A general two-scale criteria for logarithmic Sobolev inequalities

T. Lelièvre ${ }^{1}$

${ }^{1}$ CERMICS, Université Paris-Est, ENPC, 6-8 avenue Blaise Pascal, Champs sur Marne, 77455 Marne La Vallée Cedex 2, France

A general two-scale criteria for logarithmic Sobolev inequalities

Tony Lelièvre ${ }^{\mathrm{a}, \mathrm{b}}$,
${ }^{a}$ CERMICS, Ecole Nationale des Ponts et Chaussées, 77455 Marne-La-Vallée Cedex 2, FRANCE
${ }^{\mathrm{b}}$ INRIA Rocquencourt, MICMAC project, Domaine de Voluceau, B.P. 105, 78153
Le Chesnay Cedex, FRANCE

Abstract

We present a general criteria to prove that a probability measure satisfies a logarithmic Sobolev inequality, knowing that some of its marginals and associated conditional laws satisfy a logarithmic Sobolev inequality. This is a generalization of a result by N. Grunewald et al. [5].

1 Motivation and notation

The motivation behind this work is molecular dynamics (in the canonical statistical ensemble), and more precisely, (i) the analysis of numerical methods for the computation of free energy differences [7] and (ii) the derivation of effective dynamics on coarse-grained variables [6]. In both cases, it appears that estimates based on entropies for measures related to the BoltzmannGibbs measure is a useful tool. One important question is the following: what is the link between the logarithmic Sobolev inequality (LSI) constant of the Boltzmann-Gibbs measure for the original variables (microscopic level) and the LSI constant of the Boltzmann-Gibbs measure for some coarse-grained variables (macroscopic level). The aim of this work is to give an answer, which is a generalization to non-linear coarse-graining operators of results in $[8,5]$.

Let \mathcal{D} be a domain of \mathbb{R}^{n} representing the configuration space of the system under consideration, and $V: \mathcal{D} \rightarrow \mathbb{R}$ a potential, associating to each configuration an energy. Let us consider a function (representing the coarse-grained

Email address: lelievre@cermics.enpc.fr (Tony Lelièvre).
variables, also called the reaction coordinates)

$$
\xi: \mathcal{D} \rightarrow \mathcal{M}
$$

with $\mathcal{M} \subset \mathbb{R}^{p}$ (and $\left.1 \leq p<n\right)$. Let us introduce the Gram matrix $G: \mathcal{D} \rightarrow$ $\mathbb{R}^{p \times p}$ of the derivative $\nabla \xi: \mathcal{D} \rightarrow \mathbb{R}^{p \times n}: G=\nabla \xi \nabla \xi^{T}$, i.e., componentwise, $\forall \alpha, \beta \in\{1, \ldots, p\}$,

$$
\begin{equation*}
G_{\alpha, \beta}=\nabla \xi_{\alpha} \cdot \nabla \xi_{\beta} \tag{1}
\end{equation*}
$$

We suppose that ξ is such that
[H1] ξ is a smooth function such that $\operatorname{det} G \neq 0$ on \mathcal{D}.
The submanifolds

$$
\Sigma_{z}=\{x \in \mathcal{D}, \xi(x)=z\}
$$

are then smooth submanifolds of \mathcal{D} of codimension p. We denote by $\sigma_{\Sigma_{z}}$ the surface measure on Σ_{z}, i.e. the Lebesgue measure on Σ_{z} induced by the Lebesgue measure in the ambient Euclidean space \mathcal{D}. The submanifold Σ_{z} naturally has a (complete and locally compact) Riemannian structure induced by the Euclidean structure of the ambient space \mathcal{D}.

Let us define the density ψ_{0} (with respect to the Lebesgue measure on \mathcal{D}) of the Boltzmann-Gibbs probability measure $d \mu_{0}(x)=\psi_{0}(x) d x$ associated to the potential V :

$$
\psi_{0}=Z^{-1} \exp (-V)
$$

where $Z=\int_{\mathcal{D}} \exp (-V)$. We denote by ψ_{0}^{ξ} the density (with respect to the Lebesgue measure on \mathcal{M}) of the image $d \mu_{0}^{\xi}(z)=\psi_{0}^{\xi}(z) d z$ of the measure μ_{0} by ξ :

$$
\psi_{0}^{\xi}(z)=Z^{-1} \int_{\Sigma_{z}} \exp (-V)(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}
$$

Let us introduce then the conditional measure $\mu_{0, z}$ of μ_{0} at a fixed value of ξ :

$$
d \mu_{0, z}=\frac{Z^{-1} \exp (-V)(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi_{0}^{\xi}(z)}
$$

Let us introduce the effective potential A_{0} associated to ξ (also called free energy), defined by

$$
\begin{equation*}
A_{0}(z)=-\ln \psi_{0}^{\xi}(z) \tag{2}
\end{equation*}
$$

The following expression for the derivative of A_{0} (also called the mean force) is obtained:

$$
\begin{equation*}
\nabla A_{0}(z)=\int_{\Sigma_{z}} F d \mu_{0, z} \tag{3}
\end{equation*}
$$

where F is defined by: $\forall \alpha \in\{1, \ldots, p\}$,

$$
\begin{equation*}
F_{\alpha}=\sum_{\beta=1}^{p} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla V-\operatorname{div}\left(\sum_{\beta=1}^{p} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta}\right) \tag{4}
\end{equation*}
$$

where $G_{\alpha, \beta}^{-1}$ denotes the (α, β)-component of the inverse of the matrix G. All these results can be derived using the co-area formula (see Lemma 2.2 below), using similar computations as in Lemma 2.3 below.

Let us also introduce the following projection operators: For any $x \in \mathcal{D}$, we denote by

$$
\begin{equation*}
P(x)=\mathrm{Id}-\sum_{\alpha, \beta=1}^{p} G_{\alpha, \beta}^{-1} \nabla \xi_{\alpha} \otimes \nabla \xi_{\beta}(x) \tag{5}
\end{equation*}
$$

the orthogonal projection operator onto the tangent space $T_{x} \Sigma_{\xi(x)}$ to $\Sigma_{\xi(x)}$ at point x, and by

$$
\begin{equation*}
Q(x)=\operatorname{Id}-P(x)=\sum_{\alpha, \beta=1}^{p} G_{\alpha, \beta}^{-1} \nabla \xi_{\alpha} \otimes \nabla \xi_{\beta}(x) \tag{6}
\end{equation*}
$$

the orthogonal projection operator onto the normal space $N_{x} \Sigma_{\xi(x)}$ to $\Sigma_{\xi(x)}$ at point x. We denote by \otimes the tensor product: for two vectors $u, v \in \mathbb{R}^{n}, u \otimes v$ is a $n \times n$ matrix with components $(u \otimes v)_{i, j}=u_{i} v_{j}$.

For any two probability measures μ and ν such that μ is absolutely continuous with respect to ν (this property being denoted $\mu \ll \nu$ in the following), we introduce the relative entropy

$$
H(\mu \mid \nu)=\int \ln \left(\frac{d \mu}{d \nu}\right) d \mu
$$

Let us also introduce the Fisher information: For any two probability measures μ and ν such that $\mu \ll \nu$,

$$
\begin{equation*}
I(\mu \mid \nu)=\int\left|\nabla \ln \left(\frac{d \mu}{d \nu}\right)\right|^{2} d \mu \tag{7}
\end{equation*}
$$

In (7) and in the following, $|\cdot|$ denotes the Euclidean norm (in \mathbb{R}^{n} or in \mathbb{R}^{p}). In the case ν is a probability measure on the (Riemannian) submanifold Σ_{z}, ∇ actually denotes the gradient on Σ_{z} in (7), namely

$$
\begin{equation*}
\nabla_{\Sigma_{z}}=P \nabla \tag{8}
\end{equation*}
$$

We recall the definition of the Logarithmic Sobolev Inequality (LSI):
Definition 1.1 The probability measure ν satisfies a logarithmic Sobolev inequality with constant $\rho>0$ (in short: $\operatorname{LSI}(\rho)$) if for all probability measures μ such that $\mu \ll \nu$,

$$
H(\mu \mid \nu) \leq \frac{1}{2 \rho} I(\mu \mid \nu)
$$

The main result of this paper states under which condition a LSI holds for μ_{0},
assuming that a LSI holds for the conditional probability measure $\mu_{0, z}$ (this is [H2]) and for for the marginal μ_{0}^{ξ} (this is [H3]).

Theorem 1.2 In addition to [H1], let us assume (recall that the local mean force F is defined by (4)):
[H2] $\left\{\begin{array}{c}V \text { and } \xi \text { are such that } \exists \rho>0, \text { for all } z \in \mathcal{M}, \\ \text { the conditional measure } \mu_{0, z} \text { satisfies } \operatorname{LSI}(\rho) .\end{array}\right.$
[H3] V and ξ are such that $\exists r>0$, the measure $d \mu_{0}^{\xi}=\psi_{0}^{\xi}(z) d z$ satisfies $\operatorname{LSI}(r)$.
$[\mathbf{H} 4]\left\{\begin{array}{c}V \text { and } \xi \text { are sufficiently differentiable functions such that: } \exists m>0, G \geq m \text { Id and } \\ \text { (a) }\left\|\nabla_{\Sigma_{z}} F\right\|_{L^{\infty}} \leq M<\infty \text { or (b) }\|F\|_{L^{\infty}} \leq \frac{M}{\sqrt{\rho}}<\infty .\end{array}\right.$
Then μ_{0} satisfies $L S I(R)$ for some constant R which satisfies:

$$
\begin{equation*}
R \geq \frac{1}{2}\left(r m+\frac{M^{2} m}{\rho}+\rho-\sqrt{\left(r m+\frac{M^{2} m}{\rho}+\rho\right)^{2}-4 r m \rho}\right) . \tag{9}
\end{equation*}
$$

In [H4], $G \geq m$ Id should be understood in the following sense: for any vector $u \in \mathbb{R}^{p}, u^{T} G u \geq m|u|^{2}$. In [H4-a] or [H4-b], the L^{∞} norm is with respect to $x \in \mathcal{D}:\|F\|_{L^{\infty}}=\sup _{x \in \mathcal{D}}|F|$ and $\left\|\nabla_{\Sigma_{z}} F\right\|_{L^{\infty}}=\sup _{x \in \mathcal{D}}\left|\nabla_{\Sigma_{z}} F\right|$, where $|\cdot|$ here denotes the operator norm on the matrix $\nabla_{\Sigma_{z}} F$ associated to the Euclidean norm on the vectors: $\left|\nabla_{\Sigma_{z}} F(x)\right|=\sup _{u \in T_{x} \Sigma_{z}} \frac{|\nabla F(x) u|}{|u|}$.

Assumption [H4-a] is an assumption on the coupling in the following sense. Assume that $V(x)=\frac{1}{2} x^{T} H x$ for some symmetric positive matrix $H \in \mathbb{R}^{n \times n}$ (so that μ_{0} is a Gaussian law), and that $\xi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{p}\right)$. In this case, $G=\mathrm{Id}$, and $\nabla_{\Sigma_{z}} F=0$ is equivalent to the fact that the covariance $\operatorname{Cov}\left(\left(X_{1}, \ldots, X_{p}\right),\left(X_{p+1}, \ldots, X_{n}\right)\right)=0$, where $\left(X_{1}, \ldots, X_{n}\right)$ is a random variable with law μ_{0}. In this case of Gaussian laws and a linear function ξ, it can be checked that (9) is optimal (see [8]).

2 Proof

To prove the result, we need to introduce a few other notation. Let ψ be a probability density functional on \mathcal{D}. We denote the total entropy by

$$
E=H\left(\psi \mid \psi_{0}\right)
$$

and the macroscopic entropy by

$$
E_{M}=H\left(\psi^{\xi} \mid \psi_{0}^{\xi}\right)
$$

where

$$
\psi^{\xi}(z)=\int_{\Sigma_{z}} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} .
$$

We denote the conditioned probability measures of ψ at a fixed value z of the reaction coordinate by

$$
d \mu_{z}=\frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}(z)}
$$

the "local entropy" by

$$
e_{m}(z)=H\left(\mu_{z} \mid \mu_{0, z}\right)=\int_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi^{\xi}(z)} / \frac{\psi_{0}}{\psi_{0}^{\xi}(z)}\right) d \mu_{z}
$$

and finally the microscopic entropy by

$$
E_{m}=\int_{\mathcal{M}} e_{m}(z) \psi^{\xi}(z) d z
$$

It is straightforward to obtain the following result which can be seen as a property of extensivity of the entropy:

Lemma 2.1 It holds

$$
E=E_{M}+E_{m}
$$

We will need the co-area formula (see [1,4]):
Lemma 2.2 For any smooth function $\phi: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \phi(x)(\operatorname{det} G(x))^{1 / 2} d x=\int_{\mathbb{R}^{p}} \int_{\Sigma_{z}} \phi d \sigma_{\Sigma_{z}} d z \tag{10}
\end{equation*}
$$

where G is defined by (1).
Remark 1 The co-area formula shows that if the random variable X has law $\psi(x) d x$ in \mathbb{R}^{n}, then $\xi(X)$ has law

$$
\int_{\Sigma_{z}} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} d z
$$

and the law of X conditioned to a fixed value z of $\xi(X)$ is

$$
d \mu_{z}=\frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\int_{\Sigma_{z}} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}
$$

Indeed, for any bounded functions f and g,

$$
\begin{aligned}
\mathbb{E}(f(\xi(X)) g(X)) & =\int_{\mathbb{R}^{n}} f(\xi(x)) g(x) \psi(x) d x \\
& =\int_{\mathbb{R}^{p}} \int_{\Sigma_{z}} f \circ \xi g \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} d z \\
& =\int_{\mathbb{R}^{p}} f(z) \frac{\int_{\Sigma_{z}} g \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\int_{\Sigma_{z}} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}} \int_{\Sigma_{z}} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} d z
\end{aligned}
$$

The measure $(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}$ is sometimes denoted by $\delta_{\xi(x)-z}$ in the literature.
From the co-area formula, we get:
Lemma 2.3 The derivative of ψ^{ξ} reads: $\forall \alpha \in\{1, \ldots, p\}$,

$$
\partial_{z_{\alpha}} \psi^{\xi}(z)=\int_{\Sigma_{z}} \sum_{\beta=1}^{p}\left(G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \psi+\operatorname{div}\left(G_{\alpha, \beta}^{-1} \nabla \xi_{\beta}\right) \psi\right)(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} .
$$

Proof: For any smooth test function $g: \mathcal{M} \rightarrow \mathbb{R}^{p}$, we obtain (using the co-area formula (10) and an integration by parts) ${ }^{1}$:

$$
\begin{aligned}
\int_{\mathcal{M}} \psi^{\xi} \operatorname{div} g & =\int_{\mathcal{D}} \psi(\operatorname{div} g) \circ \xi \\
& =\int_{\mathcal{D}} \psi G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla\left(g_{\alpha} \circ \xi\right) \\
& =-\int_{\mathcal{D}} \operatorname{div}\left(\psi G_{\alpha, \beta}^{-1} \nabla \xi_{\beta}\right) g_{\alpha} \circ \xi \\
& =-\int_{\mathcal{M}} g_{\alpha}(z) \int_{\Sigma_{z}}\left(G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \psi+\operatorname{div}\left(G_{\alpha, \beta}^{-1} \nabla \xi_{\beta}\right) \psi\right)(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} d z
\end{aligned}
$$

which yields the result.

A corollary of Lemma 2.3 applied with $\psi=\psi_{0}$ is Equation (3). Let us now introduce the mean force associated with ψ (compare with (3)):

$$
D(z)=\int_{\Sigma_{z}} F d \mu_{z} .
$$

Notice that, in general, $D \neq-\nabla \ln \psi^{\xi}$, and curl $D \neq 0$. We need a measure of the difference between D and ∇A_{0}, in terms of the difference between ψ and ψ_{0} :

Lemma 2.4 The difference between D and ∇A_{0} can be expressed in terms

[^0]of ψ and ψ_{0} as: for $\alpha \in\{1, \ldots, p\}$, for all $z \in \mathcal{M}$,
$$
\left(D_{\alpha}-\partial_{z_{\alpha}} A_{0}\right)(z)=\int_{\Sigma_{z}} \sum_{\beta=1}^{p} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right) \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}-\partial_{z_{\alpha}} \ln \left(\frac{\psi^{\xi}}{\psi_{0}^{\xi}}\right) .
$$

Proof: Using Lemma 2.3 and the definition of D, it holds:

$$
\begin{aligned}
& \int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right) \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}-\partial_{z_{\alpha}} \ln \left(\frac{\psi^{\xi}}{\psi_{0}^{\xi}}\right) \\
&= \frac{1}{\psi^{\xi}} \int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}+\int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla V \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}} \\
&-\partial_{z_{\alpha}} \ln \psi^{\xi}+\partial_{z_{\alpha}} \ln \psi_{0}^{\xi} \\
&=-\int_{\Sigma_{z}} \operatorname{div}\left(G_{\alpha, \beta}^{-1} \nabla \xi_{\beta}\right) \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}+\int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla V \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}} \\
&-\partial_{z_{\alpha}} A_{0} \\
&= D_{\alpha}-\partial_{z_{\alpha}} A_{0} .
\end{aligned}
$$

From Lemma 2.4, the following estimates are obtained:
Lemma 2.5 Let us assume [H2] and [H4]. Then for all $z \in \mathcal{M}$,

$$
\left|D(z)-\nabla A_{0}(z)\right| \leq M \sqrt{\frac{2}{\rho} e_{m}(z)}
$$

Proof: If we suppose [H4-b], then we have:

$$
\begin{aligned}
\left|D(z)-\nabla A_{0}(z)\right| & =\left|\int F d \mu_{z}-\int F d \mu_{0, z}\right| \\
& \leq\|F\|_{L^{\infty}}\left\|\mu_{z}-\mu_{0, z}\right\|_{V T} \\
& \leq \frac{M}{\sqrt{\rho}}\left\|\mu_{z}-\mu_{0, z}\right\|_{V T}
\end{aligned}
$$

where $\left\|\mu_{z}-\mu_{0, z}\right\|_{V T}$ denotes the total variation norm of the signed measure $\left(\mu_{z}-\mu_{0, z}\right)$. The result then follows from the Csiszar-Kullback inequality (see for example [2]):

$$
\left\|\mu_{z}-\mu_{0, z}\right\|_{V T} \leq \sqrt{2 H\left(\mu_{z} \mid \mu_{0, z}\right)}
$$

Let us now assume [H4-a]. For any coupling measure $\pi \in \Pi\left(\mu_{z}, \mu_{0, z}\right)$ defined on $\Sigma_{z} \times \Sigma_{z}$ (namely any probability measure on $\Sigma \times \Sigma$ such that its marginals
are μ_{z} and $\mu_{0, z}$), it holds:

$$
\begin{aligned}
\left|D(z)-\nabla A_{0}(z)\right| & =\left|\int_{\Sigma_{z} \times \Sigma_{z}}\left(F(x)-F\left(x^{\prime}\right)\right) \pi\left(d x, d x^{\prime}\right)\right| \\
& \leq\left\|\nabla_{\Sigma_{z}} F\right\|_{L^{\infty}} \int_{\Sigma_{z} \times \Sigma_{z}} d_{\Sigma_{z}}\left(x, x^{\prime}\right) \pi\left(d x, d x^{\prime}\right), \\
& \leq M \int_{\Sigma_{z} \times \Sigma_{z}} d_{\Sigma_{z}}\left(x, x^{\prime}\right) \pi\left(d x, d x^{\prime}\right)
\end{aligned}
$$

where $d_{\Sigma_{z}}$ denotes the geodesic distance on $\Sigma_{z}: \forall x, y \in \Sigma_{z}$,

$$
d_{\Sigma_{z}}(x, y)=\inf \left\{\sqrt{\int_{0}^{1}|\dot{w}(t)|^{2} d t} \mid w \in \mathcal{C}^{1}\left([0,1], \Sigma_{z}\right), w(0)=x, w(1)=y\right\}
$$

Taking now the infimum over all $\pi \in \Pi\left(\mu_{z}, \mu_{0, z}\right)$, we obtain

$$
\left|D(z)-\nabla A_{0}(z)\right| \leq M W\left(\mu_{z}, \mu_{0, z}\right)
$$

where $W\left(\mu_{z}, \mu_{0, z}\right)$ denotes the Wasserstein distance with linear cost (see for example [2]). It is known that if $\mu_{0, z}$ satisfies a LSI (which is [H2]), then we have the following Talagrand inequality (see [3,9]):

$$
W\left(\mu_{z}, \mu_{0, z}\right) \leq \sqrt{\frac{2}{\rho} H\left(\mu_{z} \mid \mu_{0, z}\right)} .
$$

This implies the result.

Lemma 2.6 Let us assume [H2]. Then it holds

$$
E_{m} \leq \frac{1}{2 \rho} \int_{\mathcal{D}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi
$$

Proof: Notice that the Fisher information of μ_{z} with respect to $\mu_{0, z}$ writes

$$
I\left(\mu_{z} \mid \mu_{0, z}\right)=\int_{\Sigma_{z}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}(z)}
$$

Therefore, using [H2], it follows:

$$
\begin{aligned}
E_{m} & =\int_{\mathcal{M}} e_{m} \psi^{\xi} d z \\
& \leq \int_{\mathcal{M}} \frac{1}{2 \rho} \int_{\Sigma_{z}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}(z)} \psi^{\xi} d z
\end{aligned}
$$

which yields the result, using the co-area formula (10).

We are now in position to prove Theorem 1.2. We have (using [H2], [H3], Lemma 2.1, Lemma 2.4, and the inequality $(a+b)^{2} \leq(1+\varepsilon) a^{2}+\left(1+\varepsilon^{-1}\right) b^{2}$, for a positive ε to be fixed later on):

$$
\begin{aligned}
E=E_{m}+E_{M} \leq & \frac{1}{2 \rho} \int_{\mathcal{D}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi+\frac{1}{2 r} \int_{\mathcal{M}}\left|\nabla \ln \left(\frac{\psi^{\xi}}{\psi_{0}^{\xi}}\right)\right|^{2} \psi^{\xi} \\
\leq & \frac{1}{2 \rho} \int_{\mathcal{D}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi+\frac{1+\varepsilon}{2 r} \int_{\mathcal{M}}\left|D-\nabla A_{0}\right|^{2} \psi^{\xi} \\
& +\frac{1+\varepsilon^{-1}}{2 r} \int_{\mathcal{M}} \sum_{\alpha=1}^{p}\left|\int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right) \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}\right|^{2} \psi^{\xi} .
\end{aligned}
$$

Using the Cauchy-Schwarz inequality:

$$
\begin{aligned}
& \left|\int_{\Sigma_{z}} G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right) \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}\right|^{2} \\
& \quad \leq \int_{\Sigma_{z}}\left|G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \frac{\psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}}}{\psi^{\xi}}
\end{aligned}
$$

and Lemma 2.5, we thus obtain

$$
\begin{aligned}
E \leq & \frac{1}{2 \rho} \int_{\mathcal{D}}\left|\nabla_{\Sigma_{z}} \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi+\frac{(1+\varepsilon) M^{2}}{r \rho} \int_{\mathcal{M}} e_{m} \psi^{\xi} \\
& +\frac{1+\varepsilon^{-1}}{2 r} \int_{\mathcal{M}} \int_{\Sigma_{z}} \sum_{\alpha=1}^{p}\left|G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} .
\end{aligned}
$$

For any vector $u \in \mathbb{R}^{n}$, notice that $|Q u|^{2}=G_{\alpha, \beta}^{-1} \nabla \xi_{\alpha} \cdot u \nabla \xi_{\beta} \cdot u$, and that $|u|^{2}=|P u|^{2}+|Q u|^{2}$ (where P and Q are the projection operators defined by (5) and (6)). Using [H4], we thus have:

$$
\begin{aligned}
\sum_{\alpha=1}^{p}\left|G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot u\right|^{2} & =G_{\alpha, \beta}^{-1} \nabla \xi_{\beta} \cdot u G_{\alpha, \gamma}^{-1} \nabla \xi_{\gamma} \cdot u \\
& \leq \frac{1}{m} G_{\beta, \gamma}^{-1} \nabla \xi_{\beta} \cdot u \nabla \xi_{\gamma} \cdot u \\
& =\frac{1}{m}|Q u|^{2}
\end{aligned}
$$

Applying this inequality with $u=\nabla \ln \left(\frac{\psi}{\psi_{0}}\right)$ and using Lemma 2.6, we get:

$$
\begin{aligned}
E \leq & \frac{1}{2 \rho} \int_{\mathcal{D}}\left|P \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi+\frac{(1+\varepsilon) M^{2}}{r \rho} E_{m} \\
& +\frac{1+\varepsilon^{-1}}{2 r m} \int_{\mathcal{M}} \int_{\Sigma_{z}}\left|Q \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi(\operatorname{det} G)^{-1 / 2} d \sigma_{\Sigma_{z}} \\
\leq & \left(\frac{1}{2 \rho}+\frac{(1+\varepsilon) M^{2}}{2 r \rho^{2}}\right) \int_{\mathcal{D}}\left|P \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi \\
& +\frac{1+\varepsilon^{-1}}{2 r m} \int_{\mathcal{D}}\left|Q \nabla \ln \left(\frac{\psi}{\psi_{0}}\right)\right|^{2} \psi .
\end{aligned}
$$

This shows that ψ satisfies a LSI with constant R satisfying

$$
\begin{aligned}
R & \geq \frac{1}{2}\left(\max \left(\frac{1}{2 \rho}+\frac{(1+\varepsilon) M^{2}}{2 r \rho^{2}}, \frac{1+\varepsilon^{-1}}{2 r m}\right)\right)^{-1} \\
& =\min \left(\frac{\rho^{2}}{\rho+(1+\varepsilon) M^{2} / r}, \frac{r m}{1+\varepsilon^{-1}}\right)
\end{aligned}
$$

Optimizing in ε, namely solving $\frac{\rho^{2}}{\rho+(1+\varepsilon) M^{2} / r}=\frac{r m}{1+\varepsilon^{-1}}$ concludes the proof.

Acknowledgements

We would like to thank F. Otto and M. Westdickenberg for fruitful discussions on the subject. Part of this work was completed during a stay of the author at the Hausdorff Institute of Mathematics (HIM) in Bonn. The hospitality of the HIM is acknowledged.

References

[1] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford science publications, 2000.
[2] C. Ané, S. Blachère, D. Chafaï, P. Fougères, I. Gentil, F. Malrieu, C. Roberto, and G. Scheffer. Sur les ingalités de Sobolev logarithmiques. Société Mathématique de France, 2000. In French.
[3] S. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal., 163(1):1-28, 1999.
[4] L.C. Evans and R.F. Gariepy. Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, 1992.
[5] N. Grunewald, F. Otto, C. Villani, and M.G. Westdickenberg. A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit. Ann. Inst. H. Poincar Probab. Statist., 2008. To appear.
[6] F. Legoll and T. Lelièvre. Effective dynamics using conditional expectations. In preparation.
[7] T. Lelièvre, M. Rousset, and G. Stoltz. Long-time convergence of an adaptive biasing force method. Nonlinearity, 21:1155-1181, 2008.
[8] F. Otto and M.G. Reznikoff. A new criterion for the logarithmic Sobolev inequality and two applications. J. Funct. Anal., 243:121-157, 2007.
[9] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2):361-400, 2000.

[^0]: ${ }^{1}$ In all the following proofs, we use the summation convention on repeated Greek indices going from 1 to p.

