## Anisotropic, adaptive finite elements

Marco Picasso

Institut de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Collaboration with

Erik Burman, Lausanne

Luca Formaggia, Stefano Micheletti, Simona Perotto, Politecnico di Milano

### Example of strongly anisotropic mesh

• Boundary layer 0.0001, 241 vertices, asp. ratio  $\geq 10^4$ .



• Same accuracy with isotropic, adaptive finite elements :  $O(10\ 000)$  vertices !

# Example of strongly anisotropic mesh



Zoom 10 000x

# Anisotropic a posteriori error estimates and anisotropic, adaptive finite elements

- Laplace problem
- Advection-diffusion
- The heat equation
- Strongly nonlinear parabolic problems arising from solidification of binary alloys (dendrites, cristal growth)

# Laplace problem

• Find  $u:\Omega \to \mathbb{R}$  such that

$$egin{array}{ll} -\Delta u = f & ext{ in } \Omega, \ u = 0 & ext{ on } \partial \Omega. \end{array}$$

### Laplace problem

• Find  $u: \Omega \to \mathbb{R}$  such that

$$egin{array}{ll} -\Delta u = f & ext{ in } \Omega, \ u = 0 & ext{ on } \partial \Omega. \end{array}$$

- Let  $\mathcal{T}_h$  be a mesh of  $\Omega$  into triangles with diameter less than h.
- Find  $u_h \in V_h$  (continuous, piecewise linears) such that, forall  $v_h \in V_h$

$$\int_{\Omega} \nabla u_h \cdot \nabla v_h = \int_{\Omega} f v_h.$$

## Adaptive criteria : a posteriori error estimates

• u solution of the exact problem,  $u_h$  finite element solution,  $e = u - u_h$ .

#### Adaptive criteria : a posteriori error estimates

- u solution of the exact problem,  $u_h$  finite element solution,  $e = u u_h$ .
- A priori error estimates : if u is smooth,  $\exists C(u, a \text{spect ratio}), \forall h$

 $\int_{\Omega} |\nabla e|^2 \le Ch^2$ 

### Adaptive criteria : a posteriori error estimates

- u solution of the exact problem,  $u_h$  finite element solution,  $e = u u_h$ .
- A priori error estimates : if u is smooth,  $\exists C(u, aspect ratio)$ ,  $\forall h$

 $\int_{\Omega} |\nabla e|^2 \le Ch^2$ 

• A posteriori error estimates :  $\exists C(aspect ratio), \forall h$ 

$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K^2(u_h, K, data)$$

• Error estimator : 
$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Error estimator : 
$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Error estimator is equivalent to the true error :  $\exists C_1, C_2, \forall h$ 

$$C_1 \sum_{K \in \mathcal{T}_h} \eta_K^2 \le \int_{\Omega} |\nabla e|^2 \le C_2 \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Error estimator : 
$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Error estimator is equivalent to the true error :  $\exists C_1, C_2$ ,  $\forall h$ 

$$C_1 \sum_{K \in \mathcal{T}_h} \eta_K^2 \le \int_{\Omega} |\nabla e|^2 \le C_2 \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Quality of the error estimator : effectivity index  $ei = \frac{\text{estimated error}}{\text{true error}}$ .

• Error estimator : 
$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Error estimator is equivalent to the true error :  $\exists C_1, C_2, \forall h$ 

$$C_1 \sum_{K \in \mathcal{T}_h} \eta_K^2 \le \int_{\Omega} |\nabla e|^2 \le C_2 \sum_{K \in \mathcal{T}_h} \eta_K^2.$$

• Quality of the error estimator : effectivity index  $ei = \frac{\text{estimated error}}{\text{true error}}$ .

• Asymptotically equivalent error estimator :  $ei \xrightarrow[h \to 0]{} 1$ .

#### A posteriori error estimators : example 1

 Isotropic, residual-based, explicit a posteriori error estimator (Baranger El-Amri M2AN 1991, Babuska Duran Rodriguez SIAM Numer. Anal. 1992)

$$\int_{\Omega} |\nabla e|^2 \le C \sum_{K \in \mathcal{T}_h} \left( h_K^2 \int_K (f + \Delta u_h)^2 + \frac{1}{2} h_K \int_{\partial K} \left[ \frac{\partial u_h}{\partial n} \right]^2 \right).$$

• Equivalent to the true error (the effectivity index depends on the mesh aspect ratio).

# Numerical results (isotropic, residual-based, explicit err. est.)



# Numerical results (isotropic, residual-based, explicit err. est.)



|  | h1-h2           | error | ei   |
|--|-----------------|-------|------|
|  | 0.01 - 0.01     | 1.36  | 4.71 |
|  | 0.005 - 0.005   | 0.69  | 4.64 |
|  | 0.0025 - 0.0025 | 0.35  | 4.74 |

# Numerical results (isotropic, residual-based, explicit err. est.)



| h1 - h2         | error | ei   | h1 - h2        | error | ei   |
|-----------------|-------|------|----------------|-------|------|
| 0.01 - 0.01     | 1.36  | 4.71 | 0.005 - 0.04   | 0.65  | 3.2  |
| 0.005 - 0.005   | 0.69  | 4.64 | 0.0025 - 0.02  | 0.33  | 13.4 |
| 0.0025 - 0.0025 | 0.35  | 4.74 | 0.00125 - 0.01 | 0.16  | 13.6 |

### A posteriori error estimators : example 2

• Zienkiewicz-Zhu (ZZ) error estimator (post-processing) : From  $\nabla u_h$ , compute values at nodes  $\rightarrow Gu_h$ .



#### A posteriori error estimators : example 2

• Zienkiewicz-Zhu (ZZ) error estimator (post-processing) : From  $\nabla u_h$ , compute values at nodes  $\rightarrow Gu_h$ .



• Then  $\eta^{ZZ} = \left( \int_{\Omega} |\nabla u_h - Gu_h|^2 \right)^{1/2}$  is asymptotically exact on parallel meshes (Rodriguez NMPDE 1994, Ainsworth Oden CMAME 1997).





| h1 - h2         | error | ei   |
|-----------------|-------|------|
| 0.01 - 0.01     | 1.36  | 0.81 |
| 0.005 - 0.005   | 0.69  | 0.92 |
| 0.0025 - 0.0025 | 0.35  | 0.97 |



| h1 - h2         | error | ei   | h1-h2          | error | ei   |
|-----------------|-------|------|----------------|-------|------|
| 0.01 - 0.01     | 1.36  | 0.81 | 0.005 - 0.04   | 0.65  | 0.94 |
| 0.005 - 0.005   | 0.69  | 0.92 | 0.0025 - 0.02  | 0.33  | 0.98 |
| 0.0025 - 0.0025 | 0.35  | 0.97 | 0.00125 - 0.01 | 0.16  | 0.99 |



| h1-h2           | error | ei   | h1 - h2        | error | ei   |
|-----------------|-------|------|----------------|-------|------|
| 0.01 - 0.01     | 1.36  | 0.81 | 0.005 - 0.04   | 0.65  | 0.94 |
| 0.005 - 0.005   | 0.69  | 0.92 | 0.0025 - 0.02  | 0.33  | 0.98 |
| 0.0025 - 0.0025 | 0.35  | 0.97 | 0.00125 - 0.01 | 0.16  | 0.99 |

• Open question : why is ZZ asymptotically exact on some non-parallel meshes ?

• Goal : to extend the explicit, residual-based error estimator to strongly anisotropic meshes.

• Goal : to extend the explicit, residual-based error estimator to strongly anisotropic meshes. Thm :  $\exists C > 0$  (independent on the mesh aspect ratio),  $\forall h$ 

$$\int_{\Omega} |\nabla e|^2 \leq C \sum_{K \in \mathcal{T}_h} \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right) \\ \times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right)^{1/2}.$$

• Goal : to extend the explicit, residual-based error estimator to strongly anisotropic meshes. Thm :  $\exists C > 0$  (independent on the mesh aspect ratio),  $\forall h$ 

$$\int_{\Omega} |\nabla e|^2 \leq C \sum_{K \in \mathcal{T}_h} \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right) \\ \times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right)^{1/2}.$$

• 
$$G_K(e) = \begin{pmatrix} \int_K \left(\frac{\partial e}{\partial x_1}\right)^2 & \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} \\ \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} & \int_K \left(\frac{\partial e}{\partial x_2}\right)^2 \end{pmatrix}$$

• Goal : to extend the explicit, residual-based error estimator to strongly anisotropic meshes. Thm :  $\exists C > 0$  (independent on the mesh aspect ratio),  $\forall h$ 

$$\int_{\Omega} |\nabla e|^2 \leq C \sum_{K \in \mathcal{T}_h} \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right) \\ \times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right)^{1/2}.$$

• 
$$G_K(e) = \begin{pmatrix} \int_K \left(\frac{\partial e}{\partial x_1}\right)^2 & \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} \\ \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} & \int_K \left(\frac{\partial e}{\partial x_2}\right)^2 \end{pmatrix}$$

•  $\lambda_{1,K}$  ?  $\lambda_{2,K}$  ?  $\mathbf{r}_{1,K}$  ?  $\mathbf{r}_{2,K}$  ? How to approach  $G_K(e)$  ?





• 
$$\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K,$$



•  $\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K$ , s. v. d.  $M_K = R_K^T \Lambda_K P_K$ 



• 
$$\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K$$
, s. v. d.  $M_K = R_K^T \Lambda_K P_K$   
•  $R_K = \begin{pmatrix} \mathbf{r}_{1,K}^T \\ \mathbf{r}_{2,K}^T \end{pmatrix}$ 



• 
$$\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K,$$
 s. v. d.  $M_K = R_K^T \Lambda_K P_K$   
•  $R_K = \begin{pmatrix} \mathbf{r}_{1,K}^T \\ \mathbf{r}_{2,K}^T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ 



• 
$$\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K,$$
 s. v. d.  $M_K = R_K^T \Lambda_K P_K$   
•  $R_K = \begin{pmatrix} \mathbf{r}_{1,K}^T \\ \mathbf{r}_{2,K}^T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  and  $\Lambda_K = \begin{pmatrix} \lambda_{1,K} & 0 \\ 0 & \lambda_{2,K} \end{pmatrix}$ 



• 
$$\mathbf{x} = T_K(\hat{\mathbf{x}}) = M_K \hat{\mathbf{x}} + \mathbf{t}_K,$$
 s. v. d.  $M_K = R_K^T \Lambda_K P_K$   
•  $R_K = \begin{pmatrix} \mathbf{r}_{1,K}^T \\ \mathbf{r}_{2,K}^T \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$  and  $\Lambda_K = \begin{pmatrix} \lambda_{1,K} & 0 \\ 0 & \lambda_{2,K} \end{pmatrix} = \begin{pmatrix} H & 0 \\ 0 & h \end{pmatrix}$ 

• Recall that

$$\int_{\Omega} |\nabla e|^2 \leq C \sum_{K \in \mathcal{T}_h} \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right) \\ \times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right)^{1/2}.$$

• How to approach 
$$G_K(e) = \begin{pmatrix} \int_K \left(\frac{\partial e}{\partial x_1}\right)^2 & \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} \\ \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} & \int_K \left(\frac{\partial e}{\partial x_2}\right)^2 \end{pmatrix}$$

• Recall that

$$\int_{\Omega} |\nabla e|^2 \leq C \sum_{K \in \mathcal{T}_h} \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right) \\ \times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right)^{1/2}.$$

• How to approach 
$$G_K(e) = \begin{pmatrix} \int_K \left(\frac{\partial e}{\partial x_1}\right)^2 & \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} \\ \int_K \frac{\partial e}{\partial x_1} \frac{\partial e}{\partial x_2} & \int_K \left(\frac{\partial e}{\partial x_2}\right)^2 \end{pmatrix}$$
?

• Zienkiewicz-Zhu (ZZ) error estimator 
$$\int_K \left(\frac{\partial e}{\partial x_1}\right)^2 \to \int_K \left(\frac{\partial u_h}{\partial x_1} - (Gu_h)_1\right)^2$$
.
# An anisotropic error indicator based on ZZ error estimator



# An anisotropic error indicator based on ZZ error estimator



|  | h1-h2           | error | ei   |
|--|-----------------|-------|------|
|  | 0.01 - 0.01     | 1.36  | 2.22 |
|  | 0.005 - 0.005   | 0.69  | 2.42 |
|  | 0.0025 - 0.0025 | 0.35  | 2.54 |

## An anisotropic error indicator based on ZZ error estimator



|  | h1 - h2         | error | ei   | h1-h2          | error | ei   |
|--|-----------------|-------|------|----------------|-------|------|
|  | 0.01 - 0.01     | 1.36  | 2.22 | 0.005 - 0.04   | 0.65  | 2.43 |
|  | 0.005 - 0.005   | 0.69  | 2.42 | 0.0025 - 0.02  | 0.33  | 2.62 |
|  | 0.0025 - 0.0025 | 0.35  | 2.54 | 0.00125 - 0.01 | 0.16  | 2.68 |

# Anisotropic interpolation estimates (Formaggia Perotto, Numer. Math. 2001)

Isotropic Clément

$$\|v - R_h v\|_{L^2(K)}^2 \le C(\frac{h_K}{\rho_K}) h_K^2 \|\nabla v\|_{L^2(\Delta K)}^2$$



# Anisotropic interpolation estimates (Formaggia Perotto, Numer. Math. 2001)

• Isotropic Clément

$$|v - R_h v||_{L^2(K)}^2 \le C(\frac{h_K}{\rho_K}) h_K^2 ||\nabla v||_{L^2(\Delta K)}^2$$



• Anisotropic Clément

 $\begin{aligned} \|v - R_h v\|_{L^2(K)} &\leq C(\hat{K}) \\ \left(\lambda_{1,K}^2 \left(\mathbf{r}_{1,K}^T G_K(v) \mathbf{r}_{1,K}\right) &\lambda_{2,K} \right) \\ &+ \lambda_{2,K}^2 \left(\mathbf{r}_{2,K}^T G_K(v) \mathbf{r}_{2,K}\right) \end{aligned} , \qquad \lambda_{1,K} \end{aligned}$ 

# Anisotropic interpolation estimates (Formaggia Perotto, Numer. Math. 2001)

Isotropic Clément

$$|v - R_h v||_{L^2(K)}^2 \le C(\frac{h_K}{\rho_K}) h_K^2 ||\nabla v||_{L^2(\Delta K)}^2$$



• Anisotropic Clément

 $\begin{aligned} \|v - R_h v\|_{L^2(K)} &\leq C(\hat{K}) \\ \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(v) \mathbf{r}_{1,K} \right) \\ + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(v) \mathbf{r}_{2,K} \right) \right), \end{aligned} \qquad \lambda_{2,K} \qquad \qquad \lambda_{2,K} \qquad \qquad \mathbf{r}_{1,K} \\ \lambda_{1,K} \\ \end{aligned}$ 

• Optimality : 
$$v(x_2)$$
,  $\mathbf{r}_{1,K} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ ,  $\mathbf{r}_{2,K} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ,  $\lambda_{1,K} = 1$ ,  $\lambda_{2,K} = h$ .

• Goal : find  $\mathcal{T}_h$  s.t. 0.75  $TOL \leq \frac{\left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}}{\left(\int_{\Omega} |\nabla u_h|^2\right)^{1/2}} \leq 1.25 \ TOL.$ 

• Goal : find 
$$\mathcal{T}_h$$
 s.t.  $0.75 \ TOL \leq \frac{\left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}}{\left(\int_{\Omega} |\nabla u_h|^2\right)^{1/2}} \leq 1.25 \ TOL.$ 

• Sufficient condition :  $0.75^2 TOL^2 \int_K |\nabla u_h|^2 \le \eta_K^2 \le 1.25^2 TOL^2 \int_K |\nabla u_h|^2$ 

• Goal : find 
$$\mathcal{T}_h$$
 s.t. 0.75  $TOL \leq \frac{\left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}}{\left(\int_{\Omega} |\nabla u_h|^2\right)^{1/2}} \leq 1.25 \ TOL.$ 

• Sufficient condition :  $0.75^2 TOL^2 \int_K |\nabla u_h|^2 \le \eta_K^2 \le 1.25^2 TOL^2 \int_K |\nabla u_h|^2$ 

• with 
$$\eta_K^4 = \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right)^2$$
  
  $\times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right).$ 

• Goal : find 
$$\mathcal{T}_h$$
 s.t. 0.75  $TOL \leq \frac{\left(\sum_{K \in \mathcal{T}_h} \eta_K^2\right)^{1/2}}{\left(\int_{\Omega} |\nabla u_h|^2\right)^{1/2}} \leq 1.25 \ TOL.$ 

• Sufficient condition :  $0.75^2 TOL^2 \int_K |\nabla u_h|^2 \le \eta_K^2 \le 1.25^2 TOL^2 \int_K |\nabla u_h|^2$ 

• with 
$$\eta_K^4 = \left( \|f + \Delta u_h\|_{L^2(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_h}{\partial n} \right] \right\|_{L^2(\partial K)} \right)^2$$
  
  $\times \left( \lambda_{1,K}^2 \left( \mathbf{r}_{1,K}^T G_K(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^2 \left( \mathbf{r}_{2,K}^T G_K(e) \mathbf{r}_{2,K} \right) \right).$ 

 $h_{1,P}$ 

 $h_{2,P}$ 

The BL2D mesh generator (INRIA, Borouchaki, Laug)

# Adaptive meshes for the Laplace problem



Initial  $10 \times 10$  mesh

#### Adaptive meshes for the Laplace problem



TOL = 0.25: adapted mesh after 30 mesh generations, 145 vertices

#### Adaptive meshes for the Laplace problem



TOL = 0.25: adapted mesh after 30 mesh generations, 145 vertices (zoom)

• Find  $u: \Omega \to \mathbb{R}$  such that

$$-\epsilon \Delta u + \mathbf{a} \cdot \nabla u = f \qquad \text{in } \Omega,$$
  
 $u = 0 \qquad \text{on } \partial \Omega$ 

• Find  $u:\Omega \to \mathbb{R}$  such that

$$-\epsilon \Delta u + \mathbf{a} \cdot 
abla u = f \qquad ext{in } \Omega,$$
  
 $u = 0 \qquad ext{on } \partial \Omega$ 

• Continuous, piecewise linear, stabilized finite elements

• Find  $u:\Omega \to \mathbb{R}$  such that

$$-\epsilon \Delta u + \mathbf{a} \cdot \nabla u = f \quad \text{in } \Omega,$$
  
 $u = 0 \quad \text{on } \partial \Omega$ 

- Continuous, piecewise linear, stabilized finite elements
- Question : what is the stabilization coefficient on strongly anisotropic meshes ?

• Find  $u:\Omega \to \mathbb{R}$  such that

$$-\epsilon \Delta u + \mathbf{a} \cdot \nabla u = f \quad \text{in } \Omega,$$
  
 $u = 0 \quad \text{on } \partial \Omega$ 

- Continuous, piecewise linear, stabilized finite elements
- Question : what is the stabilization coefficient on strongly anisotropic meshes ?
- $\Omega = (0,1)^2$ ,  $\epsilon = 0.0001$ ,  $a = (2,1)^T$ , f = 0, 241 vertices, asp. ratio  $\geq 10^4$ .



• Find  $u: \Omega \times (0,T) \to \mathbb{R}$  such that

$$\frac{\partial u}{\partial t} - \Delta u = f \qquad \text{in } \Omega \times (0,T),$$

plus initial and boundary conditions.

• Find  $u: \Omega \times (0,T) \to \mathbb{R}$  such that

$$\frac{\partial u}{\partial t} - \Delta u = f \qquad \text{ in } \Omega \times (0,T),$$

plus initial and boundary conditions.

• For n = 1, ..., N, find  $u_h^n \in V_h$  such that, for all  $v \in V_h$ 

$$\frac{1}{\tau} \int_{\Omega} (u_h^n - u_h^{n-1}) v dx + \int_{\Omega} \nabla u_h^n \cdot \nabla v dx = \int_{\Omega} f^n v dx.$$

• Find  $u: \Omega \times (0,T) \to \mathbb{R}$  such that

$$\frac{\partial u}{\partial t} - \Delta u = f \qquad \text{ in } \Omega \times (0,T),$$

plus initial and boundary conditions.

• For n = 1, ..., N, find  $u_h^n \in V_h$  such that, for all  $v \in V_h$ 

$$\frac{1}{\tau} \int_{\Omega} (u_h^n - u_h^{n-1}) v dx + \int_{\Omega} \nabla u_h^n \cdot \nabla v dx = \int_{\Omega} f^n v dx.$$

• 
$$u_{h\tau}(x,t) = \frac{t-t^{n-1}}{\tau} u_h^n(x) + \frac{t^n-t}{\tau} u_h^{n-1}(x)$$
 for all  $t^{n-1} \le t \le t^n$ .

• Error : 
$$e = u - u_{h\tau}$$
,  $\int_0^T \int_{\Omega} |\nabla e|^2$ .

• Error : 
$$e = u - u_{h\tau}$$
,  $\int_0^T \int_{\Omega} |\nabla e|^2$ . Estimator :

$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}} \int_{t^{n-1}}^{t^{n}} \left( \left\| f - \frac{\partial u_{h\tau}}{\partial t} + \Delta u_{h\tau} \right\|_{L^{2}(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_{h\tau}}{\partial n} \right] \right\|_{L^{2}(\partial K)} \right)$$
$$\left( \lambda_{1,K}^{2} \left( \mathbf{r}_{1,K}^{T} G_{K}(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^{2} \left( \mathbf{r}_{2,K}^{T} G_{K}(e) \mathbf{r}_{2,K} \right) \right)^{1/2}$$

• Error : 
$$e = u - u_{h\tau}$$
,  $\int_0^T \int_{\Omega} |\nabla e|^2$ . Estimator :

$$\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}} \int_{t^{n-1}}^{t^{n}} \left( \left\| f - \frac{\partial u_{h\tau}}{\partial t} + \Delta u_{h\tau} \right\|_{L^{2}(K)} + \frac{1}{2\lambda_{2,K}^{1/2}} \left\| \left[ \frac{\partial u_{h\tau}}{\partial n} \right] \right\|_{L^{2}(\partial K)} \right)$$
$$\left( \lambda_{1,K}^{2} \left( \mathbf{r}_{1,K}^{T} G_{K}(e) \mathbf{r}_{1,K} \right) + \lambda_{2,K}^{2} \left( \mathbf{r}_{2,K}^{T} G_{K}(e) \mathbf{r}_{2,K} \right) \right)^{1/2}$$

|   | h       | au        | error | ei   |
|---|---------|-----------|-------|------|
|   | 0.05    | 0.1       | 3.48  | 5.25 |
| • | 0.025   | 0.025     | 1.68  | 2.09 |
|   | 0.0125  | 0.00625   | 0.82  | 2.57 |
|   | 0.00625 | 0.0015625 | 0.42  | 2.66 |

• Adaptive finite elements : 0.75 
$$TOL \leq \frac{\left(\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_h} \eta_{n,K}^2\right)^{1/2}}{\left(\int_0^T \int_{\Omega} |\nabla u_{h\tau}|^2\right)^{1/2}} \leq 1.25 \ TOL.$$

• Adaptive finite elements : 0.75 
$$TOL \leq \frac{\left(\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}} \eta_{n,K}^{2}\right)^{1/2}}{\left(\int_{0}^{T} \int_{\Omega} |\nabla u_{h\tau}|^{2}\right)^{1/2}} \leq 1.25 \ TOL.$$

• Sufficient condition :

$$0.75^2 TOL^2 \int_{t^{n-1}}^{t^n} \int_K |\nabla u_{h\tau}|^2 \le \eta_{n,K}^2 \le 1.25^2 TOL^2 \int_{t^{n-1}}^{t^n} \int_K |\nabla u_{h\tau}|^2$$

• Adaptive finite elements : 0.75 
$$TOL \leq \frac{\left(\sum_{n=1}^{N} \sum_{K \in \mathcal{T}_{h}} \eta_{n,K}^{2}\right)^{1/2}}{\left(\int_{0}^{T} \int_{\Omega} |\nabla u_{h\tau}|^{2}\right)^{1/2}} \leq 1.25 \ TOL.$$

• Sufficient condition :

$$0.75^2 TOL^2 \int_{t^{n-1}}^{t^n} \int_K |\nabla u_{h\tau}|^2 \le \eta_{n,K}^2 \le 1.25^2 TOL^2 \int_{t^{n-1}}^{t^n} \int_K |\nabla u_{h\tau}|^2$$

| • | TOL    | au        | error | ei   |
|---|--------|-----------|-------|------|
|   | 0.25   | 0.025     | 0.55  | 2.56 |
|   | 0.125  | 0.00625   | 0.26  | 2.86 |
|   | 0.0625 | 0.0015625 | 0.13  | 2.88 |

## Adaptive meshes for the heat problem



TOL = 0.25, 40 times steps : first time step

## Adaptive meshes for the heat problem



TOL = 0.25, 40 times steps : last time step

#### Adaptive meshes for the heat problem



TOL = 0.25, 40 times steps : last time step (zoom)

# Strongly nonlinear parabolic problems : Solidification of a binary alloy

- with Lab. Métallurgie Physique, M. Rappaz A. Jacot.
- Phase field model. Find  $c, \phi : \Omega \times (0, T) \to \mathbb{R}$  such that

## Solidification : from macro to meso scale



## Solidification : from meso to micro scale



# Phase field with low anisotropy



# Phase field with low anisotropy





# Phase field with strong anisotropy





#### The multiphase field model



• Unknowns :  $\phi_1$ ,  $\phi_2$ ,  $\phi_3$ ,  $\lambda$  (Lagrange multiplier  $\phi_1 + \phi_2 + \phi_3 = 1$ ) and c.
## The multiphase field model



## The multiphase field model



## **Conclusions and perpectives**

- Use of anisotropic, adaptive grids : same accuracy with fewer vertices.
- Robustness ? Lower bound ? ZZ ?
- Systems of p.d.e ? (Stokes)
- Optimal control
- Anisotropic meshes in 3D ?