
U. HetmaniukU. Hetmaniuk

Computational Math and Algorithms Dept.

Sandia National Laboratories

March 31, 2004

Joint work with P. Arbenz (ETH Zürich) and R. Lehoucq (SNL)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

A Comparison of Eigensolvers
for Large-Scale Three-Dimensional

Problems

Sandia National Laboratories

• Funded by US Department of Energy
• Located Albuquerque (NM) & Livermore (CA)
• 8,300 people
• Budget: $2 billion per year
• Mission of stockpile stewardship
• Capabilities:

– Biosciences

– Chemical and Earth sciences

– Electronics

– Computer information

– Nanotechnology

– …

Achievements

Z machine:
• Achieved an output of 80 times the entire
world's output of electricity.

Asci Red:
• First Tflop system (1.8 Tflops)
• 9,152 Pentium Pro processors
• 128 MB per processor

MEMS:
World’s smallest microchain drive

Computer Science & Mathematics

• Development of advanced computing architecture, network, and
facilities

– ASCI Red: Teraflop system.

– Cplant: Commodity-based large-scale computing.

• Software frameworks and solutions for high-performance distributed
computing

– Trilinos: A collection of solver components.

– Zoltan: Data management services for parallel applications.

• Computational methods and codes for selected science and engineering
simulations

– Dakota: A multilevel parallel, object-oriented framework for design optimization, parameter
estimation, uncertainty quantification, and sensitivity analysis.

– ALEGRA: A three-dimensional, multi-material, arbitrary-lagrangian-eulerian code for solid
dynamics.

– MPSALSA: Massively parallel numerical methods for advanced simulation of chemically
reacting flows.

• Web page: http://www.cs.sandia.gov/

Research in computer science, computational science and mathematics through
collaboration with university faculty, students and Sandia staff.

Impact
Research addressing Sandia problems in modeling and simulation
Recruiting through student programs
Improved quality and integration of Sandia research
Increased impact of Sandia research and codes.

Opportunities
Sabbaticals and summer faculty positions,
Postdocs and summer student positions,
Graduate fellowships,
Sponsored workshops, and
Technical visits and colloquia

Contact: David E. Womble, dewombl@sandia.gov

• Trilinos is an evolving framework which:
– efficiently reuses existing solver technology,
– leverages new development across various projects,
– satisfies specified practices for quality assurance.

• Trilinos is a collection of packages.
• Each package is:

– implemented in an object-oriented software framework.
– focused on important and state-of-the-art algorithms in its problem

regime.
– developed by a small team of domain experts.
– minimally dependent of parallel machine details.
– minimally dependent on any other software packages (self-

contained).
– configurable / buildable / documented on its own (portability).

• Open source: http://software.sandia.gov/trilinos

Basic Linear Algebra Libraries

Abstract Interfaces and Adaptors

Linear Solvers

Nonlinear Solvers

Eigensolvers

Time Integration

"New Package"

Common Services

Preconditioners

Primary Trilinos Packages
8/4/2003 - v12

Epetra: Current Production C++ Library Epetra Core
Epetra Extensions

Tpetra: Next Generation C++ Library
Jpetra: Java Library

TSFCore: Basic Abstract classes
TSF Extensions: Aggregate/composite,
overloaded operators
TSF Utilities: Core utility classes

Amesos: OO Interfaces to 3rd party direct
solvers

SuperLU
KundertSparse
SuperLUDist
DSCPack
UMFPack
MUMPS

AztecOO: Preconditioned Krylov Package
based on Aztec
Komplex: Complex solver via equivalent real
formulations
Belos: Next generation Krylov and block
Krylov solvers

NOX: Collection of nonlinear solvers
LOCA: Library of Continuation Algorithms

Anasazi: Collection of eigensolvers

TOX: Planned development

"Hello World": Package Template to aid
integration of new packages
Web site with layout and instructions

Teuchos: Parameter Lists, BLAS Interfaces,
etc

ML: Multi-level preconditioners
Meros: Segregated/Block Preconditioners
IFPACK: Algebraic preconditioners

Trilinos Packages

• Epetra

– Concrete linear algebra classes (matrices, multivectors, graphs,
operators, …).

– Parallel code for linear algebra computations.

– Portable interface to BLAS and LAPACK.

• ML

– Multilevel preconditioning.

– Geometric and algebraic multigrid.

• AztecOO

– Based on Aztec.

• Aztec is extracted from MPSalsa reacting flow code.

– Algorithms: BiCGSTAB, CG, CGS, GMRES, TFQMR.

• Anasazi

– Collection of eigensolvers

Objective:

Determine the next generation approach to solve
a generalized eigenproblem for extremely large 3D
problems high into the frequency range

KQ = MQL

Problem

ÿ Frequency response in structural dynamics
ÿ Cavity analisys in electromagnetism
ÿ …

• K is a sparse and symmetric matrix (stiffness).
• M is a sparse, symmetric, positive, definite matrix (mass).

Overview of Methods

• Lanczos Method

ÿ Boeing code — R. Grimes, J. Lewis, and H. Simon (1994)
ÿ Salinas code — 2002 Gordon Bell Prize Winner

• Component Mode Synthesis

ÿ Over the last year, the AMLS method has become dominant for the
frequency response analysis in the car industry.

• Preconditioned Eigensolver

ÿ The linear system Ku = f is not solved accurately.

Lanczos Method

Reference: R. Lehoucq, D. Sorensen, and C. Yang (1998)

(K-sM)-1MV = VT + bueT

• VTMV = I.
• T is a tridiagonal matrix.
• Implicitly restarted Lanczos method (ARPACK).

Key computational issue: x ¨ (K-sM)-1x

ÿ Boeing Code: Sparse factorization

ÿ Salinas Code: Scalable FETI-DP solver (Farhat)

fi s ≤ 0

ÿ Experiments: PCG with AMG preconditioner

s = 0

• We consider the Laplace equation with Dirichlet condition.
• The continuous eigenvalues can be multiple.
• The unit cube is discretized with 101 Q1 elements per direction.
• The smallest discrete eigenvalues are simple.

1

Model Problem

†

2†

3

Platform and other details

Post-processing checks:

• 16 processors (Dec Alpha processors).
• 512 MB memory per processor.
• CXML LAPACK and BLAS.
• All codes but ARPACK are in C++.
• The mass and stiffness matrix-vector multiplications
 are blocked (Epetra framework).
• The AMG preconditioner does not operate per block.

• Mass-orthonormality of eigenvectors
• Missed eigenpairs
• Angles between the computed and discrete eigenspaces

Convergence Check

Theoretical result:

†

l -q £
Kx - Mxq M-1

x M

Convergence criterion:

†

1
m1

Kx - Mxq 2

x M

£ eq

• m1 is the smallest eigenvalue of M
• e is the tolerance (10-4 ≈ discretization error)

Gap

Spread ≈ 2*105

†

l j+1 - l j

lmax - lmin
Gap =

1.E-08

1.E-07

1.E-06

1.E-05

1.E-04

0 50 100 150 200

Eigenvalue Number

Time Distribution for ARPACK

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 5 10 20 50 100 200

Number of eigenvalues

_SAUPD
Mass Mult.
Solve

• Number of eigenvalues requested: nev
• Size of working space: 2*nev

Preconditioned Eigensolver

Idea: Replace the operation x ¨ (K-sM)-1x by x ¨ N-1x
where N is a preconditioner for K-sM

Algorithms:

ÿ Minimization of Rayleigh quotient
ÿ Fixed subspace size
ÿ Conjugate gradient algorithm

• Gradient-based schemes: DACG & LOBPCG

• Newton-based schemes:

ÿ Block Davidson
ÿ Block Jacobi-Davidson

Important note: We use a preconditioner N for K (s = 0).

Block DACG

Reference: L. Bergamaschi and M. Putti (2002)

• The algorithm minimizes the Rayleigh quotient on the space

 Span{X(i), P(i)}

• The search directions P(i) are defined by

 P(i) = -N-1(KX(i)-MX(i)L(i)) + P(i-1)B(i)

• The classical Gram-Schmidt algorithm is used for orthogonalization.

• The eigenvectors are deflated at convergence.

†

B(i) =
diag KX(i) - MX(i)L(i)()

T
N-1 KX(i) - MX(i)L(i)()[]

diag KX(i-1) - MX(i-1)L(i-1)()
T
N-1 KX(i-1) - MX(i-1)L(i-1)()[]

• The matrix B(i) uses the Bradbury-Fletcher formula

Time Distribution for DACG (10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 50 100 200

Number of eigenvalues

Other
Local Projection
Orthogonalization
Preconditioner Mult.
Stiffness Mult.
Mass Mult.

Relative Time vs ARPACK

0.1

1

10

1 2 5 10 20 50 100 200

Number of eigenvalues

R
a

ti
o

DACG (1)
DACG (2)
DACG (5)
DACG (10)
DACG (20)

LOBPCG

• The incremental idea is to use a three-term recurrence à la Lanczos.

• The algorithm minimizes the Rayleigh quotient on the space

Span{X(i), X(i-1), N-1(KX(i)-MX(i)L(i))}

Reference: A. Knyazev (2001)

• The classical Gram-Schmidt algorithm is used for orthogonalization.

• The eigenvectors are deflated at convergence.

Time Distribution for LOBPCG (10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 50 100 200

Number of eigenvalues

Other
Local Projection
Orthogonalization
Preconditioner Mult.
Stiffness Mult.
Mass Mult.

Relative Time vs ARPACK

0.1

1

10

1 2 5 10 20 50 100 200

Number of eigenvalues

R
a

ti
o

LOBPCG (1)
LOBPCG (2)
LOBPCG (5)
LOBPCG (10)
LOBPCG (20)

Davidson Algorithm

• The algorithm minimizes the Rayleigh quotient on the space

Span{X(0), N-1(KX(0)-MX(0)L(0)), …

N-1(KX(m-1)-MX(m-1)L(m-1)), N-1(KX(m)-MX(m)L(m))}

• For nev eigenvalues requested, the subspace is restarted when the
size reaches 2*nev.

• The preconditioner N is fixed for all the computation.

• An M-orthonormal basis is generated for the subspace.

• The eigenvectors are deflated at convergence.

Time Distribution for Davidson (10)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 20 50 100 200

Number of eigenvalues

Other
Local Projection
Orthogonalization
Preconditioner Mult.
Stiffness Mult.
Mass Mult.

Relative Time vs ARPACK

0.1

1

10

1 2 5 10 20 50 100 200

Number of eigenvalues

R
a

ti
o

Davidson (1)
Davidson (2)
Davidson (5)
Davidson (10)
Davidson (20)

Jacobi Davidson

Reference: G. Sleijpen and H. Van Der Vorst (1996), Y. Notay (2001)

• The algorithm is based on the Davidson algorithm.

• The correction equation improves the computed eigenvector

• The correction equation is solved with preconditioned conjugate gradient

• The preconditioner N is fixed for all the computation.

• An M-orthonormal basis is generated for the subspace.

• The eigenvectors are deflated at convergence.

(I-MQQT)(K-lM)(I-QQTM)Z = - (I-MQQT) (KX-MXL)

(I-MQQT)N(I-QQTM)

Time Distribution for JDPCG (5)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5 10 20 50 100 200

Number of eigenvalues

Other
Correction Equation
Orthogonalization
Preconditioner Mult.
Stiffness Mult.
Mass Mult.

Relative Time vs ARPACK

0.1

1

10

1 2 5 10 20 50 100 200

Number of eigenvalues

R
a

ti
o

JDPCG (1)
JDPCG (2)
JDPCG (5)
JDPCG (10)
JDPCG (20)

Time Summary

0

1000

2000

3000

4000

5000

0 50 100 150 200

Number of eigenvalues

ARPACK
DACG
LOBPCG
Davidson
JDPCG

• Preconditioner applications are not blocked.

Time with Blocked Preconditioner

0

1000

2000

3000

4000

5000

0 50 100 150 200

Number of eigenvalues

ARPACK
DACG
LOBPCG
Davidson
JDPCG

• Speedup of 2 for preconditioner-vector applications

Memory Cost

Lanczos method:
• ncv (= 2*nev) vectors
• 3 vectors

• Arrays for O(nev2)

Size of block = b

Block DACG:
• nev vectors
• 8 blocks of vectors

• Arrays for O(b2)

LOBPCG:
• nev vectors
• 10 blocks of vectors

• Arrays for O(b2)

Davidson:
• ncv (= 2*nev) vectors
• 4 blocks of vectors

• Arrays for O(nev2)

• ncv (= 2*nev) vectors
• 2*nev vectors
• 5 blocks of vectors

Jacobi-Davidson:
• Arrays for O(nev2)

• For this problem, Jacobi-Davidson did not improve the
performance.

Summary

Comments:

Future work:

• Evaluate the CMS method

• Test the solvers on elasticity problems

• Applications of preconditioner should be blocked.

• For this problem, Davidson is a good simple algorithm.

• Ultimately, orthogonalization becomes the bottleneck.

• J. Bennighof, M. Kaplan, and M. Muller, “Extending the frequency response capabilities of
automated multilevel substructuring”, no. AIAA-2000-1574, April 2000.
• L. Bergamaschi and M. Putti, “Numerical comparison of iterative eigensolvers for large sparse
symmetric positive definite matrices”, CMAME, v. 191, p. 5233-5247, 2002.
• M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson and D. Rixen, “Application of the
FETI Method to ASCI Problems: Scalability Results on One-Thousand Processors and
Discussion of Highly Heterogeneous Problems”, IJNME, v. 47, p. 513-536, 2000.
• M. Bhardwaj, K. Pierson, G. Reese, T. Walsh, D. Day, K. Alvin, J. Peery, C. Farhat and M.
Lesoinne, “Salinas: A Scalable Software for High-Performance Structural and Solid Mechanics
Simulations”, Proceedings of the IEEE/ACM SC2002 Conference, Baltimore, Maryland, 2002.
• A. Kropp and D. Heiserer, “Efficient broadband vibro-acoustic analysis of passenger car
bodies using an FE-based component mode synthesis approach”, WCCM V, 2002.
• A. Knyazev, “Toward the optimal preconditioned eigensolver: Locally optimal block
preconditioned conjugate gradient method”, SIAM J. Sci. Comput., v. 23, p. 517-541, 2001.
• R. Lehoucq, D. Sorensen, and C. Yang, “ARPACK users’ guide: Solution of large-scale
eigenvalue problems by implicitly restarted Arnoldi methods”, SIAM, Philadelphia, PA, 1998.
• Y. Notay, “Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric
eigenproblem”, Numer. Linear Algebra Appl., v. 9, p. 21-44, 2001.
• G. Sleijpen and H. Van Der Vorst, “A Jacobi-Davidson method for eigenvalue problems”, SIAM
J. Matrix Anal. Appl., v. 17, p. 401-425, 1996.

References

W1

W 2

G
G

W1 W2

Idea: Compute the first eigenmodes of a structure that can be
subdivided into substructures on each of which the first eigenmodes
are known.

1. Compute a few local eigenmodes in W1

2. Compute a few local eigenmodes in W2

3. Compute a few local eigenmodes on G
4. Approximate the global eigenmodes with the local modes

Component Mode Synthesis (CMS)

Reference: W. Hurty (1965), R. Craig and M. Bampton (1968), F. Bourquin (1991)

• Automated MultiLevel Substructuring method (AMLS)

ÿ Apply the previous idea recursively
ÿ Use multilevel nested dissection to partition the domain

W2,1

W2,2

W2,3

W2,4

W2,5G1,2
G0,1

G1,1

G0,1

G1,2G1,1

W2,1 W2,2 W2,3 W2,4 W2,5

Component Mode Synthesis (CMS)

Loop over the substructures
…
Solve a local generalized eigenproblem

…

…

Solve a coarse eigenproblem for synthesis

• Automated MultiLevel Substructuring method (AMLS)

Component Mode Synthesis (CMS)

ÿ Very few 3D computations for real problems have been
done !

ÿ For shells and plates (2D-like) problems, AMLS brings
a major improvement in CPU time and memory costs
over classical methods.

fi Works of J. Bennighof and his group at UT Austin.

fi Experiments of A. Kropp and D. Heiserer (BMW).

fi Work in progress (issues similar for a multifrontal solver)

