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In 1905, Lorentz proposed to describe the motion of electrons in metals by
the methods of kinetic theory

eGas of electrons described by its phase-space density f = f(t,z,v)

(At time ¢, there are f(t,z,v)dxdv electrons in a phase-space volume
dxdv centered at (x,v), x = position, v = velocity)

eElectron-electron collisions neglected (unlike in the kinetic theory of gases)

eOnly the collisions between electrons and metallic atoms are considered

= LINEAR KINETIC EQUATION

% the Boltzmann equation in the kinetic theory of gases is NONLINEAR



The Lorentz kinetic model

eEquation for the phase-space density of electrons f = f(t,x,v):

(8t + v - VCIZ _I_ %F(ta aj) ) V’U)f(ta 337’0) — Natrczzt|v|c(f(t7 L, >)(U)

where C is the Lorentz collision integral

(A @) = [ymr (6(Rwv) = 9(0)) cos(v, w)dw

w-v>0
with R, denoting the specular reflection: Ry, (v) = v — 2(v - w)w

Notation: m =mass of the electron:;

o' = F(t,x) is the electric force (known);

o N+, rqt density, radius of metallic atoms.



It is @ mesoscopic model (between microscopic and macroscopic);

eit is a single-particle phase-space equation; but

ea statistical description and | not a first principle

Probabilistic interpretation

Direction of each particle jJumps at exponentially distributed times, so that

ejump times, and jumps in direction are independent;
= the Lorentz collision integral C

ebetween two jumps, each particle is driven by the electric force field F

= the streaming operator 0 + v - V + %F - Vo




The microscopic model (Lorentz gas)

ePeriodic configuration of spherical obstacles

Zr = {z ¢ RP | dist(z,Z") > r}, Y, = Z./Z"

2r




eParticles move freely between the obstacles
z(t) =v(t), o@)=0, ifx(t)e Z;
and are reflected upon impinging on the surface of the obstacles
v(tT) = Rp,,,v(t7), whenever z(t) € 97,
(with n, the inward unit normal at x € 02).

v(t=0



eThe prescription above define a (broken) flow

(z,v) — (X{(z,v),V{ (z,v))

eDefine then a phase-space density (propagated by the flow above)

1

felt.2,0) = F(eX]) (2/e,0), Vi (z/e,v)),  withr = D1

Question

Does fc — f, the solution of the Lorentz kinetic equation, as ¢ — 07
eProved for a Poisson distribution of obstacles (Gallavotti 1972)

eSee also Spohn (CMP 1978), Boldrighini-Bunimovich-Sinai (JSP 83)



Distribution of free path lengths

eFree path length (i.e. exit time)

mr(z,v) = inf{t > 0|z 4+ tv € 0Z;}

T(XV)

« — v

eFor (x, v) uniformly distributed on Z, x SP—1

P (t) = Prob{(z,v) | 7r(x,v) > t}



Theorem. There exists 0 < C_ < C such that, forall ¢t > 1/rP~1

C_ Cy
t’l"D_l S CD’I“(t) S trD_l

Upper bound + lower bound for D = 2: Bourgain-G-Wennberg CMP 1998

Lower bound for D > 3: G-Wennberg M2AN 2000.

= (1r) = /Y 1 Tr(x,v)mﬁg%_” = 400 infinite mean free path
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Theorem. There exists 0 < C_ < C such that, forall ¢t > 1/rP~1

C_ Cy
t’l"D_]' S CD’I“(t) S t’}"D_l

Upper bound + lower bound for D = 2: Bourgain-G-Wennberg CMP 1998

Lower bound for D > 3: G-Wennberg M2AN 2000.

_ dxdv — A fini
= (1p) = /ersD_l 7-7~(gr:,v)|y}||sD_1| = +4oo infinite mean free path

Theorem. (Caglioti-G CMP 2003) For D = 2,

, 1
lim
r—0t | In €|

[ outm® =2 +oas



Non convergence to the Lorentz kinetic equation

1 )
Forn > 1 and » = n D-1, and for an initial phase space density p'" =

P (x) > 0 independent of v, set

fn(ta L, U) — pzn(%th(nx7 ’U))

Theorem. For some p' € L°°(TP), neither f, nor any subsequence
thereof converges in L°° weak-* to the solution of

(8 +v-Vz)f =C(f)onRP x sP~1, f‘t:O — i

where C is the Lorentz collision integral

C(A(®) = [z (9(Ruv) = (v)) cos(v, w)da

w-v>0



eThe same is true if the Lorentz collision integral is replaced with any op-
erator of the form

() =0 [, PO = f@)

where ¢ > 0 and the function p is the kernel of a compact operator on
L2(SP—1) that satisfies

p(0,0) =p(,0) 20, [ p(o,v)d =1



Method of proof

eSpectral theory of transport operators (Ukai-Ghidouche-Point IMPA 1977)

1£®) = (")l 2o sp-1y < ce” ™|l 2(pp)y
ePointwise inequality

fn(t7 L U) > pzn(x - tv)]‘Tr(n:C,’U)Znt
olf some subsequence f,, — f in L weak-*,

C_llp™2  C-llp™ 2

AU ')”L%,w > (o™ 2 ®r(nt) > i D—1 ¢

eConcentration argument: pick p¥"™ such that

105 | 2(ppy = 1 while (p§") — 0as s — 07

= Contradiction with the spectral bound




Case of absorbing obstacles, D = 2

ePbm: to find the limit as » — 0 of g, s.t.

(Ot +v-Vz)gr =0, xze€r”,, vesP1,
gr(t,z,v) =0, x€d(rZ;), v-ng>0,
—
thZO_g rZ,

Fundamental domain of »Z,




Theorem. (Caglioti-G CMP 2003) Let ¢ > 0 be in C}(R? x S1). For
each y € C1(R? x S1),

_ 1
lim
r—0+t | N 7“|

L1/4<9r(t)x>% = (g(t)x) + O(1/t)

where
2¢""(x — tv,v)
w2t .

g(t7 CC? v) —

eThis suggests that the limiting equation for the above model should be

dg+v-Veg+1ig=0, t>0, 2cR?, jv|=1.

This, however, holds |for large t only.




Method of proof

ldea no.1l | Given a linear flow with irrational slope on a 2-torus with a disk
removed, what is the longest orbit of this flow? (question raised by R. Thom
in 1989).

Blank-Krikorian, IJM'93: On a 2-torus with a slit parallel to one of the
coordinate axis, there are generically 3 classes of orbits (say A, B and
C). All orbits in a given class have the same length: I(A), I(B) and I1(C).
Each such length is determined by the size of the slit and the continued
fraction expansion of the slope.

eThis defines a three-term partition of the 2-torus: each term of this parti-
tion is the union of all orbits of type A (resp. B and ().

eIn each term of this partition, the distribution of exit times (from the 2-torus
with the slit removed) knowing the direction v is explicitly computed.



Gaussmap |T: (0,1) — (0,1) defined by z — Tx = 1/x — [1/x]

Continued fractions |For a € (0,1) \ Q, one has
1 _ 1
a=la1,ap,a3,...] = T with a;, = [W]
Tt
ai + 1
a> +
a3z + ...

Convergents | Truncated continued fractions give rational approximants

o = [CL]_, SRR a’n—l] =. pn/qn
This defines recursively two sequences of integers p, and g,

Pn+1 =anpn +Pn—1, pPo=1, p1 =0
n+1 =0anqn +qp—1, q =0, g1 =1

Error|dp, = (—=1)"1(gna — pn) > 0 (signs of gna — pr, alternate)




Distribution of exit times for a given direction

eletf € (0,%),a=tand and v = (cos,sinf); set R = 2r/ cos0;




elLet py/qn = nth convergent and d, = nth error in the continued fraction
expansion of «.

Partition of (0, 1): For I,, , = [max(dn, d,,—1 —kdn),dp_1— (k—1)dn)
(071):: LJ LJ Ink

n>11<k<an
eAssume R € I,, ;, — this defines a unique pair (n, k) —and lett > 2.

eLet 1, (t,v) be the distribution of exit times for a particle moving at speed
1 in the direction v on a 2-torus punctured with a vertical slit of length R.

Then




If d, <R< dy_i
k=—[(dp-1—R)/dy]

slope —R

slope —dj,

slope

n Yn-1 t kqn



ldea no.2 | Given the direction v = (cos#@,sin @), the distribution of exit
times in a 2-torus with a disk of radius r removed is obtained by comparing
2r with the errors in the continued fraction expansion of o = tan 6.

eObserve that d,, (o) = ad,,_1(T«).

eRenormalization replace the problem defined by a slope o« and a disk of
radius r with the analogous problem with slope T'a and a disk of radius ar.

e This suggests seeking a fixed point of this transformation, by using some
ergodic theorem where

TIME = In( DISK SIZE )

= this explains why the Cesaro mean involves the invariant measure of

. . . * . d?“
the multiplicative group R, i.e. <-.



eThe Gauss map T is ergodic on (0, 1) with invariant measure

eDefine N(a,e) = inf{n € N |dn(a) < €}; for j = 0, 1, we define

Aj(a,z) = —x—1In dN(a,e—l‘)—l—l—j(O‘)

_ | In 6|
Lemma. Define F(0) = /o f(|Iné| — vy, —y)dy; then, one has

12 (1 F(6)do

/;:n €| f(Aola,z), A1, z))de = —=

1
lim
m2Jo 146

e—0T | In €|

Conclude by applying the Lemmato f(z1,22) = (1 —e*2 —te %)y




