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In 1905, Lorentz proposed to describe the motion of electrons in metals by
the methods of kinetic theory

•Gas of electrons described by its phase-space density f ≡ f(t, x, v)

(At time t, there are f(t, x, v)dxdv electrons in a phase-space volume
dxdv centered at (x, v), x = position, v = velocity)

•Electron-electron collisions neglected (unlike in the kinetic theory of gases)

•Only the collisions between electrons and metallic atoms are considered

⇒ LINEAR KINETIC EQUATION

6= the Boltzmann equation in the kinetic theory of gases is NONLINEAR



The Lorentz kinetic model

•Equation for the phase-space density of electrons f ≡ f(t, x, v):

(∂t + v · ∇x + 1
mF (t, x) · ∇v)f(t, x, v) = Natr

2
at|v|C(f(t, x, ·))(v)

where C is the Lorentz collision integral

C(φ)(v) =
∫

|ω|=1
ω·v>0

(

φ(Rωv) − φ(v)
)

cos(v, ω)dω

with Rω denoting the specular reflection: Rω(v) = v − 2(v · ω)ω

Notation: m =mass of the electron;

•F ≡ F (t, x) is the electric force (known);

•Nat, rat density, radius of metallic atoms.



It is a mesoscopic model (between microscopic and macroscopic);

•it is a single-particle phase-space equation; but

•a statistical description and not a first principle

Probabilistic interpretation

Direction of each particle jumps at exponentially distributed times, so that

•jump times, and jumps in direction are independent;
⇒ the Lorentz collision integral C

•between two jumps, each particle is driven by the electric force field F

⇒ the streaming operator ∂t + v · ∇x + 1
mF · ∇v



The microscopic model (Lorentz gas)

•Periodic configuration of spherical obstacles

Zr = {x ∈ RD | dist(x,ZD) > r} , Yr = Zr/Z
D

2r1



•Particles move freely between the obstacles

ẋ(t) = v(t) , v̇(t) = 0 , if x(t) ∈ Zr

and are reflected upon impinging on the surface of the obstacles

v(t+) = Rnx(t)
v(t−) , whenever x(t) ∈ ∂Zr

(with nx the inward unit normal at x ∈ ∂Zr).

x(t)

v(t−0)

v(t+0)

x(t)n



•The prescription above define a (broken) flow

(x, v) 7→ (Xr
t (x, v), V r

t (x, v))

•Define then a phase-space density (propagated by the flow above)

fǫ(t, x, v) ≡ f in(ǫXr
t/ǫ(x/ǫ, v), V r

t (x/ǫ, v)) , with r = ǫ
1

D−1

Question

Does fǫ ⇀ f , the solution of the Lorentz kinetic equation, as ǫ → 0?

•Proved for a Poisson distribution of obstacles (Gallavotti 1972)

•See also Spohn (CMP 1978), Boldrighini-Bunimovich-Sinai (JSP 83)



Distribution of free path lengths

•Free path length (i.e. exit time)

τr(x, v) = inf{t > 0 |x + tv ∈ ∂Zr}

x v

(x,v)rτ

•For (x, v) uniformly distributed on Zr × SD−1

Φr(t) = Prob{(x, v) | τr(x, v) > t}



Theorem. There exists 0 < C− < C+ such that, for all t > 1/rD−1

C−

trD−1
≤ Φr(t) ≤

C+

trD−1

Upper bound + lower bound for D = 2: Bourgain-G-Wennberg CMP 1998

Lower bound for D ≥ 3: G-Wennberg M2AN 2000.

⇒ 〈τr〉 =
∫

Yr×SD−1
τr(x, v) dxdv

|Yr||SD−1|
= +∞ infinite mean free path
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Theorem. There exists 0 < C− < C+ such that, for all t > 1/rD−1

C−

trD−1
≤ Φr(t) ≤

C+

trD−1

Upper bound + lower bound for D = 2: Bourgain-G-Wennberg CMP 1998

Lower bound for D ≥ 3: G-Wennberg M2AN 2000.

⇒ 〈τr〉 =
∫

Yr×SD−1
τr(x, v) dxdv

|Yr||SD−1|
= +∞ infinite mean free path

Theorem. (Caglioti-G CMP 2003) For D = 2,

lim
r→0+

1

| ln ǫ|

∫ 1/4

ǫ
Φr(t/r)

dr

r
=

2

π2t
+ O(1/t2)



Non convergence to the Lorentz kinetic equation

For n ≥ 1 and r = n
− 1

D−1 , and for an initial phase space density ρin ≡

ρin(x) ≥ 0 independent of v, set

fn(t, x, v) = ρin(1
nXr

nt(nx, v))

Theorem. For some ρin ∈ L∞(TD), neither fn nor any subsequence
thereof converges in L∞ weak-* to the solution of

(∂t + v · ∇x)f = C(f) on RD × SD−1, f
∣

∣

∣

t=0
= ρin

where C is the Lorentz collision integral

C(φ)(v) =
∫

|ω|=1
ω·v>0

(

φ(Rωv) − φ(v)
)

cos(v, ω)dω



•The same is true if the Lorentz collision integral is replaced with any op-
erator of the form

C(f) = σ
∫

SD−1
p(v, v′)(f(v′) − f(v))dv′

where σ > 0 and the function p is the kernel of a compact operator on
L2(SD−1) that satisfies

p(v, v′) = p(v′, v) ≥ 0 ,
∫

SD−1
p(v, v′)dv′ = 1



Method of proof

•Spectral theory of transport operators (Ukai-Ghidouche-Point JMPA 1977)

‖f(t) − 〈ρin〉‖L2(TD×SD−1) ≤ ce−γt‖ρin‖L2(TD)

•Pointwise inequality

fn(t, x, v) ≥ ρin(x − tv)1τr(nx,v)≥nt

•If some subsequence fn′ ⇀ f in L∞ weak-*,

‖f(t, ·, ·)‖L2
x,ω

≥ ‖ρin‖L2
x
Φr(nt) ≥

C−‖ρ
in‖L2

x

ntrD−1
=

C−‖ρ
in‖L2

x

t

•Concentration argument: pick ρin
δ such that

‖ρin
δ ‖L2(TD) = 1 while 〈ρin

δ 〉 → 0 as δ → 0+

⇒ Contradiction with the spectral bound



Case of absorbing obstacles, D = 2

•Pbm: to find the limit as r → 0+ of gr s.t.

(∂t + v · ∇x)gr = 0 , x ∈ rZr , v ∈ SD−1 ,

gr(t, x, v) = 0 , x ∈ ∂(rZr) , v · nx > 0 ,

gr

∣

∣

∣

t=0
= gin

∣

∣

∣

rZr
.

Fundamental domain of rZr

2
2r

r



Theorem. (Caglioti-G CMP 2003) Let gin ≥ 0 be in C1
c (R2 × S1). For

each χ ∈ C1
c (R2 × S1),

lim
r→0+

1

| ln r|

∫ 1/4

r
〈gr(t)χ〉

dr
r = 〈g(t)χ〉 + O(1/t2)

where

g(t, x, v) =
2gin(x − tv, v)

π2t
.

•This suggests that the limiting equation for the above model should be

∂tg + v · ∇xg + 1
t g = 0 , t > 0 , x ∈ R2 , |v| = 1 .

This, however, holds for large t only.



Method of proof

Idea no.1 Given a linear flow with irrational slope on a 2-torus with a disk
removed, what is the longest orbit of this flow? (question raised by R. Thom
in 1989).

Blank-Krikorian, IJM’93: On a 2-torus with a slit parallel to one of the
coordinate axis, there are generically 3 classes of orbits (say A, B and
C). All orbits in a given class have the same length: l(A), l(B) and l(C).
Each such length is determined by the size of the slit and the continued
fraction expansion of the slope.

•This defines a three-term partition of the 2-torus: each term of this parti-
tion is the union of all orbits of type A (resp. B and C).

•In each term of this partition, the distribution of exit times (from the 2-torus
with the slit removed) knowing the direction v is explicitly computed.



Gauss map T : (0,1) → (0,1) defined by x 7→ Tx = 1/x − [1/x]

Continued fractions For α ∈ (0,1) \ Q, one has

α = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 + . . .

with ak =

[

1

T k−1α

]

Convergents Truncated continued fractions give rational approximants

α ≃ [a1, . . . , an−1] =: pn/qn

This defines recursively two sequences of integers pn and qn

pn+1 = anpn + pn−1 , p0 = 1 , p1 = 0

qn+1 = anqn + qn−1 , q0 = 0 , q1 = 1

Error dn = (−1)n−1(qnα − pn) > 0 (signs of qnα − pn alternate)



Distribution of exit times for a given direction

•Let θ ∈ (0, π
4), α = tan θ and v = (cos θ, sin θ); set R = 2r/ cos θ;

v

Sr(v) θ

θ

r



•Let pn/qn = nth convergent and dn = nth error in the continued fraction
expansion of α.

Partition of (0,1): For In,k = [max(dn, dn−1−kdn), dn−1−(k−1)dn)

(0,1) =
⋃

n≥1

⋃

1≤k≤an

In,k

•Assume R ∈ In,k — this defines a unique pair (n, k) — and let t > 2.

•Let ψr(t, v) be the distribution of exit times for a particle moving at speed
1 in the direction v on a 2-torus punctured with a vertical slit of length R.

Then
∣

∣

∣

∣

∣

∣

ψr(t, v) −

(

1 −
R

dn−1
− t

dn

R

)

+

∣

∣

∣

∣

∣

∣

≤
4

k
1k≥t−2 .



<R< d

k=−[(dn−1−R)/dn ]

If n−1

n−d

qn qn−1+ kqn

n

slope

slope

slope

dn−1 (k−1)dn+R−

−R

t

1

0

d



Idea no.2 Given the direction v = (cos θ, sin θ), the distribution of exit
times in a 2-torus with a disk of radius r removed is obtained by comparing
2r with the errors in the continued fraction expansion of α = tan θ.

•Observe that dn(α) = αdn−1(Tα).

•Renormalization replace the problem defined by a slope α and a disk of
radius r with the analogous problem with slope Tα and a disk of radius αr.

•This suggests seeking a fixed point of this transformation, by using some
ergodic theorem where

TIME = ln( DISK SIZE )

⇒ this explains why the Cesarò mean involves the invariant measure of
the multiplicative group R∗

+, i.e. dr
r .



•The Gauss map T is ergodic on (0,1) with invariant measure

dg(α) = 1
ln 2

dα

1 + α

•Define N(α, ǫ) = inf{n ∈ N | dn(α) < ǫ}; for j = 0,1, we define

∆j(α, x) = −x − ln dN(α,e−x)+1−j(α)

Lemma. Define F (θ) =
∫ | ln θ|

0
f(| ln θ| − y,−y)dy; then, one has

lim
ǫ→0+

1

| ln ǫ|

∫ | ln ǫ|

x∗
f(∆0(α, x),∆1(α, x))dx =

12

π2

∫ 1

0

F (θ)dθ

1 + θ

Conclude by applying the Lemma to f(z1, z2) = (1 − ez2 − te−z1)+


