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Méthodes et modèles numériques appliqués aux risques du marché et à

l’évaluation financière

Ce travail de thèse aborde deux sujets : (i) L’utilisation d’une nouvelle méthode numérique pour

l’évaluation des options sur un panier d’actifs, (ii) Le risque de liquidité, la modélisation du carnet

d’ordres et la microstructure de marché.

Premier thème : Un algorithme glouton et ses applications pour résoudre des équa-

tions aux dérivées partielles

Beaucoup de problèmes d’intérêt dans différents domaines (sciences des matériaux, finance, etc)

font intervenir des équations aux dérivées partielles (EDP) en grande dimension. L’exemple typique

en finance est l’évaluation d’une option sur un panier d’actifs, laquelle peut être obtenue en résolvant

l’EDP de Black-Scholes ayant comme dimension le nombre d’actifs considérés. Nous proposons d’é-

tudier un algorithme qui a été proposé et étudié récemment dans [ACKM06, BLM09] pour résoudre

des problèmes en grande dimension et essayer de contourner la malédiction de la dimension. L’idée

est de représenter la solution comme une somme de produits tensoriels et de calculer itérativement

les termes de cette somme en utilisant un algorithme glouton. La résolution des EDP en grande di-

mension est fortement liée à la représentation des fonctions en grande dimension. Dans le Chapitre

1, nous décrivons différentes approches pour représenter des fonctions en grande dimension et nous

introduisons les problèmes en grande dimension en finance qui sont traités dans ce travail de thèse.

La méthode sélectionnée dans ce manuscrit est une méthode d’approximation non-linéaire ap-

pelée Proper Generalized Decomposition (PGD). Le Chapitre 2 montre l’application de cette méthode

pour l’approximation de la solution d’une EDP linéaire (le problème de Poisson) et pour l’approxima-

tion d’une fonction de carré intégrable par une somme des produits tensoriels. Un étude numérique de

ce dernier problème est présenté dans le Chapitre 3. Le problème de Poisson et celui de l’approxima-

tion d’une fonction de carré intégrable serviront de base dans le Chapitre 4 pour résoudre l’équation

de Black-Scholes en utilisant l’approche PGD. Dans des exemples numériques, nous avons obtenu des

résultats jusqu’en dimension 10.

Outre l’approximation de la solution de l’équation de Black-Scholes, nous proposons une méthode

de réduction de variance des méthodes Monte Carlo classiques pour évaluer des options financières.

Second thème : Risque de liquidité, modélisation du carnet d’ordres, microstructure

de marché

Le risque de liquidité et la microstructure de marché sont devenus des sujets très importants

dans les mathématiques financières. La dérégulation des marchés financiers et la compétition entre

eux pour attirer plus d’investisseurs constituent une des raisons possibles. Les règles de cotation sont



en train de changer et, en général, plus d’information est disponible. En particulier, il est possible de

savoir à chaque instant le nombre d’ordres en attente pour certains actifs et d’avoir un historique de

toutes les transactions passées. Dans ce travail, nous étudions comment utiliser cette information pour

exécuter de facon optimale la vente ou l’achat des ordres. Ceci est lié au comportement des traders

qui veulent minimiser leurs coûts de transaction.

La structure du carnet d’ordres (Limit Order Book) est très complexe. Les ordres peuvent

seulement être placés dans une grille des prix. A chaque instant, le nombre d’ordres en attente d’achat

(ou vente) pour chaque prix est enregistré. Pour un prix donné, quand deux ordres se correspondent, ils

sont exécutés selon une règle First In First Out. Ainsi, à cause de cette complexité, un modèle exhaustif

du carnet d’ordres peut ne pas nous amener à un modèle où, par exemple, il pourrait être difficile de

tirer des conclusions sur la stratégie optimale du trader. Nous devons donc proposer des modèles qui

puissent capturer les caractéristiques les plus importantes de la structure du carnet d’ordres tout en

restant possible d’obtenir des résultats analytiques.

Dans [AFS10], Alfonsi, Fruth et Schied ont proposé un modèle simple du carnet d’ordres. Dans

ce modèle, il est possible de trouver explicitement la stratégie optimale pour acheter (ou vendre) une

quantité donnée d’actions avant une maturité. L’idée est de diviser l’ordre d’achat (ou de vente) dans

d’autres ordres plus petits afin de trouver l’équilibre entre l’acquisition des nouveaux ordres et leur

prix.

Ce travail de thèse se concentre sur une extension du modèle du carnet d’ordres introduit par

Alfonsi, Fruth et Schied. Ici, l’originalité est de permettre à la profondeur du carnet d’ordres de

dépendre du temps, ce qui représente une nouvelle caractéristique du carnet d’ordres qui a été illustré

par [JJ88, GM92, HH95, KW96]. Dans ce cadre, nous résolvons le problème de l’exécution optimale

pour des stratégies discrétes et continues. Ceci nous donne, en particulier, des conditions suffisantes

pour exclure les manipulations des prix au sens de Huberman et Stanzl [HS04] ou de Transaction-

Triggered Price Manipulation (voir Alfonsi, Schied et Slynko). Ces conditions nous donnent des intu-

itions qualitatives sur la manière dont les teneurs de marché (market makers) peuvent créer ou pas

des manipulations des prix.



Numerical methods and models in market risk and financial valuations area

This work is organized in two themes : (i) A novel numerical method to price options on many

assets, (ii) The liquidity risk, the limit order book modeling and the market microstructure.

First theme : Greedy algorithms and applications for solving partial differential

equations in high dimension

Many problems of interest for various applications (material sciences, finance, etc) involve high-

dimensional partial differential equations (PDEs). The typical example in finance is the pricing of a

basket option, which can be obtained by solving the Black-Scholes PDE with dimension the number of

underlying assets. We propose to investigate an algorithm which has been recently proposed and ana-

lyzed in [ACKM06, BLM09] to solve such problems and try to circumvent the curse of dimensionality.

The idea is to represent the solution as a sum of tensor products and to compute iteratively the terms

of this sum using a greedy algorithm. The resolution of high dimensional partial differential equations

is highly related to the representation of high dimensional functions. In Chapter 1, we describe various

linear approaches existing in literature to represent high dimensional functions and we introduce the

high dimensional problems in finance that we will address in this work.

The method studied in this manuscript is a non-linear approximation method called the Proper

Generalized Decomposition. Chapter 2 shows the application of this method to approximate the so-

lution of a linear PDE (the Poisson problem) and also to approximate a square integrable function

by a sum of tensor products. A numerical study of this last problem is presented in Chapter 3. The

Poisson problem and the approximation of a square integrable function will serve as basis in Chapter 4

for solving the Black-Scholes equation using the PGD approach. In numerical experiments, we obtain

results for up to 10 underlyings.

Besides the approximation of the solution to the Black-Scholes equation, we propose a variance

reduction method, which permits an important reduction of the variance of the Monte Carlo method

for option pricing.

Second theme : Liquidity risk, limit order book modeling and market microstructure

Liquidity risk and market microstructure have become in the past years an important topic in

mathematical finance. One possible reason is the deregulation of markets and the competition between

them to try to attract as many investors as possible. Thus, quotation rules are changing and, in general,

more information is available. In particular, it is possible to know at each time the awaiting orders

on some stocks and to have a record of all the past transactions. In this work we study how to use

this information to optimally execute buy or sell orders, which is linked to the traders’ behaviour that

want to minimize their trading cost.



The structure of Limit Order Books (LOB) is very complex. Orders can only be made on a price

grid. At each time, the number of waiting buy (or sell) orders for each price is stored. For a given price,

orders are executed according to the First In First Out rule, as soon as two orders match together.

Thus, since it is really complex, an exhaustive modeling of the LOB dynamics would not lead, for

example, to draw conclusions on an optimal trading strategy. One has therefore to propose models

that can grasp important features of the LOB structure but that allow to find analytical results.

In [AFS10], Alfonsi, Fruth and Schied have proposed a simple LOB model. In this model, it

is possible to explicitly derive the optimal strategy for buying (or selling) a given amount of shares

before a given deadline. Basically, one has to split the large buy (or sell) order into smaller ones in

order to find the best trade-off between attracting new orders and the price of the orders.

Here, we focus on an extension of the Limit Order Book (LOB) model with general shape in-

troduced by Alfonsi, Fruth and Schied. The additional feature is a time-varying LOB depth that

represents a new feature of the LOB highlighted in [JJ88, GM92, HH95, KW96]. We solve the op-

timal execution problem in this framework for both discrete and continuous time strategies. This

gives in particular sufficient conditions to exclude Price Manipulations in the sense of Huberman and

Stanzl [HS04] or Transaction-Triggered Price Manipulations (see Alfonsi, Schied and Slynko). These

conditions give interesting qualitative insights on how market makers may create price manipulations.
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Part I

Greedy algorithms and application for solving high-dimensional

partial differential equations





1

Approximation of high-dimensional functions and the pricing

problem

The approximation of high-dimensional functions is an important subject because of the large

domain of applications.

The main difficulty for approximating high-dimensional functions is that when the dimension

increases, the quantity of information increases exponentially fast with the dimension. This obstacle

is known as the curse of dimensionality.

In Section 1.2, we present different approaches proposed in the literature for representing high-

dimensional functions. In particular, in Section 1.2, we discuss the linear techniques, the non-linear

methods being defined in Chapter 2. We draw your attention on the fact that the non-linear techniques

will be the methods used in this manuscript.

Before introducing these linear methods to approximate high-dimensional functions, let us dis-

cuss the curse of dimensionality in order to understand the difficulties behind the study of high-

dimensional problems.

1.1 The curse of dimensionality

Let us introduce the Hilbert space V. The main idea of the deterministic approaches is to

represent solutions u ∈ V as linear combinations of tensor products. The approximation by a full

tensor products writes:

u(x1, x2 . . . , xd) =
N1
�

i1=1

N2
�

i2=1

. . .
Nd
�

id=1

ui1i2...idφi1(x1)φi2(x2) . . . φid(xd) (1.1)

where ui1i2...id ∈ R for all ij = 0, . . . Nj , j = 1, . . . , d and
�

φij

�

1≤ij≤Nj

are the basis of the vector

spaces of dimension Nj for all j = 1, . . . , d which are fixed. As a consequence, this approach leads to

considering a number of degrees of freedom N
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N =
d
�

j=1

Nj (1.2)

that grows exponentially in terms of the dimension d.

The following result given by DeVore, Howard and Micchelli [DHM89] allows to see in practice

the curse of dimensionality because it shows that a sampling method cannot do better than a certain

error estimate depending exponentially on the dimension.

This result is based on the non-linear manifold width. Let X be a normed space and K ⊂ X

a compact set. Let us consider the maps E : K �→ RN for the encoding and R : RN �→ X for the

reconstruction. Introducing the distortion of the pair (E,R) over K

max
u∈K

�u−R(E(u))�X ,

we define the non-linear N -width of K as

dN (K) := inf
E,R

max
u∈K

�u−R(E(u))�X

where the infimum is taken over all the continuous maps (E,R). If X = L∞ and K is the unit ball of
Cm([0, 1]d), it can be proven that (see [DHM89])

cN−m
d ≤ dN (K) ≤ CN−m

d

where c and C are two constant that do not depend on N . For a fixed error level, the number of

degrees of freedom grows exponentially fast with the dimension. In conclusion, for high-dimensional

problems, appropriate approximation tools should be studied.

In this direction, we present in the following Section 1.2 approximation methods that allow to

reduce the number of degree of freedom given the tensorial form of their approximated solutions.

1.2 Some approaches to approximate high-dimensional functions

In this section, we present a short survey on methods proposed in the literature for approx-

imating high-dimensional functions. We recall that the approach used in this work to obtain this

approximations is presented in Chapter 2.
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1.2.1 Sparse grids

The sparse grid method is a numerical discretization technique for multivariate problems. This

approach is introduced in [Smo63] and studied by Schwab [PS04] and Zenger [Zen91]. In this part,

we present a short survey of this method. See [BG04] for a complete introduction to the sparse

grid methods. This approach is also known under the name of hyperbolic cross points or splitting

interpolations.

Let us consider X = [0, 1]. The use of one-dimensional multilevel (or hierarchical) basis is one

of the main ideas of the sparse grid method. In the classical approach, the following standard hat

function is employed to construct the hierarchical basis functions

φ(ξ) :=











1− |ξ|, if ξ ∈ [−1, 1]
0, otherwise.

(1.3)

Consequently, we can consider a set of equidistant grids of level m and mesh width hm = 2−m

on X by introducing the following points:

ξm,i := i2−m, 0 ≤ i ≤ 2m.

Associated to the points ξm,i, we define the basis function (φm,i)1≤i≤2m−1 using the standard

hat function (1.3)

φm,i(x) := φ

�

x− xm,i

2−m

�

.

We note that this basis is the standard basis of P1 Lagrange finite element functions with mesh

size hm and with support on [ξm,i − hm, ξm,i + hm].

Thus, we can define the function spaces

Vm := Span {φm,i, 1 ≤ i ≤ 2m − 1}

and the hierarchical increment spaces Wm

Wm := Span {φm,i, i ∈ Im} ,

where the index set Im is defined as follows
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Im := {i ∈ N, 1 ≤ i ≤ 2m − 1, i odd } .

Hence, the increment spaces verify the following relation

Vm =
�

k≤m

Wk,

where the symbol ⊕ means that the sum is direct. This decomposition (φi,k)k≤m,i∈Ik leads to the

hierarchical basis of Vm because any continuous piecewise linear function u ∈ Vm can be written as

u =
m
�

k=1

�

i∈Ik
uk,iφk,i,

with uk,i ∈ R for all 1 ≤ k ≤ m and i ∈ Ik. We remark that the support of all the basis functions φk,i
spanning Wk are mutually disjoint.

In order to explain, the tensor product construction in high-dimensional spaces, let us introduce

i = (i1, . . . , id) ∈ Nd and k = (k1, . . . , kd) ∈ Nd two multi-indices. The notation

i ≤ k

means that

∀ 1 ≤ j ≤ d, ij ≤ kj

Moreover, we will consider the notation 2i = (2i1 , . . . , 2id) ∈ Nd and 1 = (1, . . . , 1) ∈ Np.

The goal is to construct a multi-dimensional basis on X d = [0, 1]d from the one-dimensional hier-

archical basis. In order to do that, we consider the d-dimensional tensorization of the one-dimensional

basis (φk,i)1≤k≤m,i∈Ik by introducing m = (m1, . . . ,md) the multi-index denoting the level of dis-

cretization in each dimension and the grid points xm,i given by

xm,i = (xm1,i1 , . . . , xmd,id)

where i = (i1, . . . , id) ∈ Nd with 1 ≤ i ≤ 2m.

Then, for each grid point xm,i, an associated d-dimensional basis function φm,i is defined as the

product of the one-dimensional basis functions.
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φm,i(x1, . . . , xd) :=
d
�

j=1

φmj ,ij(xj).

Thus, using this basis of functions, we can define the spaces Vm of continuous piecewise d-linear

functions

Vm := Span {φm,i, 1 ≤ i ≤ 2m − 1} . (1.4)

As in the one-dimensional case, we can define the hierarchical increments Wm as follows

Wm := Span {φm,i, i ∈ Im}

where Im :=
�

i ∈ Nd, 1 ≤ i ≤ 2m − 1, ij odd for all 1 ≤ j ≤ d
�

Consequently, the spaces Vm verify the property

Vm =
�

k≤m

Wk,

and therefore any function u ∈ Vm can be written under the form

u(x) =
�

1≤k≤m

�

i∈Ik
uk,iφk,i(x), uk,i ∈ R.

In order to introduce an optimization with respect to the number of degrees of freedom and the

obtained accuracy of the approximation, we consider the sparse grid space V̂n of level n defined as

follows:

V̂n :=
�

|k|1≤n+d−1

Wk.

where |k|1 and |k|∞ are two norms for multi-indices k = (k1, . . . , kd) ∈ Nd such that

|k|1 :=
d

�

j=1

|kj | and |k|∞ := max
1≤j≤d

|kj |,

moreover, in this case, the associated full grid space Vn can be written as

Vn :=
�

|k|∞≤n

Wk,
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The dimension of the space V̂n, that means, the number of degrees of freedom or grid points is

given by

dimV̂n =
n−1
�

i=0

2i
�

p− 1 + i

p− 1

�

= O(h−1
n | log2(hn)|p−1).

We remark that the space Vn can be seen as the discretization space associated with a standard

P1 finite element discretization based on a uniform discretization of mesh size hn = 2−n, so the

dimension of the space Vn is of the order O(h−p
n ). Consequently, the reduction in the number of

degrees of freedom is significant by considering V̂n instead of Vn.

To show the accuracy of the approximation obtained by the sparse grid methods, we introduce

the following Sobolev space

H2,mix(X d) :=
�

u ∈ L2(X d), ∂αu ∈ L2(X d), α ∈ Nd, |α|∞ ≤ 2
�

,

and we denote by ΠVn and ΠV̂n
, the L2(X d)-orthogonal projector of L2(X d) onto Vn and onto V̂n

respectively.

For all u ∈ H2,mix(X d) ∩H1
0 (X d), the approximation error of the function u on the sparse grid

space is

�u−ΠV̂n
u�L2(X d) = O(h2nnd−1), (1.5)

and on the full grid space, the accuracy is

�u−ΠVnu�L2(X d) = O(h2n). (1.6)

For a given error level, in (1.5), the number of degrees of freedom does not grow exponentially

with the dimension. These results (see [BG04]) show the advantage of using the sparse grid space V̂n

with respect to the full grid space Vn because the number of degrees of freedom is strongly reduced

while the accuracy is insignificantly deteriorated if the exact solution is regular enough. The efficiency

of the sparse tensor products is lost when the solution u is not regular or when the considered mesh is

complicated. Consequently, in practice, this method may be difficult to apply for reasons such as the

lack of regularity of the solution and the difficulty to implement the associated algorithms.
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1.2.2 Canonical, Tucker and Tensor Train decompositions

In this section, we suppose that the Hilbert space V has the following form:

V =
d

�

i=1

Vi. (1.7)

i.e., V is tensor product of Hilbert spaces of univariate functions. In other words, for all 1 ≤ i ≤ d,

the function ui ∈ Vi is such that ui : xi ∈ Ωi �→ u(xi) and then a function u ∈ V is such that

u : (x1, . . . , xd) ∈ Ω1 × . . .×Ωd �→ u(x1, . . . , xd). By considering (1.7), the goal is to obtain a number

of degrees of freedom which does not depend exponentially on the dimension d.

Canonical decomposition

The canonical decomposition is a classical method to represent in a tensor format a function

u ∈ V . This approach looks for a representation of u as follows

(x1, . . . , xd) �→ u(x1, . . . , xd) =
r

�

k=1

�

d
�

i=1

ui,k

�

(x1, . . . , xd), (1.8)

that is, u is represented by r elementary products of single-variate functions. The number r of products

of single-variate functions is called the canonical rank of the function u. In a finite dimensional case

with dim(Vi) = N , for all i = 1, . . . , d, we can deduce that the complexity of the decomposition (1.8)

is rdN .

Nevertheless, one disadvantage of this approach is that the set of rank-r tensors

Cr :=
�

u ∈ V, u(x1, . . . , xd) =
r

�

k=1

�

d
�

i=1

ui,k

�

(x1, . . . , xd),∀1 ≤ r, ui,k ∈ Vi

�

is not a weakly closed subset of V when d ≥ 3 and r ≥ 2, see [dSL08]. Consequently, there may not
exists a minimizer to the problem

inf
ũ∈Cr

�u− ũ�V

In the literature, this decomposition is also called CANDECOMP or PARAFAC as in [BK09].
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Tucker decomposition

A more robust tensor format decomposition is called the Tucker decomposition that consists in

decomposing u as follows:

(x1, . . . , xd) �→ u(x1, x2, . . . , xd) =
r1
�

k1=1

. . .
rd
�

kd=1

ck1,...,kd

� p
�

i=1

ui,ki

�

(x1, . . . , xp),

where for all 1 ≤ i ≤ d, ri ∈ N∗, ui,ki ∈ Vi for all 1 ≤ ki ≤ ri and ck1,...,kp ∈ R.

Thus, in the Tucker decomposition, the function u is decomposed over all the possible tensor

products between the functions (ui,ki)1≤kiri for all 1 ≤ i ≤ d.

Let us note rT := (r1, . . . , rp) ∈ (N∗)p the Tucker rank of u. The set of tensors of Tucker rank

rT is weakly closed in V , then the problem of the best approximation has a solution. Nevertheless, we

observe that if rT = (r, . . . , r) and dimVi = N for all 1 ≤ i ≤ d this approach leads to a complexity

given by O(rd + Nrd) that is exponential with the respect to the dimension d. Hence, the Tucker

decomposition is not pertinent when d is large.

Tensor train

The following decomposition allows to overcome the exponential complexity obtained in the case

of the Tucker decomposition and it is called tensor train decomposition. In this case, the function u

is represented as follows:

(x1, . . . , xd) �→ u(x1, . . . , xd)

=
r1
�

k1=1

. . .

rd−1
�

kd−1=1

U1(x1, k1)U2(k1, x2, k2) . . . Ud−1(kd−2, xd−1, kd−1)Up(kd−1, xd).

The rank of the function u in the case of the tensor train is defined as rTT = (r1, . . . , rd−1) ∈
(N)d−1. Based on this tensor train decomposition, a function u can be expressed as the following

product of matrices

u(x1, . . . , xd) = U1(x1) . . . Up(xp)

where
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x1 �→ U1(x1) ∈ R1×r1 ,

x2 �→ U2(x2) ∈ Rr1×r2 ,

. . .

xd−1 �→ Ud−1(xd−1)Rrd−2×rd−1 ,

xd �→ Ud(xd) ∈ Rrd−1×1.

The set of functions of tensor train rank of at most rTT is a weakly closed subset of V. Moreover,

the complexity of this type of decomposition is O(r2Nd) if ri = r and dimVi = N for all i = 1, . . . d

and not exponential with respect to d as in the case of the Tucker decomposition.

The algorithms used in practice to compute the best approximation of a given tensor in the

Tucker or tensor train format, execute successive Singular Value Decomposition problems. We can men-

tion the Higher Order Orthogonal Iteration (HOOI) [LMV00a], the Newton-Grassman approach [ES09]

or the Higher Order Singular Value Decomposition (HOSVD) [LMV00b].

1.3 High-dimensional problems in finance

In finance, many of the high-dimensional applications include high-dimensional partial differen-

tial equations (PDE). A high-dimensional PDE is an equation that depends on several independent

variables. Roughly, the PDEs can be classified in elliptic, parabolic and hyperbolic. In this work, we

principally study the parabolic ones, given that in finance the relation between the Black-Scholes

model (see Section 1.3.2) and this type of equations give them a strong importance.

The goal of this section is to present some high-dimensional PDEs that appear in finance and

that are studied in this manuscript, but before that, it is important to begin by introducing the

standard framework used in mathematical finance.

1.3.1 Important concepts in finance

The pricing of financial options is one of the most important problems in financial mathematics.

In 1900, Bachelier [Bacal] is the first that shows that for answering this kind of problems it is important

to use suitable mathematical techniques. This domain did not have a very strong development until

the 70’s with the Black-Scholes model developed in 1973 by Merton, Black and Scholes [Mer76, BS73],

where they define the price of derivatives as the price needed to hedge them. After that, the financial

mathematics domain was driven by the martingale theory developed in the 80’s.

One of the most typical examples of derivatives proposed in markets are the options. An Eu-

ropean call (resp. put) option is a financial contract that gives to the holder the option and not the
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obligation to buy (resp. sell) a number of stocks to the price K at time T . The fixed price K is known

as the strike and T is the maturity of the option. The underlying is equal to ST at the maturity T and

the option will be exercised if ST > K (resp. ST < K) and consequently, the holder’s gain is given by

ST −K (resp. K − ST ) because he can buy (resp. sell) the stock at the price K and after sell (resp.

buy) it in the market at the price ST . Otherwise, the option is not exercised and the gain is equal to

0. Hence, we note that the value of the call at the maturity is given by

(ST −K)+ = max(ST −K, 0).

For the counterpart (the bank) which sells the European call option, the goal is to provide the

stocks at price K and thus to obtain at the maturity a wealth equal to (ST −K)+. At the time when

the option is sold, the value of the asset ST is not known and then the question of the pricing, that

is, how much the client has to pay to get a call option, is very important.

To answer the question of the pricing, some assumptions are usually considered. The hypothesis

that appears in most models is that in a liquid market there is no arbitrage, that means, it is impossible

to make profit without taking risks.

Under the assumption of no arbitrage, the price of the call option at time T is given by (ST−K)+.

In general, the price at the maturity of an option is a function of ST called the payoff. There exist

different types of payoff functions,

1∀t∈[0,T ],St∈[a,b]φ(ST ), for barrier options,

φ(ST , AT ), where At =
1
t

� t

0
Sudu, for options on the average,

φ(S1
T , S

2
T , . . . , S

d
T ), for a basket option,

In this work, we will mainly consider the payoff:

φ(S1
T , . . . , S

d
T ) =

�

K − 1
d

d
�

i=1

Si
T

�

+

(1.9)

called a basket put option.

Hence, the function φ depends on d different assets which, in general, do not evolve indepen-

dently.
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1.3.2 The Black-Scholes model

In section 1.3.1, we already presented the main ideas of the theory of options in the framework

of financial mathematics. The goal of this section is to develop the relationship between theory and

mathematical equations that are obtained based on the Black-Scholes model.

A partial differential equation for the option pricing problem

In this section, we present the framework that allows to find a PDE for pricing European options.

In order to do that, we introduce the classical Black-Scholes model that takes into account a risky

asset with price St at the time t and a risk-free asset which price at time t is S0
t . In this model, St and

S0
t are such that:

dSt = µStdt+ σStdBt,

and

dS0
t = rS0

t dt

where Bt is a Brownian motion in a probability space (Ω, (Ft)t≥0,P), and µ (the mean rate of return),

σ > 0 (the volatility) and r (the risk-free interest rate) are three constants. This framework can be

generalized to the case where r, µ and σ are functions of the time t and the stock St under suitable

smoothness assumptions. The filtration (Ft)t≥0 is the natural filtration of the Brownian motion Bt.

Let us introduce the risk-free probability measure Q defined by its Radom-Nikodim derivative

with respect to P as follows

dQ

dP
|Ft= exp

�

� t

0

µ− r

σ
dBs +

� t

0

�

µ− r

σ

�2

ds

�

(1.10)

This new probability Q is one of the key tools to obtain the results of the Black-Scholes model.

If we introduce the stochastic process Wt = Bt +
µ−r
σ t, the process St satisfies the following

stochastic differential equation under the probability Q

dSt = St(rdt+ σdWt) (1.11)

where Wt is a Brownian motion and St
S0
t

is a martingale under the probability Q.
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Since we are interested in the pricing of an option, the Black-Scholes model is studied in the

interval [0, T ] where T is the maturity of the option. Thus, the solution of the equation (1.11) is given

by

St = S0e
(r−σ2

2
)t+σWt , t ∈ [0, T ]. (1.12)

where S0 is the value of the asset at time t = 0.

Specifically, we can observe that the process (St)t≥0 satisfies the equation (1.11) if the process

(log(St))t≥0 is a Brownian motion, not necessarily standard. Looking at the expression of the process

St obtained in (1.12), we find the assumptions of the Black-Scholes model on the evolution of the

asset. These are:

– Continuity of the trajectories.

– If u ≤ t, St
Su
is independent of the sigma-algebra σ (Sv, v ≤ u)

– If u ≤ t, (St−Su)
Su

and (St−u−S0)
S0

have the same law.

Let us define now a strategy that allows to generate a portfolio. A strategy is a process

(Ht)0≤t≤T = (Ht,H
0
t ) ∈ R2 adapted to the natural filtration of the Brownian motion, with Ht risky

assets and H0
t non-risky assets. Hence, the value of the associated portfolio Pt is

Pt = HtSt +H0
t S

0
t (1.13)

The considered portfolio Pt is assumed to be self-financing, that means, any change on this

portfolio is done with no exogenous supply or withdrawal of money. Mathematically, this assumption

writes

dPt = HtdSt +H0
t dS

0
t , (1.14)

and using this equation (1.14) it is possible to show that Pt
S0
t

is a martingale.

As we mentioned in section 1.3.1, the great idea of the Black-Scholes model is to put together

the pricing of the option and the quantity of money needed to hedge it. Theoretically, for a given

function φ (the payoff) and a given maturity T , it is possible to create a self-financing portfolio such

that PT = φ(ST ). This result is obtained using the martingale representation theorem, the fact that φ

is FT -measurable and that Pt
S0
t

is a martingale. Using the martingale property, the value of the portfolio

at the time t is

Pt = E
�

e−(T−t)rφ(ST )|Ft
�

(1.15)
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Using the so-called arbitrage-free principle, it is possible to show that Pt has to be the price at

time t of the option which allows the holder to obtain the payoff φ(ST ) at the maturity T .

A PDE formulation of the pricing option problem can be obtained because of the Markov

property of the process St. This Markovianity means that the expectation of any function of (St)0≤t≤T

conditionally to Ft is a function of the price of the asset St at time t. In other words, this implies that

Pt = p(t, St) (1.16)

where p is a function of t ∈ [0, T ] and S ∈ [0,∞), known as the pricing function of the option. We
remark that the pricing function p is a deterministic function defined for all values of t ≥ 0 and S ≥ 0.

As a consequence of the Markov property of St, we can re-write the pricing function p under

the form:

p(t, x) = E
�

er(T−t)φ(St,x
T )

�

where the process St,x
u is the solution of the equation (1.11) starting from x at time t, or equivalently,











dSt,x
u = St,x

u (rdu+ σdWu), u ≥ t,

St,x
t = x

Using Itô’s calculus and the fact that Pt
S0
t

is a martingale, we deduce that p has to verify the

following PDE:











∂p
∂t + rS ∂p

∂S +
σ2S2

2
∂2p
∂S2 − rp = 0,

p(T, S) = φ(S).
(1.17)

It is possible to show that if p verifies (1.17), then p(t, St) is the value of a self-financing portfolio

such that its value is equal to φ(ST ) at time T .

The Black-Scholes formula

In this section, we present the formulas obtained for the pricing of European options. The fact

that relatively simple expressions give the price of these financial contracts is one of the most important

features of this model.
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Let us note P (t, S) the price of the option with maturity T of payoff φ. Assuming that r and

σ > 0 are constants, the price of the option in the Black-Scholes equation is given by

P (t, S) = e−r(T−t)EQ

�

φ

�

Ser(T−t)eσ(WT −Wt)−σ2

2
(T−t)

��

(1.18)

The expression (1.18) can be written under the following form

P (t, S) =
1√
2π

e−r(T−t)
�

R
φ

�

Se(r−σ2

2
)(T−t)+σ

√
T−ty −Ke−r(T−t)

�

e− y2

2 dy

because under the probability Q,WT −Wt is a centered Gaussian random variable with variance T − t.

If we take the case of a put option, that means that the payoff φ is such that φ(St) = (St−K)+,

we can get that

C(t, S) =
1√
2π

� d2

−∞

�

Se−σ2

2
(T−t)−σy

√
T−t −Ke−r(T−t)

�

e− y2

2 dy, (1.19)

where

d1 =
log

�

S
K

�

+ (r + σ2

2 )(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t (1.20)

The Black-Scholes formula can be derived from (1.19).

Proposition 1.1. If we assume that σ > 0 and r are two constants, the price of a European call

option is given by

C(t, S) = SN (d1)−Ke−r(T−t)N (d2), (1.21)

and for the case of a European put option, the price is

P (t, S) = −SN (−d1) +Ke−r(T−t)N (−d2). (1.22)

where d1 and d2 are defined by (1.20) and N is the cumulative distribution function of a centered

Gaussian distribution with variance equal to 1.

Finally, we can remark that if r and σ are functions of time, the formulas (1.21) and (1.22) are

still valid, replacing the expressions (1.20) by
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d1 =
log

�

S
K

�

+
� T
t rudu+ 1

2

� T
t σ2udu

�

� T
t σ2udu

and d2 = d1 −
�

� T

t
σ2udu (1.23)

1.3.3 High-dimensional partial differential equations in finance

The goal of this section is to extend the model presented in the previous Section 1.3.2 to the

case when d-assets are considered as the underlyings of an option.

Model with d risky assets

We consider that there exist d risky assets whose prices at time t are written Si(t). We assume

that for all i such that 1 ≤ i ≤ d, the price Si(t) verifies the following stochastic differential equation:

dSi(t) = µiSi(t)dt+ σiSi(t)dWi(t) (1.24)

We have to point out that (Wi(t)) for 1 ≤ i ≤ d are correlated Brownian motions defined on a

probability space (Ω, (Ft)t≥0,P). Let us introduce ρij the correlation factor between Wi(t) and Wj(t).

That is

ρij =
E [Wi(t)Wj(t)]

t

We remark that −1 ≤ ρij ≤ 1 and ρii = 1. In addition, the volatilities σi, for 1 ≤ i ≤ d are

positive constants.

As in Section 1.3.2, we are interested in the study of an European option, but on d underlyings,

with d > 1. If T is the maturity of the option of payoff f(S1(T ), . . . , Sd(T )), it is possible to find a

risk-free probability measure Q that allows to write the price of the option at time t as follows:

Pt = EQ
�

e−r(T−t)f(S1(T ), . . . , Sd(T ))|Ft
�

(1.25)

Let us find, as in the case presented in Section 1.3.2, the linear parabolic partial differential

equation on d+1 variables linked with the equation (1.25) and that allows to find the price Pt at time

t of the option. In order to do that, we cite some results given in [AP05].

Proposition 1.2. Let us introduce the differential operator
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L : f �→ 1
2

d
�

i=1

d
�

j=1

ΞijSiSj
∂2f

∂SiSj
+ r

d
�

i=1

Si
∂f

∂Si
, (1.26)

where Ξij = ρijσiσj . Then, for all function u : (S1, . . . , Sd, t) �→ u(S1, . . . , Sd, t),u ∈ C2,1(Rd
+ × [0, T ))

verifying |Si ∂u∂Si | ≤ C(1 + |Si|), i = 1, . . . , d with C that does not depend on t, the process

Mt = e−rtu(S1(t), . . . , Sd(t))−
� t

0
e−rτ

�

∂u

∂t
+ Lu− ru

�

(S1(t), . . . , Sd(t))τ

is a martingale under the filtration Ft.

Theorem 1.1. Let P be a continuous function, P ∈ C2,1(Rd
+ × [0, T )) such that |Si ∂P∂Si | ≤ C(1 + Si)

where C does not depend on t. Assuming that P verifies the equation

�

∂P

∂t
+ LP − rP

�

(S1, . . . , Sd, t) = 0, t < T, (S1, . . . , Sd) ∈ Rd
+ (1.27)

and satisfies the Cauchy condition

P (S1, . . . , Sd, T ) = f(S1, . . . , Sd), (S1, . . . , Sd) ∈ Rd
+,

then the price of the European option given by (1.25) verifies

Pt = P (S1(t), . . . , Sd(t), t)

It should be outlined that in the case of a basket option, analytical formulas such as those

presented for the case of one asset can no longer be found. This implies the use of numerical methods

in order to approximate the price.

Free boundary problems

In some applications we do not only need to find the solution of a PDE but it is also necessary

to define constraints on an unknown boundary. The problem of the execution of an American option

can be studied with this type of problem.

It is possible to show (see [AP05]) that the partial differential equation for the pricing of the

American option can be expressed under the following form:











min
�

Lu− ∂u

∂t
, φ− u

�

= 0, in RT := (0, T )× Rd

u(0, x) = φ(x), x ∈ Rd
(1.28)

where the parabolic operator L is defined by (1.26).



1.3 High-dimensional problems in finance 19

From equation (1.28), we deduce that u ≥ φ and then the region RT is divided in two parts:

the so-called exercise region where u = φ and the continuation region where u > φ and Lu− ∂u
∂t = 0.

We remark that, in the continuation region, the price of the option verifies the Black-Scholes PDE.

In fact, the problem (1.28) is equivalent to











































Lu− ∂u

∂t
≤ 0, in RT

u ≥ φ, in RT

(u− φ)
�

Lu− ∂u

∂t

�

= 0, in RT

u(0, x) = φ(0, x), x ∈ Rd

(1.29)

This type of problem is known as the obstacle problem and is presented in Section 5.2 where

we propose an application of the algorithm introduced in Chapter 2 for treating the problem of the

American options.





2

A nonlinear approximation method for solving high-dimensional

partial differential equations

Many problems of interest for various applications such as kinetic models, molecular dynamics,

quantum mechanics, uncertainty quantification and finance involve high-dimensional partial differen-

tial equations.

It is well known that when the number of variables of a PDEs is very large, standard algorithms

such as finite differences and finite elements cannot be used in practice to solve them. As we discussed

in Section 1.1, the reason is the curse of dimensionality, in other words, the number of unknowns

typically grows exponentially with respect to the problem’s dimension and rapidly exceeds the limited

storage capacity.

The main goal of this Section is to present an algorithm which has been recently proposed

by Chinesta et al. [ACKM06] for solving high-dimensional Fokker-Planck equations in the context

of kinetic models for polymers and by Nouy et al. [Nou10] in uncertainty quantification framework

based on previous works by Ladevèze [Lad99]. This approach is also studied in [BLM09] to try to

circumvent the curse of dimensionality for the Poisson problem in high-dimension. This approach is a

nonlinear approximation method that we will call below the Proper Generalized Decomposition (PGD).

It is related to the so-called greedy algorithms introduced in nonlinear approximation theory, see for

example [Tem08]. The main idea of the PGD is to represent the solution as a sum of tensor products:

u(x1, . . . , xd) =
�

k≥1

r1k(x1)r
2
k(x2) . . . r

d
k(xd)

=
�

k≥1

�

r1k ⊗ r2k ⊗ . . .⊗ rdk

�

(x1, . . . , xd) (2.1)

and to compute iteratively each term of this sum using a greedy algorithm. The algorithm of the

PGD method can be applied to any PDE which admits a variational interpretation as a minimization

problem. The practical interest of this algorithm has been demonstrated in various contexts (see for

example [ACKM06] for applications in fluid mechanics).
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One contribution of this work is to complete the first application of this algorithm in finance,

investigating the interest of this approach for option pricing. Our aim is to study the problem of

pricing vanilla basket options of European type by solving the Black-Scholes equation and to propose

in addition a variance reduction method for the pricing of the same type of financial products.

This application in finance leads us to consider two extensions of the standard algorithm, which

apply to symmetric linear partial differential equations: (i) non-symmetric linear problems to value

European options, (ii) nonlinear variational problems to price American options.

In this chapter, our goal is to present this nonlinear approximation method that we study in

this work from a general mathematical point of view.

In what follows, we introduce the approach that we study to solve high-dimensional PDEs that

arise in finance. This method is called Proper Generalized Decomposition and it is connected to the

greedy algorithms proposed in the nonlinear approximation theory by Temlyakov in [Tem08], Davis et

al. in [ADM97] and Barron et al. in [BCDD08]. Other related works are the methods based on looking

for the best n-term approximation of operators as in [BK09] and [BM02].

We begin by presenting the greedy algorithms in a general framework and the link with the

PGD. After that, we define the PGD and we apply it, as an example, to the Poisson problem. Finally,

we recall results on convergence and speed of convergence for the Proper Generalized Decomposition.

2.1 Greedy algorithms

In what follows, we present an introduction to greedy algorithms. See [Tem08], [DT96] or [BCDD08]

for more details. We consider V a real Hilbert space associated with the inner product �., .�V and with
the norm �.�V . We define a dictionary D as a family of functions from V such that all the elements

of the dictionary D are normalized, that means �g�V = 1 for all g ∈ D and Span(D) = V . We also

assume that the dictionary is symmetric namely that g ∈ D ⇒ −g ∈ D.

The problem tackled by the greedy algorithms theory is the problem of approximating a function

u ∈ V by a finite linear combination of elements of the dictionary D. Thus, to analyze the greedy
algorithms, we introduce the best n-term approximation un of the function u ∈ V where un is a linear

combination of at most n elements of the dictionary D. Mathematically, it amounts to looking for the
functions g1, . . . , gn ∈ D such that they minimize the following error:

(g1, . . . , gn) ∈ argmin
(d1,...,dn)∈D

�u− Pd1,...,dnu�V
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where Pd1,...,dn is the orthogonal projector on Span {d1, . . . , dn} with respect to the inner product of
V .

Instead of fixing the functions (d1, . . . , dn) ∈ D as in the linear case where the best approximation
is the projection Pd1,...,dn , the nonlinear framework lets the functions (d1, . . . , dn) ∈ D depend on the

function u that has to be approximated. Hence, the principle of the greedy algorithms is to look

iteratively for the best element in the dictionary and, in this way, they propose a constructive way to

find the solution for the problem of approximating the function u ∈ V .

In the sequel, we assume that for any function u ∈ V , there exists an element g ∈ D such that

g ∈ argmax
d∈D

�u, d�V (2.2)

Thus, if g verifies (2.2), we can deduce directly that

(g, �u, g�V ) ∈ argmin
(d,λ)∈D×R

�u− λd�V .

There are several versions of these greedy algorithms which are introduced in [DT96]. Here, we

present two classical versions: the Pure Greedy Algorithm (PGA) and the Orthogonal Greedy Algorithm

(OGA).

Pure greedy algorithm (PGA):

1. Set rp0 := u, up0 := 0 and n = 1. Choose ǫ > 0.

2. Find gpn ∈ D such that
gpn ∈ argmax

g∈D
�rpn−1, g�V

3. Define upn := upn−1 + �rpn−1, g
p
n�V gpn and rpn := rpn−1 − �rpn−1, g

p
n�V gpn.

4. If �rpn� ≤ ǫ�upn�, then stop. Otherwise, n = n+ 1 and return to step 2.

Orthogonal greedy algorithm (OGA):

1. Set ro0 := u, uo0 := 0 and n = 1. Choose ǫ > 0.

2. Find gon ∈ D such that
gon ∈ argmax

g∈D
�ron−1, g�.

3. Define Ho
n := Span {goi , 1 ≤ i ≤ n}, uon := PHo

n
(u) and ron := u− PHo

n
(u).

4. If �ron� ≤ ǫ�uon�, then stop. Otherwise, n = n+ 1 and return to step 2.
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The above algorithms are greedy since the basis of vectors used to approximate g is built incre-

mentally; at each iteration a new vector is added, but former vectors are never removed nor modified.

We remark that for a general dictionary D (D is not an orthonormal basis), the solution obtained

after n iterations of the algorithm is generally not the best rank-n approximation (2.14).

The difference between the OGA and the PGA is that the OGA takes the Galerkin projection

on the functions go1, . . . , g
o
n generated at each iteration. The first and second steps are the same for the

OGA and the PGA.

The convergence of these algorithms is proved for all u ∈ V as we can see in the following

theorem.

Theorem 2.1. For any dictionary D and any u ∈ V , we have that

PGA: �rpn� = �u− upn� −→n→∞
0,

OGA: �ron� = �u− uon� −→n→∞
0,

It is also possible to prove convergence rates for these algorithms. In order to do that, it is

necessary to define a functional space for the function u, adapted to the convergence analysis. For a

general dictionary D, we introduce the following class of functions

A1
0(D,M) :=







u ∈ V : u =
�

k∈Λ
ckvk, vk ∈ D,#Λ <∞ and

�

k∈Λ
|ck| ≤M







Let us also introduce the space A1 (D,M) as the closure in H of A1
0 (D,M), that is, A1(D) :=

∪M>0A1(D,M), or, equivalently,

A1(D) =
�

u ∈ V, u =
∞
�

k=1

r1k ⊗ r2k ⊗ . . .⊗ r
(d)
k ,

∞
�

k=1

�r1k ⊗ r2k ⊗ . . .⊗ r
(d)
k �V <∞

�

,

Thus, the following result proved in [DT96] holds:

Theorem 2.2. For a general dictionary D in V , the following estimates can be deduced: For a function

u ∈ A1, there exists a constant M > 0 such that

�rpn� = �u− upn� ≤Mn−1/6,

�ron� = �u− uon� ≤Mn−1/2,

for all n ∈ N∗.
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We note that the constant M depends on the norm �u�A1 . In [KT99], Konyagin and Temlyakov

obtain a better estimate for the PGA

�rpn� = �u− upn� ≤Mn−11/62.

2.2 The Proper Generalized Decomposition

As we said in the introduction of this Section, this approach has been recently proposed by

Chinesta et al. in [ACKM06] to solve high-dimensional Fokker-Planck equations in the context of

kinetic models for polymers and Nouy in [Nou10] in the context of uncertainty quantification following

previous works by Ladevèze [Lad99].

In general, let V be a Hilbert space of multivariate functions u(x1, . . . , xd) and let V1, . . . , Vd be

Hilbert spaces of single-variate functions depending on the one-dimensional variable xi. One of the

principles of the PGD is to choose the dictionary of functions as the set of tensor products

D :=
�

r1 ⊗ . . .⊗ rd|r1 ∈ V1, . . . r
d ∈ Vd, �r1 ⊗ . . .⊗ rd�V = 1

�

(2.3)

where r1 ⊗ r2 ⊗ . . .⊗ rd(x1, x2 . . . , xd) = r1(x1)r2(x2) . . . rd(xd).

Let us define the following set of simple products

Σ :=
�

r1 ⊗ . . .⊗ rd, r1 ∈ V1, . . . , r
d ∈ Vd

�

(2.4)

Under the assumptions

(A1) Σ ⊂ V ,

(A2) SpanΣ
�.�V = V ,

(A3) for all sequences of Σ bounded in V , there exists a subsequence which weakly converges in

V towards an element of Σ,

the dictionary D defined in (2.3) is a well-defined dictionary of V . We note that the assumption (A3)
implies that the problems of the type (2.2) have at least one solution.

The PGD is based on two main ideas. The first one is to extend the solution as a sum tensor

products of lower-dimensional functions
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un(x1, x2, . . . , xd) =
n
�

k=1

r1k ⊗ r2k . . .⊗ rdk(x1, x2, . . . , xd) (2.5)

where for all i = 1, . . . , d and k = 1, . . . , n, the functions r(i)k ∈ Vi. Consequently, the function un is a

separated representation of the solution u ∈ V .

The second idea is to recast the original problem (in our case a high-dimensional PDE) as a

minimization problem:

u = argmin
v∈V

E(v), (2.6)

where E : V �→ R is functional with a unique global minimizer u ∈ V .

In general, to compute un in the separated form (2.5), un being the approximation of u solution

of the problem (2.6), we propose to use the PGD that is defined as follows:

Iterate on n ≥ 1

(r1n, r
2
n, . . . , r

d
n) ∈ argmin

r1∈V1, r2∈V2,..., rd∈Vd
E
�

n−1
�

k=1

r1k ⊗ r2k ⊗ . . . ⊗ rdk + r1 ⊗ r2 ⊗ . . . rd
�

, (2.7)

where V , V1, . . . , Vd are Hilbert spaces.

The principle of the algorithm is to look iteratively for the best tensor product and this leads

to a nonlinear approximation method which gives the solution un as defined in (2.5). We remark that

the implementation of (2.7) amounts to applying the Pure Greedy Algorithm in the Hilbert space V

and for the dictionary D defined by (2.3).

Instead of solving the minimization problem (2.7), we solve the first-order optimality conditions

of this minimization problem, namely the Euler equation. This yields to a system of equations where

the number of degrees of freedom does not grow exponentially with respect to the dimension. This fact

will be very important in order to reach high-dimensional frameworks in practical applications. More

precisely, the Euler equation writes as a system of d nonlinear equations, where d is the dimension

considered. The maximum dimension that can be treated by this technique is limited by the fact that a

system of d nonlinear equations has to be solved. We also note that the solutions of the Euler equation

are not necessarily solutions of the minimization problem given the nonlinearity of the tensor product

space V1 ⊗ . . .⊗ Vd.

Thus, the greedy algorithm can be stated as follows: For n ≥ 0, find
�

r1n ⊗ r2n ⊗ . . .⊗ rdn

�

∈
H0
1 (Ω1)×H0

1 (Ω2)× . . .×H0
1 (Ωd) such that
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(r1n, r
2
n, . . . , r

d
n) ∈ argmin

r1∈V1, r2∈V2,...,rd∈Vd
E
�

n−1
�

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk + r1 ⊗ r2 ⊗ . . .⊗ rd
�

, (2.8)

Remark 2.1. Curse of dimensionality

As we already said, in the PGD approach we look for a solution under the form:

un(x1, x2, . . . , xd) =
n

�

k=1

r1k ⊗ r2k . . .⊗ rdk(x1, . . . , xd) (2.9)

In practice, the functions rik are obtained as linear combinations of the basis functions (φ
l
ji
)1≤l≤Ni

.

Thus, we introduce the space V hi
xi as the finite element spaces used to discretize the Hilbert spaces Vxi

that are spaces of functions depending on the one-dimensional variable xi

V hi
xi = Span {φj , 0 ≤ j ≤ Ni}

where hi is the parameter of discretization hi = 1
Ni
.

At the end, the problem of computing the approximation (2.9) leads to solving a problem of

dimension Ñ such that

Ñ = n
d

�

i=1

Ni (2.10)

which remains lower compared with N defined in (1.2), if n is small enough.

2.3 Some particular cases: the Singular Value Decomposition and the general

linear case

2.3.1 Tensor product of spaces

Let us define the inner product �. , .�⊗ associated to the space Span(Σ) as follows:

∀
�

r1, r2, . . . , r(d)
�

,
�

r̃1, r̃2, . . . , r̃d
�

∈ V1 × V2 × . . .× Vd,

�r1 ⊗ r2 ⊗ . . .⊗ rd, r̃1 ⊗ r̃2 ⊗ . . .⊗ r̃d�⊗ = �r1, r̃1�V1�r2, r̃2�V2 . . . �rd, r̃d�Vd

Likewise, we define the related norm ��⊗ called cross-norm as
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∀
�

r1, r2, . . . , r(d)
�

∈ V1 × V2 × . . .× Vd, �r1, r2, . . . , r(d)�⊗ = �r1�V1�r2�V2 . . . �r(d)�Vd . (2.11)

Thus, the tensor product of the spaces V1, V2, . . . , Vd, noted by V1⊗V2⊗ . . .⊗Vd and defined as
�

Span(Σ)
�·�⊗

, �·, ·�⊗
�

is a Hilbert space.

In this section, we discuss two cases in which the greedy algorithm satisfies important properties.

2.3.2 The Singular Value Decomposition case

In this case we consider that

E(v) = �u− v�2V (2.12)

where V = V1 ⊗ V2, that means, the product of only two Hilbert spaces. Moreover, we assume that

the norm � · �V is a cross-norm following the definition (2.11) in Section 2.3.1.

In this case, the pairs (r1n, r
2
n) ∈ V1 × V2, defined by (2.7), verify the following orthogonality

relation:

�r1n, r1m�V1 = �r2n, r2m�V2 = 0,∀n �= m (2.13)

This orthogonality property has several consequences:

– The Pure Greedy Algorithm and the Orthogonal Greedy Algorithm are equivalent.

– The decomposition of the function u as follows

u =
∞
�

k=1

r1k ⊗ r2k

is unique.

– At iteration n, the approximation un =
�n

k=1 r
1
k ⊗ r2k is the best rank-n term approximation

of u

�u−
n
�

k=1

r1k ⊗ r2k�V = inf
(r̃1

k
,r̃2
k)∈V1×V2, 1≤k≤n

�u−
n

�

k=1

r̃1k ⊗ r̃2k�V . (2.14)

It is also possible to deduce that

– The solutions to the Euler-Lagrange equation which maximize the L2-norm
��

Ω |r ⊗ s|2�1/2

are exactly the solutions to the minimization problem.

– In dimension d = 2, the solutions to the Euler-Lagrange equation that satisfy the second

optimality conditions are the solutions of the minimization problem.
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– Let λk = �r1k ⊗ r2k�V for all 1 ≤ k ≤ ∞. The sequence (λk)k ∈ N∗ is non-increasing and the

convergence rate of the algorithm is related to this sequence as is showed in (2.15):

�u− uN�2V =
∞
�

k=n+1

�r1k ⊗ r2k�2 =
∞
�

k=n+1

λ2k. (2.15)

2.3.3 The linear case

In this case, we consider again a quadratic functional E(v) = �u − v�2V but V is the product

of more than two Hilbert spaces or the norm is not a cross-norm. Here, the convergence results (2.1)

and (2.2) hold but the orthogonality property (2.13) is no longer verified. This implies that the

PGA and the OGA are not equivalent. The greedy algorithms do not give as solution the best rank-n

decomposition as is defined in (2.14) and the sequence λk = �r1k ⊗ r2k�V for all 1 ≤ k ≤ ∞ is not

necessarily non-increasing.

2.4 Other cases of application for the Proper Generalized Decomposition

The work of Cancès, Ehrlacher and Lelièvre [CEL12] study the case when the functional E is
not supposed to be a quadratic energy functional. They extend the work [BLM09] by considering

a general strongly convex energy functional. In this section, we give an outline of this extension. In

particular, these results can be used to solve an obstacle problem with uncertainty with a large number

of random parameters. As the pricing of American options can be written as an obstacle problem (see

Section 5.2), the method proposed in [CEL12] can also be applied for the pricing of American options.

Let us consider the following assumptions:

(A4) The energy functional E is differentiable and strongly convex. Mathematically, that means
that there exists α > 0 such that

∀v,w ∈ V, E(v) ≤ E(u) + �∇E(w), v − w�V +
α

2
�v −w�2V .

(A5) The gradient of E is Lipschitz on bounded sets: for each bounded subset K ⊂ V , there

exists a constant LK such that

∀v,w ∈ K, �∇E(v) −∇E(w)�V ≤ LK�v −w�V .

Thus, Cancès, Ehrlacher and Lelièvre prove in [CEL12] the following theorem:
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Theorem 2.3. If the conditions (A1)-(A5) are verified, then the iterations of the algorithm (2.7) are

well-defined, in the sense that (2.7) has at least one minimizer (r1n, r
2
n, . . . , r

d
n). Moreover, the sequence

(un)n∈N strongly converges in V to u.

The following result is about the speed of convergence:

Theorem 2.4. If the spaces V1, V2, . . . , Vd are finite dimensional, the convergence rate of the algorithm

is exponential, in other words, there exists C, σ > 0 such that for all n ∈ N∗

�u− un�V ≤ Ce−σn

The constant C can be estimated by �u�V and the constant σ depends on the dimensions of the
spaces V1, V2, . . . , Vd.

Another important result obtained by Cancès, Ehrlacher and Lelièvre [CEL12] is that if we

suppose in addition that

(A6) There exists β, γ > 0 such that for all
�

r1, r2
� ∈ V1×V2, with V1 and V2 two Hilbert spaces.

β�r1�V1�r2�V2 ≤ �r1 ⊗ r2� ≤ γ�r1�V1�r2�V2

then it is not necessary to obtain the global minimum of (2.8) to ensure the convergence of the greedy

algorithm. We note that this result is proved when it is considered a product of only two Hilbert

spaces.

Theorem 2.5. Let us suppose that we are in the case of only two Hilbert spaces V1 and V2 and that

the assumptions (A1)-(A6) are satisfied. Then, if at each iteration n ∈ N, the pair
�

r1, r2
� ∈ V1 × V2

is chosen to be a local minimum of (2.8), such that E(un) < E(un−1), then (un)n∈N∗ still converges

strongly in V towards u the solution of (2.6). Besides, if the Hilbert spaces V1 and V2 are finite

dimensional, the rate of convergence of the algorithm is still exponential in n, i.e., there exists C, σ > 0

such that for all n ∈ N∗

�u− un�V ≤ Ce−σn
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2.5 The Proper Generalized Decomposition for the approximation of a

square-integrable function

In order to show the implementation that we use for the algorithm (2.7), let us present the simple

problem of approximating a square-integrable function f by a sum of tensor products. Mathematically,

we consider the spaces V = L2(Ω1 ×Ω2 × . . .×Ωd), Vxi = L2(Ωi) for i = 1, . . . , d, where Ωi ⊂ R is a

bounded domain for i such that 1 ≤ i ≤ d. We recall that we are looking for a separated representation

f =
�

k≥1 r
1
k ⊗ r2k ⊗ . . .⊗ rdk. So, let us consider the following minimization problem:

Find u ∈ L2(Ω1 ×Ω2× . . .×Ωd) such that u = arg minv∈L2

�

1
2

�

Ω1×Ω2×...×Ωd

v2 −
�

Ω1×Ω2×...×Ωd

vf

�

(2.16)

whose solution is obviously u = f . In this context, the algorithm of the PGD (2.7) can be rewritten

as follows:

Iterate for all n ≥ 1: Find (r1n, r2n, . . . , rdn) ∈ Vx1×Vx2×. . .×Vxd such that (r
1
n, r

2
n, . . . , r

d
n) belongs

to

argmin
r1∈L2(Ω1),...,rd∈L2(Ωd)

1
2

�

Ω1×Ω2×...×Ωd

�

�

�

�

�

n−1
�

k=1

r1k ⊗ r2k ⊗ . . .⊗ rdk + r1 ⊗ r2 ⊗ . . . ⊗ rd
�

�

�

�

�

2

−
�

Ω1×Ω2×...×Ωd

�

n−1
�

k=1

r1k ⊗ r2k ⊗ . . . rdk + r1 ⊗ r2 ⊗ . . .⊗ rd
�

f,

(2.17)

As proposed in [BLM09], instead of solving the problem (2.17), we will determine the solutions

of the Euler equation for (2.17). Notice that, in general, the solutions of the Euler equation are not

necessarily the solutions of the minimization problem, given the nonlinearity of the tensor product

space L2(Ω1)⊗ L2(Ω2)⊗ . . .⊗ L2(Ωd).

The Euler equation for (2.17) has the following form:

Find (r1n, r
2
n, . . . , r

d
n) ∈ L2(Ω1)×L2(Ω2)×. . .×L2(Ωd) such that for any functions (r1, r2, . . . , rd) ∈

L2(Ω1)× L2(Ω2)× . . .× L2(Ωd), we have

�

Ω1×Ω2×...×Ωd

(r1n ⊗ r2n ⊗ . . .⊗ rdn)
�

r1 ⊗ r2n ⊗ . . .⊗ rdn + r1n ⊗ r2 ⊗ . . .⊗ rdn + . . .+ r1n ⊗ r2n ⊗ . . .⊗ rd
�

=
�

Ω1×Ω2×...×Ωd

fn−1

�

r1 ⊗ r2n ⊗ . . . ⊗ rdn + r1n ⊗ r2 ⊗ . . .⊗ rdn + . . .+ r1n ⊗ r2n ⊗ . . . ⊗ rd
�

(2.18)
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where fn−1 = f −�n−1
k=1 r

1
k ⊗ r2k ⊗ . . .⊗ rdk.

The equation (2.18) can be written equivalently as



































�r2n�2�r3n�2 . . . �rdn�2 r1n =
�

Ω2×Ω3×...×Ωd

�

r2n ⊗ . . . ⊗ rdn

�

fn−1,

�r1n�2�r3n�2�r4n�2 . . . �rdn�2 r2n =
�
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(2.19)

where �rin�2 denotes the L2 norm: �rin�2 =
�

Ωi
|rin|2.

The system (2.19) is a non linear coupled system of equations which can be solved by a fixed point

procedure as proposed in [ACKM06]. Choose (r1,(0)n , r
2,(0)
n , . . . , rd,(0)) ∈ L2(Ω1)×L2(Ω2)×. . .×L2(Ωd),

and at iteration k ≥ 0, compute (r1,(k)n , r
2,(k)
n , . . . , rd,(k)) ∈ L2(Ω1) × L2(Ω2) × . . . × L2(Ωd) which is

the solution to
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(2.20)

until convergence is reached.

It is important to note that we start with a linear problem (2.16) with exponential complexity

with respect to the dimension, and we obtain at the end a nonlinear problem (2.19) with a linear

complexity with respect to the dimension at each iteration . This is a general feature of the PGD

method: the curse of dimensionality is circumvented, but the linearity of the original problem is lost

because the space of tensor products is non-linear.

In the two-dimensional case (d = 2), the algorithm given by (2.17) is related to the Singular

Value Decomposition (or rank one decomposition), as it is explained in [BLM09]. In this case, the

solutions of the variational problem (2.17) are exactly the solutions to the Euler equation (2.18) that

verify the second-order optimality conditions (See Section 2.3). This property does not hold in a

d-dimensional framework with d ≥ 3.
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2.6 The Proper Generalized Decomposition in the case of the Poisson problem

In this section we present the application of the Proper Generalized Decomposition for solving

high-dimensional PDEs through the use of the greedy algorithms.

As in [BLM09], we take the example of the Poisson problem. Let us consider a function f ∈
L2(Ω), where Ω = Ω1× . . .×Ωd with Ωi ⊂ R are bounded domains for all i = 1, . . . d. Thus, we define

the following homogeneous multivariate Dirichlet Poisson problem:

Find u ∈ H0
1 (Ω) such that











−Δu = f in Ω

u = 0 on ∂Ω
(2.21)

Using Lax Milgram’s theorem, (2.21) is equivalent to the following minimization problem

Find u ∈ H0
1 (Ω) such that u = argmin

v∈H0
1 (Ω)

�

1
2

�

Ω
|∇v|2 −

�

Ω
fv

�

. (2.22)

Moreover, we note that the problem (2.22) is equivalent to

Find u ∈ H0
1 (Ω) such that u = argmin

v∈H0
1 (Ω)

�

Ω
|∇(v − u)|2, (2.23)

where u is the solution of the problem (2.22).

In particular, in the case of the Poisson problem (2.21), the greedy algorithm writes:

Find
�

r1n ⊗ r2n ⊗×⊗ rdn

�

∈ H0
1 (Ω1)×H0

1 (Ω2)× . . .×H0
d (Ω) such that

�

r1n ⊗ r2n ⊗ . . .⊗ rdn

�

∈ argmin
r1∈H0

1 (Ω1),r2∈H0
1 (Ω2),rd∈H0

1 (Ωd)

1
2

�

Ω
|∇

�

r1 ⊗ r2 ⊗ . . .⊗ rd
�

|2−
�

Ω
fn−1r

1
n⊗r2n⊗. . .⊗rdn

(2.24)

where fn−1 = f +Δ
�

�n−1
k=1 r

1
k ⊗ r2k ⊗ . . .⊗ rdk

�

.

The Euler-Lagrange equation related to the minimization problem (2.24) is: Find (r1n, r
2
n, . . . , r

d
n) ∈

H0
1 (Ω1)×H0

1 (Ω2)×. . .×H0
1 (Ωd) such that for any function (r1, r2, . . . , rd) ∈ H0

1 (Ω1)×H0
1 (Ω2)×H0

1 (Ωd)

�

Ω
∇
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r1n ⊗ r2n ⊗ . . .⊗ rdn
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· ∇
�
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�

=

=
�

Ω
fn−1

�

r1 ⊗ r2n ⊗ . . .⊗ rdn + r1n ⊗ r2 ⊗ . . . ⊗ rdn + . . .+ r1n ⊗ r2n ⊗ . . .⊗ rd
�

(2.25)
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This Euler-Lagrange equation can be written as follows
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(2.26)

We observe that the Euler equation (2.25) is not equivalent to the original problem (2.24) because

of the nonlinearity of the tensor product space H1
0 (Ω1)⊗ . . . ⊗H1

0 (Ωd)

We remark that calculating high-dimensional integrals as:

�

Ω1×Ω2...×Ωd

f(x1, x2, . . . , xd) r
1
n(x1)⊗ . . . ⊗ rdn dx1dx2 . . . dxd (2.27)

can be very costly. The idea that we use to overcome this practical obstacle is to approximate, in

a preliminary step, the data (the function f) by a sum of tensor products using, for example, the

approach presented in Section 2.5 and then to use Fubini’s rule to compute the term (2.27).

As in the case of the approximation of a square-integrable function, we start from a linear

problem with exponential complexity with respect to the dimension d as (2.21) and we end up with a

nonlinear problem with linear complexity with respect to the dimension d given by (2.26).

We observe that (2.26) is a nonlinear coupled system of low-dimensional Poisson equations,

which may be solved by a simple fixed point procedure as follows: At iteration l ≤ 1, find the functions
(r(1),ln , r

(2),l
n , . . . , r

(d),l
n ) ∈ H0

1 (Ω1)×H0
1 (Ω2) . . . ×H0

1 (Ωd) solution to
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(2.28)

We remark that the number of degrees of freedom needed to obtain the solution un in the

form (2.5) is n
�d

i=1Ni where Ni is the number of discretization points in the dimension i. So, the

number of unknowns at each iteration of the algorithm (2.7) grows linearly with respect to the dimen-
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sion and this allows an important reduction in the number of degrees of freedom with respect to the

classical approach. At each iteration of the greedy algorithm, the computational cost is given by the

solution of a low-dimensional nonlinear problem which is deduced from the high-dimensional linear

problem as in the example given in the previous section 2.6.

Convergence results for the Poisson problem

Le Bris, Lelièvre and Maday in [BLM09] prove that the PGD (2.24) converges when the PGA

and OGA are used to solve the Poisson problem.

Theorem 2.6. Let us assume that the assumptions (A1), (A2) and (A3) are verified and that the

functional E has the form (2.12). Then, for a function u ∈ A1, there exists a constant C > 0 such that

�un − u�V ≤ Cn−1/6, (2.29)

for all n ∈ N∗.

As mentioned above, the convergence rate factor of 1
6 can be improved to

11
62 and that the

constant C depends on the norm �u�A1 .

An extension of this result is proposed by Figueroa and Sully in [FS12] in the case of an arbitrary

diffusion coefficient satisfying a uniform ellipticity assumption.

Remark 2.2. A full characterization of the set A1(D) is not clear. Le Bris, Lelièvre and Maday
in [BLM09] give the following characterization of this set in terms of standard Sobolev spaces for the

Poisson problem (2.21)

For any m > 1 +
d

2
, Hm(Ω) ∩H0

1 (Ω) ⊂ A1(D)

More characterizations for the set A1(D) are obtained in [FS12] for more general operators.





3

Approximation of a Put payoff function using the Proper

Generalized Decomposition

In this section, we discuss the implementation of the Proper Generalized Decomposition defined

by (2.7) in the case of the approximation of a put payoff function (that is, a square-integrable function)

by a sum of tensor products as we presented in Section 2.5. We will then provide numerical examples

of the application of this approach. This particular case has the advantage of being an easy example

to understand the implementation of the algorithm (2.7). Moreover, this procedure is useful in a

preliminary step to approximate the initial condition of the Black-Scholes PDE (see Section 4.1.5),

namely in order to get a separated representation of the payoff function.

3.1 Separated representation of a Put payoff

In this section we will apply the algorithm (2.17) to obtain an approximation of the payoff of a

basket put option. This implies that we take f(x1, . . . , xd) =
�

K − 1
d

�d
i=1 xi

�

+
in the algorithm (2.17).

For the practical implementation of the greedy algorithm, we need to introduce the space discretization.

In practice, the spaces V Δx
xi for i = 1, . . . , d that are used to discretize L2(Ωi) with Ωi = (0, 1) for

i = 1, . . . d are the P1 finite elements on a uniform mesh with space step Δx. The number N = 1
Δx

is the number of intervals in each direction. For each k, we discretize the functions rik for i = 1, . . . , d

that appear in the approximation of the solution given by the expression (2.18) as follows:

ri,Δxk (xi) =
N
�

j=0

ri,jk φj(xi), ri,jk ∈ R, ∀j, k, (3.1)

where φi(x) = φ
�x−xi

Δx

�

with φ(x) =







1− |x| if |x| ≤ 1,
0 if |x| > 0.
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This type of discretization and its generalization to the d-dimensional case will be used for all the

numerical simulations of this work.

Figure 3.1 shows how the algorithm approximates the basket put payoff in a two-dimensional

framework (d = 2). We observe that, as the number of iterations of the greedy algorithm increases,

the approximation of the function f(x1, x2) improves.
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First iteration of the greedy algorithm

Third iteration of the greedy algorithm

Fig. 3.1. Basket put option with two assets. We consider here the intersection between the surface of prices and the

plane S1 = S2. To obtain this approximation we take 31 points of discretization per dimension (N= 30). In this figure,

we show the approximation given after the first and third iteration of the algorithm.

In order to study numerically the problem of approximating a square-integrable function, we

discuss about the fixed point procedure, the criteria of convergence of the algorithm (2.7) and the

numerical integration techniques used in our numerical experiments.

3.2 Fixed point procedure

In what follows, we are going to study the convergence of the fixed point method (2.20) from a

numerical point of view. This method allows us to find the solution of the Euler equation represented

by the non-linear system of equations (2.19). In order to analyze the fixed point procedure used in

practice in this work, we will propose three different stopping criteria for two different norms: L∞ and

L2.
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The first criterion consists in simply fixing arbitrarily the number of iterations. This arbitrary

number of iterations can be determined, for instance, by iterating the algorithm many times and thus

deduce the needed number by experience. The advantage of such a method is that we do not have to

compute any norm of the error at each step of the fixed point procedure (2.20) and so we can reduce

the computational time. Nevertheless, the inconvenient is that we cannot predict if the chosen number

is optimal.

A second criterion, called the residues method, consists in determining the convergence of the

fixed point method by calculating the following norm (L2 or L∞):

�r1,k+1n ⊗ r2,k+1n ⊗ ...⊗ rd,k+1n − r1,kn ⊗ r2,kn ⊗ ...⊗ rd,kn �
�r1,kn ⊗ r2,kn ⊗ ...⊗ rd,kn �

(3.2)

where n is fixed and represents the PGD iteration and k is the fixed point iteration.

The third implemented method compares the solutions obtained in two consecutive iterations

of the fixed point method fixing one direction, by computing the following norm in L2 or a L∞:

�ri,k+1n − ri,kn �
�ri,kn �

(3.3)

Let us now, to compare the last two criteria according to the number of iterations of the fixed

point procedure (2.20). Figure 3.2 illustrates the evolution of the number of iterations needed for

the convergence of the fixed point procedure when we use the expressions given by (3.2) and (3.3)

for a basket put option function with 5 assets. For practical considerations, we consider a maximum

number of 30 fixed point iterations by dimension, so for each PGD iteration we compute a maximum

of 150 fixed point iterations in a five-dimensional framework. We observe that for this example, the

criterion (3.3) yields to less iterations for the fixed point procedure compared with the criterion (3.2).

Nevertheless, we cannot say that we should always use the criterion (3.3), as in the case of a

basket put option with 6 assets, the criterion (3.3) needs more iterations to converge compared with

the criterion (3.2) as illustrated in Figure 3.3.

As a conclusion, we can say that for our numerical experiences, we have chosen an arbitrary

number of iterations for the fixed point method because neither of the two criteria (3.3) and (3.2) does

not seem to influence the convergence of the PGD algorithm.
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Fig. 3.2. Comparison between the number of fixed point iterations obtained at each PGD iteration according to the

criteria (3.2) and (3.3).
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Fig. 3.3. Comparison between the number of fixed point iterations obtained at each PGD iteration according to the

criteria (3.2) and (3.3).
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3.3 Initial condition for the fixed point procedure and for the convergence of the

Proper Generalized Decomposition method

A choice that can influence the convergence of the fixed point procedure is the initial condition.

To analyze this point, we study numerically two cases: a constant initial condition and a random initial

condition.

The constant initial condition is equal to the matrix
�u(x1,...,xd)−

�n−1

k=1
r1
k

⊗...⊗rd
k

�
�1� 1, where 1 is the

matrix such that 1i,j = 1 for all i, j, whereas the random initial condition is given by vectors whose

coordinates are uniform random variables in the set [−1, 1]. We renormalize this vector to obtain a
norm equal to the current error �u(x1, . . . , xd) −

�n−1
k=1 r

1
k ⊗ . . . ⊗ rdk�, where n is the current PGD

iteration and u is the basket put payoff with d assets.

Figures 3.4 and 3.5 compare the number of fixed point iterations needed under the criterion (3.3)

depending on the choice of a random or constant initial condition. Using these figures, we outline that

it is not clear if it would be better to begin the fixed point procedure with a random or a constant

initial condition.
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Fig. 3.4. Comparison of the number of fixed point iterations needed to obtain convergence according to the election of

a random or a constant initial condition in a 5 dimensional framework.

The choice of a random or a constant initial condition for the fixed point procedure has to be

analyzed as well from the convergence of the algorithm (2.7) to the basket put option function as the

number of the PGD iterations increases.
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Fig. 3.5. Comparison of the number of fixed point iterations needed to obtain convergence according to the election of

a random or a constant initial condition in a 6 dimensional framework.

Figure 3.6 and figure 3.7 show a comparison between the convergence curves for a basket put

option approximation in the case of 5 and 6 assets respectively obtained with a random and a con-

stant initial condition. We note that in this case, using a random initial condition leads to a faster

convergence. The experience obtained by this type of observations led us to consider random initial

conditions for the fixed point procedure in our numerical examples.

3.4 Criteria of convergence used in practice

In this part, we discuss about the criteria that we used in practice to establish the convergence

of the PGD algorithm (2.17). We note that the computation of

�f(x1, . . . , xd)−
n

�

k=1

r1k ⊗ . . . ⊗ rdk�, (3.4)

where f is the square-integrable function to approximate, involves a high-dimensional integral. We

give more details on the treatment of terms of type (3.4) in Section 3.5.

A possible criterion would be to verify if �r1n⊗ . . .⊗rdn� is small compared with �
�n−1

k=1 r
1
k⊗ . . .⊗

rdk�. In [BLM09], the authors note that using this criterion can lead to missing a term with a large

contribution in terms of norm. They show that in the fixed point procedure (2.20), an optimal term
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Fig. 3.6. Comparison of the convergence curves for a basket put option with 5 assets according to the use of a random

or a constant initial condition
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can be missed if the initial condition has a zero component on the eigenspace associated to this term.

They also note that it is possible that the optimal terms r1n, . . . , r
d
n obtained when solving the Euler

equation are picked in an order not appropriate for computational efficiency. Moreover, they remark

that the relaxation step performed in the orthogonal version of the PGD does not solve any of these

difficulties.

As the computation of the term (3.4) in dimension d, when d is large, is not possible for storage

reasons, from a practical point of view, we use a number of iterations for the algorithm (2.17) defined

a priori. This number of iterations can be estimated using many tries with the algorithm measuring

at the end the norm of the error (3.4). We remark that even when the dimension d is not large, the

computation of the error term (3.4) can take a lot of time.

In our numerical experiments, we calculate the support of the payoff function and we store

the points obtained in order to use them in the next iterations of the algorithm. In this manner, a

backtracking algorithm is used only one time in the computation of the approximation of the function f .

3.5 Numerical integration

In order to reduce the computational time needed to calculate the integrals presented in the

system of equations (2.19), we use the specific form of the payoff function in order to compute, in

a preliminary step, the points that belong to the support of this function. Thus, when we calculate

numerically the integral term

�

Ω1×Ω2×...×Ωd

�

r1n ⊗ r2n ⊗ . . .⊗ rdn

�

f dx1dx2 . . . dxd (3.5)

in (2.19), we do not need to pass through the points where the function vanishes. In practice, in

order to describe the support of this payoff function, we use a backtracking algorithm. This type

of algorithm consists in constructing candidates sequentially and neglecting them when they do not

verify the conditions required as a solution, in this case to belong to the support of the payoff.

Specifically, we consider the function (K − 1
d

�d
i=1 Si)+ with Si ∈ [0, Smax] for all i = 1, . . . d.

Introducing the parameter N to discretize the interval [0, Smax], we obtain that Si
j = xijS

max, with

xij =
(j−1)
N , j = 1, . . . , N + 1. This leads us to look for those xi, i = 1, . . . d such as

dK − Smax
d

�

i=1

xij > 0

for j = 1, . . . , N + 1. In order to do that, we need to find the combinations of (i1, ..., id) ∈ Nd, such

that:
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i1
N
+ ...+

id
N
≤ d

K

Smax

From a point (i1, i2 . . . , id) ∈ Nd that belongs to the support of the function f , we increase i1 by

1 and we check if this new point (i1+1, i2 . . . , id) is in the support of f . If this is the case, we continue

incrementing i1 until the considered point is no longer in the support of f and then we pass to the

following coordinate.

For instance, in a 5-dimensional case, the computational time is reduced by a factor of 4
5 by

taking into account the support of the payoff in the computations of the integral term (3.5).

Remark 3.1. Concerning the computational time, we note that if the dimension increases, one iter-

ation of the algorithm takes more time to be computed because the number of equations in the Euler

system (2.19) increases linearly with respect to the dimension. The integral terms of type (3.5) also

demand more time of execution because the domain has a new variable.

3.6 Numerical results

Figure 3.8 shows that, as the dimension increases, the number of iterations needed to obtain the

convergence increases as well.

We also provide in Table 3.1 the number of iterations needed in order to obtain a relative error

of 10−5 when we consider 11 points of discretization per dimension (N = 10). The relative error

calculated is the discrete L2 error

en =

�

1
N

�N
i1=1

�N
i2=1 . . .

�N
id=1

(f(xi1 , xi2 , . . . , xid)− un(xi1 , xi2 , . . . , xid))
2

�

1
N

�N
i1=1

�N
i2=1 . . .

�N
id=1

f(x1, . . . , xd)2
(3.6)

where un(x1, x2, . . . , xd) =
�n

k=1 r
1
k⊗ r2k⊗ . . .⊗ rdk is the solution obtained with the PGD algorithm at

the iteration n. It is to be outlined that computing (3.6) is more costly than the PGD method itself.

Notice that the full tensor product approximation would require 118 ≃ 2.108 degrees of freedom
in an 8-dimensional case, whereas we obtain 3974 × 8 × 11 ≃ 350000 degrees of freedom. For the

evaluation of this number, we used the fact that at each iteration of the algorithm we get 8 functions

that are determined by 11 discretization points.

We can also study the convergence of the algorithm with respect to the L∞ norm. Figure 3.9

illustrates the convergence curves for the L2 and L∞ norm when we approximate a basket put option

with 3 assets.
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Fig. 3.8. Convergence curves for the approximation of a basket put payoff by a sum of tensor products. We observe

that if the dimension increases, the number of iterations needed to obtain the convergence increases as well. The error

calculated is given by (3.6).

Dimension Number of iterations

1 1

2 2

3 10

4 22

5 101

6 228

7 1077

8 3974

Table 3.1. Number of iterations needed to obtain a relative error of 10−5 when we take 11 discretization points per

dimension

3.7 Mass lumping technique

Until here, all the numerical results presented were obtained by computing the term (3.5) using

the following approximation:
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Fig. 3.9. Convergence curves in the L2 and L∞ norm for the approximation of a basket put payoff with 3 assets by a

sum of tensor products.

�

Ω1×...×Ωd

�

r1n ⊗ . . .⊗ rdn

�

f(x1, . . . , xd)dx1 . . . dxd ≈
�

Ω1×...×Ωd

N
�

i1=0

. . .
N
�

id=0

f(xi11 , . . . , xidd )φi1(x1) . . . φid(xd)





N
�

j1=0

rj1
1 φj1(x1)



 . . .





N
�

jd=0

rjd1 φjd(xd)



 dx1 . . . dxd

=
N
�

i1=0

. . .
N
�

id=0

f(xi11 , . . . , xidd )





i1+1
�

j1=i1−1

r1,j1
n

�

Ω1

φi1(x1)φj1(x1)dx1





. . .





id+1
�

jd=id−1

rd,jdn

�

Ωd

φid(xd)φjd(xd)dxd





The mass matrixM defined below is a symmetric and tridiagonal matrix because the supports

of the functions φi and φj are disjoint when |i − j| > 1. The expressions of the terms of this mass

matrix can be determined analytically.

(M)i,i = 2
� (i+1)h

ih

(x− ih)2

h2
=
2h
3
,

and
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(M)i,i+1 =
� (i+1)h

ih

(x− ih)((i + 1)h− x)
h2

dx =
h

6

Nevertheless, we can also apply a mass lumping approach to reduce the execution time when

solving the linear system of equations obtained using the tridiagonal mass matrix M. The mass

lumping technique uses the trapezoidal rule for integration that gives the following approximation of

the integral:

� (i+1)h

ih
f(x)dx = h

(f(ih) + f((i+ 1)h))
2

Using this formula, we can replace the matrixM by N defined as follows:

Ni,i =
h (φi((i − 1)h) + φi(ih))

2
+

h (φi((i + 1)h) + φi(ih))
2

= h,

and

Ni,i+1 = Ni−1,i = 0

Therefore, the matrix N is such that N = hI where the matrix I is the identity matrix.

Figure 3.10 shows the convergence curves obtained using the matrices M and N respectively in the

system of equations (2.19). In Figure (3.10), we can also note that solving the system (2.19) with the

approximation using the mass matrixM is more precise than the mass lumping technique.

In Table 3.2, we compare the computational time needed to obtain 30 iterations of the PGD

algorithm (2.17) to approximate a basket put option payoff function with and without mass lumping.

Dimension Execution time in seconds with mass lumping Execution time in seconds without mass lumping

2 1 2

3 2 7

4 2 18

5 3 34

6 4 63

7 6 97

8 11 167

9 22 298

10 80 563

Table 3.2. Execution times according to the dimension with or without mass lumping in the approximation of a basket

put payoff
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Fig. 3.10. Comparison between the convergence curves of a 7 asset put payoff obtained using the method with and

without mass lumping

In Table 3.2, we consider only 11 points of discretization per dimension. As the number of

points of discretization increases ( N > 21 points), the advantage of the mass lumping method is more

obvious as we can see in Table (3.3).

Number of discretization points Execution time in seconds with mass lumping Execution time in seconds without mass lumping

21 6 45

31 13 96

Table 3.3. Execution times according to the number of discretization points when using or not mass lumping in the

approximation of a basket put payoff with 5 assets

The advantage in terms of the execution time of the mass lumping method for numerical inte-

gration is interesting because it allows to obtain relatively fast results in high-dimensional frameworks.

Nevertheless, when we look for more accurate approximations we consider the approximation given by

the mass matrixM. The numerical experiments presented in this work do not consider mass lumping

approximation except if it is indicated.
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3.8 Pricing of a basket put using the separated approximation of the payoff

As an example to show that the approximation by a sum of tensor products makes sense, we

can use this approximation as a method to obtain prices of options in the Black-Scholes framework.

The price of a European option in the Black-Scholes model (see Section 4.1.1) is given by

Pt = E
�

e−r(T−t)f(S1(T ), . . . , Sd(T ))|Ft
�

=
�

Ω1×...×Ωd

e−r(T−t)f(y1, . . . , yd)g(T, y1, . . . , yd|t, S1(t), . . . , Sd(t))dy1 . . . dyd
(3.7)

where (Ft)t≥0 is the natural filtration generated by the d assets prices Si(t) (i = 1, . . . , d), f is the

payoff of the option, g(T, .|t, S1(t), . . . , Sd(t)) is the joint density of the variables S1(T ), . . . , Sd(T )

given the values (S1(t), . . . , Sd(t)) of the underlying assets at time t. This joint density is a log-normal

law and thus has an explicit analytical expression.

Using the greedy algorithm as we saw in the previous section, we can obtain a separable ap-

proximation of the product

f(y1, . . . , yd)g(T, y1, . . . , yd|t, S1(t), . . . , Sd(t)),

and thus the integral (3.7) can be calculated very efficiently using the Fubini’s rule.

In Figure 3.11, we apply this idea for the case of a basket put option on seven assets and in Table 3.4

we show results for at-the-money basket put options according to the dimension comparing the price

of the method presented in this section with a Monte Carlo method with 104 and 106 simulations.

Dimension CI 104 CI 106 Price method

3 7.54 - 7.71 7.59 - 7.61 7.59

4 8.33 - 8.54 8.48 - 8.50 8.47

5 8.35 - 8.55 8.49 - 8.51 8.48

6 8.79 - 8.99 8.88 - 8.90 8.87

7 8.94 - 9.15 9.03 - 9.05 9.00

Table 3.4. At-the money price for a basket put option in dimension d = 3, 4, 5, 6, 7. We consider the Black-Scholes

model with a correlation matrix of the form ρij = 0.3 for all extra-diagonal terms. The today spot is given by the d-first

elements of the vector [50, 30, 50, 40, 20, 20, 50] and the volatility vector σ is obtained by the same way on [0.3, 0.1, 0.3,

0.2, 0.1, 0.2, 0.1].
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4

Application in Finance of a nonlinear approximation method for

solving high-dimensional partial differential equations

Now, we will apply the greedy algorithm (2.7) presented in Section 2.2 to solve the Black-Scholes

equation (1.27) and obtain the price of a European option.

4.1 The Proper Generalized Decomposition applied to the Black-Scholes partial

differential equation

4.1.1 Weak formulation of the Black-Scholes partial differential equation

The Black-Scholes model in a d-dimensional framework (see Section 1.3.3) describes the dynam-

ics of d risky assets that satisfy the following stochastic differential equations:

dSi(t)
Si(t)

= rdt+ σidBi(t) for all i = 1, . . . , d, (4.1)

with

d�Bi, Bj�t = ρijdt. (4.2)

The number ρij is the correlation between the Brownian motions Bi and Bj that drive the

dynamics of the assets Si and Sj respectively.

The coefficient σi represents the volatility of the asset Si at time t and r is the risk-free instan-

taneous interest rate. To simplify, we assume that r and σi for i = 1, . . . d are constant during the

period [0, T ]. We note that the PGD method that we are proposing can be used when the risk-free

interest rate is a continuous function of time and the volatility is a continuous function of time and of

the asset under standard regularity assumptions (See Chapter 2 in [AP05]).
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We recall that the price of a European option with payoff f and maturity T is given by the

following formula

E
�

er(T−t)f(S1(T ), . . . , Sd(T ))|Ft
�

.

Using the Markovianity of the process (S1(t), . . . , Sd(t)), it can be written as:

E
�

er(T−t)f(S1(T ), . . . , Sd(T ))|Ft
�

= P (t, S1(t), . . . Sd(t)), (4.3)

where P is a deterministic function.

The function P (t, S1, . . . , Sd) satisfies the Black-Scholes PDE which can be obtained using the

Feynman-Kac theorem. The Black-Scholes equation in a d-dimensional framework is a parabolic PDE

that has the following form:











∂P
∂t + LP = 0, t < T, (S1, . . . , Sd) ∈ Rd

+,

P (T, S1, . . . , Sd) = f(S1, . . . , Sd), (S1, . . . , Sd) ∈ Rd
+,

(4.4)

where the operator L is given by

LP =
1
2

d
�

i,j=1

∂2P

∂Si∂Sj
ρijσiσjSiSj +

d
�

i=1

rSi
∂P

∂Si
− rP.

Let us recall the standard framework for problem (4.4). Setting τ := T − t, the time to maturity,

we get the following forward parabolic problem for P̂ (τ, S1 . . . , Sd) = P (t, S1 . . . , Sd)











∂P̂
∂τ − LP̂ = 0, 0 < τ ≤ T, (S1, . . . , Sd) ∈ Rd

+

P̂ (0, S1, . . . , Sd) = f(S1, . . . , Sd), (S1, . . . , Sd) ∈ Rd
+.

(4.5)

We note that it is possible to write the diffusion term in the operator L+ r in a divergence form

as follows:

LP̂ + rP̂ =
1
2

d
�

i=1

∂

∂Si





d
�

j=1

ρi,jσiσjSiSj
∂P̂

∂Sj



+
d

�

j=1

�

rSj −
1
2

d
�

i=1

∂

∂Si
(ρi,jσiσjSiSj)

�

∂P̂

∂Sj
.

Therefore, if we multiply −LP̂ by a test function Q and then we integrate on Rd
+, we obtain the

following bilinear form:
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bt(P̂ ,Q) =
1
2

d
�

i=1

d
�

j=1

�

Rd
+

ρi,jσiσjSiSj
∂P̂

∂Sj

∂Q

∂Si

−
d

�

j=1

�

Rd
+

�

rSj −
1
2

d
�

i=1

∂

∂Si
(ρi,jσiσjSiSj)

�

∂P̂

∂Sj
Q+ r

�

Rd
+

P̂Q.

(4.6)

Let us now introduce the Hilbert space

V(Rd
+) =

�

v : v ∈ L2(Rd
+), Si

∂v

∂Si
∈ L2(Rd

+), i = 1, . . . , d
�

and its norm

�v�V =

�

�v�2L2(Rd
+)
+

d
�

i=1

�

�

�

�

Si
∂v

∂Si

�

�

�

�

2

L2(Rd
+)

�

1
2

.

We have the following result for problem (4.5) (see Theorem 2.11 in [AP05]).

Theorem 4.1. Let us assume that the matrix Ξ defined by Ξi,j = ρi,jσiσj is positive-definite. Then

for all f ∈ L2(Rd
+), there exists a unique function P̂ ∈ L2(0, T ;V) ∩ C0([0, T ];L2(Rd

+)), with
∂P̂
∂t ∈

L2(0, T ;V ′) such that, for any function φ ∈ D(0, T ), for all v ∈ V,

−
� T

0
φ′(t)

�

�

Rd
+

P̂ (t)v

�

dt+
� T

0
φ(t)bt(P̂ (t), v)dt = 0 (4.7)

and

P̂ (t = 0) = f. (4.8)

This result shows the existence and uniqueness of a weak solution for the problem (4.5).

In this work, our goal is to obtain the curve of prices for a put basket option which has a square-

integrable payoff. The price of call basket options can be obtained by the well-known put-call parity.

So, as initial condition we consider the payoff function:

f(S1, . . . , Sd) =

�

K − 1
d

d
�

i=1

Si(0)

�

+

(4.9)

where the constant K is the strike of the option.
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Three new difficulties appear when we want to apply the PGD techniques (2.7) to solve the

problem (4.5) when we compare it with the application of the PGD method to the case of the Poisson

problem as we presented in Section 2.6:

1. It is a problem posed on an infinite domain.

2. It is a time-dependent problem.

3. We cannot simply recast the weak formulation (4.7) of the problem (4.5) as a minimization problem

because the bilinear form (4.6) is non-symmetric.

4.1.2 Formulation on a bounded domain

The financial assets Si for i = 1, . . . , d take values in [0,∞). Consequently, we have to deal with
an infinite domain. Let us then introduce the following transformations:

Ψ : R+ �→ [0, 1], s �→ s

s+ K
d

, (4.10)

Ψ−1 : [0, 1] �→ R+, x �→ xK

d(1 − x)
. (4.11)

As remarked by Pommier in [Pom08], the change of variables (4.10) maps bijectively R+ to

the interval [0, 1] and appears to be efficient in practice since it leads to a refined mesh around the

singularity line of the payoff function. In [Pom08], Pommier explains that if we set a classical localized

boundary-domain then the volume next to this singularity decays exponentially with the dimension.

This change of variables allows us not to impose artificial boundary conditions contrary to classical

truncation techniques. Proposition 4.1 below shows that with the change of variables (4.10), we get a

well-posed problem in a bounded domain without boundary conditions.

Applying the change of variable (4.10) into the equation (4.4), we obtain:











−∂u
∂t + L̃u = 0,

u(0, x1, . . . , xd) = (K − K
d

�d
i=1

xi
1−xi

),
(4.12)

where u(t, x1, . . . , xd) = P (t, S1, . . . , Sd) with Si = Ψ(xi),(x1, . . . , xd) ∈ Ω = (0, 1)d and

L̃u = div(A∇u) +
d

�

i=1



r + σ2i xi − σ2i +
σi
2

d
�

j=1,j �=i
ρi,jσj(2xj − 1)



 xi(1− xi)
∂u

∂xi
− ru,
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with the matrix A given by

Ai,j(x1, . . . , xd) :=
ρi,jσiσj
2

xixj(1− xi)(1− xj). (4.13)

Then let us introduce the following Hilbert space

Ṽ(Ω) =
�

v ∈ L2(Ω) | ∀ 1 ≤ i ≤ d, (1− xi)xi
∂v

∂xi
∈ L2(Ω)

�

, (4.14)

endowed with the norm

�v�Ṽ =
�

�v�2L2(Ω) + |v|2Ṽ
� 1

2 (4.15)

where

|v|2Ṽ =
d

�

i=1

�

�

�

�

xi(1− xi)
∂v

∂xi

�

�

�

�

2

L2(Ω)
. (4.16)

In what follows, we need the following lemma:

Lemma 4.1. The space C∞
c (Ω) is dense in Ṽ(Ω).

This lemma can be directly deduced from Lemma 2.6 in [AP05].

Corollary 4.1. The following integration by parts formula holds:

�

Ω
div(A∇u)v = −

�

Ω
(A∇u)∇v, ∀u, v ∈ Ṽ(Ω). (4.17)

Proof. It follows from Lemma 4.1.

Therefore, multiplying −L̃u by a test function v ∈ C∞
c (Ω) and then using (4.17), we get the

following bilinear form:

b̃t(u, v) =
�

Ω
(A∇u)∇v −

�

Ω
(a∇u)v +

�

Ω
ruv. (4.18)

where a = (a1, . . . , ad) : Ω �→ Rd is the vector field with i-th component given by
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ai(x1, . . . , xd) = xi(1− xi)



r + σ2i xi − σ2i +
σi
2

d
�

j=1,j �=i
ρijσj(2xj − 1)



 , (4.19)

The following result holds for the the bilinear form defined in (4.18)

Lemma 4.2. The bilinear form b̃t is continuous from Ṽ × Ṽ, that is, there exists a constant c that

does not depend on t such that for all functions v,w ∈ Ṽ

b̃t(v,w) ≤ c�v�Ṽ |w|Ṽ (4.20)

Moreover, the bilinear form b̃t verifies a Garding inequality, that is, there exist two positive constants

c > 0 and λ > 0 such that for all functions v ∈ Ṽ

b(v, v) ≥ c|v|2Ṽ − λ�v�2L2(Ω) (4.21)

Proof. The Garding inequality is obtained by observing that the first order term satisfies the following:
�

�

�

�

�

Ω
p(x1, . . . , xd)

∂v

∂xi
v

�

�

�

�

≤ 1
2

�

�

�

�

�

Ω

∂p

∂xi
(x1, . . . , xd)v

2

�

�

�

�

,

where p(x1, . . . , xd) is a polynomial. The proof of the continuity uses the same arguments.

Thus, we obtain the following result concerning the existence and uniqueness of the solution for

the weak formulation associated to the problem (4.12).

Proposition 4.1. For all function g ∈ L2(Ω), there exists a unique u ∈ L2(0, T ; Ṽ)∩C0([0, T ];L2(Ω)),

with ∂u
∂t ∈ L2(0, T ; Ṽ ′) such that for any function φ ∈ D(0, T ), for all function v ∈ Ṽ,

−
� T

0
φ′(t)

�

Ω
u(t)vdt+

� T

0
φ(t)b̃(u, v)dt = 0, (4.22)

and

u(t = 0) = g (4.23)

Moreover, u solution of (4.22) is related to P̂ solution of (4.7) by the functions defined in (4.10)

and (4.11).

This proposition can be deduced from Lemma 4.2 using standard techniques, see [AP05].

4.1.3 The IMEX scheme and the Black-Scholes equation as a minimization problem

To apply the PGD method (2.7), our goal is to rewrite the problem (4.12) as a minimization

problem. As a first step, we propose to use an Euler scheme to discretize the problem in time. Let
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us consider a time discretization grid of M + 1 points, τ0 = 0 ≤ . . . ≤ τM = T , where τi = iΔt

and Δt = T
M . We introduce a time discretization of the variational formulation (4.22) where we treat

explicitly the non-symmetric part of b̃t and implicitly its symmetric terms (IMEX scheme).

For i = 1, . . . ,M , find ui ∈ Ṽ such that

�

Ω
uiv +

Δt

1 + rΔt

�

Ω
(A∇ui)∇v − Δt

2(1 + rΔt)

�
�

Ω
(a∇ui)v +

�

Ω
(a∇v)ui

�

=
1

1 + rΔt

�

Ω
ui−1v +

Δt

2(1 + rΔt)

��

Ω
(a∇ui−1)v −

�

Ω
(a∇v)ui−1

�

, ∀v ∈ Ṽ .
(4.24)

Thus, using that the left hand side of the equation (4.24) is symmetric in ui and v, we are led

to solve the following sequence of minimization problems

For i = 1, . . . ,M :

Find ui ∈ Ṽ(Ω) such that ui = argmin
u∈Ṽ(Ω)

Ei(u) (4.25)

where

Ei(u) =
1
2

�

Ω
|u|2 + Δt

2(1 + rΔt)

��

Ω
(A∇u)∇u−

�

Ω
(a∇u)u

�

− 1
1 + rΔt

�

Ω
ui−1u− Δt

2(1 + rΔt)

��

Ω
(a∇ui−1)u−

�

Ω
(a∇u)ui−1

�

.

(4.26)

Let us introduce the bilinear symmetric form â(u, v)

â(u, v) =
�

Ω
uv +

Δt

1 + rΔt

�

Ω
(A∇u)∇v − Δt

2(1 + rΔt)

��

Ω
(a∇u)v +

�

Ω
(a∇v)u

�

, ∀u, v ∈ Ṽ (4.27)

and the linear form

Li−1(v) =
1

1 + rΔt

�

Ω
ui−1v +

Δt

2(1 + rΔt)

�
�

Ω
(a∇ui−1)v −

�

Ω
(a∇v)ui−1

�

, ∀v ∈ Ṽ. (4.28)

We have that Ei(u) = 1
2 â(u, u) − Li−1(u).
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4.1.4 Stability analysis for the IMEX scheme

In this section, we study the L2-stability of the IMEX scheme (4.24). Let us consider un the

solution of the problem (4.25) at time τn. In our context, the meaning of stability is given in the

following definition.

Definition 4.1. The numerical scheme (4.24) is L2-stable if there exists a constant C > 0 that does

not depend on the discretization parameter Δt such that for any initial condition u0 and for all n ≥ 0

�un�L2 ≤ C�u0�L2

We will see that the scheme (4.24) is L2-stable under a condition on the time step Δt. For the

sake of simplicity we take r = 0. Let us begin with the following lemma:

Lemma 4.3. Let us assume that the matrix Ξ defined by Ξi,j = ρi,jσiσj , i, j = 1, . . . , d, is positive-

definite. Then there exists a constant α > 0 such that

�

Ω
(A∇u)∇u ≥ α|u|2Ṽ , ∀u ∈ Ṽ. (4.29)

Proof. Using that the matrix Ξ is positive-definite, we have

�

Ω

d
�

i,j=1

ρijσiσj
2

xi(1− xi)
∂u

∂xi
xj(1− xj)

∂u

xj
=

�

Ω
Y TΞY ≥

�

min
λ∈Sp(Ξ)

λ

�

|u|2Ṽ

where Sp(Ξ) denotes the set of eigenvalues of the matrix Ξ and Y is the vector such that Yi =

xi(1− xi) ∂u∂xi . This proves (4.29) with α = minλ∈Sp(Ξ) λ.

Now, we can state the following proposition:

Proposition 4.2. The scheme proposed in (4.24) is L2-stable under the following condition on the

time step Δt

Δt <
1

2
�

4(�ã�∞+�div(a)�∞)
α + α

2

� (4.30)

where the constant α is defined in Lemma 4.3 and ã is the vector such that for all i = 1, . . . d

ãi =



r + σ2i xi − σ2i +
σi
2

d
�

j=1,j �=i
ρi,jσj(2xj − 1)



 .
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Proof. Let us take r = 0 and v = ui in the variational formulation (4.24). Thus, we obtain

1
2Δt

��

Ω
|ui|2 − |ui−1|2

�

+
1
2Δt

�

Ω
|ui − ui−1|2 +

�

Ω
(A∇ui)∇ui −

�

Ω
(a∇ui)ui

=
1
2

��

Ω
(a∇ui−1)ui −

�

Ω
(a∇ui)ui−1

�

⇔ 1
2Δt

��

Ω
|ui|2 − |ui−1|2

�

+
1
2Δt

�

Ω
|ui − ui−1|2 +

�

Ω
(A∇ui)∇ui

−1
2

�

Ω
(a∇(ui + ui−1))ui − 1

2

�

Ω
(a∇ui)(ui − ui−1) = 0. (4.31)

Moreover, we note that ai = xi(1− xi)ãi and that ã ∈ L∞(Ω).

Thus, for all ǫ > 0 we have that

�

�

�

�

�

Ω
(a∇ui)(ui − ui−1)

�

�

�

�

≤ ǫ|ui|2Ṽ +
�ã�∞
4ǫ

�

Ω
|ui − ui−1|2. (4.32)

Besides, using the integration by parts given by (4.17) to study the term
�

Ω(a∇(ui + ui−1))ui,

we observe that

�

�

�

�

�

Ω
a∇ui(ui + ui−1)

�

�

�

�

=
�

�

�

�

�

Ω
a∇ui

�

2ui + (ui−1 − ui)
�

�

�

�

�

,

≤ ǫ|ui|2Ṽ +
�ã�∞
4ǫ

��

Ω
2|ui − ui−1|2 +

�

Ω
8|ui|2

� (4.33)

and

�

�

�

�

�

Ω
div(a)ui(ui + ui−1)

�

�

�

�

≤ �div(a)�∞
4ǫ

��

Ω
2|ui − ui−1|2 +

�

Ω
8|ui|2

�

+ ǫ

�

Ω
|ui|2. (4.34)

Then, using (4.32), (4.33) and (4.34), we deduce from (4.31) that

�

1
2Δt

− �ã�∞
ǫ

− �div(a)�∞
ǫ

− ǫ

2

�
�

Ω
|ui|2 + (α− ǫ)|ui|2Ṽ

+
�

1
2Δt

− �ã�∞
4ǫ

− �div(a)�∞
4ǫ

� �

Ω
|ui − ui−1|2 ≤ 1

2Δt

�

Ω
|ui−1|2.

(4.35)

So, if we assume the condition (4.30) and we choose ǫ = α
2 , then we can deduce the following

three inequalities:



62 4 Application in Finance of a nonlinear approximation method for solving high-dimensional partial differential equations

α > ǫ,
1
2Δt

− �ã�∞ + �div(a)�∞
ǫ

− ǫ

2
> 0 and

1
2Δt

>
�ã�∞ + �div(a)�∞

4ǫ
. (4.36)

Consequently, we get

�

Ω
|ui|2 ≤ 1

1− CΔt

�

Ω
|ui−1|2

≤ (1 + 2CΔt)
�

Ω
|ui−1|2

≤ (1 + 2CΔt)M
�

Ω
|u0|2

≤ e2CT
�

Ω
|u0|2,

where C = 2
�

(�ã�∞+�div(a)�∞)
ǫ + ǫ

2

�

is a constant which is independent of the discretization parame-

ter Δt.

4.1.5 Implementation of the Proper Generalized Decomposition techniques for the

Black-Scholes partial differential equation

To simplify the notation we consider the case of only three dimensions, but the definition of the

algorithm and all the equations below can be easily generalized to a d-dimensional framework.

We recall that the PGD method will generate the function ui in the separated representation:

ui(x1, x2, x3) =
�

k≥1

rik ⊗ sik ⊗ tik(x1, x2, x3).

The PGD algorithm (4.25) is defined as follows: For i = 1, . . . ,M , iterate on n ≥ 1

(rin, s
i
n, t

i
n) ∈ argmin

r ∈ Ṽ(Ω1),

s ∈ Ṽ(Ω2),

t ∈ Ṽ(Ω3)

1
2
â(r⊗s⊗t, r⊗s⊗t)−Li−1(r⊗s⊗t)− â

�

n−1
�

k=1

rik ⊗ sik ⊗ tik, r ⊗ s⊗ t

�

(4.37)

where â is defined by (4.27) and Li−1 by (4.28).

Then, the Euler equation associated with the problem (4.37), that is used in practice to imple-

ment the algorithm, is given by:
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Find (rin, s
i
n, t

i
n) ∈ Ṽ(Ω1)×Ṽ(Ω2)×Ṽ(Ω3) such that for any functions (r, s, t) ∈ Ṽ(Ω1)×Ṽ(Ω2)×

Ṽ(Ω3)

â(rin ⊗ sin ⊗ tin, r ⊗ sin ⊗ tin + rin ⊗ s ⊗ tin + rin ⊗ sin ⊗ t) = Li−1(r ⊗ sin ⊗ tin + rin ⊗ s ⊗ tin + rin ⊗ sin ⊗ t)

+â

�

r ⊗ sin ⊗ tin + rin ⊗ s ⊗ tin + rin ⊗ sin ⊗ t,

n−1
�

k=1

rik ⊗ sik ⊗ tik

�

(4.38)

Henceforth, we will consider without loss of generality s = 0 and t = 0 in order to study in detail

each term of this Euler equation (4.38). We recall that the Euler equation is solved using a fixed point

procedure as in (2.20).

Remark 4.1. All the high-dimensional integrals in (4.38) are easily calculated using Fubini’s rule

because the functions in these integrals are separable except for i = 1 where the term u0 appears as

follows:

�

Ω1×Ω2×Ω3

r ⊗ sin ⊗ tin(x1, x2, x3)u
0(x1, x2, x3)dx1, dx2dx3, (4.39)

The idea used to overcome this practical obstacle is to approximate, in a preliminary step, the

initial condition u0 of the Black-Scholes PDE by a sum of tensor products as explained in Section 3.1.

Once the initial condition u0 has a separated approximation:

u0(x1, x2, x3) =
�

k≥1

r0k ⊗ s0k ⊗ t0k(x1, x2, x3).

the integral (4.39) is easy to compute using Fubini’s rule.

Using the space discretization described in Section 3.1 and the notation given by (3.1), the

following vectors will be used:

ri

n = [r
i
n,0, . . . , r

i
n,N ]

T , si

n = [s
i
n,0, . . . , s

i
n,N ]

T , ti

n = [t
i
n,0, . . . , t

i
n,N ]

T ,

Given the fact that all the terms in the equation (4.38) admits a separated representation, the

equation (4.38) can be written in a matrix form.

The following matricial expressions allow us to deduce the matricial form for the equation (4.38):

�

Ω1×Ω2×Ω3

(rin ⊗ sin ⊗ tin)(r ⊗ sin ⊗ tin) = [t
i

n

T
Mti

n][s
i

n

T
Msi

n]Mri

n,
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�

Ω1×Ω2×Ω3
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�

∇(r ⊗ sin ⊗ tin) =

�
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2
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�
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�
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T
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T
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i
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�
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�
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+
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n

where the matrices M,L,B,C,D are explicitly computable tridiagonal matrices of size N ×N , with

N the number of intervals in each direction. The computation of the components for these matrices

boils down to one-dimensional integrals.

In this way, solving (4.38) with a fixed point procedure allows us to obtain for a fixed i such

that 1 ≤ i ≤ N , the n-th term of the sum
�n

k=1 r
i
k⊗ sik ⊗ tik which is an approximation of the solution

at time ti = iΔt of the problem (4.12).

4.2 Numerical results

4.2.1 Testing the method against an analytical solution

In this part, we apply the PGD algorithm defined in (4.37) to solve the problem (4.12) with the

following initial condition:

u(0, x1, . . . , xd) =

�

K −
d
�

i=1

xi
(1− xi)

�+

(4.40)

for which the solution is analytically known.

Using the Feynman-Kac theorem (4.3) we get that the solution of the PDE (4.5) is given by

E
�

e−rT (K −�d
i=1 S

i
T )

+
�

, which is possible to calculate analytically in the Black-Scholes model. We

have:

E

�

e−rT (K −
d
�

i=1

Si
T )

+

�

= e−rTKP

�

K >
d
�

i=1

Si
T

�

− e−rTE





d
�

i=1

Si
T1

�

K>
�d

i=1
Si
T

�



 (4.41)
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We get the quantity P
�

K >
�d
i=1 S

i
T

�

as follows:

P

�

K >
d
�

i=1

Si
T

�

= P

�

e
�d

i=1
Xi
T <

K
�d
i=1 S

i
0

�

= P

�

Y < log

�

K
�d
i=1 S

i
0

��

where Xi
T = (r−

σ2
i

2 )T +σiW
i
T and Y =

�d
i=1X

i
T is a normal random variable with mean equal

to
�d

i=1

�

r − σ2
i

2

�

T and variance given by
�d

i=1

�d
j=1 ρijσiσjT .

Besides, we remark that:

E





d
�

i=1

Si
T1

�

K>
�d

i=1
Si
T

�



 = E



eY 1{eY < K
�d

i=1
Si

0

}





d
�

i=1

Si
0

where the last term can be calculated analytically. We remark that the analytic solution (4.41) is not

separable with respect to each coordinate.

We present in figure 4.1 a numerical example of the solution obtained with our algorithm and

the analytic solution. In figure 4.2 we see the same surface but intersected with the plane x1 = x2.
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Fig. 4.1. The analytical solution and the numerical one obtained with our method for the problem (4.5) with the initial

condition (4.40) in a two-dimensional framework. For this example, we consider Δt = 1
100

and Δx = 1
30
.

Figure 4.3 shows the convergence curves, i.e, the L2 relative error with respect to the number of

iterations of the algorithm according to the dimension. We note that the number of iterations needed

to obtain convergence increases as the dimension of the problem increases.
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Fig. 4.2. The analytical solution and the numerical one obtained with our method for the problem (4.5) with the initial

condition (4.40) in a two-dimensional framework. We represent the intersection between the surface in figure 4.1 and the

plane x1 = x2. For this example, we consider Δt = 1
100

and Δx = 1
30
.
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Fig. 4.3. Convergence curves for the solution at time T of the equation (4.5) with initial condition given by (4.40). To

obtain this curves, we consider Δx = 0.1 for each dimension and Δt = 0.01.

4.2.2 Results on the Black-Scholes equation

In this section, we show the results that we obtained applying the PGD method described in

the previous section to the Black-Scholes equation.

Figure 4.4 represents the approximation of the solution at time T to the problem (4.5) with

initial condition (4.9) obtained using the PGD approximation defined by the equations (4.38)

Figure 4.5 represent the price of a basket put option when all the assets take the same

value, i.e. S1 = . . . = Sd. Precisely, Figure 4.5 compares prices obtained with different discretizations

Δx.
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Fig. 4.4. The approximated solution obtained with our method for the problem (4.5) with the initial condition (4.9).
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Fig. 4.5. The approximated solution obtained with our method for the problem (4.5) with the initial condition (4.9) in

a four-dimensional framework. For these results, we set Δx = 0.1, 0.2 and Δt = 0.01.

In terms of computational time, the PGD approach (4.37) is not competitive compared to Monte

Carlo methods when one is interested in the price of only one value of the spot, but on the other side

the curve of prices is obtained for any time t ∈ [0, T ] and any price spot.

4.2.3 Application as a variance reduction method

In this part, we show that we can use the solution obtained by the PGD method described above

in order to find a control variable to reduce the variance when calculating the price an of option.

We can re-write the equations (4.1) and (4.2) which define the Black-Scholes model as follows:
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dSi
t

Si
t

= rdt+ σi
d

�

j=1

Hi,jdW
j
t (4.42)

where W is a d-dimensional Brownian motion and the matrix H verifies HHt = Σ where Σ is a d× d

matrix such that Σi,j = 1 if j = i and Σi,j = ρij otherwise.

We recall that the price of a basket put option is given by

E
�

e−rT f(S1
T , S

2
T , . . . , S

d
T )

�

where f(S1
T , S

2
T , . . . , S

d
T ) =

�

K − 1
d

�d
i=1 S

i
T

�

+
.

Now, for the sake of simplicity, let us consider r = 0. Generalization to r �= 0 is straightforward.
Let us introduce the Kolmogorov equation:











∂tP̂ − 1
2A : ∇2P̂ = 0

P̂ (0, x) = f(x)
(4.43)

where A = FH(FH)T and F is a diagonal matrix such that Fi,i = σiSi for i = 1, . . . , d. Notice that

P̂ (T, S0) = E
�

f(S1
T , S

2
T , . . . , S

d
T )

�

.

Therefore, we have

P̂ (0, ST )− P̂ (T, S0) =
� T

0
FH ∇P̂ (T − t, St)dBt

and thus,

P̂ (T, S0) = f(ST )−
� T

0
FH ∇P̂ (T − t, St)dBt (4.44)

The random variable Y =
� T
0 FH ∇P̂ (T − t, St)dBt has zero mean and is a perfect control

variable since

Var [f(ST )− Y ] = 0.

As we do not know the solution P̂ , in practice, we calculate an approximation P̂ ⋆ of P̂ using

the PGD algorithm presented in Section 4.1.5. Therefore, we obtain an approximated control variable
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Y ⋆ =
� T
0 FH ∇P̂ ⋆(T − t, St)dBt and we can compute an approximation of P̂ (T, S0) by Monte Carlo,

computing the following quantity:

E

�

f(ST )−
� T

0
FH ∇P̂ ⋆(T − t, St)dBt

�

.

We remark that this idea can be applied to any payoff function and that for a new value of S0
we use the same approximation P̂ ⋆.

In Table 4.1 and 4.2 we present the performance of our variance reduction method compared

with the variance obtained with the classical method, i.e. calculating directly E[f(ST )].

Dimension Without variance reduction With variance reduction

4 0.1233 0.0012

5 0.1204 0.0034

6 0.1197 0.0078

7 0.1245 0.0113

8 0.1257 0.0254

Table 4.1. Variance with a correlation parameter ρi,j = 0.9 constant between all the assets.

Dimension Without variance reduction With variance reduction

4 0.1256 0.0023

5 0.1248 0.0045

6 0.1230 0.0096

7 0.1199 0.0158

8 0.1232 0.0296

Table 4.2. Variance with a correlation parameter ρi,j = 0.1 constant between all the assets.

For two typical values of the correlation, we observe that the reduction of the variance is impor-

tant, for example, up to a factor 6 in dimension 8.

4.3 Appendix: Formulas for the matrices used to solve the Black-Scholes partial

differential equation

In this section, we detail the calculations of the terms appearing in the equation (4.38). As

we already remarked, the multi-dimensional integrals are in fact the multiplication of 1-dimensional

integrals.
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Let us now analyze some terms that appear in the left hand side of the equation (4.38). Thus
we have that:
�

Ω1×Ω2×Ω3

(A∇(rin ⊗ sin × tin))∇(r ⊗ sin ⊗ tin) =
1
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σ2
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�

Ω3
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2(∂x1
rin)(x1)∂x1
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i
n(x2)∂x2

(sin)(x2)dx2

�

Ω1

x1(1 − x1)r
i
n∂x1

(r)(x1)dx1

+
1

2
σ2

3

�

Ω2

|sin|2
�

Ω3

x2
3(1 − x3)

2∂x3
(tin)(x3)∂x3

(tin)(x3)dx3

�

Ω1

rin(x1)r(x1)dx1

+
ρ13σ1σ3

2

�

Ω2

|sin|2
�

Ω3

x3(1 − x3)t
i
n(x3)∂x3

(tin)(x3)dx3

�

Ω1

x1(1 − x1)r
i
n∂x1

(r)(x1)dx1.

(4.45)

We recall that we consider a discretization in space given by Δx = 1
N and that is the same for

each dimension. So, in order to calculate these last terms, we define the next matrices:

Li,j =
�

Ω
x2(1− x)2∂x(φi)(x)∂x(φj)(x)dx (4.46)

Di,j =
�

Ω
x(1− x)φi(x)∂x(φj)(x)dx (4.47)

The matrix L is a tridiagonal matrix of size N + 1×N + 1 given by:

Li,j =































































































































1
5
(Δx)3 − 1

2
(Δx)2 + 1

3
(Δx), if i = j = 0

− 1
5
(Δx)3 + 1

2
(Δx)2 − 1

3
(Δx), if i = 0, j = 1

1
30
(Δx)(10 − 15(Δx) + 6(Δx)2), if i = j = N

− 1
30
(Δx)(10 − 15(Δx) + 6(Δx)2), if i = N, j = N − 1

2
15
(Δx)(15(Δx)2i4 + 30(Δx)2i2 + 3(Δx)2 − 30(Δx)i3 − 30(Δx)i + 15i2 + 5), if j = i

−
1

30
(Δx)

�

30(Δx)2i4 − 60(Δx)2i3 + 60(Δx)2i2 − 30(Δx)2i + 6(Δx)2

−60(Δx)i3 + 90(Δx)i2 − 60(Δx)i + 15(Δx) + 30i2 − 30i + 10
�

,
if j = i − 1

−
1

30
(Δx)

�

30(Δx)2i4 + 60(Δx)2i3 + 60(Δx)2i2 + 30(Δx)2i + 6(Δx)2 − 60(Δx)i3

− 90(Δx)i2 − 60(Δx)i − 15(Δx) + 30i2 + 30i + 10
�

,
if j = i + 1
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The matrix D is also tridiagonal of size N + 1×N + 1 and it is such that:

Di,j =



























































































































1
12(Δx)((Δx) − 2), if

i = j = 0

or i = N, j = N − 1

− 1
12(Δx)((Δx)− 2), if

i = j = N

or i = 0, j = 1

1
3(Δx)(2i(Δx) − 1), if j = i

1
12(Δx)(6i2(Δx)− 4i(Δx) + (Δx)− 6i+ 2), if j = i− 1

− 1
12(Δx)(6i2(Δx) + 4i(Δx) + (Δx)− 6i− 2), if j = i+ 1

Another term that appear in the left hand side of the equation (4.38) is the next one
�

Ω1×Ω2×Ω3

(a∇(rin ⊗ sin ⊗ tin))(r ⊗ sin ⊗ tin) =

=
�

Ω3

|tin(x3)|2dx3
�

Ω2

|sin(x2)|2dx2
�

Ω1

(r + σ21x1 − σ21)x1(1− x1)∂x1(r
i
n)(x1)r(x1)dx1

+
ρ12σ1σ2
2

�

Ω3

|tin(x3)|2dx3
�

Ω2

(2x2 − 1)|sin(x2)|2dx2
�

Ω1

x1(1− x1)∂x1(r
i
n)(x1)r(x1)dx1

+
ρ13σ1σ3
2

�

Ω2

|sin(x2)|2dx2
�

Ω3

(2x3 − 1)|tin(x3)|2dx3
�

Ω1

x1(1− x1)∂x1(r
i
n)(x1)r(x1)dx1

+
ρ21σ1σ2
2

�

Ω3

|tin(x3)|2dx3
�

Ω2

x2(1− x2)∂x2(s
i
n)(x2)s

i
n(x2)dx2

�

Ω1

(2x1 − 1)rin(x1)r(x1)dx1

+
�

Ω3

|tin(x3)|2dx3
�

Ω2

(r + σ22x2 − σ22)x2(1− x2)∂x2(s
i
n)(x2)s

i
n(x2)dx2

�

Ω1

rin(x1)r(x1)dx1

+
ρ23σ2σ3
2

�

Ω3

(2x3 − 1)|tin(x3)|2dx3
�

Ω2

x2(1− x2)∂x2(s
i
n)(x2)s

i
n(x2)dx2

�

Ω1

rin(x1)r(x1)dx1

+
ρ31σ1σ3
2

�

Ω2

|sin(x2)|2dx2
�

Ω3

x3(1− x3)∂x3(t
i
n)(x3)t

i
n(x3)dx3

�

Ω1

(2x1 − 1)rin(x1)r(x1)dx1

+
�

Ω2

|sin(x2)|2dx2
�

Ω3

(r + σ23x3 − σ23)x3(1− x3)∂x3(t
i
n)(x3)t

i
n(x3)dx3

�

Ω1

rin(x1)r(x1)dx1

ρ23σ2σ3
2

�

Ω2

(2x2 − 1)|sin(x2)|2dx2
�

Ω3

x3(1− x3)∂x3(t
i
n)(x3)t

i
n(x3)dx3

�

Ω1

rin(x1)r(x1)dx1

(4.48)

Therefore, we define the next matrices:

Bij =
�

Ω
(r + σ2x− σ2)x(1− x)∂x(φi)(x)φj(x)dx (4.49)
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and

Cij =
�

Ω
(2x− 1)φi(x)φj(x)dx (4.50)

B is a tridiagonal matrix of size N + 1×N + 1 such that:

Bi,j =































































































































1
60
(Δx)(3v2(Δx)2 + 5(Δx)r − 10v2(Δx) − 10r + 10v2), if i = j = 0

− 1
60
(Δx)(3v2(Δx)2 + 5(Δx)r − 10v2(Δx) − 10r + 10v2), if i = 0, j = 1

− 1
60
(Δx)(5v2(Δx) − 3v2(Δx)2 − 10r + 5(Δx)r), if i = j = N

1
60
(Δx)(5v2(Δx) − 3v2(Δx)2 − 10r + 5(Δx)r), if i = N, j = N − 1

1
30
(Δx)(10v2 − 40v2(Δx)i + 20(Δx)ri + 3v2(Δx)2 + 30v2(Δx)2i2 − 10r), if j = i

−
1

60
(Δx)

�

45v2(Δx)2i − 20v2 + 15(Δx)r − 30ri − 30v2(Δx) + 80v2(Δx)i − 40(Δx)ri

−12v2(Δx)2 + 30v2(Δx)2i3 − 60v2(Δx)2i2 − 60v2(Δx)i2 + 30(Δx)ri2 + 30v2i + 20r
�

if j = i − 1

−
1

60
(Δx)

�

15v2(Δx)2i + 10v2 + 5(Δx)r − 30ri − 10v2(Δx) − 40v2(Δx)i + 20(Δx)ri

+3v2(Δx)2 + 30v2(Δx)2i3 + 30v2(Δx)2i2 − 60v2(Δx)i2 + 30(Δx)ri2 + 30v2i − 10r
�

.
if j = i + 1

C is also a tridiagonal matrix of size N + 1×N + 1 such that:

Ci,j =























































































































1
6(Δx)(−2 + (Δx)), if i = j = 0

1
6(Δx)((Δx)− 1), if i = 0, j = 1

−1
6(Δx)(−2 + (Δx)), if i = j = N

−1
6(Δx)((Δx)− 1), if i = N, j = N − 1

2
3(Δx)(2i(Δx) − 1), if j = i

1
6(Δx)(2i(Δx) − (Δx)− 1), if j = i− 1 or j = i+ 1

We do not develop the expression of the right hand side of the equation (4.38) because its terms

can be obtained using the same matrices B,C,D,L and M .
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Perspectives of the application of the Proper Generalized

Decomposition method for option pricing

In this section, we present some perspectives on the first part of this manuscript: the problem

of the American options and the use of non-continuous dynamics for the asset value.

5.1 Pricing using the characteristic function, application to Bermudan options

Before treating the pricing of an American option, it is important to remark that the PGD

approach can be applied as well in the case of another type of option apart from European and

American options and that can be considered as an intermediate point between them. This type of

option is known as Bermudan option and the holder of one of these contracts can exercise the option

only at certain days between the present time and the maturity. For example, for an option on a single

asset, if we denote the payoff by the function φ, then the pricing function is such that

p(t+i , S) = max
�

p(t−i , S), φ(S)
�

at each exercising time ti ∈ [0, T ] and satisfies the PDE of Black-Scholes (4.4) between the exercising
times.

Using the same idea as in the Section 3.8, we can compute numerical integration on the Fourier

domain. This method can readily be applied for solving problems under various asset price dynamics,

for which the characteristic function (the Fourier transform of the probability density function) is

available. This is the case for models from the class of regular affine processes [DFS03] which also

includes the exponentially affine jump-diffusion class of [DPS00]. Many methods based on Fourier

transform techniques are used on the one dimensional asset class of models [CMS99, LO08, KL09]. As

a future work, an idea would be to extend these methods to the multi-dimensional framework.
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Let us introduce T = t1, . . . , tM , t0 ≤ t1 ≤ . . . ≤ tM = T a set of exercise dates where we define

the time between two exercise dates as δi = ti − ti−1. Applying the dynamic programming principle,

the pricing formula for a Bermudan option is given by

p(tM , x) = φ(tM , x),

p+(tm−1, x) = e−rδi

�

Rd
p(tm; y)g(y|tm−1, tm;x)dy, (5.1)

p(tm−1, x) = max
�

φ(tm−1, x), p+(tm−1, x)
�

for m=M,. . . ,2 and

p(t0, x) = e−rδ1

�

Rd
p(t1; y)g(y|t0, t1;x)dy

Here, the probability density function of y = Xx,t
t̃
under the risk-neutral measure is denoted

g(y|t, t̃, x). In this case, y = log
�

Stm
K

�

, p(t, x) is the value of the option, p+(t, x) is the continuation

value and φ(t, x) is the payoff.

Considering a multi-dimensional truncated domain of integration to proceed numerically, we

obtain that the payoff is L2-integrable. Mathematically, we take the function φ such that

φ(tm, x) = φ(tm, x)1x∈Ω , 1 ≤ m ≤M. (5.2)

where Ω is a bounded subset of Rd.

Using the approximation (5.2), we can compute the Fourier transform of (5.1)

F
�

p+(tm−1, .)
�

(ξ) = e−rδm

�

R2×R2
p(y, tm)g(y|tm−1, tm, x)eixξdydx

Assuming that the probability density function comes from an independent increment process

(for example a Lévy process), that is

g(y|tm−1, tm, x) = g(y − x|tm−1, tm, 0)

Then, it holds
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F
�

p+(tm−1, .)
�

(ξ) = e−rδmF (p(tm, .)) (ξ)Φ(tm−1, tm;−ξ) (5.3)

where Φ(t, t̃, ξ) =
�

Rd f(z|t, t̃, 0)eizξdz.

In conclusion, we can propose the following steps to compute the price of the Bermudan option:

1. Compute an approximation of p(tm, .) as a sum of tensor products using the PGD approach (2.17)

to obtain the function p̃ as follows:

p̃(., tm) =
N
�

n=0

r1n ⊗ . . .⊗ rdn

2. Apply the Fubini’s rule to get

F (p̃(tm, .)) =
N
�

n=0

F(r1n)⊗ . . .⊗F(rdn)

3. Convolve by density function using (5.3)

F
�

p̃+(tm−1, .)
�

(ξ) = e−rδmF (p̃(tm, .)) (ξ)Φ(ξ).

4. Compute an approximation of F �

p̃+(tm−1, .)
�

as a sum of tensor products by the PGDmethod (2.17)

and calculate the inverse Fourier transform using the Fubini’s rule.

5.2 The problem of the American options

In this section we propose an application of the PGD method for solving the problem of the

American options. This type of options can be exercised at any time up to the maturity, consequently,

the price of an American option with payoff φ and maturity T is given by

p(t, x) = sup
τ∈T[t,T ]

E

�

e−
� τ

t
rdsφ(St,x

τ )
�

,

for stopping times τ between t and T , for t ∈ [0, T ] and x ≥ 0, where T[t,T ] denotes the set of stopping
times τ of the filtration Fτ .

It is possible to show that the pricing of an American option amounts to solving (see [AP05]):











max {∂tu+ Lu, u− φ} = 0 in [0, T ]× Rd
+

u(0, .) = φ in Rd
+

(5.4)
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where L is defined by (1.26) and the problem (5.4) is equivalent to the following problem, called the

obstacle problem











































Lu− ∂u

∂t
≤ 0, in RT

u ≥ φ, in RT

(u− φ)
�

Lu− ∂u

∂t

�

= 0, in RT

u(0, x) = φ(0, x), x ∈ Rd

(5.5)

To apply the PGD approach to the problem (5.4), we propose to use the idea presented

in [CEL12] and that allows to apply the PGD method to the obstacle problem (5.5) by penalizing the

constraints. In order to use this idea we can discretize in time, obtaining:











max {un+1−un

Δt + Lun+1, un+1 − φ} = 0 in [0, T ] × Rd
+

u(0, .) = φ in Rd
+

Finally, we propose to penalize the constraints:

un+1 − un

Δt
+ LSun+1 + LAun +

1
ǫ
(un+1 − φ)+ = 0 (5.6)

Again, the problem in un+1 is symmetric and thus can be rewritten as a minimization problem

needed to apply the PGD method.

There exists theoretical results that indicate that the approach (5.6) is reasonable (see [CEL12]).
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Liquidity risk, limit order book modeling and market microstructure
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Survey on market impact models

6.1 Introduction

Financial markets are places where buyers and sellers can exchange different types of assets. One

of the goals of a financial market is to allow companies to fund themselves through different types of

financial products. This implies that an important part of the economy is influenced by the financial

markets. The understanding of how these financial markets work is therefore very important.

As a consequence of the technological innovations and regulatory changes, the structure of the

financial markets has evolved in the past years. Initiatives such as the MiFID in Europe and the

Regulation National Markets System in United States have appeared to deregulate markets and then

to improve the service given to the investors by stimulating the competition between the markets. The

deregulation has been one possible reason for which liquidity risk and market microstructure have

become a hot topic in mathematical finance in the past years.

Market microstructure is the study of how the markets work. Thus, this branch of finance is

interested in understanding the details of the trading mechanisms. Among the topics treated by the

market microstructure we have the price formation and price discovery, the market structure and

design issues, and the information and disclosure.

The importance of the market microstructure can also be seen from the common assumption of

frictionless markets, that means markets without transaction costs. This hypothesis is considered in

many important models in mathematical finance such as the well-known Black-Scholes model. Because

of the assumption, the price process does not depend on the trading strategy used by the agents. As

the time scale becomes smaller and smaller, this assumption is less coherent.

Liquidity risk is a decisive concept in market microstructure. This risk takes into account finding

the counterpart for the buy or sell order that the trader needs to execute. Liquidity is therefore a key

to knowing how prices will change after the action of the agents in the markets through some measures

of the liquidity of the asset such as the bid-ask spread or the market depth.
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Markets are also supposed to be perfectly liquid in classical models of mathematical finance, an

assumption that guarantees the perfect hedging as in the case of the Black-Scholes model for example.

In practice, however, this is not true; trading large volumes of orders shifts the price of the asset in

the opposite direction to the one most beneficial to the investor. As a consequence, the price impact

can be seen as the difference between the realized price and the price before the order was executed.

We cannot take further the discussion on market impact models without introducing the concept

of an order, which constitutes an instruction from customers to brokers to buy or sell on the markets.

In the financial markets, there exist different types of orders, the more standard ones being the market

orders and the limit orders. On the one hand a market order allows the client to execute his order

immediately and to get the best price available on the market. On the other hand, a limit order gives

to the investor the possibility of buying or selling a share at a specified price. When the execution of

the order is greater than the price for the trader, he will generally use a market order. A limit order

might not be able to be executed at all but it would allow the investors to have control over the price

that they might pay for executing their orders.

A database of limit orders constitutes a limit order book. In other words, investors place orders

to buy or sell a given quantity of stock in the limit order book. If a market order arrives in the limit

order book, then it is matched with the best current price proposed on the market and if a limit order

is placed in the limit order book, this will be stored waiting for a market order that would execute

it. Figure 6.1 illustrates a limit order book for specific shares. Orders can only be placed on a price

grid and at each moment in time, the number of waiting buy (or sell) orders is stored for each price.

For a given price, orders are executed according to the FIFO rule as soon as two orders match. As we

can observe, the structure of Limit Order Books (LOB) is very complex, so an exhaustive modeling

of its dynamics would not lead, for example, to draw quantitative conclusions on an optimal trading

strategy. One has therefore to propose models that can grasp important features of the LOB structure

but that allow to find analytical results.

Quotation rules are changing and, in general, more information is now available. In particular,

it is possible to know at any given time the number of awaiting orders for certain stock and to obtain

a record of all past transactions. A natural question arises: how to use at the best this information

to execute buy or sell orders optimally? In other words, what is the behavior of traders who want to

minimize their trading cost?

Given that the size of the order can be large, the trader needs to find an optimal strategy which

consists in using the resilience of the markets to help split this large order into smaller orders. This

resilience of markets can be explained through the supply and demand of the assets. Hence, by splitting

the large order, the trader will decrease the impact of his trade on the price of the asset. But, if the

investor waits, he will increase his market risk. In other words, the market impact forces slow trading
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Fig. 6.1. Limit order book of Vodafone shares containing the shares quoted on the London Stock Exchange.

Source: http://www.londonstockexchangegroup.com/investor-relations/group-at-a-glance/electronic-trading/electronic-

trading-main.htm

but the market risk forces quick trading. The idea is then to find a good trade-off between liquidity

and the market risk.

It has been reported, for example in [AFS10], that optimal execution is a recurrent problem

for practitioners because traders liquidate about twenty percent of the daily volume of shares. More

dangerous practical situations can also exist as an example of application of the optimal execution,

for instance, the well-known case of Jérôme Kerviel at the Société Générale. Here the bank had to

liquidate his large speculative positions. Another example of this type is when a financial institution

holds a large quantity of government bonds and as the default probability of that country increases,

the value of these assets quickly decreases. The institution therefore would be interested in liquidating

this portfolio as quickly as possible. It is natural that in selling everything at the outset is not optimal

because, given the limited liquidity of the market, this financial institution would have to sell its bonds

very cheaply.

It is possible to distinguish three different time scales for the trading activity. Asset management

activities generate tasks like the hedging of positions that can be set in long-scale time periods, for

example, days or weeks. These activities imply that it is necessary to manage positions and to execute

orders on the market in a matter of minutes. The last time scale for trading is the so-called high-
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frequency trading which is performed in intervals of time from 10−6 to 1 seconds. The market impact

models that we will study in this work apply to the intermediate time scale of trading, that goes

typically from a minute to some hours.

In Section 6.2 we will define the optimal execution problem and we will analyze some market

impact models that the literature has proposed in order to solve it. In the same section we will present

the main results of these models and the connections and differences between them. We will also study

the concept of price manipulation and the existence of optimal strategies for the optimal execution

problem.

6.2 Market impact models

The aim of this Section is to compare the market impact models proposed by the literature and

to establish links between them, emphasizing the advantages and the drawbacks of each.

6.2.1 Definition of the optimal execution problem

The problem that we will study in this manuscript is the optimal liquidation of a portfolio with �

shares by a large trader who can place orders over a period of time [0, T ]. We consider that � > 0 (resp.

� < 0) corresponds to a selling (resp. buying) program. By large investor, we understand a trader

who executes a large volume of orders and therefore is able to modify the price of the exchanged

asset. In practice, regulators define the concept of large trader in order to supervise markets and to

avoid manipulation and fraud. In the literature, these large traders are differentiated from the normal

traders (also called noise traders) who, on average, do not modify the price of the asset. In this work,

we will analyze the case of only one large trader. See [BP05] and [CLV07] for frameworks that consider

more than one trader in competition with each other.

In order to find a solution for this optimal liquidation problem, we need to analyze the impact

of the actions of the agents on the markets, that is, to model the market impact. This impact is

closely related to the liquidity in financial markets described by the market impact models. We could

think that market impact depends on many variables like bid-ask spread or market capitalization;

nevertheless, the market impact models that we will study are related to the shift in price and to the

exchanged volume.

For the sake of clarity, we would like to introduce here a general framework for studying this

optimal liquidation problem. First, let us assume the existence of four price processes: (A0
t , t ≥ 0),

(At, t ≥ 0), (B0
t , t ≥ 0) and (Bt, t ≥ 0) on a given filtered probability space (Ω, (Ft),F ,P). The

processes (A0
t , t ≥ 0) and (B0

t , t ≥ 0) represent respectively the best ask price and the best bid price
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of the asset unaffected by the large trader. The processes (At, t ≥ 0) and (Bt, t ≥ 0) are the actual

best ask price and best bid price where the orders of the large investor are taken into account.

To simplify, most of the models proposed in the literature neglect the bid-ask spread and thus

consider only two processes: (S0
t , t ≥ 0) and (St, t ≥ 0) which represent respectively the price when

the large trader is inactive and the price when the orders of the large investor have an influence on the

limit order book. It is important to note that for liquid assets the size of the bid-ask spread is usually

one tick as has been empirically shown, see Cont and De Larrard in [CD11] and the references therein.

Thus, in practice, a zero bid-ask spread for liquid assets is not far from reality in the time scale where

our model is set. As the unaffected price process is determined by the actions of the noisy traders, it

is usually supposed to be a martingale. Other reasons for this consideration are that the time period

of trading is normally short and that including a nonzero drift would lead to profitable strategies that

have to be differentiated from price manipulation strategies.

Even if in practice the problem of the optimal execution of orders make sense in the discrete-time

framework, it is interesting to analyze its outcomes in both the continuous and discrete time cases. For

example, an important topic to study is whether the optimal strategies are stable when we increase

the number of dates for trading.

For discrete-time strategies, we assume that at most N + 1 market orders can be placed by the

large trader. In this case, an admissible strategy is given by an increasing sequence τ0 = 0 ≤ . . . ≤
τN = T of stopping times and random variables ξ0, . . . , ξN , where ξi is the size of the order placed at

time τi, (ξi < 0 corresponds to a sell order, and ξi > 0 holds for a buy order) such that

• �+�N
i=0 ξi = 0, i.e. the investor liquidates his portfolio of � shares,

• ξi is Fτi-measurable, and
• ∃M ∈ R,∀ 0 ≤ i ≤ N, ξi ≥M , a.s.

This third hypothesis will be needed for technical reasons and can be seen as the fact that the investor

cannot propose (or take out) an infinite amount of liquidity on the markets.

In addition, if we analyze continuous-time strategies, we can define an admissible strategy as a

stochastic process (Xt)t≥0 such that

• X0 = � and XT+ = 0,

• X is Ft-adapted and left-continuous, and
• the function t ∈ [0, T+] �→ Xt has finite and a.s. bounded total variation.

This process (Xt)t≥0 represents the number of shares that remain to liquidate at time t. We can

observe that in the discrete-time strategy case, we have Xt = �+
�N

i=0 ξi1τi<t and we can deduce the

assumptions on the continuous case from the hypothesis of the discrete case.
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The question about the objective of the traders which determines the choice of the criterion to

state the problem of optimal execution is not closed. The trader could be interested only in minimizing

the expected execution cost or he could take into account the variance of his strategy as well, arguing

that the expected execution cost criterion misses the volatility risk.

There exist three types of market impacts that the literature considers according to the time

that they shift the price of the underlying asset: the permanent impact is a permanent change in the

price such as an impact due to a new information on fundamentals of the asset; the instantaneous

or temporary impact only influences the actual order; and the transient impact modifies the price

after the placement of an order but decays over time. We will see that the permanent and temporary

impacts are first introduced in the literature leading to a first family of models. The consideration of

the transient impact comes later to produce a second type of model.

6.2.2 First family of models (immediate and permanent price impact)

In the first works mentioned in the literature for treating the optimal execution problem, the

impact created by the large trader was incorporated directly into the dynamic of the asset exogenously.

In these models, the price impact depends on the size of the order and on the speed of liquidation of

the position.

We can differentiate these models according to the time framework: discrete-time and continuous-

time models.

Discrete-time models

Among these models, Bertsimas and Lo [BL98] and Almgren and Chriss [AC00] studied first

the problem of the optimal execution. Precisely, they consider the following discrete-time model

Stn = S0
tn + γ̃

n
�

i=0

ξi, n = 0, . . . , N, (6.1)

where γ̃ > 0 and in order to take into account the impact on the price, the price process Stn consists

of an arithmetic random walk and a linear function of the order size. The time schedule of trading is

considered to be a uniform discretization of the period [0, T ], so tn = nT
N .

Bertsimas and Lo consider in [BL98] that the aim of the large trader is to minimize the average

cost of his trading program. Hence the goal is to find ξ0, . . . , ξN such that
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min
ξ0,...,ξN , such that: �+

�N

i=0
ξi=0

E
�

CBL(ξ)
�

, (6.2)

where

CBL(ξ) :=
N
�

i=0

ξiSti . (6.3)

As we already mentioned, the strategy ξnaive that consists in selling the entire quantity � allows

to eliminate the future risk on the value of the asset but its cost can be very high. Precisely, in this

case, we have the following cost for this strategy

CBL(ξnaive) = −S0
0�+ γ̃�2

and the variance of this strategy is zero.

On the other hand, the strategy that is optimal in the framework of [BL98] and that consists

of a constant rate of trading given by ξ⋆,BLi = − �

N , minimizes the expected cost given by (6.3) but its

variance can be large. The cost of this strategy is given by

E

�

N
�

k=0

−�
N

Stk

�

= −�S0
0 +

(N + 1)γ̃�2

2N

and its variance is equal to

Var

�

N
�

k=0

�

N
Stk

�

=
�
2

N2
E

�

N
�

k=0

{2(N − k) + 1} (S0
tk
)2
�

− �
2(S0

0)
2

The differences between these strategies ξ⋆,BL and ξnaive illustrate the fact that for this type

of model where the price impact is only permanent and temporary, the optimal strategy has to be a

trade-off between the cost of the strategy and its variance.

Removing the assumption that the investor is not risk averse and based on a similar model

for the price asset, in [AC00] Almgren and Chriss use a mean-variance risk criterion for the investor

setting a level of risk aversion of the agent.

Thus, the goal of Almgren and Chriss in [AC00] is to find the optimal strategy for the problem

E
�

CAL(ξ)
�

+ λVar
�

CAL(ξ)
�

(6.4)
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for different values of the risk aversion parameter λ and CAL is the cost in the Almgren and Chriss
framework. Indeed, they show that for each value of λ ≥ 0, there exists a unique optimal strategy that
minimizes the criterion (6.4).

Let us consider a uniform time grid, that means ti = iT
N for i = 0, . . . , N and δt = ti− ti−1 = T

N .

In [AC00], Almgren and Chriss obtain the solution for the optimal execution problem in a discrete

case. Precisely, as in [BL98], the permanent and temporary impact appear directly in the dynamic of

the asset

Stk = Stk−1
+ σ

√
δtχk − δtg

�

ξk
δt

�

, (6.5)

where σ is the volatility of the asset, ξk the size of the order executed at time tk and (χk)k=1,..,n is a

sequence of i.i.d. random variables with zero mean and unit variance. The function g represents the

permanent impact and, in the equation (6.5), this impact is considered in the average rate of trading
ξk
δt in the interval from tk−1 to tk.

In this model, the temporary impact is taken into account through the function h appearing in

the price S̃tk obtained by the trader in the market at the time tk

S̃tk := Stk−1
− h

�

ξk
δt

�

.

Using that CAC := �N
i=0 ξiS̃ti , Almgren and Chriss in [AC00] find an explicit optimal strategy

in the case of a linear permanent impact function g and of a temporary impact function h given by

h

�

ξk
δt

�

= ǫsgn(ξk) + η
ξk
δt

for some positive constants ǫ, η.

For a parameter of risk aversion of the trader λ > 0, this optimal strategy is determined as

follows:

X⋆,AL
k =

sinh(κ(T − tk))
sinh(κT )

�, k = 0, . . . , N

where

κ ∼
�

λσ2

η
+O(δt), δt→ 0.
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In this case, this model allows an easy implementation and to obtain some insights about the

parameters. We note also that the case λ→ 0 in (4.4) gives X⋆ = �
(T−tj)

T which is the optimal strategy

already found by Bertsimas and Lo in [BL98]. We recall that the process Xk denotes the amount of

shares to detain at time tk but not the size of the order executed by the trader.

A disadvantage of discrete-time models as [BL98, AC00] is that the time trades are fixed in

advance of the trading which is clearly not realistic.

Continuous-time models

The Almgren and Chriss model is also studied in a continuous-time framework by Almgren

in [Alm03]. He obtains analytic optimal strategies for a temporary impact given by a power-law

function h(Ẋt) = ηẊk
t where k > 0 and for a linear permanent impact given by g(Ẋt) = γẊt. We

remark that Ẋt represents the speed of execution of the asset St.

In this same continuous-time framework, let us assume that the permanent impact and the

temporary impact are linear functions of Xt−� and Ẋt respectively. We note that the quantity Xt−�
represents the amount of shares already executed in the market by the large trader. This implies that

the price St is given as follows:

St = S0
t + γ(Xt − �) + ηẊt (6.6)

Here, the parameter γ describes the permanent impact of the orders and η the temporary impact.

We can mention that a linear market impact of the orders is not satisfactory as shows the empirical

study [AHLT05] by Almgren et al. For more details, see [Alm03] and the references therein. We recall

that the simplicity to handle the obtained expressions and to get closed formulas is the main reason

why a linear impact is used in the literature.

We note that, if we sell the asset, the price has to decrease, so we impose γ ≥ 0, η ≥ 0, � > 0

and XT = 0.

Therefore, we can define the cost as follows

CA(Xt) := E

�

� T

0
StdXt

�

, (6.7)

that can be further written as:
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E

�

� T

0
StdXt

�

= −S0
0�+ γE

�

� T

0
XtdXt

�

− γ�E

�

� T

0
dXt

�

+ ηE

�

� T

0
Ẋ2
t dt

�

= −S0
0�+

γ

2
�
2 + ηE

�

� T

0
Ẋ2
t dt

�

. (6.8)

Thus, we can deduce that if η = 0 (i.e. no temporary impact is considered) then the cost is

independent of the strategy, and any strategy is optimal. We remark that, in discrete-time, the same

conclusion can be obtained.

Otherwise, when η > 0, as we minimize the cost (6.7), we can use the Jensen inequality

1
T

� T

0
Ẋ2
t dt ≥

�

1
T

� T

0
Ẋtdt

�2

, (6.9)

to deduce that

Ẋt = −
�

T
(6.10)

because (6.9) is an equality when (6.10) is verified.

We observe that the first family of models presents the disadvantage that the price impact

functions are deterministic functions which depend only on the quantity exchanged and do not take

into account the dynamic of the limit order book, neglecting the effect of the trade over the supply

and demand in the limit order book. It is intuitive that when an investor wants to place orders during

a period of time, the response of the limit order book to the previous exchanges has to be one of the

most important points to analyze. This is the motivation for the second family of models.

6.2.3 Second family of models (transient price impact)

Two new aspects appear in the model considered by Obizhaeva and Wang in [OW05] in order to

consider the limitations of the first family of models. To be more specific, they first propose a model

for the dynamic of the limit order book from which they can deduce the market impact of the large

trader, instead of considering that the price impact is given as a fundamental as in [BL98, AC00].

They also introduce the concept of transient impact which means that the price shift remains after

the order is placed but it decays because of the resilience of the limit order book. Hence, the idea of

transient impact naturally appears when the response of the limit order book is taken into account.

In [OW05], the limit order book is represented by a constant distribution of shares to sell and to

buy, respectively: the ask and bid part of this limit order book. This is called a one side model because

the trader is not allowed to sell when his goal is to buy � shares; or conversely, he is not allowed to buy
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when his purpose is to sell. When a sell market order arrives, it takes away the liquidity placed at the

left of the best bid and affects the price linearly with respect to the volume exchanged (the symmetric

situation happens when a buy market order arrives). The limit order book will recover from the impact

of the sell market order through resilience. On the other hand, when the large trader is inactive, the

best bid and the best ask move according to the action of the noise traders, which add new orders

in between the bid-ask spread. The price impact created by this mechanism is neither temporary nor

permanent, but transient. Considering a linear permanent impact in this model is possible and it does

not change the optimal strategy. Figures 6.2, 6.3, 6.4 and 6.5 illustrate the idea of the model.

Fig. 6.2. Limit order book of an asset according to the model introduced by Obizhaeva and Wang in [OW05]. The sell

and buy orders at that moment are the ask and bid sides of the book. The bid ask spread is the difference between the

best ask price At and the best bid price Bt.

Fig. 6.3. Limit order book of an asset in the model introduced by Obizhaeva and Wang in [OW05]. A sell market order

arrives to the limit order book and it is matched with the best prices offered in the bid part of the limit order book.

We can say that the resilience of the market was taken into account implicitly in the previous

researches [BL98] and [AC00] when treating temporary impact with instantaneous recovery of the

price after the execution of the order. In other words, in these models, the resilience is considered

infinite. Meanwhile, the permanent price impact corresponds to a zero resilience case for the limit

order book. We also see that the resilience reflects the fact that there are new orders appearing in
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Fig. 6.4. Limit order book of an asset in the model introduced by Obizhaeva and Wang in [OW05]. Bt+ is the new best

bid price after the execution of the sell market order that arrives in Figure 6.3 and a new bid-ask spread is created.

Fig. 6.5. Limit order book of an asset in the model introduced by Obizhaeva and Wang in [OW05]. When the large

trader is inactive, new orders appear in between of the best ask price and the best bid price generating a new bid-ask

spread.

the bid-ask spread and not in other places like the depth of the limit order book. In other words,

we remark that the density of the limit order book does not change in the depth of the limit order

book. We therefore deduce that the optimal strategy in the type of model proposed by [OW05] has

to be a trade-off between the recovery effect on the price (that is the resilience of the limit order

book) and the time constraint to liquidate the portfolio. The effect of the resilience is detected in such

empirical studies as [BHS95, BGPW04, BP03] and [RW05]. Consequently, [OW05] gives new types of

optimal strategies, that are combinations of discrete and continuous trades, and that are unlike the

optimal strategies in [BL98] and [AC00] that consist only of continuous trades. Figure 6.6 compares

the different actions of the traders according to the different types of models.

There is an important assumption in the model proposed by Obizhaeva and Wang in [OW05],

that is, the quantity of shares offered on the market is constant for all prices St. This is what is called

a block-shaped limit order book. The fact that in practice there are no block-shaped limit order books,

only non-constant limit order books, has been shown in empirical studies as [BGPW04, BP03, RW05,

BHS95]. The constant form of the limit order book implies that the price impacts considered in this
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Fig. 6.6. Comparison between the optimal strategies obtained in [OW05] and [AC00]. The broken line represents the

optimal strategy in the framework introduced by Obizhaeva and Wang in [OW05] and the continuous line is the optimal

strategy deduced by Almgren and Chriss in [AC00].

framework are linear with respect to the volume of executed orders. However, the linearity in the

impact on the traded volume is not true in reality; the impact is empirically proven to be non-linear

in [Alm03, AHLT05].

Let us explain this further. If we want to estimate the market impact generated by the execution

of an order of size ξt according to the model presented in [OW05], in other words, the change of price

from St to St+, we can consider the following equation:

� St+

St
qdx = ξt (6.11)

given that the distribution of shares offered on the market is a constant q with respect to the price.

So, (6.11) implies that the price impact given by St+ − St is linear with respect to the volume traded

ξt because

St+ − St =
ξt
q
.

We note that the optimal strategies that result from all the models discussed above [BL98, AC00,

OW05] are static (or deterministic). This means that these optimal strategies can be determined in

advance to the trading and that they are independent of the martingale unaffected price process. To

observe this, let us consider the cost of executing a market order of size ξt

πt(ξt) :=
� St+

St
(S0

t + x)qdx = S0
t ξt + q

� St+

St
xdx

Consequently, the accumulated cost of an admissible strategy ξ is
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N
�

i=0

πti(ξi) =
N
�

i=0

S0
tiξi + q

N
�

i=0

� Sti+

Sti

xf(x)dx (6.12)

By considering the process Xt, we can re-write the first sum in the right hand of (6.12) side as

follows

N
�

i=0

S0
tiξi =

N
�

i=0

S0
ti(Xti+1 −Xti) = −�S0

0 −
N
�

i=1

Xtn(S
0
tn − S0

tn−1
) (6.13)

Given that the strategy ξ is admissible, the process Xtn is Ftn−1 -measurable. We remark that

Xt is also a bounded process. Therefore using the martingale property of the unaffected price process

S0, the expectation of (6.13) is equal to −S0�. Moreover, we note that the difference St+−St does not

depend on the martingale process S0
t and that this difference is deterministically determined when the

values ξ0(w), ξ1(w), . . . , ξN (w) are given. Hence, there exists a deterministic function C(i) : RN+1 �→ R

such that

N
�

i=0

� Sti+

St
xf(x)dx = C(i)(ξ0, . . . , ξN )

Consequently, we obtain that

C(ξ) = −S0�+ E
�

C(i)(ξ0, . . . , ξN )
�

,

which implies that the optimal strategy do not react to the changes in the price process.

We observe that the second family of models still does not consider important features of the

market and of the traders’ behavior. In the next section, we mention some works that take into account

some of these features.

6.2.4 Other models

We remark that in all the previous models, the large investor can only place market orders, but

in the markets, investors have a large variety of types of orders. See, for instance, the work of Gueant,

Lehalle and Fernandez [FGL12] and Avellaneda and Stoikov [AS08] for a large trader who can use

limit orders in his strategies.

A different type of modelling is proposed by Cont and De Larrard in [CD11]. Using a Markovian

queueing model of the limit order book that describes essentially what is happening at the bid and

ask prices, they deduce some quantities of interest such as the distribution of the duration between
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price changes and the probability of an upward movement in the price, conditional on the state of the

order book. Nevertheless, the problem of the optimal execution is not treated.

The problem of optimal liquidation has been studied as well by Schied and Schöneborn in [SS09].

Their model is based on a continuous version of the model used in [AC00] with T = ∞. Considering
temporary and permanent impact that are linear and using a stochastic control approach, they also

analyze the adaptive liquidation strategies that react to the price changes, which are unlike the static

strategies given by the previous models. Schied and Schöneborn state that, in general, these adaptive

liquidation strategies give higher expected utility than the static strategies only in the case of investors

who have non-constant risk aversion. These adaptive strategies were also studied by Almgren in [AL07].

We can go deeper in the explanation of the differences between the models with adaptive and

static strategies by trying to interpret the goal of each type model. Thus, in [OW05] the model describes

the mechanism of the limit order book dynamic from an average point of view. In practice, the limit

order book is a discrete function of prices which are determined by the size of the tick. The continuous

distribution of shares represented by the shape of the limit order book is then an assumption of what

is happening in average on the markets. As a consequence of this fact and that the associated time

scale is wider, obtaining static strategies in the framework introduced in [OW05] is something we could

expect.

Another important model is given by Gatheral in [Gat10] who studies the concept of transient

impact by introducing a decay factor. Gatheral deduces a relationship between the market impact

function and its decay, assuming the next model for the evolution of market prices is

St := S0 +
� t

0
h(ẋs)G(t− s)ds+

� t

0
σdWs (6.14)

where ẋs is the rate of trading at time s < t, h(ẋs) corresponds to the temporary impact of the

activity of the large investor at time s, the function G(t − s) represents the decay factor and Ws is

a Brownian motion. This functions h(.) and G(.) should be considered as representing the different

market conditions in an average sense. We note that, for instance, in the framework of Almgren and

Chriss given by [AC00],G(t−s) = δ(t−s) which means that the market impact decays instantaneously.

In the case of [OW05], we have G(t) = e−ρt with ρ > 0 and h(.) is a linear function of the rate of

trading.

6.2.5 A first extension of the second family of models

The work of [AFS10] extends the results in [OW05] by considering general shapes for the limit

order book. In that paper, Alfonsi, Fruth and Schied assume that the process (S0
t )t≥0 is a rightcon-

tinuous martingale on the filtered probability space (Ω, (Ft),F ,P) such that S0
0 = S0 P − a.s.. This
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unaffected price is not influenced by the large investor and so it is determined by the noise traders. The

martingale assumption for the unaffected process (S0
t , t ≥ 0) is also used in [BL98, AC00] and [OW05].

One of the reason that explains its use, is that as we consider short trading horizons, the drift effect

can be neglected. As it is mentioned in [KSS11], a non-zero drift can create profitable round trips that

would have to be differentiated from the ones defined by Huberman and Stanzl in [HS04].

Moreover, the aim of the model proposed in [AFS10] is to describe the dynamics of the price

process (St)t≥0 affected by the action of the large trader. This dynamic comes from the reaction of the

limit order book and the dynamic of the unaffected price process. In order to describe the response

of the limit order book, they introduce two processes: a volume impact process Et that represents the

impact of the large traders on the limit order book in terms of volume and a price impact process Dt

that is the price impact created by the action of the large trader.

Thus, it is possible now to define the actual price process S as follows

St = S0
t +Dt. (6.15)

Therefore, if at time t the trader places a market order of size ξt, the volume impact of the large

investor changes from Et to

Et+ := Et + ξt (6.16)

On the other hand, if the large trader is inactive, the process (Et, t ≥ 0) decays exponentially
as follows

dEt = −ρtEtdt (6.17)

We consider that the rate at which E decreases is the deterministic and time dependent param-

eter t �→ ρt called the resilience. The equations (6.16) and (6.17) define completely the dynamics of

the volume impact process E and this framework is named the model with volume impact reversion.

The question is now, how to relate the volume impact and the price impact created by the order

placed by the trader? In order to do that, they introduce a continuous distribution of bid and ask

orders out of the unaffected price S0
t . To represent this distribution, Alfonsi, Fruth and Schied consider

a continuous function f : R �→ [0,∞) verifying f(x) > 0 for a.e.x. This function is called the shape

function of the limit order book. Thus, the number of shares offered between the prices S0
t + x and

S0
t + x+ dx is equal to f(x)dx.

Therefore, there is a relation that links the volume impact Et with the price impact Dt, given

by the following equation
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� Dt

0
f(x)dx = Et. (6.18)

Figure 6.8 shows the relation (6.18) between the volume impact Et and the price impact Dt

generated when a large trader executes an order on the market.

Fig. 6.7. The shape function f of the limit order book in the model [AFS10]. The trader executes an order of size E0+

and then moves the price from S0 to S0+.

Let us define the antiderivative of f ,

F (y) :=
� y

0
f(x)dx, y ∈ R,

so we can observe that the connection between the volume impact process E and price impact process

D can be stated as

Et = F (Dt) and Dt = F−1(Et) (6.19)

We note that F is invertible because it is a strictly increasing function given the assumption

f(x) > 0 for a.e. x.

We remark that if at time t ≥ 0 the large investor places an order of size ξt, the actual price

moves from St to

St+ := S0
t +Dt+ = S0

t + F−1(Et + ξt)

We can conclude that the price impactDt+−Dt is a non-linear function of the order size ξt except

if the shape function of the limit order book f is constant between Dt and Dt+. This block-shaped

limit order book is the one used, for instance, by Obizhaeva and Wang in [OW05] and corresponds to

a linear price impact.
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Alternatively, as we can consider that the resilience acts on the price impact when the large

trader is not placing orders instead of the exponential reversion of the volume impact, by taking

dDt = −ρtDtdt (6.20)

The equation (6.20) means that the price impact is recovering in the limit order book. So, if we

replace (6.17) by (6.20) we obtain the so called price impact reversion model.

This two different models lead to different point of views for the dynamic of the limit order book

and we remark that they are not necessarily equivalent. Thereby, instead of only studying the model

impact with price reversion as in the most part of the literature, we also need to analyze the model

with volume impact.

Instead of defining the optimal execution problem within a class of deterministic strategies as

in [OW05], Alfonsi, Fruth and Schied in [AFS10] allow the strategy to belong to the larger class

of adapted strategies. In [AFS10] the large trader could a priori have sell orders in a buy program,

even though they show that this is not optimal in their model, alternatively to the model suggested

in [OW05]. Moreover, analyzing several examples, Alfonsi, Fruth and Schied in [AFS10] assure the

robustness of the optimal strategy.

The techniques used to solve the optimal execution problem in [AFS10] are based on the La-

grange multiplier method and not in dynamic programming techniques as in [OW05]. The idea behind

is to reduce the model with the two sides of the limit order book to a model without bid-ask spread

and to prove that these problems are equivalent.

The main results in the works [AFS10] and [AS10] are the existence and uniqueness of the

optimal strategy and the fact that it is possible to exhibit analytic formulas for this optimal strategy.

6.2.6 Differences between the Gatheral model and the Alfonsi, Fruth and Schied model

One of the results obtained by [Gat10] is that the exponential decay is incompatible with the

non-linear market impact, outcome that seems to be in contradiction with the conclusion in [AS10].

This difference can be explained by taking the discrete version of the model proposed by Gatheral

in [Gat10]

SG
t = S0

t +
�

τn<t

h(ξn)G(t− τn) (6.21)

where the functions h and G are defined according to (6.14).
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In the continuous-time case (6.14), considering an exponential decay G(t) = e−ρt, for ρ a positive

constant, in [Gat10] Gatheral proved that if the impact function h is not linear there will not exist

price manipulation strategies in the sense of Huberman and Stanzl. This conclusion can be also applied

in the discrete version of the model presented in [Gat10] given by (6.21) using discrete approximations

of the manipulation strategies obtained in the continuous case.

In the model proposed by Alfonsi, Fruth and Schied in [AFS10], if we consider a constant

resilience ρ in the model with volume impact reversion, we obtain that the volume impact process is

defined as follows

Et =
�

τn<t

ξne
−ρ(t−τn), (6.22)

and (6.22) implies that the actual price is given by

St = S0
t + F−1

�

�

τn<t

ξne
−ρ(t−τn)

�

. (6.23)

Thus, the models proposed in [Gat10] and in [AFS10] are different which explains the difference in

their conclusion because in (6.21) the nonlinear price impact function is applied to each trade whereas

in (6.23) is a function of the total volume impact.

6.2.7 Price manipulation strategies

As an asset pricing model, a market impact model needs some requirements to assure its viability.

Huberman and Stanzl in [HS04] introduce the concept of price manipulation, i.e. the existence of

strategies where � = 0 and that have strictly negative expected execution costs. These types of price

manipulation strategies are called price manipulation strategies in the sense of Huberman and Stanzl.

The presence of these price manipulations can be seen as a weak principle of no-quasi-arbitrage because

the gain is in an average sense. Thus, by repeating indefinitely the price manipulation strategies, we

can obtain by a law of large numbers, an almost sure profit, that is an arbitrage in the classical sense.

So, Huberman and Stanzl affirm that the assumption of risk neutral dynamics for the unaffected

price process is not sufficient for the viability of the market impact model because can exist price

manipulation strategies for price impact models with martingale dynamics for prices. Besides, the

problem that consists in the minimization of the costs incurred by the large trader could be not well

defined due to the existence of the price manipulation strategies in the sense of Huberman and Stanzl.

For example, by studying the relationship between the market impact function h and its decay G

that exclude price manipulation strategies in the sense of Huberman and Stanzl [HS04], Gatheral
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obtains expressions determining the value of the parameters appearing in the price impact and decay

functions.

Alfonsi and Schied in [AS10] extend the concept of price manipulation strategies by introducing

the existence of strategies where the expected cost of a sell (buy) program can be decreased by

intermediate buy (sell) trades, i.e. ∃X admissible strategy such that

C(X) < inf
�

C(X̃), X̃ is admissible and nonincreasing or nondecreasing
�

.

Alfonsi and Schied called this notion the transaction-triggered price manipulation strategies. We re-

mark that if there is no transaction-triggered price manipulation strategies then there is no price

manipulation strategies in the sense of Huberman and Stanzl.

6.3 Motivation for our work

After overviewing all these models, we can note that they do not consider entirely the liquidity

changes during the trading time [0, T ] where the large trader has to liquidate his position. Some of the

models presented above consider a resilience parameter that depends on time but the distribution of

orders in the limit order book does not depend on time and sometimes is even constant with respect

to the price. Therefore, the aim of this part of the work is to extend the model proposed by [AS10] by

introducing the time dependence of the liquidity and then by studying the consequences of this time

component in markets while maintaining the tractability of the model introduced in [AFS10].

One work that considers that the liquidity is not constant over time is the paper of Fruth,

Schöneborn and Urusov [FSU13]. Here, they analyze the optimal strategies and the existence of price

manipulation strategies in a time-dependent limit order book model with deterministic depth and

resilience for a non-zero and zero bid-ask spread case. In the case of a bid-ask spread different from

zero, this spread increases when market orders are executed in the limit order book and so they prove

the non existence of price manipulation strategies while they obtain that there are price manipulation

strategies when the bid-ask spread is neglected.

Fruth, Schöneborn and Urusov in [FSU13] are interested in the minimization of costs problem

which is set in a discrete-time and continuous-time framework and is solved using dynamic program-

ming techniques. They find that under some assumptions on the parameters of the model, the orders

have to be executed according to a ratio between the number of orders remaining to liquidate and the

current price impact. We remark that the time-dependent limit order book used in [FSU13] is based

on the model introduced in [OW05] which means that they take into account a block-shaped limit

order book which implies considering a linear market impact.
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In [BF12], Bank and Fruth also study the problem of letting the liquidity to change over time

through the market depth and the resilience parameter. By considering also a block-shaped limit

order book, they set out the minimization of costs as a convex problem in order to manipulate convex

analysis techniques that allow to describe the optimal strategies using concave envelopes depending

on the parameters of the model.

The work that we propose extends different points from the works [AFS10] and [AS10]. One new

aspect is that the depth of the limit order book changes along with time. It is well known that there

is more activity on markets at the opening and closing of markets but less activity at noon. This led

to underlining the existence of an U-shaped pattern in the intraday trading volume, price volatility

and average bid-ask spread, pattern that shows the relevance of time in the dynamic of the limit order

book. These intraday patterns have been highlighted by Jain and Joh in [JJ88], Gerety and Mulher

in [GM92] for volumes and prices in the U.S. markets, Hamao and Hasbrouck in [HH95] for the Tokyo

Stock Exchange and Kleidon and Werner [KW96] for the London Stock Exchange. Hence, the idea

of our model is to consider a time-dependent shape of the limit order book which is coherent with

this time shift of the market conditions. For example, this shape could be calibrated to capture the

deterministic changes in the liquidity during one day. See Chordia, Roll and Subrahmanyam [CRS01],

Kempf and Mayston [KM08] and Lorenz and Osterrieder [LO09] for more details on deterministic

liquidity patterns.

We remark that this calibration of the time-varying liquidity is consistent with the estimation

of the other parameters of the model as the resilience because this resilience has to capture as well

the changes in the recovery of the limit order book during a period of time.

Beyond solving the optimal execution problem in a more general context, our goal is to under-

stand how the dynamics of the LOB may create or not price manipulations in this time-dependent

framework. The study of this price manipulations strategies lead us to derive sufficient conditions to

exclude them. These conditions are not only interesting from a theoretical point of view, as they also

give a qualitative understanding on how price manipulations may occur when posting or cancelling

limit orders. The behavior of market makers can be related to the parameters of the model which allow

to explain these price manipulations strategies from the market maker point of view. It is important

to note that price manipulations strategies do not exist in the model without time-dependence as it

has been proven by [AFS10].

Another contribution of this work is that we solve the optimal execution problem in a continuous

time setting while [AFS10] and [AS10] mainly focus on discrete time strategies. In particular, using

a time-continuous framework is much more suitable for stating the conditions that exclude price

manipulations and for understanding the influence of the shape of the limit order book on the price

manipulations strategies.
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Finally, we consider that new arrival orders can appear anywhere in the limit order book and

not only between the bid-ask spread as it is considered in [AFS10] and [AS10]. In other words, the

agents (noisy traders) can place limit orders in the depth of the limit order book and not only at the

best price that is either the current best ask or the current best bid.

Price

new orders new orders new orders

Fig. 6.8. New orders appear in the bid-ask spread in the model [AS10] as it is shown by the dashed line. In our

framework, new orders can appear in the bid-ask spread but also in the depth of limit order book as can be seen with

the continuous arrows.

Section 7 presents the model that extends [AFS10].



7

Optimal execution and price manipulations in time-varying limit

order books

The paper that has been accepted in Applied Mathematical Finance is presented in this chapter.

Abstract: This paper focuses on an extension of the Limit Order Book (LOB) model with general

shape introduced by Alfonsi, Fruth and Schied [AFS10]. Here, the additional feature allows a time-

varying LOB depth. We solve the optimal execution problem in this framework for both discrete and

continuous time strategies. This gives in particular sufficient conditions to exclude Price Manipula-

tions in the sense of Huberman and Stanzl [HS04] or Transaction-Triggered Price Manipulations (see

Alfonsi, Schied and Slynko [ASS11]). These conditions give interesting qualitative insights on how

market makers may create or not price manipulations.

Introduction

It is a rather standard assumption in finance to consider an infinite liquidity. By infinite liquidity,

we mean here that the asset price is given by a single value, and that one can buy or sell any quantity

at this price without changing the asset price. This assumption is in particular made in the Black and

Scholes model [BS73], and is often made as far as derivative pricing is concerned. When considering

portfolio over a large time horizon, this approximation is relevant since one may split orders in small

ones along the time and reduces one’s own impact on the price. At most, the lack of liquidity can be

seen as an additional transaction cost. This issue has been broadly investigated in the literature, see

Cetin, Jarrow and Protter [ÇJP04] and references within.

If we consider instead brokers that have to trade huge volumes over a short time period (some

hours or some days), we can no longer neglect the price impact of trading strategies. We have to

focus on the market microstructure and model how prices are modified when buy and sell orders are

executed. Generally speaking, the quotation of an asset is made through a Limit Order Book (LOB)

that lists all the waiting buy and sell orders on this asset. The order prices have to be a multiple of
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the tick size, and orders at the same price are arranged in a First-In-First-Out stack. The bid (resp.

ask) price is the price of the highest waiting buy (resp. lowest selling buy) order. Then, it is possible

to buy or sell the asset in two different ways: one can either put a limit order and wait that this order

matches another one or put a market order that consumes the cheapest limit orders in the book. In

the first way, the transaction cost is known but the execution time is uncertain. In the second way, the

execution is immediate (provided that the book contains enough orders). The price per share instead

depends on the order size. For a buy (resp. sell) order, the first share will be traded at the ask (resp.

bid) price while the last one will be traded some ticks upper (resp. lower) in order to fill the order

size. The ask (resp. bid) price is then modified accordingly.

The typical issue on a short time scale is the optimal execution problem: on given a time

horizon, how to buy or sell optimally a given amount of assets? As pointed in Gatheral [Gat10] and

Alfonsi, Schied and Slynko [ASS11], this problem is closely related to the market viability and to the

existence of price manipulations. Modelling the full LOB dynamics is not a trivial issue, especially if

one wants to keep tractability to solve then the optimal execution problem. Instead, simpler models

called market impact models have been proposed. These models only describe the dynamics of one

asset price and model how the asset price is modified by a trading strategy. Thus, Bertsimas and

Lo [BL98], Almgren and Chriss [AC00], Obizhaeva and Wang [OW05] have proposed different models

where the price impact is proportional to the trading size, in which they solve the optimal execution

problem. However, some empirical evidence on the markets show that the price impact of a trade is

not proportional to its size, but is rather proportional to a power of its size (see for example Potters

and Bouchaud [BP03], and references within). With this motivation in mind, Gatheral [Gat10] has

suggested a nonlinear price impact model. In the same direction, Alfonsi, Fruth and Schied [AFS10]

have derived a price impact model from a simple LOB modelling. Basically, the LOB is modelled by

a shape function that describes the density of limit orders at a given price. This model has then been

studied further by Alfonsi and Schied [AS10] and Predoiu, Shaikhet and Shreve [PSS11].

The present paper extends this model by letting the LOB shape function vary along the time.

Beyond solving the optimal execution problem in a more general context, our goal is to understand

how the dynamics of the LOB may create or not price manipulations. Indeed, a striking result

in [AFS10, AS10] is that the optimal execution strategy is made with trades of same sign, which

excludes any price manipulation. This result holds under rather general assumptions on the LOB

shape function, when the LOB shape does not change along the time. Instead, we will see in this pa-

per that a time-varying LOB may induce price manipulations and we will derive sufficient conditions

to exclude them. These conditions are not only interesting from a theoretical point of view. They give

a qualitative understanding on how price manipulations may occur when posting or cancelling limit

orders. While preparing this work, Fruth, Schöneborn and Urusov [FSU13] have presented a paper

where this issue is addressed for a block-shaped LOB, which amounts to a proportional price impact.
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Here, we get back their result and extend it to general LOB shapes and thus nonlinear price impact.

The other contribution of this paper is that we solve the optimal execution in a continuous time setting

while [AFS10, AS10] mainly focus on discrete time strategies. This is in particular much more suitable

to state the conditions that exclude price manipulations.

7.1 Market model and the optimal execution problem

7.1.1 The model description

The problem that we study in this paper is the classical optimal execution problem. To deal

with this problem, we consider in this paper a framework which is a natural extension of the model

proposed in Alfonsi, Fruth and Schied [AFS10] and developed by Alfonsi and Schied [AS10] and

Predoiu, Shaikhet and Shreve [PSS11]. The additional feature that we introduce here is to allow a

time varying depth of the order book. We consider a large trader who wants to liquidate a portfolio

of � shares in a time period of [0, T ]. In order to liquidate these � shares, the large trader uses only

market orders, that is buy or sell orders that are immediately executed at the best available current

price. Thus, our large trader cannot put limit orders. A long position � > 0 will correspond to a sell

program while a short position � < 0 will stand for a a buy strategy. The optimal execution problem

consists in finding the optimal trading strategy that minimizes the expected cost of the large trader.

We assume that the price process without the large trader would be given by a rightcontin-

uous martingale (S0
t , t ≥ 0) on a given filtered probability space (Ω, (Ft),F ,P). The actual price

process (St, t ≥ 0) that takes into account the trades of the large trader is defined by:

St = S0
t +Dt, t ≥ 0. (7.1)

Thus, the process (Dt, t ≥ 0) describes the price impact of the large trader. We also introduce the

process (Et, t ≥ 0) that describes the volume impact of the large trader. If the large trader puts a

market order of size ξt (ξt > 0 is a buy order and ξt < 0 a sell order), the volume impact process

changes from Et to:

Et+ := Et + ξt. (7.2)

When the large trader is not active, its volume impact Et goes back to 0. We assume that it decays

exponentially with a deterministic time-dependent rate ρt > 0 called resilience, so that we have:

dEt = −ρtEtdt. (7.3)

We now have to specify how the processesD and E are related. To do so, we suppose a continuous

distribution buy and sell limit orders around the unaffected price S0
t : for x ∈ R, we assume that the
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number of limit orders available between prices S0
t + x and S0

t + x + dx is given by λ(t)f(x)dx.

These orders are sell orders if x ≥ Dt and buy orders otherwise. The functions f : R �→ (0,∞) and
λ : [0, T ] �→ (0,∞) are assumed to be continuous, and represent respectively the LOB shape and the
depth of the order book. We define the antiderivative of the function f , F (y) :=

� y
0 f(x)dx, y ∈ R,

and assume that

lim
x→−∞

F (x) = −∞ and lim
x→∞

F (x) =∞, (7.4)

which means that the book contains an infinite number of limit buy and sell orders. Thus, we set the

following relationship between the volume impact Et and the price impact Dt:

� Dt

0
λ(t)f(x)dx = Et,

or equivalently,

Et = λ(t)F (Dt) and Dt = F−1
�

Et

λ(t)

�

. (7.5)

Within this framework, a large trade ξt changes Dt to Dt+ = F−1
�

Et+ξt
λ(t)

�

and has the cost

� Dt+

Dt

(S0
t + x)λ(t)f(x)dx = ξtS

0
t +

� Dt+

Dt

λ(t)xf(x)dx := πt(ξt). (7.6)

Throughout the paper, we assume that λ is C2 and set ηt = λ′(t)
λ(t) . Thus, we have

λ(t) = λ(0) exp
�� t

0
ηudu

�

,

and t �→ ηt is C1. Similarly, we assume that t �→ ρt is C1.

Now, let us observe that we have assumed that the volume impact decays exponentially when

the large trader is inactive. Other choices are of course possible, and a natural one would be to assume

that the price impact decays exponentially

dDt = −ρtDtdt, (7.7)

which amounts to assume that dEt = ηtEtdt− ρtλ(t)f(F−1(Et/λ(t)))F−1(Et/λ(t))dt by (7.5).

Definition 7.1. The dynamics of “model V ” with volume impact reversion is the one given by (7.1),

(7.2), (7.3) and (7.5). The dynamics of “model P” with price impact reversion is the one given by (7.1),

(7.2), (7.7) and (7.5). In both models, we assume that the market is at equilibrium at time 0, i.e.

E0 = D0 = 0.

Remark 7.1. Though being simplistic, this model describes through ρt and λ(t) the two different ways

that market makers have to put (or cancel) limit orders: it is either possible to pile orders at an
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existing price or to put orders at a better price than the existing ones. Thus, λ(t) describes how market

makers pile or cancel orders while ρt describes the rate at which new orders appear at a better price.

Basically, one may think these functions one-day periodic, with relative high values at the opening and

the closing of the market and low values around noon. The particular case λ ≡ 1 corresponds to the
model introduced by Alfonsi, Fruth and Schied [AFS10] for which new orders can only appear at a

better price.

Let us make some comments of the model. Obviously, limit order books have in practice a much

more sophisticated dynamics than the one presented above. Somehow, the shape function f should

be seen as an average of all the order books observed during one day, while λ(t) should represent

a one day periodic function which is proportional to the volume of limit orders in the book. The

resilience ρt should also be considered as a one-day periodic function that should be proportional to

the volume of new limit orders that are posted at the bid or ask price. This give a way to estimate all

the parameters. However, the scope of our model is not to model precisely the limit order book at a

microstructure level. It aims at modelling the price impact at a mesoscopic time scale. The limit order

book interpretation is mainly used to justify equation (7.6) that relates the transaction costs to the

shape function f . Thus, it seems to us more appropriate to estimate the parameters using the market

price impact observations. Empirically, it has been observed that the price impact is proportional to

some power of the order size (see for instance Potters and Bouchaud [BP03], Almgren et al. [AHLT05],

Tóth et al. [BDdL+11]). This indicates the choice of f(x) = |x|γ which reproduces precisely such an
impact. The parameter γ could be estimated like in the cited papers. Once γ is chosen, λ(t) could be

estimated in the same vein from empirical data on market impact. Also, ρt can be estimated from the

average time needed for the decay of the temporary price impact.

7.1.2 The optimal execution problem, and price manipulation strategies

We focus on the optimal liquidation of a portfolio with � shares by a large trader who can place

market orders over a period of time [0, T ]. Thus, � > 0 (resp. � < 0) corresponds to a selling (resp.

buying) strategy.

We first consider discrete strategies and assume that at most N + 1 trades can occur. An

admissible strategy will be then described by an increasing sequence τ0 = 0 ≤ · · · ≤ τN = T of

stopping times and random variables ξ0, . . . , ξN (ξi stands for the trading size at time τi) such that

– �+
�N

i=0 ξi = 0, i.e. the trader liquidates indeed � shares,

– ξi is Fτi-measurable,
– ∃M ∈ R,∀0 ≤ i ≤ N, ξi ≥M , a.s.

The expected cost of an admissible strategy (ξ,T ) with ξ = (ξ0, . . . , ξN ) and T = (τ0, . . . , τN ) is given
by
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C(ξ,T ) = E

�

N
�

i=0

πτi(ξi)

�

, (7.8)

where πτi(ξi) stands for the cost of the i-th trade, and is defined by (7.6) in models V or P . Throughout

the paper, we will assume that the goal of the large trader is to minimize his expected cost among the

admissible strategies.

Remark 7.2. The choice of minimizing the expected cost enables us to characterize explicitly the op-

timal strategy (see Theorems 7.3, 7.4, 7.5 and 7.6). Let us mention here that other targets could be

considered for the trader. Typically, one may wish to include in the optimization program some risk

aversion. This has been considered for instance by Almgren and Chriss [AC00] or Schied [Sch13].

However, in our model we will see that the optimal strategy that minimizes the expected cost is de-

terministic. Thus, the risk only stems from the fluctuations of S0 during the execution and can be in

practice neglected when the deadline T is short enough, which gives a justification of our choice.

We also consider continuous time trading strategy and make the same assumptions as Gatheral

et al. [GSS12]. An admissible strategy (Xt)t≥0 is a stochastic process such that

– X0 = � and XT+ = 0,

– X is (Ft)-adapted and leftcontinuous,
– the function t ∈ [0, T+] �→ Xt has finite and a.s. bounded total variation.

The process Xt describes the number of shares that remains to liquidate at time t. Thus, the discrete

time strategy above corresponds to Xt = � +
�N

i=0 ξi1τi<t, and the three assumptions on (ξ,T )
precisely give the ones on X. Let us observe that processes E and D are also leftcontinuous since we

have in model V (resp. model P ):

dEt = dXt − ρtEtdt, (resp. dEt = dXt + ηtEtdt− ρtλ(t)f(F−1(Et/λ(t)))F−1(Et/λ(t))dt). (7.9)

We want now to write the cost associated to the strategy X. To do so, we introduce the following

notations

x ∈ R, F̃ (x) =
� x

0
yf(y)dy, G(x) = F̃

�

F−1(x)
�

, (7.10)

so that πt(dXt) = S0
t dXt + λ(t)[G

�

Et+dXt

λ(t)

�

− G
�

Et

λ(t)

�

]. Since G′ = F−1, the cost of an admissible

strategy is given by:

C(X) = E





� T

0

�

S0
t + F−1

�

Et

λ(t)

��

dXt +
�

t≤T

λ(t)
�

G

�

Et +ΔXt

λ(t)

�

−G

�

Et

λ(t)

�

− F−1
�

Et

λ(t)

�

ΔXt

�



 ,

(7.11)

which coincides with (7.8) for discrete strategies. Here, ΔXt = Xt+ − Xt denotes the jump of X at

time t (jumps are countable), and dXt stands for the signed measure on [0, T ] associated to (Xt, 0 ≤
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t ≤ T+) (a jump ΔXT induces a Dirac mass in T ). If we introduce the continuous part of X,

Xc
t := Xt −

�

0≤s<tΔXs, we can rewrite the cost as follows:

C(X) = E





� T

0

�

S0
t + F−1

�

Et

λ(t)

��

dXc
t +

�

t≤T

S0
tΔXt + λ(t)

�

G

�

Et +ΔXt

λ(t)

�

−G

�

Et

λ(t)

��



 . (7.12)

The optimal execution problem is in fact closely related to questions around market viability

and arbitrage. We recall the definition of price manipulation strategies introduced by Huberman and

Stanzl [HS04].

Definition 7.2. A round trip is an admissible strategy X for � = 0. A Price Manipulation Strategy

(PMS) in the sense of Huberman and Stanzl is a round trip whose expected cost is negative, i.e.

C(X) < 0.

Heuristically, if a PMS exists, it could be repeated indefinitely and would lead to a classical arbitrage

(i.e. an almost sure profit) by a law of large numbers. However, it has been pointed in Alfonsi et

al. [ASS11] the absence of PMS does not ensure the market stability. In fact, in some PMS free

models, the optimal strategy to sell � shares consists in buying and selling successively a much higher

amount of shares. To correct this, they introduce the following definition.

Definition 7.3. A model admits transaction-triggered price manipulations (TTPM) if the expected

cost of a sell (buy) program can be decreased by intermediate buy (sell) trades, i.e.

∃X admissible, C(X) < inf
�

C(X̃), X̃ is admissible and nonincreasing or nondecreasing
�

.

It is rather natural choice to exclude TTPM: in presence of TTPM a large trader would increase the

traded volume to minimize its cost, which produce noise and may yield to instability. Besides, the

absence of TTPM implies the absence of PMS. The optimal strategy for buying ε > 0 shares is made

only with intermediate buy trades and has thus a positive cost. Thus, by some cost continuity that

usually holds (this is the case for models V and P ), any round trip has a nonnegative cost.

Remark 7.3. It is possible to define a two-sided limit order book model like in Alfonsi, Fruth and

Schied [AFS10] or Alfonsi and Schied ([AS10], Section 2.6). In such a model, bid and ask prices

evolve as follows. A buy (resp. sell) order of the large trader shifts the ask (resp. bid) price and leaves

the bid (resp. ask) price unchanged. When the large trader is idle, the shifts on the ask and bid prices

goes back exponentially to zero, like in models V or P . As in [AFS10, AS10], the two-sided model

coincides with the model presented here when the large trader puts only buy orders or only sell orders.

In particular, the optimal strategies are the same in both models in absence of TTPM.
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7.2 Main results

The first focus of this paper is to extend the results obtained in Alfonsi et al. [AFS10, AS10]

and obtain the optimal execution strategies for LOB with a time varying depth λ. Doing so, our goal

is also to better understand how this time varying depth may create manipulation strategies. In fact,

it was shown in [AFS10] and [AS10] for λ ≡ 1 that under some general assumptions on the shape

function f , there is an optimal liquidation strategy which is made only with sell (resp. buy) orders

when � > 0 (resp. � < 0). Thus, there is no PMS nor TTPM when the LOB shape is constant. This

is a striking result, and one may wonder how this is modified by changing slightly the assumptions.

In Alfonsi, Schied and Slynko [ASS11] is studied the case of a block-shaped LOB, where the resilience

is not exponential so that the market has some memory of the past trades. Conditions on the market

resilience are given to exclude PMS and TTPM. Analogously, we want to obtain here conditions on λ

and ρ that rules out such strategies. This is not only interesting from a theoretical point of view.

This will give also some noticeable qualitative insights for market makers. In fact, for a market maker

who places and cancels significant limit orders, these conditions will indicate if he may or not create

manipulation strategies.

Before showing the results, it is worth to make further derivations on the expected cost. Let us

start with discrete strategies. By using the martingale property on S0 and the assumptions on ξ made

in Section 7.1.2, we can show easily like in [AS10] that

C(ξ,T ) = −S0
0�+ E

�

N
�

i=0

� Dτi+

Dτi

λ(τi)xf(x)dx

�

.

Then, it is easy to check that
�N

i=0

�Dτi+

Dτi
λ(τi)xf(x)dx is a deterministic function of (ξ,T ) in both

volume impact reversion and price impact reversion models. We respectively denote by CV (ξ,T ) and
CP (ξ,T ) this function and get:

C(ξ,T ) = −S0
0�+ E

�

CM(ξ,T )
�

, (7.13)

where M ∈ {V, P} indicates the model chosen. Thus, if the function (x, t) �→ CM (x, t) has a unique

minimizer on {(x, t) ∈ RN × RN+1,
�N

i=1 xi = −�, 0 = t0 ≤ · · · ≤ tN = T}, the optimal strategy
is deterministic and given by this minimizer. When λ is constant, it is shown in [AS10] that under

some assumptions on f depending on the model chosen, the optimal time grid t⋆ is homogeneous with

respect to ρ, i.e.
� t⋆i+1

t⋆
i

ρsds = 1
N

� T
0 ρsds. Instead, there is no such a simple characterization for general

λ, even in the block-shaped case. Thus, we will focus on optimizing the trading strategy ξ on a fixed

time grid t:

t = (t0, . . . , tN ), such that 0 = t0 < · · · < tN = T . (7.14)

Last, we introduce the following notations that will be used throughout the paper:



7.2 Main results 109

ai = e
−
� ti

ti−1
ρudu

, ãi =
aiλ(ti−1)

λ(ti)
= e

−
� ti

ti−1
(ρu+ηu)du

, âi = ai
λ(ti)

λ(ti−1)
= e

−
� ti

ti−1
(ρu−ηu)du

, 1 ≤ i ≤ N.

(7.15)

Similarly in the continuous case, we get by using the martingale assumption (see Lemma 2.3

in Gatheral, Schied and Slynko [GSS12]) that E[
� T
0 S0

t dXt] = −�S0
0 . From (7.11) and (7.12), we get

C(X) = −�S0
0 + E[CM (X)], where

CM(X) =
� T

0
F−1

�

Et

λ(t)

�

dXc
t +

�

t≤T

λ(t)
�

G

�

Et +ΔXt

λ(t)

�

−G

�

Et

λ(t)

��

.

Once again, CM is a deterministic function of the strategy X in both models M ∈ {V, P}, and it is
sufficient to focus on its minimization.

7.2.1 The block-shaped limit order book case (f ≡ 1)

In this section, we consider a shape function of the limit order book that has the form λ(t). This

time-dependent framework generalizes the block-shaped limit order book case studied by Obizhaeva

and Wang [OW05] that consists in considering a uniform distribution of shares with respect to the

price. We will get an explicit solution for the optimal execution problem, which extends the results

given by Alfonsi, Fruth and Schied [AFS08].

Volume impact reversion model

When f ≡ 1, the deterministic cost function is simply given by

CV (ξ, t) =
N
�

n=0

λ(tn)
� Dtn+

Dtn

xf(x)dx =
N
�

i=0

ξi
2







ξi
λ (ti)

+ 2

�

j<i e
−
� ti

tj
ρsds

ξj

λ(ti)






, (7.16)

which is a quadratic form: CV (ξ, t) = 1
2ξTMV ξ, with MV

i,j =
exp

�

−
�

�

�

� tj

ti
ρsds

�

�

�

�

λ(ti∨tj) , 0 ≤ i, j ≤ N .

Theorem 7.1. The quadratic form (7.16) is positive definite if and only if

aiãi < 1,∀i ∈ {1, . . . , N} . (7.17)

In this case, the optimal execution problem to liquidate � shares on the time-grid (7.14) admits

a unique optimal strategy ξ⋆ which is deterministic and explicitly given by:






















ξ⋆0 = − �

KV
λ(t0) 1−a1

1−a1ã1

ξ⋆i = − �

KV
λ(ti)

�

ai+1

1−ai+1ãi+1
(ãi+1 − 1) + 1−ãi

1−aiãi

�

, 1 ≤ i ≤ N − 1
ξ⋆N = − �

KV
λ(tN ) 1−ãN

1−aN ãN
,

(7.18)
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where

KV =
λ (t0) (1− 2a1) + λ (t1)

1− a1ã1
+

N
�

i=2

λ(ti)
(1 − ãi)2

1− aiãi
.

Its cost is given by CV (ξ⋆, t) = �
2/(2KV ).

This theorem provides an explicit optimal strategy for the large trader. It also gives explicit

conditions that exclude or create PMS. First, let us assume that

∀t ≥ 0, 2ρt + ηt ≥ 0. (7.19)

Then, for any time grid (7.14), aiãi ≤ 1 and the quadratic form (7.16) is positive semidefinite since it is
a limit of positive definite quadratic forms. Thus, the model is PMS free. Conversely let us assume that

2ρt1 + ηt1 < 0 for some t1 ≥ 0. Let us consider the following round trip on the time grid t = (0, t1, t2)
with t2 > t1, where the large trader buys x > 0 at time t1 and sells x at time t2. The cost of such a

strategy is given by

CV ((0, x,−x), t) =
x2

2λ(t2)

�

e

� t2
t1

ηudu + 1− 2e−
� t2
t1

ρudu
�

=
t2→t1

x2

2λ(t1)
((2ρt1 + ηt1)(t2 − t1) + o(t2 − t1))

(7.20)

and is negative when t2 is close enough to t1.

Corollary 7.1. In a block-shaped LOB, model V does not admit price manipulation in the sense of

Huberman and Stanzl if and only if (7.19) holds.

Let us now discuss this result from the point of view of market makers. A market maker that puts

a significant amount of orders may have an influence on ρt and ηt and can increase (resp. decrease)

them by respectively adding (resp. canceling) an order at a better price or at an existing limit order

price. What comes out from (7.19) is that no PMS may arise if one adds limit orders, whatever the

way of adding new orders. Instead, PMS can occur when canceling orders. A different conclusion will

hold in the price reversion model.

An analogous result to Corollary 7.1 is stated in a recent paper by Fruth, Schöneborn and

Urusov [FSU13] that has been posted while we were preparing this work. To be precise, results

in [FSU13] are given for model P with a block-shaped LOB, and the optimal execution strategy

is obtained in a continuous time setting. As we will see in the next paragraph, models V and P are

mathematically equivalent when the LOB shape is constant, even though they are different from a

financial point of view. By taking a regular time-grid ti = iT
N , i = 0 . . . , N , and letting N → +∞,

we get back the optimal strategy in continuous time (that we still denote by ξ⋆, by a slight abuse of

notations):
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ξ⋆0 −→
N→+∞

ξ⋆0 := − �

λ(T )+
� T

0

ρ2
sλ(s)

ηs+2ρs
ds

λ(0)ρ0

2ρ0+η0

ξ⋆iN
T/N −→

N→+∞
ξ⋆t := − �

λ(T )+
� T

0

ρ2
sλ(s)

ηs+2ρs
ds
λ(t)

�

�

ρt
2ρt+ηt

�′
+ ρt

�

ρt+ηt
2ρt+ηt

�

�

, for iN such that
tiN
N −→

Δt→0
t

ξ⋆N −→
N→+∞

ξ⋆T := − �

λ(T )+
� T

0

ρ2
sλ(s)

ηs+2ρs
ds

λ(T )(ηT+ρT )
ηT+2ρT

.

(7.21)

The strategy dX⋆
t = ξ⋆0δ0(dt)+ ξ⋆t dt+ ξ⋆T δT (dt) with initial trade ξ

⋆
0 , continuous trading ξ⋆t on [t, t+dt]

for t ∈ (0, T ) and last trade ξ⋆T is indeed shown to be optimal in Fruth, Schöneborn and Urusov [FSU13]
among the continuous time strategies with bounded variation. We will show here again this result for

more general LOB shape. The optimal strategy has the following cost:

�
2

2
�

λ (T ) +
� T
0

ρ2
sλ(s)

2ρs+ηs
ds

� .

Besides, this provides a necessary and sufficient condition to exclude transaction-triggered price ma-

nipulation.

Corollary 7.2. In a block-shaped LOB, model V does not admit transaction-triggered price manipu-

lation if and only if

∀t ≥ 0, ηt + ρt ≥ 0, and
�

ρt
2ρt + ηt

�′
+ ρt

�

ρt + ηt
2ρt + ηt

�

≥ 0. (7.22)

The first condition comes from the last trade and implies (7.19) since ρt ≥ 0. It can be interpreted

similarly as condition (7.19) from market makers’ point of view. The second condition in (7.22) comes

from the intermediate trades and brings on the derivatives of ρ and η. It is harder to get an intuitive

idea of its meaning from a market maker’s point of view. Last, let us mention that we can show that

the optimal strategy on the discrete time-grid (7.14) is made with nonnegative trades if one has (7.17)

and
1− ãi
1− aiãi

≥ ai+1
1− ãi+1

1− ai+1ãi+1
, ∀i ∈ {1, . . . , N − 1} and ãN ≤ 1. (7.23)

Condition (7.22) can be seen as the continuous time limit of condition (7.23).

Let us give now an illustration of the optimal strategy with a time-varying depth. We consider

the case of a time-varying depth

λ(t) = λ0 + cos(2πt), with λ0 > 1,

which corresponds to a one-day periodic function with high values at the beginning and at the end of

the day. We can show that ηt ≥ − 2π√
λ2

0−1
and with a constant resilience ρ, there is no PMS as soon as

2ρ− 2π√
λ2

0−1
≥ 0. Figure 7.1 shows the optimal execution strategy (7.18) with a value λ0 that excludes

PMS but allows TTPM. The optimal strategy to buy 50 shares consists in buying almost 95 shares

and selling 45 shares, which roughly trebles the traded volume.
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Fig. 7.1. Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, ρ = 1, λ(t) = 4 + cos(2πt)

(plotted in dashed line). In solid line is plotted the function t �→
�

ρt

2ρt+ηt

�′
+ ρt

�

ρt+ηt

2ρt+ηt

�

.

Price impact reversion model

When f ≡ 1, the deterministic cost function �N
i=0

�Dti+

Dti
λ(ti)xf(x)dx is given by

CP (ξ, t) =
N
�

n=0

λ(tn)
� Dtn+

Dtn

xf(x)dx =
N
�

i=0

ξi
2





ξi
λ(ti)

+ 2
�

j<i

e
−
� ti

tj
ρsds ξj

λ(tj)



 . (7.24)

This is a quadratic form: CP (ξ, t) = 1
2ξTMP ξ, with MP

i,j =
exp

�

−
�

�

�

� ti

tj
ρsds

�

�

�

�

λ(ti∧tj) for 0 ≤ i, j ≤ N . When

f ≡ 1, we get from (7.9) that model P is equivalent to model V with a resilience ρ̃t = ρt− ηt. Another

way to see that both models are mathematically the same in the block-shape case is to reverse the

time and consider:

∀t ∈ [0, T ], ρ̂t = ρT−t, λ̂(t) = λ(T − t) and t̂N−i = T − ti, for 0 ≤ i ≤ N.

Then, we have

MP
i,j =

e
−|

� ti

tj
ρsds|

λ(ti ∧ tj)
=

e
−|

� t̂N−j

t̂N−i
ρ̂sds|

λ̂(t̂N−i ∨ t̂N−j)
, (7.25)
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and the optimal execution problem in Model P with resilience ρ, LOB depth λ(t) and time-grid t is the

same as the optimal execution problem in Model V with resilience ρ̂, LOB depth λ̂(t) and time-grid t̂.

We immediately get the following results.

Theorem 7.2. The quadratic form (7.24) is positive definite if and only if

aiâi < 1,∀i ∈ {1, . . . , N} (7.26)

In this case, the optimal execution problem to liquidate � shares on the time-grid (7.14) admits a

unique optimal strategy ξ⋆ which is deterministic and explicitly given by:






















ξ⋆0 = − �

KP
λ(t0) 1−â1

1−a1â1
.

ξ⋆i = − �

KP
λ(ti)

�

ai
1−aiâi

(âi − 1) + 1−âi+1

1−ai+1âi+1

�

, 1 ≤ i ≤ N − 1
ξ⋆N = − �

KP
λ(tN )

1−aN
1−aN âN

(7.27)

where

KP =
λ(tN )(1− 2aN ) + λ(tN−1)

1− aN âN
+

N−2
�

i=0

λ(ti)
(1− âi+1)2

1− ai+1âi+1
.

Its cost is given by CP (ξ⋆, t) = �
2/(2KP ).

By taking a regular time-grid ti = iT
N , i = 0 . . . , N , and letting N → +∞, we get the optimal strategy

in continuous time:


































ξ⋆0 −→
N→∞

ξ⋆0 := − �

λ(0)+
� T

0

ρ2
sλ(s)

2ρs−ηs
ds
λ(0) ρ0−η0

2ρ0−η0

ξ⋆iN
T/N −→

N→∞
ξ⋆t := − �

λ(0)+
� T

0

ρ2
sλ(s)

2ρs−ηs
ds
λ(t)

�

�

ρt−ηt
2ρt−ηt

�′
+ ρt

�

ρt−ηt
2ρt−ηt

�

�

, for iN such that T iN
N −→

Δt→0
t

ξ⋆N −→
N→∞

ξ⋆T := − �

λ(0)+
� T

0

ρ2
sλ(s)

2ρs−ηs
ds
λ(T ) ρT

2ρT −ηT
.

(7.28)

The strategy with initial trade ξ⋆0 , continuous trading ξ⋆t on [t, t+ dt] for t ∈ (0, T ) and last trade ξ⋆T is
shown to be optimal in Fruth, Schöneborn and Urusov [FSU13] among the continuous time strategies

with bounded variation, and has the following cost:

�
2

2
�

λ (0) +
� T
0

ρ2
sλ(s)

2ρs−ηs
ds

� .

Corollary 7.3. In a block-shaped LOB, model P does not admit price manipulation in the sense of

Huberman and Stanzl if and only if

∀t ≥ 0, 2ρt − ηt ≥ 0. (7.29)

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt − ηt ≥ 0, and
�

ρt − ηt
2ρt − ηt

�′
+ ρt

�

ρt − ηt
2ρt − ηt

�

≥ 0. (7.30)
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The first condition in (7.30) comes from the initial trade while the second comes from intermediate

trades. From market makers’ point of view, (7.29) and the first condition in (7.30) give different

conclusions from model V . A significant market maker will not create manipulation strategy if he puts

orders at a better price (which increases ρ) or cancels orders at existing prices (which decreases η).

Instead, he may create manipulation strategies if he piles orders at existing prices, or if he cancels

orders that are among the best offers. The second condition of (7.30) brings on the dynamics of η

and ρ and it is more difficult to give its heuristic meaning in terms of trading. Last, let us mention

that the optimal strategy in discrete time given by Theorem 7.2 is made only with trades of same sign

if, and only if, one has (7.26) and

1− âi+1
1− ai+1âi+1

≥ ai
1− âi
1− aiâi

, ∀i ∈ {1, . . . , N − 1} and â1 < 1. (7.31)

7.2.2 Results for general limit order book shape

We extend in this section the results obtained on the optimal execution for block-shaped LOB

to more general shapes. In particular, the necessary and sufficient conditions that we have obtained to

exclude TTPM (namely (7.22) for model V and (7.30) for model P ) are still sufficient conditions to

exclude TTPM for a wider class of shape functions. From a mathematical point of view, we proceed

as follows. We first characterize the optimal strategy on a discrete time grid, by using Lagrange

multipliers. Then, one can guess the optimal continuous time strategy, and we prove its optimality by

a verification argument.

Volume impact reversion model

We first introduce the following assumption that will be useful to study the optimal discrete

strategy.

Assumption 7.1. 1. The shape function f satisfies the following condition:

f is nondecreasing on R− and nonincreasing on R+

2. ∀t ≥ 0, ρt + ηt ≥ 0.

We remark that when the LOB shape does not evolve in time (ηt = 0), the second condition is satisfied

and we get back the assumption made in Alfonsi, Fruth and Schied [AFS10]. We define

x ∈ R, hV,i(x) =
F−1(x)− aiF

−1 (ãix)
1− ai

, 1 ≤ i ≤ N. (7.32)
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Theorem 7.3. Under Assumption 7.1, the cost function CV (ξ, t) is nonnegative, and there is a unique

optimal execution strategy ξ⋆ that minimizes CV over {ξ ∈ RN+1,
�N

i=0 ξi = −�}. This strategy is given
as follows. The following equation

N
�

i=1

λ(ti−1)(1 − ai)h−1
V,i(ν) + λ(tN )F (ν) = −�

has a unique solution ν ∈ R, and

ξ⋆0 = λ(t0)h
−1
V,1 (ν) ,

ξ⋆i = λ(ti)(h
−1
V,i+1 (ν)− ãih

−1
V,i (ν)), 1 ≤ i ≤ N − 1,

ξ⋆N = λ(tN )F (ν)− λ(tN−1)aNh−1
V,N (ν) .

The first and the last trade have the same sign as −�. Besides, if the following condition holds
1
ãi

1− ãi
1− ai

≥ 1− ãi+1
1− ai+1

, (7.33)

the intermediate trades ξ⋆i , 1 ≤ i ≤ N − 1, have also the same sign as −�.

This theorem extends the results of [AFS10], where λ is assumed to be constant. In that case, (7.33) is

satisfied and all the trades have the same sign. Condition (7.33) is interesting since it does not depend

on the shape function, but it is more restrictive than the condition (7.23) for the block-shape case

(see Lemma 7.4 for (7.33) =⇒ (7.23)). In fact, the continuous time formulation is more convenient

to analyze the sign of the trades. Under Assumption 7.1, we will show that no transaction-triggered

price manipulation can occur with the same condition (7.22) as for the block-shape case.

When stating the optimal continuous-time strategy, we slightly relax Assumption 7.1. This is

basically due to the argument of the proof that relies on a verification argument. Instead, our proof

in the discrete case relies on Lagrange multipliers which requires to show first that the cost function

has a minimum, and we use ρt + ηt ≥ 0 for that. We introduce the following function

hV,t(x) = F−1(x) +
ηt + ρt

ρt

x

f(F−1(x))
. (7.34)

We will show that no PMS exists and that there is a unique optimal strategy if these functions for

t ∈ [0, T ] are bijective on R with a positive derivative. If Assumption 7.1 holds, this condition is

automatically satisfied.

Theorem 7.4. Let f ∈ C1(R). We assume that for t ∈ [0, T ], hV,t is bijective on R, such that h′
V,t > 0.

Then, the cost function CV (X) is nonnegative, and there is a unique optimal admissible strategy X⋆

that minimizes CV . This strategy is given as follows. The equation
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� T

0
λ(t)ρth−1

V,t(ν)dt+ λ(T )F (ν) = −� (7.35)

has a unique solution ν ∈ R and we set ζt = h−1
V,t(ν). The strategy dX⋆

t = ξ⋆0δ0(dt) + ξ⋆t dt + ξ⋆T δT (dt)

with

ξ⋆0 = λ(0)ζ0,

ξ⋆t = λ(t)
�

dζt
dt
+ (ρt + ηt)ζt

�

,

ξ⋆T = λ(T )(F (ν) − ζT ),

is optimal. The initial trade ξ⋆0 has the same sign as −�.

Thus, a sufficient condition to exclude price manipulation strategies is to assume that hV,t is

bijective with h′
V,t > 0. We have a partial reciprocal result: there are PMS as soon as h′

V,t1
(0) < 0 (or

equivalently, 2ρt1 + ηt1 < 0) for some t1 ≥ 0. Indeed, in this case we consider the following round trip
on the time grid t = (0, t1, t2) with t2 > t1, where the large trader buys x > 0 at time t1 and sells x

at time t2. The cost of such a strategy is given by

CV ((0, x,−x), t) = λ(t1)G
�

x

λ(t1)

�

+ λ(t2)






G







x(e
−
� t2
t1

ρsds − 1)
λ(t2)






−G







xe
−
� t2
t1

ρsds

λ(t2)













= λ(t1)
�

−ηt1G

�

x

λ(t1)

�

+ (ρt1 + ηt1)
x

λ(t1)
F−1

�

x

λ(t1)

��

(t2 − t1) + o(t2 − t1).

The derivative of x �→ −ηt1G(x) + (ρt1 + ηt1)xF
−1(x) is ρt1hV,t1(x), which has the opposite sign of x

near 0 since hV,t1(0) = 0 and h′
V,t1
(0) < 0 by assumption. Thus, we have CV ((0, x,−x), t) < 0 for x

and t2 − t1 small enough.

Now, let us focus on the sign of the trades given by the optimal strategy. Without further hy-

pothesis, the condition ξ⋆t ≥ 0 typically involves the shape function f . However, under Assumption 7.1,

we can show that TTPM are excluded under the same assumption as for the block-shape case.

Corollary 7.4. Let f ∈ C1. Under Assumption 7.1, the function hV,t is C1(R), bijective on R, and

such that h′
V,t > 0. Thus, the result of Theorem 7.4 holds and the last trade ξ⋆T has the same sign as

−�.

Besides, if (7.22) also holds, ξ⋆t has the same sign as −� for any 0 < t < T , which excludes

TTPM.

Let us now focus on the example of a power-law shape: we assume that
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f(x) = |x|γ , γ > −1.

Strictly speaking, this does not fulfill the assumptions made before on f since it is not smooth in 0. How-

ever, the result of Theorem 7.4 still holds. In this case, F (x) = sgn(x) |x|γ+1

γ+1 is well-defined and satis-

fies (7.4). We have F−1(x) = sgn(x)(γ+1)
1

γ+1 |x|
1

γ+1 and hV,t(x) = sgn(x)(γ+1)
1

γ+1 |x|
1

γ+1

�

ρt(2+γ)+ηt
ρt(1+γ)

�

.

Thus, hV,t is bijective and increasing if, and only if:

ρt(2 + γ) + ηt > 0.

In this case, we have

h−1
V,t(x) =

1
γ + 1

Kt(γ)sgn(x)|x|γ+1 with Kt(γ) =
�

ρt(1 + γ)
ρt(2 + γ) + ηt

�1+γ

.

In this case, we have by Theorem 7.4 that






























ξ⋆0 =
−�

� T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(0)K0(γ),

ξ⋆t =
−�

� T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(t)
�

dKt(γ)
dt + (ρt + ηt)Kt(γ)

�

ξ⋆T =
−�

� T

0
λ(t)ρtKt(γ)dt+λ(T )

λ(T )(1 −KT (γ))

(7.36)

is the unique optimal strategy. For γ = 0, we get back (7.21). If we only assume that ρt(2+γ)+ηt ≥ 0,
we still have CV (X) ≥ 0 for any admissible strategy X. The cost CV (X) is indeed continuous with

respect to the resilience, and is the limit of the cost associated to resilience ρt + ε, ε ↓ 0. On the
contrary, if ρt(2 + γ) + ηt < 0, we have h′

V,t(0) < 0 and there is a PMS as explained above.

Corollary 7.5.When f(x) = |x|γ, model V does not admit PMS if, and only if

∀t ≥ 0, ρt(2 + γ) + ηt ≥ 0.

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt + ηt ≥ 0, and
�

ρt(1 + γ)
ρt(2 + γ) + ηt

�′
+ ρt

�

ρt + ηt
ρt(2 + γ) + ηt

�

≥ 0.

These conditions come respectively from the nonnegativity of the last and intermediate trades. For

given functions ρt and ηt, the no PMS condition will be satisfied for t ∈ [0, T ] when γ is large enough.

This can be explained heuristically. When γ increases, limit orders become rare close to S0
t and dense

away from S0
t , which creates some bid-ask spread. One has then to pay to get liquidity, and round

trips have a positive cost. Instead, when γ is close to −1 it is rather cheap to consume limit orders,
which may facilitate PMS. In Figure 7.2, we have plotted the optimal strategy for γ = −0.3 and γ = 1

with the same parameters as in Figure 7.1 for the Block shape case. We can check that the no PMS

condition is satisfied in both cases.
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Fig. 7.2. Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, ρ = 1, λ(t) = 4 + cos(2πt)

(plotted in dashed line) and γ = −0.3 (left) or γ = 1 (right). In solid line is plotted the function t �→
�

ρt(1+γ)
ρt(2+γ)+ηt

�′

+

ρt

�

ρt+ηt

ρt(2+γ)+ηt

�

(this function is well-defined but out of the graph for γ = −0.3).

Price impact reversion model

The results that we present for model P are similar to the one obtained for model V . We first

solve the optimal execution problem in discrete time. From its explicit solution, we then calculate its

continuous time limit and check by a verification argument that it is indeed optimal. Doing so, we get

sufficient conditions to exclude PMS and TTPM. In particular, condition (7.30) that excludes PMS

and TTPM for block-shape LOB also excludes PMS and TTPM for a general LOB shape satisfying

Assumption 7.2 below.

To study the optimal discrete strategy, we will work under the following assumption.

Assumption 7.2. 1. The shape function f is C1 and satisfies the following condition:

f is nonincreasing on R− and nondecreasing on R+

2. ∀t ≥ 0, ρt − ηt > 0.

3. x �→ xf ′(x)
f(x) is nondecreasing on R−, nonincreasing on R+.

The monotonicity assumption made here is the opposite to the one made in Assumption 7.1 for

model V . This choice is different from the one made in Alfonsi et al. [AFS10, AS10]. It is in fact

more tractable from a mathematical point of view, especially here with a time-varying LOB. Let us

stress here that Assumption 7.2 (resp. Assumption 7.1) is a condition under which we are able to

run the proof for the discrete time optimization of the price (resp. volume) reversion models. From

a practical point of view, it may seem too restrictive or unrealistic. However, these conditions are
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sufficient but not necessary. Looking at the proofs, we can observe that the optimal strategy ξ⋆ given

by Theorem 7.5 (resp. 7.3), if it is well-defined, is still a critical point of the cost function when

Assumption 7.2 (resp. 7.1) does not hold. Of course, this is not enough to conclude that ξ⋆ is a global

minimizer, but indicates that ξ⋆ is a good candidate for that. Another way to avoid Assumption 7.2

(resp. 7.1) is to work in continuous time and check directly the hypothesis of Theorem 7.6 (resp. 7.4).

Theorem 7.5. Under Assumption 7.2, the cost function CP (ξ, t) is nonnegative, and there is a unique

optimal execution strategy ξ⋆ that minimizes CP over {ξ ∈ RN+1,
�N

i=0 ξi = −�}. This strategy is given
as follows. The following equation

N
�

i=1

λ(ti−1)

�

F

�

h−1
P,i(ν)

ai

�

− λ(ti)
λ(ti−1)

F (h−1
P,i(ν))

�

+ λ(tN )F (ν) = −�

has a unique solution ν ∈ R, and

ξ⋆0 = λ(t0)F

�

h−1
P,1 (ν)

a1

�

,

ξ⋆i = λ(ti)

�

F

�

h−1
P,i+1 (ν)

ai+1

�

− F (h−1
P,i(ν))

�

, 1 ≤ i ≤ N − 1,

ξ⋆N = λ(tN )[F (ν) − F (h−1
P,N (ν))].

The first and the last trade have the same sign as −�.

We now state the corresponding result in continuous time and set:

x ∈ R, hP,t(x) = x



1 +
ρt

ρt
�

1 + xf ′(x)
f(x)

�

− ηt



 . (7.37)

Theorem 7.6. Let f ∈ C2(R). We assume that one of the two following conditions holds.
1. For t ∈ [0, T ], ρt

�

1 + xf ′(x)
f(x)

�

−ηt > 0 for any x ∈ R and hP,t is bijective on R, such that h′
P,t(x) > 0,

dx-a.e.

2. For t ∈ [0, T ], ρt
�

1 + xf ′(x)
f(x)

�

− ηt < 0 and ρt
�

2 + xf ′(x)
f(x)

�

− ηt > 0 for any x ∈ R, and hP,t is

bijective on R, such that h′
P,t(x) < 0, dx-a.e.

Then, the cost function CP (X) is nonnegative, and there is a unique optimal admissible strategy X⋆

that minimizes CP . This strategy is given as follows. The equation

� T

0
λ(t)[ρth−1

P,t(ν)f(h
−1
P,t(ν))− ηtF (h−1

P,t(ν))]dt + λ(T )F (ν) = −� (7.38)

has a unique solution ν ∈ R and we set ζt = h−1
P,t(ν). The strategy dX⋆

t = ξ⋆0δ0(dt) + ξ⋆t dt + ξ⋆T δT (dt)

with
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ξ⋆0 = λ(0)F (ζ0),

ξ⋆t = λ(t)f(ζt)
�

dζt
dt
+ ρtζt

�

,

ξ⋆T = λ(T )(F (ν) − F (ζT )),

is optimal. The initial trade ξ⋆0 has the same sign as −�.

In particular, there is no PMS in model P as soon as Assumptions (i) or (ii) hold. Conversely, let us

assume that ρt1
�

2 + xf ′(x)
f(x)

�

− ηt1 < 0, when x belongs to a neighbourhood of 0 for some t1 ≥ 0. This
is equivalent to assume that 2ρt1 − ηt1 < 0 for some t1 ≥ 0. Then, we set t = (0, t1, t2) with t2 > t1,

and consider that the large trader buys x > 0 at time t1 and sells x at time t2. The cost of such a

round trip is

CP ((0, x,−x), t)

= λ(t1)G
�

x

λ(t1)

�

+ λ(t2)
�

G

�

F

�

e
−
� t2
t1

ρsds
F−1

�

x

λ(t2)

��

− x

λ(t2)

�

− F̃

�

e
−
� t2
t1

ρsds
F−1

�

x

λ(t2)

���

= λ(t1)

�

−ηt1F̃

�

F−1
�

x

λ(t1)

��

+ ρt1F
−1

�

x

λ(t1)

�2

f

�

F−1
�

x

λ(t1)

��

�

(t2 − t1) + o(t2 − t1).

The derivative of x �→ −ηt1F̃ (x) + ρt1x
2f(x) is xf(x)

�

ρt1

�

2 + xf ′(x)
f(x)

�

− ηt1

�

and has the opposite

sign of x near 0. Thus, CP ((0, x,−x), t) is negative when t2 is close to t1 and x is small enough, which

gives a PMS.

Corollary 7.6. Let f ∈ C2(R). Under Assumption 7.2, the function hP,t is C1(R), bijective on R and

such that h′
P,t > 0. Thus, the result of Theorem 7.6 holds and the last trade ξ⋆T has the same sign as

−�.

Besides, if (7.30) also holds, ξ⋆t has the same sign as −� for any 0 < t < T , which rules out

TTPM.

As for model V , we consider now the case of a power-law shape f(x) = |x|γ . We can apply the
results of Theorem 7.6 in this case. We can also notice from (7.9) that dEt = (ηt − ρt(1 + γ))Etdt.

Therefore, model P with resilience ρt is the same as model V with resilience ρ̃t = ρt(1 + γ)− ηt.

Corollary 7.7.When f(x) = |x|γ , model P does not admit PMS if, and only if

∀t ≥ 0, ρt(2 + γ)− ηt ≥ 0.

It does not admit transaction-triggered price manipulation if and only if

∀t ≥ 0, ρt(1 + γ)− ηt ≥ 0, and
�

ρt(1 + γ)− ηt
ρt(2 + γ)− ηt

�′
+ ρt

�

ρt(1 + γ)− ηt
ρt(2 + γ) + ηt

�

≥ 0.
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7.2.3 Numerical results

In this paragraph, we would like to briefly investigate the impact of the different parameters on

the optimal strategy. As already mentioned in this paper, it has been observed in the literature that

the price impact of an order is proportional to a power of its volume (see e.g. Tóth et. al [BDdL+11]),

this power being close to 1/2. This leads us to consider the power law shape f(x) = |x|γ . In this
model, the shift on the price Dt is proportional to E

1
γ+1

t , which indicates the choice of γ ≈ 1. Last,
we consider the volume impact reversion model. As said above, this choice is not restrictive since for

a power law shape function it is equivalent to the price impact reversion model, up to a change of the

resilience function.
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Fig. 7.3. Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, ρ = 10, λ(t) = 4 + cos(2πt)

for γ = 7/3 (left) or γ = 3/7 (right).

We first examine how the shape function modifies the optimal strategy. We have already seen

in Figure 7.2 that this function may significantly change the optimal trades, as one could expect.

However, this Figure consider two rather different values of γ with parameters implying TTPM. Now,

we consider other parameters that exclude TTPM since we deem it should be the case for in practice.

We still consider a one day (i.e. one period) deadline. As recalled above, it is empirically observed that

the price impact of a trade is proportional to a power of the trade size, and this power is typically

close to 1/2. In Figure (7.3), we have plotted the optimal strategy for γ = 7/3 and γ = 3/7, which

corresponds respectively to a power 1/(γ + 1) equal to 0.3 and 0.7. The optimal strategy for γ = 1

(i.e. a square-root impact) is plotted in the upper right part of Figure (7.4). Qualitatively, there is no

striking difference between these optimal strategies that do not seem very sensitive to γ. The main

change is the size of the last trade that increases when γ gets larger.
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Fig. 7.4. Optimal execution strategy to buy 50 shares on a regular time grid, with N = 20, λ(t) = 4 + ελ cos(2πt),

ρ(t) = 10 + 2.5ερ cos(2πt) and γ = 1 for (ελ, ερ) equal to (0, 0) (upper left), (1, 0) (upper right), (0, 1) (lower left) or

(1, 1) (lower right).

In Figure 7.4 we focus on how is modified the optimal strategy when we consider constant or

time dependent functions λ and ρ. Let us recall that λ models the liquidity available on the market

while ρ models its resilience. It is known from Alfonsi, Fruth and Schied [AFS10] that the optimal

strategy is made with intermediate trades of the same size when ρ and λ are both constant. This is

again observed in the upper left graphic of Figure 7.4. Then, we consider in the upper right and the

lower left graphics the case where λ depends on t and ρ is constant, and conversely. To compare, we

have considered each time the same type of time-dependency, which is proportional to 4 + cos(2πt).

Qualitatively, this two graphics are rather similar. As one could expect, the size of the intermediate

trades follows the trend of the market liquidity or resilience. Looking closer, this impact on the optimal

strategy is more important for the liquidity oscillations than for the resilience. Last, when both liquidity

and resilience depend on the time (lower right graphic), these effects add up. The intermediate trades

change significantly along the time. Also, the first and last trades are larger, because they coincides
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to the upper value of λ and ρ. Thus, we see that the evolution of λ and ρ have a clear impact on the

optimal strategy: this strategy follows the trend given by λ and ρ. This behaviour is very close to the

VWAP (Volume Weighted Average Price) strategy which is widely used by practitioners.

7.3 Proofs

7.3.1 The block shape case

Proof of Theorem 7.1: The quadratic form (7.16) is given by CV (ξ, t) = 1
2ξTMV ξ, with

MV
i,j =

exp

�

−
�

�

�

� tj

ti
ρsds

�

�

�

�

λ(ti∨tj) , 0 ≤ i, j ≤ N . Let us assume that aiãi < 1,∀i ∈ {1, . . . , N}. Then, we can
define the following vectors:

y0 =
e0

�

λ(t0)
, yi = ãiyi−1 +

ei
�

λ(ti)

√
1− aiãi, 1 ≤ i ≤ N

where e0 . . . eN denote the canonical basis of RN+1. We have MV
ij = y

T
i yj . We introduce Y the upper

triangular matrix with columns y0, . . . ,yN . By assumption, it is invertible and so is M = Y TY .

Conversely, if MV is positive definite, the minors

det((MV
i,j)0≤i,j≤n) =

1
λ(t0)

n
�

i=1

1
λ(ti)

(1− aiãi), 1 ≤ n ≤ N

are positive, which gives (7.17).

Let us turn to the optimization problem. One has to minimize CV (ξ, t) under the linear con-

straint
�N

i=0 ξi = −�, which gives

ξ⋆ = − �

1T (MV )−1 1

�

MV
�−1

1, (7.39)

where 1 ∈ RN+1 is a vector of ones. Since Y is upper triangular, it can be easily inverted and we can

calculate explicitly
�

MV
�−1

1 and get (7.18). We do not detail these calculations since the result is

anyway a consequence of Theorem 7.3. �

7.3.2 General limit order book shape with model V

Let us introduce some notations. For the time grid t given by (7.14), we introduce the following

quantities:
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αk :=
� tk

tk−1

ρsds, k = 1, . . . , N. (7.40)

We can write the cost function (7.13) as follows

CV (ξ, t) =
N
�

n=0

λ(tn)
�

G

�

En + ξn
λ(tn)

�

−G

�

En

λ(tn)

��

, (7.41)

where we use the following notations (observe that En = an(En−1 + ξn−1))

E0 = 0, En =
n−1
�

i=0

ξie
−
�n

k=i+1
αk , 1 ≤ n ≤ N.

Lemma 7.1.We have ∂CV

∂ξN
= F−1

�

EN+ξN
λ(tN )

�

and, for i = 0, . . . , N − 1,

∂CV

∂ξi
− ai+1

∂CV

∂ξi+1
= F−1

�

Ei + ξi
λ(ti)

�

− ai+1F
−1

�

Ei+1

λ(ti+1)

�

. (7.42)

Proof. Let us first observe that ∂En

∂ξi
= 0, if i ≥ n, and ∂En

∂ξi
= e

−
�n

k=i+1
αk if i < n. Thus, we get by

using that G′ = F−1:

∂CV

∂ξi
= F−1

�

Ei + ξi
λ(ti)

�

+
N
�

n=i+1

e
−
�n

k=i+1
αk

�

F−1
�

En + ξn
λ(tn)

�

− F−1
�

En

λ(tn)

��

= F−1
�

Ei + ξi
λ(ti)

�

− e−αi+1F−1
�

Ei+1

λ(ti+1)

�

+ e−αi+1



F−1
�

Ei+1 + ξi+1
λ(ti+1)

�

+
N
�

n=i+2

e
−
�n

k=i+2
αk

�

F−1
�

En + ξn
λ(tn)

�

− F−1
�

En

λ(tn)

��





= F−1
�

Ei + ξi
λ(ti)

�

− ai+1F
−1

�

Ei+1

λ(ti+1)

�

+ ai+1
∂CV

∂ξi+1
.

Lemma 7.2. Under Assumption 7.1, we obtain the next conclusions.

1. For i ∈ {1, . . . , N}, the function hV,i defined in (7.32) is an increasing bijection on R that satisfies

sgn(x)hV,i(x) ≥ 1−aiãi
1−ai

F−1(x).

2. If (7.33) holds, then we have sgn(x)h−1
V,i+1 (x) ≥ sgn(x)ãih−1

V,i (x) for i ∈ {1, . . . , N − 1}.
3. sgn(x)F (x) ≥ sgn(x)ãNh−1

V,N (x).

Proof. 1. Since the resilience ρt is positive, we have 0 < ai < 1, and ãi ≤ 1 since ρt + ηt ≥ 0 by

Assumption 7.1. We then get

∂hV,i(x)
∂x

=
1

1− ai

�

1
f(F−1(x))

− aiãi
f(F−1(ãix))

�

≥ 1− aiãi
1− ai

1
f(F−1(x))

> 0

because f is nondecreasing on R− and nonincreasing on R+, and F−1 is increasing.
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2. We set f̂(x) = (F−1)′(x) = 1/f(F−1(x)): this function is positive, nonincreasing on R− and

nondecreasing on R+. Let ν ≥ 0 and y = h−1
V,i+1(ν). We note that y ≥ 0 because hV,i+1(0) = 0 and

hV,i+1 is increasing by the first point of this lemma. Thus, we have that

ν =
F−1(y)− ai+1F

−1(ãi+1y)
1− ai+1

= F−1(ãi+1y) +
F−1(y)− F−1(ãi+1y)

1− ai+1

= F−1(ãi+1y) +
1

1− ai+1

� y

ãi+1y
f̂(ξ)dξ ≤ F−1(y) +

1− ãi+1
1− ai+1

yf̂(y) =: gi+1(y)

Hence, we obtain that gi+1 is increasing on R and then, y ≥ g−1
i+1(ν). Let z = ãih

−1
V,i (ν) ≥ 0. We

have:

ν =
F−1

�

z
ãi

�

− aiF
−1(z)

1− ai

= F−1(z) +
F−1

�

z
ãi

�

− F−1(z)

1− ai

= F−1(z) +
1

1− ai

� z
ãi

z
f̂(ξ)dξ ≥ F−1(z) +

�

1
ãi
− 1

�

1− ai
zf̂(z) =: ḡi(z)

Therefore, if (7.33) holds, we get that gi+1(x) ≤ ḡi(x) for all x ≥ 0. Then, we have g−1
i+1(x) ≥ g−1

i (x),

and therefore

y ≥ g−1
i+1(ν) ≥ g−1

i (ν) ≥ z.

The same arguments for ν ≤ 0 give y ≤ g−1
i+1(ν) ≤ g−1

i (ν) ≤ z.

3. Using the above definition, we have sgn(x)ḡN (x) ≥ sgn(x)F−1(x), and therefore we get

sgn(ν)F (ν) ≥ sgn(ν)ḡ−1
N (ν) ≥ sgn(ν)z = sgn(ν)ãNh−1

V,N (ν) .

Lemma 7.3. Let a ∈ (0, 1) and b > 0 such that ab ≤ 1. We have G(x)− 1
bG(abx) ≥ 0 for x ∈ R, and

G(x)− 1
bG(abx) →

|x|→+∞
+∞.

Proof. Since G is convex (G′ = F−1 is increasing) and G(0) = 0, G(abx) ≤ abG(x). If b > 1, we then

have G(x)− 1
bG(abx) ≥ G(x)(1 − a) which gives the result. If b ≤ 1, we have

G(x)− 1
b
G(abx) =

� x

0
F−1(u)du− 1

b

� abx

0
F−1(u)du =

� x

0
F−1(u)du−

� ax

0
F−1(bv)dv

=
� x

ax
F−1(u)du+

� ax

0

�

F−1(u)− F−1(bu)
�

du ≥ |x|(1 − a)F−1(|ax|) →
|x|→+∞

∞.
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Proof of Theorem 7.3: We rewrite the cost function (7.41) to minimize as follows:

CV (ξ, t) =
N
�

n=0

λ(tn)
�

G

�

En + ξn
λ(tn)

�

−G

�

En

λ(tn)

��

= λ(tN )G





�N
i=0 ξie

−
�N

k=i+1
αk

λ(tN )



− λ(0)G(0)

+
N−1
�

n=0



λ(tn)G





�n
i=0 ξie

−
�n

k=i+1
αk

λ(tn)



− λ(tn+1)G





e−αn+1
�n

i=0 ξie
−
�n

k=i+1
αk

λ(tn+1)









We define the linear map T : RN+1 → RN+1 by (Tξ)n =
�n

i=0
ξie

−

�n

k=i+1
αk

λ(tn)
, so that

CV (ξ, t) = λ(tN )G((Tξ)N ) +
N−1
�

n=0

[λ(tn)G((Tξ)n)− λ(tn+1)G (ãn+1(Tξ)n)] . (7.43)

Let us observe that T is a linear bijection. By Lemma 7.3 we get that CV (ξ, t) ≥ 0 and CV (ξ, t) →
|ξ|→+∞

+∞, which gives the existence of a minimizer ξ⋆ over ξ, s.t.
�N

i=0 ξi = −�. Thus, by using (7.42),
there must be a Lagrange multiplier ν such that

ν = hV,i+1

�

Ei + ξ⋆i
λ(ti)

�

, i = 0 . . . N − 1, and ν = F−1
�

EN + ξ⋆N
λ(tN )

�

. (7.44)

We have Ei+ξ⋆i
λ(ti)

= h−1
V,i+1 (ν) and then Ei+1 = λ(ti)ai+1h

−1
V,i+1 (ν), for 0 ≤ i ≤ N − 1. Thus, we get

ξ⋆0 = λ(t0)h−1
V,1 (ν) ,

ξ⋆i = λ(ti)h−1
V,i+1 (ν)− λ(ti−1)aih−1

V,i (ν) , 1 ≤ i ≤ N − 1,
ξ⋆N = F (ν)λ(tN )− λ(tN−1)aNh−1

V,N (ν)

Furthermore, we note that

N
�

i=0

ξ⋆i = −� = λ(t0)(1− a1)h
−1
V,1(ν) + . . .+ λ(tN−1)(1 − aN )h

−1
V,N (ν) + F (ν)λ(tN ).

By Lemma 7.2 The right side is an increasing bijection on R, and we deduce that there is only one

ν ∈ R which satisfies the above equation. This give the uniqueness of the minimizer ξ⋆. Moreover, the

functions F−1 and hV,i vanish in 0, and ν has the same sign as −�, which gives that ξ⋆0 and ξ⋆N have

the same sign as −� by Lemma 7.2. Besides, if (7.33) holds, the trades ξ⋆i have also the same sign

as −�. �

Let us now prepare the proof of Theorem 7.4 and assume that hV,t is bijective increasing. We

introduce for 0 ≤ t ≤ T ,
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CV (t, T,Et,Xt) = λ(t)
�

G(ζt)−G

�

Et

λ(t)

��

+
� T

t
F−1(ζu)ξudu+ λ(T )[G(F (ν)) −G(ζT )], (7.45)

where

ν ∈ R, s.t.− Et +
� T

t
λ(u)ρuh

−1
V,u(ν)du+ λ(T )F (ν) = −Xt, (7.46)

ζu = h−1
V,u(ν), ξu = λ(u)[

dζu
du

+ (ρu + ηu)ζu]. (7.47)

Let us observe that ν �→ � T
t λ(u)ρuh−1

V,u(ν)du+ λ(T )F (ν) is increasing and bijective on R, and (7.46)

admits a unique solution. The function CV (t, T,Et,Xt) denotes the minimal cost to liquidate Xt shares

on the time interval [t, T ] given the current state Et. In particular, we observe that

CV (T, T,ET ,XT ) = λ(T )
�

G

�

ET −XT

λ(T )

�

−G

�

ET

λ(T )

��

,

which is the cost of selling XT shares at time T . Besides, an integration by parts gives that

CV (t, T,Et,Xt) = −λ(t)G
�

Et

λ(t)

�

+
� T

t
λ(u)

�

(ρu + ηu)F−1(ζu)ζu − ηuG(ζu)
�

du+ λ(T )G(F (ν)).

(7.48)

The function ζ �→ (ρu + ηu)F−1(ζ)ζ − ηuG(ζ) is nonnegative since it vanishes at 0, and its derivative

is equal to ρuhV,u(ζ) that has the same sign as ζ. Since G ≥ 0, we get:

CV (0, T, 0,�) ≥ 0. (7.49)

Formula (7.45) can be guessed by simple but tedious calculations: one has to consider the

associated discrete problem on a regular time-grid and then let the time-step going to zero. We do

not present these calculations here since we will prove directly by a verification argument that this is

indeed the minimal cost.

Proof of Theorem 7.4: Let (Xt, 0 ≤ t ≤ T+) denote an admissible strategy that liquidates �.

We consider (Et, 0 ≤ t ≤ T+) the solution of dEt = dXt − ρtEtdt, νt the solution of (7.46) and

ζt = h−1
V,t(νt). We set

Ct =
� t

0
F−1

�

Es

λ(s)

�

dXc
s +

�

0≤s<t

λ(s)
�

G

�

Es +ΔXs

λ(s)

�

−G

�

Es

λ(s)

��

+ CV (t, T,Et,Xt).

Let us observe that CT = CV (X) and C0 = CV (0, T, 0,�). We are going to show that dCt ≥ 0, and
that dCt = 0 holds only for X⋆. This will in particular show that CV (X) ≥ 0 from (7.49).

Let us first consider the case of a jump ΔXt > 0. Then, we have

ΔCt = λ(t)
�

G

�

Et +ΔXt

λ(t)

�

−G

�

Et

λ(t)

��

+ CV (t+, T,Et+,Xt+)− CV (t, T,Et,Xt).
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Since ΔEt = ΔXt, the solution νt of (7.46) is also the solution of −Et+ +
� T
t λ(u)ρuh−1

V,u(νt)du +

λ(T )F (νt) = −Xt+, and then ΔCt = 0. Now, let us calculate dCt. We set

C̃(t, T,Et,Xt, v) = λ(T )G(F (v)) − λ(t)G
�

Et

λ(t)

�

+
� T

t
λ(u)

�

(ρu + ηu)F−1(h−1
V,u(v))h

−1
V,u(v)− ηuG(h

−1
V,u(v))

�

du.

Then, we have from (7.48):

dCt = F−1
�

Et

λ(t)

�

dXc
t − λ′(t)G

�

Et

λ(t)

�

dt− F−1
�

Et

λ(t)

�

(dXc
t − (ρt + ηt)Etdt)

−λ(t)(ρt + ηt)F−1(ζt)ζtdt+ λ′(t)G(ζt)dt+
∂C̃

∂v
(t, T,Et,Xt, νt)dνt.

Since
�

λ(T )f(νt) +
� T
t λ(u)ρu(h−1

V,u)
′(νt)du

�

dνt − λ(t)ρth−1
V,t(νt)dt = d(Et −Xt) = −ρtEtdt and

∂vC̃(t, T,Et,Xt, v) = λ(T )vf(v) +
� T

t
λ(u)ρu(h−1

V,u)
′(v)

�

F−1(h−1
V,u(v)) +

ρu + ηu
ρu

h−1
V,u(v)

f(h−1
V,u(v))

�

du

= v

�

λ(T )f(v) +
� T

t
λ(u)ρu(h−1

V,u)
′(v)du

�

,

we finally get

dCt = λ(t)
�

(ρt + ηt)
�

Et

λ(t)
F−1

�

Et

λ(t)

�

− ζtF
−1(ζt)

�

+ ηt

�

G(ζt)−G

�

Et

λ(t)

��

+ ρthV,t(ζt)
�

ζt −
Et

λ(t)

��

dt

:= λ(t)ψt(ζt)dt. (7.50)

We have ψ′
t(ζ) = −(ρt + ηt)

�

F−1(ζ) + ζ
f(F−1(ζ))

�

+ ηtF
−1(ζ) + ρthV,t(ζ) + ρth

′
V,t(ζ)(ζ − Et

λ(t) ) =

ρth
′
V,t(ζ)(ζ − Et

λ(t) ). Since h′
V,t > 0, ψt vanishes at ζ = Et

λ(t) , and is positive for ζ �= Et

λ(t) .

Thus, if X is an optimal strategy, we necessarily have ζt = Et

λ(t) , dt-a.e. Then, we get by differenti-

ating
�

Xt − Et +
� T
t λ(u)ρuh−1

V,u(νt)du+ λ(T )F (νt)
�

= 0 that
�

� T
t λ(u)ρu(h−1

V,u)
′(νt)du+ λ(T )f(νt)

�

dνt =

0, which gives dνt = 0 since (h−1
V,u)

′ > 0 and f > 0. Thus, we get that νt = ν where ν is the solution

of (7.35). In particular, we get ΔX0 = E0+ = λ(0)h−1
V,0(0) = ΔX⋆

0 and then X = X⋆, which gives the

uniqueness of the optimal strategy. Last we observe that ν has the same sign as −� and thus ξ⋆0 has
the same sign as −�. �

Proof of Corollary 7.4: Since ρt + ηt ≥ 0 and xf ′(F−1(x)) ≥ 0 by Assumption 7.1, we have

h′
V,t(x) =

ηt + 2ρt
ρt

1
f(F−1(x))

− ηt + ρt
ρt

xf ′(F−1(x))
f(F−1(x))3

> 0.

Also, we have sgn(x)hV,t(x) ≥ sgn(x)F−1(x) and then sgn(x)h−1
V,t(x) ≤ sgn(x)F (x), which gives that

the last trade ξ⋆T has the same sign as −�. Then, we have dζt
dt = − 1

h′
V,t

(ζt)
dhV,t
dt (ζt) and thus
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ξ⋆t =
λ(t)ζt
h′
V,t(ζt)

�

−d (ηt/ρt)
dt

1
f(F−1(ζt))

+ (ρt + ηt)h′
V,t(ζt)

�

=
λ(t)ζt
h′
V,t(ζt)

�

1
ρtf(F−1(ζt))

�

ρ′
tηt − ρtη

′
t

ρt
+ (ρt + ηt)(2ρt + ηt)

�

− (ηt + ρt)2

ρt

ζtf
′(ζt)

f(F−1(ζt))3

�

is nonnegative if (7.22) holds since h′
V,t > 0 and ζtf

′(ζt) ≥ 0. �

Lemma 7.4.We have (7.33) =⇒ (7.23) if ρt + ηt ≥ 0, t ≥ 0.

Proof. We have

(7.33) ⇔ 1
ãi

1− ãi
1− ai

≥ 1− ãi+1
1− ai+1

⇔ (1− ai+1)− ãi (1− ai+1) ≥ ãi (1− ai)− ãiãi+1 (1− ai)

⇔ ãi+1 (1− ai) +
1
ãi
(1− ai+1) ≥ 1− ai + 1− ai+1.

Since ãi+1 ≤ 1, we get 1−ai+1−ai+1 = 1−aiai+1+(1−ai)(1−ai+1) ≥ 1−aiai+1+ãi+1(1−ai)(1−ai+1).

Thus, (7.33) implies that:

ãi+1 (1− ai) +
1
ãi
(1− ai+1) ≥ 1− aiai+1 + ãi+1(1− ai)(1 − ai+1)

⇔ 1− ãi + aiai+1ãi − aiãi+1 ≥ ai+1 − ãiãi+1ai+1 + aiãiai+1ãi+1 − ãi+1ai+1

⇔ (1− ãi) (1− ai+1ãi+1) ≥ ai+1 (1− ãi+1) (1− aiãi)⇔ (7.23).

7.3.3 General limit order book shape with model P

We first focus on discrete strategies on the time grid t such as (7.14). We introduce the following

shorthand notation Dn = Dtn for 0 ≤ n ≤ N and have

D0 = 0, Dn = anF
−1

�

ξn−1

λ(tn−1)
+ F (Dn−1)

�

, 1 ≤ n ≤ N.

We can write the cost function (7.13) as follows:

CP (ξ, t) =
N
�

n=0

λ(tn)
� Dtn+

Dtn

xf(x)dx =
N
�

n=0

λ(tn)
�

G

�

λ(tn)F (Dn) + ξn
λ(tn)

�

−G(F (Dn))
�

. (7.51)

We begin with the following lemmas that we use to characterize the critical points of the opti-

mization problem.

Lemma 7.5. For i = 0, . . . , N − 1, we have the following equations:
∂CP

∂ξi
= F−1

�

ξi
λ(ti)

+ F (Di)
�

+ âi+1
f(Di+1)

f
�

F−1
�

ξi
λ(ti)

+ F (Di)
��

�

∂CP

∂ξi+1
−Di+1

�

.
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Proof. First, we have ∂Dn

∂ξi
= 0 for i ≥ n, and the following recursive equations:

∂Dn

∂ξn−1
=

an

λ(tn−1)f
�

F−1( ξn−1

λ(tn−1)
+ F (Dn−1))

� ,
∂Dn

∂ξi
=

âi+1f(Di+1)

f
�

F−1( ξi
λ(ti)

+ F (Di))
�

∂Dn

∂ξi+1
for 1 ≤ i ≤ n− 2.

From (7.51), we get:

∂CP

∂ξi
= F−1

�

ξi
λ(ti)

+ F (Di)
�

+
N
�

n=i+1

�

F−1
�

F (Dn) +
ξn

λ(tn)

�

−Dn

�

f(Dn)
∂Dn

∂ξi

= F−1
�

ξi
λ(ti)

+ F (Di)
�

+
âi+1f(Di+1)

f
�

F−1( ξi
λ(ti)

+ F (Di))
�

�

F−1(F (Di+1) +
ξi+1

λ(ti+1)
)−Di+1

�

+
âi+1f(Di+1)

f
�

F−1( ξi
λ(ti)

+ F (Di))
�

�

∂CP

∂ξi+1
− F−1

�

ξi+1
λ(ti+1)

+ F (Di+1)
�

�

,

which gives the result.

Lemma 7.6. Under Assumption 7.2, we have that:

1. The function x �→ xf(x) is increasing on R (or equivalently, F̃ is convex).

2. We have f
�

x
ai

�

− âif(x) > 0, i = 1, . . . , N.

3. The function

x ∈ R, hP,i(x) = x

�

1
ai
f( xai )− âif(x)

�

f
�

x
ai

�

− âif(x)

is well-defined, bijective increasing and satisfies sgn(x)hP,i(x) ≥ |x|.

Proof. 1. We have (xf(x))′ > 0 since xf ′(x) ≥ 0 by Assumption 7.2.
2. We have for x ∈ R,

λ(ti−1)f(
x

ai
)− λ(ti)aif(x) ≥ λ(ti−1)f(x)(1− âi) > 0

because f
�

x
ai

�

≥ f(x) and âi < 1 by Assumption 7.2.

3. The function hP,i is well-defined thanks to the second point. We have sgn(x)hP,i(x) ≥ |x| since

hP,i(x) = x






1 +

a−1
i

1− âi
f(x)
f( x

ai
)






,

and it is sufficient to check that f(x)/f(x/ai) is nondecreasing on R+ and nonincreasing on R−. We

calculate




f(x)

f
�

x
ai

�





′

=
f ′(x)f

�

x
ai

�

− 1
ai
f(x)f ′

�

x
ai

�

f
�

x
ai

�2 .
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This is nonnegative on R+ and nonpositive on R− if and only if xf ′(x)
f(x) ≥ xf ′(x/ai)

aif(x/ai)
for x ∈ R, which

holds by Assumption 7.2 since |x| ≤ |x|/ai.

Proof of Theorem 7.5: We remark that the cost (7.51) can be written as follows:

CP (ξ, t) = λ(tN )F̃
�

F−1
�

F (DN ) +
ξN

λ(tN )

��

+
N−1
�

n=0

λ(tn)
�

F̃

�

F−1
�

F (Dn) +
ξn

λ(tn)

��

− λ(tn+1)
λ(tn)

F̃

�

an+1F
−1

�

F (Dn) +
ξn

λ(tn)

���

.

Since F̃ is convex by Lemma 7.6 and F̃ (0) = 0, we have F̃ (an+1x) ≤ an+1F̃ (x), for x ∈ R and thus

CP (ξ, t) ≥ λ(tN )F̃
�

F−1
�

F (DN ) +
ξN

λ(tN )

��

+
N−1
�

n=0

λ(tn)F̃
�

F−1
�

F (Dn) +
ξn

λ(tn)

��

(1− ân+1).

In particular CP (ξ, t) ≥ 0, since F̃ ≥ 0 and ân+1 < 1 by Assumption (7.2). Besides, by setting

T (ξ) =
�

ξ0

λ(t0)
,D1 +

ξ1

λ(t1)
, . . . ,DN +

ξN
λ(tN )

�

, we can easily check that |T (ξ)| →
|ξ|→+∞

+∞, which gives

immediately that CP (ξ, t) →
|ξ|→+∞

+∞ since F̃ (x) →
|x|→+∞

+∞.

Thus, there must be at least one minimizer of CP (ξ, t) on {ξ ∈ RN+1,
�N

i=0 ξi = −�}, and we
denote by ν a Lagrange multiplier such that ∂CP

∂ξi
= ν. By Lemma 7.5 we obtain:

ν = hP,i+1(Di+1), i = 0, . . . , N − 1.

We also have ∂CP

∂ξN
= F−1

�

F (DN ) +
xN

λ(tN )

�

= ν, and we get (i = 1, . . . , N − 1):

ξ⋆0 = λ(t0)F

�

h−1
P,1(ν)

a1

�

, ξ⋆i = λ(ti)

�

F

�

h−1
P,i+1(ν)

ai+1

�

− F
�

h−1
P,i(ν)

�

�

, ξ⋆N = λ(tN )
�

F (ν)− F (h−1
P,N (ν))

�

.

Besides, we have

λ(tN )F (ν) +
N
�

i=1

λ(ti−1)

�

F

�

h−1
P,i(ν)

ai

�

− λ(ti)
λ(ti−1)

F (h−1
P,i(ν))

�

= −�. (7.52)

Since F is increasing bijective on R and the function y �→ F (y) − λ(ti)
λ(ti−1)

F (aiy) is increasing (its

derivative is positive by Lemma 7.6), there is a unique solution to (7.52), and ν has the same sign as

−�. Thus ξ⋆ is the unique optimal strategy. Moreover, the initial and the last trade have the same

sign as −� since sgn(ν)hP,N (ν) ≥ |ν|. �

We now prepare the proof of Theorem 7.6. For sake of clearness, we will work under assump-

tion (i) and assume that ρt
�

1 + xf ′(x)
f(x)

�

−ηt > 0 for any x ∈ R and that hP,t is bijective and increasing.
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However, a close look at the proof below is sufficient that the same arguments also work under as-

sumption (ii).

Contrary to model V , it is more convenient to work with the process D rather than E (both are

related by Dt = F−1(Et/λ(t)). We introduce for 0 ≤ t ≤ T ,

CP (t, T,Dt,Xt) = λ(t)
�

G(ζt)− F̃ (Dt)
�

+
� T

t
ζuξudu+ λ(T )[F̃ (ν)−G(ζT )], (7.53)

where

ν ∈ R, s.t.− Et +
� T

t
λ(u)

�

ρuh
−1
P,u(ν)f(h

−1
P,u(ν))− ηuF

�

h−1
P,u(ν)

��

du+ λ(T )F (ν) = −Xt,(7.54)

ζu = h−1
P,u(ν), ξu = λ(u)f(ζu)[

dζu
du

+ ρuζu]. (7.55)

Let us observe that x �→ ρuxf(x)−ηuF (x) is increasing: its derivative is equal to f(x)
�

ρu
�

1 + xf ′(x)
f(x)

�

− ηu
�

and is positive by assumption. Therefore, the left hand side of (7.54) is an increasing bijection

on R and there is a unique solution ν to (7.54). The function CP (t, T,Dt,Xt) represents the min-

imal cost to liquidate Xt shares on [t, T ] given the current state Dt. We have in particular that

CP (T, T,DT ,XT ) = λ(T )
�

G
�

ET−XT

λ(T )

�

−G
�

ET

λ(T )

��

, which is the cost of selling XT shares at time T .

Besides, an integration by parts gives that

CP (t, T,Dt,Xt) = −λ(t)F̃ (Dt) +
� T

t
λ(u)

�

ρuf(ζu)ζ2u − ηuF̃ (ζu)
�

du+ λ(T )F̃ (ν). (7.56)

The function ζ �→ ρuf(ζ)ζ2 − ηuF̃ (ζ) is nonnegative: it vanishes for ζ = 0 and its derivative is equal

to ζf(ζ)
�

ρu
�

2 + ζf ′(ζ)
f(ζ)

�

− ηu
�

and has the same sign as ζ by assumption. Since F̃ ≥ 0, this gives

CP (0, T, 0,�) ≥ 0. (7.57)

Proof of Theorem 7.6: Let (Xt, 0 ≤ t ≤ T+) denote an admissible strategy that liquidates �.

We consider (Et, 0 ≤ t ≤ T+) the solution of dEt = dXt+ηtEtdt−ρtλ(t)f(F−1(Et/λ(t)))F−1(Et/λ(t))dt,

Dt = F−1(Et/λ(t)), νt the solution of (7.54) and ζt = h−1
P,t(νt). We set

Ct =
� t

0
DsdX

c
s +

�

0≤s<t

λ(s)
�

G

�

Es +ΔXs

λ(s)

�

−G

�

Es

λ(s)

��

+ CP (t, T,Dt,Xt).

Let us observe that CT = CP (X) and C0 = CP (0, T, 0,�). We will show that dCt ≥ 0, and that

dCt = 0 holds only for X⋆. This will in particular prove that CP (X) ≥ 0 from (7.57).

Let us first consider the case of a jump ΔXt > 0. Then, we have

ΔCt = λ(t)
�

G

�

Et +ΔXt

λ(t)

�

−G

�

Et

λ(t)

��

+ CP (t+, T,Dt+,Xt+)−CP (t, T,Dt,Xt).
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Since ΔEt = ΔXt, we have νt = νt+ from (7.54) and then ΔCt = 0 since F̃ (Dt) = G(Et/λ(t)). Now,

let us calculate dCt. We set

C̃(t, T,Dt,Xt, v) = λ(T )F̃ (v)− λ(t)F̃ (Dt) +
� T

t
λ(u)

�

ρuf(h
−1
P,u(v))h

−1
P,u(v)

2 − ηuF̃ (h
−1
P,u(v))

�

du.

Since dDc
t = −ρtDtdt+

dXc
t

λ(t)f(Dt)
, we have from (7.56):

dCt = DtdX
c
t − λ′(t)F̃ (Dt)dt+ λ(t)ρtf(Dt)D2

t dt−DtdX
c
t − λ(t)[ρtf(ζt)ζ2t − ηtF̃ (ζt)]dt

+
∂C̃

∂v
(t, T,Dt,Xt, νt)dνt.

Since d(Et −Xt) = λ(t) [ηtF (Dt)− ρtDtf(Dt)] dt, we get from (7.54)
�

� T

t
λ(u)(h−1

P,u)
′(νt)

�

(ρu − ηu)f(h−1
P,u(νt)) + ρuh

−1
P,u(νt)f

′(h−1
P,u(νt))

�

du+ λ(T )f(νt)

�

dνt (7.58)

−λ(t)
�

ρth
−1
P,t(νt)f(h

−1
P,t(νt))− ηtF

�

h−1
P,t(νt)

��

dt = λ(t) [ηtF (Dt)− ρtDtf(Dt)] dt.

On the other hand, we have

∂vC̃(t, T,Et,Dt, v) = λ(T )vf(v) +
� T

t
λ(u)(h−1

P,u)
′(v)h−1

P,u(v)
�

(2ρu − ηu)f(h
−1
P,u(v)) + ρuh

−1
P,u(v)f

′(h−1
P,u(v))

�

du

= v

�

λ(T )f(v) +
� T

t
λ(u)(h−1

P,u)
′(v)

�

(ρu − ηu)f(h−1
P,u(v)) + ρuh

−1
P,u(v)f

′(h−1
P,u(v))

�

du

�

,

and we get ∂C̃
∂v (t, T,Dt,Xt, νt)dνt = λ(t)νt[ηt(F (Dt)−F (ζt))+ρt(ζtf(ζt)−Dtf(Dt))].We finally obtain:

dCt = λ(t)ψt(ζt)dt, with (7.59)

ψt(ζ) = ηt(F̃ (ζ)− F̃ (Dt)) + ρt(D2
t f(Dt)− ζ2f(ζ)) + hP,t(ζ) (ηt(F (Dt)− F (ζ)) + ρt(ζf(ζ)−Dtf(Dt))) .

We have ψt(Dt) = 0 and get that ψ′
t(ζ) = h′

P,t(ζ) [ηt(F (Dt)− F (ζ)) + ρt(ζf(ζ)−Dtf(Dt))] by simple

calculations. On the one hand, we have h′
P,t(ζ) > 0. On the other hand, the bracket is positive on

ζ > Dt and negative on ζ < Dt since its derivative is equal to (ρt−ηt)f(ζ)+ρtζf(ζ), which is positive

by assumption. Thus, Dt is the unique minimum of ψt: ψt(Dt) = 0 and ψt(ζ) > 0 for ζ �= Dt.

Thus, if X is an optimal strategy, we necessarily have ζt = Dt, dt-a.e. From (7.58), we get
�

� T

t
λ(u)(h−1

P,u)
′(νt)

�

(ρu − ηu)f(h
−1
P,u(νt)) + ρuh

−1
P,u(νt)f

′(h−1
P,u(νt))

�

du+ λ(T )f(νt)

�

dνt = 0,

and thus dνt = 0 since (h−1
P,u)

′ and x �→ (ρu−ηu)f(x)+ρuxf
′(x) are positive functions by assumption.

We get that νt = ν, where ν is the solution of (7.38). In particular, we have ΔX0 = λ(0)F (D0+) =

λ(0)F (h−1
P,0(ν)) = ΔX⋆

0 and then X = X⋆. This gives the uniqueness of the optimal strategy. Last, ξ⋆0
has the same sign as −� since ν and −� have the same sign. �
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Proof of Corollary 7.6: By Assumption 7.2 we have ρt − ηt > 0, xf ′(x) ≥ 0 and x∂x(
xf ′(x)
f(x) ) ≤ 0,

which gives:

h′
P,t(x) =

�

ρt
�

2 + xf ′(x)
f(x)

�

− ηt
� �

ρt
�

1 + xf ′(x)
f(x)

�

− ηt
�

− ρ2tx∂x(
xf ′(x)
f(x) )

�

ρt
�

1 + xf ′(x)
f(x)

�

− ηt
�2 > 0.

Also, we have sgn(x)hP,t(x) ≥ |x|, and hP,t is thus bijective on R. We deduce that sgn(x)h−1
P,t(x) ≤ |x|,

which gives that the last trade ξ⋆T has the same sign as −�.

Let us assume moreover that (7.30) holds. Let γt =
λ(t)f(ζt)ζt

h′
P,t

(ζt)

�

1+
ζtf

′(ζt)
f(ζt)

− ηt
ρt

�2 > 0. Then,

ξt = γt

�

ρ′
tηt − ρtη

′
t

ρ2t
+ ρt

�

1 +
ζtf

′(ζt)
f(ζt)

− ηt
ρt

��

2 +
ζtf

′(ζt)
f(ζt)

− ηt
ρt

�

− ζt∂x(
xf ′(x)
f(x)

)|x=ζt
�

≥ γt

�

ρ′
tηt − ρtη

′
t

ρ2t
+ ρt

�

1− ηt
ρt

��

2− ηt
ρt

��

by Assumption 7.2.

= γt

�

2ρt − ηt
ρt

�2 �� ρt − ηt
2ρt − ηt

�′
+ ρt

�

ρt − ηt
2ρt − ηt

��

≥ 0 by (7.30).

�
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