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Méthodes déterministes et stochastiques pour la simulation

moléculaire

Résumé

La simulation moléculaire est un outil indispensable pour comprendre le comportement
de systèmes complexes pour lesquels les expériences s'avèrent coûteuses ou irréalisables
à l'heure actuelle. Cette thèse est dédiée aux aspects méthodologiques de la simulation
moléculaire et comprend deux volets. Le premier volet porte sur la recherche de chemins
de réaction et de points col d'une surface d'énergie potentielle. Nous proposons, dans le
chapitre 3, une amélioration d'une des méthodes de cette classe, appelée Activation Re-

laxation Technique (ART). Nous donnons également une preuve de convergence pour un
algorithme prototype. Le deuxième volet porte sur le calcul d'énergie libre pour les tran-
sitions caractérisées par une coordonnée de réaction. Nous nous plaçons dans le cadre
d'une méthode d'échantillonnage d'importance adaptative, appelée Adaptive Biasing Force

(ABF). Ce volet comprend deux sous-parties. La première partie (chapitre 5) s'attache à
montrer l'applicabilité à un système biomoléculaire, d'une nouvelle mise en oeuvre parallèle
d'ABF, nommée multiple-walker ABF (MW-ABF), consistant à utiliser plusieurs répliques.
Cette mise en oeuvre s'est avérée utile pour surmonter des problèmes liés à un mauvais
choix de coordonnée de réaction. Nous con�rmons ensuite ces résultats numériques en étu-
diant la convergence théorique d'un algorithme d'ABF adapté dans le chapitre 6. L'étude
de convergence en temps long utilise des méthodes d'entropie relative et des inégalités de
Sobolev logarithmiques.

Deterministic and stochastic methods for molecular

simulation

Abstract

Molecular simulation is an essential tool in understanding complex chemical and biochem-
ical processes as real-life experiments prove increasingly costly or realistically infeasible.
This thesis is devoted to methodological aspects of molecular simulation, with a particular
focus on computing transition paths and their associated free energy pro�les. The �rst part
is dedicated to computational methods for reaction path and transition state searches on a
potential energy surface. In Chapter 3 we propose an improvement to a widely-used tran-
sition state search method, the Activation Relaxation Technique (ART). We also present a
local convergence study of a prototypical algorithm. The second part is dedicated to free en-
ergy computations. We focus in particular on an adaptive importance sampling technique,
the Adaptive Biasing Force (ABF) method. The �rst contribution to this �eld, presented
in Chapter 5, consists in showing the applicability to a large molecular system of a new
parallel implementation, named multiple-walker ABF (MW-ABF). Numerical experiments
demonstrated the robustness of MW-ABF against artefacts arising due to poorly chosen
or oversimpli�ed reaction coordinates. These numerical �ndings inspired a new study of
the longtime convergence of the ABF method, as presented in Chapter 6. By studying a
slightly modi�ed model, we back our numerical results by showing a faster theoretical rate
of convergence of ABF than was previously shown.
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Introduction
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1.1 Introduction à la simulation moléculaire

La simulation moléculaire est un outil indispensable pour comprendre le comporte-
ment des systèmes physiques (matériaux) ou biologiques (protéines) lorsque les ex-
périmentations sont di�ciles ou coûteuses. La simulation moléculaire donne un
moyen de calculer les propriétés moyennes de tels systèmes en utilisant les lois de la
physique statistique.

On considère un système de N atomes, décrit par les positions q = (q1, . . . , qN )
et impulsions p = (p1, . . . , pN ), où qi ∈ R3 et pi ∈ R3 désignent, respectivement,
la position et l'impulsion du i-ème atome. Dans la suite on note Ω = R3N ×
R3N l'espace des phases. Les particules interagissent selon la fonction d'énergie
potentielle V : R3N → R, dé�nie sur le domaine des con�gurations D = {q ∈
R3N | V (q) <∞}. L'énergie totale du système est donnée par l'Hamiltonien

H(q, p) =
1
2
pTM−1p+ V (q), (1.1)

où M = diag(m11,m11,m11, ...,mNN ,mNN ,mNN ) et mii, désignent la masse de
l'atome i. Le premier terme correspond à l'énergie cinétique et le deuxième à
l'énergie potentielle. Il existe de nombreuses façons de calculer cette énergie po-
tentielle; cf. la Section 1.1.3.
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Temps Échelle (s) Observations physiques Simulation moléculaire

fs 10−15 Vibration atomique Pas de temps

ps 10−12 Extension de liaisons

ns 10−9 Repliement peptidique Échelle de temps accessible (sur
machines `ordinaires')

µs 10−6 Réplication de l'ADN Échelle de temps accessible (sur
machines `performantes')

ms 10−3 Réactions chimiques

s 1 Repliement de protéines

Table 1.1: Les phénomènes physiques se produisent à des échelles plus longues que
celles accessibles par la simulation moléculaire habituelle.

L'évolution en temps d'un système (q(t), p(t))t≥0 peut être décrite, une fois
l'énergie potentielle donnée, par des dynamiques appropriées. Des exemples et des
méthodes d'intégration numériques sont présentés dans la Section 1.2.2. En pra-
tique, les échelles de temps accessibles par des simulations habituelles sont limitées à
quelques nanosecondes (quelques microsecondes sur les machines les plus puissantes)
par journée de simulation. Ceci est dû aux vibrations atomiques (liaisons covalentes)
qui limitent le pas de temps de la discrétisation numérique. Cette description mi-
croscopique du système est donc rarement su�sante pour décrire toutes les tran-
sitions importantes d'un système. Le tableau 1.1 recense, pour di�érents types
d'observations ou phénomènes physiques, les échelles de temps correspondantes,
ainsi que les éventuelles limitations numériques qui en découlent. Les phénomènes
physiques qui se manifestent au-delà de quelques microsecondes (par exemple le
repliement de protéines) sont donc rarement capturés par la simulation moléculaire
habituelle. La restriction du pas de temps (1 fs) fait en sorte qu'au moins 1012 pas
de la dynamique moléculaire soient nécessaires pour observer des phénomènes tels
que la réplication de l'ADN (∼ 1 µs) ou le repliement de protéines (∼ 1 ms).

Il est important de noter que les échelles de temps accessibles à la simulation
moléculaire � soit quelques microsecondes par jour � augmentent grâce aux progrès
algorithmiques et informatiques. Le travail e�ectué au cours de cette thèse est essen-
tiellement relatif au premier aspect. Il concerne plus particulièrement des méthodes
pour la recherche de chemins de réactions et pour le calcul d'énergie libre. Nous
proposons, dans un premier temps, une amélioration d'une méthode déjà existante
de recherche de chemins de réaction, et en présentons une étude de convergence
(cf. chapitre 3). Nous étudions ensuite l'applicabilité d'une méthode probabiliste de
calcul d'énergie libre, récemment proposée, à un système biomoléculaire de grande
dimension (cf. chapitre 5), dont les résultats prometteurs inspirent une étude math-
ématique de convergence (cf. chapitre 6).
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1.1.1 Calcul de moyennes

La physique statistique permet de faire le lien entre un modèle à l'échelle moléculaire
et la quantité macroscopique via le calcul de la moyenne d'une observable A(q, p), en
fonction de l'état microscopique du système. Cette moyenne est calculée par rapport
à une mesure de probabilité dµ donnée. La mesure dµ est associée à un ensemble
thermodynamique, dont quelques exemples seront donnés dans la Section 1.1.2. Pour
le moment, on ne précise pas l'ensemble statistique utilisé; les notions suivantes sont
valables pour toutes les mesures dµ présentées plus loin.

La moyenne de toute observable A ∈ L1(µ) s'écrit sous la forme

〈A〉 =
∫

Ω
A(q, p) dµ(q, p). (1.2)

On peut s'intéresser par exemple à l'énergie moyenne du système, donné par 〈H〉, ou
bien à la capacité calori�que C = 〈H2〉−〈H〉. Le calcul analytique de l'intégrale (1.2)
n'est, en général, pas possible en particulier à cause de la taille du domaine Ω (la
plupart des systèmes d'intérêt sont constitués de plus de N ∼ 105 particules). En
outre, il existe des régions du domaine, D ⊂ Ω (de taille importante), telles que
µ(D) ≈ 0 et qui en conséquence n'in�uencent pas la valeur de l'intégrale. En
pratique, on est donc contraint d'approcher l'intégrale en utilisant des méthodes
probabilistes, qui fassent en sorte que seules les régions les plus importantes (de
forte probabilité) soient échantillonnées. Les méthodes probabilistes se déclinent en
deux catégories principales.

Méthode de Monte Carlo standard

Cette méthode purement probabiliste consiste à considérer une suite de points
(qn, pn)n∈N, indépendantes et identiquement distribuées (i.i.d.) selon la mesure de
probabilité dµ, en utilisant, par exemple, un algorithme de rejet. La méthode de
rejet consiste à simuler une loi de proposition dµ̃ plus simple et accepter ou rejeter
les points selon un certain critère. La loi des grands nombres et le théorème de la
limite centrale nous permettent alors d'approcher la moyenne 〈A〉 par

〈A〉 ≈ 1
N

N∑
n=1

A(qn, pn). (1.3)

L'e�cacité de l'algorithme de rejet (c'est-à-dire la proportion des points acceptés)
dépend fortement de la proximité des mesures dµ̃ et dµ. La di�culté de choisir une
loi de proposition proche de la mesure canonique (surtout en grande dimension) fait
que cette méthode est rarement utilisée en pratique.

Dynamique moléculaire

L'approche dynamique moléculaire est celle à laquelle on s'intéresse dans le cadre
de cette thèse. Cette approche consiste à dé�nir une dynamique sur (q(t), p(t)) qui
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est ergodique par rapport à la mesure dµ, c'est-à-dire pour toute fonction f ∈ L1(µ)
et pour toute condition initiale q(0) = q0, p(0) = p0, on a

lim
T→∞

1
T

∫ T

0
f(q(t), p(t)) dt =

∫
Ω
f(q, p) dµ(q, p).

Ainsi, sous l'hypothèse d'ergodicité, la moyenne 〈A〉 est estimée par

〈A〉 ≈ 1
T

∫ T

0
A(q(t), p(t))dt, (1.4)

pour µ−presque toute condition initiale (q0, p0). En pratique, la dynamique est
discrétisée et intégrée en utilisant un schéma d'intégration numérique �able (voir la
Section 1.2.2.2). Notons {(qi∆t, pi∆t)}i=0,...,N la trajectoire induite par la dynamique
discrétisée, où ∆t désigne le pas de temps de discrétisation et T = N∆t. L'intégrale
intervenant dans (1.4) est alors approchée par la somme de Riemann

〈A〉 ≈ 1
N + 1

N∑
i=0

A(qi∆t, pi∆t). (1.5)

1.1.2 Les ensembles thermodynamiques

La mesure dµ décrit les états microscopiques d'un système dans un ensemble thermo-
dynamique donné. Ainsi, dµ(q, p) donne la probabilité que les positions et impulsions
des particules du système se trouvent dans les intervalles [q, q+ dq] et [p, p+ dp] re-
spectivement. Nous présentons brièvement les quatre ensembles thermodynamiques
principaux, tout en nous focalisant sur les deux premiers.

Ensemble microcanonique

Pour un système isolé d'énergie constante, on se place dans le cadre de l'ensemble
microcanonique, ou ensemble (N,V,E), à nombre d'atomes N , volume V et énergie
E constants. La mesure microcanonique est dé�nie par

dµmc =
dσE
|∇H|

,

où dσE est la mesure de Lebesgue induite par la mesure de Lebesgue dans Ω et le
produit scalaire euclidien sur la sous-variété

{(q, p) ∈ Ω | H(q, p) = E}.

Ensemble canonique

Dans le cadre de cette thèse, on s'intéresse à l'ensemble canonique aussi appelé
ensemble (N,V, T ), c'est-à-dire à nombre de particules N , volume V et température
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T �xés. La mesure de probabilité associée aux états microscopiques du système
pour cet ensemble est donnée par la mesure canonique

dµc(q, p) = Z−1exp(−βH(q, p)) dq dp, (1.6)

où Z, le facteur de normalisation, est dé�ni par

Z =
∫

Ω
exp(−βH(q, p)) dq dp,

et β = 1/kBT (kB ≈ 1, 38 × 10−23 J/K étant la constante de Boltzmann et T
la température, mesurée en Kelvin (K)). L'Hamiltonien (1.1) étant séparable, la
mesure canonique peut s'écrire comme un produit de deux mesures:

dµc(q, p) = dκ(p)dπ(q), (1.7)

où

dκ(p) = Z−1
p exp

(
−β p

TM−1p

2

)
dp, (1.8)

dπ(q) = Z−1
q exp (−βV (q)) dq. (1.9)

Ici,

Zp =
∫

R3N

exp
(
−β p

TM−1p

2

)
dp et Zq =

∫
R3N

exp (−βV (q)) dq

sont des facteurs de normalisation. On remarque que la mesure dκ, selon laquelle
les impulsions sont distribuées, n'est rien d'autre qu'une loi normale. Cette dé-
composition sera utile dans la suite pour la raison suivante. Lorsque la quantité
d'intérêt est la moyenne d'ensemble et non pas la dynamique du système, il su�t
de tirer les impulsions selon la loi normale. On peut ainsi se contenter de décrire
une dynamique uniquement sur les positions q telle que, en temps long, elles soient
distribuées selon la loi dπ. Ceci explique pourquoi, plus tard, on se contentera d'une
dynamique sur les positions q (cf. la dynamique de Langevin amortie (1.29)) et non
pas une dynamique sur (q, p) (cf. la dynamique de Langevin (1.25)).

Ensemble grand-canonique

Lorsque l'on considère un système ouvert, qui peut échanger de l'énergie et des
particules avec un réservoir externe, on se place dans l'ensemble grand-canonique.
Dans cet ensemble, à potentiel chimique, volume et température �xés, seuls l'énergie
et le nombre de particules �uctuent.

Ensemble isotherme-isobare

Lorsque l'on considère un système à nombre de particules N , pression P et tempéra-
ture T �xés, il s'agit de l'ensemble (N,P, T ) ou isotherme-isobare. Le système est
en contact avec un réservoir de d'énergie et peut changer de volume, a�n d'assurer
une pression P et une température T constantes.



6 Chapter 1. Introduction

1.1.3 Énergie potentielle

Il existe de nombreuses manières de modéliser les interactions atomiques des sys-
tèmes à l'échelle moléculaire. Les modèles les plus précis proviennent des modèles
ab initio de la chimie quantique. Ces modèles se basent sur des systèmes molécu-
laires constitués de (i) N noyaux atomiques, dont les positions sont désignées par
q1, ..., qN , qi ∈ R3 et les charges électriques Zi ∈ N∗ et de (ii) M électrons, dont
les positions sont notées x1, ..., xM , xj ∈ R3, décrit par une fonction d'onde ψ.
A�n de simpli�er l'écriture des équations, on travaille habituellement avec les unités
atomiques, obtenues en imposant

me = 1, e = 1, ~ = 1,
1

4πε0
= 1,

où me est la masse de l'électron, e la charge électrique élémentaire, ~ la constante de
Planck réduite et ε0 la permittivité diélectrique du vide. Dans ce système d'unité,
l'unité de masse est 9, 11 × 10−31 kg, l'unité de longueur est le rayon de Bohr
a0 = 5, 29× 10−11 m, l'unité de temps est 2, 42× 10−17 s, et l'unité d'énergie est le
Hartree Ha = 4, 36× 10−18 J = 627 kcal/mol.

D'après l'hypothèse de Born et Oppenheimer, on suppose que les positions des
noyaux qi de charge Zi sont �xes, et l'énergie du système est la somme de deux
termes: le potentiel de Coulomb entre les noyaux et l'énergie de l'état électrique
fondamental (l'état de plus basse énergie):

V (q1, ..., qN ) = Vcoulomb(q1, ..., qN ) + Velec(q1, ..., qN ), (1.10)

où le potentiel de Coulomb décrit l'interaction entre les noyaux chargés

Vcoulomb(q1, ..., qN ) =
∑

1≤i<j≤N

ZiZj
|qi − qj |

, (1.11)

et le potentiel Velec est la fonction qui minimise le problème électronique sur l'espace
de Hilbert H ⊂

∧M
m=1 L

2(R3,C) de fonctions d'onde admissibles

Velec(q1, ..., qN ) = inf
{
〈ψ, Ĥq1,...,qNψ〉H | ψ ∈ H, ‖ψ‖L2 = 1} (1.12)

où Ĥ est l'Hamiltonien électronique qui s'écrit

Ĥq1,...,qN = −
M∑
m=1

1
2

∆xm −
M∑
m=1

N∑
i=1

Zi
|xm − qi|

+
∑

1≤n<m≤M

1
|xn − xm|

.

En raison de la taille de l'ensemble de fonctions d'onde admissible, on ne peut ré-
soudre le problème de minimisation (1.12) que pour les systèmes de petite taille
(un ou deux électrons). Pour des systèmes plus complexes on a recours à des
modèles d'approximation, telles que le modèle de Hartree-Fock ou les modèles de
Kohn-Sham [Kohn 1965] (issus de la Théorie de la Fonctionnelle de la Densité),
voir [Cancès 2003] pour plus de détails.
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Figure 1.1: Les interactions interatomiques: r désigne la distance entre deux atomes,
θ est l'angle entre deux liaisons reliant trois atomes et φ est l'angle dièdre qui
séparent deux plans contenant chacun trois atomes.

Pour des systèmes de très grande dimension, le potentiel à N -corps quantique
n'est pas utilisé en pratique puisqu'il est le plus souvent impossible de le calculer en
un temps raisonnable. Pour cette raison, des e�orts ont été menés a�n de développer
des fonctions d'énergie potentielle (ou champs de force) empiriques. Les potentiels
empiriques, dont quelques exemples sont donnés ci-dessous, ont pour but de repro-
duire � au moindre coût de calcul � des données expérimentales et calculs précis
issus de la mécanique quantique.

1.1.3.1 Champs de force pour les biomolécules

Dans le domaine de la biologie moléculaire, il est commode d'exprimer le champ
de force comme une somme de trois termes: l'énergie due à la présence du po-
tentiel extérieur Vext (électrostatique, magnétique,...); l'énergie Vliés provenant de
l'interaction entre les atomes liés par une liaison covalente et l'énergie Vnon-liés issue
de l'interaction entre atomes non-liés

V (q) = Vext(q) + Vliés(q) + Vnon-liés(q), (1.13)

où q = (q1, ..., qN ) ∈ R3N , représente les positions des N atomes du système. En
pratique le potentiel modélisant les interactions des atomes liés est beaucoup moins
coûteux à évaluer puisqu'il ne s'agit que de termes locaux. L'interaction entre deux
atomes liés par une liaison covalente peut par exemple être exprimée par un potentiel
harmonique

V2(qi, qi+1) =
k

2
(|qi − qi+1| − req)2, (1.14)

où k > 0 est une constante à déterminer et req désigne la longueur d'équilibre de
la liason. On peut, de la même manière, dé�nir un angle d'équilibre θeq entre deux
liaisons covalentes consécutives de telle sorte que le potentiel à trois corps s'écrit

V3(qi, qi+1, qi+2) =
kθ
2

(θi − θeq)2, (1.15)
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où kθ > 0 est une constante et θi est l'angle entre la liaison reliant les atomes i et
i+ 1 et celle reliant i+ 1 et i+ 2. L'angle satisfait la relation suivante

cos θi =
(
ri,i+1

|ri,i+1|
· ri+1,i+2

|ri+1,i+2|

)
.

où ri,j = qi − qj . En�n, l'interaction de quatre atomes liés est décrite par une
fonction de l'angle dièdre φi

V4(qi, qi+1, qi+2, qi+2) = uφ(cosφi), (1.16)

où
cosφi = − ri,i+1 × ri+1,i+2

|ri,i+1 × ri+1,i+2|
· ri+1,i+2 × ri+2,i+3

|ri+1,i+2 × ri+2,i+3|
.

Le potentiel uφ s'écrit typiquement sous la forme

uφ(x) = c1(1− x) + 2c2(1− x2) + c3(1 + 3x− 4x3),

où les paramètres ci (i = 1, 2, 3) sont à déterminer, de telle sorte qu'il y ait trois an-
gles stables (dont φ = 0 est le plus favorable énergétiquement). La Figure 1.1 montre
les paramètres décrits ci-dessous sur une chaîne de quatre atomes. La contribution
des atomes liés s'écrit ainsi

Vliés(q) =
N−1∑
i=1

V2(qi, qi+1) +
N−2∑
i=1

V3(qi, qi+1, qi+2) +
N−3∑
i=1

V4(qi, qi+1, qi+2, qi+3).

La modélisation des interactions non-liées constitue un des grands dé�s de la sim-
ulation moléculaire de nos jours. En faisant intervenir tous les atomes du système, le
coût de calcul croît quadratiquement avec la taille du système. L'interaction de paire
dans un gaz monoatomique (contenant des atomes neutres) est souvent modélisée
par le potentiel de Lennard-Jones [Lennard-Jones 1931] (voir la Figure 1.2)

VLJ(r) = 4ε
[(r0

r

)12
−
(r0

r

)6
]
, (1.17)

où r est la distance entre deux atomes, ε est l'amplitude du puits du potentiel et r0

la distance à laquelle VLJ vaut zéro. Ces paramètres sont choisis a�n de reproduire
des résultats expérimentaux. Le premier terme traduit l'interaction répulsive entre
deux atomes neutres à courte distance (les nuages électroniques ne se superposent
pas) et le deuxième traduit l'attractivité du potentiel à longue distance (interaction
de van der Waals). Remarquons que le premier terme domine lorsque la distance
entre les deux atomes est petite, r < r0, le deuxième lorsque r > r0. A�n de réduire
le coût de calcul, ce potentiel est en pratique tronqué à une distance critique lorsque
sa valeur devient très petite.

Finalement la contribution des atomes non-liés s'écrit

Vnon-liés(q) = Vcoulomb(q) +
∑

1≤i<j≤N
VLJ(|qi − qj |),
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Figure 1.2: Potentiel de Lennard-Jones (1.17), avec ε = 1, r0 = 1.05.

où le potentiel Coulombien est dé�ni par (1.11).
Le calcul pour les interactions d'atomes liés requiert O(N) opérations alors que

pour les atomes non-liés O(N2) opérations sont requises à cause du caractère à
longue portée du potentiel Coulombien. En fait le coût de calcul de ce dernier
peut être réduit à O(N logN) opérations en utilisant la Fast Multipole Method
(FMM) [Greengard 1987], ou bien dans le cas d'un système périodique, la méth-
ode de sommation d'Ewald [Ewald 1921, Darden 1999]. Les interactions à longue
portée restent toujours les calculs les plus coûteux dans l'évaluation de force. Pour
cette raison de nombreuses études sont consacrées à la réduction du coût de calcul
de celles-ci.

Parmi les nombreux champs de force, on peut distinguer trois catégories principales:

1. les champs de force tout-atome font intervenir explicitement tous les atomes,
y compris l'hydrogène;

2. les champs de force atomes uni�és ne font pas intervenir explicitement les
atomes d'hydrogène, sauf si ces derniers sont polaires;

3. les champs de force à gros grains sont basés sur des modèles simpli�és et con-
struits spéci�quement pour étudier les transitions conformationnelles à large
échelle. En regroupant un ou plusieurs groupements atomiques en une seule
entité, on réduit considérablement le coût de l'évaluation des forces.

Les ensembles de champs de force empiriques les plus utilisés pour la simula-
tion biomoléculaire sont AMBER (Assisted Model Building and Energy Re�ne-
ment) [Cornell 1995], GROMOS et CHARMM (Chemistry at HARvard Macro-
molecular Mechanics) [Brooks 1983, MacKerel Jr. 1998]. Ce dernier regroupe en
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particulier CHARMM19 (atomes uni�és), CHARMM22 (tout-atome), utilisés pour
la simulation des protéines et le champ de force CHARMM27. Ce dernier sera utilisé
pour les simulations e�ectuées dans le chapitre 5.

1.1.3.2 Champs de force pour les sciences des matériaux

Dans le domaine des sciences des matériaux, l'un des potentiels semi-empiriques les
plus utilisés est celui de la (Modi�ed) Embedded Atom Method (EAM), développé
par Daw et Baskes [Daw 1983, Daw 1984, Baskes 1992] pour les métaux, puis par
Mendelev et al. [Mendelev 2003, Ackland 2004] pour le cas particulier du fer liquide
et cristallin. Ce dernier est utilisé dans les simulations du Chapitre 3.

Ces potentiels semi-empiriques se basent sur l'idée suivante. Puisqu'un atome
peut être considéré comme un défaut parmi d'autres atomes du système, l'énergie
totale du système peut s'écrire sous la forme

V (q) =
N∑
i=1

Fα(%iα(q)) +
N∑
i=1

ϕi(q), (1.18)

où Fα, appelée fonction `embedding', désigne l'énergie requise pour placer l'atome i
de type α dans la nuage électronique. La fonction %iα est la somme des contributions
à la densité de charge électrique des atomes à la position qi, écrite sous la forme

%iα(q) =
∑
j 6=i

ρα(|qi − qj |), (1.19)

et en�n ϕi est la somme des interactions de paire d'atomes i et j, de type α et β
respectivement

ϕi(q) =
1
2

∑
j 6=i

φα,β(|qi − qj |). (1.20)

Les fonctions Fα et ρα et d'autres paramètres intervenants sont optimisés a�n de
reproduire une base de données de référence.

1.2 Méthodes d'échantillonnage

Cette partie donne un aperçu des méthodes probabilistes les plus commodes pour
échantillonner une mesure donnée. On aborde, dans la Section 1.2.1, les méthodes
purement probabilistes, avant de présenter dans la Section 1.2.2 les dynamiques
stochastiques pour la simulation moléculaire.

1.2.1 Algorithme de Metropolis-Hastings

Il existe des méthodes telles que les algorithmes de Metropolis datant de 1953
[Metropolis 1953], et de Metropolis-Hastings datant de 1970 [Hastings 1970], qui
permettent d'échantillonner une mesure ν(q)dq (connue à une constante de normal-
isation près) à partir d'une densité de proposition P (q′|q), représentant la proba-
bilité de transition q → q′. Dans le cas d'une densité de proposition symétrique,
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P (q′|q) = P (q|q′) on parle d'algorithme de Metropolis. Supposons qu'à partir d'un
point qn, une nouvelle con�guration q̃n+1 a été choisie; alors la probabilité d'accepter
cette dernière est

a(qn, q̃n+1) = min
(
ν(q̃n+1)
ν(qn)

, 1
)
.

Les fonctions de proposition qui décrivent la distribution uniforme et la loi nor-
male, par exemple, sont symétriques. Pour cette dernière, il s'agit d'une nouvelle
con�guration

q̃n+1 = qn + g où gi ∼ N (0, σ2),

La distribution de proposition symétrique est, dans ce cas, donnée par

P (q′|q) =
1√
2πσ

exp
(
−|q − q

′|2

2σ2

)
.

Bien que l'algorithme de Metropolis soit exact, il risque de rejeter une propor-
tion importante de con�gurations proposées. L'algorithme de Metropolis-Hastings
généralise celui de Metropolis aux distributions de proposition P asymétriques, c'est-
à-dire telle que P (q′|q) 6= P (q|q′) (voir l'Algorithme 1). Prenons, par exemple, la
proposition de Metropolis-Adjusted Langevin Algorithm (MALA) [Roberts 1998]

q̃n+1 = qn − h∇V (qn) +
√

2β−1h Gn, (1.21)

où Gn ∼ N (0, I), I est la matrice d'identité de taille 3N × 3N et h est un paramètre
de discrétisation (que l'on peut voir comme un pas de temps). Cette proposition
est en fait une discrétisation de la dynamique de Langevin amortie, permettant
d'échantillonner la mesure canonique, qui sera présentée en détail plus loin (voir
équation (1.29) dans la Section 1.2.2). La fonction de proposition associée à (1.21)
est donnée par

P (q′|q) =
(

β

4πh

)3N/2

exp
(
−β |q − q

′ + h∇V (q)|2

4h

)
.

Cette fonction de proposition a tendance à choisir les con�gurations de plus forte
probabilité de la mesure canonique (pour lequel la densité de probabilité est donnée
par ν(q) = Z−1

q e−βV (q), cf. (1.9)), et par conséquent à diminuer le taux de rejet de
l'algorithme. La probabilité de passer de q vers q′ est dé�nie par

ρ(q, dq′) = P (q′|q)a(q, q′)dq′ + δq(q′) (1− α(q)) dq′, (1.22)

où α ∈ [0, 1] est la probabilité d'accepter un pas de l'algorithme, partant du point
q:

α(q) =
∫
q̃∈D

P (q̃|q)a(q, q̃)dq̃.

Le terme δq(q′) (1− α(q)) dq′ dans (1.22) résume tous les mouvements rejetés et est
alors la probabilité de rester à la position initiale q.

Une preuve de convergence pour l'algorithme de Metropolis-Hastings se trouve
dans [Meyn 1993, Mengersen 1996]. Elle est dûe essentiellement au fait que
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Algorithme 1 Algorithme de Metropolis-Hastings
Pour n ≥ 0

1. proposer une nouvelle con�guration q̃n+1 à partir de la con�guration qn, avec
une probabilité P (q̃n+1|qn)dq̃n+1.

2. accepter la nouvelle con�guration avec une probabilité

a(qn, q̃n+1) = min
(
ν(q̃n+1)P (qn|q̃n+1)
ν(qn)P (q̃n+1|qn)

, 1
)
,

auquel cas qn+1 = q̃n+1. Sinon qn+1 = qn.

(i) La condition de bilan détaillé est satisfaite: ∀q, q′ ∈ D

ρ(q, q′)ν(q) = ρ(q′, q)ν(q′).

En d'autres termes, ν est une mesure réversible pour la dynamique;

(ii) La chaîne de Markov est ν-irréductible: Notons la n-ième pas de la probabilité
de transition

ρ(n)(q, q′) =
∫
q̃∈D

ρ(q, q̃)ρ(n−1)(q̃, q′)dq̃,

avec ρ(1)(q, q′) = ρ(q, q′). Alors, pour tout ensemble A mesurable tel que
ν(A) > 0 et pour ν−presque toute condition initiale q, il existe n0 > 0 tel que
∀n ≥ n0

ρ(n)(q, q′) > 0.

Ainsi, partant d'un point q, tout ensemble A peut être atteint en n pas avec
une probabilité non nulle.

1.2.2 Dynamique moléculaire

Rappelons que la moyenne d'ensemble peut être estimée par une moyenne tem-
porelle (1.4) lorsque la position et l'impulsion (q(t), p(t)) d'un système suivent une
dynamique appropriée. Cette section a pour but de présenter les dynamiques sou-
vent employées pour échantillonner la mesure canonique (1.6). Ces dernières sont
construites à partir de la dynamique d'un système classique isolé (d'énergie con-
stante), décrite par les équations de Hamilton. Dans la suite, q = (q1, q2, ..., q3N ) et
p = (p1, p2, ..., p3N ).
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1.2.2.1 Dynamique hamiltonienne

À partir d'une condition initiale (q(0), p(0)) donnée, l'évolution en temps d'un sys-
tème isolé est décrite par les équations de Hamilton:

dq

dt
= M−1p = ∇pH,

dp

dt
= −∇V = −∇qH,

(1.23)

où H est l'Hamiltonien dé�ni par (1.1), ∇pH = (∂H/∂p1, ..., ∂H/∂p3N ) et ∇qH =
(∂H/∂q1, ..., ∂H/∂q3N ). Il est facile de véri�er que l'énergie totale du système est
conservée. On obtient, en dérivant E(t) = H(q(t), p(t)) par rapport au temps et en
substituant (1.23),

dE

dt
= ∇qH ·

dq

dt
+∇pH ·

dp

dt
=

3N∑
i=1

∂V

∂qi

dqi
dt

+
3N∑
i=1

m−1
i pi

dpi
dt

= 0.

En pratique, puisque l'on s'intéresse à des intégrations en temps longs, la dy-
namique (1.23) est intégrée en utilisant des méthodes numériques symplectiques
telles que l'algorithme de Störmer-Verlet [Verlet 1967]. Pour un pas de temps ∆t
donné, cet algorithme consiste à faire un demi-pas en temps sur les impulsions (cal-
culer Pt+∆t/2), ensuite un pas en temps sur les positions (calculer Qt+∆t en utilisant
Pt+∆t/2), et en�n un demi-pas à nouveau sur les impulsions. Partant d'une con�g-
uration initiale (Q0, P0),


Pt+∆t/2 = Pt −∇V (Qt)

∆t
2
,

Qt+∆t = Qt + ∆tM−1Pt+∆t/2,

Pt+∆t = Pt+∆t/2 −∇V (Qt+∆t)
∆t
2
.

(1.24)

Cet algorithme est en e�et plus adapté que d'autres tels que les méthodes d'Euler
puisqu'il garantit la (presque) conservation de l'énergie totale H en temps longs
(voir [Hairer 2003]).

1.2.2.2 Dynamique de Langevin

Nous nous intéressons dans le cadre de cette thèse, à l'étude de systèmes molécu-
laire à température constante (ensemble canonique). La température du système
est gardée constante grâce à l'échange d'énergie avec un bain thermal. Lorsqu'un
système interagit avec un bain thermal externe, les particules subissent des petites
�uctuations aléatoires. Ces �uctuations sont souvent décrites par un mouvement
brownien [Brown 1828]. Le modèle de Langevin [Langevin 1908] intègre une force
�uctuante et un terme de frottement proportionnel à la vitesse du système. La
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dynamique de Langevin est donc une perturbation de la dynamique hamiltonienne,
décrite par un système d'équations di�érentielles stochastiques (EDS):{

dQt = M−1Pt dt,

dPt = −∇V (Qt) dt− γM−1Pt dt+
√

2γβ−1dWt,
(1.25)

où (Qt, Pt) ∈ R6N représente les positions et impulsions des particules du système
au temps t, γ > 0 le coe�cient de frottement et Wt est un mouvement Brownien.
On note dans la suite ψt la densité de la loi de (Qt, Pt). Sous certaines hypothèses
sur V , notamment (1.26) et (1.27) ci-dessous, le système d'EDS admet une solution
unique (Qt, Pt) et est ergodique par rapport à la mesure dµc. Ceci permet d'estimer
la moyenne 〈A〉 par une moyenne trajectorielle (1.4). Le générateur in�nitésimal L
associé à la dynamique est donné par

Lϕ = M−1p · ∇qϕ− (γM−1p+∇V (q)) · ∇pϕ+ γβ−1∆pϕ.

L'évolution de la densité de probabilité de (Qt, Pt) est donnée par l'équation de
Fokker-Planck

∂tψt = L∗ψt,

où L∗ est l'opérateur adjoint de L, dé�ni par

L∗ψt = −divq
(
M−1p ψt

)
+ divp

(
[γM−1p+∇V (q)]ψt

)
+ γβ−1∆pψt.

On véri�e aisément que la densité Z−1exp(−βH(q, p)) de la mesure canonique (1.6)
est bien une solution stationnaire de l'équation Fokker-Planck.

Il est important de noter que l'existence et l'unicité d'une solution (Qt, Pt) au
système (1.25) ne peuvent être assurées que sous certaines hypothèses sur le potentiel
V . Les hypothèses, que l'on retiendra dans la suite, sont (i) V ∈ C1 et (ii) ∇V
globalement Lipschitz, c'est à dire

∃C > 0,∀(q1, q2) ∈ R3N × R3N , |∇V (q1)−∇V (q2)| ≤ C|q1 − q2|. (1.26)

A�n d'assurer l'ergodicité de la dynamique, on suppose également

Zq =
∫

R3N

e−βV (q)dq <∞. (1.27)

Remarquons que dans le cas de systèmes périodiques (où l'espace de con�guration
est T3N , par exemple), l'hypothèse (1.27) n'est pas nécessaire.

En pratique, une discrétisation de la dynamique (1.25) est donné par le schéma
de Brünger-Brooks-Karplus (BBK):

Pt+∆t/2 = Pt −∇V (Qt)
∆t
2
− γM−1Pt

∆t
2

+

√
γβ−1∆t

2
G3N ,

Qt+∆t = Qt + ∆tM−1Pt+∆t/2,

Pt+∆t = Pt+∆t/2 −∇V (Qt+∆t)
∆t
2
− γM−1Pt+∆t

∆t
2

+

√
γβ−1∆t

2
G3N ,

(1.28)
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où les G3N sont des vecteurs gaussiens centrés réduits de dimension 3N . Notons
que la troisième équation peut être réécrite sous une forme explicite:

Pt+∆t =
2M

2M + γ∆t

[
Pt+∆t/2 −∇V (Qt+∆t)

∆t
2

+

√
γβ−1∆t

2
G3N

]
.

Notons que si γ = 0, on retrouve le schéma Störmer-Verlet (1.24). L'erreur globale
de ce schéma est usuellement de l'ordre de O(∆t). On peut en e�et montrer que

lim
N→+∞

1
N

N−1∑
n=0

A(Qt+n∆t, Pt+n∆t) =
∫

Ω
A(p, q) dµc(q, p) +O(∆t).

Bien que cette approche ne conduise pas à un échantillonnage exact de la mesure
canonique, contrairement à l'algorithme de Metropolis-Hastings, l'erreur associée
à la discrétisation de l'EDS reste en général petite devant la moyenne d'ensemble

calculée
∫
A dµc. De plus, puisque la méthode de Metropolis-Hastings risque de

rejeter une proportion importante des con�gurations proposées, la dynamique de
Langevin n'est pas sans avantage.

Il est important de noter que la dynamique de Langevin est surtout utilisée pour
décrire précisément la dynamique d'un système physique. Lorsqu'il est question
d'échantillonnage, on se contente de faire appel à des méthodes purement proba-
bilistes pour les impulsions et de décrire une dynamique simpli�ée pour les con�g-
urations.

Dynamique de Langevin amortie

Pour échantillonner la mesure canonique les impulsions p peuvent être tirées selon
la loi normale dκ (1.8) et les positions q selon la loi dπ (1.9). La dynamique de
Langevin amortie propose une dynamique sur q, ergodique par rapport à dπ. Elle
provient de la dynamique de Langevin (1.25) dans les limites M → 0 et γ = 1
et est décrite par une équation di�érentielle stochastique faisant donc uniquement
intervenir les positions Qt:

dQt = −∇V (Qt) dt+
√

2β−1dWt. (1.29)

L'existence et l'unicité de la solution de cette EDS sont encore une fois assurées sous
l'hypothèse (1.26) sur le gradient ∇V . Cette dynamique peut être discrétisée par le
schéma d'Euler, ce qui donne la chaîne de Markov

Qt+∆t = Qt −∇V (Qt) ∆t+
√

2β−1∆t G3N .

Cette dynamique est simulée pour un potentiel de dimension 1, voir Figure 1.3. La
Figure 1.3(a) montre le potentiel double-puits V (x) = (x2 − 1)2 et la Figure 1.3(b)
montre la distribution empirique des positions (barres verticales) après 105 pas de
temps et la mesure canonique associée à V (courbe noire).
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(a) (b)

Figure 1.3: Échantillonnage par la dynamique de Langevin amortie (1.29). (a) Po-
tentiel double-puits V (x) = (x2−1)2. (b) La mesure canonique associée à V (courbe
rouge) et distribution des positions après 105 pas de temps (barres verticales). Les
paramètres du modèle utilisés sont β = 1 et ∆t = 0.01.

Le génerateur in�nitésimal L associé à la dynamique (1.29) est donné par

Lϕ = −∇V · ∇ϕ+ β−1∆ϕ.

L'évolution en temps de ψt, la densité de la loi de Qt est alors donnée par l'équation
de Fokker-Planck suivante:

∂tψt = ∇ · (∇V ψt + β−1∇ψt). (1.30)

On peut facilement véri�er que Z−1
q exp(−βV (q)), la densité de la mesure π (1.9),

est bien une solution stationnaire:

∇V exp(−βV (q))+β−1∇exp(−βV (q)) = ∇V exp(−βV )+β−1(−β∇V )exp(−βV ) = 0.

Sous certaines hypothèses sur V , on peut montrer qu'en temps long, ψt converge
au sens de l'entropie relative exponentiellement vite vers la densité de Boltzmann-
Gibbs ψ∞ = Z−1exp(−βV ) (voir la Section 4.4.2). La vitesse de convergence est,
pourtant, souvent lente à cause des métastabilités de la dynamique associée au
potentiel sous-jacent V . La vitesse de convergence est en fait liée à la constante
de Sobolev logarithmique de la mesure associée (voir la Section 4.4 pour plus de
précisions).

Métastabilité

On dit d'une dynamique qu'elle est métastable si le système passe un temps impor-
tant dans un état (ou région) stable avant de passer rapidement dans un autre. Ces
états métastables, de basse énergie, sont typiquement séparés par des barrières de
haute énergie (ou par des barrières entropiques, voir la Figure 4.1 plus loin), qui
ralentissent l'exploration de l'espace. Le système passe beaucoup de temps dans un
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Figure 1.4: Une réalisation de la dynamique de Langevin amortie (1.29) pour le
potentiel V (x) = (x2 − 1)2, présentée dans la Figure 1.3(a). Le caractère bimodal
de ce potentiel nuit à l'exploration de l'espace et donc à l'échantillonnage de la
mesure dπ = exp(−βV ) dq.

puits, avant de franchir une barrière et de se diriger rapidement vers un autre puits.
On a montré dans la Figure 1.3(a) un exemple d'un tel potentiel en dimension 1;
la Figure 1.4 représente l'évolution en temps de la coordonnée x, le degré de liberté
lent du système. Donnons maintenant une dé�nition plus formelle de la métastabil-
ité. Considérons deux régions d'intersection vide, A ⊂ R3N et B ⊂ R3N , de basse
énergie (forte probabilité) séparées par des régions de haute énergie (faible proba-
bilité). Les régions constituent des états dits métastables du système si l'ensemble
A∪B est de volume �ni, mais représente les régions où le système passe la majorité
de son temps:

Z−1

∫
A∪B

e−βV (q) dq ≈ 1.

Cette situation est malheureusement répandue pour les systèmes moléculaires com-
plexes (sans compter que le nombre d'états métastables est typiquement bien plus
grand que deux et augmente rapidement avec la taille du système). Pour cette
raison, les dynamiques de Langevin ou de Langevin amorties sont le plus souvent
couplées à d'autres outils permettant d'accélérer l'exploration de l'espace.

1.3 Simuler les systèmes sur des temps longs

Comme il a été précisé précédemment, la véritable di�culté lorsque l'on échantil-
lonne la mesure canonique dπ est la convergence lente des moyennes trajectorielles,
due à la multimodalité de dπ. Ceci pose généralement problème lorsque l'on veut
décrire le comportement d'un système en temps long.
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La loi d'Arrhenius [Arrhenius 1889], basée surtout sur des observations em-
piriques (mais justi�é mathématiquement dans certains cas par la théorie des grands
déviations [Freidlin 1998]), nous dit qu'en moyenne le temps τ nécessaire pour
franchir une barrière d'énergie de hauteur ∆V varie selon

τ ∝ exp(β∆V ). (1.31)

Pour cette raison, la dynamique moléculaire usuelle est en pratique lente et est
rarement utilisée pour décrire le comportement en temps long de systèmes com-
plexes. Nous présentons maintenant des méthodes, aussi bien déterministes que
stochastiques, qui ont pour but d'identi�er les états métastables et les chemins de
transition correspondants a�n d'essayer d'accélérer l'exploration de l'espace.

1.3.1 Recherche de chemins de transition

A�n de décrire des dynamiques sur des échelles de temps plus longs, il faut d'abord
pouvoir localiser les états métastables (ou minima locaux) du système et décrire
le mécanisme par lequel le système subit les transitions d'un état à l'autre. Nous
donnons ci-dessous un bref résumé des méthodes qui visent à localiser ces états mé-
tastables et à évaluer les taux de transition. Elles sont classées dans trois catégories.

Localisation des puits de potentiel et les points cols

Plusieurs méthodes existent qui ont pour objectif d'explorer les puits et cols du po-
tentiel. Leur principe commun est le suivant: partant d'un minimum local donné,
on force le système à sortir du bassin correspondant en le dirigeant vers un point
col adjacent en suivant la direction de la courbure la plus faible de la fonction de
potentiel. Ensuite, le système est poussé dans la direction de courbure négative a�n
qu'il franchise le point col et tombe dans un nouveau minimum local. Les algo-
rithmes de cette catégorie, tels que la Eigenvector-following method [Cerjan 1981],
Dimer method [Henkelman 1999, Heyden 2005] et Activation Relaxation Technique
(ART) [Barkema 1996a, Mousseau 1998, Mousseau 2000b, Malek 2000], seront présen-
tés dans la Section 2.3. Un des travaux e�ectués au cours de la thèse propose une
amélioration pour une version d'ART adaptée au cas de la température nulle, appelée
ART nouveau. Ce travail sera présenté dans le chapitre 3, où nous donnons égale-
ment une preuve de convergence pour un algorithme prototype du modèle amélioré.

Chemins de réaction

Une fois les minima locaux identi�és, des méthodes telles que la méthode de Nudged
Elastic Band (NEB) [H. Jonsson 1998] et la zero temperature String method [E 2002]
permettent de tracer un chemin de transition d'énergie minimale entre deux états
stables (minima locaux) en passant par le col. Dans le cas d'une surface d'énergie
potentielle rugueuse (voir la Figure 1.5, à droite), les méthodes classiques ne su�sent
pas et on fait appel à des méthodes telles que la �nite temperature String method
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Figure 1.5: A gauche: Un exemple d'une surface d'énergie potentielle lisse avec
deux minima locaux. Cette situation se rencontre parfois en sciences des matériaux
(sauts de lacunes ou d'atomes interstitiels dans un cristal) ou en chimie (par exemple
la di-alanine). A droite: Une surface d'énergie potentielle rugueuse, présentant de
nombreux minima locaux, qui possède néanmoins deux minima locaux importants,
correspondants aux énergies les plus basses. En parcourant le chemin d'un puits à
l'autre, le système va tomber dans de petites régions métastables, ce qui ralentit la
trajectoire. Cette surface est typique de systèmes complexes tels que les biomolécules
de grande dimension.

(FTS) [E 2005a]. On peut voir cette dernière comme un couplage entre la String
method et une méthode d'échantillonnage.

Taux de transition

Il existe des méthodes pour déterminer le taux de passage d'un puits à l'autre, une
fois ces derniers identi�és. L'une des méthodes les plus célèbres s'appelle Transition
State Theory (TST), développée simultanément par Eyring, et par Evans et Polanyi
en 1935 [Eyring 1935, Evans 1935]. Une fois que les taux de transition sont connus,
ils sont utilisés pour simuler l'évolution du système à des échelles de temps plus
longs par les méthodes telles que la Monte-Carlo cinétique, décrite ci-dessous.

1.3.2 Simuler sur les temps plus longs

Monte-Carlo cinétique

Les taux de passage d'un puits à un autre étant supposés connus, les méthodes
de Monte-Carlo cinétique (Kinetic Monte-Carlo, KMC) [Young 1966, Bortz 1975]
permettent de décrire l'évolution du système à des échelles de temps souvent in-
accessibles via des méthodes de dynamique moléculaire habituelle. Cette classe
de méthodes requiert (et souvent maintient) une liste d'événements et de taux de
réaction (calculés par les méthodes de la Section 1.3.1). On substitue alors à la
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dynamique initiale du système, une dynamique simpli�ée ne faisant intervenir que
les états métastables et les probabilités de transition précalculées.

Dynamique biaisée par l'énergie libre

Une fois que l'on peut paramétrer une transition par une coordonnée de réaction,
on peut utiliser l'énergie libre associée pour forcer le système de passer d'un état
métastable à l'autre. Les méthodes de cette catégorie seront présentées dans le
chapitre 4. Déterminer une bonne coordonnée de réaction est un problème d'intérêt
en soi et ce sera le sujet de la Section 4.1.2.

Ce rapport de thèse se divise en deux parties. Nous présentons, dans la première par-
tie, les méthodes de recherche de chemins de transition et les points col associés: dans
le chapitre 2, nous présentons plus en détail les méthodes de recherche de chemins
de transition évoquées à la Section 1.3.1; dans le chapitre 3, nous proposons une
amélioration et une preuve de convergence pour la méthode Activation-Relaxation
Technique de température nulle (ARTn). La deuxième partie est consacrée au calcul
d'énergie libre et aux dynamiques biaisées: nous donnons d'abord, dans le chapitre 4,
un récapitulatif des méthodes principales de cette classe; nous présentons ensuite,
dans les chapitres 5 et 6, les nouveaux résultats, numériques et théoriques, obtenus
au cours de cette thèse.
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2.1 Simulations on large time scales

This chapter is dedicated to a review of computational methods commonly used
in theoretical chemistry and solid state physics to �nd transition states on a po-
tential energy surface and more precisely minimal energy paths. As previously
discussed, classical molecular dynamics (MD) rarely allow us to capture the im-
portant transitions of molecular systems due to the limited feasible time-scales on
even the fastest modern-day computers. Due to the smallness of the characteris-
tic time scales of atomic vibrations, timesteps typically used in MD simulations
are on the order of a femtosecond (fs). Important transitions (chemical reactions
or conformational changes) in molecular systems, however, occur on the scale of
a microsecond (µs). The advances in high-performance computing and parallel
architectures have made it possible to approach these large time scales with clas-
sical MD methods. This past decade has seen the development of special pur-
pose supercomputers such as Anton [David E. Shaw 1998, Larson 2009, Shaw 2008],
whose highly-parallel architecture has been specially designed to carry out force
evaluations at extremely high speeds, with the help of a Gaussian split Ewald
method [Shan 2005]. Other groups have been devoted to a distributed computing
project Folding@home [Shirts 2001, Shirts 2000] whereby common household com-
puters around the world can donate their idle time to protein folding simulations.
E�cient MD software is of course also at the heart of modern-day research. The
widely-used MD code NAMD [Bhandarkar 2003, Kale 1999, Phillips 2005] and the
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more recent Desmond [Bowers 2006] have been developed to run e�ciently on par-
allel architectures. Furthermore, more recently, a platform of choice for a growing
number of MD applications has been the powerful and widely available graphical
processing unit (GPU) [Stone 2007, Rodrigues 2008].

Such technological advances have allowed for longer simulations using classical
MD techniques. However every small perturbation or displacement of a system does
not always need to be explicitly described to understand its long-time behavior. The
past two decades have given rise to a multitude of computational methods aimed
at pushing the system to undergo important transitions typically observed at very
large time scales, overlooking the small thermal vibrations. These methods are for
the most part deterministic, relying heavily on the gradient and curvature of the
underlying potential energy surface, but stochastic elements are not entirely absent.
This will become apparent at a later stage (see for instance Sections 2.3.1.3 and
2.2.3). These methods fall into two categories: (i) initial and �nal states are known
and the minimal energy path between the two states is sought; (ii) a single local
minimum is known a priori and one seeks adjacent local minima and corresponding
transition states.

Section 2.2 will give an overview of the methods falling into category (i) and
Section 2.3 will outline some methods of category (ii), for which improvements and
convergence results have been proposed as a part of this work (see Chapter 3).

2.2 Double-ended methods

This section is devoted to a review of algorithms developed in the past two decades
for �nding minimal energy paths in the particular case where initial and �nal states
(each a local minimum), denoted A and B respectively, are known. The minimal
energy path is of particular interest when studying the dynamics of physical systems
as it is known to be the most probable path taken by the system to undergo the
reaction from A to B [Freidlin 1998].

A formal de�nition will help in motivating the algorithms discussed herein. A
curve ϕ connecting A and B is said to be a minimal energy path if the orthogonal
component of the force to the curve is zero at every point along the curve and that
no critical point along the path has a Morse index larger than or equal to two (see
discussion further on). More formally, if a minimal energy path is parameterized by
α ∈ [0, 1], where ϕ(0) = A and ϕ(1) = B, then one has

(∇V (ϕ(α)))⊥ = 0, ∀α ∈ [0, 1]. (2.1)

where (∇V (ϕ(α)))⊥ is the component of the gradient of the potential orthogonal to
the curve at point ϕ(α). Let us denote in the following

(∇V (ϕ(α)))‖ =
∇V (ϕ(α)) · ∇ϕ(α)

|∇ϕ(α)|2
∇ϕ(α),

and
(∇V (ϕ(α)))⊥ = ∇V (ϕ(α))− (∇V (ϕ(α)))‖,
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the components of the gradient parallel and orthogonal to the curve.
Once the minimal energy path is determined, the point along it with the highest

energy is called the transition state. A transition state qts is a saddle point satisfying
the following criteria: (i) ∇V (qts) = 0; and by Murrell and Laidler [Murrell 1968]
(ii) H(qts) = ∇2V (qts), the Hessian, has a single negative eigenvalue. The second
criterion signi�es that at the transition state, the energy is a local maximum in
one direction and a local minimum in the orthogonal hyperspace. The eigenvector
associated to the single negative eigenvalue at qts is parallel to the minimal energy
path. Criterion (ii) is justi�ed as follows. Suppose that the Hessian at a saddle point
q∗ts has two negative eigenvalues, −λ1 < 0 and −λ2 < 0, associated to the normal
eigenvectors v1 and v2. By taking small steps in the direction of these eigenmodes,
we �nd

V (q∗ts + ε1v1 + ε2v2) = V ∗ + (ε1v1 + ε2v2)T∇V ∗ + (ε1v1 + ε2v2)TH∗(ε1v1 + ε2v2)

= V ∗ − λ1ε
2
1v

2
1 − λ2ε

2
2v

2
2

< V ∗,

where V ∗ = V (q∗ts), ∇V ∗ = ∇V (q∗ts) = 0 and H∗ = H(q∗ts) = ∇2V (q∗ts). In other
words, in the region of q∗ts, the hypersurface in the two eigenmodes would a hill,
thus a lower-energy path may be constructed by walking around it. The Hessian
at a transition state, therefore, must always be of index one; a generic saddle point
di�ers in that it typically has one or more negative eigenvalues, and at least one
positive eigenvalue.

With these notions in mind, we are now ready to present two of the leading
double-ended methods used to estimate paths of minimal energy: the Nudged Elastic
Band method (Section 2.2.1) and the String Method (Section 2.2.2). The idea,
common to both of these algorithms, is to begin with an initial discretized path
between the initial and �nal states and to evolve the path in such a way as to estimate
the minimal energy path. It should be emphasized that the methods discussed below
provide a means to �nd one minimal energy path, determined almost entirely by the
initial path. In the case where more than one reaction path exists (see for example
Figure 4.2(b) in Chapter 4), the others may be obtained for example by applying
the algorithms to a number of di�erent initial paths.

2.2.1 Nudged Elastic Band method

The Nudged Elastic Band (NEB) method [H. Jonsson 1998] was one of the earliest
proposed to estimate transition pathways given initial and �nal states, A and B.
The idea of the NEB method is to evolve a discretized path consisting of a set of
N + 1 images, A = x0, x1, ..., xN = B, in such a way that the �nal discretized path
approximates the minimal energy path. The end points x0 and xN typically remain
�xed throughout the algorithm. To obtain the orthogonality condition (2.1), each
image is pushed (or nudged) in the steepest descent direction orthogonal to the curve.
Depending on the choice of the initial path, the images would tend to form clusters in
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the basins of attraction, leaving the region about the transition state undersampled.
In order to tackle this potential clustering of images, the NEB method introduces
a spring-like (or elastic) force, to encourage equal spacing. The NEB method owes
its name to these key features of the algorithm.

The evolution of each image i is described by

ẋi = Fi = −∇V (xi)⊥ + F si |‖, (2.2)

where ẋi denotes the derivative in time of the evolving image xi(t), −∇V (xi)⊥
denotes the projection of the force onto the hypersurface perpendicular to the (nor-
mal) tangent τi of the curve at the point xi (the precise de�nition of τi will be
given below). The term F si |‖ represents the parallel component of the force to the
curve exerted on the images. The perpendicular projection of the force is de�ned as
follows

−∇V (xi)⊥ = −∇V (xi) + (∇V (xi) · τi)τi
and the spring-like force is evaluated as [H. Jonsson 1998]

F si |‖ = k(|xi+1 − xi| − |xi − xi−1|)τi, (2.3)

or, as suggested in [E 2007],

F si |‖ = k[(xi+1 − 2xi + xi−1) · τi]τi, (2.4)

where k > 0 is the spring constant. These terms favor equal spacing between image
i and its adjacent counterparts.

Remark 1 Note that in the continuous limit (N →∞), the evolution of the strings (2.2)
could be interpreted as

ϕ̇(α) = −∇V (ϕ(α))⊥ + kϕαα(α),

where ϕ is the continuous string characterized by parameter α ∈ [0, 1] and ϕαα
denotes the double derivative of the curve with respect to parameter α.

The tangent τi is often calculated as the average of the local �rst order approxima-
tions:

τi =
xi+1 − xi
|xi+1 − xi|

+
xi − xi−1

|xi − xi−1|
. (2.5)

This choice, however, has been linked to kinks appearing in the path and is the
subject of discussion in a paper by Henkelman et al. [Henkelman 2000a]. In this
paper, an alternative choice for the tangent was suggested in order to obtain a
smoother path:

τi =
{
τ+
i if V (xi+1) > V (xi) > V (xi−1)
τ−i if V (xi+1) < V (xi) < V (xi−1)

where
τ+
i =

xi+1 − xi
|xi+1 − xi|

and τ−i =
xi − xi−1

|xi − xi−1|
.
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If an image is at a local minimum or maximum, a potential weighted �nite di�erence
expression is used to avoid abrupt changes in the curve. More precisely, if V (xi+1) >
V (xi) < V (xi−1) or V (xi+1) < V (xi) > V (xi−1), the tangent would be estimated
as follows

τi =
{
τ+
i ∆V max

i + τ−i if V (xi+1) > V (xi−1)
τ−i ∆V min

i + τ+
i if V (xi+1) < V (xi−1)

where

∆V max
i = max(|Vi+1 − Vi|, |Vi−1 − Vi|) and ∆V min

i = max(|Vi+1 − Vi|, |Vi−1 − Vi|).

In the following examples, this new implementation of the tangent has been used.
The algorithm is terminated when the maximum displacement of the string or

maximum of the projected forces on each image is below a certain tolerance TOL.
The algorithm is more formally given as follows

Algorithme 2 Nudged Elastic Band
N , x0 and xN , nmax given.
Set ∆x = (xN − x0)/N .
Set xi = x0 + i∆x, for i = 1, ..., N − 1.
Set n = 0.
while ((n < nmax) and (maxi ‖∇V (xi)|⊥‖ > TOL))

for i = 1, .., N − 1

Calculate τi
xn+1
i = xni + ∆t(−∇V (xi)|⊥ + k(|xi+1 − xi| − |xi − xi−1|)τi),

end
n = n+ 1,

end

Although the original NEB method keeps the images on the extreme ends of the
elastic band �xed at the local minima, the method can be extended to the more
general case, where the end-most images are placed on either side of the dividing
surface (a surface from which a system is equally likely to reach state A or B). In this
case, the end-most images x0 and xN take steps in the direction of steepest descent
and the intermediary images follow the standard algorithm described above. This
method is demonstrated with 11 images in Figure 2.1(a), for the smooth double-well
potential

V (x, y) = (x2 − 1)2 + (y + x2 − 1)2. (2.6)

Model parameters are given in the �gure caption. Once the path has converged,
the saddle point may be identi�ed as the point with the highest energy along the
minimal energy path. This can be done by tracing the energy as a function of the
images along the curve, as shown in Figure 2.1(b).
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(a) (b)

Figure 2.1: The NEB method applied to the smooth double-well potential V de�ned
in (2.6). The parameters used are as follows: N = 10, ∆t = 0.1, k = 1, nmax =
100, TOL= 10−2. (a) Starting from a straight-line path from either side of the
dividing surface, the images on the extreme ends of the band follow a steepest
descent direction while intermediary images follow the standard NEB algorithm
described in Algorithm 2.2.1. The termination criterion is satis�ed after 35 steps.
(b) The energy along the minimal energy path suggests that image i = 6 (the point
of highest energy) is a good approximation of the transition state.

2.2.2 The String method

The zero-temperature String method [E 2002, E 2003, E 2007] is in essence very
similar to the NEBmethod: given initial and �nal states, a path or string (discretized
by a set of N + 1 images) evolves on a smooth potential according to certain rules
towards the minimal energy path. The String method distinguishes itself from NEB
in the second term on the right hand side of (2.2). The NEB method enforces equal
spacing between images in a �exible manner, through a spring-like force, whereas
the String method imposes a more rigid constraint by a reparameterization of the
string. Assuming one begins with the string ϕ = {ϕ(α), α ∈ [0, 1]}, then the normal
tangent to the curve is described by τ(α) = ϕα/|ϕα|, where ϕα = ∂ϕ/∂α. The
curve ϕ in the string method evolves according to the following model:

∂ϕ

∂t
= −∇V (ϕ)⊥ + λτ. (2.7)

where λ = λ(α, t) is the Lagrange multiplier, enforcing the reparameterization of
the string |ϕα| = 1. The evolution of the images discretized in time, with time step
∆t gives:

ϕi(t+ ∆t) = ϕi(t)−∇V (ϕ(t))⊥∆t. (2.8)
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Once the images ϕi of the string have taken a steepest descent step, the partial
string segment between ϕ1 and ϕn has length

Sn =
n∑
i=1

|ϕi − ϕi−1|,

and the normalized mesh is obtained by setting αi = Si/N . Then, a cubic spline
interpolation is carried out on {(αi, ϕi), i = 1, ..., N} and the new images ϕ∗i are
chosen to be at equidistant points along the string:

α∗i = i/N, for i = 0, ..., N.

2.2.3 Transitions at �nite temperature

When studying transitions at �nite (high) temperature, the methods discussed so
far no longer su�ce. Simulations at �nite temperature may be of particular interest
when studying transitions on rough energy landscapes or to take into account en-
tropic barriers on the potential energy surface. First, when the underlying potential
is rugged, i.e. there exist a plethora of local minima and saddle points, as depicted
earlier in Figure 1.5, the notion of a minimal energy path (thus the NEB and String
methods) becomes irrelevant. The shallow basins on a rugged surface typically have
energy barriers in the order of 1 eV, which are easily surmountable by systems at
�nite temperature and are therefore almost always unseen in the main transition
path from A to B. Second, entropic e�ects may result in a higher energy path being
favored over another: a high energy barrier around which the energy is �at may
lead to a lower free energy (see Chapter 4) than a narrow lower energy barrier, and
thus is favored over the latter.

Figure 2.2(a) shows an example of a rough energy landscape, where a standard
NEB algorithm fails to �nd the most probable path between the two global minima.
The NEB and string methods fail in such situations due to the simple projected
force term −(∇V )⊥ driving the evolution of the images (cf. (2.2) and (2.7)). As
shown in Figure 2.2(a), such algorithms drive the images into local basins, which,
unless pulled out by spring-like forces along the curve or reparameterization of the
string, remain trapped. Figure 2.2(b) shows the energy along the images of the
falsely converged path.

To tackle such situations, one may consider e�ective transition pathways, intro-
duced in [E 2005b]. The idea is to consider isoprobability surfaces, i.e. surfaces from
which the probability of a trajectory reaching the �nal state B before the initial state
A is uniform. By weighting these surfaces with the equilibrium Boltzmann-Gibbs
measure, one can determine the regions of the surface where reactive trajectories
are most likely to pass through. In practice this may be done using the Finite
Temperature String method, described below.
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Finite Temperature String method

The Finite Temperature String method [E 2005a] combines the string method and
equilibrium sampling techniques to tackle rough energy landscapes and account for
entropic e�ects. The idea of the method is to replace the gradient term in (2.7) by
a term involving an averaged quantity, de�ned in (2.9) below. At each time step t
of the string method and for each image i of the string, one de�nes a Voronoi cell
Bi(t), de�ned by

Bi(t) = {x : |x− ϕi(t)| < |x− ϕj(t)|, ∀i 6= j},

and calculates in each cell the conditional average

〈x〉Bi(t) =

∫
Bi(t)

q e−βV (q) dq∫
Bi(t)

e−βV (q) dq

. (2.9)

Equation (2.8) is then replaced by

ϕi(t+ ∆t) = ϕi(t)− (ϕi(t)− 〈x〉Bi(t)) ∆t.

In this way, the images of the string are pulled towards the most probable position
of the system within the Voronoi cell and are less likely to be trapped in shallow
local minima regions. In practice, (2.9) is estimated by simulating Langevin dy-
namics (with timestep typically smaller than ∆t) in each Voronoi cell, and imposing
appropriate boundary conditions [Vanden-Eijnden 2009a, Vanden-Eijnden 2009b].

2.3 Single-ended methods

This section will give an overview of algorithms designed to search transition states
around a local minimum, when no information is known about the �nal state. The
NEB and string methods provide means for recovering the most probable path of
a system for a particular reaction, however they may not be applied in the case
where the �nal product state is unknown. Methods such as kinetic Monte Carlo
(KMC) [Young 1966, Bortz 1975] require a list of local minima, transition states
and transition rates.

Furthermore, although double-ended methods may also be used to locate tran-
sition states along a minimal energy path, they are not the most e�cient for this
task. A climbing-image NEB method was proposed [Henkelman 2000b] as an al-
ternative to the classical NEB for such cases, whereby the highest image does not
feel the spring forces and is driven instead towards the saddle point. The string
method also allows for re�nement of its mesh, but it would not be without the cost
of redundant work. In such double-ended methods, each time step requires force
evaluations for every image along the path, even the low-lying images, far away
from the transition state, meaning some computational e�ort is wasted (supposing



2.3. Single-ended methods 31

(a) (b)

Figure 2.2: An example of a rugged potential energy surface, for which the NEB
method fails. The ruggedness is introduced by perturbing the potential V of Fig-
ure 2.1 by Vε(x, y) = ε sin(4πx) cos(4πy), where in this case ε = 0.1. The parameters
used in this example are as follows: N = 50, ∆t = 0.01, k = 1. The algorithm falsely
converges in about 10 steps.

we are interested only in the transition state). Finally, and most importantly, these
methods cannot be applied in the case of an unknown �nal state or indeed dividing
surface.

For these reasons, algorithms such as the Eigenvector following method [Cerjan 1981],
the Dimer method [Henkelman 1999] and the Activation Relaxation Technique (ART)
[Mousseau 2000b, Malek 2000] have been developed with the goal of locating tran-
sition states and exploring the local basins in the neighborhood. Once a transition
state is located, a straightforward minimization �nds an adjacent local minimum.
Note that the search for a transition state is more challenging than for a local min-
imum or maximum. As a transition state is, by de�nition, a local maximum in one
direction and a local minimum in all others, additional information is required on
the curvature of the potential and eigenmodes of the Hessian. It should be empha-
sized that the curvature information will help to locate the transition state, once
the system is already within its local vicinity. A pertinent question is then: how
is a system driven out of a harmonic basin e�ciently? This will be discussed in
Section 2.3.2. Before, we begin by outlining a few popular single-ended methods
used in nonconvex regions of a potential energy surface.

2.3.1 Locating transition states in nonconvex regions

In order to accurately locate a transition state, one needs information about the
Hessian in the nonconvex region around it. Attaining such a region is by no means
trivial, and its discussion is postponed to Section 2.3.2. In the following, we place
ourselves in the nonconvex region local to the transition state. We begin by brie�y
introducing the prevailing ideas behind the methods discussed in this section, namely
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that of climbing the potential surface in one direction while minimizing in all others.
For a point q ∈ Rn in con�guration space, consider the Taylor expansion of the

potential energy V = V (q) about a point q0, denoting the di�erence between the
two h = q − q0:

V (q) = V0 +∇V T
0 h+

1
2
hTH0h, (2.10)

where V0 = V (q0), ∇V0 = ∇V (q0) and H0 = H(q0) = ∇2V (q0). By solving
∇hV = 0 for h (where ∇hV is the gradient of V with respect to h) and expressing
it in the basis of the orthonormal eigenvectors (ui)1≤i≤n of H0, we have

h = −
n∑
i=1

〈∇V0, ui〉ui
λi

, (2.11)

where (λi)1≤i≤n are the corresponding eigenvalues of H0. The change in energy
induced by this step is then

V (q)− V (q0) = ∆V = −
n∑
i=1

〈∇V0, ui〉2

2λi
.

Therefore λi < 0 results in an energy increase in the direction ui and λi > 0 an
energy decrease.

In order to approach the transition state, the system should be pushed in the
direction of the lowest eigenmode (the eigenvector corresponding to the single neg-
ative eigenvalue) and be minimized in all orthogonal directions. Recall that we are
assuming there exists only one negative eigenvalue in the su�ciently close vicinity
of the transition state. The use of the Hessian in such algorithms does not come
without computational burden:

• For large systems, typically consisting of N > 1000 atoms, calculating the
Hessian is very costly: in total O(N2) operations are needed. Alternatives are
discussed hereafter to estimate the Hessian (in fact a Hessian-vector product)
using �nite di�erence approximations, see for example Section 3.2.

• Supposing a Hessian matrix has been obtained for a large system. Deter-
mining the full spectrum of the matrix through diagonalization causes further
computational burden: a complexity of O(N3). When a full spectrum is not
required, its extreme values (smallest or largest eigenvalue in absolute value)
may be extracted more e�ciently via methods such as the Power Iteration,
Lanczos method or the minimization of the Rayleigh-Ritz quotient.

In order to bypass these potential bottlenecks, the Dimer method [Henkelman 1999],
brie�y discussed in Section 2.3.1.2, proposes an algorithm depending only on �rst
derivatives of the potential energy function, making it applicable to larger systems.

These single-ended methods may in fact be coupled with schemes such as the
KMC, where saddle points and local minima are calculated on the �y. This has been
applied to study the di�usion of an adatom on an Al(100) surface, where KMC has
been complemented with the dimer method [Henkelman 2001].
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2.3.1.1 Eigenvector-following method

The Eigenvector-following method, developed in [Cerjan 1981], was one of the �rst
algorithms proposed to locate saddle points of index one. This method consists in
pushing the system towards a saddle point by taking steps as de�ned in (2.11), only
with a restriction in the step size: |h| = r for some prede�ned r > 0. The function
then considered is the Lagrangian function

L(h, r) = V0 +∇V T
0 h+

1
2
hTH0h+

η

2
(r2 − |h|), (2.12)

where η is the Langrange multiplier. The extrema are located by solving ∂L/∂h = 0
and ∂L/∂η = 0. For �xed r, the second equation can be solved straightforwardly
for η, determining the step taken by the system:

h = −
∑
i

〈∇V0, ui〉ui
(λi − η)

. (2.13)

In fact, to allow for more �exibility, a di�erent Langrange multiplier can be used for
di�erent eigendirections [Wales 2005]. This method is indeed robust and has been
shown to converge quadratically [Banerjee 1985], however its dependence on the
full spectrum of the Hessian restricts its application to systems of small sizes: the
diagonalization scales as the cube of the system size. In order to reduce such costs
the Hybrid Eigenvector-following method [Munro 1999, Wales 2003] was proposed
whereby a step is taken only in the direction of the lowest eigenmode (calculated
using standard iterative methods with shifting) and minimizing in the orthogonal
hyperplane.

2.3.1.2 The Dimer method

The Dimer method, developed by Henkelman and Jónsson [Henkelman 1999, Heyden 2005]
proposes a simple algorithm to converge to a transition state without computing the
Hessian of the potential. This method consists in pushing uphill, towards a tran-
sition state, a pair of images (the `dimer'), through rotation and translation. The
goal of the rotation is to �nd the lowest curvature mode of the Hessian without
calculating it explicitly. The translation of the dimer is the step needed to push the
pair of images to climb the potential energy surface in the direction of the lowest
mode.

The midpoint of the dimer is at r and the unit vector n̂ de�nes its orientation.
The images, separated from the midpoint by a distance ∆r, are thus de�ned by

r1 = r + ∆r n̂, and r2 = r−∆r n̂.

The energies and forces of the images are given by E1 and E2 and f1 and f2, so that
the total energy of the dimer is E = E1 + E2 and the force on the midpoint f is
the average (f1 + f2)/2. Finally, the energy at the midpoint of the dimer may be
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computed by equating the curvature of the potential at r in terms of forces f1,f2 and
energies E1,E2. A simple rearrangement yields

E0 =
E1 + E2

2
+

∆r
4

(f1 − f2) · n̂.

The energy and force exerted on the dimer are thus calculated entirely from their
value at the two images. This is a signi�cant advantage over the Hessian-based
methods as it reduces the total number of force evaluations. As the curvature C of
the potential at the midpoint can be expressed as

C =
E1 − 2E0 + E2

(∆R)2
=
E − 2E0

(∆R)2
, (2.14)

and E0 remains �xed during rotation, it is clear that the lowest curvature can be
found by minimizing the dimer energy E. In order to do so, the dimer is rotated
along the rotational force f⊥ = f⊥1 − f⊥2 , where f⊥i = fi− (fi · n̂)n̂. Then, by de�ning
a unit vector ô perpendicular to n̂ in the plane of rotation, the new position, r∗1, of
image 1 after rotating about the angle dθ is given by

r∗1 = r + (n̂ cos dθ + ô sin dθ)∆r.

The new position of image 2 is thus r∗2 = r − n̂∗∆r, where n̂∗ = (r∗1 − r)/|r∗1 − r|.
The idea is then to choose an angle ∆θ such that the scalar force f = f⊥ · ô/∆r is
made zero. A simple Newton's step gives the estimate

∆θ ≈ f

−f ′
,

where, f may be approximated by the average f = (f · ô + f∗ · ô∗)/2, and f ′ may
be approximated using �nite di�erences.

A saddle point is the maximum along the lowest curvature mode and a mini-
mum in all other modes; thus once a lowest curvature mode has been identi�ed, a
translation of the dimer must pull it towards a maximum in the direction of the
lowest mode and a minimum in all other modes. The translational force ftr required
is therefore

ftr = f − 2(f · n̂) n̂,

so that the force acting in the direction of the dimer orientation is inverted. This
force is in fact only used in non-convex regions of the potential surface; in convex
regions one uses simply ftr = −(f · n̂) n̂ in order to local minima regions.

2.3.1.3 Activation Relaxation Technique (ART)

We present in this section the last of the single-ended methods, the Activation
Relaxation Technique (ART) [Barkema 1996a, Mousseau 1998, Mousseau 2000b,
Malek 2000], for which improvements and convergence analysis constitute a part
of the contributions of this work and are presented in Chapter 3. We present herein
a brief background and the main notions of the algorithm. Let us begin by noting
that this technique identi�es events, consisting of two principle components
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1. Activation: leading the system out of its attractive basin and towards a tran-
sition state,

2. Relaxation: pushing the system over the transition state and relaxing to an
adjacent local minimum.

An event is considered successful if both the above converge successfully.

ART: early steps

The original ART algorithm [Barkema 1996a, Mousseau 1998] di�ers from the pre-
viously discussed single-ended methods in that no local information on the curvature
of the potential energy surface is used. Furthermore, the system was treated sim-
ilarly in the convex and nonconvex regions. Following a small initial displacement
∆q of the system from a local minimum q0, it is pushed to a saddle point iteratively,
according to

qn+1 = qn − h[∇V − (1 + α)(∇V ·∆qn)∆qn], for n > 0 (2.15)

where h > 0 and α > 0 are model parameters and, in successive iterations, ∆qn is
the di�erence between the current con�guration qn and the initial local minimum q0.
The component parallel to ∆qn has opposite sign to the force (climbing in energy)
and the orthogonal component is equal to the force (relaxing in the hyperspace). The
quantity ∆qn is essential in determining the success of this algorithm. If it is close to
the lowest eigenmode, then one can expect convergence (albeit, with a su�ciently
small timestep). The above method has been applied successfully to amorphous
semiconductors [Barkema 1999] and Lennard-Jones clusters [Malek 2000] in identi-
fying relaxed con�gurations. This method was later further developed into ART
nouveau (ARTn) to incorporate local curvature information, making it suitable for
transition state searches. This is discussed below.

ARTn: The zero-temperature case

The ART nouveau (ARTn) [Mousseau 2000a] method has proven successful in lo-
cating saddle points of index one in a wide range of energy landscapes. The ARTn
algorithm distinguishes itself from (2.15) in that the ascent direction is no longer
along ∆qn = qn − q0, but the lowest eigenmode of the Hessian at each step. More
precisely, the two stages of ARTn are as follows:

1. Activation � From a given local minimum xi, we move the system towards a
saddle point xc. Principle steps in this phase are:

(a) perform random movements until a point x̃ is reached such that λ1(x̃) <
0, where λ1(x̃) denotes the lowest eigenvalue of the Hessian H(q̃) =
∇2V (q̃);
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(b) replace x̃ by
x̃′ = x̃+ µvv1(x̃), (2.16)

where µv > 0 is a strictly positive constant and the sign of v1(x̃), the
eigenvector of H(q̃) associated with λ1(x̃) is chosen such that v1(x̃) ·
∇V (x̃) > 0 (the eigenvector is pointing in the direction of increasing
energy);

(c) the system is relaxed in the hyperplane orthogonal to v1(x̃′), i.e. we
minimize the energy in this hyperplane by carrying out several iterations
of a gradient-based method, taking x̃′ as the initial point;

(d) we let x̃ = x̃′ and repeat steps (b) and (c) until the (supposed) con-
vergence towards a saddle point xc. Once the number of iterations has
exceeded a certain threshold, reject x̃ and repeat algorithm from step (a).

2. Relaxation � From the saddle point xc, the system is relaxed towards another
local minimum.

The last relaxation step is very fast in comparison with the activation phase and is
a matter of a local minimization, for which many robust algorithms exist, namely
conjugate gradients (CG) or limited-memory Broyden-Fletcher-Goldfarb-Shannon
(L-BFGS). We detail, therefore, the less trivial steps involved in the activation stage.

Step 1(a):

1. let x0 = xi ; we choose a strictly positive constant µa and a random unitary
vector e ∈ Rd and set

x̃n+1 = xn + µa e

2. relax the system in the hyperplane orthogonal to e by carrying out several
iterations of a minimization algorithm, taking x̃n+1 as the initial point. Call
this point xn+1 ;

3. repeat this process until λ1(xn+1) < 0. Then set x̃ = xn+1.

Step 1(b): after the step in the direction of the lowest eigenmode (2.16), the �rst
order expansion in µv of the energy gives

V (x̃+ µvv1(x̃)) = V (x̃) + µv∇V (x̃) · v1(x̃) +O(µ2
v) > V (x̃) +O(µ2

v)

and

|∇V (x̃+ µv v1(x̃))|2 = |∇V (x̃) + µvH(x̃)v1(x̃) +O(µ2
v)|2

= |∇V (x̃) + µv λ1(x̃)v1(x̃) +O(µ2
v)|2

= |∇V (x̃)|2 + 2µv λ1(x̃)∇V (x̃) · v1(x̃) +O(µ2
v)

< |∇V (x̃)|2 +O(µ2
v).
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Figure 2.3: The ART algorithm applied to the potential (2.6).

where the last line is a consequence of λ1 < 0 and v1 · ∇f > 0. Therefore, step
1(b) results in an energy increase and a decrease in the norm of the gradient. The
step µv is in practice a variable step size [Marinica 2008]: after the nth step of the
algorithm in the nonconvex region, the step is taken to be µv := µv/

√
n. We have

shown in [Cancès 2009] that this variable step is in fact suboptimal and may be
improved by incorporating gradient and curvature of the potential energy surface.

The improvement to the ARTn method is presented in Chapter 3), where the
contribution is twofold:

• a prototypical algorithm m-ARTn (modi�ed ARTn) is proposed with an opti-
mal variable step size, depending on the gradient and curvature of the potential
energy surface, see (3.1) of Section 3.2,

• local convergence analysis of the prototypical algorithm, see Appendix 3.A.

2.3.2 Climbing out of convex regions

We have, until now, detailed existing methods to converge towards a transition state
once the system is already in the desired region: the algorithms rely on the existence
of a single negative eigenvalue, corresponding to the lowest eigenmode. This may be
considered as the reaction coordinate, describing the transition of the system from
one metastable state to another. The principle bottlenecks arising in these regions
concern primarily the computation of the Hessian. A key issue has been deferred
until now: how a system is e�ciently driven out of its convex basin. Needless to say,
in a high-dimensional system, there are a large number of low-lying saddle points
of interest, from which a system may escape the local basin. For methods such as
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KMC, it is essential to recover as many of these as possible (in principle all of them
are needed).

There have been attempts to drive a system out of a basin by following well-
chosen directions, for example by pushing the system in the direction of the lowest
eigenmodes, in order to reach a nonconvex region faster. However these techniques
have shown to limit the number of relevant transition states found (typically the
same transition states are found). A method that has proven successful in �nding a
large number of saddle points is a small random perturbation of the system. These
small enforced perturbations on the system can be applied (i) globally, on all the
atoms of the system; (ii) locally on a randomly chosen atom and (iii) locally around
the system defect (vacancy or interstitial). A careful study was carried out on an iron
crystal structure [Marinica 2008] to compare their impact on the number of saddle
points found and the total number of force evaluations per saddle point. The global
initial deformation of the system (i), proved more e�cient than the random local
deformation (ii), which performed the worst. The defect-centered deformation (iii)
was the most e�cient of the three methods, having the highest ratio of successful to
unsuccessful saddle point searches, with the least number of total force evaluations.
Furthermore, this last deformation technique was shown in the same work to be the
least sensitive to system size. The local perturbation is essential to ensure the system
is not pushed out of its current local basin. Furthermore, local perturbation has
proven more robust and was the only method to remain insensitive to system size.
The total number of force evaluations per successful saddle point search remained
constant with growing number of atoms.
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An improvement to the

Activation-Relaxation Technique

Ce chapitre reprend l'intégralité d'un article écrit en collaboration avec Eric Can-
cès, Frédéric Legoll, Mihai-Cosmin Marinica, et François Willaime, et publié dans
Journal of Chemical Physics [Cancès 2009].
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3.1 Introduction

The Activation-Relaxation Technique (ART) [Barkema 1996b, Barkema 1998, Mousseau 1998,
Barkema 1999, Mousseau 1999, Mousseau 2000b, Barkema 2001] is a powerful method
for searching saddle points and transition pathways of a given potential energy sur-
face (PES). Search methods for saddle points and transition pathways can actually
be classi�ed in two main categories. In the �rst class of methods, one assumes that
two local minima of the PES are known. The main objective of the methods in
this class is to �nd the minimum energy path to go from one local minimum to
the other one. The Replica Chain method [Elber 1987, Ayala 1997], the Nudged
Elastic Band [Mills 1994, H. Jonsson 1998, Henkelman 2000a], the String method
[E 2002, Peters 2004], the Transition Path Sampling [Dellago 1998, C. Dellago 1999,
Dellago 2002, Bolhuis 2002b] and the Discrete Path Sampling [Wales 2002] are some
methods belonging to this class (note that the Nudged Elastic Band method has
been generalized to the �nite temperature setting [Crehuet 2003], as well as the
String method [E 2005a]). In the second class of methods, one assumes that only
one local minimum of the PES is known. The aim of methods in this class is
to �nd a saddle point of the PES, from which the exploration will be pursued
toward a di�erent local minimum, yielding a transition path. Probably the �rst
method proposed in that class is the EigenVector Following method [Cerjan 1981].
The Dimer method [Henkelman 1999], the Hybrid EigenVector Following method
[Munro 1999, Wales 2003], the Conformational Flooding method [Grubmüller 1995],



40Chapter 3. An improvement to the Activation-Relaxation Technique

the Hyperdynamics method [Voter 1997b, Voter 1997a, Miron 2004], the Parallel
Replica method [Voter 1998], the Temperature Accelerated method [Sorensen 2000,
F. Montalenti 2001, Montalenti 2002], and the Scaled Hypersphere Search method [Maeda 2003,
Ohno 2004, Maeda 2005] are other examples. In this article, we study the Activation-
Relaxation Technique, which belongs to this second class. We focus here on the zero
temperature case, the so-called ART nouveau (ARTn) method [Mousseau 2000b,
Malek 2000], and do not consider the �nite temperature case, the so-called POP-
ART method [Vocks 2005].

The ARTn method is composed of two main steps, the activation step and
the relaxation step. The activation step consists in moving the system from a local
minimum to a saddle point. The relaxation step consists in relaxing the system, from
the computed saddle point, to another local minimum. Of course, this relaxation
step is very fast (and easy to perform) compared to the activation step.

The activation step itself can be divided into two substeps. The �rst substep
aims at �nding some region of the PES with one direction of negative curvature,
which hopefully contains a �rst order saddle point, and that we will call the �at-
tracting region�. The basic idea for �nding a point on the PES with one direction
of negative curvature is to choose a random vector r, and next to repeat the two
following operations: (i) move the system according to r, (ii) relax the system in the
hyperplane orthogonal to r, until a point with one direction of negative curvature
has been found (see Sec. 3.3 for details). The second substep consists in �nding a
saddle point in the reached attracting region. From a numerical viewpoint, these
two substeps are of very di�erent nature. In this article, we focus on the second
substep, namely the local convergence to a saddle point, starting from a con�gu-
ration with one direction of negative curvature. In Sec. 3.2, we present a simple,
prototypical, algorithm, amenable to a comprehensive mathematical analysis, and
that enlightens the principles of operation of a wide class of saddle point location
techniques, including the ARTn and the Hybrid EigenVector Following methods. A
proof of convergence and robustness of this algorithm is provided in the Appendix.
Loosely speaking, this algorithm is optimal in the principal direction of negative
curvature, but suboptimal in the transverse directions. Obviously, more complex
numerical strategies can be elaborated on the basis of this prototypical algorithm.
They are discussed at the end of Sec. 3.2. Using one of these strategies, we obtain an
improved ART-like algorithm (see eq. (3.5) below), with which we study the prob-
lem of vacancy di�usion in crystalline materials. The obtained numerical results are
reported on in Sec. 3.3, and clearly demonstrate the e�ciency of our approach.

3.2 A new type of ART-like algorithms

From a mathematical viewpoint, a PES for an isolated molecular system with N

atoms is a function E : R3N/Gr −→ R, where Gr = R3 × SO(3) is the group of
rigid body motions which acts on R3N in the following way: for all g = (x0, R) ∈
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Gr = R3 × SO(3), and for all X = (x1, · · · , xN ) ∈ R3N ,

g ·X = (R(x1 − x0), · · · , R(xN − x0)).

This viewpoint takes into account the fact that the potential energy E(X) of the
system is invariant upon rigid body motions. In the simulation of the condensed
phase, arti�cial periodic boundary conditions are usually introduced. In this case,
the system is translation invariant, but not rotation invariant, and a PES then has
to be regarded as a function E : T3N/R3 −→ R, where T3N is a 3N dimensional
torus.

For our purpose, namely for the analysis of saddle point location methods, there
is no restriction in assuming that the PES under consideration is a function f :
Rd −→ R with isolated critical points. For x ∈ Rd, we denote by ∇f(x) the gradient
of f at the point x and by H(x) = ∇2f(x) the Hessian of f at the point x. For
x ∈ Rd, let λ1(x) ≤ λ2(x) ≤ · · · ≤ λd(x) be the eigenvalues of H(x) counted with
their multiplicity, and let (v1(x), · · · , vd(x)) be an orthonormal basis of associated
eigenvectors.

Contrarily to second order methods, such as the one proposed in Ref. [Cerjan 1981],
the ARTn and Hybrid EigenVector Following methods do not rely on a complete
knowledge of the spectral decomposition of the Hessian matrix. Instead, they only
make use of the direction of negative curvature. A prototype of such algorithm reads

xk+1 = xk −
(∇f(xk), v1(xk))
min(λ1(xk),−λc)

v1(xk)− µt Πv1(xk)⊥∇f(xk), (3.1)

where λc > 0 and µt > 0 are �xed numerical parameters, and Πv1(xk)⊥ = I −
(v1(xk), ·)v1(xk) is the orthogonal projector on the hyperplane v1(xk)⊥.

In order to clarify the behavior of algorithm (3.1) and the role of the numerical
parameters λc > 0 and µt > 0, let us consider the simple example of a quadratic
function f :

f(x) =
1
2

d∑
j=1

λj |xj |2, (3.2)

with x = (x1, · · · , xd) and λ1 ≤ λ2 ≤ · · · ≤ λd. In this simple case, (3.1) reads as a
system of d decoupled scalar equations

x1
k+1 =

(
1− λ1

min(λ1,−λc)

)
x1
k,

xjk+1 = (1− µtλj)xjk, 2 ≤ j ≤ d,

yielding

x1
k =

(
1− λ1

min(λ1,−λc)

)k
x1

0,

xjk = (1− µtλj)k xj0, 2 ≤ j ≤ d,
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where x0 is the initial guess of the algorithm.

Assume that all the λj are di�erent from zero. In this case, f has a unique
critical point (the origin), and the algorithm converges to this critical point for all
choices of the initial guess if and only if

λ1 < 0 and 0 < λj < 2µ−1
t for all 2 ≤ j ≤ d.

This means that if the algorithm converges, it will be toward a critical point with
Morse index equal to one (a �rst order saddle point). Conversely, if the origin is a
saddle point with Morse index equal to one (i.e. if λ1 < 0 < λ2 ≤ · · · ≤ λd), the
algorithm will converge to it if and only if λd < 2µ−1

t . The numerical parameter µt
controls the convergence in the hyperplane x1 = 0. If µt is too small, convergence
will be slow; if µt is too large, the algorithm will be unstable. Note that if λ1 < −λc,
convergence in the e1 direction (the direction of negative curvature) will be obtained
in a single iteration, while linear convergence will be observed if −λc < λ1 < 0. The
role of the parameter λc is to prevent the algorithm, when applied to a non-quadratic
energy landscape, from becoming unstable in the region where |λ1(xk)| is small.

Let us now come back to the case of practical interest when f is the PES of
some molecular system. As mentioned in the Introduction, we focus here on the lo-
cal convergence properties and henceforth assume that the iterates have reached the
neighborhood of a �rst order saddle point. One can then prove (see the Appendix)
that algorithm (3.1) converges to the saddle point, quadratically in the principal di-
rection of negative curvature, and linearly in the perpendicular directions. Note that
quadratic convergence is obtained under the assumption that the smallest eigenvalue
λ1(xk) of the Hessian matrix H(xk) and the corresponding eigenvector v1(xk) are
computed exactly. However, a key ingredient in ART-like and Hybrid EigenVec-
tor Following algorithms is that λ1(xk) and v1(xk) are computed approximately, by
iterative methods. Thus, for instance, the eigenelement (λ1(xk), v1(xk)) can be com-
puted by Lanczos or Arnoldi algorithms, as in the ARTn method, or by minimizing
the Rayleigh-Ritz ratio, as in the Hybrid EigenVector Following method. For both
approaches, repeated evaluations of matrix-vector products of the form H(xk) v are
needed. In turn, such matrix-vector products can be approximately computed using
a �nite-di�erence formula, such as the �rst-order formula

H(xk) v ≈
1
ε

(∇f(xk + εv)−∇f(xk)) (3.3)

or the second order formula

H(xk) v ≈
1
2ε

(∇f(xk + εv)−∇f(xk − εv)) . (3.4)

In summary, the eigenelement (λ1(xk), v1(xk)) is computed approximately by re-
peated evaluations of forces −∇f(y) for a collection of con�gurations y close to
the reference con�guration xk. One can prove (see again the Appendix) that algo-
rithm (3.1) is robust, in the sense that it can accomodate approximate evaluations
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of (λ1(xk), v1(xk)). The price to pay is a lower convergence rate in the principal
direction of negative curvature.

The prototypical algorithm (3.1) is not far from being optimal in the direc-
tion of negative curvature, even in presence of numerical errors in the evaluation
of (λ1(xk), v1(xk)). On the other hand, it is clearly suboptimal in the transverse
directions, where it behaves as a basic �xed step-size gradient. Let us recall that the
reason why we focused on algorithm (3.1) in the present section is that it allows for
a both simple and comprehensive mathematical analysis, enlightening the principles
of operation of a wide class of saddle point location techniques. In the applications,
it is useful to resort to more advanced minimization methods in the transverse di-
rection, such as conjugate gradients, damped molecular dynamics, quasi-Newton or
trust-region methods [Nocedal 2000]. In the numerical examples reported below, we
make use of damped molecular dynamics, which provided very satisfactory results
in that context. Instead of using (3.1), we hence work with the following algorithm,
that we call the modi�ed ARTn (m-ARTn) algorithm:

Set xk+1 = xk −
(∇f(xk), v1(xk))
min(λ1(xk),−λc)

v1(xk),

where λ1(xk) and v1(xk) are estimated using the Lanczos method,
then relax xk+1 in the hyperplane v1(xk)⊥ by damped molecular dynamics
(see Section 3.3 for details).

(3.5)
It is also possible, in principle, to take into account the p lowest eigenvalues

of H(xk) obtained from the Lanczos or Arnoldi partial diagonalization procedure,
to construct a surrogate function that will provide a better model for f in the
neighborhood of xk. Such improvements of the current ART-like algorithms will be
considered in a future work.

3.3 Numerical results: Migration of point defects in α-

iron

In this section we discuss the practical implementation of the m-ARTn algorithm
(3.5) in the case of basic defects in α-iron: small self interstitial (SIA) and vacancy
(VAC) clusters (1 to 3 defects). The crystal of α-Fe is modeled by the EAM potential
developed by Mendelev et al. [Mendelev 2003, Ackland 2004] which has been the
most widely used potential in recent years to study interstitial loops [Terentyev 2007,
Terentyev 2008]. Marinica et al. have previously used the same potential and the
standard ARTn method to test and reveal the energy landscape of small interstitial
clusters (1 to 4 self-interstitials) in α-Fe [Marinica 2008]. It therefore gives us a
good basis for comparison. The crystal consists of 1024±n atoms (n=1,2,3).

Starting from a local minimum con�guration, the �rst stage of the activation
step is to push the system out of the basin. In order to do this, the system is
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slightly deformed using
xk+1 = xk + µA∆x (3.6)

where ∆x is a random variable and µA is a user-de�ned �xed step, that are both
kept constant throughout the activation step. In this paper we use defect centered
deformations [Marinica 2008] instead of global deformations. This means that the
components of ∆x corresponding to atoms located beyond a certain cut-o� radius
around the defects are set to zero. The other components of ∆x are drawn according
to a uniform distribution. In this particular application, the defects are located using
the Wigner-Seitz method [Terentyev 2007], and the cut-o� radius is set to 5 Å. More
sophisticated strategies for chosing ∆x and µA will be explored in future work. The
reason for choosing defect centered deformations rather than global deformations is
that the e�ciency of the algorithm is then independent of the size of the system.
Such a choice also provides a better rate of successful to unsuccessful activation
processes.

At each iteration the system is relaxed in the hyperplane orthogonal to the
direction ∆x. If, after this relaxation, the lowest eigenvalue is still positive, we
continue the deformation. As soon as λ1(xk) becomes su�ciently negative (λ1(xk) <
λd for some threshold λd < 0), we move onto the next stage of the activation
process. The threshold is used in order not to be misguided by numerical errors
of the eigenvalue calculation. The lowest eigenvalue is computed using the Lanczos
algorithm with 15 iterations, a small number compared to the size of the Hessian
matrix (recall that H(xk) ∈ R3N×3N , where N is the number of atoms in the
system).

Once the system is out of the basin, we begin to move it towards the saddle
point, in the hope of following the minimum-energy reaction path. The previously
used method [Marinica 2008] for this stage is:

xk+1 = xk −
µa√
k
v1(xk) (3.7)

where µa is a user-de�ned constant and 1/
√
k ensures that the step size gets smaller

as we approach the saddle point. The direction of the eigenvector v1 is chosen
such that it points in the same direction as the force i.e. (−∇f(xk), v1(xk)) > 0.
This is then followed by a relaxation in the hyperplane, which is discussed in the
next paragraph. Algorithm (3.7) was an improvement to some previous methods
[Mousseau 2000b, Malek 2000]. However it has several drawbacks. The constant
parameter µa in the algorithm needs to be de�ned according to the PES in study,
and even so may be suited for some saddle point searches but not for others (very
tightly positioned saddle points may force µa to be small for the whole system,
which may in turn impede results when the surface becomes relatively smooth).
With v1(xk) unitary and µa �xed, it is clear that decreasing the step size according
to the number of iterations is not ideal. In fact it would be better to use the �rst and
second derivative information of the energy surface. Taking as a simple example the
function (3.2) with d = 2 (solution x∗ at the origin), we can position ourselves at a
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point xn where the displacement from x∗ is in the direction of negative curvature.
The further along this direction we are positioned, the more iterations would be
needed to approach x∗ since algorithm (3.7) would take smaller and smaller steps.
In this simple case, algorithms (3.1) and (3.5) would jump to the solution in one
step.

In our current implementation of the m-ARTn algorithm, the energy minimiza-
tion in the orthogonal hyperplane is performed by means of damped molecular dy-
namics. A friction proportional to the velocities is added to the forces. The system
is then propagated with the Verlet algorithm in the hyperplane v1(xk)⊥, using a time
step of 20 fs. The dynamics is carried on until a maximum number of steps, nk, is
reached, or some convergence criterion (in our example, maxi=1,N |∇if(xk)| < 0.01
eV /Å) is full�lled. The maximum number of iterations nk is gradually increased
along the iterations up to a maximum value M , according to nk = min(k,M). The
reason why the maximum number of minimization steps is limited to M is twofold.
On the one hand, this ensures that the algorithm does not become too costly. On
the other hand, it is unnecessary to accurately relax the system if it is still far away
from the saddle point.

In the case when we reach a con�guration xk with λ1(xk) > 0, we restart the acti-
vation step using a di�erent random deformation �eld ∆x (see Ref. [Marinica 2008]
for details on relaxation).

The main contribution of algorithm (3.5) is the step taken in the direction of the
negative curvature. In the numerical results reported later on in this section, we have
implemented this step in the attracting region. On the other hand, we continue to
use equation (3.6) for leaving the basin. For both stages, we use damped molecular
dynamics for the relaxation in the orthogonal hyperplane.

The e�ciency of ART-type algorithms depends on two main points: the number
of force evaluations required during the activation stage and the ratio of successful to
unsuccessful searches. The failure to �nd a saddle point can be determined in several
ways. If minimization in the hyperplane is not done su�ciently well, the system risks
climbing the energy surface too high. Once settled at a saddle point, it could be one
which is not associated with the local minimum where the activation process began.
It could also be the case that we fall on a saddle point where the energy is lower
than the starting point, which is an immediate indication that we have overlooked
at least one adjacent saddle point of the local minimum and fallen beyond. Finally,
another sign of failure is when relaxation in the hyperplane yields a positive λ1(xk),
in which case we have reached another local minimum. It remains a challenge to be
certain that a saddle point falls in the �rst of the three categories mentioned. For
the purposes of this study, we will only reject stationary con�gurations if the energy
is below that of the initial local minimum or if we are in fact at another minimum
con�guration.

Comparisons between algorithm (3.7) and the m-ARTn algorithm (3.5) are done
on interstitial and vacancy defects using the parameters shown in Table 3.1. The
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n SIA n VAC
Ref. [Marinica 2008] This work Ref. [Marinica 2008] This work

λc - 0.5 - 0.5
λd -2 -2 -2 -2
µA 0.6 0.6 0.2 0.2
µa 0.24 - 0.08 -
M 18 18 18 18

Table 3.1: Parameters used in implementation. The parameter µA is taken from
studies by Marinica et al. [Marinica 2008], with µa/µA = 0.4.

number SIA VAC
of defects ARTn This work ARTn This work

[Marinica 2008] [Marinica 2008]
1 〈f〉 462 298 780 291

η 4.6 4.7 1.8 7.9
2 〈f〉 548 328 705 323

η 4.2 4.4 2.6 7.1
3 〈f〉 691 320 667 321

η 2.6 4.4 2.8 7.4

Table 3.2: Comparison of a previous ARTn approach [Marinica 2008] and the al-
gorithm m-ARTn (3.5) presented in this article for interstitial and vacancy defects.
The new algorithm reduces the average number of force evaluations (〈f〉) by about
40% and 55% for the self-interstitial atoms (SIA) and vacancies (VAC) case respec-
tively. In the case of SIA, the ratio of successful to unsuccessful searches (η) is
almost constant. However, in the case of vacancies, η is increased by over 260%.

results are shown in Table 3.2. Over a total number of 1000 successful events, 〈f〉
is the average number of force evaluations per activation process and η is the ratio
of successful events to unsuccessful events. We observe that the proposed algorithm
(3.5) improves performance by a large margin both in terms of the average number
of force evaluations and the proportion of successful events. The elimination of the
constant factor µa in algorithm (3.7) not only makes the algorithm more e�cient but
also more versatile. It may be applied to a wide range of potential energy surfaces
without the need for parameter manipulation.
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3.A Appendix: Local convergence analysis

In this Appendix, we prove that algorithm (3.1) is locally convergent, even when
the eigenelement in the direction of negative curvature is approximately computed.

Let x∗ such that ∇f(x∗) = 0 and λ1(x∗) < 0 < λ2(x∗) ≤ · · · ≤ λd(x∗). We
introduce the notation v∗1 = v1(x∗), λ∗1 = λ1(x∗), H∗ = ∇2f(x∗),

ek = xk − x∗, zk = (xk − x∗) · v∗1, yk = Πv∗1
⊥(xk − x∗).

Note that

xk − x∗ = zkv
∗
1 + yk, hence |xk − x∗|2 = |zk|2 + |yk|2.

In the analysis below, we often use that zk = O(|ek|).
We consider algorithm (3.1), and assume that the eigenelement (λ1(xk), v1(xk))

is approximately computed. The resulting algorithm, that we analyze below, reads

xk+1 = xk −
(∇f(xk), ṽ1(xk))
min(λ̃1(xk),−λc)

ṽ1(xk)− µtΠṽ1(xk)⊥∇f(xk), (3.8)

where λ̃1(xk) and ṽ1(xk) are approximations of λ1(xk) and v1(xk):

ṽ1(xk) = v1(xk) + αk, λ̃1(xk) =
λ1(xk)
1 + βk

,

where the errors αk and βk are supposed to be small (i.e. |αk| � 1 and |βk| �
1). We assume that |ṽ1(xk)| = 1. Note that we have made no assumption on
the Hessian matrix H(xk). Hence, the errors αk and βk take into account both
a possible approximation in the computation of H(xk) (see (3.3) and (3.4)), and
an approximate partial diagonalization of this matrix (by a Lanczos, Arnoldi, or
Rayleigh-Ritz ratio minimization algorithm).

We assume that λ1(x∗) < −λc and that xk is close enough to x∗ such that
λ1(xk) ≤ −λc for all k su�ciently large. We also assume that the error βk is small
enough such that λ̃1(xk) ≤ −λc for all k su�ciently large.

It follows from (3.8) that

zk+1 = zk −
(∇f(xk), ṽ1(xk))

λ̃1(xk)
(ṽ1(xk), v∗1)− µt(v∗1,Πṽ1(xk)⊥∇f(xk))

= zk −
(∇f(xk), v1(xk) + αk)

λ1(xk)
(1 + βk)(v1(xk) + αk, v

∗
1)

−µt(Πṽ1(xk)⊥v
∗
1,∇f(xk)) (3.9)

and

yk+1 = yk −
(∇f(xk), ṽ1(xk))

λ̃1(xk)
Πv∗1

⊥ ṽ1(xk)− µtΠv∗1
⊥Πṽ1(xk)⊥∇f(xk)

= yk −
(∇f(xk), v1(xk) + αk)

λ1(xk)
(1 + βk)Πv∗1

⊥ ṽ1(xk)− µtΠv∗1
⊥Πṽ1(xk)⊥∇f(xk).(3.10)
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Assuming that f is C2(Rd) ∩ L∞(Rd) with bounded �rst and second derivatives, it
holds

∇f(xk) = H∗(xk − x∗) +O(|xk − x∗|2) = λ∗1zkv
∗
1 +H∗yk +O(|ek|2). (3.11)

Besides, using perturbation theory, one obtains

λ1(xk) = λ∗1 + (v∗1, (∇H(x∗) · ek) v∗1) +O(|ek|2),

v1(xk) = v∗1 −Πv∗1
⊥

(
(H∗ − λ∗1) |v∗1⊥

)−1
Πv∗1

⊥(∇H(x∗) · ek) v∗1 +O(|ek|2).(3.12)

From (3.11) and (3.12), we deduce

(∇f(xk), v1(xk)) = λ∗1zk +O(|ek|2),

(v1(xk), v∗1) = 1 +O(|ek|2),

Πṽ1(xk)⊥v
∗
1 = O(|ek|) +O(|αk|),

Πv∗1
⊥ ṽ1(xk) = O(|ek|) +O(|αk|),

Πv∗1
⊥Πṽ1(xk)⊥∇f(xk) = H∗yk +O(|ek|2) +O(|ek| |αk|).

Inserting these equations in (3.9) and (3.10), we obtain

zk+1 = zk −
(∇f(xk), v1(xk))

λ1(xk)
(v1(xk), v∗1)− µt(Πṽ1(xk)⊥v

∗
1,∇f(xk))

− (∇f(xk), αk)
λ1(xk)

(1 + βk)(v1(xk) + αk, v
∗
1)

− (∇f(xk), v1(xk))
λ1(xk)

βk(v1(xk) + αk, v
∗
1)

− (∇f(xk), v1(xk))
λ1(xk)

(αk, v∗1)

= O(|ek|2) +O(|ek| |αk|) +O(|ek| |βk|) (3.13)

on the one hand, and, on the other hand,

yk+1 = yk −
(∇f(xk), v1(xk))

λ1(xk)
Πv∗1

⊥ ṽ1(xk)− µtΠv∗1
⊥Πṽ1(xk)⊥∇f(xk)

− (∇f(xk), αk)
λ1(xk)

Πv∗1
⊥ ṽ1(xk)

− (∇f(xk), v1(xk) + αk)
λ1(xk)

βk

= (I − µtH∗)yk +O(|ek|2) +O(|ek| |αk|) +O(|ek| |βk|). (3.14)

Note that yk ∈ v∗1⊥ and that H∗ is positive de�nite on v∗1
⊥. We compute

‖(I − µtH∗)|v∗1⊥‖2 = max(1− µtλ2, µtλd − 1).

Thus, if µt < 2/λd, we infer from (3.13) and (3.14) that

|xk+1 − x∗| ≤ γ|xk − x∗|+O(|xk − x∗|2) +O(|xk − x∗| |αk|) +O(|xk − x∗| |βk|),
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with γ = ‖(I − µtH∗)|v∗1⊥‖2 < 1. Under the assumption that the errors αk and βk
are uniformly bounded by a small constant, this proves that algorithm (3.8) locally
converges, and that the convergence speed is at least linear.

In the case when the eigenelement (λ1(xk), v1(xk)) is exactly computed, algo-
rithm (3.8) reduces to algorithm (3.1). We hence have proved that algorithm (3.1)
locally converges, and that this convergence is robust with respect to errors in the
computations of the lowest eigenvalue (and the associated eigenvector) of H(xk).

Estimates for the convergence of algorithm (3.1) are readily obtained from (3.13)
and (3.14), by setting αk = 0 and βk = 0. We obtain

zk+1 = O(|ek|2) and yk+1 = (1− µtH∗)yk +O(|ek|2).

Note that the convergence for zk (e.g. in the principal direction of negative curva-
ture) is quadratic. If errors are introduced in the computation of the eigenelement
(λ1(xk), v1(xk)), the rate of convergence of zk becomes linear, as can be seen in
(3.13).
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This chapter gives an overview of some widely used free energy computation meth-
ods, to which a major part of this thesis is devoted. Our contribution to this �eld,
namely new numerical and theoretical results, will be presented in Chapters 5 and 6
respectively.

4.1 Introduction

The Helmholtz free energy is a quantity of great importance in understanding chem-
ical and biochemical processes. By the second law of thermodynamics, a system in
the canonical ensemble is at equilibrium when the Helmholtz entropy is maximized
or the free energy is minimized. The absolute free energy, denoted in the following
by A, is de�ned as

A = −β−1lnZ, (4.1)

where Z is the so-called partition function de�ned by

Z =
1

h3NN !

∫
Ω
e−βH(q,p) dq dp.
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Here h is the Planck constant (4.136 × 10−15 eV s) and N ! accounts for the N
indistinguishable particles of the system. We recall that H is the Hamiltonian of
the system (as de�ned in (1.1)), Ω = R3N × R3N (or T3N × R3N in the case of
periodic boundary conditions) and β = 1/kBT is the inverse temperature, with kB
the Boltzmann constant. The free energy and partition function are thus related:
the computation of A determines Z and vice-versa. Partition functions are useful in
thermodynamics as many fundamental properties may be derived from them. The
average energy of a system, for example, is computed as

〈H〉µ =

∫
Ω
H(q, p)e−βH(q,p) dq dp∫

Ω
e−βH(q,p) dq dp

= −∂ lnZ
∂β

,

and its variance is 〈(H − 〈H〉µ)2〉µ =
∂2lnZ
∂β2

, where µ is here, and in the following,

assumed to be the canonical measure

dµ(q, p) = dµc(q, p) = Z−1exp(−βH(q, p)) dq dp,

as de�ned in (1.6). Another quantity of thermodynamic relevance is the heat ca-
pacity, de�ned in terms of the partition function as

C = − 1
kBT 2

∂2lnZ
∂β2

.

Remark 2 We may compare (4.1) to the free energy introduced in macroscopic ther-
modynamics A = U−TS, where U is the internal energy of the system, T is the tem-
perature and S the entropy. The internal energy is de�ned as the canonical average of

the energy, U =
∫

Ω
H dµ and the entropy is de�ned as S = −kB

∫
Ω
ln
(
dµ

dx

)
dµ,

where x = (q, p) so that dx = dq dp. Using in order the relations kBT = β−1,

ln
(
dµ

dx

)
= −lnZ − βH and

∫
dµ = 1, we have

A = U − TS =
∫
Hdµ+ kBT

∫
ln
(
Z−1e−βH

)
dµ

=
∫

(H − β−1lnZ −H)dµ

= −β−1lnZ,

which is indeed (4.1) and is a more useful de�nition from a mathematical viewpoint
when studying free energy di�erences (see Section 4.2).

Calculating the partition function, however, is in practice infeasible due to the
integration over a high-dimensional domain Ω. Fortunately there exist e�cient
methods to compute free energy di�erences, from which the ratio of partition func-
tions may be deduced. The free energy di�erence between two systems or states of a
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system is also of interest to practitioners, as it gives the relative probability of each
state. Supposing the initial and �nal states of the system are indexed by 0 and 1,
the free energy di�erence ∆A is de�ned by

∆A = A1 −A0 = −β−1ln
(
Z1

Z0

)
, (4.2)

where Z0 and Z1 are the partition functions corresponding to the initial and �nal
phases. In fact for computational reasons it is convenient to index intermediary
stages of a transformation by a parameter ranging from 0 to 1 (see Section 4.2.2).
The choice of parameterization is not trivial and depends entirely on the system
transition.

4.1.1 Describing a transition

The choice of parameterization depends on the system transformation and typically
falls into one of two categories.

(i) Two states of a system may be described by di�erent Hamiltonian functions.
The immersion of a molecule in a solvent, for example, would be character-
ized by Hamiltonians H0 and H1 (thus macroscopically by their associated
canonical measures), where H0 would account for interatomic interactions of
the molecule in vacuum, and H1 would incorporate solute-solvent interactions.
The insertion of a particle in an initially closed system would also be treated
similarly. This is known as an alchemical transformation, referring to the tra-
ditional practice of alchemy, the transmuting of a base substance into another.

(ii) An alternative parameterization, through an order parameter (or reaction co-
ordinate) ξ : R3N → Rm (or Tm), m � 3N , is suitable for transitions involv-
ing internal coordinates of the system such as the conformational change of
a macromolecule. In this case, the transformation is described by a coarse-
grained variable ξ(q), typically representing the system's slower degrees of
freedom (see Section 4.1.2 for a discussion on choosing a good reaction co-
ordinate). For a protein, this could represent a dihedral angle, the distance
between two groups of atoms, or indeed the end-to-end distance of the protein
chain. In this case, the initial and �nal states are described by the canonical
measure µ conditioned to ξ(q) = z0 and ξ(q) = z1 respectively (see Section 4.2
for more detail).

Before discussing how free energy di�erences are computed in practice, let us give
some mathematical precision for these two approaches.

Alchemical transformations

Suppose that the initial and �nal states of a system are characterized by Hamil-
tonians H0 and H1 respectively. The partition functions Z0 and Z1 in (4.2) are
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computed based on their associated Hamiltonians, so that the free energy di�erence
may be written as

A(1)−A(0) = −β−1ln


∫

Ω
e−βH1(q,p) dq dp∫

Ω
e−βH0(q,p) dq dp

 . (4.3)

In fact, intermediate stages of the transformation may be represented by indices
α ∈ [0, 1], where each value is associated to an (often physically meaningless) Hamil-
tonian Hα. The Hamiltonians di�er often only in their potential function term:

Hα(q, p) =
1
2
pTM−1p+ Vα(q).

The potential function is in turn de�ned as a linear combination of two reference
potentials V0 and V1 in the following way:

Vα = (1− α)V0 + αV1.

Taking as an example the insertion of a particle into a closed system of N atoms,
the initial and �nal potential energy functions may be de�ned as

V0 =
N∑
i=1

∑
j>i

VLJ(|qi − qj |) and V1 = α
N+1∑
i=1

∑
j>i

VLJ(|qi − qj |).

Thus V0 represents the potential for the N -atom system and V1 represents the
potential for the (N+1)-atom system. The interatomic potential VLJ is the Lennard-
Jones potential de�ned in (1.17).

Transformation via an order parameter

A reaction coordinate ξ : R3N → Rm (or indeed Tm), with m � 3N , is used to
describe a transformation involving only internal coordinates of the system. In the
m-dimensional case, ξ(q) = (ξ1(q), ξ2(q), ..., ξm(q)). The free energy associated to
ξ(q) = z is given by

A(z) = −β−1ln Zz, (4.4)

where Zz denotes the partition function associated to the law µ conditioned to
ξ(q) = z. It is de�ned up to an additive constant by

Zz =
∫

Σz

e−βV (q) (det G)−1/2 dσΣz , (4.5)

where G is the m×m matrix with elements Gi,j = ∇ξi ·∇ξj , 1 ≤ i, j ≤ m and dσΣz

is the Lebesgue measure on

Σz = {q | ξ(q) = z}
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induced by the surface measure of the ambient space equipped with the standard
Euclidean scalar product. Note that the momenta p do not appear in (4.5) as
they are constant on hyperplanes Σz and (due to the separability of the Hamilto-
nian (1.1)) are integrated out. The de�nition (4.5) is a consequence of Lemma 1
and Corollary 1, presented later in Section 4.2.

In the following, we denote

δξ(q)−z(dq) = (detG)−1/2 dσΣz . (4.6)

In the case m = 1, the measure simpli�es to δξ(q)−z(dq) = |∇ξ|−1dσΣz , where we
assume that ξ is such that |∇ξ| 6= 0. The free-energy di�erence is then given by (4.2)
where the partition functions are now integrals on the submanifolds of �xed values
of ξ:

A(z1)−A(z0) = −β−1ln


∫

Σz1

e−βV (q) δξ(q)−z1(dq)∫
Σz0

e−βV (q) δξ(q)−z0(dq)

 . (4.7)

A conformational change of a macromolecule would typically be parameterized
by a reaction coordinate. The reaction coordinate ξ could represent the bond or
dihedral angle between a sequence of atoms or indeed the distance between two
atoms of the chain

ξ(q) = |qα − qβ|,

where qα = (qα,1, qα,2, qα,3) and qβ = (qβ,1, qβ,2, qβ,3) are the coordinates of atoms α
and β. For covalently bonded atoms, it is common to consider instead the distance
between the center of mass of two groups of atoms. In either case, |∇ξ| is a non-zero
constant.

The reaction coordinate may also simply be one coordinate of the system con-
�guration q = (q1, ..., q3N ). Without loss of generality we assume ξ(q) = q1, so that
∇ξ = (1, 0, ..., 0) and |∇ξ| = 1. Then (4.7) simpli�es to

A(z1)−A(z0) = −β−1ln


∫

R3N−1

e−βV (z1,q2,...,q3N ) dq2 ... dq3N∫
R3N−1

e−βV (z0,q2,...,q3N ) dq2 ... dq3N

 ,

so that the integrals are over all the free degrees of freedom. This choice of reaction
coordinate may be relevant when studying the insertion of a protein in a membrane,
where the single coordinate of interest is chosen as the z coordinate of the end-most
atom entering the membrane. Needless to say this choice also makes mathematical
analysis much easier, and this is the reason why it is for a demonstrative example
later in this report.

Often the free energy corresponding to two di�erent states may be equal, ∆A = 0,
giving little insight into the transition undergone by the system. For this reason,
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(a) (b)

Figure 4.1: A toy example demonstrating entropic barriers. (a) The potential in the
dumbell region is zero, surrounded by a wall of high energy. (b) The con�gurational
bottleneck in the potential function is seen as a barrier in the free-energy pro�le.

it is informative to seek not only the total free-energy di�erence but its continuous
evolution during the course of the transition, through the free-energy di�erence
pro�le. Examining the whole pro�le is more revelatory in that it recovers free energy
barriers encountered during the chemical reaction or conformational change. These
could be due to energetic as well as entropic barriers. Entropic barriers, as depicted
in Figure 4.1, refer to con�gurational bottlenecks, impeding transitions from one
state to another.

4.1.2 Choosing a good reaction coordinate

A persistent challenge in computational chemistry is that of determining a good
or optimal reaction coordinate. In its simplest form, a reaction coordinate is a
smooth function ξ : R3N → Rm, with m � 3N , such that (i) the initial and
�nal states, A and B of the transition can be described well in terms of it and
(ii) detG 6= 0, in order for (4.5) to be well de�ned and in particular so that the
set of submanifolds Σz = {q ∈ D | ξ(q) = z} foliates the phase space between A

and B (that is, they are nonintersecting smooth dividing surfaces). From a sampling
point of view, a good reaction coordinate is a function ξ that describes well the
metastability of the underlying dynamics. In other words ξ is a good choice if the
measure exp(−β(V − A ◦ ξ)) is easier to sample than exp(−βV ). For instance, in
the case where ξ : R3N → T, if X ∼ exp(−β(V − A ◦ ξ)), then the law of ξ(X) is
uniform, thus far easier to sample.

Very often the reaction coordinate is chosen intuitively, depending on the tran-
sition taking place, but this becomes all the more di�cult with increasing sys-
tem size. In the one-dimensional case, m = 1, a good candidate for the reaction
coordinate may be determined by computing the committor function on the con-
�guration space [E 2005b, E 2004]. The committor function ρ+(q) is the proba-
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(a) Sketch of the potential V (x, y) = y2 +(x2−1)2, where the double-
well feature is only visible in the direction of the variable x, the y
variable is regarded as a fast degree of freedom. In this case the
reaction coordinate ξ(x, y) = x would be optimal.

(b) Sketch of a two-dimensional bi-channel potential, where metasta-
bilities are encountered in two orthogonal directions. In this case, no
one-dimensional reaction coordinate would be su�cient to describe
the slow degrees of freedom.

Figure 4.2: Depending on the nature of the underlying potential energy surface, a
reaction coordinate of low dimension (compared to the system size) may not always
be su�cient to describe the metastabilities of the associated dynamics.
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bility with which, starting from a canonically distributed initial con�guration q,
the system is likely to attain the �nal state B before A. Determining it may
indeed help to compute other quantities of dynamical interest such as reaction
rates [Vanden-Eijnden 2006]. The interest of the committor function as a reaction
coordinate was recognized earlier and is discussed in [Dellago 2002, Bolhuis 2002a]
within the framework of Transition Path Sampling. The committor function ρ+(q)
is formally de�ned as the solution to

0 = −∇V · ∇ρ+ + β−1∆ρ+, ρ+|q∈A = 0 and ρ+|q∈B = 1, (4.8)

the backward Kolmogorov equation associated to the overdamped Langevin dynam-
ics. In the two-dimensional case, the problem may be solved numerically using �nite
di�erences (see Appendix A.1 of [Metzner 2007]). For higher dimensional systems,
one may resort to the String method (cf. Section 2.2.2), but typically, for most
applications of practical interest, solving (4.8) is rarely possible.

It is important to note that often there are transitions for which an optimal one-
dimensional reaction coordinate may not exist. Figure 4.2(b) shows, for instance,
an example of a so-called bi-channel potential, where initial and �nal states are
linked by two distinct paths, separated from each other by high energy barriers. In
this particular case, no optimal one-dimensional reaction coordinate exists. Such
a scenario is typical in molecular dynamics, and is a recurring theme in the works
presented in Chapters 5 and 6. In this work, we will refer to any order parameter
as a reaction coordinate. We describe methods for computing free energies with
respect to a given reaction coordinate; we do not attempt to �nd an optimal one.

4.2 Computing free energy di�erences

4.2.1 Thermodynamic integration

As previously mentioned, practitioners are often more interested in free-energy dif-
ferences (4.2) rather than absolute free energies (4.1). Fortunately this has an ad-
vantage from a mathematical viewpoint. Free-energy di�erences may be computed
by calculating the derivative of the free energy A′ and then numerically integrating
it:

∆A = A(1)−A(0) =
∫ 1

0
A′(λ) dλ. (4.9)

This is the idea of thermodynamic integration (TI), one of the earliest methods for
free energy computation, dating back to [Kirkwood 1935]. The derivative A′ is com-
puted at �xed indexing values α or ξ (depending on the choice of parameterization)
as presented in (4.10) and (4.15) below. For each indexing value, the canonical
averaging is performed by running a relevant dynamics ergodic with respect to the
appropriate measure (µα or µ(·|z)). Though the idea is the same in either setting,
for the sake of mathematical precision a distinction between the two is made.
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Thermodynamic integration for alchemical transformations

In the case of an alchemical transformation, the derivative of the free energy can be
expressed as the canonical average of the derivative of the Hamiltonian with respect
to the parameter α:

A′(α) =

∫
Ω

∂Hα

∂α
e−βHα(q,p) dq dp∫

Ω
e−βHα(q,p) dq dp

=
〈
∂Hα

∂α

〉
µα

, (4.10)

with dµα(q, p) = Z−1
α e−βHα(q,p) dq dp and 〈·〉µα denoting the average with respect

to the measure µα. In practice this is done by evaluating A′ at discrete values in
the parameter range [0, 1]. One may typically choose to divide the parameter range
into n equally spaced intervals, and evaluate A′ at points αi = i/n. Finally the
free-energy di�erence may be computed by the Riemann sum:

∆A =
1
n

n−1∑
i=0

A′(αi). (4.11)

Thermodynamic integration for the reaction coordinate case

The reaction coordinate case needs a little more care due to the delta function term
in the integrand (see (4.4), (4.5) and (4.6)). An important formula, the co-area
formula will be needed to treat this case.

Lemma 1 (Co-area formula). For any smooth function f : Rn → R,∫
Rn
f(q)(detG)1/2(q)dq =

∫
Rm

∫
Σz

fdσΣzdz,

where G is the m×m matrix with elements Gi,j = ∇ξi · ∇ξj, 1 ≤ i, j ≤ m and σΣz

denotes the surface measure on Σz = {q ∈ D | ξ(q) = z}, the Lebesgue measure on
Σz induced by the Lebesgue measure in the ambient Euclidean space Rn.

Finally, the following result, the proof of which depends on the lemma above (see
Section 3.2.1 of [Lelièvre 2010b]), allows us to formally introduce the marginal and
conditional measures referred to in the sequel.

Corollary 1 If a continuous random variable X has law ψ(q) dq in R3N , then ξ(X)
has law (∫

Σz

ψ(detG)−1/2dσΣz

)
dz,

and the law of X conditioned to a �xed value z of ξ(X) is

ψ (detG)−1/2dσΣz∫
Σz

ψ (detG)−1/2dσΣz

.
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In particular we have the equilibrium marginal measure in ξ

µξ(dz) =
(∫

Σz

e−βV (q) δξ(q)−z(dq)
)
dz, (4.12)

where δξ(q)−z(dq) = (detG)−1/2dσΣz , and the equilibrium conditional measure is

µ(dq|z) =
e−βV (q)δξ(q)−z(dq)∫

Σz

e−βV (q) δξ(q)−z(dq)
. (4.13)

The derivative of the free energy ∇A(z) in the general case m > 1 has components
∂zαA, for α = 1, ...,m, given by the conditional canonical average

∂zαA(z) =
∫

Σz

 m∑
γ=1

G−1
α,γ∇ξγ · ∇V − β−1div

(
G−1
α,γ∇ξγ

)µ(dq|z), (4.14)

where G−1
α,γ is the (α, γ)-component of the inverse matrix G−1. Whenever m = 1,

which will be the case treated in the following chapters, one has

A′(z) =
∫

Σz

fV (q) dµ(q|z) = Eµ
[
fV |ξ(q) = z

]
, (4.15)

where

fV =
∇V · ∇ξ
|∇ξ|2

− β−1∇ ·
(
∇ξ
|∇ξ|2

)
. (4.16)

The derivation of (4.16) can be found in [Ciccotti 2008, Sprik 1998, den Otter 1998].
The �rst term is the projection of the force onto the direction of the order param-
eter and the second term accounts for the change of variables. For this reason the
term fV is called the local mean force and the derivative of the free energy A′ with
respect to the order parameter is called the mean force. Notice that in the simple
case ξ(q) = q1, one has fV = ∂q1V .

Remark 3 In some literature the local mean force (4.16) is written as

fV =
∇V · ∇ξ
|∇ξ|2

− β−1∇ ·
(
∂ ln|J |
∂ξ

)
, (4.17)

where J = ∂(q1,q2...,q3N )
∂(ξ,q′2,...,q

′
3N )

is the Jacobian matrix arising from a global change of vari-

ables from Cartesian to the new set of coordinates (containing ξ as an independent
variable) and |J | is its determinant. In order to compute the second term above, the
Cartesian coordinates need to be expressed explicitly in terms of the generalized coor-
dinates (new coordinates including ξ), which is very often not trivial. The equivalent
de�nition of the local mean force (4.16) depends only on the derivatives of ξ with
respect to the Cartesian coordinates q, thus easier to calculate. For the equivalence
of (4.17) and (4.16) (in fact in its more general form), see [Darve 2006].
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Figure 4.3: When a transition is described by a reaction coordinate, constrained
sampling such as thermodynamic integration (TI) or blue moon sampling face prob-
lems when metastable regions exist at �xed values of the reaction coordinate. In this
�gure, two di�erent paths linking A and B are separated by a high energy barrier,
thus inhibiting the fast sampling in each bin.

The mean force A′ is indeed easier to calculate than the free energy A as it
is a conditional expectation and may be estimated through MD simulations using
methods discussed in Section 1.2. Sampling may be achieved through unconstrained
dynamics, by dividing the reaction coordinate interval into a �nite number of bins.
It may also be accomplished at �xed values of ξ by sampling the Blue Moon en-
semble [Carter 1989, Ciccotti 2005, Ciccotti 2008, Lelièvre 2010c]. Blue Moon sam-
pling is a constrained sampling technique, whereby the canonical average (4.15) is
computed at a �xed ξ by sampling over the equilibrium distribution of the system
restricted to the hypersurface Σz.

Once the mean force is computed, the free energy di�erence may be calculated
once again by the Riemann sum

∆A =
n−1∑
i=0

A′(zi)∆z. (4.18)

One advantage of this method is that in practice each component in the sum
(4.18) may be calculated separately through independent simulations, thus may
be straightforwardly parallelized. However, as for all constrained dynamics, this
method su�ers from slow convergence in the case of �coupled slow degrees of free-
dom�, as depicted in Figure 4.3. Supposing there exist two paths from A to B,
separated by a high energy barrier, then the time needed to sample the space on
both sides of the energy barrier via constrained dynamics scales exponentially with
the barrier height (cf. Arrhenius' law (1.31)). Therefore, if the energy barrier is
large enough, we face a problem of quasi-ergodicity: the constrained dynamics runs
the risk of not sampling at all some important regions of the con�guration space.
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(a) (b)

Figure 4.4: An example of free energy perturbation (FEP) for computing free-
energy di�erence pro�les. (a) Thick lines represent probability distribution functions
corresponding to potential energies V0 = (x+1)2 and V1 = (x−1)2. The dash-dotted
lines correspond to distributions of the interpolated potentials Vα = (1−α)V0 +αV1

for α = 0.05, 0.1 and 0.15. (b) The free energy di�erence is calculated according
to (4.20).

4.2.2 Other equilibrium free energy methods

We detail below some other popular methods for free energy computation, based on
equilibrium sampling.

Free energy perturbation

The free energy perturbation (FEP) technique [Zwanzig 1954], developed some twenty
years after TI, is an approach for computing free-energy di�erences in the alchem-
ical setting (4.3). The underlying idea is to avoid computing two partition func-
tions and instead compute the average of a perturbed function with respect to a
reference probability measure. In this case the reference probability measure is
dµ0 = Z−1

0 e−βH0(q,p) dq dp, and (4.3) is rewritten as

A1 −A0 = −β−1ln
(∫

Ω
e−β(H1−H0)(q,p) dµ0(q, p)

)
. (4.19)

In practice, the integral in the above is approximated by a sampling procedure of
µ0, to approximate

Eµ0

[
e−β(H1−H0)

]
.

Clearly, for the variance of the estimator to be small, the Hamiltonians H0 and H1

should be su�ciently close: they need to overlap in some regions of the domain.
When this is not immediately the case, intermediate Hamiltonians are constructed
corresponding to discrete parameterization points αi ∈ [0, 1]. Figure 4.4(a) gives an
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example of such a situation, where canonical measures corresponding to two poten-
tials V0 (left) and V1 (right) do not share any common regions of high probability.
Equation (4.19) then may be approximated by a Riemann sum:

ln
(
Z1

Z0

)
= ln

∫
Ω
e−β(H1−H0)(q,p) dµ0(q, p)

=
n−1∑
i=0

ln
∫

Ω
e−β(Hαi+1−Hαi )(q,p) dµαi(q, p) (4.20)

=
n−1∑
i=0

ln
(
Eµαi

[
e−β(Hαi+1−Hαi )

])
(4.21)

where typically αi = i/n and

Hαi = (1− αi)H0 + αiH1.

Importance sampling

For both transformations parameterized by a reaction coordinate and alchemical
transformations, free-energy di�erence computations involve computing an average
of an observable with respect to a given probability measure (cf. (4.15) and (4.21)).
As previously mentioned, the multimodality of the given measures often lead to
metastability of the associated dynamics, thus leading to slow convergence. Impor-
tance sampling is a variance reduction technique helping to improve sampling of a
given probability measure. This is achieved by �rst sampling a biased distribution,
where the exploration of `important' regions of the state space is encouraged. Next,
the observable (simulation output) is weighted, in order to unbias the estimator. To
illustrate this, suppose that there exists a bounded function U such that the measure
µU with density proportional to e−β(V−U) is easier to sample than µ (with density
proportional to e−βV ). That is, the potential V − U possesses fewer metastable
states than V . The idea is then to write the canonical average of some function
Φ ∈ L1(µ) as

Eµ [Φ] =
∫

Ω
Φ(q)Z−1e−βV (q) dq =

∫
Ω

Φ(q)e−βU(q)e−β(V−U)(q) dq∫
Ω
e−βU(q)e−β(V−U)(q) dq

=
EµU

[
Φ e−βU

]
EµU

[
e−βU

] .

For a good candidate U to be found, it is important to know the nature of the un-
derlying potential energy surface V . This is, unfortunately, rarely possible. Ideally,
the metastable features of e−βV should be captured and eliminated when biasing
the measure with eβU .
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When the low-dimensional reaction coordinate ξ describes well the metastable
features of the probability distribution, then U = A ◦ ξ may indeed be a good
candidate for a biasing potential, where A is the free energy as de�ned in (4.4). The
free energy is therefore not only a quantity of thermodynamic interest but useful as
a biasing potential to speed up sampling of state spaces (see [Chopin 2010] for an
application in a �eld other than molecular dynamics). The dynamics which is ergodic
with respect to the biased measure e−β(V−A◦ξ) dq is de�ned simply by replacing the
potential V in the overdampled Langevin dynamics (1.29) by V = V −A ◦ ξ, which
yields

dQt = −∇(V −A ◦ ξ)(Qt) dt+
√

2β−1dWt.

Then if ψ(t, ·) is the density of the distribution of Qt, the equilibrium measure will
be the density ψ∞ = Z−1

A e−β(V−A◦ξ).
Of course, the free energy A is normally not known a priori; its computation

relies itself on e�cient sampling techniques. It will be shown later, in Section 4.3,
through adaptive importance sampling techniques, how an on-the-�y estimate of
the free energy may act as a biasing potential. The success of these methods relies
primarily on a good choice of the reaction coordinate.

Histogram methods

Histogram methods for free energy computations are applicable in the case where
a transition is parameterized by a reaction coordinate. Recall that the probability
density of �nding a system in macrostate ξ(q) = z is

ρ(z) =

∫
Σz

e−βV (q)δξ(q)−z(dq)∫
Ω
e−βV (q) dq

. (4.22)

The free energy di�erence ∆A can then be written in terms of ρ as (see (4.7))

∆A = A(z1)−A(z0) = −β−1ln
(
ρ(z1)
ρ(z0)

)
.

The simplest of histogram methods consists in (i) discretizing the reaction coor-
dinate space into bins of width ∆z; (ii) sampling the canonical measure µ using
unconstrained sampling; (iii) measuring the number of times f(z) a system visits
the bin [z −∆z/2, z + ∆z/2]:

f(z) = Eµ
[
1 |ξ(q)−z|≤∆z/2

]
,

and (iv) estimating the probability (4.22) by

ρ(z) ≈ f(z)

∆z
∑
z′

f(z′)
.
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In other words one measures the proportion of time a certain macrostate ξ(q) = z is
visited compared to the whole reaction coordinate range. The free-energy di�erence
may in this way be approximated as

A(z1)−A(z0) = −β−1ln
(
f(z1)
f(z0)

)
.

This method is often very ine�cient, however, due to metastable features of the
unconstrained dynamics sampling µ. In practice one computes averages with respect
to modi�ed measures µi ∝ e−βVi , where

Vi(q) = V (q) +
1

2εi
(ξ(q)− zi)2 .

The second term on the right-hand side is a con�ning potential, restricting the
system to remain within a close vicinity of the reaction coordinate ξ(q) = zi and εi >
0 is a small parameter determining the width of the con�ning potential. This set of
`local' averages with respect to µi may then be assembled together to obtain averages
with respect to the desired measure µ through techniques such as (multistate) BAR
((M)BAR) [Bennett 1976, Shirts 2008].

4.2.3 Nonequilibrium free energy methods

The methods presented thus far have all relied on equilibrium sampling. Nonequilib-
rium techniques, due to Jarzynski [Jarzynski 1997], also exist for free energy compu-
tations. The idea of the method is presented below only for the case of Hamiltonian
dynamics (for a more in-depth introduction to nonequilibrium free energy methods,
in particular for Langevin dynamics, see Chapter 4 of [Lelièvre 2010b]).

Jarzynski equality

We begin by choosing a transition schedule α(t) such that α(0) = 0 and α(T ) = 1,
and assume the system follows the Hamiltonian dynamics

dqt
dt

= ∇pHα(t)(qt, pt),

dpt
dt

= −∇qHα(t)(qt, pt),
(4.23)

with initial conditions (q0, p0) = (q, p) ∼ µ0. Let us now de�ne the associated �ow
by Λt, so that at time t, Λt(q, p) = (qt, pt). Then it can be shown

H1(ΛT (q, p))−H0(q, p) =
∫ T

0
α′(t)

∂Hα(t)(Λt(q, p))
∂α

dt, (4.24)

since

d

dt

(
Hα(t)(Λt(q, p))

)
=
∂Hα(t)

∂α
(Λt(q, p))α′(t) +

(
∇qHα(t)(Λt(q, p))
∇pHα(t)(Λt(q, p))

)
· ∂tΛt(q, p),
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where the second term vanishes in view of (4.23). The �rst term can be interpreted
as the force (∂Hα/∂α) applied to the system, multiplied by the distance moved
along α in time dt. The integrand in (4.24) is therefore the total work done in time
T to move the system from phase 0 to 1

WT =
∫ T

0
α′(t)

∂Hα(Λt(q, p))
∂α

dt. (4.25)

Using the above and (4.24), we have

Eµ0

[
e−βWT

]
=

∫
Ω
e−β(H1(ΛT (q,p))−H0(q,p))dµ0(q, p)

= Z−1
0

∫
Ω
e−βH1(ΛT (q,p)) dq dp,

since we recall dµ0(q, p) = Z−1
0 e−βH0(q,p) dq dp. Furthermore, as ΛT de�nes a

change of variables of Jacobian determinant 1 and by the de�nition of the free
energy di�erence (4.2), we have

Eµ0

[
e−βWT

]
=
Z1

Z0
= e−β∆A.

Depending on the scheduling α(t), the lowest values of the work can quickly domi-
nate the average, giving rise to similar numerical issues as in free energy perturbation
discussed previously.

4.3 Adaptive sampling methods

Adaptive methods provide a tool to circumvent di�culties arising in standard impor-
tance sampling methods, namely that of choosing a priori a good biasing potential.
The key idea behind adaptive methods is to bias the potential driving the dynamics
by a time-dependent function At ◦ ξ and to update At so that it converges to the
free energy A. That is, the dynamics is governed by the biased potential

Vt(q) = V (q)− (At ◦ ξ)(q) (4.26)

and the corresponding dynamics is then the overdamped Langevin dynamics (1.29)
with a modi�ed drift term:

dQt = −∇(V −At ◦ ξ)(Qt)dt+
√

2β−1dWt. (4.27)

Recall that if ξ �described the metastabilities of the potential V � (see Figure 4.2(a)),
then the biased dynamics with At = A would eliminate them. The idea is there-
fore to update the adaptive bias At such that it converges to the free energy A as
e�ciently as possible. This may be done in two di�erent manners.
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(i) The biasing potential At itself is updated during the simulation in such a way
that it converges to A up to some additive constant. Methods of this type
are called Adaptive Biasing Potential (ABP) methods, and include famous
instances such as the Wang-Landau algorithm [Wang 2001b] and metadynam-
ics [Iannuzzi 2003]. This class of methods is discussed in Section 4.3.1.

(ii) The derivative of the bias with respect to the reaction coordinate A′t is up-
dated. This approach, known as the Adaptive Biasing Force (ABF) [Darve 2001]
method, is presented in Section 4.3.2 and is the focus of the last two chapters
of this thesis.

Note that, even though both ABF and ABP approaches give A′t → A′, their associ-
ated dynamics are not equivalent (see Remark 5 further on).

Remark 4 Note that for any biasing force that has any longtime limit A′t → A′∞,
the average of the local mean force fV with respect to the equilibrium measure dµ∞ =
Z−1
∞ e−V∞ dq dp gives the desired mean force, irrespective of the function A′∞. More

precisely, we have

Eµ∞
[
fV |ξ(q) = z

]
=

∫
Σz

fV e−β(V−A∞◦ξ)(q) δξ(q)−z(dq)∫
Σz

e−β(V−A∞◦ξ)(q) δξ(q)−z(dq)
(4.28)

= Eµ
[
fV |ξ(q) = z

]
= A′(z), (4.29)

where the terms in A∞(z) are eliminated from the numerator and denominator as
they are constant on the submanifold Σz. The biasing function At serves only as a
means to push systems out of metastable regions along the reaction coordinate and
does not a�ect the computation of the mean force.

4.3.1 Adaptive Biasing Potential

Adaptive biasing potential (ABP) methods update directly the biasing potential At
in such a way that it converges to A up to an additive constant. To motivate the
ideas behind the algorithms of this class, we begin by considering the case where
the system is instantaneously at equilibrium. That is, if ψ(t, ·) is the density of
the distribution of Qt, the solution to the adaptive dynamics (4.27), we consider
ψ(t, ·) = ψeq(t, ·) = Z−1

t e−β(V−At◦ξ). The observed free energy at equilibrium is
then given by

Aeq
t (z) = −β−1 ln

∫
Σz

ψeq
t δξ(q)−z(dq) (4.30)

= A(z)−At(z) + β−1ln Zt.

In this case, using a �xed point strategy (see [Lelièvre 2008]), a general update
formula for At would be

dAt
dt

= Ft (Aeq
t (z)) , (4.31)
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where (Ft)t≥0 is a set of strictly increasing functions. Of course we are typically not
instantaneously at equilibrium, but these results may be used as a guideline for the
developing a method of the ABP class. See Chapter 5 of [Lelièvre 2010b] for further
detail and in particular the multi-dimensional case: m > 1.

Let us �rst consider the simplest (time-independent) choice Ft(x) = x in (4.31).
Furthermore, by replacing the equilibrium density in (4.30) by the density ψ(t, ·) of
Qt, we obtain the non-equilibrium update scheme :

dAt(z)
dt

= −β−1ln
(∫

Σz

ψ(t, q) δξ(q)−z(dq)
)
, (4.32)

where we recall ψ(t, q) is the density of the distribution of Qt. Using this, a typical
ABP dynamics is given by

dQt = −∇(V −At ◦ ξ)(Qt)dt+
√

2β−1dBt,

At(z) =
∫ t

0
−β−1ln

(∫
Σz

ψ(s, q) δξ(q)−z(dq)
)
ds,

(4.33)

where ψ(t, q) dq is the law of Qt. In other words, the underlying potential V is
increased in well-sampled regions of the reaction coordinate, encouraging exploration
of under-sampled regions. This technique, however, does have a drawback: the
biasing potential At never formally converges. Even when the process Qt is at
equilibrium (ψ(t, ·) = ψ∞), At is likely to continue to evolve.

TheWang-Landau method [Wang 2001b, Wang 2001a], based on a �at-histogram
technique, is a popular ABP method that updates At in such a way that it does
eventually converge. The Wang-Landau method uses the update function

Ft(x) = −γ(t) exp(−βx), (4.34)

where γ(t) is a positive, decreasing function of time with γ(0) = 1. The biasing
potential is updated as

dAt(z)
dt

= γ(t)
∫

Σz

ψ(t, q) δξ(q)−z dq.

Here the vanishing parameter γ(t) is essential to the convergence of At(z). The
update strategy for parameter γ(t) is delicate. It must not decrease too quickly
otherwise At would converge prematurely (and very often incorrectly); neither must
it converge too slowly, leading to slow convergence of the algorithm.

Another method to be cited is the nonequilibrium Metadynamics [Laio 2002,
Bussi 2006], where a similar update function (4.34) is used to bias a newly-introduced
external variable. This method amounts to adding small gaussian potentials on the
reaction coordinate space to bias the dynamics. In this way, the method introduces
another parameter, namely the width (or variance) of the gaussian potential.

The bias At in the Wang-Landau and Metadynamics methods does indeed con-
verge, however it does so arti�cially through the decreasing function γ(t). The
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latter method introduces a further parameter, the width of the gaussian, which
also remains to be chosen. An alternative method based on the self-healing um-
brella sampling method [Marsili 2006], using a `molli�ed' free energy, has been
developed [Dickson 2010] whereby the bias At converges without the need for an
arti�cially vanishing parameter. This is achieved thanks to an additional parameter
that the authors introduce to unbias the free-energy estimator on the �y.

4.3.2 Adaptive Biasing Force

The Adaptive Biasing Force (ABF) method [Darve 2001, Hénin 2004] updates the
derivative with respect to z of the biasing potential At(z). The function A′t is
updated in such a way as to estimate the mean force A′ given by (4.15), and is used
to bias the dynamics in the direction of ξ. To motivate the choice of A′t, in the same
spirit as for the ABP methods, we consider a system instantaneously at equilibrium.
The observed mean force when ψ(t, ·) = ψeq(t, ·) = Z−1

t e−β(V−At◦ξ) is

Γeq
t (z) =

∫
Σz

fV e−β(V−At◦ξ) δξ(q)−z(dq)∫
Σz

e−β(V−At◦ξ) δξ(q)−z(dq)
(4.35)

= A′(z).

So by choosing
A′t(z) = Γeq

t (z),

the result A′t = A′ is immediate. In the nonequilibrium case, the density ψeq(t, ·)
in (4.35) is replaced with ψ

A′t(z) ≈

∫
Σz

fV (q) ψ(t, q) δξ(q)−z(dq)∫
Σz

ψ(t, q) δξ(q)−z(dq)
. (4.36)

By denoting the measure conditioned to the submanifold Σz by

ψ(t, dq|z) =
ψ(t, q) δξ(q)−z(dq)∫

Σz

ψ(t, q) δξ(q)−z(dq)
,

the ABF dynamics may be written as
dQt = −∇(V −At ◦ ξ)(Qt)dt+

√
2β−1dBt,

A′t(z) =
∫

Σz

fV (q) ψ(t, dq|z) = E
[
fV |ξ(Qt) = z] .

(4.37)

The conditional expectation in (4.37) may be calculated di�erently depending on
the implementation of the method, see (4.38) and (4.39) below.
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(a) (b)

(c) (d)

Figure 4.5: Comparing standard overdamped Langevin dynamics (1.29) and ABF
dynamics (4.37). We use the potential V (x, y) = y2 + (x2 − 1)2 as sketched in
Figure 4.2(a), ξ(x, y) = x and discretized step size ∆t = 0.1. (a) Overdamped
dynamics: the estimated potential of mean force pro�le at timesteps n = 50, 200
and 1000. (b) The reaction coordinate space is sampled very slowly. (c) ABF
dynamics: the estimated potential of mean force pro�le at timesteps n = 50, 200
and 1000. (d) Metastability is eliminated by the biased dynamics.

Remark 5 Notice that in both the ABP and ABF dynamics, (4.33) and (4.37),
one only needs to evaluate ∇(At ◦ ξ) = (A′t ◦ ξ)∇ξ, therefore only the derivative
A′t is used by the dynamics. However, by di�erentiating the biasing potential as
computed in (4.33), it is clear that it does not match A′t in (4.37), due to the fact
that the distribution density ψ(t, ·) is not ψeq(t, ·). Thus, the two dynamics are
indeed di�erent.

In standard computations, the conditional expectation is computed as a trajec-
torial average. The distribution ψ in (4.37) is approximated by a time average

ψ(t, q) dq ≈ 1
T

∫ T

0
δq−Xs(dq) ds. (4.38)
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In the case ofR > 1 walkers (Qit)i=0,..,R−1 running in parallel, as proposed in [Lelièvre 2007b],
we use in practice a distribution computed over time and walkers:

ψ(t, q) dq ≈ 1
R

R−1∑
i=0

1
T

∫ T

0
δq−Qis(dq) ds. (4.39)

This implementation was later called multiple-walker ABF (MW-ABF) and was
successfully tested on the reversible folding of the deca-alanine peptide using the
molecular dynamics code NAMD [Minoukadeh 2010]. This parallel implementation
improved convergence of the ABF method, not only at constant wall time but at
constant CPU time (see [Minoukadeh 2010] and Chapter 5). The speed-up was in
particular due to MW-ABF helping to resolve issues of local metastability depicted
in Figure 4.3. Results are presented in Chapter 5.

4.4 Longtime convergence of dynamics

In this section, we address an important issue that has so far been set aside: the rate
of convergence to equilibrium of the dynamics presented. We study in particular
the convergence in distribution of Qt, following the Adaptive Biasing Force dynam-
ics (4.37). We begin, in Section 4.4.1, by recalling some well-known results, which
will be essential in de�ning `distances' between probability measures and thus study-
ing their convergence to equilibrium. In Section 4.4.2, we study the convergence of
the overdamped Langevin dynamics and justify theoretically why metastabilities in
the potential energy function lead to slow convergence. Finally, in Section 4.4.3, we
brie�y present existing convergence results, which prove sub-optimal in the partic-
ular bi-channel scenario (cf. Figure 4.2(b)).

4.4.1 Entropy and the Logarithmic Sobolev Inequality

Let us recall some well-known results for de�ning `distances' between two probability
measures through notions of relative entropy and related quantities. The reader is
referred to the excellent books by the research group in Toulouse [Ané 2000] (written
in French) and Cédric Villani [Villani 2003] for a comprehensive introduction to this
topic.

De�nition 1 (Entropy). For any two probability measures µ and ν such that µ is
absolutely continuous with respect to ν (denoted as µ � ν), the relative entropy is
de�ned as

H(µ|ν) =
∫

ln
(
dµ

dν

)
dµ.

In fact for two probability measures µ and ν such that µ� ν, H(µ|ν) ≥ 0. The non-

negativity can be shown by writing H(µ|ν) =
∫

ln
(
dµ

dν

)
dµ+

∫ (
dν

dµ

)
dµ−

∫
dµ

and using the inequality
ln(1/x) + x− 1 ≥ 0.
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Furthermore, H(µ|ν) = 0 if and only if µ = ν. Although the relative entropy
has these important properties, it is not strictly speaking a distance, as it fails to
satisfy symmetry and the triangle inequality. It is nevertheless a useful functional
as it bounds from above the total variation norm of the di�erence between two
probability measures

‖µ− ν‖TV =
∫ ∣∣∣∣dµdν − 1

∣∣∣∣ dν, (4.40)

as given by Theorem 1 below. Note that since we assume that the measures have
densities with respect to the Lebesgue measure, this is just the L1 norm of the
di�erence of their densities.

Theorem 1 (Csiszar-Kullback inequality). For measures µ and ν which have
densities with respect to the Lebesgue measure, the following holds

‖µ− ν‖TV ≤
√

2H(µ|ν).

The proof of this theorem is straightforward using (4.40), the Pinsker inequality
3(u−1)2 ≤ (2u+4)(u ln u−u+1), ∀u ≥ 0 and the Cauchy-Schwarz inequality. The
theorem (stated in its more general form) and its proof may be found in [Ané 2000].

Let us now de�ne an important quantity, the Fisher information, that will be
essential in studying longtime convergence.

De�nition 2 (Fisher information). For any probability measure µ absolutely
continuous with respect to ν, the Fisher information is given by

F (µ|ν) =
∫ ∣∣∣∣∇ln(dµdν

)∣∣∣∣2 dµ.
De�nition 3 (Logarithmic Sobolev inequality). The probability measure ν is
said to satisfy a logarithmic Sobolev inequality with constant ρ > 0 (in short: LSI(ρ))
if for all probability measures µ such that µ� ν,

H(µ|ν) ≤ 1
2ρ
F (µ|ν).

With a slight abuse of language, in the following, we may say that a measure or its
density (with respect to the Lebesgue measure) satis�es an LSI.

Logarithmic Sobolev Inequalities (LSIs) are largely due to the pioneering work
by Gross [Gross 1975], who �rst showed it for Gaussian measures. Later, works by
Bobkov and Götze [Bobkov 1999] provided a necessary and su�cient condition for a
one-dimensional probability measure to satisfy an LSI. According to their criterion,
a function V (x) that behaves as |x|α for |x| → ∞ has an associated Gibbs probability
density e−V (x), which satis�es an LSI if and only if α ≥ 2. Therefore we typically
expect measures that decay very fast as |x| → ∞ to satisfy an LSI. Such a criterion
does not hold in general in a higher-dimensional case. However thanks to the work of
Bakry and Emery [Bakry 1984], and Holley and Stroock [Holley 1987], logarithmic
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Figure 4.6: The probability densities φ1(x) ∝ exp
(
−βx4

4

)
(solid line) and φ2 ∝

exp
(
−β
(
x4

4 − x
2
))

(dashed line). In the latter, two regions of high probability
emerge, separated by a region of low probability around x = 0. The height of the
barrier introduced in φ2 between x = 0 and x = ±1 results in a considerably smaller
LSI constant.

Sobolev inequalities may be shown to be satis�ed by a large class of probability
measures. The �rst of the two results states that any Boltzmann probability measure
ν associated to an α-convex potential function satis�es an LSI.

Theorem 2 (Bakry-Emery theorem). Let V be a twice-di�erentiable function
with

∫
e−V = 1. Then if ∇2V ≥ αI for some α > 0, then e−V satis�es LSI(α).

The second shows that perturbing the underlying potential function by a bounded
function leads to an exponentially decayed LSI constant.

Theorem 3 (Holley-Stroock Perturbation). Let ν̃ be de�ned by
dν̃

dν
= eU ,

where ν satis�es LSI(ρ) and U is a bounded function such that
∫
eUdν = 1. Then

ν̃ satis�es LSI(ρ̃), where

ρ̃ = ρ exp(−2osc(U)), osc(U) = sup(U)− inf(U).

A straightforward proof may again be found in [Ané 2000], in Theorem 3.4.3. An
important feature of the LSI constant is that it degenerates to zero in the case
where the underlying potential is highly multimodal. For example, if dν(x) =
Z−1exp(−βW (x)) dx and W (x) = x4/4− x2 is the double-well potential in dimen-
sion 1, then the LSI constant scales as exp(−β∆W ) where ∆W = W (0)−W (

√
2) >

0 is the height of the barrier, see Figure 4.6. Such inequalities thus hold under rather
loose assumptions, but the constant ρ is very small for a multimodal measure.

Let us now de�ne the Wasserstein distance between two probability measures.
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De�nition 4 (Wasserstein distance). The Wasserstein distance with linear cost
between probability measures µ and ν is de�ned as

W (µ, ν) = inf
π∈Π(µ,ν)

∫
D×D

|y − y′| π(dy, dy′),

where Π(µ, ν) denotes the set of coupling probability measures on D × D, with
marginals µ and ν:

∀π ∈ Π(µ, ν),∀ϕ,ψ,
∫
D×D

(ϕ(y) + ψ(y′))π(dy, dy′) =
∫
D
ϕdµ+

∫
D
ψdν.

De�nition 5 (Talagrand inequality). The probability measure ν is said to satisfy
a Talagrand inequality with constant ρ > 0 (or T (ρ)) if for all probability measures
µ such that µ� ν,

W (µ, ν) ≤
√

2
ρ
H(µ|ν). (4.41)

Logarithmic Sobolev inequalities and Talagrand inequalities are related (see [Otto 2000]):

Lemma 2 If ν satis�es LSI(ρ), then ν satis�es T (ρ).

As we shall see in the next two sections, the notions and results above provide
powerful tools in determining the rate of convergence of Boltzmann-type equations.

4.4.2 Convergence of the overdamped dynamics

Let us �rst study the longtime convergence to equilibrium of the simple overdamped
Langevin dynamics and its limitations. As discussed in the previous section, the
square of the L1 distance of the probability density ψ from its equilibrium ψ∞ can
be bounded above by twice their relative entropy (see Theorem 1). Therefore, by
showing that the relative entropy H(ψ|ψ∞) decays exponentially quickly, then so
does their total variation distance.

Recall that if the process Qt follows the dynamics

dQt = −∇V (Qt) dt+
√

2β−1dWt, (4.42)

then the probability density ψ(t, q) of the distribution of Qt satis�es the linear
Fokker-Planck equation

∂tψ = ∇ · (∇V ψ + β−1∇ψ), t > 0, (4.43)

withX0 ∼ ψ(0, q) dq. We aim to show that the density ψ converges to its equilibrium
ψ∞ = Z−1e−βV exponentially quickly, with a rate depending on the LSI constant of
ψ∞. To do so, we make the assumption that ∃R > 0 such that

ψ∞ satis�es LSI(R).
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In order to study its longtime convergence, it is convenient to rewrite (4.43) in terms
of the equilibrium density ψ∞

∂tψ = β−1∇ ·
(
ψ∇ln

(
ψ

ψ∞

))
. (4.44)

The evolution in time of the relative entropy is

d

dt
H(ψ|ψ∞) =

∫
ln
(
ψ

ψ∞

)
∂tψ = −β−1

∫ ∣∣∣∣∇ln( ψ

ψ∞

)∣∣∣∣2 ψ = −β−1F (ψ|ψ∞).

Furthermore, using the fact that ψ∞ satis�es LSI(R), we have

d

dt
H(ψ|ψ∞) = −F (ψ|ψ∞) ≤ −2β−1RH(ψ|ψ∞).

Therefore, ψ tends to ψ∞ exponentially fast with rate 2β−1R:

H(ψ(t, ·)|ψ∞) ≤ H(ψ(0, ·)|ψ∞)e−2β−1Rt.

By the Csiszar-Kullback inequality:
∫
|ψ − ψ∞| ≤

√
2H0e

−β−1Rt.

This result is satisfying at �rst glance, however in reality V possesses metastable
regions, separated by high energy barriers, thus as a result of Theorem 3, R may in
fact be very small. The ABF dynamics, presented in Section 4.3.2, helps to obtain
a better rate of convergence.

4.4.3 Convergence of ABF dynamics

Using the same tools as above, a study of the ABF dynamics (4.37) can show
that (i) the ABF method does indeed help to remove metastable features of the
standard dynamics (4.42) and (ii) the adaptive bias A′t converges to the mean force
A′ exponentially fast. We summarize below the results obtained in [Lelièvre 2008],
where technical details (omitted below) may be found.

Let us begin by stating a number of assumptions. Consider the 3N -dimensional
con�guration space D ⊂ R3N , and the one-dimensional reaction coordinate ξ :
D → M, where typically M = R or M = T = R/Z, the one-dimensional torus.
We assume, as before, that the ξ submanifolds Σz = {q | ξ(q) = z} are non-
intersecting hyperplanes foliating the con�guration space. This is given by the
following assumption:

[A1] The function ξ is a smooth function and |∇ξ(q)| > 0 for all q ∈ D.

In fact, convergence results for the exact dynamics presented in (4.37) depend on
two further assumptions: (i) the reaction coordinate spaceM = T and (ii) |∇ξ| is
constant (for |∇ξ| 6= 1 a change of time is necessary). We present below the slightly
modi�ed dynamics studied in [Lelièvre 2008], for a more general ξ andM
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{
dQt = −∇(V −At ◦ ξ +W ◦ ξ − β−1ln(|∇ξ|−2))|∇ξ|−2dt+

√
2β−1|∇ξ|−1dBt,

A′t(z) = E
[
fV |ξ(Qt) = z] .

(4.45)
To lighten notation, the dependence on Qt has been omitted on the left-hand side
of �rst line of (4.45). The function W ◦ ξ has been added to treat the case of an
unbounded domainM (this term may be removed wheneverM = T for example).
This potential is chosen in such a way as to con�ne the dynamics to the range of
values of ξ of interest and in particular to ensure that the marginal law in ξ converges
exponentially fast to equilibrium (see assumption [A4]). We emphasize that in the
caseM = T and |∇ξ| = 1, the results of the paper hold for the dynamics (4.37). In
the following, ψ(t, ·) denotes the density of the law of Qt, and ψξ(t, ·) the density of
the law of ξ(Qt).

The nonlinear Fokker-Planck equation satis�ed by the density ψ(t, ·) is then
given by

∂tψ = div
(
∇(V −At ◦ ξ +W ◦ ξ)ψ + β−1∇ψ

|∇ξ|2

)
,

where we recall that the case of a one-dimensional reaction coordinate ξ, the biasing
force is expressed in terms of the density ψ(t, ·) in the following way

A′t(z) =

∫
Σz

fV |∇ξ|−1ψ(t, ·) dσΣz∫
Σz

|∇ξ|−1ψ(t, ·) dσΣz

. (4.46)

It can be shown indeed that if the potential At and the law of Qt have stationary
states A∞ and ψ∞ respectively, then

ψ∞ ∝ exp(−β(V −A∞ ◦ ξ +W ◦ ξ)).

Thus, by replacing ψ(t, ·) by ψ∞ in (4.46), one has A′t = A′ and therefore At = A

up to an additive constant. This proves the uniqueness of the stationary state ψ∞.
Let us now give the main assumptions needed to prove the exponential con-

vergence of ψ to ψ∞, in the relative entropy sense. For technical reasons, some
regularity assumptions are required on ξ and the local mean force fV :

[A2]

{
There exists m > 0 and M > 0 such that

sup
q∈D
|∇ξ(q)| ≤ m <∞ and sup

q∈D
|∇Σzf

V (q)| ≤M <∞,

where ∇Σz is the surface gradient on Σz, de�ned by

∇Σz =
(
I − ∇ξ ⊗∇ξ

|∇ξ|2

)
∇,
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with u⊗v being the n×n matrix with components (u⊗v)i,j = uivj . A further fun-
damental assumption, which governs the rate of convergence of the ABF dynamics
presented in (4.45) is on the conditional measures µ(·|z).

[A3] ∃ ρ > 0, such that ∀z ∈M, µ(·|z) satis�es LSI(ρ).

This assumption, on both the potential V and reaction coordinate ξ, ensures that if
one was to sample the measure µ(·|z) using projected overdamped Langevin dynam-
ics (such as [Ciccotti 2008]), the convergence to equilibrium would be exponentially
fast, with rate ρ. Generally speaking, if ξ is a `well-chosen' reaction coordinate (see
Section 4.1.2), it is expected that ρ is su�ciently large (and in particular that ρ > R,
where we recall R is the LSI constant of Z−1e−βV ). The �nal assumption that is
needed is that the Fisher information (see De�nition 2) for the law of ξ(Qt) decays
exponentially fast. This indeed depends on the con�ning potential W introduced in
the dynamics (4.45).

[A4]

{
Suppose W and the initial marginal distribution ψξ(0, ·) are such that
∃ F0, r > 0 such that for all t ≥ 0, F (ψξ(t, ·)|ψξ∞) ≤ F0exp(−2β−1rt).

Remark 6 Assuming [A1], the above assumption holds true for two particular cases.
In the simplest case, ifM = T, then [A4] holds with r = 4π2. If on the other hand
M = R and W is an α-convex function and ∃r̄ > 0, such that Z−1

W exp(−βW )
satis�es LSI(r̄), then [A4] holds with r = r̄ − ε, for all ε > 0.

We are now ready to present the main result of [Lelièvre 2008].

Theorem 4 Assuming [A1]-[A4], the following hold.

(i) The biasing force A′t converges to the mean force A′ in the following sense:
there exists C > 0, λ > 0 such that for all t ≥ 0,∫

M
|A′t −A′|2(z)ψξ(t, z) dz ≤ Cexp(−2λt). (4.47)

More precisely, when ρm−2 6= r, then

λ = β−1 min(ρm−2, r).

In the case ρm−2 = r, then for all λ < β−1 min(ρm−2, r), there exists a
positive constant C such that (4.47) is satis�ed.

(ii) ‖ψ(t, ·)−ψ∞‖L1(D) converges exponentially fast with the same rate as in (4.47).

The rate of convergence of the ABF method is thus limited by the minimum of the
rate of convergence of the projected dynamics in the submanifolds Σz and the rate
of convergence to equilibrium of the marginal distribution in ξ. In light of Remark 6,
it is reasonable to assume that r is often large enough so that ρ, the LSI constant
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of µ(·|z), is the real limiting factor. In fact, ρ may indeed be very small in situa-
tions such as the one depicted in Figures 4.2(b) and 4.3. This gives rise to similar
limitations encountered in constrained sampling methods (such as Thermodynamic
Integration or Blue Moon Sampling). However, as an unconstrained technique, ABF
has one advantage in a multi-channel or bi-channel scenario (cf. Figure 4.2(b)): sam-
pling the two metastable regions at �xed ξ(q) = z can be achieved by means other
than overcoming the high-energy barrier separating them (e.g. by taking a longer,
but energetically favorable path going through one of the global minima).

The next two chapters of this thesis are devoted to the ABF method, with the aim
of showing that in situations where so-called local metastabilities are encountered
(i.e. the constant ρ is very small), the rate of convergence of ABF may in fact be
faster than that proposed in Theorem 4:

(i) This is justi�ed numerically in Chapter 5. A novel implementation of the ABF
method was tested on a small biomolecular system, whereby many walkers
were simulated in parallel, each following the ABF dynamics (4.37), sharing a
common biasing function A′t. This multiple-walker implementation (so-called
MW-ABF) showed faster convergence compared to a standard single-walker
ABF simulation at constant wall and CPU time. The results can be explained
by the fact that in compact states of a peptide chain, a great number of
low-energy conformations are associated to a value of ξ of the RC, which are
not fully explored by a standard single-walker ABF simulation due to their
separation by high free-energy barriers.

(ii) This is justi�ed mathematically in Chapter 6. By studying a simpli�ed ABF
model (representing the particular bi-channel scenario of Figure 4.2(b)), an
improved convergence rate is obtained. More precisely, for the new model, the
rate of convergence is shown to depend on the LSI constant of new canonical
measures, conditioned to the submanifold Σz and to a particular channel. In
view of the results discussed so far, this LSI constant is typically larger than
ρ, the LSI constant of the conditional measure µ(·|z).



Chapter 5

A Multiple-Walker ABF method

Ce chapitre reprend l'intégralité d'un article écrit en collaboration avec Christophe
Chipot et Tony Lelièvre, et publié dans Journal of Chemical Theory and Computa-
tion [Minoukadeh 2010].
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5.1 Introduction

Central to the understanding of most processes of either physical, chemical or
biological interest, the determination of the underlying free-energy change occu-
pies a prominent position in the arena of numerical simulations. Over the past
decades, a variety of methods has been devised to compute free-energy di�erences
e�ciently (see for example references [Chipot 2007] and [Lelièvre 2010b]). Roughly
speaking, these methods can be classi�ed into two main categories: (i) The free
energy is computed directly, or (ii) its �rst derivative is determined and subse-
quently integrated. Perturbation techniques [Zwanzig 1954], probability density
function-based methods such as histogram methods [Bennett 1976, Kumar 1992,
Shirts 2008], non-equilibrium computations [Jarzynski 1997] and adaptive biasing
potential methods [Wang 2001b, Iannuzzi 2003], for example, fall into the �rst cat-
egory. Thermodynamic integration [Kirkwood 1935], and adaptive biasing force
methods [Darve 2001, Hénin 2004], which are the core of the present work, belong
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to the second category. Adaptive methods are designed to compute free-energy pro-
�les and favor transitions between metastable states by using a current estimate of
the free energy as a biasing potential.

In this contribution, we are interested in a particular class of adaptive methods,
referred to as adaptive biasing force methods [Darve 2001, Hénin 2004, Hénin 2010].
Speci�cally, we endeavor to investigate a novel implementation of this class of meth-
ods, using a number of walkers simulated in parallel, in the spirit of the ideas put
forth by Lelièvre et al. [Lelièvre 2007a] The advantage of the present, novel imple-
mentation is threefold. First, the parallelization is straightforward and its theoret-
ical parallel e�ciency is very good since the only shared information is the biasing
force, or the marginal law, namely low-dimensional functions. In turn, this yields
e�cient, scalable algorithms to compute free-energy di�erences, well adapted to
the massively parallel architecture of high-performance computers. Second, we will
show that the implementation relying upon many walkers is particularly interesting
when the reaction coordinate does not describe well all the metastabilities of the
system, which, quite unfortunately, constitutes a generic situation for the vast ma-
jority of non-trivial molecular systems. This is typically the case, for instance, of
the so-called bi-channel scenario � namely the free-energy landscape features two
parallel valleys, which are orthogonal to the isocontours of the reaction coordinate
� or, more generally, when several transition mechanisms are associated to a sin-
gle reaction coordinate, which is, therefore, not su�cient to parameterize fully the
transformation. The underlying idea is that when many walkers are involved, they
can visit more e�ciently in parallel all the valleys in the direction of the reaction
coordinate. A mathematical proof is currently underway to show that, in the lim-
iting case of a very large number of walkers, and with suitable assumptions, the
rate of convergence of the ABF method is in fact not limited by free-energy barriers
orthogonal to the RC direction. Third, as will be detailed below, this new imple-
mentation allows selection mechanisms to be introduced, consisting in duplicating
e�ective walkers, while deleting poor ones, according to a �tness function that ought
to be chosen. An example of such a �tness function, which favors rapid exploration
of the reaction coordinate, will be provided hereafter.

As a proof of concept, the present approach was probed on a realistic test case,
using a high-level Tcl implementation of the algorithm in the scalable molecular
dynamics program NAMD [Bhandarkar 2003, Kale 1999, Phillips 2005]. The e�-
ciency of the overall procedure is, however, expected to be enhanced by embedding
and optimizing the algorithm at a deeper level of the molecular-dynamics platform.

In the following section, the mathematical framework of the method is intro-
duced and the adaptive biasing force method reviewed. Next, the discretization and
implementation details are presented. The present contribution closes with a discus-
sion of the numerical results obtained for the reversible folding of the paradigmatic
deca-alanine peptide.
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5.2 General setting

In the canonical ensemble, a system of dimension d is equipped with the Boltzmann-
Gibbs probability measure, i.e. the canonical measure

µ(dq) = φ(q) dq = Z−1exp(−βV (q)) dq, (5.1)

where φ is the density of the measure, β = 1/(kBT ) is proportional to the inverse
temperature, q ∈ Rd is the system con�guration, V : Rd → R is the potential energy
function and Z =

∫
Rd exp(−βV (q))dq is the normalization constant or the so called

partition function. To sample this measure, one can use the overdamped Langevin
dynamics [Langevin 1908]:

dXt = −∇V (Xt)dt+
√

2β−1dWt (5.2)

where (Xt)t≥0 is the system trajectory and Wt is an Rd-valued standard Brownian
motion (or Wiener process). Under suitable regularity assumptions on the potential,
the dynamics (6.1) is ergodic and admits the canonical measure as its unique in-
variant measure. It must be emphasized that, for the sake of simplicity, the method
is described in the framework of the overdamped dynamics. The method can, nev-
ertheless, be generalized to the Langevin dynamics as is done in the numerical
simulations at the end of the paper.

The canonical measure (5.1) gives us microscopic information about the system,
the probability that it is to be found at any particular point q in con�guration space.
A practitioner, however, is generally interested in some coarse-grained collective
variable ξ(q), where ξ is typically a smooth mapping from Rd to R. In what follows,
ξ will be referred to as the reaction coordinate (RC). The RC typically represents an
end-to-end distance of a protein chain, a structural angle in a protein or a measure
of the evolution of a chemical system. If X is a random variable with probability µ,
then ξ(X) is a random variable with law whose density φξ is de�ned by

φξ(z) =
∫

Rd
φ(q)δ(ξ(q)− z) dq, (5.3)

and the distribution φξ(z)dz is called the marginal distribution of µ in ξ. The free
energy, or so-called potential of mean force (PMF), A, is related to this marginal
density in the following way

A(z) = −β−1ln φξ(z). (5.4)

Sampling the canonical measure using the standard overdamped Langevin dy-
namics (6.1) can in fact be ine�cient in practice. The convergence to equilibrium
can be very slow due to metastable states where the dynamics remains trapped for
long periods of time. To explore the whole con�guration space, one often needs
to overcome very large energy barriers. From Arrhenius's law, it follows that the
typical time needed to overcome these barriers scales exponentially with the barrier
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height. Regular molecular-dynamics methods are, therefore, typically not used to
calculate statistical averages for systems prone to metastabilities.

Several methods have been proposed to ameliorate sampling methods in these
situations, such as the blue moon method [Carter 1989] or importance sampling
methods such as umbrella sampling [Frenkel 1996]. More recently, adaptive impor-
tance sampling methods have been developed such as the Wang-Landau method
[Wang 2001b] and the adaptive biasing force (ABF) method [Darve 2001]. The lat-
ter and its variations will be the focus of this contribution.

Before detailing the ABF method, the reader is reminded that the main quantity
of interest in the study of chemical reactions is a free-energy di�erence and not an
absolute free energy. Free energies are, therefore, computed only up to an additive
constant. The free-energy di�erence between two coarse-grained states, labelled by
the RC values za and zb, can be written as

∆A = A(zb)−A(za) =
∫ zb

za

A′(z) dz (5.5)

where ′ is the derivative with respect to the collective variable value z and A′ is
called the mean force. The integrand can be shown to be the Boltzmann average of
a real-valued function F V , conditioned to being at a �xed point z in the reaction
coordinate space

A′(z) =

∫
Rd
F V (q) exp(−βV (q)) δ(ξ(q)− z) dq∫
Rd

exp(−βV (q)) δ(ξ(q)− z) dq
= 〈F V (q) |ξ(q) = z 〉µ (5.6)

where

F V =
∇V · ∇ξ
|∇ξ|2

− β−1∇ ·
(
∇ξ
|∇ξ|2

)
(5.7)

and 〈·〉µ represents the canonical average � i.e. the average with respect to the
measure µ. Note that F V is the negative projection of the force onto the RC
plus some correction term. For the derivation of (5.7) the reader is referred to
references [Ciccotti 2008], [Sprik 1998] and [den Otter 1998]. The aim of the ABF
method, which will be detailed hereafter, is to compute A′ as e�ciently as possible.

5.3 Adaptive biasing force methods

In this section we will present the framework behind ABF methods for free energy
computations.

5.3.1 Framework

The basic idea of ABF is to use the mean force estimate to bias the dynamics and
help the system overcome free-energy barriers. An estimate of A′(z) is obtained
as the statistical average of the force �eld F V at speci�ed points z along the RC
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by accruing instantaneous forces F V (Xt) for a single system trajectory Xt when
ξ(Xt) = z. In the long-time limit, one obtains a good approximation for A′ and ∆A
can be computed by numerical integration. The resulting biased dynamics is

{
dXt = −∇(V −At ◦ ξ)(Xt)dt+

√
2β−1dWt,

A′t(z) = 〈F V (Xt)|ξ(Xt) = z〉,
(5.8)

where At ◦ ξ denotes the composition of At with ξ, so that At ◦ ξ(x) = At(ξ(x)),
and A′t is the estimated mean force1. The estimated mean force is thus de�ned as
a conditional average of F V (Xt) at a �xed value of ξ(Xt). In practice, it can be
approximated as an average over many walkers or as an on-the-�y average over the
trajectory Xt (see next section for more details). The above can be viewed as an
overdamped Langevin dynamics, with the potential V replaced by the time varying
potential Vt = V − At ◦ ξ. The consistency of the method may be justi�ed by
noticing that if a stationary state A′∞ for A′t is obtained, then ψ∞ is proportional
to exp(−βV∞), and thus A′∞ = A′ since

since

A′∞(z) = 〈F V (q)|ξ(q) = z〉exp(−βV∞) = 〈F V (q)|ξ(q) = z〉µ = A′(z),

As a result, At converges to A up to an additive constant, and the equilibrium
marginal density in ξ is constant, since

〈δ(ξ(q)− z)〉exp(−βV∞) =
〈δ(ξ(q)− z)〉µ
exp(−βA(z))

is constant by the de�nitions of µ and A in (5.1) and (5.4) respectively. Precise
convergence results can be found in references [Lelièvre 2008]. The aim of ABF is,
therefore, to estimate the biasing force as e�ciently as possible in order to bias the
dynamics by reducing and eventually eliminating any force along ξ. It serves as
an adaptive importance sampling method, driving the system out of its metastable
states, using on-the-�y estimates of the mean force.

5.3.2 Calculating the bias

Di�erent approaches have been proposed in recent literature [Darve 2001, Lelièvre 2007b,
Lelièvre 2008] for calculating the biasing force. There are two principal methods for
computing A′t, which will serve as a basis of comparison in the present contribution.

Original ABF: The idea of the standard ABF method [Darve 2001], which involves
one single walker, is to calculate averages using the whole trajectory of the system.
The mean force is calculated by taking a trajectorial average of instantaneous forces

1Note that the gradient term in the biased dynamics can be rewritten as −∇V + (A′t ◦ ξ)∇ξ,
thus only estimated mean force information is needed and not the estimated free energy.
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at �xed z using one long system trajectory (see reference [Chipot 2007] for further
details)

〈F V (Xt)|ξ(Xt) = z〉 '

∫ t

0
F V (Xs) δ(ξ(Xs)− z) ds∫ t

0
δ(ξ(Xs)− z) ds

. (5.9)

The mean force estimate is only computed once a trajectory reaches the value z in
the RC, therefore the denominator in the above equation is always non-zero for the
RC values needed.

Multiple walker (MW-)ABF: In a recent paper [Lelièvre 2007b], a new formu-
lation of the ABF method has been proposed, consisting in running R > 1 tra-
jectories of the ABF dynamics in parallel. The R walkers of the system follow a
similar dynamics driven by independent Brownian motions. These multiple walk-
ers then exchange information at �xed time intervals. The immediate gain of this
new formulation is that one can take advantage of parallel computing to speed up
convergence of the ABF method. Furthermore, with the use of a small number of
walkers, we are able to overcome issues related to poorly chosen or oversimpli�ed
reaction coordinates, where other important slow degrees of freedom are overlooked.
In such cases, metastabilities can be found at �xed ξ, as illustrated in 5.1. With
multiple walkers, it is likely that each walker will explore a di�erent path or valley
along ξ, whereas single�walker simulations could potentially take exponentially long
times to fully explore the low energy states. This will be studied numerically in the
�nal sections of the paper.

In the following, (Xi
t)0≤i≤R−1 is the set of trajectories for the R walkers. Each

trajectoryXi
t follows the dynamics (5.8) with the Brownian motionWt replaced with

W i
t . The biasing force is then estimated using an average over all the trajectories

and over all walkers

〈F V (Xt)|ξ(Xt) = z〉 '

R−1∑
i=0

∫ t

0
F V (Xi

s) δ(ξ(X
i
s)− z) ds

R−1∑
i=0

∫ t

0
δ(ξ(Xi

s)− z) ds

. (5.10)

Implementation details for the approaches discussed above will be discussed in the
next section.

5.3.3 Enhancing sampling through selection

In addition to the exchange of information between walkers to compute the estimated
mean force A′t, the MW-ABF method allows for resampling of the walkers according
to their �importance�. The success of the ABF method is strongly determined by the
marginal distribution of walkers in the RC, given that the RC has been well chosen.
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Figure 5.1: Example of a 2-dimensional free-energy surface exhibiting metastabilities
at �xed ξ. The variable ζ represents another slow degree of freedom of the system,
orthogonal to the RC. The standard ABF method relies on e�cient sampling at
�xed points in the RC, which is made di�cult by the presence of such large energy
barriers in the orthogonal directions. Using multiple walkers helps to overcome this
issue as each one is very likely to explore a di�erent pathway.

One would, therefore, want to encourage walkers that are exploring undersampled
regions of the RC and penalize those in oversampled regions. A selection mechanism
[Assaraf 2000, Doucet 2001, Lelièvre 2007b] may be used to achieve this objective.
It is implemented by a system of interacting walkers, where the walkers are cloned
or killed at a rate de�ned by S(t, z) over the values taken by the RC. The function
S(t, z) can be chosen as

S(t, z) = c
∂zzψ

ξ
t

ψξt
, (5.11)

where c is a positive constant and ψξt , de�ned by

ψξ,It (z) =
∫

Rd
ψt(q) δ(ξ(q)− z) dq,

represents the marginal distribution of walkers in the RC at time t. With this choice
of the function S, it can be shown that the marginal density ψξ,I satis�es the partial
di�erential equation (in fact for a slightly modi�ed version of the original adaptive
dynamics (5.8), see reference [Lelièvre 2007b])

∂tψ
ξ,I
t = (β−1 + c)∂zzψ

ξ,I
t . (5.12)

The selection process thus accelerates the di�usion of the marginal distribution in
the RC. The reason for this choice of S can also be understood when written in a
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�nite di�erence form

S(t, z) ' 3 c

∆z2 ψξt (z)

[
ψξt (z −∆z) + ψξt (z) + ψξt (z + ∆z)

3
− ψξt (z)

]
, (5.13)

where ∆z is some small displacement in the RC. The quantity S at a given value of
the RC is, therefore, positive if the marginal density at this point is small compared
to its local average, and negative otherwise. To implement the selection process,
one can either continuously update birth and death times, initially drawn from an
exponential distribution, as in reference [Lelièvre 2007b], or resample the walkers
according to their weights at �xed resampling times. The latter will be used for the
simulations reported herein. At a resampling time t, each walker trajectory Xi

t is
given a weight [Del Moral 2004]

wit = K−1
t exp

[∫ t

0
S
(
s, ξ{Xi

s}
)
ds

]
, (5.14)

where Kt =
R−1∑
i=0

exp
[∫ t

0
S
(
s, ξ{Xi

s}
)
ds

]
is the normalization constant. Replicas

are initially assigned a uniform weight, wi0 = 1/R, which evolves in time. From
(5.13) and (5.14), it is now clear that a walker i that is often found in undersampled
regions � in which case S(t, ξ(Xi

t)) is often positive � is given a stronger weight
than walkers in oversampled regions � where S(t, ξ(Xi

t)) is often negative. The ith

walker is then replicated on average Rwit times. This procedure thus accelerates the
convergence to a uniform distribution of the walkers in the RC, in accordance with
(5.12).

Let us now give some details about the resampling procedure. To calculate
the number of times a walker is to be copied, a systematic resampling method
[Carpenter 1999, Douc 2005, Kitagawa 1996] is used, described brie�y by the fol-
lowing algorithm. At a resampling time t:

Set u ∼ U(0, 1), w̄0 = w0
t , N0 = bR ∗ w̄0 + uc,

for i = 1, . . . , R− 1
w̄i = w̄i−1 + wit,
Ni = bR ∗ w̄i + uc − bR ∗ w̄i−1 + uc

end

where U(0, 1) denotes a uniform distribution between 0 and 1, wit is the normalized
weight assigned to walker i as de�ned in (5.14), w̄i is the cumulative sum of the
weights, b·c is the integer part and Ni is the number of copies of walker i to be
generated. It is important to note that this algorithm guarantees that

∑R−1
i=0 Ni = R.

After every resampling stage, the weights of all walkers are reset uniformly to the
value 1/R. The choice of the constant c in (5.11) is of paramount importance in the
performance of the selection mechanism. This parameter should be su�ciently large
to accelerate the exploration along the RC, but not too large in case one walker is
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selected during the resampling stage (due to degeneracy of weights), which implies
a very large variance of the estimator. This will be discussed further at the end of
the next section.

5.4 Implementation details

In this section, the implementation details of the adaptive biasing force methods are
provided. The simulations reported in the present contribution have been carried
out using the scalable molecular-dynamics code NAMD, but the algorithmic detail
is by no means speci�c to this software package. The ABF methods have been
implemented as Tcl scripts, for which the single�walker ABF method is already
available. How the method is discretized will be spelled out hereafter and the
detail of the single�walker ABF method will be outlined before proceeding with the
implementation of the MW-ABF method and selection.

We consider a reaction coordinate ξ taking values in the interval [z0, zN ], which is
divided into N bins of size ∆z = (zN −z0)/N . We denote by ξ̃ : Rd → {0, . . . , N −
1} a mapping from a con�guration onto its associated bin in the RC

ξ̃(·) =
⌊
ξ(·)− z0

∆z

⌋
,

where b·c again denotes the integer part. In the following, functions and trajectories
will be indexed by the number of time steps k, so that A′k will be the mean force
approximation and Xk will be the con�guration of the system at time k∆t, for a
time step ∆t. Furthermore, with a slight abuse of notation, z will now denote the
bin in the reaction coordinate, z = ξ̃(Xt).

Original ABF method: The reader is reminded that in the standard ABF method,
the biasing force is calculated for each bin using a trajectorial average, as in (5.9).
The biasing force is in practice updated to include the current force observation.
For z ∈ {0, . . . , N − 1}

A′k(z) =
ntot(k − 1, z)
ntot(k, z)

A′k−1(z) +
1ξ̃(Xk−1)=z

ntot(k, z)
F V (Xk−1) (5.15)

where 1ξ̃(Xk)=z denotes the indicator function � taking value 1 if ξ̃(Xk) = z and 0
otherwise � and

ntot(k, z) =
k−1∑
s=0

1ξ̃(Xs)=z (5.16)

is the total number of times the system trajectory has visited bin z. To justify (5.15),
the expression in (5.9) is recast in its discretized form

A′k(z) =

∑k−1
s=0 F

V (Xs)1ξ̃(Xs)=z∑k−1
s=0 1ξ̃(Xs)=z

. (5.17)
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Developing further, one subsequently obtains

A′k(z) =

∑k−2
s=0 F

V (Xs)1ξ̃(Xs)=z + F V (Xk−1)1ξ̃(Xk−1)=z

ntot(k, z)

=
ntot(k − 1, z)A′k−1(z) + F V (Xk−1)1ξ̃(Xk−1)=z

ntot(k, z)

where the last line follows from the de�nition (5.17) at time k − 1.

MW-ABF: The basis for the multiple�walker implementation of ABF in NAMD
can be found in a set of Tcl scripts written for parallel-tempering, walker-exchange
simulations [Bhandarkar 2003, Phillips 2005]. The scripts use Tcl server and socket
connections to launch NAMD processes for each individual walker. Each walker is
handled by a di�erent computing unit. The NAMD processes run for a �xed number
of time steps, then wait in order for Tcl server to exchange information between
walkers. 5.2 is synoptic diagram of the MW-ABF method. It is not necessary
(and not desirable from a computational point of view) to exchange information
at every time step. Exchange of information between walkers only occurs at every
kex time steps. We therefore proceed as follows: the mean force approximation,
denoted by A′k,i(·), is evaluated locally on the computing unit, where the indices
k and i represent respectively the number of time steps since the beginning of
the simulation and the computing unit running walker i. This quantity therefore
depends solely on the trajectory of the walker of interest. Between exchange times,
k ∈ [ nkex , (n+1)kex ], the mean force estimation evolves according to the update
formula

A′k,i(z) =
niloc(k − 1, z)
niloc(k, z)

A′k−1,i(z) +
1ξ̃(Xi

k−1)=z

niloc(k, z)
F V (Xi

k−1). (5.18)

Note that this is the same as (5.15), where A′k is replaced by A′k,i, Xk replaced by
Xi
k and ntot(k, z) replaced by niloc(k, z), the number of times walker i has entered

bin z since the last exchange, de�ned in (5.19) below.
At every exchange time, the information gathered by each walker is collected

and local variables on each processor are updated. This is formalized with the help
of some further notation. We denote by

klast = bk/kexc kex

the time of the last exchange. Next,

niloc(k, z) =
k−1∑

s=klast

1ξ̃(Xi
s)=z

, (5.19)

denotes the number of times walker i has entered bin z since the last exchange and
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Figure 5.2: Schematic diagram of MW-ABF: The main script is executed on a host
machine, which acts as the Tcl server. This machine launches the R walkers onto
di�erent processors via socket connections and, after every kex time steps, carries
out exchange of information. This consists in: reading in local variables from each
processor; computing the total biasing force A′k by means of (5.21) and (5.22);
sharing A′k with all processors and setting local variables to zero. This is carried
out T/kex times until the program terminates.

nitot(k, z) =
k−1∑
s=0

1ξ̃(Xi
s)=z

, (5.20)

is the total number of times walker i has entered bin z since the beginning of the
simulation. Finally,

Nloc(k, z) =
R−1∑
i=0

niloc(k, z) and Ntot(k, z) =
R−1∑
i=0

nitot(k, z)

denote respectively the total number of visits to bin z since the last exchange and
the beginning of the simulation, over all the walkers.

At every exchange time, a local average A′loc is calculated of the mean force
estimated from the run of each individual walker:

A′loc(k, z) =
1

Nloc(k, z)

R−1∑
i=0

niloc(k, z)A
′
k,i(z). (5.21)

The total biasing force, A′k(z), to be shared between the walkers, is then also updated
to include this new information

A′k(z) =
[
1− Nloc(k, z)

Ntot(k, z)

]
A′k−1(z) +

Nloc(k, z)
Ntot(k, z)

A′loc(k, z). (5.22)

The latter quantity, A′k, is then communicated to each one of the walkers, and the
variables niloc and A

′
k,i are reset to zero.
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Figure 5.3: Selection mechanism for R = 4 walkers. If walker i has weight wik at the
time of selection, on average Rwik copies are made of this walker at the next step.
In practice, this means that Rwik walkers will be launched using the con�guration
and velocity �les of walker i. Note that in the above k = nkex, the time at which
selection is carried out.

The total biasing force in (5.22) is utilized by each walker in the steps following
the exchange, however new local information is also incorporated in order to speed
up the di�usion in ξ. The biasing force applied to walker i in the simulations,
therefore, writes2

F ibias,k(z) =
[
1−

niloc(k, z)
Ntot(k, z)

]
A′klast(z) +

niloc(k, z)
Ntot(k, z)

A′k,i(z),

where A′klast is again the total mean force calculated at the preceding exchange in-
terval and A′k,i is the local mean force information, as de�ned in (5.18).

Selection: Resampling may be carried out at most every kex time steps, when the
walkers exchange information. Selection is a technically costly process as NAMD
must be exited and reloaded with new con�guration and velocity �les. For this
reason, it is even advisable for it to be carried out less frequently. The computational
complexity of the process is O(R) using a systematic resampling method (see the
previous section for the algorithm). For purposes of illustration, the resampling
will be carried out as often as the inter-processor communication, namely every kex
time steps. The purpose of resampling is to improve the exploration in the RC.
The weights of the walkers are adjusted according to the utility function S(k, z),
depending in practice upon the total distribution of the walkers:

S(k, z) = c
Ntot(klast, z + 1)− 2Ntot(klast, z) +Ntot(klast, z − 1)

Ntot(klast, z)
. (5.23)

2In practice, this force is actually only fully applied to the dynamics after a certain number of
visits have been made to the bin, that is to say after Ntot(k, z) > Nmin, where in our simulations
Nmin = 500. If Ntot(k, z) < Nmin/2, then no biasing force is added. Beyond that, the force is

slowly introduced using a ramp function with scaling factor min
“

2Ntot

Nmin
− 1, 1

”
.
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The integral in (5.14) is calculated by summing the terms S(k, ξ̃(Xi
k)) over k for

each walker i during each individual run. At the selection stage, when k = kex, the
weights of the walkers are computed:

wik = K−1
k exp

 k−1∑
s=klast

S(s, ξ̃{Xi
s})

 ,
where Kk is again the normalization constant. The walkers are then selected ac-
cording to these weights using a systematic resampling method, as described above.
In practice, to generate Ni copies of walker i, the con�guration and velocity �les
for walker i are passed to NAMD as the start-up �les for Ni walkers. Finally, after
resampling, S is set to zero, so that all walker trajectories have equal weight.

For resampling to be e�ective, there are two main issues that need to be ad-
dressed. First, the constant c has to be chosen carefully: it must be large enough
for the selection mechanism to be bene�cial and small enough to avoid degeneration
of weights, where all walkers are given zero weight except for one. Another issue to
be addressed is when to stop resampling. Due to the technical costs of the selection
mechanism, it is advised to impose a stopping criterion, so that selection is not
applied throughout the whole simulation. The stopping criterion could depend on
the sampling of the RC, or on the distribution of the weights. For the simulations
herein, the latter criterion is used for once the walkers begin to be equally weighted,
the selection has no e�ect and ought to be stopped. In order to measure the distri-
bution of the weights we consider the relative entropy of the weights compared to a
uniform distribution, de�ned by

Ew(t) =
R−1∑
i=0

wilog(Rwi). (5.24)

This can be understood as the di�erence between the entropy of weights and the
entropy for the uniform weight distribution:

∑R−1
i=0 wilog(wi)−log(1/R). This quan-

tity is bounded above by log(R), in case of degeneracy, and is bounded below by 0,
in case of uniform distribution of weights. A good stopping criterion for the selec-
tion algorithm would be to end the process when the relative entropy is su�ciently
small. In our simulations, the selection is stopped once

Ew(t) < ε log(R) (5.25)

where 0 < ε < 1 is set closer to 0 for a stringent stopping criterion, or closer to 1
for a weaker threshold.

5.5 Numerical results

In this section, we present comparisons of the single�walker and multiple�walker
ABF methods on the deca-alanine peptide in gas-phase, for which comprehensive
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studies have already been carried out [Chipot 2005, Hénin 2004, Park 2003]. All
the simulations reported herein were performed with the molecular-dynamics code
NAMD [Bhandarkar 2003, Kale 1999, Phillips 2005], using the CHARMM27 [MacKerell 1998]
force �eld. The ten-residue peptide chain has a total of 104 atoms and the RC has
been chosen as the distance separating the center of mass of its �rst and last C-H
pairs. To sample the full range of conformations from the α-helical conformation to
the ensemble of extended structures, the range of values accessible to ξ varies from
12 to 32 Å. Additional tests are also carried out to study more compact conforma-
tions, where ξ varies between 4 and 16 Å. The system is kept within the assigned
ranges by enforcing re�ective boundary conditions.

The average forces were accumulated in bins of size ∆z = 0.1 Å. The equations
of motion were integrated employing Langevin dynamics with a time step ∆t = 0.5
fs. Electrostatic and van der Waals interactions were truncated smoothly beyond
11 Å.

We will �rst present the results for the conventional range of 12 to 32 Å, which
spans conformations comprised between the α-helix to more extended structures.
Next, results for more compact conformations � with ξ ranging from 4 to 16 Å
� are presented, where stark di�erences can be observed between the single� and
multiple�walker ABF simulations. Finally, we will study the impact of selection on
walkers.

5.5.1 Reaction coordinate range: 12-32 Å

Starting from the α-helical conformation, R walkers of the system are launched with
ABF dynamics, communicating at every kex = 50, 000 time steps (25 ps). Reference
curves are obtained from a 200-ns simulation using the original ABF algorithm,
featuring a single walker.

5.5.1 compares the sampling distribution, mean force and free-energy pro�les for
single�walker and 16�walker simulations after 0.25 ns.

It may be observed from Figure 5.4(a) that the single�walker runs rarely manage
to stretch beyond a distance of ξ = 22 Å, whereas the 16�walker simulations explore
the whole reaction-coordinate space. Furthermore, in Figure 5.4(b), it is apparent
that the mean force and free-energy pro�les obtained by the 16�walker simulations
are already qualitatively consistent with the reference curves.

5.5.2 Reaction coordinate range: 4-16 Å

As previously mentioned, convergence of the standard ABF method can be rather
slow in the presence of metastabilities on the submanifold of conformations at a
�xed value of ξ. This is generally the result of a poor choice of the RC, which
does not capture all metastabilities of the system. In such a case � as depicted in
5.1 � several low energy conformations could be associated to a �xed value of ξ,
and separated by high-energy barriers. As highlighted in reference [Chipot 2005],
this shortcoming arises when studying compact conformations of the deca-alanine
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(a) (b)

Figure 5.4: Results for ξ ranging from 12 to 32 Å (after 0.25 ns). The
curves are averages of 20 independent single�walker (dashed lines) and 16�walker
(dashed-dotted lines) simulations with error bars representing the 95% con�dence
intervals. Solid lines represent reference pro�les, obtained from a single�walker run
of 200 ns. (a) Density of marginal distribution in the RC. The multiple�walker
simulation has explored the whole ξ-space whereas the single�walker simulations
very rarely stretch beyond 22 Å. (b) Mean force and free-energy pro�les (inset).
For the multiple�walker simulations we see the mean force pro�les already nearly
converged, whereas little information is gathered beyond 22 Å for the standard ABF
simulation.

peptide. In this article, an extension of the standard sampling window reveals
a free-energy pro�le that exhibits a wide global minimum ranging from 4 to 12
Å. It is known, however, that the global minimum of the deca-alanine peptide is
the α-helical conformation at about ξ = 14 Å (see references [Hénin 2004] and
[Park 2003]). The present results can be explained by the fact that in compact
states, a great number of low-energy conformations are associated to a value of ξ of
the RC, which are not fully explored by a standard, single�walker ABF simulation
due to their separation by high free-energy barriers. These high free-energy barriers
are generally unsurmountable from the perspective of conventional MD simulations
and can be viewed as kinetic traps that preclude the exploration of the full RC
space over reasonable time scales. A recent study has helped to capture the various
slow degrees of freedom for these compact structures by exploring multidimensional
free-energy landscapes [Hénin 2010].

The shortcomings discussed above can be advantageously circumvented using
multiple walkers. The results obtained from 100�ns single� and multiple�walker sim-
ulations of the compact conformations are compared in 5.5.2 and 5.5.2 respectively.
Figure 5.5(b) depicts mean force estimations for four independent single�walker sim-
ulations. Even after a 100�ns simulation, large discrepancies are observed between
the mean force pro�les. As can be observed in the inset of Figure 5.5(b), one free-
energy pro�le has revealed a global minimum around ξ = 6 Å, which is, in most
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(a) (b)

Figure 5.5: Results for ξ ranging from 4 to 16 Å using 1 walker (after 100
ns). Results are from four independent simulations. (a) Sampling along the RC.
(b) Mean force approximations and free-energy pro�les (inset): large discrepancies
are observed, suggesting presence of parallel valleys along ξ. Note that one of the
free-energy pro�les suggests a global minimum at ξ = 6 Å.

(a) (b)

Figure 5.6: Results for ξ ranging from 4 to 16 Å using 32 walkers (re-
sults after 100 ns). Results are from four independent simulations. (a) Sampling
along the RC. (b) Mean force approximations and free-energy pro�les (inset). Sam-
pling and mean force estimations are consistent with each other and the α-helical
conformation is recovered as the global free-energy minimum.

likelihood, artifactual. 5.5.2 summarizes the results obtained from four independent
32�walker simulations. A marked improvement in the convergence of the mean force
pro�les is immediately apparent. This supports the speculation that there exist par-
allel valleys along the RC, each of a di�erent nature, separated by high free-energy
barriers. The present set of results is far more promising with a multiple�walker
scheme.

Due to eventual traps in the parallel valleys, it is in fact likely that a T -
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(a) (b)

Figure 5.7: Results after 3 ns using 32 walkers. To compare results at constant
total CPU time, we observe the results of a 32-walker simulation after 100/32 ∼ 3
ns. Results are from four independent simulations. (a) Sampling along the RC. (b)
Mean force estimates and free-energy pro�les (inset) are qualitatively very close to
Figure 5.6(b). The results show that a multiple�walker simulation can outperform
a single�walker simulation at constant CPU time.

nanosecond single�walker simulation will be less e�cient than an R-walker simu-
lation ran for T/R nanoseconds. This argument is supported numerically by 5.7,
showing results for a 32-walker simulation after 100/32 ∼ 3 ns. The results are
qualitatively consistent with 5.5.2 and o�er a far more reliable set of results than a
100 ns single�walker simulation. In this way, a multiple�walker implementation not
only improves results at constant wall time, but at constant CPU time.

5.5.3 Selection

In order to monitor the impact of the selection mechanism, we have chosen to study
again the standard range of 12�32 Å. This choice is dictated by the topology of the
free-energy landscape. It ought to be recalled here that the selection criterion is
based solely on the position of the walkers along the RC. In the case of multiple,
parallel valleys, this criterion can, therefore, impede convergence of the mean force,
should many copies of one walker be generated in the same valley. It appears
that selection is most e�ective in the presence of metastabilities in the RC only.
Metastabilities in the orthogonal directions are well explored by multiple�walker
simulations, albeit not always improved by selection.

Figures 5.8(a) and 5.8(b) compare the sampling and free-energy pro�les deter-
mined by a 16�walker simulation after 0.25 ns. We observe a more uniform sampling
and a better potential of mean force for the simulation with a selection mechanism.
For these simulations, we used the selection constant c = 0.0001 in (5.23) and a
stopping criterion as in (5.25) with ε = 0.05.

5.9 depicts Ew(t), the relative entropy of the walker weights, during the �rst
2.5 ns of the simulation. It may be observed that Ew(t) decreases during the ABF
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simulation, as the biasing force converges. This result suggests that the walkers are
then more free to move along the RC and, thus, each walker is of equal �importance�.
Once the walkers are more or less of equal weight, the selection becomes redundant
and is, therefore, switched o�, avoiding unnecessary computational e�ort.

5.6 Discussion

In the present contribution, we have demonstrated the applicability of the MW-ABF
method to a prototypical biomolecular system. Importance sampling techniques
are often held back by the di�culty of choosing good reaction coordinates. If the
RC is chosen poorly, one is likely to encounter parallel valleys separated by large
free-energy barriers, thereby making sampling at a �xed point along the RC very
di�cult. In such an event, a standard single�walker ABF simulation would lead to
slow convergence, as was shown here. The system is biased only in the direction of
the RC and, therefore, would be likely to linger in one valley for a long time before
reaching another. We have shown that such shortcomings can be elegantly overcome
using multiple walkers, through the proposed MW-ABF method. We emphasize that
the use of multiple walkers is particularly bene�cial when the choice of the model
RC is suboptimal, where improvement has been demonstrated herein at constant
CPU time. For a well chosen RC, the MW-ABF is not guaranteed to outperform
single�walker ABF simulations at a �xed total CPU cost, but still has the advantage

(a) (b)

Figure 5.8: Results for ξ ranging from 12 to 32 Å using 16 walkers (re-
sults after 0.25 ns). Comparing results between a 16�walker run with (dotted
lines) and without selection (dashed-dotted lines). The curves represent averages of
20 independent ABF simulations, and the error bars are 95% con�dence intervals.
Reference curves are shown as solid lines. (a) The sampling along ξ shows that
simulations with selection provide a much more uniform distribution along the RC.
(b) Mean force approximations and free energy di�erence pro�les (inset): the free-
energy pro�le for the simulation with selection is already very close to the reference
curve.
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Figure 5.9: Relative entropy of weights. It can be seen that the R = 16 walkers
are approximately of equal weight after about 1.5 ns of an ABF simulation. The
selection is switched o� after Ew(t) < ε log(16), where ε = 0.05. For these
simulations, the selection constant in (5.23) is chosen as c = 0.0001.

of being easily parallelized. The selection process introduced herein can be employed
pro�tably when encountering pronounced free-energy barriers along the RC. In the
presence of parallel valleys, attention must be paid to avoid degeneration of weights,
as this could lead to many walkers being kinetically trapped in the same valley, losing
the main interest of the use of multiple walkers.





Chapter 6

Long-time convergence of an ABF

method

Ce chapitre reprend l'intégralité d'un article écrit en collaboration avec Tony
Lelièvre, et soumis à Archive for Rational Mechanics and Analysis [Lelièvre 2010a].
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6.1 Introduction

We consider a system of N particles with positions q ∈ D ⊂ R3N . In statistical
physics, one is interested in calculating averages with respect to the Boltzmann-
Gibbs measure

dν(q) = Z−1exp(−βV (q))dq, (6.1)

with V : D → R the potential energy function, Z =
∫
D exp(−βV (q)) dq the partition

function, D = {q, V (q) < ∞} the con�guration space, and β = 1/(kBT ), where
kB is the Boltzmann constant and T is the temperature. The function V is the
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energy associated with the positions of the particles and is assumed to be such that
Z < ∞. The probability measure ν represents the equilibrium measure sampled
by the particles in the canonical ensemble. A typical dynamics that can be used
to sample this measure through trajectorial averages is the overdamped Langevin
dynamics

dQt = −∇V (Qt)dt+
√

2β−1dBt, (6.2)

where (Bt)t≥0 is a 3N -dimensional standard Brownian motion. Indeed, under loose
assumptions on V , one has the ergodic property: for any smooth test function ϕ,

lim
T→∞

1
T

∫ T

0
ϕ(Qt) dt =

∫
D
ϕdν.

The e�ciency of this sampling procedure, which can be shown to be related
to the convergence rate to equilibrium of the above dynamics is often hindered
by metastabilities in the potential function V , namely regions of low energy are
separated by high energy barriers. Equivalently, in terms of the probability measure,
ν is typically a multimodal measure, with regions of high probability separated by
regions of low probability. To circumvent this issue, a one-dimensional collective
variable (or reaction coordinate) ξ : D → M is introduced, which will be used to
de�ne a biasing potential for (6.2). In the following, we will assume that |∇ξ| > 0
on D, and that M = T, where T = R/Z is the one-dimensional torus (which
typically corresponds to the case where the reaction coordinate represents a dihedral
angle, for example to characterize the conformation of a molecule). Before de�ning
more precisely the biased dynamics in the next section, we need to introduce a few
notation.

The image of the measure ν in ξ is given by

dνξ(z) = Z−1exp(−βA(z)) dz,

where A is the so-called free energy, de�ned by

A(z) = −β−1ln(Zz) (6.3)

where

Zz =
∫

Σz

exp(−βV (q)) δξ(q)−z(dq) (6.4)

is the partition function on the submanifold Σz = {q ∈ D | ξ(q) = z}. The measure
δξ(q)−z(dq) is de�ned through the conditioning formula: for any smooth test function
ϕ : D → R, ∫

D
ϕ(q) dq =

∫
M

∫
Σz

ϕ(q)δξ(q)−z(dq) dz.

Using the co-area formula (see [Lelièvre 2008, Appendix A]), one can also identify
this measure as δξ(q)−z(dq) = |∇ξ|−1dσΣz , where σΣz is the Lebesgue measure on
Σz. We assume in the following that ξ and V are such that Zz <∞, for all z ∈M.
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Practitioners are typically interested in free energy di�erences A(z) − A(z0),
which can be obtained by computing (and integrating) the derivative A′(z), the
so-called mean force

A′(z) = Z−1
z

∫
Σz

f(q) exp(−βV (q)) δξ(q)−z(dq) (6.5)

where f is the local mean force de�ned by

f =
∇V · ∇ξ
|∇ξ|2

− β−1div
(
∇ξ
|∇ξ|2

)
. (6.6)

The function f can be understood as the negative force projected onto the reaction
coordinate, plus some correction term related to the curvature of the submanifolds
Σz. Notice that the mean force (6.5) is in fact a conditional expectation

A′(z) = Eν [f(Q)|ξ(Q) = z] =
∫

Σz

fdν|z, (6.7)

where

dν|z =
exp(−βV (q))δξ(q)−z(dq)

exp(−β(A(z)))
denotes the probability measure ν conditioned to a �xed value z of ξ(q). This
measure is supported on the submanifold Σz. For the derivation of (6.5)�(6.6)�(6.7)
which is again based on the co-area formula, the reader is referred to [Ciccotti 2008,
Sprik 1998, den Otter 1998].

6.1.1 The adaptive biasing force method

The adaptive biasing force (ABF) method [Darve 2001, Hénin 2004] uses an estimate
of the mean force A′ to bias the standard overdamped Langevin dynamics (6.2) in
order to overcome metastabilities in ξ. The bottom line of the approach is that
it should be easier to sample the probability measure with density proportional
to exp(−β(V − A ◦ ξ)) than the original Boltzmann-Gibbs measure ν, since the
marginal probability of the former in ξ is a uniform probability measure on T, while
the marginal of the latter (namely exp(−βA(z)) dz) is typically multimodal.

The ABF dynamics is given by{
dXt = −∇(V −At ◦ ξ)(Xt)dt+

√
2β−1dBt,

A′t(z) = E [f(Xt)|ξ(Xt) = z] ,
(6.8)

where A′t is an on-the-�y estimate of the mean force, which, in view of the de�nition
(6.7), is expected to be a good estimate of A′. The law of Xt has density ψ(t, ·),
which satis�es the non-linear Fokker-Planck equation:

∂tψ = div(∇(V −At ◦ ξ)ψ) + β−1∆ψ,

A′t(z) =

∫
Σz

f ψ δξ(q)−z(dq)∫
Σz

ψ δξ(q)−z(dq)
.

(6.9)
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Roughly speaking, the biasing force ∇(At ◦ξ) ��attens the free-energy barriers in ξ�.
To support this claim, let us simply indicate that if |∇ξ| is constant, the marginal
density in ξ satis�es a simple heat equation, with zero bias, see [Lelièvre 2007b,
Lelièvre 2008] and also Equation (6.16) below. Existence and uniqueness of solutions
to (6.8) are studied in [Jourdain 2009] and a study of the longtime convergence
of (6.9) can be found in [Lelièvre 2008], the results of which are brie�y discussed
below.

6.1.2 Existing convergence results, and the multiple channel sce-
nario

It has been shown in [Lelièvre 2008] that, under appropriate assumptions, the bias-
ing force A′t in (6.8) (actually for a slightly di�erent dynamics which reduces to (6.8)
if |∇ξ| is constant for example) converges to the mean force A′ exponentially fast
in the longtime limit. The rate of convergence was estimated as the minimum of (i)
the rate at which the law of ξ(Xt) converges to equilibrium, and (ii) the smallest
logarithmic Sobolev inequality constant (LSI constant, discussed in Section 6.2.3)
of the conditional probability measures ν|z, for z ∈ M. Thanks to the bias in the
direction of the reaction coordinate, it can be shown that the rate of convergence
of the marginal in ξ is actually not the limiting rate in practice since it satis�es a
simple di�usion equation. The real limitation is thus the metastable features (i.e.
the multimodality) of the family of laws ν|z, which is quanti�ed through the LSI
constants associated to these measures: roughly speaking, the smaller the constant
the more multimodal the probability measure. These constants may be in some
cases extremely small, at least for some values of z ∈ M. The question we address
in this paper is the optimality of this theoretical rate of convergence for the ABF
method.

The generic situation is indeed that the LSI constants for the measures ν|z are
not small uniformly in z. Typically, there exists some values of z for which these
measures are multimodal. This situation is often encountered in practice due to two
reasons. First, �nding a suitable reaction coordinate, namely in our context one that
ensures that there are no metastabilities associated to the equilibrium measures ν|z,
is not trivial for a large-dimensional system. Secondly, a low-dimensional reaction
coordinate may simply not be su�cient to describe all metastabilities of the system.
In such cases, the results of [Lelièvre 2008] predict a very small rate of convergence
for the ABF dynamics (6.8), and thus, the ine�ciency of this biasing procedure.

As a typical case for which such di�culties appear, we will consider in the
following the so-called `multiple-channel situation' (see Figure 6.1 on the left, for a
bi-channel case). In such a situation, starting from a metastable state and as the
system evolves in the direction of increasing values of the reaction coordinate ξ, it
can follow di�erent channels, which are separated (in the `orthogonal direction to
ξ') by arbitrary high energy barriers. In other words, the energy landscape features
parallel valleys which are orthogonal to the isocontours of the reaction coordinate.
In such a prototypical situation, the conditional probability measures ν|z are indeed
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multimodal, for the values of z corresponding to the system being in one of these
channels.

However, recent numerical experiments [Minoukadeh 2010] (based on a discretiza-
tion of the ABF dynamics (6.8) by multiple walkers simulated in parallel) suggest
that in fact, high energy barriers in Σz do not always hinder the convergence of
the ABF method. The multiple walkers are made to follow similar dynamics (6.8),
but driven by independent Brownian motions. The chemical system considered
in [Minoukadeh 2010] is the compact states of the deca-alanine peptide (the reac-
tion coordinate ξ being thus the end-to-end distance of the peptide). Due to some
`buckling e�ects', this is a typical multiple channel situation, since the molecule
can shrink to various compact states (see [Hénin 2010]). In [Minoukadeh 2010], nu-
merical results show that the ABF approach indeed yields reliable results in such
a situation. We interpret this as follows. When encountered with a fork in the
channel, each walker is likely to travel down a di�erent channel. Thus, it is indeed
almost impossible for a given walker to switch from one channel to another, once it
has entered one of them, but this appears not to be necessary to obtain reliable re-
sults. It suggests that the theoretical rate of convergence obtained in [Lelièvre 2008]
is actually not optimal.

Inspired by these numerical results, we present herein an improved theoretical
rate of convergence of the ABF method. The rate will be shown to depend on the
LSI constants of the family of equilibrium measures conditioned to being in Σz and
a channel. By doing so, we show that high energy barriers separating the channels
do not in fact a�ect the rate of convergence of the method. The crucial assumptions
needed to show our result are: (i) exchange between the two channels is possible for
some values of ξ (see [H1] below) and (ii) the free energy is a `good bias' in each
channel (see [H4] below). This is formalized in the main result of this paper, namely
Theorem 5 below.

For some technical reasons, we were actually unable to prove this result on
the original ABF dynamics (6.8). We will thus consider a slightly di�erent system
(that we call the bi-channel model) which retains the most important features of the
dynamics (6.8) when applied to a potential exhibiting two parallel channels in the
direction of ξ, separated by a high energy barrier.

The paper is organized as follows. In Section 6.2 we give details of the bi-channel
model, de�ne some probability measures and recall some entropy de�nitions before
presenting the main result. Finally, the proof of the main result is given in Section
6.3.

6.2 The bi-channel model and statement of the main re-

sults

In this section, we present a model to describe the bi-channel scenario. In the
following, we treat the case d = 2 (so that the position is q = (x, y)), D = T × R,
M = T and ξ : D → T, where ξ(x, y) = x. We further assume without loss
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of generality that β = 1, which can be done by a change of variables t̃ = β−1t,
ψ̃(t̃, x) = ψ(t, x), Ṽ (x, y) = βV (x, y). With these assumptions, some notation may
be simpli�ed: |∇ξ| = 1, Σz = R and δξ(q)−z(dq) = dy. Furthermore, the de�nition
of the local mean force in (6.6) simpli�es to

f = ∂xV

and the free energy and its derivative are given by

A(x) = −ln
∫

R
exp(−V (x, y)) dy and A′(x) =

∫
R
∂xV (x, y) exp(−V (x, y)) dy∫

R
exp(−V (x, y)) dy

.

(6.10)
We would like to emphasize that the choice of the domain M = T and reaction
coordinate ξ(x, y) = x is merely to reduce technicalities, see [Lelièvre 2008] for ap-
propriate tools to treat general ξ. In particular, the results can be straightforwardly
generalized to the case D = T × Rd−1 and ξ(q1, . . . , qd) = q1. Likewise, the gener-
alization to a situation with multiple channels (more than two) is straightforward
(see Remark 7 below for another generalization).

6.2.1 The bi-channel model

The bi-channel situation is characterized by the existence of two channels joining an
initial and �nal state on a potential energy surface V , separated from each other by
a region of high energy, as depicted in the left of Figure 6.1. As explained above, we
were not able to analyze the original ABF dynamics (6.8) in this situation, because
of some technical di�culties in expressing the probability density �ux from one
channel to the other.

We therefore analyze the convergence of the ABF method for a slightly di�erent
model, which is schematically represented in right of Figure 6.1. Each channel is
described by a potential energy function Vi : D → R, where i ∈ {0, 1} denotes the
channel index. The stochastic process we consider now is actually a couple (Xt, It),
where the position vector Xt lives at time t on the potential VIt , It ∈ {0, 1} being
the index of the visited channel at time t. The channel index It is allowed to switch
to 1− It only if ξ(Xt) lies in some designated regions (typically at the two ends of
the two channels).

The dynamics for the ABF dynamics in the bi-channel model is then
dXt = −∇(VIt −At ◦ ξ)(Xt)dt+

√
2 dBt,

A′t(x) = E [∂xVIt(Xt)|ξ(Xt) = x] ,

It ∈ {0, 1} is a jump process with generator

Lϕ(x, y, i) = −λ(x)(ϕ(x, y, i)− ϕ(x, y, 1− i)).

(6.11)

In terms of the stochastic process It, switching between the two potentials (namely
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change of It to 1− It) occurs at times

τn+1 = inf
{
t > τn

∣∣∣∣ ∫ t

τn

λ(ξ(Xs))ds > Tn

}
,

where τ0 = 0 and Tn are i.i.d. random variables drawn from the exponential distri-
bution with parameter 1. In this way λ(x) denotes the rate at which the trajectories
jump from potential Vi to potential V1−i. Note that this rate depends only on the
position, x, in the reaction coordinate. The bi-channel feature of the model is re-
lated to the fact that we assume that the rate λ is zero (there is no switching) in
some region of the reaction coordinate. Outside of this region, the rate is supposed
to be constant, and the potential functions are assumed to be identical (the particles
live in the same potential). Let us state this as a formal assumption,

[H1] ∃ E ⊂ T, λ(x) = λ1T\E(x) and ∀x ∈ T\E , V0(x, ·) = V1(x, ·).

The region E ⊂ T in the above hypothesis represents the region where the two
channels are separated by high energy barriers, see Figure 6.1. It is assumed to
have a Lebesgue measure di�erent from 0 and 1.

The main qualitative di�erence between the bi-channel model we study, and the
original ABF dynamics (6.8) is that the switching only depends on the x-position
and not on the y-position. However, the ABF dynamics (6.11) conserves the main
di�culty of the original one, namely the metastability of the dynamics in terms of
visited channels for some values of ξ. At times t such that ξ(Xt) ∈ E , It cannot
switch to 1 − It. In particular, it can be checked that the proof of [Lelièvre 2008]
applied to (6.11) in the case E = ∅ leads to an estimated rate of convergence limited
by λ and is thus eventually zero if λ goes to zero (see Remark 9 below). The aim of
this work is to study the case E 6= ∅ used to obtain exponential rate of convergence
even if λ = 0 in some region (see Theorem 5 below).

Remark 7 On Figure 6.1, we represent the bi-channel case with two metastable
states linked by two di�erent channels. The region where the stochastic process
can jump from one channel to another has two connected components. We would
like to emphasize that our result also applies to the case where this region is sim-
ply connected, namely a situation where two channels start from a metastable state
(along the reaction coordinate value) but do not end in another metastable state.
This situation is of course less favorable in terms of speed of convergence to equilib-
rium, which would be re�ected in our theoretical result through the parameter θ (see
[H4] below). This is actually typically the situation of the numerical experiments
in [Minoukadeh 2010] mentioned above since the various compact states obtained do
not belong to the same metastable basin.

6.2.2 A partial di�erential equation formulation

Let us introduce the time marginal of the process (Xt, It) in (6.11):

dµt =
1∑
i=0

ψ(t, x, y, i)δi dx dy,
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Figure 6.1: Left: Contour plot of a 2-dimensional potential energy surface demon-
strating the bi-channel scenario. Right: In the bi-channel model the two channels
are described by two potential functions Vi : D → R, i ∈ {0, 1}. Exchange between
the two channels is allowed only in regions T\E at a rate λ > 0.

where δi is the Dirac measure on the singleton {i}. When necessary, we shall denote
the i-dependency of the density by a subscript ψi, so that ψ1−i denotes ψ(t, x, y, 1−i)
for example. The evolution of the densities are described by a system of non-linear
partial di�erential equations: ∀i ∈ {0, 1},

∂tψ = div(∇(Vi −At ◦ ξ)ψ) + ∆ψ − λ ◦ ξ [ψ − ψ1−i] on D, (6.12)

where, we recall, the last term is zero for ξ(x, y) ∈ E . The non-linearity is due to
the de�nition of the mean force estimate, given by

A′t(x) =

1∑
i=0

∫
R
∂xVi(x, y) ψ(t, x, y, i) dy

1∑
i=0

∫
R
ψ(t, x, y, i) dy

. (6.13)

Using hypothesis [H1], it can be checked that if ψ∞ is de�ned as a probability density
proportional to e−(Vi−A∞◦ξ) where A∞ is a given long-time limit for At, then ψ∞ is
a stationary solution to (6.12). Then, by replacing ψ by ψ∞ in (6.13) and comparing
with the de�nition of the mean force (6.10), it is clear that by choosing A′∞ = A′,
one obtains a stationary solution of the system (6.12)�(6.13) written as:

ψ∞(x, y, i) =
e−(Vi(x,y)−A(x))

1∑
i=0

∫
D
e−(Vi−A◦ξ) dx dy

. (6.14)



6.2. The bi-channel model and statement of the main results 109

Measure De�nition Description of measure

dµt

1∑
i=0

ψ(t, x, y, i)δi dx dy Probability measure in domain D × {0, 1}

dµξ,It

1∑
i=0

ψξ,I(t, x, i)δi dx Marginal measure in reaction coordinate and channel

dµξt ψξ(t, x) dx Marginal measure in reaction coordinate

dµt|x,i
ψ(t, x, y, i) dy
ψξ,I(t, x, i)

Measure conditioned to being at x and i

dµt|x

1∑
i=0

ψ(t, x, y, i)δi dy

ψξ(t, x)
Measure conditioned to being at x

dµIt|x

1∑
i=0

ψξ,I(t, x, i)δi

ψξ(t, x)
Marginal in I, conditioned to being at x

Table 6.1: A list of probability measures.

The associated equilibrium measure for the process (Xt, It) writes:

dµ∞ =
1∑
i=0

ψ∞(x, y, i)δi dx dy.

We will need further notation for marginal and conditional laws associated to µt and
µ∞. The next two sections give precise de�nitions for these measures, and Table 6.1
summarizes the notation.

6.2.2.1 Marginal laws

We are now in the position to de�ne marginal probability densities. The image of
the probability measure µt in ξ and I is denoted by

dµξ,It =
1∑
i=0

ψξ,I(t, x, i)δi dx where ψξ,I(t, x, i) =
∫

R
ψ(t, x, y, i) dy.

The evolution of the density ψξ,I is described by the (non-closed) partial di�erential
equation

∂tψ
ξ,I =

∫
R
∂x(∂x(Vi −At ◦ ξ)ψ) dy + ∂xxψ

ξ,I − λ(x)(ψξ,I − ψξ,I1−i), (6.15)
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obtained by integrating (6.12) in y. The associated equilibrium measure is

dµξ,I∞ =
1∑
i=0

ψξ,I∞ (x, i)δi dx where ψξ,I∞ (x, i) =
∫

R
ψ∞(x, y, i) dy.

The marginal measure in ξ only is denoted by

dµξt = ψξ(t, x) dx where ψξ(t, x) =
1∑
i=0

ψξ,I(t, x, i) =
1∑
i=0

∫
R
ψ(t, x, y, i) dy.

By summing (6.15) over i and using the de�nition (6.13) of A′t, it is easy to check
that ψξ satis�es a closed, very simple partial di�erential equation (this is similar to
the original ABF dynamics, see [Lelièvre 2007b, Lelièvre 2008]):

∂tψ
ξ = ∂xxψ

ξ on T. (6.16)

Thanks to the adaptive bias, along ξ, the barriers have been �attened. The long-time
limit of ψξ is given by

ψξ∞(x) =
1∑
i=0

∫
R
ψ∞(x, y, i) dy = 1,

which corresponds to the uniform probability measure on the torus T.

6.2.2.2 Conditional laws

Let us introduce the measure µt|x of (Xt, It) conditioned to being at a speci�ed point
x in the reaction coordinate:

dµt|x =

1∑
i=0

ψ(t, x, y, i)δi dy

ψξ(t, x)
. (6.17)

Its long-time limit is

dµ∞|x =

1∑
i=0

ψ∞(x, y, i)δi dy

ψξ∞(x)
. (6.18)

To study the bi-channel model, we will also need to introduce the measures condi-
tioned to being at �xed ξ and a particular channel i ∈ {0, 1}. This measure and its
long-time limit are de�ned respectively by

dµt|x,i =
ψ(t, x, y, i) dy
ψξ,I(t, x, i)

and dµ∞|x,i =
ψ∞(x, y, i) dy

ψξ,I∞ (x, i)
. (6.19)

Finally, we will also need the marginals in I of the probability measures µt|x and
µ∞|x. These Bernoulli probability measures µIt|x and µ

I
∞|x represent the proportion
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of the marginal distribution ψξ(t, ·) and ψξ in each channel. They are formally
de�ned as

dµIt|x =

1∑
i=0

ψξ,I(t, x, i)δi

ψξ(t, x)
and dµI∞|x =

1∑
i=0

ψξ,I∞ (x, i)δi

ψξ∞(x)
. (6.20)

6.2.3 Entropy and Fisher information

In this section we recall some well-known results for de�ning relative entropy between
two probability measures, which can be seen as a measure of the `distance' between
those. A general introduction to this topic can be found in [Ané 2000, Villani 2003]
and applications to study the longtime behavior of Fokker-Planck type equations
are presented in [Arnold 2001].

De�nition 6 (Entropy). For any two probability measures µ and ν such that µ is
absolutely continuous with respect to ν (denoted as µ � ν), the relative entropy is
de�ned as

H(µ|ν) =
∫

ln
(
dµ

dν

)
dµ.

The positivity of the relative entropy can be shown using the inequality ln(1/x) ≥
1− x. Furthermore, H(µ|ν) = 0 if and only if µ = ν.

De�nition 7 (Csiszar-Kullback inequality). For measures µ and ν which
have densities with respect to the Lebesgue measure, the following holds

‖µ− ν‖L1 ≤
√

2H(µ|ν).

This allows us to control the L1-norm of the di�erence of two probability measures
by their relative entropy.

De�nition 8 (Fisher information). For any probability measure µ absolutely
continuous with respect to ν, the Fisher information is given by

F (µ|ν) =
∫ ∣∣∣∣∇ln(dµdν

)∣∣∣∣2 dµ.
De�nition 9 (Logarithmic Sobolev inequality). The probability measure ν is
said to satisfy a logarithmic Sobolev inequality with constant ρ > 0 (in short: LSI(ρ))
if for all probability measures µ such that µ� ν,

H(µ|ν) ≤ 1
2ρ
F (µ|ν).
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Such an inequality holds for Gaussian measures [Gross 1975] for example, and more
generally [Bakry 1984] for any measure ν with density proportional to e−V , where
V is α-convex (in which case the LSI constant ρ is equal to α). Besides, there exists
a perturbation result [Holley 1987]: if ν̃ is a probability measure such that dν̃/dν =
eU , where ν satis�es a LSI(ρ) and U is a bounded function, then ν̃ satis�es a LSI with
constant ρ̃ = ρ e−osc(U), where osc(U) = sup(U) − inf(U). Thus, a very large class
of probability measures satisfy a LSI. An important feature of the LSI constant is
that it degenerates to zero in the case where the probability measure is multimodal.
For example, if dν = Z−1exp(−βW (x)) dx and W (x) = x4/4− x2/2 is the double-
well potential in dimension 1, then the LSI constant scales as exp(−β∆W ) where
∆W = W (0) −W (1) > 0 is the height of the barrier. Such inequalities thus hold
under rather loose assumptions, but the constant ρ is very small for a multimodal
measure. For example, in typical situations encountered in molecular dynamics, the
LSI constant for the measure ν de�ned in (6.1) is extremely small, which is related
to the fact that it is di�cult to sample directly this measure.

To analyze the convergence of the ABF dynamics for the bi-channel model, we
make use of LSIs for the conditional measures µ∞|x,i (see assumption [H3] below),
which are the equilibrium canonical measures, conditioned to being at a �xed value
of ξ and in a channel. In [Lelièvre 2008], log-Sobolev inequalities for the equilibrium
canonical measures conditioned only to being at a �xed value of ξ were considered,
but in the bi-channel case, those are typically very small due to the presence of high
energy barriers `orthogonal' to the isocontours of the reaction coordinate (see again
Figure 6.1).

Let us now de�ne the Wasserstein distance between two probability measures.

De�nition 10 (Wasserstein distance). The Wasserstein distance with linear
cost between probability measures µ and ν is de�ned as

W (µ, ν) = inf
π∈Π(µ,ν)

∫
D×D

|y − y′| π(dy, dy′),

where Π(µ, ν) denotes the set of coupling probability measures on D × D, with
marginals µ and ν.

De�nition 11 (Talagrand inequality). The probability measure ν is said to sat-
isfy a Talagrand inequality with constant ρ > 0 (or T (ρ)) if for all probability mea-
sures µ such that µ� ν,

W (µ, ν) ≤
√

2
ρ
H(µ|ν). (6.21)

Logarithmic Sobolev inequalities and Talagrand inequalities are related (see [Otto 2000]):

Lemma 3 If ν satis�es LSI(ρ), then ν satis�es T (ρ).

Below, we present entropies that prove useful in obtaining convergence results of
the bi-channel ABF model. In this paper, we are primarily interested in the conver-
gence to a stationary state of the Fokker-Planck equation (6.12)�(6.13), and thus of
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the associated partial di�erential equations (6.15) and (6.16). Relative entropies will
therefore be de�ned for some probability measures with respect to their long-time
limits.

The total entropy will be denoted by

E(t) = H(µt|µ∞) =
1∑
i=0

∫
D
ln
(
ψ

ψ∞

)
ψ dx dy.

The so-called macroscopic entropy is de�ned as

EM (t) = H(µξt |µξ∞) =
∫

T
ln
(
ψξ

ψξ∞

)
ψξ dx,

the local entropy at a �xed value x in the reaction coordinate by

em(t, x) = H(µt|x|µ∞|x) =
1∑
i=0

∫
R
ln

(
ψ

ψξ

/
ψ∞

ψξ∞

)
ψ

ψξ
dy,

and the microscopic entropy by

Em(t) =
∫

T
em(t, x) ψξ(t, x) dx.

With the above de�nitions, it is easy to show that

E(t) = EM (t) + Em(t). (6.22)

In order to treat the bi-channel case, we de�ne a channel-local entropy, de�ned by

ecl(t, x, i) = H(µt|x,i|µ∞|x,i) =
∫

R
ln

(
ψ

ψξ,I

/
ψ∞

ψξ,I∞

)
ψ

ψξ,I
dy.

Two hypothesis that will be essential to the results presented below are: a so-
called `bounded coupling' assumption on the cross derivative ∂x,yVi (see [Lelièvre 2008,
Lelièvre 2009]), and an assumption on the logarithmic Sobolev inequality constants
for the probability measures µ∞|x,i. The hypotheses read

[H2]


∀i ∈ {0, 1}, Vi and ξ are su�ciently di�erentiable functions such that ∃ C,M > 0

‖∂x,yVi‖L∞(T×R) ≤M <∞ and

∥∥∥∥∥
∫

R ∂xVie
−Vi dy∫

R e
−Vi dy

∥∥∥∥∥
L∞(T)

≤ C <∞,

[H3]
{
∀i ∈ {0, 1}, Vi and ξ are such that ∃ρ > 0, ∀x ∈ T, ∀i ∈ {0, 1},

the conditional measure µ∞|x,i satis�es LSI(ρ).

The hypothesis [H3] gives us that ∀x ∈ T, ∀i ∈ {0, 1}

H(µt|x,i|µ∞|x,i) ≤
1
2ρ
F (µt|x,i|µ∞|x,i),
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or equivalently∫
R
ln

(
ψ

ψξ,I

/
ψ∞

ψξ,I∞

)
ψ

ψξ,I
dy ≤ 1

2ρ

∫
R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ

ψξ,I
dy. (6.23)

Finally, an entropy that appears in later calculations, is that of the Bernoulli measure
µIt|x with respect to its long-time limit

ec(t, x) = H(µIt|x|µ
I
∞|x) =

1∑
i=0

ln

(
ψξ,I

ψξ

/
ψξ,I∞

ψξ∞

)
ψξ,I

ψξ
.

The so-called channel entropy is then given by

Ec(t) =
∫

T
ec(t, x)ψξ dx

=
1∑
i=0

∫
T
ln

(
ψξ,I

ψξ

/
ψξ,I∞

ψξ∞

)
ψξ,I . (6.24)

6.2.4 The free energy as a bias in each channel

As well as the hypothesis [H3] on the conditional measures µ∞|x,i, an assumption
will also be necessary to ensure that the free energy is a `good bias' in each channel.
More precisely, once the bias has converged, the marginals along ξ in each channel
must converge su�ciently quickly to their long-time limit. Roughly speaking, the
channels should not be too `asymmetrical'. The aim of this section is to state this
more formally, see assumption [H4] below.

Consider that the system is already nearly at equilibrium, in the sense that

A′t = A′∞ = A′,

and
∀i ∈ {0, 1},

∫
R
∂xVi dµt|x,i =

∫
R
∂xVi dµ∞|x,i.

Then the marginal density ψξ,I can be shown to satisfy (see (6.15) and (6.40)
below)

∂tψ
ξ,I = −Liψξ,I = ∂x

(
ψξ,I∞ ∂x(ψξ,I/ψξ,I∞ )

)
− λ(x)(ψξ,I − ψξ,I1−i). (6.25)

It can be shown that the operator L = (L0,L1) is symmetric and positive de�nite

with respect to the inner product 〈f, g〉 =
1∑
i=0

∫
T
fi(x)gi(x)

1

ψξ,I∞ (x, i)
dx and has a

spectral gap θ > 0 (see Lemma 14 below). In other words, L is such that for all func-

tions f : T×{0, 1} → R, with fi ∈ H1
(

1

ψξ,I∞ (x,i)
dx
)
, f 6= 0 and

∑1
i=0

∫
T fi(x) dx = 0

, we have

〈f, f〉 ≤ 1
θ
〈f,Lf〉. (6.26)
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As will be apparent in the proof, it will be necessary for the spectral gap θ to
be su�ciently large.

[H4]

 θ > θmin with θmin =
8(C +Mρ−1/2)2M̃

c
where 0 < c, M̃ <∞ are such that inf

x,i
ψξ,I∞ = c and supx ψξ(0, x) = M̃.

We recall that the constants C, M and ρ have been introduced in assumptions
[H2] and [H3] above. The fact that c > 0 is not restrictive since ∀i ∈ {0, 1}, Vi
is a continuous function and ψξ,I∞ ∝

∫
R e
−Vi dy > 0 is continuous and de�ned on

the compact space T. Similarly, since ψξ satis�es the heat equation (6.16), the
assumption M̃ < ∞ is not restrictive. If, for example, the initial condition has
a Dirac mass marginal in ξ, for any positive time t0 > 0, ψξ(t0, ·) is a bounded
function, and one has simply to consider the dynamics on [t0,∞).

Remark 8 In the hypothesis [H2], the assumption on the cross derivative ∂x,yVi
could in fact be replaced by ‖∂xVi‖L∞(T×R) ≤ M < ∞, in which case, in [H4],

the minimum value for θ would be changed to θmin = 8M2M̃
c and the Talagrand

inequalities in Lemmas 8 and 13 would be replaced by Csiszar-Kullback inequalities.

6.2.5 Main result

We are now in position to present the main result of the paper.

Theorem 5 Assume hypotheses [H1]-[H4]. There exists a smooth function Λ :
(θmin,∞)→ (0, ρ) which is increasing and such that:

Λ(ρ+ 2θmin) =
ρ

2
and Λ(θ)→

{
0 as θ → θmin

ρ as θ →∞

for which we can prove the following convergence result: for any ε ∈ (0,Λ(θ)), there
exists a constant K > 0 such that, ∀t > 0,

Em(t) ≤ Kexp
(
−2 min{(Λ(θ)− ε), 4π2} t

)
. (6.27)

This implies that the total entropy E and thus ‖ψ(t, ·)−ψ∞‖2L1 converge exponentially
fast to zero with the same rate. Furthermore, the biasing force A′t converges to the
mean force A′ in the following sense: ∀t ≥ 0,∫

T
|A′t(x)−A′(x)|2ψξ(t, x) dx ≤ 2(C +Mρ−1/2)2Em(t).

As a consequence, for any positive time t0 > 0 and ε ∈ (0,Λ(θ)), there exists a
constant K̄ such that ∀t ≥ t0,∫

T
|A′t(x)−A′(x)|2 dx ≤ K̄exp

(
−2 min{(Λ(θ)− ε), 4π2} t

)
.
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The term 4π2 corresponds to the exponential rate of convergence of ψξ to ψξ∞
(see (6.16)), and is clearly not the bottleneck. There are actually various ways
to make this rate as small as needed (see Remark 11 in [Lelièvre 2008]).

Thus, this result essentially shows that the ABF method converges at a rate
which is limited by the multimodality of the equilibrium canonical measures con-
ditioned to being at �xed value of ξ and in a channel (quanti�ed by the constant
ρ), if the free energy is a bias which enables a fast exploration of each channel (this
is quanti�ed by the constant θ, which should be su�ciently large for Λ(θ) to be
indeed close to ρ). Thus, the convergence may be fast even if switching between the
two channels is impossible for some values of ξ. If the spectral gap θ is su�ciently
large, we thus recover a similar expression for the rate of convergence of the ABF
method as the one derived in [Lelièvre 2008], with ρ being now the LSI constant of
the canonical measures µ|x,i.

We would like to emphasize that our arguments hold under the following assump-
tion of existence of regular solutions: We assume that we are given a process (Xt, It)
and a function A′t which satisfy (6.11), and such that Xt, conditionally on It = i has
a smooth density ψ(t, x, y, i). We suppose that this density is su�ciently regular so
that the entropy estimates below are valid. We refer for example to [Arnold 2001]
for an appropriate functional framework in which such entropy estimates hold.

6.3 Proof of main result

In order to prove the exponential decay of the microscopic entropy in Theorem 5, we
use the fact that the time evolution of the microscopic entropy can be expressed as
a combination of the evolution of the total and the marginal entropies, from (6.22)

dEm
dt

=
dE

dt
− dEM

dt
.

In order to obtain results for the microscopic entropy, we begin by treating the time
evolutions of the total entropy and the macroscopic entropy separately.

6.3.1 Preliminary computations on the total entropy E

In order to study the evolution of the total entropy, some auxiliary results will be
needed and are given in the lemmas below. First, it will be useful to write the
Fokker-Planck equation associated to ψ in a di�erent form.

Lemma 4 The Fokker-Planck equation (6.12) for ψ can be rewritten as

∂tψ = div(ψ∞∇(ψ/ψ∞)) + ∂x((A′ −A′t)ψ)− λ(x)(ψ − ψ1−i).

Proof : By developing the right hand side, we obtain

∂tψ = div
(
∇ψ − ψ

ψ∞
∇ψ∞

)
+ ∂x((A′ −A′t)ψ)− λ(x)(ψ − ψ1−i)

= div (∇ψ +∇(Vi −A ◦ ξ)ψ) + ∂x(A′ψ)− ∂x(A′tψ)− λ(x)(ψ − ψ1−i)

= div (∇(Vi −At ◦ ξ)ψ) + ∆ψ − λ(x)(ψ − ψ1−i),
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which is indeed the Fokker-Planck equation (6.12). ♦

The above may now be used to estimate the time evolution of the total entropy.

Lemma 5 The total entropy E satis�es

dE

dt
≤ −

1∑
i=0

∫
T×R

∣∣∣∣∇ln( ψ

ψ∞

)∣∣∣∣2 ψ − 1∑
i=0

∫
T×R

(A′ −A′t)∂x
[
ln
(
ψ

ψ∞

)]
ψ. (6.28)

Proof : First, by de�nition of the total entropy, we have

dE

dt
=

d

dt

1∑
i=0

∫
T×R

ln
(
ψ

ψ∞

)
ψ

=
1∑
i=0

∫
T×R

ln
(
ψ

ψ∞

)
∂tψ, (6.29)

using the fact that ψ is a probability density. Next, we use Lemma 4 to obtain

dE

dt
=

1∑
i=0

∫
T×R

div
(
ψ∞∇

(
ψ

ψ∞

))
ln
(
ψ

ψ∞

)
+

1∑
i=0

∫
T×R

∂x((A′ −A′t)ψ)ln
(
ψ

ψ∞

)

−
1∑
i=0

∫
T×R

λ(x) ln
(
ψ

ψ∞

)
(ψ − ψ1−i) (6.30)

≤ −
1∑
i=0

∫
T×R

∣∣∣∣∇ln( ψ

ψ∞

)∣∣∣∣2 ψ − 1∑
i=0

∫
T×R

(A′ −A′t)∂x
[
ln
(
ψ

ψ∞

)]
ψ,

where the last line is a result of integration by parts and the fact that (6.30) is
non-positive, which is proved below in Lemma 6. ♦

Lemma 6 For ψ satisfying (6.12) and ψ∞ its long-time limit, the following holds

−
1∑
i=0

∫
T×R

λ(x) ln
(
ψ

ψ∞

)
(ψ − ψ1−i) ≤ 0.

Proof : First, recall that λ(x) = 0, ∀x ∈ E . We consider therefore the left hand side
of the inequality at �xed (x, y) ∈ (T\E)×R. At �xed (x, y), we consider renormalized
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(Bernoulli) probabilities denoted by ψ̃i = ψi/(ψ0 + ψ1), so that ψ̃0 + ψ̃1 = 1.

−
1∑
i=0

ln
(
ψ

ψ∞

)
(ψ − ψ1−i)

= (−ψ0 + ψ1)
[
ln
(

ψ0

ψ∞,0

)
− ln

(
ψ1

ψ∞,1

)]
= (ψ0 + ψ1)(−ψ̃0 + ψ̃1)

[
ln

(
ψ̃0

ψ̃∞,0

)
− ln

(
ψ̃1

ψ̃∞,1

)]

= (ψ0 + ψ1)

[
−ln

(
ψ̃0

ψ̃∞,0

)
ψ̃0 − ln

(
ψ̃1

ψ̃∞,1

)
ψ̃1

+ ln

(
ψ̃0

ψ̃∞,0

)
ψ̃1 + ln

(
ψ̃1

ψ̃∞,1

)
ψ̃0

]

= (ψ0 + ψ1)

[
−2ln

(
ψ̃0

ψ̃∞,0

)
ψ̃0 − 2ln

(
ψ̃1

ψ̃∞,1

)
ψ̃1

+ (ψ̃0 + ψ̃1)ln

(
ψ̃0

ψ̃∞,0

)
+ (ψ̃0 + ψ̃1)ln

(
ψ̃1

ψ̃∞,1

)]

= (ψ0 + ψ1)

[
−2

1∑
i=0

ln

(
ψ̃i

ψ̃∞

)
ψ̃i + ln

(
ψ̃0

ψ̃∞,0

)
+ ln

(
ψ̃1

ψ̃∞,1

)]
.

From hypothesis [H1], ∀(x, y) ∈ (T\E) × R, ψ̃∞,1 = ψ̃∞,0 = 1
2 , which allows the

above to be written as

−
1∑
i=0

ln
(
ψ

ψ∞

)
(ψ − ψ1−i)

= (ψ0 + ψ1)

[
−2

1∑
i=0

ln

(
ψ̃i

ψ̃∞

)
ψ̃i + 2

1∑
i=0

ln

(
ψ̃i

ψ̃∞

)
ψ̃∞

]

= −2(ψ0 + ψ1)

[
1∑
i=0

ln

(
ψ̃i

ψ̃∞

)
ψ̃i +

1∑
i=0

ln

(
ψ̃∞

ψ̃i

)
ψ̃∞

]
(6.31)

≤ 0.

The last line is due to the fact that the two terms between brackets are non-negative,
since they are relative entropies. ♦

Remark 9 Let us consider the case where E = ∅ and thus ∀x ∈ T, λ(x) = λ > 0,
which implies (see [H1]) V0 = V1 and therefore ψ∞,0 = ψ∞,1 everywhere on T× R.



6.3. Proof of main result 119

In this case, it follows from (6.31) that

−
1∑
i=0

∫
T×R

λ(x)ln
(
ψ

ψ∞

)
(ψ − ψ1−i)

≤ −2λ
∫

T×R
(ψ0 + ψ1)

1∑
i=0

ln

(
ψ̃i

ψ̃∞

)
ψ̃i

≤ −2λ
∫

T×R

1∑
i=0

ln
(
ψ

ψ∞

)
ψ + 2λ

∫
T×R

ln
(

ψ0 + ψ1

ψ∞,0 + ψ∞,1

)
(ψ0 + ψ1).

Furthermore, since the marginal ψx,y := ψ0 + ψ1 satis�es in this speci�c case

∂tψ
x,y = div(ψx,y∞ ∇(ψx,y/ψx,y∞ )) + ∂x((A′ −A′t)ψx,y), (6.32)

one can show, using the results of [Lelièvre 2008], that ∃C > 0, ∀t ≥ 0,

−
1∑
i=0

∫
T×R

λ(x)ln
(
ψ

ψ∞

)
(ψ − ψ1−i) ≤ −2λE + 2λCe−2 min{ρ,4π2} t.

Using this, and the fact that −E ≤ −Em, one can show that Em converges to zero
exponentially fast with rate

2 min{ρ, 4π2, λ}.

The convergence rate thus depends on λ > 0, the rate at which switching occurs
between the two channels. This is comparable to the original result obtained for the
ABF algorithm, see [Lelièvre 2008]. The aim of what follows is to obtain a result in
the case where E 6= ∅, namely when λ = 0 in some region.

In order to estimate the last term on the right hand side of (6.28), it will be helpful
to express the di�erence of the biasing force and the mean force in terms of densities

Lemma 7 The di�erence between the biasing force A′t and the mean force A′ can
be expressed in the following way

A′t −A′ =
1∑
i=0

∫
R
∂xln

(
ψ

ψ∞

)
ψ

ψξ
dy − ∂xln

(
ψξ

ψξ∞

)
.

Proof : We develop the expression on the right hand side and use the fact that
ψξ∞ ≡ 1
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1∑
i=0

∫
R
∂xln

(
ψ

ψ∞

)
ψ

ψξ
dy − ∂xln

(
ψξ

ψξ∞

)

=
1∑
i=0

∫
R
∂xln(ψ)

ψ

ψξ
dy −

1∑
i=0

∫
R
∂xln(ψ∞)

ψ

ψξ
dy − ∂xln

(
ψξ
)

=
1∑
i=0

∫
R

∂xψ

ψξ
dy +

1∑
i=0

∫
R
∂x(Vi −A ◦ ξ)

ψ

ψξ
dy − ∂xψ

ξ

ψξ

=
1∑
i=0

∫
R
∂xVi

ψ

ψξ
dy −

1∑
i=0

∫
R
A′

ψ

ψξ
dy

= A′t −A′,

The last line is a result of the de�nition of A′t in (6.13) and the fact that A is a
function of x only. ♦

Another useful estimate for the di�erence between A′t and A′ is given in the
following lemma.

Lemma 8 The di�erence of the biasing force and the mean force can be bounded by
the microscopic entropy as:∫

T
|A′t −A′|2ψξ dx ≤ 2R2Em(t),

where

R =
(
C +Mρ−1/2

)
.

Proof : We begin by showing that |A′t(x)−A′(x)| ≤M
√

2em(t, x)/ρ. By de�nition,
we have

A′t(x)−A′(x) =

1∑
i=0

∫
R
∂xViψ dy

1∑
i=0

∫
R
ψ dy

−

1∑
i=0

∫
R
∂xViψ∞ dy

1∑
i=0

∫
R
ψ∞ dy

=
1∑
i=0

∫
R

((
∂xVi

ψξ,I

ψξ

)
ψ

ψξ,I
−

(
∂xVi

ψξ,I∞

ψξ∞

)
ψ∞

ψξ,I∞

)
dy

=
1∑
i=0

∫
R×R

(
∂xVi(x, y)

ψξ,I

ψξ
− ∂xVi(x, y′)

ψξ,I∞

ψξ∞

)
π(dy, dy′)
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where π(dy, dy′) is any coupling measure on R×R with marginals µt|x,i and µ∞|x,i.
Next, using Taylor's expansion on ∂xVi(x, y), we have

A′t(x)−A′(x)

=
1∑
i=0

∫
R×R

((
∂xVi(x, y′) + ∂x,yVi(x, η(y, y′))(y − y′)

) ψξ,I
ψξ
− ∂xVi(x, y′)

ψξ,I∞

ψξ∞

)
π(dy, dy′)

=
1∑
i=0

∫
R×R

(
∂xVi(x, y′)

(
ψξ,I

ψξ
− ψξ,I∞

ψξ∞

)
+ ∂x,yVi(x, η(y, y′))(y − y′)ψ

ξ,I

ψξ

)
π(dy, dy′)

=
1∑
i=0

(
ψξ,I

ψξ
− ψξ,I∞

ψξ∞

)∫
R
∂xVi(x, y′)

ψ∞

ψξ,I∞
dy′

+
1∑
i=0

ψξ,I

ψξ

∫
R×R

∂x,yVi(x, η(y, y′))(y − y′)π(dy, dy′)

where η(y, y′) ∈ [y, y′]. Recall from [H2] that ∃C,M > 0 such that∥∥∥∥∫
R
∂xVi dµ∞|x,i

∥∥∥∥
L∞(T)

≤ C,

and ‖∂x,yVi‖L∞ ≤M . Furthermore, with the use of the Csiszar-Kullback inequality,
we have

|A′t(x)−A′(x)| ≤ C
1∑
i=0

∣∣∣∣∣ψξ,Iψξ
− ψξ,I∞

ψξ∞

∣∣∣∣∣+M

1∑
i=0

ψξ,I

ψξ

∫
R×R
|y − y′|π(dy, dy′)

≤ C
√

2H(µIt|x, µ
I
∞|x) +M

1∑
i=0

ψξ,I

ψξ

∫
R×R
|y − y′|π(dy, dy′).

Next, by the Talagrand inequality (6.21) and the concavity of the function x 7→
√
x,

|A′t(x)−A′(x)| ≤ C
√

2H(µIt|x, µ
I
∞|x) +M

1∑
i=0

ψξ,I

ψξ

√
2
ρ
H(µt|x,i, µ∞|x,i)

≤ C
√

2H(µt|x, µ∞|x) +M

√√√√2
ρ

1∑
i=0

H(µt|x,i, µ∞|x,i)
ψξ,I

ψξ

≤ C
√

2H(µt|x, µ∞|x) +M

√
2
ρ
H(µt|x, µ∞|x)

Therefore
|A′t(x)−A′(x)|2 ≤ 2

(
C +Mρ−1/2

)2
em(t, x).

The result follows immediately, since Em(t) =
∫

T em(t, x) ψξdx. ♦

We are now equipped with the right tools to control dE/dt, and are left to handle
the evolution of the macroscopic entropy.
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6.3.2 Controlling EM

Due to the free di�usion equation satis�ed by ψξ, the macroscopic entropy EM is
easily controlled.

Lemma 9 The macroscopic entropy satis�es

dEM
dt

= −
∫

T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ = −F (ψξ|ψξ∞). (6.33)

Proof : Using (6.16) and integration by parts

dEM
dt

=
d

dt

∫
T
ln
(
ψξ

ψξ∞

)
ψξ

=
∫

T
ln
(
ψξ

ψξ∞

)
∂xxψ

ξ

= −
∫

T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ.
Lemma 10 The Fisher information for the marginal density ψξ decays exponen-
tially fast with rate r = 8π2

F (ψξ(t, ·)|ψξ∞) ≤ F0 exp(−8π2t),

where F0 = F (ψξ(0, ·)|ψξ∞).

Proof : See Lemma 12 of reference [Lelièvre 2008].
♦

In light of the lemmas presented above, hypotheses [H1]-[H4] may now be used to
control the evolution of the microscopic entropy.

6.3.3 Controlling Em

The aim of this section is to obtain an estimation on the evolution of th microscopic
entropy Em, see (6.36) below. We �rst begin by using the fact that the channel-local
conditional measures µ∞|x,i satisfy LSI(ρ) to bound the microscopic entropy.

Lemma 11 Under the hypothesis [H3], the microscopic entropy Em satis�es

Em ≤
1
2ρ

1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ dx dy + Ec,

where Ec is de�ned in (6.24).
Proof : We �st consider the local entropy em(t, x), which can be decomposed into
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the sum of the channel-local entropy and the entropy of the Bernoulli measures.

em(t, x) = H(µt|x|µ∞|x)

=
1∑
i=0

∫
R
ln
(
ψ

ψξ

/ψ∞
ψξ∞

)
ψ

ψξ
dy

=
1∑
i=0

[∫
R
ln
(

ψ

ψξ,I

/ ψ∞

ψξ,I∞

)
ψ

ψξ
dy +

∫
R
ln

(
ψξ,I

ψξ

/ψξ,I∞
ψξ∞

)
ψ

ψξ
dy

]

≤
1∑
i=0

[
1
2ρ

∫
R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ

ψξ
dy

]
+

1∑
i=0

[
ln

(
ψξ,I

ψξ

/ψξ,I∞
ψξ∞

)
ψξ,I

ψξ

]

=
1
2ρ

1∑
i=0

∫
R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ

ψξ
dy + ec(t, x),

where the inequality is a direct result of [H3]. The microscopic entropy is then

Em(t) =
∫

T
em(t, x)ψξ dx

≤ 1
2ρ

1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ dx dy + Ec,

as required. ♦

The time evolution of Em may now be expressed using results of Lemmas 5 and 9.

dEm
dt

=
dE

dt
− dEM

dt

≤ −
1∑
i=0

∫
T×R

∣∣∣∣∇ln( ψ

ψ∞

)∣∣∣∣2 ψ − 1∑
i=0

∫
T×R

(A′ −A′t)∂xln
(
ψ

ψ∞

)
ψ

+
∫

T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ.
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We may now apply Lemma 7 and use integration by parts

dEm
dt

= −
1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ − 1∑
i=0

∫
T×R

∣∣∣∣∂xln( ψ

ψ∞

)∣∣∣∣2 ψ
+

1∑
i=0

∫
T×R

(
1∑
i=0

∫
R
∂xln

(
ψ

ψ∞

)
ψ

ψξ
dy − ∂xln

(
ψξ

ψξ∞

))
∂xln

(
ψ

ψ∞

)
ψ

+
∫

T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ
= −

1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ
−

1∑
i=0

∫
T×R

∣∣∣∣∂xln( ψ

ψ∞

)∣∣∣∣2 ψ +
∫

T

(
1∑
i=0

∫
R
∂xln

(
ψ

ψ∞

)
ψ dy

)2
1
ψξ
(6.34)

−
1∑
i=0

∫
T×R

∂xln
(
ψξ

ψξ∞

)
∂xln

(
ψ

ψ∞

)
ψ +

∫
T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ.
Notice that (6.34) is non-positive by the Cauchy-Schwartz inequality. We therefore
have

dEm
dt

≤ −
1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ
−

1∑
i=0

∫
T×R

∂xln
(
ψξ

ψξ∞

)
∂xln

(
ψ

ψ∞

)
ψ +

∫
T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ
= −

1∑
i=0

∫
T×R

∣∣∣∣∂yln( ψ

ψ∞

)∣∣∣∣2 ψ − ∫
T

[
∂xln

(
ψξ

ψξ∞

)
ψξ
]

(A′t −A′)(6.35)

≤ −2ρEm + 2ρEc +

√∫
T
|A′t −A′|

2 ψξ

√∫
T

∣∣∣∣∂xln( ψξ

ψξ∞

)∣∣∣∣2 ψξ.
Line (6.35) is a result of Lemma 7 and the last inequality is due to Lemma 11 and
a further application of the Cauchy-Schwartz inequality. Now, using Lemmas 8 and
10, we obtain

dEm
dt

≤ −2ρEm + 2ρEc +R
√

2Em
√
F0e−8π2t, .

where we recall F0 = F (ψξ(0, ·)|ψξ∞). Finally, using Young's inequality: ∀ε > 0,
∀a, b ∈ R, ab < εa2 + 1

4εb
2, we obtain

dEm
dt

≤ −2
(
ρ−R2ε

)
Em + 2ρEc +

1
4ε
F0e−8π2t, (6.36)

where ε > 0 will be chosen optimally later in the proof. We are left to control the
channel entropy term Ec in order to conclude.
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6.3.4 Controlling Ec

The aim of this section is to obtain a control on the evolution of Ec, the rela-
tive entropy of µIt|x and µI∞|x, and more precisely of a quantity P which is the
weighted χ2-distance between two measures, see (6.38) and (6.49) below. Recall
that Ec =

∫
TH(µIt|x|µ

I
∞|x)ψξ dx, where the integrand is the relative entropy of a

Bernoulli measure. Poincaré and logarithmic Sobolev inequalities have been studied
for Bernoulli measures [Ané 2000]. In order to obtain an exponentially decaying
relative entropy, however, a suitable semi-group and its in�nitesimal generator is
needed for the measure. In the case of the bi-channel model (in particular [H1]), we
face problems due to the region E ⊂ T, where no exchange is permitted between the
two channels: in this region, the speed at which the measure µIt|x reaches equilibrium
cannot directly be controlled. To circumvent this issue, we consider the spectral gap
of an adequate operator and resort to the Poincaré inequality.
By the de�nition of Ec and using the inequality ∀x > 0, xln(x) ≤ x(x− 1) and the
fact that

∑1
i=0

∫
T ψ

ξ,I(t, x, i) dx = 1, we obtain

Ec =
1∑
i=0

∫
T
ln

(
ψξ,I

ψξ

/
ψξ,I∞

ψξ∞

)
ψξ,I

=
1∑
i=0

∫
T
ln
(
ψξ,I/ψξ,I∞

)
ψξ,I − EM

≤
1∑
i=0

∫
T

(
ψξ,I

ψξ,I∞
− 1
)2

ψξ,I∞ dx− EM (6.37)

We therefore have
Ec ≤ P, (6.38)

where

P =
1∑
i=0

∫
T

(
ψξ,I

ψξ,I∞
− 1
)2

ψξ,I∞ dx. (6.39)

In order to proceed and consider the time derivative of P , we will need some further
results to express the evolution of the marginal density ψξ,I . The idea is to compare
the evolution of ψξ,I with the dynamics of this density if A′t and

∫
T ∂xV dµt|x,i were

already at equilibrium (see Section 6.2.4).

Lemma 12 The Fokker-Planck equation (6.15) for ψξ,I can be rewritten as

∂tψ
ξ,I = ∂x

(
ψξ,I∞ ∂x

(
ψξ,I

ψξ,I∞

))
+ ∂x

((∫
R ∂xViψ

ψξ,I
−
∫

R ∂xViψ∞

ψξ,I∞

)
ψξ,I

)
+∂x((A′ −A′t)ψξ,I)− λ(x)(ψξ,I − ψξ,I1−i)

(6.40)

Proof : First we will show that

∂tψ
ξ,I = ∂x

(∫
R
ψ∞∂x

(
ψ

ψ∞

)
dy

)
+∂x((A′−A′t)ψξ,I)−λ(x)(ψξ,I −ψξ,I1−i). (6.41)
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By developing the right hand side, we have

∂tψ
ξ,I = ∂x

(∫
R
∂xψ −

ψ

ψ∞
∂xψ∞

)
+ ∂x

∫
R

(A′ −A′t)ψ − λ(x)(ψξ,I − ψξ,I1−i)

= ∂x

(∫
R
∂x(Vi −A ◦ ξ)ψ

)
+ ∂xxψ

ξ,I + ∂x

∫
R

(A′ −A′t)ψ − λ(x)(ψξ,I − ψξ,I1−i)

=
∫

R
∂x (∂x(Vi −At ◦ ξ)ψ) + ∂xxψ

ξ,I − λ(x)(ψξ,I − ψξ,I1−i)

which is indeed the Fokker-Planck equation (6.15) associated to ψξ,I .
Next, we show that ∀x ∈ T, ∀i ∈ {0, 1}∫
R
ψ∞∂x

(
ψ

ψ∞

)
dy = ψξ,I∞ ∂x

(
ψξ,I

ψξ,I∞

)
+
(∫

R ∂xViψ

ψξ,I
−
∫

R ∂xViψ∞

ψξ,I∞

)
ψξ,I . (6.42)

To prove the above, notice that∫
R
ψ∞∂x

(
ψ

ψ∞

)
dy − ψξ,I∞ ∂x

(
ψξ,I

ψξ,I∞

)
=

∫
R
∂xψ dy −

∫
R

ψ

ψ∞
∂xψ∞ − ∂xψξ,I +

ψξ,I

ψξ,I∞
∂xψ

ξ,I
∞

=
∫

R
(∂x(Vi −A ◦ ξ))ψ dy −

∫
R
∂x(Vi −A ◦ ξ)e−(Vi−A◦ξ)dy∫

R
e−(Vi−A◦ξ) dy

ψξ,I

=
∫

R
(∂xVi)ψ dy −A′(x)ψξ,I −

∫
R
∂xVie

−(Vi−A◦ξ) dy∫
R
e−(Vi−A◦ξ) dy

ψξ,I +A′(x)ψξ,I

Finally, by using the fact that the free energy A is independent of y, we obtain∫
R
ψ∞∂x(ψ/ψ∞) dy − ψξ,I∞ ∂x(ψξ,I/ψξ,I∞ ) =

(∫
R ∂xViψ

ψξ,I
−
∫

R ∂xViψ∞

ψξ,I∞

)
ψξ,I , (6.43)

as required. The �nal result (6.40) is obtained by substituting (6.42) into (6.41). ♦

Notice that (6.40) is comparable to (6.25), only with additional terms due to the
fact that At and

∫
T ∂xV dµt|x,i have not yet converged. The di�erence of the biasing

force and mean force, A′t − A′, was already estimated in Lemmas 7 and 8. We are
therefore left to control the remaining term.

Lemma 13 ∀x ∈ T, ∀i ∈ {0, 1},∣∣∣∣
∫

R ∂xViψ

ψξ,I
−
∫

R ∂xViψ∞

ψξ,I∞

∣∣∣∣ ≤M√2
ρ
H
(
µt|x,i

∣∣µ∞|x,i ).
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As a consequence,

1∑
i=0

∫
T

∣∣∣∣
∫

R ∂xViψ

ψξ,I
−
∫

R ∂xViψ∞

ψξ,I∞

∣∣∣∣2 ψξ,I dx ≤ 2M2

ρ
Em. (6.44)

Proof : Let Π(µt|x,i, µ∞|x,i) be the set of coupling measures on R×R with marginals
µt|x,i and µ∞|x,i respectively and let π ∈ Π . Then∣∣∣∣∫

R

(
∂xVi

ψ

ψξ,I
− ∂xVi

ψ∞

ψξ,I∞

)∣∣∣∣ =
∣∣∣∣∫

R×R

(
∂xVi(x, y)− ∂xVi(x, y′)

)
π(dy, dy′)

∣∣∣∣
≤ ‖∂x,yVi‖L∞

∫
R×R
|y − y′| π(dy, dy′)

≤ M

√
2
ρ
H(µt|x,i|µ∞|x,i)

where we have used Lemma 3 since µ∞|x,i satis�es LSI(ρ). Equation (6.44) follows
immediately from the fact that

∑1
i=0

∫
TH(µt|x,i|µ∞|x,i)ψξ,I dx ≤ Em. ♦

One result that is now needed to derive estimates on the evolution of P is the
existence of a spectral gap of the operator describing the dynamics once A′t and∫

R
∂xVidµt|x,i have converged (see (6.25)). We now justify the existence of such a

spectral gap.
In order to do so, let us de�ne the vector spaces

Vl =

{
v : T× {0, 1} → R

∣∣∣∣∣ ∀i ∈ {0, 1}, vi

ψξ,I∞ (x, i)
∈ L2

(
T, ψξ,I∞ (x, i) dx

)
,

1∑
i=0

∫
T
vi(x) dx = l

}
and

Wl =

{
w ∈ Vl

∣∣∣∣∣ ∀i ∈ {0, 1}, wi

ψξ,I∞ (x, i)
∈ H1

(
T, ψξ,I∞ (x, i) dx

)
,

1∑
i=0

∫
T
wi(x) dx = l

}
.

A function φ in Vl (or in Wl) will also be considered as a vector valued function as

φ :
{

T→ R2

x 7→ (φ0(x), φ1(x))
. Notice that φ ∈ W1 if and only if f := φ− ψξ,I∞ ∈ W0.

Lemma 14 Recall the operator L = (L0,L1), with Li de�ned as in (6.25),

Liφ = −
[
∂x

(
ψξ,I∞,i∂x

(
φi/ψ

ξ,I
∞,i

))
− λ(x)(φi − φ1−i)

]
.

Then

i) The operator L is symmetric and positive de�nite with respect to the inner
product

〈f, g〉 =
1∑
i=0

∫
T
fi(x)gi(x)

1

ψξ,I∞ (x, i)
dx.



128 Chapter 6. Long-time convergence of an ABF method

ii) L has a spectral gap θ > 0 in the sense that

inf
f∈W0,f 6=0

〈f,Lf〉
〈f, f〉

= θ > 0. (6.45)

Proof : i) To show symmetry of the operator L, consider functions ϕ, φ ∈ W0.
Now, using the fact that ∀x ∈ T \ E , ψξ,I∞,0(x) = ψξ,I∞,1(x),

1∑
i=0

∫
T
ϕiLiφ

1

ψξ,I∞,i
dx

= −
1∑
i=0

∫
T
ϕi∂x

(
ψξ,I∞,i∂x

(
φi

ψξ,I∞,i

))
1

ψξ,I∞,i
dx+

1∑
i=0

∫
T
λ(x)ϕi(φi − φ1−i)

1

ψξ,I∞,i
dx

=
1∑
i=0

∫
T
∂x

(
ϕi

ψξ,I∞,i

)
∂x

(
φi

ψξ,I∞,i

)
ψξ,I∞,i dx+

∫
T
λ(x)(ϕ0 − ϕ1)(φ0 − φ1)

1

ψξ,I∞,0
dx

(6.46)

= −
1∑
i=0

∫
T
φi∂x

(
ψξ,I∞,i∂x

(
ϕi
φ∞,i

))
1

ψξ,I∞,i
dx+

∫
T
λ(x)(φ0 − φ1)(ϕ0 − ϕ1)

1

ψξ,I∞,0
dx

=
1∑
i=0

∫
T
φiLiϕ

1

ψξ,I∞,i
dx.

From (6.46), we conclude positive de�niteness of L

1∑
i=0

∫
T
φiLiφ

1

ψξ,I∞,i
dx =

1∑
i=0

∫
T

∣∣∣∣∣∂x
(

φi

ψξ,I∞,i

)∣∣∣∣∣
2

ψξ,I∞,i dx+
∫

T
λ(x)(φ0−φ1)2 1

ψξ,I∞,0
dx > 0.

(6.47)
Notice that the above is strictly positive for any φ ∈ W0, since 〈φ,Lφ〉 = 0 if and
only if φ0 = φ1 = 0.

ii) In fact, one can check that ∃κ > 0, such that ∀φ ∈ W0, φ 6= 0,

1∑
i=0

∫
T
φiLiφ

1

ψξ,I∞
dx ≥ κ

1∑
i=0

∫
T

(
|φi|2 + |∇φi|2

) 1

ψξ,I∞
dx.

Therefore, by the Lax-Milgram theorem, L−1 is well de�ned from V0 toW0 and thus
compact from V0 to V0. From the symmetry and positive de�niteness of L, and the
fact that its inverse is a compact operator from V0 to V0, it has a strictly positive
and discrete spectrum. There exists a set of eigenvectors (vn)n≥1, orthonormal with
respect to the inner product 〈·, ·〉, forming a basis of V0 andW0, and associated to an
increasing sequence of eigenvalues (σn)n≥1, such that lim

n→∞
σn = ∞. In particular,

there exists a spectral gap: θ = σ1 > 0. ♦

Remark 10 In the case where a function φ ∈ W1 satis�es ∂tφ = Lφ, it holds that

∀t ≥ 0, ‖φ− ψξ,I∞ ‖2 ≤ Ke−2θt, (6.48)
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where ‖·‖2 = 〈·, ·〉 and K =
∑
n≥1

〈φ(0, ·)−ψξ,I∞ , vn〉2. This is easily obtained by noticing

that φ − ψξ,I∞ ∈ W0 and therefore can be expressed in terms of the orthonormal
eigenvectors (vn)n≥1

φ− ψξ,I∞ =
∑
n≥1

〈φ(0, ·)− ψξ,I∞ , vn〉vne−σnt.

The result (6.48) follows immediately since ∀n ≥ 2, σn ≥ σ1 = θ.

With these tools at hand, let us consider the time evolution of the functional P
de�ned in (6.39)

1
2
dP

dt
=

1∑
i=0

∫
T

(
ψξ

ψξ,I∞
− 1
)
∂t

(
ψξ

ψξ,I∞

)
ψξ,I∞ dx

=
1∑
i=0

∫
T
ψξ,I∂t

(
ψξ

ψξ,I∞

)
dx−

1∑
i=0

∫
T
∂tψ

ξ,I dx

=
1∑
i=0

∫
T
ψξ,I∂tψ

ξ,I 1

ψξ,I∞
dx.

Using equation (6.40) of Lemma 12, we get

1
2
dP

dt
=

1∑
i=0

∫
T
ψξ,I∂tψ

ξ,I 1

ψξ,I∞
dx

= −
1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx−
1∑
i=0

∫
T
λ(x)ψξ,Ii (ψξ,Ii − ψ

ξ,I
1−i)

1

ψξ,I∞,i
dx

−
1∑
i=0

∫
T
∂x

(
ψξ

ψξ,I∞

)
(A′ −A′t)ψξ,I dx

−
1∑
i=0

∫
T
∂x

(
ψξ

ψξ,I∞

)(∫
R ∂xV ψ

ψξ,I
−
∫

R ∂xV ψ∞

ψξ,I∞

)
ψξ,I dx.

Notice that, by developing the sum and using the fact that ψξ,I∞,0 = ψξ,I∞,1 for λ(x) 6= 0,

the second term may be replaced by
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞,0
dx. Finally by using

Young's inequality on the last two terms, we obtain for α > 0

1
2
dP

dt
= −

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx−
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞,0
dx

+
1

4α

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I dx+ α

∫
T
|A′ −A′t|2ψξ dx

+
1

4α

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I dx+ α

1∑
i=0

∫
T

∣∣∣∣
∫

R ∂xV ψ

ψξ,I
−
∫

R ∂xV ψ∞

ψξ,I∞

∣∣∣∣2 ψξ,I dx.
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Next, by Lemmas 8 and 13,

1
2
dP

dt
= −

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx−
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞
dx

+
1

2α

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I dx+ 2α
M2

ρ
Em + 2αR2Em.

Notice that, in the third term, ψξ,I ≤ ψξ ≤ M̃ for M̃ =
∥∥ψξ(0, ·)∥∥

L∞
and 1 ≤ ψξ,I∞ /c

for c = min
x,i

ψξ,I∞ . This gives

1
2
dP

dt
≤ −

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx−
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞
dx

+
M̃

2αc

1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx+ 4αR2Em.

Finally, by grouping terms together and using the fact that α may be chosen such
that M̃/2αc < 1 (an appropriate choice for α is given later in the proof), we have

1
2
dP

dt
≤ −

(
1− M̃

2αc

)
1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx−
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞
dx+ 4αR2Em

≤ −

(
1− M̃

2αc

)[
1∑
i=0

∫
T

∣∣∣∣∂x( ψξ

ψξ,I∞

)∣∣∣∣2 ψξ,I∞ dx+
∫

T
λ(x)

∣∣∣ψξ,I0 − ψ
ξ,I
1

∣∣∣2 1

ψξ,I∞
dx

]
+ 4αR2Em

≤ −

(
1− M̃

2αc

)
1∑
i=0

∫
T
(ψξ,ILiψξ,I)

1

ψξ,I∞
dx+ 4αR2Em

≤ −

(
1− M̃

2αc

)
θP + 4αR2Em, (6.49)

where the last line is a result of (6.45), with f := ψξ,I − ψξ,I∞ . Notice that f ∈ W0

since the normalization for ψξ,I is
1∑
i=0

∫
T
ψξ,Idx = 1.

To complete the proof of Theorem 5, we now need to study the system of in-
equalities (6.36) and (6.49).

6.3.5 Completing the proof

To show that Em decays exponentially fast, we study the system of two inequalities
(6.36) and (6.49). Since, from (6.38), Ec ≤ P , the system to be studied is

dEm
dt

≤ −2
(
ρ−R2ε

)
Em + 2ρP +

1
4ε
F0 e−8π2t,

dP

dt
≤ 8αR2Em − 2

(
1− M̃

2αc

)
θP.

(6.50)
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The positive parameters α and ε remain to be chosen, in order to obtain an ex-
ponential convergence, with the best possible rate. To �x α, let us �rst study the
eigenvalues of the matrix of coe�cients, neglecting the terms in ε.

Lemma 15 Let us assume [H4]. The matrix

A =

(
−ρ ρ

4αR2 −
(

1− M̃
2αc

)
θ

)
is negative de�nite and α may be chosen so that the eigenvalues −λ± of A are such
that

−λ− ≤ −λ+ = −Λ(θ) < 0

where Λ : (θmin,∞) → (0, ρ) is a positive, increasing function. We recall that

θmin =
8M̃R2

c
, where R = C + Mρ−1/2. The function Λ is such that Λ → 0 as

θ → θmin and Λ→ ρ as θ →∞. Moreover, Λ(ρ+ 2θmin) =
ρ

2
.

Proof : In order to prove the negative de�niteness of the matrix A, we show that
for certain values of α > 0, tr(A) < 0 and det(A) > 0. In the following, we only
consider positive values of α (which is imposed by the previous computations). We
have

tr(A) = −ρ−

(
1− M̃

2αc

)
θ < 0 i� α >

M̃θ

2c(ρ+ θ)
(6.51)

and

det(A) = θρ

(
1− M̃

2αc

)
−4αR2ρ > 0 i� α ∈ (α−, α+), α± =

θc±
√
θ2c2 − 8M̃θR2c

8R2c
.

(6.52)
The interval (α−, α+) is indeed well de�ned and included in [0,∞) since θ > θmin =
8M̃R2/c (hypothesis [H4]). We seek an optimal α that minimizes eigenvalue −λ+

and satis�es (6.51) and (6.52). An analytical solution cannot be easily obtained.
We choose

α = α∗ :=
M̃

c
,

which appears to be very close to the optimal choice, from numerical computations.
Notice that α∗ satis�es (6.51) and (6.52) since, for α = α∗, tr(A) = −ρ − θ/2 < 0
and det(A) = θρ/2 − 4R2M̃ρ/c > 0. The eigenvalues of the matrix are now given
by

−λ± =
1
2

−(ρ+
θ

2

)
±

√(
ρ− θ

2

)2

+
16R2M̃ρ

c

 < 0.

The rate of convergence of the system is given by the largest of the two eigenvalues
−λ+. Let us introduce the function

Λ(θ) = −1
2

−(ρ+
θ

2

)
+

√(
ρ− θ

2

)2

+
16R2M̃ρ

c


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such that λ+ = Λ(θ). It is easily shown that Λ is an increasing function of θ with

Λ(θ)→

{
0 as θ → 8M̃R2

c ,

ρ as θ →∞.

Moreover, it is easy to check that Λ(ρ+ 2θmin) =
ρ

2
, which concludes the proof. ♦

We are now in position to complete the proof of Theorem 5. Let Y (t) =
(Em(t), P (t)) be the vector of solutions of (6.50). Using the fact that Em ≤ ‖Y ‖2
(where ‖Y ‖2 denotes the Euclidean norm of the two-dimensional vector Y ), we
obtain

1
2
d

dt
‖Y ‖22 =

1
2
d

dt
(E2

m + P 2)

≤ 2Y TAY + 2R2εE2
m +

1
4ε
F0 e−8π2tEm

≤ −2Λ(θ) ‖Y ‖22 + 2R2ε‖Y ‖22 +
1
4ε
F0 e−8π2t‖Y ‖2,

and as a result,

d‖Y ‖2
dt

≤ −2(Λ(θ)−R2ε)‖Y ‖2 +
1
4ε
F0 e−8π2t. (6.53)

For arbitrary small ε > 0, let us consider λε = Λ(θ)−R2ε < Λ(θ). We may assume
without loss of generality that λε 6= 4π2. Then, from (6.53), one gets:

Em ≤ ‖Y ‖2 ≤ Kε e−2 min{λε,4π2}t, (6.54)

where

Kε = 2 max
{√

E2
m(0) + P 2(0),

F0

8ε|λε − 4π2|

}
,

which concludes the proof of (6.27).
The exponential convergence of the total entropy E results from the relation

E = EM + Em, (6.54) and Lemmas 9 and 10. The Csiszar-Kullback inequality
implies the same for ‖ψ(t, ·)− ψ∞‖2L1 .

Finally, the convergence results on A′t are easily obtained from Lemma 8 and the
fact that ψξ is bounded from below by a positive constant for times larger than an
arbitrary small positive time, see the beginning of Section 3.3.2 in [Lelièvre 2008]
for more details.
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