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Example of Level Sets Evolution



Main advantages

• Handles automatically 
topological changes

• Robust mathematical 
theory behind –
viscosity solutions

• Stable numerical 
schemes

• Natural extensions to 
higher dimensions



Applications to Computer Vision

• Mean Curvature Motion
• Shape Optimisation

– Active Contours
– Active Regions
– Adaptative Active Regions



Mean Curvature Motion
Isotropic smoothing 
of a curve in the 
Euclidian plane

Interface Evolution

Corresponding 
implicit function 
evolution



Active Contours
Energy to minimize

Euler-Lagrange equation

Corresponding evolution of 
the implicit function



Active Regions

Paragios Deriche 1999

Feature extraction step – supervised

Energy to minimize



Unsupervised Active Regions

Rousson Brox Deriche 2003

Segment an image in 2 regions, called generically the interior and the 
exterior, based on a single Gaussian distribution assumption both of the 
inside and the outside.





Evolution 
sometimes 
gets stuck in 
local minima



Adding Stochastic Perturbations to 
Shape Optimization Algorithms

• SAC (Stochastic Active Contours)
– Single Gaussian Model
– Gaussian Mixtures

• Mathematical Elements
– General Theory
– Noise
– Implementation



Shape Optimization problems through 
Simulated Annealing 

Stochastic Active Contours (SAC)

Drawbacks of classical Active Contours/Regions 
methods

• Sometimes get stuck in local minima;
• Euler-Lagrance equations do not always provide 

explicit gradients.



Single Gaussian Model SAC
Adaptative Segmentation [Rousson Deriche 2002] 

+
Simulated Annealing through

Stochastic Mean Curvature Motion (SMCM)
Segment an image in 2 regions, called generically the interior and the 
exterior, based on a single Gaussian distribution assumption both of the 
inside and the outside.



Euler-Lagrange simplifies to [Rousson Deriche]

Standard approach sometimes gets stuck in local 
minima, while SMCM does not!

Empirical evidence shows 
that SMCM is more robust 
wrt to interface 
initialization



Test Image:

2 regions modeled by 2 unknown Gaussian 
distributions with 

• Same mean

• Different variances

Test Image with 
Initial Contour



Standard algorithm SAC



Deterministic Contour 
Evolution SAC Evolution



Gaussian Mixtures SAC
• Extend the previous algorithm for the case when region statistics are 

modeled by a mixture of Gaussian distributions with parameters

• The model dynamically calculates the optimal number of Gaussian 
distributions and then tries to fit the weights of those distributions 
using some algorithm (e.g. k-means).

• In this case, the k-means algorithm acts like a black box, due to the 
complex dependency 

• Cannot obtain an explicit form of the EL equation, but only the 
derivative of the energy wrt the shape at constant parameters.



Gaussian Mixtures – SAC

Deterministic Evolution with 
Approximated Gradient

SAC Evolution with 
Approximated Gradient









Why do we need maths now that we 
have results?

• Well posedness …
• Geometric properties of stochastic evol.



Mathematical Theory

• Stochastic Mean Curvature Motion
• Viscosity Solutions for SPDEs
• Numerical Scheme used (Ito and 

Stratonovitch)
• Geometric properties
• Open Questions



Stochastic Mean Curvature Motion - SMCM

Notation
Domain     
Curve

Stochastic
Mean Curvature Motion

White Noise



Intrinsic property
SMCM

Level Sets  SPDE

The curve evolution should be invariant 
wrt the choice of the implicit function.



Not intrinsic!

The Itô form of the level sets SPDE is not intrinsic!
• Level Sets (Stratonovich)

The Stratonovich form of the SPDE satisfies the intrinsic property!



Well Posedness for Space-Independent Stochastic 
Hamiltonians

• Based on a series of articles of P.L. Lions and Souganidis

Theorem The equation (SPDE) admits an a.s. unique stochastic 
viscosity solution.

Theorem The solutions of the approximated PDE converge a.s. 
locally uniformly on to the solution of (SPDE).



Noise
• Theoretical difficulties when working with white noise in space.
• Colored Noise in space :  distribute noise on a discrete grid        at each 

moment in time

Noise – Scale defined by the distance between the      ‘s





Implementation
• Explicit scheme for the Ito evolution

• Narrow Band method
• The theory applies without problems in 

3D



Implementation Details
Stratonovitch Drift 

Adding the above drift to the scheme before yields 
convergence towards the Stratonovitch equation



Geometric Properties

Page under 
construction!...



Open Questions

• Do not have a theorem on the time-
convergence of the scheme (Ito or 
Stratonovitch) when the stochastic 
Hamiltonian depends on x

• Presence of artifacts in the evolution due 
to the presence of noise (when not colored 
enough)? (implementation dependent)



Example of artifacts



Artifacts : implementation details

• Narrow Band Method
• Implicit function re-initialization
• Distance-function preserving schemes
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