Séminaire CERMICS

Couplage excitation-contraction dans le cœur Modélisation, simulations et assimilation de données

J. Sainte-Marie

Egalement R. Cimrman, D. Chapelle (MACS) et M. SORINE (SOSSO)

Projet MACS, ARC Icema

Champs-sur-Marne - Janvier 2004

PROBLEMATIQUE

• Mesures faiblement échantillonnées

o cinématique des parois

o activité électrique

- Pas (peu) d'infos sur les contraintes
- Nécessité d'une loi de comportement

<u>Plan</u>

- Modélisation du couplage excitation-contraction
- Obtention d'un cœur numérique (indicateurs locaux)
- Assimilation de données (aide au diagnostic)

• Problème direct

simulateur cardiaque paramétrisable (formation, ...)
aide thérapeutique *a priori*

Problème inverse

modèles (paramètres inconnus) + données
assimilation de données, identification (paramètres, ...)
aide au diagnostic

LE MUSCLE CARDIAQUE

Image provenant du Dr. Barber au Pikeville College, KY.

LOI de COMPORTEMENT

Mécanisme de contraction

- O $n(\xi, t)$ taux de ponts actine-myosine attachés
- fréquence d'attachement ($f(\xi, t)$) et de destruction ($g(\xi, t)$) des ponts
- $\circ \varepsilon_c(M,t)$ déformation de la fibre
- $\circ u(t)$ potentiel d'action
- Modèle de Huxley

$$\frac{Dn}{Dt} = \frac{\partial n}{\partial t} + \eta \dot{\varepsilon}_c \ \frac{\partial n}{\partial \xi} = (1-n) \ f - n \ g$$

• Relation excitation/contraction pour une fibre, Sorine 99

$$\begin{cases} \dot{k}_{c} = -(\alpha |\dot{\varepsilon}_{c}| + |u|)k_{c} + k_{0}|u|_{+} \\ \dot{\tau}_{c} = k_{c}\dot{\varepsilon}_{c} - (\alpha |\dot{\varepsilon}_{c}| + |u|)\tau_{c} + \sigma_{0}|u|_{+} \\ \sigma_{c} = \tau_{c} + \mu \dot{\varepsilon}_{c} + k_{c}\xi_{0} \\ k_{c}(0) = \sigma_{c}(0) = 0 \end{cases}$$

Comportements "Visco-élasto-plastique"

MECANISME de REGULATION

Effet "Starling" (non accumulation) Plus le cœur se remplit, plus il se "contracte"

• Traduction $\sigma_c = d(\varepsilon_c)(\tau_c + \mu \dot{\epsilon}_c + k_c \xi_0)$

MODELE MECANIQUE 3D

• Modèle rhéologique de Hill-Maxwell

Equations

$$\begin{cases} \rho \underline{\ddot{y}} - \operatorname{div}\left(\underline{F} \cdot \underline{\sigma}\right) = 0\\ \underline{\sigma} = \sigma_{1D} \underline{n} \otimes \underline{n} + E_p(\underline{\varepsilon})\\ \sigma_{1D} = \frac{\sigma_c}{1 + \varepsilon_s} = \frac{\sigma_s}{1 + \varepsilon_c}\\ \dot{\tau}_c = k_c \dot{\varepsilon}_c - (\alpha |\dot{\varepsilon}_c| + |u|) \tau_c + \sigma_0 |u|_+\\ \dot{k}_c = -(\alpha |\dot{\varepsilon}_c| + |u|) k_c + k_0 |u|_+\\ \sigma_c = d(\varepsilon_c) (\tau_c + \mu \dot{\varepsilon}_c + k_c \xi_0)\\ \sigma_s = E_s(\varepsilon_{1D} - \varepsilon_c) / (1 + \varepsilon_c)\\ \varepsilon_{1D} = \sum_{i,j} \varepsilon_{ij} n_i n_j \end{cases}$$

 $\underline{\varepsilon} \underline{\sigma}$

CONTRAINTE TOTALE $\underline{\sigma}$

- $\underline{\sigma} = \sigma_{1D} \underline{n} \otimes \underline{n} + \underline{\sigma_p}(\underline{\underline{E}})$
- **Comportement passif** matrice isotropique, hyperelastique, viscosité, fibres passives (exponentielles)

$$\underline{\underline{\sigma}_p}(\underline{\underline{E}}) = K(J-1)J\underline{\underline{C}}^{-1} + \sum_{w=1}^3 \phi_w \frac{\partial W_w}{\partial \underline{\underline{E}}} + \phi_4 C_p \underline{\underline{\underline{E}}}$$

- $W_{1} = \frac{1}{2}\kappa_{1}(J^{-\frac{2}{3}}C_{kk} 3) \qquad \text{neo-Hookean term}$ $W_{2} = \frac{1}{2}\kappa_{2}(\tilde{I}_{2} 3) \qquad \text{meo-Hookean term}$ $W_{3} = \frac{1}{2}\frac{\kappa_{3}}{\eta}\left(e^{\eta(J^{-\frac{2}{3}}C_{kk} 3)} 1\right) \qquad \text{meo-Hookean term}$ $W_{3} = \frac{1}{2}\frac{\kappa_{3}}{\eta}\left(e^{\eta(J^{-\frac{2}{3}}C_{kk} 3)} 1\right) \qquad \text{meo-Hookean term}$
- $\underline{\underline{C}} = 2\underline{\underline{E}} + I$ tenseur des déformations de Cauchy-Green droit • $\underline{\underline{E}}$ tenseur des déformations de Green-Lagrange droit • $J = \sqrt{\det \underline{\underline{C}}}$ variations de volume

RESOLUTION du PROBLEME

Maillage

• Direction des fibres

Schéma en temps (Newmark, point milieu)

ENTREE et CONDITIONS AUX LIMITES

- Potentiel d'action
 - équations de type réaction-diffusion (Luo-Rudy, Fitzugh-Nagumo,...)
 - o onde simulée (connue)

Conditions aux limites (modèle de valve)

• flux
$$Q = -\dot{V}$$

- problème de contact $Q(P P_{ext}) = 0$
- phase isovolumétrique $\dot{V} = 0$
- éjection et remplisage $P(t) = P_{aorta}(t)$ ou $P(t) = P_o(t)$

• Formulation "exacte"

$$\begin{cases} Q = 0 & \text{quand } P_o < P_{LV} < P_{aorte} & \text{(phases isovol.)} \\ Q \neq 0 & \text{quand } P_{LV} = P_{aorte}, P_o & \text{(éjection, remplissage)} \end{cases}$$

• Version régularisée

$$\left(\begin{array}{c} Q = e^{l_1(P_{LV} - P_{aorte})} - e^{l_2(P_o - P_{LV})} & \text{quand } Q \leq Q_{lim} \\ Q & \text{affine en } P_{LV} - P_{ext} & \text{sinon} \end{array} \right)$$

MODELE de WINDKESSEL

• Evolution de
$$P_{aorte}(t)$$

• $Q = f(P_{LV}, P_{aorte}, P_{o})$
• $Q = C\dot{P}_{aorta} + \frac{P_{aorte} - P_{sv}}{R}$
 $C\dot{P}_{aorte} + \frac{P_{aorte} - P_{sv}}{R_{p}} = f(P_{LV}, P_{aorte}, P_{o})$

COUPLAGE VG-aorte

- Phase I (contraction isovol.)
 - Valve aortique fermée $\dot{V} = Q(t) = 0$
 - Pas de relation entre P_{LV} et P_{aorte}

•
$$C\dot{P}_{aorte} + \frac{P_{aorte}}{R} = 0$$

- Phase II (éjection)
 - Valve aortique ouverte $-\dot{V} = Q(t)$
 - $P_{LV} \approx P_{aorte}$ • $C\dot{P}_{aorte} + \frac{P_{aorte}}{R} = f(P_{LV}, P_{aorte}, P_o)$
- Phases III et IV (diastole)
 Q(t) = 0 et V ≥ 0 (oreillette)
 Pas de relation entre P_{LV} et P_{aorte}
 CP_{aorte} + P_{aorte}/R = f(P_{LV}, P_{aorte}, P_o)

VENTRICULE DROIT

- Même mécanisme avec des pressions plus basses (1/5)
- Même modèle mécanique (mêmes paramètres)
- Modèle de valve $P_{ap} \approx P_{aorte}/5$
- Ventricule gauche
 - Pression systolique: ouverture de la valve 70 mmHg (9.3 kPa)
 - Pression maximum pendant la systole 130 mmHg i.e. 17.29 kPa
 - Pression dans les oreillettes 8 mmHg (1.06 kPa)
 - Pas de contraction des oreillettes (pour le moment, modèle 0D possible)

• Formulation (petites déformations)

$$(P_{1D}) \begin{cases} \rho \ddot{y} - \left(E_{p}(y_{x}) + C\dot{y}_{x} + \sigma_{c}\right)_{x} = 0\\ \dot{\tau}_{c} = k_{c}\dot{\varepsilon}_{c} - (\alpha|\dot{\varepsilon}_{c}| + |u|)\tau_{c} + \sigma_{0}|u|_{+}\\ \dot{k}_{c} = -(\alpha|\dot{\varepsilon}_{c}| + |u|)k_{c} + k_{0}|u|_{+}\\ \sigma_{c} = \tau_{c} + k_{c}\xi_{0} + \mu\dot{\varepsilon}_{c}\\ \sigma_{c} = E_{s}(y_{x} - \varepsilon_{c})\\ C.L. \text{ et } C.I. \end{cases}$$

RESULTATS

• Collaboration avec J. Urquiza (CRM, université de Montréal)

 Andrews J. Diff. Equation (1980), Brokate IMA J. Appl. Math. (1989) et Krejc'i SIAM J. Math. Anal. (2002)

Problème parabolique non linéaire

Résultats Si $P_{aorte} \in L_{\infty}(0,T)$, $\phi_0, \sigma_{c_0}, \varepsilon_0$ sont dans $L_{\infty}(0,1)$ alors il existe une unique solution σ_c , ε au problème (P_{1D}) telle que

- $\sigma_c \in L_\infty(0,1; W^1_\infty(0,T))$
- $\varepsilon \in L_{\infty}(0,1; W^1_{\infty}(0,T)).$

SIMULATIONS 3D

• www-rocq.inria.fr/MACS/Coeur/index_pres.html

(cliquer sur le lien)

MODELE d'AORTE

• Collaboration avec J.F. Gerbeau, E. Delavaud, M. Sorine

- $A = |\mathcal{S}|$, $Q = \int_{\mathcal{S}} u_z \, ds$ (flow), $\bar{p} = \frac{1}{A(z)} \int_{\mathcal{S}} p \, ds = \Phi(A)$
- Conservation de la masse div $u = 0 \Rightarrow \frac{\partial A}{\partial t} + \frac{\partial Q}{\partial z} = 0$
- Euler ($\nu = 0$) ou Navier-Stokes ($\nu > 0$) sur l'axe z

$$\frac{\partial u_z}{\partial t} + \operatorname{div} \left(u_z u \right) + \frac{1}{\rho} \frac{\partial p}{\partial z} - \nu \Delta u_z = 0$$

$$\Rightarrow \frac{\partial Q}{\partial t} + \frac{\partial}{\partial z} \left(\alpha \frac{Q^2}{A} \right) + \frac{A}{\rho} \frac{\partial \bar{p}}{\partial z} + K_R \frac{Q}{A} = 0$$

• Modèle de paroi $\bar{p} = \beta_0 + \beta \sqrt{A}$

COUPLAGE LV-AORTE

• www-rocq.inria.fr/MACS/Coeur/index_pres.html

(cliquer sur le lien)

• Structure (solveur UMFPACK, multifrontal non symétrique)

- Post-processing (Matlab + medit), sauvegarde HDF5
- Performances
 - \circ 1 battement \rightarrow 2 heures
 - o taille du problème 45000

L'ASSIMILATION de DONNEES

Les observations ne permettent pas toujours de décrire complètement un phénomène

- o météorologie
- médecine
- Un modèle est nécessaire
 - modèle + observations
 - Technique d'assimilation de données (DAT)

• DAT

- o techniques de contrôle optimal ou sous-optimal
- o coûteuses (problèmes 3D)

Objectif

ASSIMILATION de DONNEES (I)

•
$$\begin{cases} \dot{X}(t) = F(X, t) \\ X(t_0) = X_0 \end{cases} \quad \text{et} \quad Y_k = HX(t_k) + V_k$$

- Trouver $\hat{X}(t)$, "barycentre" du modèle et des mesures
- Exemple (estimation d'un paramètre)

$$\begin{array}{c} \overbrace{k} \\ \overbrace{k} \\ \overbrace{k} \\ \overbrace{k} \\ \overbrace{k} \end{array} = \begin{pmatrix} 0 & 1 \\ -\frac{K}{M} & 0 \end{pmatrix} \begin{pmatrix} x \\ \dot{x} \end{pmatrix} \\ \rightarrow & \omega = \sqrt{\frac{K}{M}} \text{ inconnu} \\ \rightarrow & y_{t_k} = x_{t_k} \text{ pour } k \in I \\ \\ \end{array}$$
Estimation de ω

ASSIMILATION de DONNEES (II)

Estimation

- variables d'état
- o paramètres
- o conditions initiales, entrée

•
$$\begin{cases} \dot{X} = F(X, t) \\ X(t_0) = X_0 \end{cases} \quad \text{sur } \Omega \times [0, T] \quad \text{et} \quad Y(t_k) = HX(t_k) + V(t_k) \end{cases}$$

\Rightarrow Problème de Cauchy avec contraintes

• Fonction coût à minimiser

• variationnelle $J(K_1) = \frac{1}{2} \int_0^T ||Y(t) - HX(K_1, t)||_{\Omega}^2 dt + penalisation$

• séquentielle $J(K_1,t) = \frac{1}{2} \int_0^t ||Y(t) - HX(K_1,t)||_{\Omega}^2 dt + penalisation$

APPROCHE SEQUENTIELLE (I)

•
$$\begin{cases} \dot{X}(t) = F(X, U, K_1, t) & \text{sur } \Omega \times [0, T] \\ X(t_0) = X_0 & \text{sur } \Omega \end{cases}$$

- Observations $\{Y_k\} = \{HX(t_k) + V(t_k)\}$
- Fonction coût

$$J(X_0, U, K_1, t) = \frac{1}{2} \int_0^t \|Y(t) - HX(X_0, U, K_1, t)\|_{\Omega}^2 dt + penalisation$$

• Etape de prédiction

$$\hat{X}^{f}(t_{n}) = \hat{X}^{a}(t_{n-1}) + \int_{t_{n-1}}^{t_{n}} F(\hat{X}^{a}_{n-1}, U_{n-1}, K_{1,n-1}, t) dt$$

Etape d'analyse

$$\hat{X}^{a}(t_{n}) = \hat{X}^{f}(t_{n}) + K_{n}\left(Y_{n} - HX^{f}(t_{n})\right) \text{ avec } \frac{\partial J(t_{n})}{\partial K_{n}} = 0$$

APPROCHE SEQUENTIELLE (II)

- Technique sous-optimale
- Divergence (gradient nécessaire)
 - Filtrage de Kalman Etendu

$$\dot{X} = F(X, U, K_1, t) \quad \Rightarrow \quad \dot{X} = \left[\frac{\partial F}{\partial X}\right] X$$

• Cyclique $X(t_0) \approx X(T)$

estimation des conditions initiales

Coûts de calcul (matrices de covariance)

o filtres SEEK

RESULTATS 1D

• Paramètre σ_0 et déformation $y_x(x_0, t)$

• Potentiel d'action et contrainte totale (cliquer sur le lien)

TRAVAIL en COURS

- Modélisation des pathologies
- Validation complète du simulateur
 - o loi de comportement (paramètres, valeur relative)
 - o régulation systémique (aorte, oreillette, ...)
 - o géometrie (directions des fibres, conditions aux limites, ...)
 - entrée (potentiel d'action, oxygène)
 - o littérature existante, expertise de cliniciens
- Assimilation de données
 - o techniques séquentielles
 - o taille des matrices de covariance