(
fα +

1

2

D∑

ℓ=1

σβ
[ℓ]Dβσ

α
[ℓ]

)
∈ TXpΣ0 (3.3)

while its normal part is

(Xp+1 −Xp)
z =

h

2

D∑

ℓ=1

Γz
αβσ

β
[ℓ]σ

α
[ℓ] ∈ TXpΣ

⊥
0 (3.4)

where all the functions are evaluated in Xp (for which we have z = 0).

3.1 Convergence result

Lemma 3.1 Let v be a function defined on Σ0. Then we have

∀ p ∈ N, E(v(Xp+1) − v(Xp)|Xp) = hL(Xp;D)v(Xp) + h2ξp (3.5)

with

E|ξp| ≤ C sup
J=1,...4

‖DJv‖
L∞(Σ0)

where C does not depend on p and of h ≤ h0.

Proof. With the notation of (C3), the curve

(0, 1) ∋ θ 7→ αp(θ) = F−H(Xp(θ))(Xp(θ))

is a well-defined curve on Σ0 such that αp(0) = Xp and αp(1) = Xp+1 . We can
write

v(Xp+1) − v(Xp) =

∫ 1

0

d

dθ
v(αp(θ))dθ

whence

v(Xp+1) − v(Xp) =
d

dθ
v(αp(θ))|θ=0 +

1

2

d2

dθ2
v(αp(θ))|θ=0 +

1

6

d3

dθ3
v(αp(θ))|θ=0

+
1

24

∫ 1

0
(1 − θ)3

d4

dθ4
v(αp(θ))dθ. (3.6)

We can decompose the application θ 7→ v(αp(θ)) as

v(αp(θ)) = v ◦ Π ◦Xp(θ)

where Π : Ωε → Σ0 is defined as Π(x) = F−H(x)(x). Let us denote by (dΠ)αi (x)
the jacobian matrix of Π acting from TxΩε to TΠ(x)Σ0, and similarly, (d2Π)αij
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and (d3Π)αijk the second and third differential of Π. Here, the greek indices are
(N − 1)-dimensional, while the roman indices are N -dimensional.
We have

d

dθ
v(αp(θ)) = Dαv(Π ◦Xp(θ))(dΠ)αi (Xp(θ))(Xp+1 −Xp)

i.

For θ = 0, this yields

d

dθ
v(αp(θ))|θ=0 = Dαv(Xp)(dΠ)αi (Xp)(Xp+1 −Xp)

i.

In a normal coordinate system, the application Π simply reads (y, z) 7→ y, and
thus its restriction to Σ0 is the identity. Hence, if T is a tangent vector to Σ0

viewed as vector in R
N , we have as Xp ∈ Σ0,

(dΠ)αi (Xp)T
i = Tα

where Tα denote the components of T in a local basis of TXpΣ0. Using 3.3 we
have

(dΠ)αi (Xp)(Xp+1−Xp)
i =

√
h

D∑

ℓ=1

σα
[ℓ](Xp)U

[ℓ]
p

+ h
(
fα(Xp) +

1

2

D∑

ℓ=1

σβ
[k](Xp)Dβσ

α
[ℓ](Xp)

)

+ h(dΠ)αi (Xp)w
i
p + h3/2(dΠ)αi (Xp)r

i
p + h2(dΠ)αi (Xp)s

i
p.

Denoting the conditional expectation E( · |Xp) by E
Xp, this implies that

E
Xp

d

dθ
v(αp(θ))|θ=0 = h

(
fα +

1

2

D∑

ℓ=1

σβ
[ℓ]Dβσ

α
[ℓ]

)
Dαv + h2ξ(1)p

where all the functions are evaluated in Xp, and where

E|ξ(1)p | ≤ R‖Dv‖
L∞

.

For the second derivative, we have

d2

dθ2
v(αp(θ)) = Dαv(Π ◦Xp(θ))(d

2Π)αij(Xp(θ))(Xp+1 −Xp)
i(Xp+1 −Xp)

j

+DβDαv(Π◦Xp(θ))
[
(dΠ)αi (Xp(θ))(Xp+1−Xp)

i
][

(dΠ)βj (Xp(θ))(Xp+1−Xp)
j
]
.

(3.7)

Let T be a vector in R
N . In an orthogonal coordinate system around Xp, let Tα

be its components in TXpΣ0, and T z its components along the normal to TXpΣ0
.

We have

(d2Π)αij(Xp)T
iT j = (d2Π)ασβ(Xp)T

σT β +2(d2Π)αβz(Xp)T
βT z+(d2Π)αzz(Xp)T

zT z.
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But as the restriction of Π to Σ0 is the identity, we have (d2Π)ασβ(Xp)T
σT β = 0.

Using (C3), (3.3), (3.4) and (3.2) we easily see that

|EXp(Xp+1 −Xp)
β(Xp+1 −Xp)

z| ≤ Ch2

for a constant C independent of p.
Hence, using the fact that E

Xp |(Xp+1 −Xp)
z| = O(h) we get

E
Xp |(d2Π)αij(Xp)(Xp+1 −Xp)

i(Xp+1 −Xp)
j | ≤ Ch2

for a constant C independent of p.
Similarly we have for the second part of (3.7), for θ = 0,

E
XpDβDαv(Xp)(Xp+1 −Xp)

α(Xp+1 −Xp)
β

=

D∑

ℓ=1

σβ
[ℓ](Xp)σ

α
[ℓ](Xp)DβDαv(Xp) + O(h2).

This implies that

E
Xp

d2

dθ2
v(αp(θ))|θ=0 =

D∑

ℓ=1

σβ
[ℓ]σ

α
[ℓ]DβDαv + h2ξ(2)p

where the functions are evaluated in Xp, and with

E|ξ(2)p | ≤ C sup
J=1,2

‖DJv‖
L∞

.

Differentiating again the function v(αp(θ)), we can see by similar computations
that

E
Xp

∣∣∣
d3

dθ3
v(αp(θ))|θ=0

∣∣∣ ≤ Ch2 sup
J=1,2,3

‖DJv‖
L∞

and that for all θ ∈ (0, 1),

E
Xp

∣∣∣
d4

dθ4
v(αp(θ))

∣∣∣ ≤ Ch2 sup
J=1,...,4

‖DJv‖
L∞

.

Collecting together the previous formulas, we get

E(v(Xp+1 −Xp|Xp) =

h
(
fαDαv +

1

2

D∑

ℓ=1

(σβ
[ℓ]Dβσ

α
[ℓ])(Dαv) +

1

2

D∑

ℓ=1

σβ
[ℓ]σ

α
[ℓ]DβDαv

)
+ h2ξp

where ξp satisfies the estimate of the Lemma. This yields the result.

Theorem 3.2 Under the hypothesis 2, let X(t) be the solution of (1.1) starting

at x0 ∈ Σ0, and let (Xp)p∈N be a family of random variables satisfying (C1) −
(C3) for h ≤ h0 and such that X0 = x0. Let g be a smooth function defined on
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Σ0 and let tp = ph for p ∈ N. Then we have for h0 sufficiently small and T > 0,

∀ tp ≤ T,
∣∣∣E g(Xp) − E g(X(tp))

∣∣∣ ≤ C(T )h (3.8)

where C(T ) depends on T and h0.

Proof. Let u(t, x) be the solution of the equation ∂tu = Lu on Ωε with the
initial condition u0(y, z) = g(y) written in an orthogonal coordinate system (see
Theorem 2.3). Following [22], we write

g(Xp) = u(0,Xp)

= u(tp, x0) +

p−1∑

i=0

u(ti,Xp−i) − u(ti,Xp−i−1)

+

p−1∑

i=0

u(ti,Xp−i−1) − u(ti+1,Xp−i−1)

Hence we have

E g(Xp) − E g(X(tp)) =

p−1∑

i=0

E(E(u(ti,Xp−i) − u(ti,Xp−i−1)|Xp−i−1))

+

p−1∑

i=0

E(E(u(ti,Xp−i−1) − u(ti+1,Xp−i−1)|Xp−i−1))

Using the previous lemma, we have

E(u(ti,Xp−i) − u(ti,Xp−i−1)|Xp−i−1) = hL(Xp−i−1;D)u(ti,Xp−i−1) + h2ξp,i

with
E|ξp,i| ≤ C sup

J=1,...,4
‖DJu(ti, ·)‖L∞(Σ0)

. (3.9)

Now using Taylor expansion, we easily get

u(ti,Xp−i−1) − u(ti+1,Xp−i−1) = −hL(Xp−i−1;D)u(ti,Xp−i−1)

− 1

2

∫ h

0
(h− s)L(Xp−i−1;D)2u(ti + s,Xp−i−1)ds.

But as L is an operator of order 2 in D, we have

E(L(Xp−i−1;D)2u(ti + s,Xp−i−1)|Xp−i−1) ≤ C sup
J=1,...,4

‖DJu(ti + s, ·)‖
L∞(Σ0)

(3.10)
for some constant C independent of p ∈ N and i ∈ N. Collecting together the
previous results, we see that

E g(Xp) − E g(X(tp)) = h2
p−1∑

i=0

ζp,i
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where |ζp,i| ≤ C supJ=1,...,4 ‖DJu(ti, ·)‖L∞(Σ0)
and this yields the result.

3.2 The ergodic case.

In this subsection, we assume that the hypothesis (2.19) is satisfied. We as-
sume moreover that the family of random variables {Xp} satisfies the additional
hypothesis

(C4) For all x0 ∈ Σ0, and for all open set W ⊂ Σ0 then

if X0 = x0 P(∃ p ∈ N |Xp ∈ W) > 0.

As Σ0 is compact, this hypothesis ensures that the process {Xp} possesses a
unique invariant probability measure µh for which it is ergodic: For all bounded
function g on Σ0,

lim
N→∞

1

N

N∑

p=1

g(Xp) =

∫

Σ0

g dµh a.s. (3.11)

The following result refines the preceding convergence theorem. It shows
that under the hypothesis (2.19) the constant in the convergence estimate (3.8)
is uniform in T :

Lemma 3.3 Under the hypothesis 2 and (2.19), let X(t) be the solution of (1.1)
starting at x0 ∈ Σ0, and let (Xp)p∈N be a family of random variables satisfying

(C1) − (C3) for h ≤ h0 and such that X0 = x0. Let g be a smooth function

defined on Σ0 and let tp = ph for p ∈ N. Then we have for h0 sufficiently small,

∀ p ∈ N,
∣∣∣E g(Xp) − E g(X(tp))

∣∣∣ ≤ Ch

where C does not depend on p and h ≤ h0.

Proof. The proof is similar to the proof of Theorem 3.2. The changes are
the following: Eqn. (3.9) together with (2.35) imply that there exists positive
constants γ and M independent of h ≤ h0, such that for all p ∈ N and i ∈ N,

E|ξp,i| ≤M exp(−γti).
Using the same estimates in (3.10), we see that

E g(Xp) − E g(X(tp)) = h2
p−1∑

i=0

ζp,i

where
|ζp,i| ≤M exp(−γti)
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after possible change of the constant M which does not depend on p, i and
h ≤ h0. Hence we have

E g(Xp) − E g(X(tp)) ≤ Mh2
∞∑

i=0

exp(−γti)

= Mh2
∞∑

i=0

exp(−γh)i

= Mh2 1

1 − exp(−γh)
≤ Ch

for some constant C independent of p, and h ≤ h0 sufficiently small. This shows
the result.

Theorem 3.4 Under the hypothesis 2 and (2.19), (C1) − (C4), let µh be the

invariant measure on Σ0 of the process {Xp} for h ≤ h0. Let g be a smooth

function defined on Σ0 and let tp = ph for p ∈ N. Then there exists a constant

C such that ∣∣∣∣

∫

Σ0

g dµh −
∫

Σ0

g dν(0)

∣∣∣∣ ≤ Ch

where dν(0) is the probability measure

(∫

Σ0

µ(y, 0)dΣ0

)−1

µ(y, 0)dΣ0

on Σ0 with µ(y, 0) defined by (2.21).

Proof. Using Lemma 3.3, we have
∣∣∣∣∣∣
E

1

N

N∑

p=0

g(Xp) − E
1

N

N∑

p=0

g(X(tp))

∣∣∣∣∣∣
≤ Ch. (3.12)

Now, using the hypothesis 2 and (2.19), we have

lim
N→∞

1

N

N∑

p=0

g(X(tp)) =

∫

Σ0

g dν(0) a.s.

Hence, taking the limit N → ∞ in (3.12) yields the result.

4 Applications

In this Section, we give two classes of SDE of the form (1.1) satisfying the hy-
pothesis (1.3), (2.19) with ρ = 1, and (2.16). We then give example of numerical
schemes in both these cases, and show numerical results.
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4.1 Two examples of conservative SDEs

4.1.1 Stochastic shakers

In the spirit of [10], we introduce the following SDE, constructed as Hamiltonian
system with stochastic time dependent symplectic matrices.

Let (G[ℓ])1≤ℓ≤N(N−1)/2 be the set of N×N skew symmetric matrices with co-

efficients satisfying Gij
[ℓ] = 0 for all (i, j) ∈ {1, . . . ,N}2 \ {(i(ℓ), j(ℓ)), (j(ℓ), i(ℓ))},

and G
i(ℓ),j(ℓ)
[ℓ] = −Gj(ℓ),i(ℓ)

[ℓ] = 1, where the indices (i(ℓ), j(ℓ)) are such that
⋃N(N−1)/2

ℓ=1 (i(ℓ), j(ℓ)) =
⋃

1≤i<j≤N(i, j). The set of matrices (G[ℓ])1≤ℓ≤N(N−1)/2 is
a basis of the space of (real) skew symmetric matrices. In the case N = 3, we can
choose, for instance, (i(1), j(1)) = (1, 2), (i(2), j(2)) = (1, 3) and (i(3), j(3)) =
(2, 3), which corresponds to

G1 =




0 1 0
−1 0 0
0 0 0



 , G2 =




0 0 1
0 0 0
−1 0 0



 , and G3 =




0 0 0
0 0 1
0 −1 0



 .

We consider stochastic differential equations of the form

dXi(t) = J ik∂kH(X(t))dt+

D∑

ℓ=1

Gik
[ℓ]∂kH(X(t)) ◦ dW[ℓ](t) (4.1)

where J is a N × N skew symmetric matrix and D = N(N − 1)/2. This SDE
is of the form (1.1), with f i(x) a Hamiltonian deterministic vector field, and
σi

[ℓ](x) = Gik
[ℓ]∂kH(x). The skew-symmetry of the matrices J and G[ℓ] implies

that the condition (1.3) is satisfied.
Moreover, it is easy to verify that this system satisfies the condition (1.9),

and hence (2.19) with ρ = 1 and thus is volume preserving.
The following result shows that the condition (2.16) is fulfilled for the equation

(4.1):

Lemma 4.1 Assume that the hypothesis 1 is satisfied. Then there exists a con-

stant c > 0 and ε > 0, such that, for all z ∈ (−ε, ε), x ∈ Σz, and ξ = (ξi)
N
i=1 ∈

TxΣz, we have

D∑

ℓ=1




N∑

i,k=1

ξiG
ki
[ℓ]∂kH(x)




2

≥ c

N∑

i=1

|ξi|2. (4.2)

Proof. By the definition of the set of matrices (G[ℓ])1≤ℓ≤N(N−1)/2, the sum in
Equation (4.2) can be written

∑

1≤i<k≤N

(
ξi∂kH − ξk∂iH

)2
.
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Let us denote by nk the k-th component of ∇H/‖∇H‖ , i.e. nk = ∂kH/‖∇H‖ .
We have

∑

1≤i<k≤N

(
ξink − ξkni

)2
=

∑

1≤i<k≤N

ξ2i n
2
k + ξ2kn

2
i − 2ξinkξkni

=
∑

k 6=i

ξ2i n
2
k − 2

∑

1≤i<k≤N

ξinkξkni.

Writing
∑

k 6=i

ξ2i n
2
k =

N∑

k=1

ξ2k
∑

i6=k

n2
i

and using the fact that
∑

k n
2
k = 1, we find that

∑

1≤i<k≤N

(
ξink − ξkni

)2
=

N∑

k=1

ξ2k(1 − n2
k) − 2

∑

1≤i<k≤N

ξinkξkni

=
N∑

k=1

ξ2k −
N∑

k=1

ξ2kn
2
k − 2

∑

1≤i<k≤N

ξinkξkni

= ‖ξ‖2 −
(

N∑

k=1

ξknk

)2

.

Now if ξ ∈ TxΣz we have by definition
∑

k

ξk∂kH = 0.

Gathering these results together, we find that
∑

1≤i<k≤N

(
ξi∂kH − ξk∂iH

)2
= ‖∇H‖2 ‖ξ‖2

and this yields the result with

c = min
z∈(−ε,ε)

min
x∈Σz

‖∇H(x)‖ ,

which is positive under the hypothesis 1, for sufficiently small ε.

4.1.2 Projected gradient dynamics

We would like now to introduce another dynamics ergodic with respect to the
microcanonical measure (see [7]).

For any point x ∈ R
N , let us define the orthogonal projector on TxΣH(x):

P (x) = Id − ∇H ⊗∇H
‖∇H‖2 (x). (4.3)

27



In Cartesian coordinates, its components are written

P i
j = δi

j +
(∇iH)(∇jH)

‖∇H‖ .

Let us now consider the following SDE:

dXi(t) = −P i
j (X(t))∇j

(
g ◦H + ln ‖∇H‖

)
(X(t)) dt +

√
2P i

j (X(t)) ◦ dW j(t)

(4.4)
where Xi(t) ∈ R

N , W i(t) is a N -dimensional Brownian motion, and g : R → R

denotes any smooth function. This SDE is of the form (1.1) with σ(x) =
√

2P (x),
and f(x) = −P (x)∇(g(H(x)) + ln ‖∇H(x)‖). Using the definition of P (x), it is
clear that (1.3) is satisfied.

Let us introduce the function V defined by:

V (x) =
(
g ◦H + ln ‖∇H‖

)
(x). (4.5)

The fact that (2.19) is satisfied for ρ = 1 is equivalent to the equation1

−∇iP
i
j∇jV + ∇iP

i
ℓ∇jP ℓ

j = 0. (4.6)

But we have (see Lemma A.1 in [7] for the first equality)

P i
ℓ∇jP ℓ

j = −P i
ℓ∇ℓ ln ‖∇H‖

= −P i
ℓ∇ℓV,

and hence the equation (4.6) is sastisfied.
Finally, the equation (4.4) satisfies (2.16): We have for all x ∈ Σz, for all

ξ ∈ TxΣz
N∑

j=1

(
ξiP

i
j

)2
=

N∑

j=1

ξ2j ,

which shows (2.16) with Λ = 1/2.

Remark 4.2 More generally (see [7]), using such projected SDE, it is possible
to sample any measure of the form exp(−βV )|∇ξ|−1dSz where V : R

N → R is
an energy, ξ : R

N → R is a reaction coordinate and Sz = {x ∈ R
N |ξ(x) = z}.

One needs to consider the solution X(t) of the SDE

dXi(t) = −P i
j (X(t))∇jV (X(t)) dt+

√
2β−1P i

j (X(t)) ◦ dW j(t)

1Recall that in Cartesian coordinates we have ∇iH = ∇iH = ∂iH , and similarly for the compo-
nents of the projection operator P i

j = P ij = P j

i
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where P (x) is the projector

P (x) = Id − ∇ξ ⊗∇ξ
‖∇ξ‖2 (x).

4.2 Numerical schemes

We now give examples of schemes corresponding to both the previous systems of
SDE.

4.2.1 Methods for stochastic shakers.

A general method for constructing schemes adapted to (4.1) is the following: For

each discrete time step tp = ph, draw a symplectic matrice (hJ +
√
hG[ℓ]U

[ℓ]
p ),

where U
[ℓ]
p satisfies the hypothesis of Section 3, and then apply any energy pre-

serving method to the deterministic system associated with this matrice. In order
to be consistent with the SDE, the scheme has to be of order 2 which will be
automatically the case if the method is symmetric. For instance, the following
two schemes can be considered:

1. Symmetric projection. This is the scheme defined as follows: Assume that
Xp ∈ Σ0, and define Xp+1 by

X̃p = Xp + ∇H(Xp)
Tµ,

X̃p+1 = X̃p + (hJ +G[ℓ]U
[ℓ]
p )∇H

(X̃p + X̃p+1

2

)
,

Xp+1 = X̃p+1 + ∇H(Xp+1)
Tµ,

(4.7)

where µ is chosen such that Xp+1 ∈ Σ0 (see [14]).

2. Symmetric discrete gradient. This is the scheme defined by

Xp+1 = Xp + (hJ +G[ℓ]U
[ℓ]
p )∇H(Xp,Xp+1), (4.8)

where ∇H(ŷ, y) is a function satisfying:

∇H(ŷ, y)T (ŷ − y) = H(ŷ) −H(y),

∇H(y, y) = ∇H(y).

With these properties, we can easily prove that H(Xp+1) = H(Xp). We can take
for instance

∇H(ŷ, y) = ∇H(y) +
H(ŷ) −H(y) −∇H(y)T ∆y

‖∆y‖2 ∆y
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with y = 1
2(ŷ + y) and ∆y = ŷ − y. This scheme, named midpoint discrete

gradient was introduced by Gonzalez [12].
It can be checked that these schemes satisfy the hypothesis (C1) to (C4) for

h sufficiently small provided the random variables U
[ℓ]
p are a.s. bounded.

4.2.2 Projected gradient dynamics schemes.

For the discretization of the SDE (4.4), we note that it can be rewritten in the
following form:

dX(t) = −∇V (X(t)) dt+
√

2dW (t) + ∇H(X(t))dΛ(t), (4.9)

where Λ(t) is a real valued process, which can be interpreted as the Lagrange
multiplier associated with the constraint H(X(t)) = H(X0). This process can
be decomposed into two parts:

dΛ(t) = dΛm(t) + dΛf(t). (4.10)

The martingale part Λm(t) is

dΛm(t) = −
√

2
∇H

‖∇H‖2 (X(t)) · dW (t), (4.11)

where · implicitly denotes the Itô product. The bounded variation part Λf(t) is

dΛf(t) =
∇H

‖∇H‖2 (X(t)) · ∇V (X(t)) dt+
∇H

‖∇H‖2 (X(t)) · Γ(X(t)) dt, (4.12)

where Γ(x) denotes the mean curvature vector to ΣH(x) at point x:

Γ = −∇ ·
(

∇H
‖∇H‖

)
∇H

‖∇H‖ . (4.13)

We can now consider two discretizations of (4.4) which can be shown to be
consistent (see [7, 15]). The first one is:

{
Xn+1 = Xn −∇V (Xn)h+

√
2hUn + ∆Λn+1 ∇H(Xn+1),

where ∆Λn+1 is such that H(Xn+1) = H0,
(4.14)

where h is the time step and Un is a 3N -dimensional standard Gaussian random
vector satisfying the hypothesis in the beginning of Section 3. Notice that (4.14)
admits a natural variational interpretation, since Xn+1 can be seen as the closest
point on the submanifold Σz to the predicted positionXn−∇V (Xn)∆t+

√
2hUn.
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The real ∆Λn+1 is then the Lagrange multiplier associated with the constraint
H(Xn+1) = H0.

Another possible discretization of (4.4) is

{
Xn+1 = Xn −∇V (Xn)h+

√
2hUn + ∆Λn+1 ∇H(Xn),

where ∆Λn+1 is such that H(Xn+1) = H0.
(4.15)

Although this scheme is not naturally associated with a variational principle, it
may be more practical since its formulation is more explicit.

It can be checked that these schemes satisfy the hypothesis (C1) to (C4) for
h sufficiently small provided the random variables Un are a.s. bounded.

These numerical schemes for constrained Brownian dynamics are in the spirit
of the so-called RATTLE [3] and SHAKE [19] algorithms classicaly used for con-
strained Hamiltonian dynamics, and also related with the algorithms proposed
in [23, 2, 18].

4.3 Numerical results

We cconsider the following hamiltonian in dimension N = 4:

H(x1, x2, x3, x4) =
1

2
(x2

1 + x2
2) + V (x3, x4) (4.16)

where
V (x3, x4) = (x2

3 − 1)2 + (x4 + x2
3 − 1)2.

We are interesting in computing the averages of the following eight observables
(x3, x

2
3, x

4
3, x4, x

2
4, x

2
1, x

2
2, V (x3, x4)) with respect to the NVE measure (1.6). To

this aim, we simulate approximations Xp, p ≥ 1 of the previous systems, and
compute the time average (3.11) for sufficiently large N .

The hamiltonian (4.16) represents a particle in dimension 2, with momentum
(px, py) = (x1, x2) and position (qx, qy) = (x3, x4) in the double-well potential
V . It is possible to calculate analytically the exact averages of the observables
mentionned above. We refer to Section 3.4 in [6].

In Table 1 and 2, we show the result for the method (4.8). The initial con-
ditions are such that x1 = 0.5, x2 = −0.5, x3 = −1 and x4 = 0.5, so that the
initial energy level is H = 0.5. The 95% confidence interval is obtained with 30
independent runs. The time step is h, and the number of points in the trajectory
is represented by the number N .
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Observables Exact Approx. h = 1.10−3, N = 5.105

x3 -0.94459 -0.94580 [-0.94651 ,-0.94509]
x2

3 0.92843 0.93064 [ 0.92930, 0.93196]
x4

3 0.98964 0.9937 [ 0.99110 , 0.99625]
x4 0.07156 0.07075 [0.06825 , 0.07326]
x2

4 0.25517 0.25470 [0.25392 , 0.25548]
x2

1 0.24482 0.24496 [0.24432 , 0.24560]
x2

2 0.24482 0.24528 [0.24465 , 0.24591]
V (x3, x4) 0.25517 0.25488 [ 0.25453 , 0.25522]

Table 1: midpoint discrete gradient algorithm

Observables Exact Approx. h = 5.10−4, N = 106

x3 -0.94459 -0.94458 [-0.94511, -0.94404]
x2

3 0.92843 0.92850 [0.92750, 0.92950]
x4

3 0.98964 0.99009 [ 0.98814, 0.99203]
x4 0.07156 0.07201 [ 0.07011, 0.07391]
x2

4 0.25517 0.25550 [0.25476, 0.25625]
x2

1 0.24482 0.24444 [0.24389, 0.24500]
x2

2 0.24482 0.24448 [0.24384, 0.24512]
V (x3, x4) 0.25517 0.25554 [ 0.25517, 0.25591]

Table 2: midpoint discrete gradient algorithm

In Tables 3, we give the results obtained with a slight modification of the
dynamics (4.14), namely:






Xn+1 = Xn −∇V (Xn)h+
√

2hUn

+ ∇V ·∇H

‖∇H‖
2 ∇H(Xn) −

√
2hUn·∇H

‖∇H‖
2 ∇H(Xn) + ∆Λn+1 ∇H(Xn+1),

where ∆Λn+1 is such that H(Xn+1) = H0,
(4.17)

The two additional terms are easy to compute, do not modify the consistency of
the scheme, and improve the convergence in the projection step. In practice, we
use an Uzawa algorithm to perform the projection step. The initial values are
the same as in the previous section

Observables Exact Approx h = 5.10−4, N = 106

x3 -0.94459 -0.94094 [-0.94288, -0.93900]
x2

3 0.92843 0.92051 [0.91688 0.92414]
x4

3 0.98964 0.97029 [0.96342 0.97715]
x4 0.07156 0.07372 [0.06666, 0.00808]
x2

4 0.25517 0.26230 [0.26071, 0.26390]
x2

1 0.24482 0.25074 [0.24910, 0.25238]
x2

2 0.24482 0.25223 [0.25074, 0.25372]
V (x3, x4) 0.25517 0.24851 [0.24766, 0.24936]
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Table 3: projected gradient algorithm
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[9] E. Faou. Elasticity on a thin shell: Formal series solution. Asymptotic

Analysis, 31:317–361, 2002.
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