Théorie des grandes déviations:
Des mathématiques à la physique

Hugo Touchette
National Institute for Theoretical Physics (NITheP)
Stellenbosch, Afrique du Sud

CERMICS, École des Ponts
Paris, France
30 novembre 2015

Plan

Themes
• Typical states
• Fluctuations around typicality
• Many components

Outline
• A bit of history
• Basics of large deviations
• Equilibrium systems
• Nonequilibrium systems

Lewis (80s)
Graham (80s)

Lanford (1973)

Onsager (1953)

Einstein (1910)

Boltzmann (1877)

Ellis (1984)

Gärtner (1977)

Freidlin-Wentzell (70s)

Donsker-Varadhan (70s)

Sanov (1957)

Cramér (1938)
Boltzmann (1877)

- Energy levels: $j = 1, 2, 3, 4, \ldots, N$
- Particles: $i = 1, 2, 3, 4, \ldots, N$

- Energy distribution:
 \[w_j = \# \text{ particles in level } j \]

- Multinomial distribution:
 \[
 \ln \frac{N!}{\prod_j w_j!} \approx -N \sum_j w_j \ln w_j = Ns(w)
 \]

- Probability:
 \[P(w) \approx e^{Ns(w)} \]

Einstein (1910)

- Generalize Boltzmann
- Macrostate: M_N
- Density of states (complexion):
 \[W(m) = \# \text{ microstates with } M_N = m \]

Einstein’s postulate

\[W(m) = e^{Ns(m)} \]

- Probability:
 \[P(m) = e^{N[s(m) - s(m^*)]} \]

- Equilibrium: $s(m^*)$ is max
Cramér (1938)

- Sample mean:
 $$S_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad X_i \sim p(x) \text{ IID}$$

- Cumulant:
 $$\lambda(k) = \ln E[e^{kX}] = \int p(x) e^{kx} \, dx$$

- Probability density:
 $$P(S_n = s) = e^{-nI(s)} \frac{1}{\sqrt{n}} \left(b_0 + \frac{b_1}{n} + \cdots \right)$$

- Rate function:
 $$I(s) = \max_{k \in \mathbb{R}} \{ ks - \lambda(k) \}$$

Sanov (1957)

- Sequence of IID RVs:
 $$X_1, X_2, \ldots, X_n \quad X_i \sim p(x)$$

- Empirical distribution:
 $$L_n(x) = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i, x}$$

- Empirical distribution:
 $$P(L_n = \rho) \approx e^{-nD(\rho||p)}$$

- Relative entropy:
 $$D(\rho||p) = \int dx \rho(x) \ln \frac{\rho(x)}{p(x)}$$

- Law of Large Numbers: $$L_n \to \rho$$
Large deviation theory

- Random variable: \(A_n \)
- Probability density: \(P(A_n = a) \)

Large deviation principle (LDP)

\[
P(A_n = a) \approx e^{-n I(a)}
\]

- Meaning of \(\approx \):
 \[
 \ln P(a) = -n I(a) + o(n)
 \]
 \[
 \lim_{n \to \infty} \frac{1}{n} \ln P(a) = I(a)
 \]

- Rate function: \(I(a) \geq 0 \)

Goals of large deviation theory

1. Prove that a large deviation principle exists
2. Calculate the rate function

Varadhan’s Theorem

- LDP:
 \[
P(A_n = a) \approx e^{-n I(a)}
 \]

- Exponential expectation:
 \[
 E[e^{nf(A_n)}] = \int e^{nf(a)} P(A_n = a) \, da
 \]

- Limit functional:
 \[
 \lambda(f) = \lim_{n \to \infty} \frac{1}{n} \ln E[e^{nf(A_n)}]
 \]

Theorem: Varadhan (1966)

\[
\lambda(f) = \max_a \{f(a) - I(a)\}
\]

Special case: \(f(a) = ka \)

\[
\lambda(k) = \max_a \{ka - I(a)\}
\]
Gärtner-Ellis Theorem

Scaled cumulant generating function (SCGF)

\[\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln E[e^{nkA_n}], \quad k \in \mathbb{R} \]

Theorem: Gärtner (1977), Ellis (1984)

If \(\lambda(k) \) is differentiable, then

1. **LDP:**
 \[P(A_n = a) \approx e^{-nI(a)} \]
2. **Rate function:**
 \[I(a) = \max_k \{ ka - \lambda(k) \} \]

- \(I(a) \) is the Legendre transform of \(\lambda(k) \)

Cramer’s Theorem

- **Sample mean:**
 \[S_n = \frac{1}{n} \sum_{i=1}^{n} X_i, \quad X_i \sim p(x), \text{ IID} \]
- **SCGF:**
 \[\lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln E[e^{nkS_n}] = \ln E[e^{kX}] \]

Gaussian

\[\lambda(k) = \mu k + \frac{\sigma^2}{2} k^2, \quad k \in \mathbb{R} \]
\[I(s) = \frac{1}{2\sigma^2} (s - \mu)^2, \quad s \in \mathbb{R} \]

Exponential

\[\lambda(k) = -\ln(1 - \mu k), \quad k < \frac{1}{\mu} \]
\[I(s) = \frac{s}{\mu} - 1 - \ln \frac{s}{\mu}, \quad s > 0 \]
Sanov’s Theorem

- \(n \) IID random variables:
 \[
 \omega = \omega_1, \omega_2, \ldots, \omega_n, \quad P(\omega_i = j) = p_j
 \]

- Empirical frequencies:
 \[
 L_{n,j} = \frac{1}{n} \sum_{i=1}^{n} \delta_{\omega_i,j} = \frac{\#(\omega_i = j)}{n}, \quad L_n = (L_{n,1}, L_{n,2}, \ldots)
 \]

Gärtner-Ellis

- SCGF:
 \[
 \lambda(k) = \lim_{n \to \infty} \frac{1}{n} \ln E[e^{nk \cdot L_n}] = \ln \sum_{j=1}^{q} p_j e^{k_j}
 \]

- Rate function:
 \[
 D(\mu) = \inf_k \{k \cdot \mu - \lambda(k)\} = \sum_{j=1}^{q} \mu_j \ln \frac{\mu_j}{p_j}
 \]

Beyond IID

Markov processes

- \(\{X_t\}_{t=0}^{T} \)
- \(A_T = \frac{1}{T} \int_{0}^{T} f(X_t) \, dt \)
- \(P(A_T = a) \approx e^{-Tf(a)} \)
- Long time limit
- Donsker & Varadhan (1975)

SDEs

- \(\dot{x}(t) = f(x(t)) + \sqrt{\epsilon} \xi(t) \)
- \(P[x] \approx e^{-f[x]/\epsilon} \)
- Low noise limit
- Freidlin & Wentzell (1970s)
- Onsager & Machlup (1953)

Applications

- Noisy dynamical systems
- Interacting SDEs
- Stochastic PDEs
- Interacting particle systems
- RWs random environments
- Queueing theory
- Statistics, estimation
- Information theory
Summary

\[P(A_n = a) \approx e^{-nI(a)} \]

- Law of Large Numbers
 - Typical value = zeros of \(I(a) \)
- Central Limit Theorem
 - Quadratic minima = Gaussian fluctuations
 - Small deviations
- Large deviations
 - Fluctuations away from typical value

General theory of typical states and fluctuations

Equilibrium systems

- \(N \) particles
- Microstate: \(\omega = \omega_1, \omega_2, \ldots, \omega_N \)
- Statistical ensemble: \(P(\omega) \)
- Macrostate: \(M_N(\omega) \)
- Macrostate distribution:

\[P(M_N = m) = \sum_{\omega : M_N(\omega) = m} P(\omega) \]

Problems

- Calculate \(P(M_N = m) \)
- Find most probable values of \(M_N \) (= equilibrium states)
- Study fluctuations around most probable values
- Thermodynamic limit \(N \to \infty \)
Equilibrium large deviations

Microcanonical

Einstein (1910)

\[P_u(M_N = m) = e^{S(u,m)/k_B} \]

- Extensivity: \(S \sim N \)
- LDP:
 \[P_u(M_N = m) \approx e^{-NI_u(m)} \]

Canonical

Landau (1937)

\[P_\beta(M_N = m) = e^{-F(\beta,m)} \]

- Extensivity: \(F \sim N \)
- LDP:
 \[P_\beta(M_N = m) \approx e^{-NI_\beta(m)} \]

- Exponential concentration of probability
- Equilibrium states = minima and zeros of \(I \)

Maxwell distribution

- Velocity distribution:
 \[L_N(v) = \frac{\# \text{ particles with } v_i \in [v, v + \Delta v]}{N\Delta v} \]

Sanov’s Theorem

\[P_u(L_N = \rho) \approx e^{-NI_u(\rho)} \]

- Equilibrium distribution:
 \[\rho^*(v) = c v^2 e^{-\frac{mv^2}{2k_B T}} \]
Entropy and free energy

- Density of states:
 \[\Omega(u) = \# \omega \text{ with } U/N = u \]

- Large deviation form: \(\Omega(u) \approx e^{Ns(u)} \)

Gärtner-Ellis Theorem

\[s(u) = \min_{\beta} \{ \beta u - \varphi(\beta) \} \]

- Free energy:
 \[\varphi(\beta) = \lim_{N \to \infty} -\frac{1}{N} \ln Z(\beta), \quad Z(\beta) = \int d\omega \, e^{-\beta U(\omega)} \]

- \(Z(\beta) = \) partition function = generating function
- \(\varphi(\beta) = \) free energy = SCGF
- Basis of Legendre transform in thermodynamics

Sources and applications

- Finite-range systems
 Lanford (1973)
- Spin systems
 Ellis (1980s)
- Bose condensation
 Lewis (1980s)
- 2D turbulence
- Long-range systems
- Quantum systems
 Lenci, Lebowitz (2000)
- Spin glasses

- Large deviation structure
- Typical states and fluctuations
Nonequilibrium systems

- Process: \(X_t \)
 - One or many particles
 - Markov process
 - External forces
 - Boundary reservoirs
- Trajectory: \(\{x_t\}_{t=0}^T \)
- Path distribution: \(P[x] \)
- Observable: \(A_N, T[x] \)

Problems

- Calculate \(P(A_N, T = a) \)
- Find most probable values of \(A_N, T \) (= stationary states)
- Study fluctuations around typical values
- Scaling limits:
 \[
 N \to \infty \quad T \to \infty \quad \text{noise} \to 0
 \]

Example: Pulled Brownian particle

- Glass bead in water
- Laser tweezers
- Langevin dynamics:
 \[
 m \ddot{x}(t) = -\alpha \dot{x} - k [x(t) - vt] + \xi(t)
 \]
- Fluctuating work:
 \[
 W_T = \Delta U + Q_T
 \]

LDP

\[
P(W_T = w) \approx e^{-TI(w)}
\]

Fluctuation relation

\[
\frac{P(W_T = w)}{P(W_T = -w)} = e^{Tcw}
\]
Applications

- Driven nonequilibrium systems
- Interacting particle models
 - Current, density fluctuations
 - Macroscopic, hydrodynamic limit
- Thermal activation
 - Kramers escape problem
- Disordered systems
- Multifractals
- Chaotic systems
- Quantum systems

- Exponentially rare fluctuations
- Exponential concentration of typical states
- Same theory for equilibrium and nonequilibrium systems

Summary

- Random variables — ensembles — stochastic systems
- Most probable values — equilibrium states — typical states
- Fluctuations — rare events
- Rate function = entropy
- Cumulant function = free energy
- Scaling limit: \(N \to \infty, T \to \infty, \epsilon \to 0 \)
- Unified language for statistical mechanics

H. Touchette
The large deviation approach to statistical mechanics
Physics Reports 478, 1-69, 2009

www.physics.sun.ac.za/~htouchette

Prochain exposé

- Markov processes conditioned on large deviations
- When a fluctuation happens, how does it happen?