Semi-lagrangian schemes for first and second order Hamilton-Jacobi equations

joint work with M.Falcone, R.Ferretti, G.Russo

E.Carlini March 10, 2004

APPLICATION FOR HJ EQUATION

- Image Analysis (contour detection, shape from shading, ...)
- Front Propagation (level set method)
- Optimal Control Process

EXISTENCE and UNICITY

in the class of viscosity solution:

• Y.G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, Journal Diff. Geom., **33** (1991), 749-786.

•M.G. Crandall, H. Ishii, P.L. Lions, User's guide to viscosity solutions of second order partial differential equations

Bull. Amer. Math. Soc., 27 (1992), 1-67.

•L.C. Evans, J. Spruck, *Motion of level sets by mean curvature motion I*, Journal Diff. Geom., **33** (1991), 635-681.

OUTLINE

first order: $u_t + H(Du) = 0$

- SL scheme
- High order scheme with Weno reconstruction
- Numerical Test

second order: $u_t + H(D^2u, Du) = 0$

- SL scheme for Mean Curvature Motion codimension 1
- SL scheme for Mean Curvature Motion codimension 2
- Numerical Test

FIRST ORDER EQUATION $\begin{cases} u_t(x,t) + H(\nabla u(x,t)) = 0 \quad x \in \mathbb{R}^N, t \in [0,T] \\ u(x,0) = u_0(x) \end{cases}$

Legendre Transform : $H^*(\alpha) = \sup_{p \in \mathbb{R}^N} \{ \alpha \cdot p - H(p) \}$ $\alpha \in \mathbb{R}^N$.

$$p \to H(p)$$
 convex $\Rightarrow H^{**} = H$
 $H(\nabla u) = \sup_{\alpha \in \mathbb{R}^N} \{ \alpha \cdot \nabla u - H^*(\alpha) \}$

Hopf-Lax formula :

$$u(x,t) = \inf_{\alpha \in \mathbb{R}^N} \left\{ t \ H^*(\alpha) + u_0 \left(x - \alpha t \right) \right\}$$

NUMERICAL SOLUTION Dynamic Programming Principle

$$u(x, t + \Delta t) = \inf_{\alpha \in \mathbb{R}^N} \{ \Delta t H^*(\alpha) + u(x - \alpha \Delta t, t) \}$$

SL scheme
$$\begin{cases} u_i^{n+1} = \min_{a \in \mathbb{R}^N} \{ \Delta t H^*(a) + I[u^n](x_i - \Delta ta) \} \\ u_i^0 = u(x_i, 0). \end{cases}$$

We need to compute:

- $I[u^n](x_i \Delta ta)$ by an INTERPOLATION procedure \Rightarrow WENO
- Legendre trasform $H^*(a)$
- minimum for $a \in \mathbb{R}^N$ by PRAXIS algorithm (ftp.netlib.org)

TEST 1: two dimensional circle collapse

$$\begin{cases} v_t(x,t) + |Dv(x,t)| = 0\\ v(x,0) = \max(1 - |x|, 0), \end{cases}$$

OSHER-SETHIAN scheme						
n.it	$n.it$ Δx Δt relative L^{∞} -order relative L^1 -error CPU tip					
10	0.08	0.01	$3.35 \cdot 10^{-2}$	$2.74 \cdot 10^{-2}$	< 1s	
2	0.08	0.05	$2.14 \cdot 10^{-2}$	$1.63 \cdot 10^{-2}$	< 1s	
50	0.04	0.02	$1.85 \cdot 10^{-2}$	0.38		

Semi-Lagrangian scheme						
n.it	$n.it \Delta x \Delta t relative L^{\infty}$ -order relative L^1 -error					
10	0.08	0.01	$3.19 \cdot 10^{-2}$	$2.61 \cdot 10^{-2}$	25.69 <i>s</i>	
2	0.08	0.05	$2.00 \cdot 10^{-2}$	$1.00 \cdot 10^{-2}$	2.48 <i>s</i>	
10	0.04	0.1	$4.57 \cdot 10^{-3}$	$1.88 \cdot 10^{-2}$		

Osher Sethian scheme

Osher Sethian scheme

0.01 ——

0.01 ——

SL scheme

WENO RECOSTRUCTION

Idea: convex combination of lower order reconstruction.

$$I[V](x) = \sum_{k=1}^{n} \omega_k P_k(x).$$

 ${\cal P}_k$ are lower order Lagrange polynomials interpolating ${\cal V}$

 w_k are non linear weights, which measure how smooth the functions P_k are in x

ENO-WENO REFERENCES

S.Osher, C.W.Shu *High order essentially non oscillatory schemes for Hamilton Jacobi equation*, SIAM J.Num.Anal., 28, (1991), 907-922.

X.D.Liu, S.Osher, T.Chan *Weighted essentially non oscillatory schemes*, J. of Computational Physics, V115, (1994), 220-212.

C.Jiang, C.W.Shu *Efficient Implementation of WENO Schemes*, J. of Computational Physics, V126, (1996), 202-228.

S.Bryson, D.Levy *Central Schemes for Multi-Dimensional Hamilton Jacobi Equations*, submitted to SICS. 2n-1 WENO RECONSTRUCTION I[V](x)

Assume we have an interval 1D with a mesh structure, we'd like to reconstruct V in x

-V is known on the mesh nodes $-x \in I_j = [x_j, x_{j+1}]$

1. $S_k = \{x_{j-n+k}, ..., x_{j+k}\}\ k = 1, ...n,$ *n* stencils s.t. *x* belong to each one

2. $\Gamma = \bigcup_{k=1}^{n} S_k$

3. $P_k(x)$ polynomials of degree *n* interpolating *V* on S_k

- 4. Q(x) higher order 2n-1 polynomial on the larger stencil Γ
- 5. $C_k(x)$ linear weight s.t. $Q(x) = \sum_{k=1}^n C_k(x) P_k(x)$
- 6. β_k SMOOTHNESS INDICATOR ,

$$\beta_k = \sum_{1 \le l \le n} \int_{I_j} h^{2l-1} (D^l P_k(x))^2 dx \quad k = 1, ..., n \quad h \text{ size of } I_j$$

7. ω_k NON LINEAR WEIGHT

$$\omega_k = \frac{\tilde{\omega}_k}{\sum_{k=1}^n \tilde{\omega}_k}, \quad \tilde{\omega}_k = \frac{C_k}{(\epsilon + \beta_k)^2}$$

The final WENO reconstruction is

$$I[V](x) = \sum_{k=1}^{n} \omega_k P_k(x).$$

POSITIVITY of the LINEAR WEIGHTS $C_k(x)$

$$Q(x) = \sum_{k=1}^{n} C_k(x) P_k(x)$$
 (1)

should interpolate V on the larger stencil Γ \Rightarrow

$$C_k(x) = \gamma_k \prod_{x_l \in \Gamma \setminus S_k} (x - x_l)$$
 (2)

with γ_k unknowns to be determined. Using (2) in (1):

$$C_1(x_{j-n+1}) = 1$$

$$C_1(x_{j-n+2}) + C_2(x_{j-n+2}) = 1$$

$$\vdots$$

$$\sum_{i=1}^k C_i(x_{j-n+k}) = 1 \quad k = 1, ..., n$$

More explicitly we obtain the relation

$$\sum_{i=1}^{k} \gamma_i \prod_{x_l \in \Gamma \setminus S_k} (x - x_l) = 1 \quad k = 1, .., n$$

Using some tools from combinatorics we proved that

 $C_k(x)$ are **positive** for each k

Therefore $I[V](x) = \sum_{k=1}^{n} \omega_k P_k(x)$ is a convex combination and

$$\min_{k} P_k(x) \le I[V](x) \le \max_{k} P_k(x)$$

TEST 1: two dimensional periodic solution

$$\begin{cases} v_t(x,t) + \frac{(v_{x_1}(x,t) + v_{x_2}(x,t) + 1)^2}{2} = 0\\ v(x,0) = v_0(x) = -\cos\frac{\pi(x_1 + x_2)}{2}, \end{cases}$$

n%ter.= 5;ht=0.01

nfiter.= 3;ht=0.01

WENO 3rd order						
Δx	relative L^{∞} -error	L^{∞} -order	relative L^1 -error	L^1 -order		
0.16	$3.00 \cdot 10^{-3}$		$7.43 \cdot 10^{-4}$			
0.08	$4.66 \cdot 10^{-4}$	2.6	$4.79 \cdot 10^{-5}$	3.9		
0.04	$2.68 \cdot 10^{-5}$	4.1	$2.44 \cdot 10^{-6}$	4.2		
0.02	$1.48 \cdot 10^{-6}$	4.1	$1.62 \cdot 10^{-7}$	3.9		
$\Delta t = 0.02, T = \frac{0.8}{\pi^2}$						

WENO 5th order						
Δx	relative L^{∞} -error	L^∞ -order	relative L^1 -error	L^1 -order		
0.16	$1.28 \cdot 10^{-3}$		$1.51 \cdot 10^{-4}$			
0.08	$4.89 \cdot 10^{-5}$	4.3	$3.40 \cdot 10^{-6}$	4.8		
0.04	$2.07 \cdot 10^{-6}$	4.5	$1.01 \cdot 10^{-7}$	5		
0.02	$2.37 \cdot 10^{-8}$	6.4	$1.09\cdot 10^{-9}$	6.5		
$\Delta t = 0.02 T = 0.8$						

 $\Delta t = 0.02, T = \frac{0.8}{\pi^2}$

WENO 3rd order						
Δx	relative L^{∞} -error	L^∞ -order	relative L^1 -error	L^1 -order		
0.16	$1.00 \cdot 10^{-2}$		$1.09 \cdot 10^{-3}$			
0.08	$8.68 \cdot 10^{-5}$	6.8	$3.50 \cdot 10^{-5}$	5		
0.04	$9.35 \cdot 10^{-6}$	3.2	$1.97 \cdot 10^{-6}$	4.1		
0.02	$2.97 \cdot 10^{-7}$	4.4	$1.09 \cdot 10^{-7}$	4.1		
$\Delta t = 0.03, T = \frac{1.5}{\pi^2}$						

WENO 5th order						
Δx	relative L^{∞} -error	L^∞ -order	relative L^1 -error	L^1 -order		
0.16	$8.55 \cdot 10^{-3}$		$7.00 \cdot 10^{-4}$			
0.08	$8.53 \cdot 10^{-4}$	3.6	$9.30 \cdot 10^{-5}$	4.3		
0.04	$2.08 \cdot 10^{-6}$	8.6	$4.68 \cdot 10^{-8}$	9.4		
0.02	$5.34 \cdot 10^{-9}$	8.6	$1.69 \cdot 10^{-10}$	8.1		
A + - 0.02 T - 1.5						

 $\Delta t = 0.03, T = \frac{1.5}{\pi^2}$

SL SCHEME for MEAN CURVATURE MOTION $\begin{cases} u_t(x,t) = div\left(\frac{Du(x,t)}{|Du(x,t)|}\right)|Du(x,t)| \\ u(x,0) = u_0(x) \end{cases}$

representation formula by Soner and Touzi:

$$u(x,t) = E\{u_0(y(x,t,t))\}, \quad Du \neq 0$$
$$\begin{cases} dy(x,t,s) = \sqrt{2}P(y,t,s)dW(s)\\ y(x,t,0) = x \end{cases}$$
$$P(y,t,s) = \frac{1}{|Du|^2} \begin{pmatrix} u_{x_2}^2 & -u_{x_1}u_{x_2}\\ -u_{x_1}u_{x_2} & u_{x_1}^2 \end{pmatrix}$$

H.M. Soner, N. Touzi, *A stochastic representation for mean curvature type geometric flows*, Ann. Probab. 31 (2003), no. 3, 1145–1165.

CONSTRUCTION OF THE SCHEME Soner Touzi formula between t and $t + \Delta t$:

$$u(x,t + \Delta t) = E\{u(y(x,t + \Delta t, \Delta t), t)\}$$

Brownian dimension reduction :

.

$$\sqrt{2}PdW = \frac{\sqrt{2}}{|Du|} \begin{pmatrix} u_{x_2} \\ -u_{x_1} \end{pmatrix} \left(\frac{u_{x_2}dW_1}{|Du|} - \frac{u_{x_1}dW_2}{|Du|}\right) = \sigma d\widehat{W}$$

we can replace the Stochastic Initial problem by

$$\begin{cases} dy(x,t,s) = \sigma(y,t,s) d\widehat{W}(s) \\ y(x,t,0) = x. \end{cases}$$

Weak Euler :

$$\begin{cases} y_{k+1} = y_k + \sqrt{2}\sigma(y, t_k, 0) \Delta \widehat{W}_k \\ y_0 = x. \end{cases}$$

with

$$P(\Delta \widehat{W}_k = \pm \sqrt{\Delta t}) = \frac{1}{2}.$$

Time-discretization

$$u_{\Delta t}(x,t_{n+1}) = \frac{1}{2}u_{\Delta t}(x+\sqrt{2}\sigma(x,t_n,0)\sqrt{\Delta t},t_n) + \frac{1}{2}u_{\Delta t}(x-\sqrt{2}\sigma(x,t_n,0)\sqrt{\Delta t},t_n).$$

Fully discrete scheme $Du \neq 0$

$$u_j^{n+1} = \frac{1}{2} \left(I[u^n](x_j + \sigma_j^n \sqrt{\Delta t}) + I[u^n](x_j - \sigma_j^n \sqrt{\Delta t}) \right)$$

$$\begin{aligned} & \text{MODIFIED SCHEME} \\ & \left\{ \begin{aligned} & u_j^{n+1} = \frac{1}{2} \left(I[u^n](x_j + \sigma_j^n \sqrt{\Delta t}) + I[u^n](x_j - \sigma_j^n \sqrt{\Delta t}) \right) & \text{ if } |D_j^n| > C \Delta x^s \\ & u_j^{n+1} = \frac{1}{4} \sum_{i \in \mathcal{D}(j)} u_i^n & \text{ if } |D_j^n| \leq C \Delta x^s \end{aligned} \right. \end{aligned}$$

CONSISTENCY ERROR
(case
$$|D_j^n| > C\Delta x^s$$
)

$$L_{\Delta x,\Delta t} = O\left(\frac{\Delta x^r}{\Delta t}\right) + O\left(\frac{\Delta x^{q-s}}{\Delta t^{\frac{1}{2}}}\right) + O\left(\Delta t^{\frac{1}{2}}\right) + O\left(\frac{\Delta t}{\Delta x^s}\right)$$

MONOTONE SCHEME

$$\widehat{H}(u^n; j) = \frac{(1-\lambda)}{2} \left[I_1[u^n](x_j + \sigma_j^n \sqrt{\Delta t}) + I_1[u^n](x_j - \sigma_j^n \sqrt{\Delta t}) \right] \\ + \frac{\lambda}{4} \sum_{i \in \mathcal{D}(j)} u_i^n, \quad \text{with } \lambda \in [0, 1].$$

Theorem Assume $\lambda \geq \frac{1}{1+\delta}$, where $\delta \equiv \frac{C\Delta x^{s+1}}{16\sqrt{\Delta t}L_{I_1[u^n],\mathcal{G}}}$. Then $\widehat{H}(u^n; j)$ is monotone. TEST: two dimensional circle evolution

$$\Delta t = O(\Delta x^{\frac{3}{4}}), \ s = \frac{1}{4}.$$

Δx	Δt	$\ \cdot\ _{\infty}$	$\ \cdot\ _1$	$L^{\infty} - order$	$L^1 - order$
0.04	0.08	$3.04 \cdot 10^{-4}$	$6.50 \cdot 10^{-6}$		
0.02	0.053	$1.25 \cdot 10^{-4}$	$3.42 \cdot 10^{-6}$	1.2	0.9
0.01	0.032	$5.22 \cdot 10^{-5}$	$1.82 \cdot 10^{-6}$	1.2	1.6
0.005	0.02	$2.09 \cdot 10^{-5}$	$7.75 \cdot 10^{-7}$	1.3	1.2

Fattening: evolution of the level curves u = 0.095, 1, 1.05

The torus evolving into a sphere

The torus collapsing in a circle

Dumb-bell: topology change in \mathbb{R}^3

MCM codimension 2
$$\begin{cases} u_t = F(D^2 u, Du) & \mathbb{R}^3 \times [0, \infty) \\ u(x, 0) = \frac{1}{2}d(x, \mathcal{C})^2 \end{cases}$$

 $F(A,p) = \inf_{\nu \in \mathcal{N}(p)} \{ \operatorname{trace}[AP^{\nu}] \} \ \mathcal{N}(p) = \{ \nu \in S^2 : P^{\nu}p = 0 \}$

$$P^{\nu} = \nu \nu^T$$

Soner Touzi formula:

$$u(x,t) = \inf_{\nu \in \mathcal{U}} \{ E\{u(y_{\nu}(x,t,t),0)\} \}$$

with $\mathcal{U} = \{ \nu : [0,T] \to S^2 \subset \mathbb{R}^3 : \nu \cdot Du(x,t) = 0 \}$
$$\begin{cases} dy_{\nu}(x,t,s) = \sqrt{2}\nu(s)d\widehat{W}(s) \\ y_{\nu}(x,t,0) = x \end{cases}$$

L.Ambrosio, M.Soner, *Level Set Approach to Mean Curvature Flow in Arbitrary Codimension*, J.Differential Geometry, **43** (1996), 693-737. Time-discretization:

$$u_{\Delta t}(x,t_{n+1}) = \inf_{\nu^n \in \widehat{\mathcal{U}}} \left\{ \frac{1}{2} u_{\Delta t}(x+\sqrt{2}\nu^n\sqrt{\Delta t},t_n) + \frac{1}{2} u_{\Delta t}(x-\sqrt{2}\nu^n\sqrt{\Delta t},t_n) \right\}.$$

Full-discrete scheme:

$$u_{j}^{n} = \min_{\nu^{n} \in \mathbb{R}^{3}} \{ \frac{1}{2} I[u^{n}](x + \sqrt{2}\nu^{n}\sqrt{\Delta t}) + \frac{1}{2} I[u^{n}](x - \sqrt{2}\nu^{n}\sqrt{\Delta t}) + \frac{(|D_{j}^{n}\nu^{n}|)^{2}}{\epsilon_{1}} + \frac{(|\nu^{n}| - 1)^{2}}{\epsilon_{2}} \}.$$

Evolution of ϵ helical surface, $\epsilon = 0.008$.

OPTIMAL TRAJECTORY ALGORITHM

•
$$s_0 := x_{jmin}$$
 point of the curve

•
$$\nu_j^{n*} = \underset{\nu_j^n \in \widehat{\mathcal{U}}}{\operatorname{argmin}} \{ u^n (s_j + \sqrt{2\Delta s} \nu_j^n) \} \quad j = 0, ..., \widehat{j}$$

•
$$s_{j+1} = s_j + \sqrt{2\Delta s}\nu_j^{n*}$$
 $j = 0, ..., \hat{j}$

•
$$|s_0 - s_{\hat{j}}| \le \epsilon$$

Evolution of a helix in \mathbb{R}^3 .

REFERENCES:

- •M. Falcone, R.Ferretti, *Semi-Lagrangian schemes for Hamilton-Jacobi equations discrete representation formulae and Godunov methods*, J. of Computational Physics, 175, (2002), 559-575.
- •E.Carlini, M.Falcone, R.Ferretti, *An efficient algorithm for Hamilton-Jacobi equations in High Dimension*, To appear in *Computing and Visualization in Science*.
- •E.Carlini, F.Ferretti, G.Russo, *A Weno large time-step for Hamilton-Jacobi equation*, Preprint

•M.Falcone, R.Ferretti, *Consistency of a large time-step scheme for mean curvature motion*, In F.Brezzi, A.Buffa, S.Corsaro and A.Murli (eds), Numerical Analysis and Advanced Applications-Proceedings on ENUMATH 2001, Ischia,(2001).