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Abstract

We present a general criteria to prove that a probability measure satisfies a log-
arithmic Sobolev inequality, knowing that some of its marginals and associated
conditional laws satisfy a logarithmic Sobolev inequality. This is a generalization of
a result by N. Grunewald et al. [5].

1 Motivation and notation

The motivation behind this work is molecular dynamics (in the canonical
statistical ensemble), and more precisely, (i) the analysis of numerical methods
for the computation of free energy differences [7] and (ii) the derivation of
effective dynamics on coarse-grained variables [6]. In both cases, it appears
that estimates based on entropies for measures related to the Boltzmann-
Gibbs measure is a useful tool. One important question is the following: what
is the link between the logarithmic Sobolev inequality (LSI) constant of the
Boltzmann-Gibbs measure for the original variables (microscopic level) and
the LSI constant of the Boltzmann-Gibbs measure for some coarse-grained
variables (macroscopic level). The aim of this work is to give an answer, which
is a generalization to non-linear coarse-graining operators of results in [8,5].

Let D be a domain of Rn representing the configuration space of the system
under consideration, and V : D → R a potential, associating to each configu-
ration an energy. Let us consider a function (representing the coarse-grained
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variables, also called the reaction coordinates)

ξ : D →M,

with M ⊂ Rp (and 1 ≤ p < n). Let us introduce the Gram matrix G : D →
Rp×p of the derivative ∇ξ : D → Rp×n: G = ∇ξ∇ξT , i.e., componentwise,
∀α, β ∈ {1, . . . , p},

Gα,β = ∇ξα · ∇ξβ. (1)

We suppose that ξ is such that

[H1] ξ is a smooth function such that detG 6= 0 on D.

The submanifolds
Σz = {x ∈ D, ξ(x) = z}

are then smooth submanifolds of D of codimension p. We denote by σΣz

the surface measure on Σz, i.e. the Lebesgue measure on Σz induced by the
Lebesgue measure in the ambient Euclidean space D. The submanifold Σz nat-
urally has a (complete and locally compact) Riemannian structure induced by
the Euclidean structure of the ambient space D.

Let us define the density ψ0 (with respect to the Lebesgue measure on D)
of the Boltzmann-Gibbs probability measure dµ0(x) = ψ0(x) dx associated to
the potential V :

ψ0 = Z−1 exp(−V ),

where Z =
∫
D exp(−V ). We denote by ψξ0 the density (with respect to the

Lebesgue measure on M) of the image dµξ0(z) = ψξ0(z) dz of the measure µ0

by ξ:

ψξ0(z) = Z−1
∫

Σz
exp(−V )(detG)−1/2dσΣz .

Let us introduce then the conditional measure µ0,z of µ0 at a fixed value of ξ:

dµ0,z =
Z−1 exp(−V )(detG)−1/2dσΣz

ψξ0(z)
.

Let us introduce the effective potential A0 associated to ξ (also called free
energy), defined by

A0(z) = − lnψξ0(z). (2)

The following expression for the derivative of A0 (also called the mean force)
is obtained:

∇A0(z) =
∫

Σz
Fdµ0,z, (3)

where F is defined by: ∀α ∈ {1, . . . , p},

Fα =
p∑

β=1

G−1
α,β∇ξβ · ∇V − div

 p∑
β=1

G−1
α,β∇ξβ

 , (4)
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where G−1
α,β denotes the (α, β)-component of the inverse of the matrix G. All

these results can be derived using the co-area formula (see Lemma 2.2 below),
using similar computations as in Lemma 2.3 below.

Let us also introduce the following projection operators: For any x ∈ D, we
denote by

P (x) = Id−
p∑

α,β=1

G−1
α,β∇ξα ⊗∇ξβ(x) (5)

the orthogonal projection operator onto the tangent space TxΣξ(x) to Σξ(x) at
point x, and by

Q(x) = Id− P (x) =
p∑

α,β=1

G−1
α,β∇ξα ⊗∇ξβ(x) (6)

the orthogonal projection operator onto the normal space NxΣξ(x) to Σξ(x) at
point x. We denote by ⊗ the tensor product: for two vectors u, v ∈ Rn, u⊗ v
is a n× n matrix with components (u⊗ v)i,j = uivj.

For any two probability measures µ and ν such that µ is absolutely continuous
with respect to ν (this property being denoted µ � ν in the following), we
introduce the relative entropy

H(µ|ν) =
∫

ln

(
dµ

dν

)
dµ.

Let us also introduce the Fisher information: For any two probability measures
µ and ν such that µ� ν,

I(µ|ν) =
∫ ∣∣∣∣∣∇ ln

(
dµ

dν

)∣∣∣∣∣
2

dµ. (7)

In (7) and in the following, | · | denotes the Euclidean norm (in Rn or in Rp).
In the case ν is a probability measure on the (Riemannian) submanifold Σz,
∇ actually denotes the gradient on Σz in (7), namely

∇Σz = P∇. (8)

We recall the definition of the Logarithmic Sobolev Inequality (LSI):

Definition 1.1 The probability measure ν satisfies a logarithmic Sobolev in-
equality with constant ρ > 0 (in short: LSI(ρ)) if for all probability measures
µ such that µ� ν,

H(µ|ν) ≤ 1

2ρ
I(µ|ν).

The main result of this paper states under which condition a LSI holds for µ0,
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assuming that a LSI holds for the conditional probability measure µ0,z (this

is [H2]) and for for the marginal µξ0 (this is [H3]).

Theorem 1.2 In addition to [H1], let us assume (recall that the local mean
force F is defined by (4)):

[H2]

 V and ξ are such that ∃ρ > 0, for all z ∈M,

the conditional measure µ0,z satisfies LSI(ρ).

[H3] V and ξ are such that ∃r > 0, the measure dµξ0 = ψξ0(z) dz satisfies LSI(r).

[H4]

V and ξ are sufficiently differentiable functions such that: ∃m > 0, G ≥ m Id and

(a) ‖∇ΣzF‖L∞ ≤M <∞ or (b) ‖F‖L∞ ≤
M√
ρ
<∞.

Then µ0 satisfies LSI(R) for some constant R which satisfies:

R ≥ 1

2

rm+
M2m

ρ
+ ρ−

√√√√(rm+
M2m

ρ
+ ρ

)2

− 4rmρ

 . (9)

In [H4], G ≥ m Id should be understood in the following sense: for any vector
u ∈ Rp, uTGu ≥ m|u|2. In [H4-a] or [H4-b], the L∞ norm is with respect to
x ∈ D: ‖F‖L∞ = supx∈D |F | and ‖∇ΣzF‖L∞ = supx∈D |∇ΣzF |, where | · | here
denotes the operator norm on the matrix ∇ΣzF associated to the Euclidean
norm on the vectors: |∇ΣzF (x)| = supu∈TxΣz

|∇F (x)u|
|u| .

Assumption [H4-a] is an assumption on the coupling in the following sense.
Assume that V (x) = 1

2
xTHx for some symmetric positive matrix H ∈ Rn×n

(so that µ0 is a Gaussian law), and that ξ(x1, . . . , xn) = (x1, . . . , xp). In this
case, G = Id, and ∇ΣzF = 0 is equivalent to the fact that the covariance
Cov ((X1, . . . , Xp), (Xp+1, . . . , Xn)) = 0, where (X1, . . . , Xn) is a random vari-
able with law µ0. In this case of Gaussian laws and a linear function ξ, it can
be checked that (9) is optimal (see [8]).

2 Proof

To prove the result, we need to introduce a few other notation. Let ψ be a
probability density functional on D. We denote the total entropy by

E = H(ψ|ψ0),

and the macroscopic entropy by

EM = H(ψξ|ψξ0),
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where

ψξ(z) =
∫

Σz
ψ(detG)−1/2dσΣz .

We denote the conditioned probability measures of ψ at a fixed value z of the
reaction coordinate by

dµz =
ψ(detG)−1/2dσΣz

ψξ(z)
,

the “local entropy” by

em(z) = H(µz|µ0,z) =
∫

Σz
ln

(
ψ

ψξ(z)

/
ψ0

ψξ0(z)

)
dµz,

and finally the microscopic entropy by

Em =
∫
M
em(z)ψξ(z) dz.

It is straightforward to obtain the following result which can be seen as a
property of extensivity of the entropy:

Lemma 2.1 It holds

E = EM + Em.

We will need the co-area formula (see [1,4]):

Lemma 2.2 For any smooth function φ : Rn → R,

∫
Rn
φ(x)(detG(x))1/2dx =

∫
Rp

∫
Σz
φ dσΣz dz, (10)

where G is defined by (1).

Remark 1 The co-area formula shows that if the random variable X has law
ψ(x) dx in Rn, then ξ(X) has law

∫
Σz
ψ (detG)−1/2 dσΣz dz,

and the law of X conditioned to a fixed value z of ξ(X) is

dµz =
ψ (detG)−1/2 dσΣz∫

Σz
ψ (detG)−1/2 dσΣz

.
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Indeed, for any bounded functions f and g,

E(f(ξ(X))g(X)) =
∫

Rn
f(ξ(x))g(x)ψ(x) dx,

=
∫

Rp

∫
Σz
f ◦ ξ g ψ (detG)−1/2dσΣz dz,

=
∫

Rp
f(z)

∫
Σz
g ψ (detG)−1/2dσΣz∫

Σz
ψ (detG)−1/2dσΣz

∫
Σz
ψ (detG)−1/2dσΣz dz.

The measure (detG)−1/2dσΣz is sometimes denoted by δξ(x)−z in the literature.

From the co-area formula, we get:

Lemma 2.3 The derivative of ψξ reads: ∀α ∈ {1, . . . , p},

∂zαψ
ξ(z) =

∫
Σz

p∑
β=1

(
G−1
α,β∇ξβ · ∇ψ + div

(
G−1
α,β∇ξβ

)
ψ
)

(detG)−1/2dσΣz .

Proof : For any smooth test function g : M → Rp, we obtain (using the
co-area formula (10) and an integration by parts) 1 :∫
M
ψξdiv g =

∫
D
ψ (div g) ◦ ξ,

=
∫
D
ψG−1

α,β∇ξβ · ∇(gα ◦ ξ),

= −
∫
D

div
(
ψG−1

α,β∇ξβ
)
gα ◦ ξ,

= −
∫
M
gα(z)

∫
Σz

(
G−1
α,β∇ξβ · ∇ψ + div

(
G−1
α,β∇ξβ

)
ψ
)

(detG)−1/2dσΣz dz,

which yields the result. ♦

A corollary of Lemma 2.3 applied with ψ = ψ0 is Equation (3). Let us now
introduce the mean force associated with ψ (compare with (3)):

D(z) =
∫

Σz
Fdµz.

Notice that, in general, D 6= −∇ lnψξ, and curlD 6= 0. We need a measure
of the difference between D and ∇A0, in terms of the difference between ψ
and ψ0:

Lemma 2.4 The difference between D and ∇A0 can be expressed in terms

1 In all the following proofs, we use the summation convention on repeated Greek
indices going from 1 to p.

6



of ψ and ψ0 as: for α ∈ {1, . . . , p}, for all z ∈M,

(Dα − ∂zαA0) (z) =
∫

Σz

p∑
β=1

G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)
ψ(detG)−1/2 dσΣz

ψξ
− ∂zα ln

(
ψξ

ψξ0

)
.

Proof : Using Lemma 2.3 and the definition of D, it holds:

∫
Σz
G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)
ψ(detG)−1/2 dσΣz

ψξ
− ∂zα ln

(
ψξ

ψξ0

)

=
1

ψξ

∫
Σz
G−1
α,β∇ξβ · ∇ψ(detG)−1/2 dσΣz +

∫
Σz
G−1
α,β∇ξβ · ∇V

ψ(detG)−1/2 dσΣz

ψξ

− ∂zα lnψξ + ∂zα lnψξ0

= −
∫

Σz
div (G−1

α,β∇ξβ)
ψ(detG)−1/2 dσΣz

ψξ
+
∫

Σz
G−1
α,β∇ξβ · ∇V

ψ(detG)−1/2 dσΣz

ψξ

− ∂zαA0

= Dα − ∂zαA0.

♦

From Lemma 2.4, the following estimates are obtained:

Lemma 2.5 Let us assume [H2] and [H4]. Then for all z ∈M,

|D(z)−∇A0(z)| ≤M

√
2

ρ
em(z).

Proof : If we suppose [H4-b], then we have:

|D(z)−∇A0(z)| =
∣∣∣∣∫ Fdµz −

∫
Fdµ0,z

∣∣∣∣
≤ ‖F‖L∞ ‖µz − µ0,z‖V T ,

≤ M
√
ρ
‖µz − µ0,z‖V T ,

where ‖µz − µ0,z‖V T denotes the total variation norm of the signed measure
(µz − µ0,z). The result then follows from the Csiszar-Kullback inequality (see
for example [2]):

‖µz − µ0,z‖V T ≤
√

2H(µz|µ0,z).

Let us now assume [H4-a]. For any coupling measure π ∈ Π(µz, µ0,z) defined
on Σz×Σz (namely any probability measure on Σ×Σ such that its marginals
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are µz and µ0,z), it holds:

|D(z)−∇A0(z)| =
∣∣∣∣∫

Σz×Σz
(F (x)− F (x′))π(dx, dx′)

∣∣∣∣ ,
≤ ‖∇ΣzF‖L∞

∫
Σz×Σz

dΣz(x, x
′)π(dx, dx′),

≤M
∫

Σz×Σz
dΣz(x, x

′)π(dx, dx′),

where dΣz denotes the geodesic distance on Σz: ∀x, y ∈ Σz,

dΣz(x, y) = inf


√∫ 1

0
|ẇ(t)|2 dt

∣∣∣∣∣∣w ∈ C1([0, 1],Σz), w(0) = x, w(1) = y

 .
Taking now the infimum over all π ∈ Π(µz, µ0,z), we obtain

|D(z)−∇A0(z)| ≤MW (µz, µ0,z)

where W (µz, µ0,z) denotes the Wasserstein distance with linear cost (see for
example [2]). It is known that if µ0,z satisfies a LSI (which is [H2]), then we
have the following Talagrand inequality (see [3,9]):

W (µz, µ0,z) ≤
√

2

ρ
H(µz|µ0,z).

This implies the result. ♦

Lemma 2.6 Let us assume [H2]. Then it holds

Em ≤
1

2ρ

∫
D

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ.

Proof : Notice that the Fisher information of µz with respect to µ0,z writes

I(µz|µ0,z) =
∫

Σz

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2
ψ(detG)−1/2dσΣz

ψξ(z)
.

Therefore, using [H2], it follows:

Em =
∫
M
emψ

ξ dz,

≤
∫
M

1

2ρ

∫
Σz

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2
ψ(detG)−1/2dσΣz

ψξ(z)
ψξ dz,

which yields the result, using the co-area formula (10). ♦
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We are now in position to prove Theorem 1.2. We have (using [H2], [H3],
Lemma 2.1, Lemma 2.4, and the inequality (a+ b)2 ≤ (1 + ε)a2 + (1 + ε−1)b2,
for a positive ε to be fixed later on):

E = Em + EM ≤
1

2ρ

∫
D

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ +
1

2r

∫
M

∣∣∣∣∣∇ ln

(
ψξ

ψξ0

)∣∣∣∣∣
2

ψξ,

≤ 1

2ρ

∫
D

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ +
1 + ε

2r

∫
M
|D −∇A0|2 ψξ

+
1 + ε−1

2r

∫
M

p∑
α=1

∣∣∣∣∣
∫

Σz
G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)
ψ(detG)−1/2 dσΣz

ψξ

∣∣∣∣∣
2

ψξ.

Using the Cauchy-Schwarz inequality:

∣∣∣∣∣∣
∫

Σz
G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)
ψ(detG)−1/2 dσΣz

ψξ

∣∣∣∣∣∣
2

≤
∫

Σz

∣∣∣∣∣G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2
ψ(detG)−1/2 dσΣz

ψξ

and Lemma 2.5, we thus obtain

E ≤ 1

2ρ

∫
D

∣∣∣∣∣∇Σz ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ +
(1 + ε)M2

rρ

∫
M
emψ

ξ

+
1 + ε−1

2r

∫
M

∫
Σz

p∑
α=1

∣∣∣∣∣G−1
α,β∇ξβ · ∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ(detG)−1/2 dσΣz .

For any vector u ∈ Rn, notice that |Qu|2 = G−1
α,β∇ξα · u∇ξβ · u, and that

|u|2 = |Pu|2 + |Qu|2 (where P and Q are the projection operators defined
by (5) and (6)). Using [H4], we thus have:

p∑
α=1

|G−1
α,β∇ξβ · u|2 = G−1

α,β∇ξβ · uG−1
α,γ∇ξγ · u,

≤ 1

m
G−1
β,γ∇ξβ · u∇ξγ · u,

=
1

m
|Qu|2.
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Applying this inequality with u = ∇ ln
(
ψ
ψ0

)
and using Lemma 2.6, we get:

E ≤ 1

2ρ

∫
D

∣∣∣∣∣P∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ +
(1 + ε)M2

rρ
Em

+
1 + ε−1

2rm

∫
M

∫
Σz

∣∣∣∣∣Q∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ(detG)−1/2 dσΣz ,

≤
(

1

2ρ
+

(1 + ε)M2

2rρ2

)∫
D

∣∣∣∣∣P∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ

+
1 + ε−1

2rm

∫
D

∣∣∣∣∣Q∇ ln

(
ψ

ψ0

)∣∣∣∣∣
2

ψ.

This shows that ψ satisfies a LSI with constant R satisfying

R ≥ 1

2

(
max

(
1

2ρ
+

(1 + ε)M2

2rρ2
,
1 + ε−1

2rm

))−1

,

= min

(
ρ2

ρ+ (1 + ε)M2/r
,

rm

1 + ε−1

)
.

Optimizing in ε, namely solving ρ2

ρ+(1+ε)M2/r
= rm

1+ε−1 concludes the proof.
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