<u>A Comparison of Eigensolvers</u> for Large-Scale Three-Dimensional <u>Problems</u>

U. Hetmaniuk

Computational Math and Algorithms Dept.

Sandia National Laboratories

March 31, 2004

Joint work with P. Arbenz (ETH Zürich) and R. Lehoucq (SNL)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia National Laboratories

- Funded by US Department of Energy
- Located Albuquerque (NM) & Livermore (CA)
- 8,300 people
- Budget: \$2 billion per year
- Mission of stockpile stewardship
- Capabilities:
 - Biosciences
 - Chemical and Earth sciences
 - Electronics
 - Computer information
 - Nanotechnology
 - ...

Achievements

Z machine:

• Achieved an output of 80 times the entire world's output of electricity.

<u>MEMS:</u> World's smallest microchain drive

Asci Red:

- First Tflop system (1.8 Tflops)
- 9,152 Pentium Pro processors
- 128 MB per processor

Computer Science & Mathematics

- Development of advanced computing architecture, network, and facilities
 - ASCI Red: Teraflop system.
 - <u>Cplant</u>: Commodity-based large-scale computing.
- Software frameworks and solutions for high-performance distributed computing
 - <u>Trilinos</u>: A collection of solver components.
 - <u>Zoltan</u>: Data management services for parallel applications.
- Computational methods and codes for selected science and engineering simulations
 - <u>Dakota</u>: A multilevel parallel, object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.
 - <u>ALEGRA</u>: A three-dimensional, multi-material, arbitrary-lagrangian-eulerian code for solid dynamics.
 - <u>MPSALSA</u>: Massively parallel numerical methods for advanced simulation of chemically reacting flows.
- Web page: http://www.cs.sandia.gov/

Research in computer science, computational science and mathematics through collaboration with university faculty, students and Sandia staff.

Impact

Research addressing Sandia problems in modeling and simulation Recruiting through student programs Improved quality and integration of Sandia research Increased impact of Sandia research and codes.

Opportunities

Sabbaticals and summer faculty positions, Postdocs and summer student positions, Graduate fellowships, Sponsored workshops, and Technical visits and colloquia

Contact: David E. Womble, dewombl@sandia.gov

- Trilinos is an evolving framework which:
 - efficiently reuses existing solver technology,
 - leverages new development across various projects,
 - satisfies specified practices for quality assurance.
- Trilinos is a collection of *packages*.
- Each package is:
 - implemented in an object-oriented software framework.
 - focused on important and state-of-the-art algorithms in its problem regime.
 - developed by a small team of domain experts.
 - minimally dependent of parallel machine details.
 - minimally dependent on any other software packages (selfcontained).
 - configurable / buildable / documented on its own (portability).
- Open source: http://software.sandia.gov/trilinos

Trilinos Packages

- Epetra
 - Concrete linear algebra classes (matrices, multivectors, graphs, operators, ...).
 - Parallel code for linear algebra computations.
 - Portable interface to BLAS and LAPACK.
- ML
 - Multilevel preconditioning.
 - Geometric and algebraic multigrid.
- AztecOO
 - Based on Aztec.
 - Aztec is extracted from MPSalsa reacting flow code.
 - Algorithms: BiCGSTAB, CG, CGS, GMRES, TFQMR.
- Anasazi
 - Collection of eigensolvers

Problem

$\mathbf{K}\mathbf{Q} = \mathbf{M}\mathbf{Q}\boldsymbol{\Lambda}$

- K is a sparse and symmetric matrix (stiffness).
- M is a sparse, symmetric, positive, definite matrix (mass).

Frequency response in structural dynamics
 Cavity analisys in electromagnetism
 ...

Objective:

Determine the next generation approach to solve a generalized eigenproblem for extremely large 3D problems high into the frequency range

Overview of Methods

Lanczos Method

- ➤ Boeing code R. Grimes, J. Lewis, and H. Simon (1994)
- Salinas code 2002 Gordon Bell Prize Winner

Preconditioned Eigensolver

> The linear system $\mathbf{K}\mathbf{u} = \mathbf{f}$ is not solved accurately.

Component Mode Synthesis

 \succ Over the last year, the AMLS method has become dominant for the frequency response analysis in the car industry.

Lanczos Method

 $(\mathbf{K}\textbf{-}\boldsymbol{\sigma}\mathbf{M})^{-1}\mathbf{M}\mathbf{V} = \mathbf{V}\mathbf{T} + \boldsymbol{\beta}\mathbf{u}\mathbf{e}^{\mathrm{T}}$

- $\mathbf{V}^{\mathrm{T}}\mathbf{M}\mathbf{V} = \mathbf{I}.$
- T is a tridiagonal matrix.
- Implicitly restarted Lanczos method (ARPACK).

Key computational issue: $x \leftarrow (K-\sigma M)^{-1}x$

> Boeing Code: Sparse factorization

> Salinas Code: Scalable FETI-DP solver (Farhat)

 $\Rightarrow \sigma \leq 0$

Experiments: PCG with AMG preconditioner

 $\sigma = 0$

Reference: R. Lehoucq, D. Sorensen, and C. Yang (1998)

Model Problem

- We consider the Laplace equation with Dirichlet condition.
- The continuous eigenvalues can be multiple.
- The unit cube is discretized with 101 Q1 elements per direction.
- The smallest discrete eigenvalues are simple.

Platform and other details

- 16 processors (Dec Alpha processors).
- 512 MB memory per processor.
- CXML LAPACK and BLAS.
- All codes but ARPACK are in C++.
- The mass and stiffness matrix-vector multiplications are blocked (Epetra framework).
- The AMG preconditioner does not operate per block.

Post-processing checks:

- Mass-orthonormality of eigenvectors
- Missed eigenpairs
- Angles between the computed and discrete eigenspaces

Convergence Check

Theoretical result:

$$\left|\lambda - \theta\right| \leq \frac{\left\|\mathbf{K}\mathbf{x} - \mathbf{M}\mathbf{x}\theta\right\|_{\mathbf{M}^{-1}}}{\left\|\mathbf{x}\right\|_{\mathbf{M}}}$$

Convergence criterion:
$$\frac{1}{\sqrt{\mu_1}} \frac{\left\| \mathbf{K} \mathbf{x} - \mathbf{M} \mathbf{x} \theta \right\|_2}{\left\| \mathbf{x} \right\|_{\mathbf{M}}} \le \varepsilon \theta$$

• μ_1 is the smallest eigenvalue of M

• ε is the tolerance (10⁻⁴ \approx discretization error)

Eigenvalue Number

Time Distribution for ARPACK

- Number of eigenvalues requested: nev
- Size of working space: 2*nev

Sandia National

aboratories

Preconditioned Eigensolver

Idea: Replace the operation $x \leftarrow (K-\sigma M)^{-1}x$ by $x \leftarrow N^{-1}x$ where N is a preconditioner for K-σM

Algorithms:

Gradient-based schemes: DACG & LOBPCG

- Minimization of Rayleigh quotient
- Fixed subspace size
- Conjugate gradient algorithm
- Newton-based schemes:
 - Block Davidson
 - Block Jacobi-Davidson

Important note: We use a preconditioner N for K ($\sigma = 0$).

Block DACG

The algorithm minimizes the Rayleigh quotient on the space

 $Span{X^{(i)}, P^{(i)}}$

- The search directions $\mathbf{P}^{(i)}$ are defined by

 $\mathbf{P^{(i)} = -N^{-1}(KX^{(i)}-MX^{(i)}\Lambda^{(i)}) + P^{(i-1)}B^{(i)}}$

• The matrix B⁽ⁱ⁾ uses the Bradbury-Fletcher formula

$$B^{(i)} = \frac{\text{diag}\left[\left(KX^{(i)} - MX^{(i)}\Lambda^{(i)}\right)^{T}N^{-1}\left(KX^{(i)} - MX^{(i)}\Lambda^{(i)}\right)\right]}{\text{diag}\left[\left(KX^{(i-1)} - MX^{(i-1)}\Lambda^{(i-1)}\right)^{T}N^{-1}\left(KX^{(i-1)} - MX^{(i-1)}\Lambda^{(i-1)}\right)\right]}$$

- The classical Gram-Schmidt algorithm is used for orthogonalization.
- The eigenvectors are deflated at convergence.

Relative Time vs ARPACK

Number of eigenvalues

LOBPCG

- The incremental idea is to use a three-term recurrence à la Lanczos.
- The algorithm minimizes the Rayleigh quotient on the space $Span\{X^{(i)}, X^{(i-1)}, N^{-1}(KX^{(i)}-MX^{(i)}\Lambda^{(i)})\}$
- The classical Gram-Schmidt algorithm is used for orthogonalization.
- The eigenvectors are deflated at convergence.

Relative Time vs ARPACK

Number of eigenvalues

The algorithm minimizes the Rayleigh quotient on the space

Span{ $X^{(0)}$, N⁻¹($KX^{(0)}$ - $MX^{(0)}\Lambda^{(0)}$), ...

 $N^{-1}(KX^{(m-1)}-MX^{(m-1)}), N^{-1}(KX^{(m)}-MX^{(m)}))$

- For nev eigenvalues requested, the subspace is restarted when the size reaches 2*nev.
- $\mbox{ \bullet }$ The preconditioner N is fixed for all the computation.
- An M-orthonormal basis is generated for the subspace.
- The eigenvectors are deflated at convergence.

Time Distribution for Davidson (10)

Relative Time vs ARPACK

Number of eigenvalues

- The algorithm is **based** on the Davidson algorithm.
- The correction equation improves the computed eigenvector

 $(I-MQQ^{T})(K-\lambda M)(I-QQ^{T}M)Z = - (I-MQQ^{T})(KX-MX\Lambda)$

- The correction equation is solved with preconditioned conjugate gradient (I-MQQ^T)N(I-QQ^TM)
- $\boldsymbol{\cdot}$ The preconditioner N is fixed for all the computation.
- An M-orthonormal basis is generated for the subspace.
- The eigenvectors are deflated at convergence.

Reference: G. Sleijpen and H. Van Der Vorst (1996), Y. Notay (2001)

Time Distribution for JDPCG (5)

Relative Time vs ARPACK

Number of eigenvalues

Time Summary

• Preconditioner applications are not blocked.

Time with Blocked Preconditioner

• Speedup of 2 for preconditioner-vector applications

Memory Cost

Lanczos method:	 ncv (= 2*nev) vectors 3 vectors 	 Arrays for O(nev²)
Block DACG:	nev vectors8 blocks of vectors	 Arrays for O(b²)
LOBPCG:	nev vectors10 blocks of vectors	 Arrays for O(b²)
<u>Davidson</u> :	 ncv (= 2*nev) vectors 4 blocks of vectors 	 Arrays for O(nev²)
<u>Jacobi-Davidson</u> :	 ncv (= 2*nev) vectors 2*nev vectors 5 blocks of vectors 	 Arrays for O(nev²)

Summary

<u>Comments</u>:

- Applications of preconditioner should be blocked.
- For this problem, Davidson is a good simple algorithm.
- For this problem, Jacobi-Davidson did not improve the performance.
- Ultimately, orthogonalization becomes the bottleneck.

Future work:

- Test the solvers on elasticity problems
- Evaluate the CMS method

References

• J. Bennighof, M. Kaplan, and M. Muller, *"Extending the frequency response capabilities of automated multilevel substructuring",* no. AIAA-2000-1574, April 2000.

• L. Bergamaschi and M. Putti, *"Numerical comparison of iterative eigensolvers for large sparse symmetric positive definite matrices",* CMAME, v. 191, p. 5233-5247, 2002.

• M. Bhardwaj, D. Day, C. Farhat, M. Lesoinne, K. Pierson and D. Rixen, *"Application of the FETI Method to ASCI Problems: Scalability Results on One-Thousand Processors and Discussion of Highly Heterogeneous Problems"*, IJNME, v. 47, p. 513-536, 2000.

• M. Bhardwaj, K. Pierson, G. Reese, T. Walsh, D. Day, K. Alvin, J. Peery, C. Farhat and M. Lesoinne, *"Salinas: A Scalable Software for High-Performance Structural and Solid Mechanics Simulations",* Proceedings of the IEEE/ACM SC2002 Conference, Baltimore, Maryland, 2002.

• A. Kropp and D. Heiserer, *"Efficient broadband vibro-acoustic analysis of passenger car bodies using an FE-based component mode synthesis approach",* WCCM V, 2002.

• A. Knyazev, "Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method", SIAM J. Sci. Comput., v. 23, p. 517-541, 2001.

• R. Lehoucq, D. Sorensen, and C. Yang, *"ARPACK users' guide: Solution of large-scale eigenvalue problems by implicitly restarted Arnoldi methods"*, SIAM, Philadelphia, PA, 1998.

• Y. Notay, "Combination of Jacobi-Davidson and conjugate gradients for the partial symmetric eigenproblem", Numer. Linear Algebra Appl., v. 9, p. 21-44, 2001.

• G. Sleijpen and H. Van Der Vorst, *"A Jacobi-Davidson method for eigenvalue problems"*, SIAM J. Matrix Anal. Appl., v. 17, p. 401-425, 1996.

Idea: Compute the first eigenmodes of a structure that can be subdivided into substructures on each of which the first eigenmodes are known.

- 1. Compute a few local eigenmodes in Ω_1
- 2. Compute a few local eigenmodes in Ω_2
- 3. Compute a few local eigenmodes on Γ
- 4. Approximate the global eigenmodes with the local modes

Reference: W. Hurty (1965), R. Craig and M. Bampton (1968), F. Bourquin (1991)

Component Mode Synthesis (CMS)

Automated MultiLevel Substructuring method (AMLS)

- > Apply the previous idea recursively
- Use <u>multilevel nested dissection</u> to partition the domain

Automated MultiLevel Substructuring method (AMLS)

➢ For shells and plates (2D-like) problems, AMLS brings a major improvement in CPU time and memory costs over classical methods.

- \Rightarrow Works of J. Bennighof and his group at UT Austin.
- \Rightarrow Experiments of A. Kropp and D. Heiserer (BMW).

Very few 3D computations for real problems have been done !

⇒ Work in progress (issues similar for a multifrontal solver)

