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Abstract

Stochastic optimal control addresses sequential decision-making under uncertainty. As
applications leads to large-size optimization problems, we count on decomposition meth-
ods to tackle their mathematical analysis and their numerical resolution. We distinguish
two forms of decomposition. Inchained decomposition like Dynamic Programming, the
original problem is solved by means of successive smaller subproblems, solved one after
the other. In parallel decomposition like Progressive Hedging, the original problem is
solved by means of parallel smaller subproblems, coordinated and updated by a master
algorithm.

In the rst part of this manuscript, Dynamic Programming: Risk and Convexity, we
focus on chained decomposition; we address the well known time decomposition that
constitutes Dynamic Programming with two questions. In Chapter 2, we extend the
traditional additive in time and risk neutral setting to more general ones for which we
establish time-consistency. In Chapter 3, we prove a convergence result for the Stochastic
Dual Dynamic Programming Algorithm in the case where (convex) cost functions are no
longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization, we rst point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing

LY ;L' in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa
AlgorithminL 1 ;F:P;R" .

The third part of this manuscript, Stochastic Spatial Decomposition Methodsis devoted
to the so-called Dual Approximate Dynamic Programming Algorithm. In Chapter 7, we
prove that a sequence of relaxed optimization problems epiconverges to the original one,
where almost sure constraints are replaced by weaker conditional expectation ones and
that corresponding - elds converge. In Chapter 8, we give theoretical foundations and
interpretations to the Dual Approximate Dynamic Programming Algorithm.



Resune

Le contrble optimal stochastique (en temps discret) s'ineresse aux probemes de
cecisions equentielles sous incertitude. Les applications conduisenta des probemes d'op-
timisation de grande taille. En eduisant leur taille, les nethodes de cecomposition perme-
ttent le calcul nunerigue des solutions. Nous distinguons ici deux formes de decomposition.
La decomposition chayee, comme la Programmation Dynamique, esout successivement
des sous-probemes de petite taille. Lalecomposition paralkle, comme le Progressive Hedg-
ing, consistea esoudre ierativement et paralelement les sous-probemes coordonres par
un algorithme mafre.

Dans la premere partie de ce manuscrit,Dynamic Programming : Risk and Convexity;
nous nous ineressonsa la cecomposition cha'ree, en particulier temporelle, connue sous le
nom de Programmation Dynamique. Dans le chapitre 2, nousetendons le cas traditionel,
risque-neutre, de la somme en temps des coltsa un cadre plus gereral pour lequel nous
etablissons des esultats de coterence temporelle. Dans le chapitre 3, nous etendons le
esultat de convergence de l'algorithme SDDP (Stochastic Dual Dynamic Programming
Algorithm ) au cas au les fonctions de colts (convexes) ne sont plus polyedrales.

Puis, nous nous tournons vers la decomposition paralele, en particulier vers les
nmethodes de decomposition obtenues en dualisant les contraintes (contraintes spatiales
presque sares, ou de non-anticipativie). Dans la seconde partie de ce manuscriuality
in Stochastic Optimization, nous commercons par souligner que de telles contraintes peu-
vent soulever des probemes de dualie cklicats (chapitre 4). Nousetablissons un esultat

de dualie dans les espaces paies L ;L' au chapitre 5. Finalement, au chapitre 6, nous

montrons un esultat de convergence de l'algorithme d'Uzawa dans £ ;F;P;R" . qui
requiert l'existence d'un multiplicateur optimal.

La troiseme partie de ce manuscrit, Stochastic Spatial Decomposition Methodsest
consaceea l'algorithme connu sous le nom de DADP Dual Approximate Dynamic Pro-
gramming Algorithm). Au chapitre 7, nous montrons qu'une suite de probemes d'opti-
misation |dans lesquelles une contrainte presque sQre est relaxee en une contrainte en
esperance conditionnelle| epi-converge vers le probeme original si la suite des tribus
converge vers la tribu globale. Finalement, au chapitre 8, nous pesentons l'algorithme
DADP, des interpetations, des esultats de convergence bases sur la seconde partie du
manuscript.



Notations

We lay out the general rules and conventions followed in the manuscript:
the random variables are written in bold,
the letter x refers to a state,u refers to a control andw refers to a noise,
the symbol ! refers to optimality,
the letters j and J refer to the objective function, and the letter to the constraint

function.
Here are the main notations:
[a; b set of integers betweera and b
Un o, ~ SEQUENCE UnyiUne+1; ;Un, (also written un ')
A¢ :itl Cartesian product of setsA¢, At,
w.r.t. with respect to
(X) - eld generated by the random variable X
X F the random variable X is measurable w.r.t. the -eld F
X Y the random variable X is (Y )-measurable
Xn! X the sequence Xn)n2n (Strongly) converges towardsx
Xn * X the sequence Xn)n2n Weakly-converges towardsx
F P probability space equipped with -algebraF and probability P
F E;F space of functions mappingg into F

LP( ;F;P;E) space of allF-measurable functions
with nite moment of order p taking value in E

LP( ;F;P;E) Banach space of all equivalence classes bf( ;F;P) functions,
up to almost sure equality

E, Ep mathematical expectation w.r.t. probability P
P-a.s., a.s. P-almost surely
lim upper limit
lim lower limit
A indicator function taking value 0 on A, and +1 elsewhere
1a characteristic function taking value 1 on A, and 0 elsewhere
domf domain of f, i.e. set of points wheref is nite
f g means that the functionsf and g are equal everywhere
A(A) a ne hull of the set A
JA] cardinal of the ( nite) set A
hy ; Xiy.x duality pairing of y 2 Y againstx 2 X
Xy usual Euclidian scalar product ofx 2 R" againsty 2 R"
X? topological dual of X (i.e. the space of the continuous linear forms orx)
int(A) interior of set A
ri(A) relative interior of set A
P(A) the set of subsets ofA
R the set of extended realsR [f +1g[f1lg

R the setR[f +1g (used in Chapter 2)
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Introduction

Mathematicians are like Frenchmen : whatever you say
to them they translate into their own language and
forthwith it is something entirely di erent.

Johann Wolfang von Goethe

Ce premier chapitre introductif est I'occasion de situer et pesenter les travaux exposes
dans ce manuscrit. Dans un premier temps nous pesentons le cadre gereral de l'optimi-
sation stochastique dynamique en temps discret, et donnons un apercu des nmethodes de
cecomposition. Nous pesentons ensuite les trois parties du manuscrit. La premere est
consacee a la programmation dynamique. La secondea la treorie de la dualie dans le
cadre de l'optimisation stochastique qui sera utile pour mettre en oeuvre des nmethodes
de dcecomposition telle que la cecomposition par les prix. La troiseme partie exploite les
esultats de la seconde pour construire une nmethode de decomposition spatiale en optimi-
sation stochastique.

Optimisation Stochastique en Temps Discret

Cadre Gereral

L'optimisation, au sens mathematique, a pour but de trouver le minimum d'une fonc-
tion objectif sous un ensemble de contraintes. La fonction objectif cenoted : U !
R[f +1g peut étre, dans un contexteeconomigue, un codt; dans un contexte physique
uneenergie ; ou encore, dans un contexte statistique, I'oppos d'un maximum de vraisem-
blance. Au cours de cette trese nous utiliserons le vocabulaire du monde economique.
La fonction objectif sera donc uncodt, cenok classiquement J, son argument uncontréle
enok classiquement u. Notons que, dans de tes nombreux cas, un probeme eel comporte
des incertitudes. Parfois ces incertitudes peuvent étre regligees et un cadre deterministe
étre su sant. Dans d'autres cas ces incertitudes peuvent &tre mockelisees par une variable
akatoire W , le probkme devient alors un probeme d'optimisation stochastique.

Nous nous ineressons particulerement a |' optimisation stochastique dynamique en
temps discreta horizon ni . Pour cela nous consicerons un syseme dynamique controe
e ni par unetat initial  Xp et uneequation devolution

X1 = (XU W)

Letat physique du sysemea linstant t+1 est cenoe X, et est cetermire par sonetat
a linstant t ainsi que par le contrble U, choisia linstant t. Le terme \temps discret"
souligne que la variable de tempg est discete et non continue (auquel cas le syseme
dynamique serait dirige par une equation dierentielle). Le terme \horizon ni" signi e
gu'il existe un instant T a partir duquel le comportement du syseme ne nous ineresse
plus.



2 CHAPITRE 0. INTRODUCTION

Nous consicerons a chaque pas de temps un colt instantareLy X ;U,;W,,; qui
cepend de letat actuel du syseme X, du contréle choisi U, et d'un bruit W, . Nous
consicerons egalement un co0t nal K (X ;) qui cepend de letat nal du syseme dy-
namique. Nous avons doncT + 1 colts dierents, chacun etant akatoire. Ces suites de
coats akatoires sont agegees pour pouvoir étre compaees. |l existe diverses maneres de
les ageger. La plus courante consistea minimiser I'esgerance de la somme en temps de
ces colts. Une zoologie des approches alternatives sera pesente au chapitre 2. Dans le
cas usuel le probeme d'optimisation secrit

hi 1 i

min  E Le X sUpW,yy + K(X ) (1a)

' t=0

st Xy = Xo (1b)
X = ft XpUpWoyy t=0;::5;T L (1c)
¢ XU, =0 t=0;:::;T 1 (1d)
U, F t=0;::,;T 1: (1e)

La notation U, F ¢, signie que U, est mesurable par rapporta F;. Cette contrainte
(contrainte (1e)) repesente l'information disponiblea l'instant t pour prendre la decision
U,. Habituellement, la tribu F. est donree par

Fe= Wy oW, (2)

En d'autres termes, le contréleU, est pris en connaissant tous les bruits pases. Une famille
de cecisions U, rt qui \eri e les contraintes de mesurabilie (contrainte (1e)), a1 Fy

est donre par (2), est dite non-anticipative, car elle n'anticipe pas le futur.

Methodes de Becomposition

Un probeme d'optimisation stochastique dynamique est a priori di cilea esoudre.

En e et, supposons que les bruits soient une suite de variables akatoires incependantes
prenant 3 valeurs, et que chaque controleU, puisse prendre deux valeurs (typiquement

marche ou arrét), alors le nombre de contrbles non anticipatifs est 8™ D=2 ce qui est

rapidement colossal. En e et, la complexie du probeme est exponentielle en I'horizon de

temps, ainsi qu'en la taille des variables. En particulier, tester toutes les solutions d'un

probeme d'optimisation dynamique stochastique est nurreriquement impossible des que

I'on sort des probemes les plus triviaux.

Pour attaquer les probemes complexes il existe de nombreuses nmethodes, exploitant
les proprees speci ques des probemes, ou mettant en place des heuristiques. Parmi elles
nous nous ineressons aux rrethodes de decomposition. Une approche par decomposition
consistea construire,a partir du probeme original, un ensemble de sous-probemes plus
simplesa esoudre. lerativement les sous-probkemes sont esolus, puis ajuses jusqua ce
gue les solutions des sous-probemes permettent de synttetiser la solution du probeme
global. Nous pesentons enx1.2 une approche uniee des nethodes de decomposition.

Supposons que chaque codtL; X Ui W, esten fait une somme de colts locaux

Le XoUpWeyy = Lt XGUGWg
i=1

1. Oublions quelgues temps le codt nal K



a U, = Uti iN=1 etxX, = Xti iNzl.Supposons qu'il en va de méme pour la contrainte (1d).
Ainsi le probeme (1) devient
_ X X X1 o ,
min Pflg Ly Xi(1)U ()W (") (3a)
' 12 i=1 t=0
st X, ()= f{ XUl )W () 8t; 8i; 8! (3b)
¢ X )uU) =0 8t: 8! (3¢)
i=1
LF 8t; 8i; (3d)

On peut noter que le probeme d'optimisation consistea minimiser une somme en temps
(variable t), en unie (variable i) et en aka (variable ! ). Sans les contraintes nous au-
rions doncj j T N probemes incependants dont on veut minimiser la somme. Si
les probemes sont incependants (les variables vivent dans un produit caresien) alors
la somme des minima est le minimum de la somme. En d'autres termes il sut de min-
imiser chaque cootL} X !(!);Ul(!);W(!) parrapporta U (! ) pour obtenir la solution
du probeme global. Malheureusement ces dierents colts ne sont pas incependants. En
d'autres termes, les contrélesX ‘t(! ); U ‘t(! ) doivent epondrea des contraintes :

en temps,a cause de lequation de dynamique du syseme (Contrainte (3b));

en espace,a cause de la contrainte couplante du probeme (Contrainte (3c));

en aka,a cause de la contrainte de mesurabilie des contréles (Contrainte (3d)).
Nous pesenterons plus tard comment les nethodes de dualie permettent de remplacer
les contraintes par un necanisme de prix, et donc de cecomposer le probeme (3) en une
somme de probemes incependants.

Nous allons commencer par une autre approche, dite deecomposition cha'rees, a

I'on esout successivement des probemes de plus petite taille. Cette approche porte le nom
de Programmation Dynamique.

Autour de la Programmation Dynamique

La programmation dynamique est une nethode gererale de esolution d'un probeme
d'optimisation multietape. Elle s'appuie sur la notion déetat, qui sera discuee en 1.2.4.

Dans un premier temps nous faisons une pesentation simple et succincte de cette
methode, puis nous pesentons les esultats principaux du chapitre 2 quietend la Pro-
grammation Dynamiquea un cadre plus gereral, nalement nous pesentons les esultats
principaux du chapitre 3 qui exploite la programmation dynamique pour construire un
algorithme e cace de esolution de probeme d'optimisation stochastique dynamique.

Programmation Dynamique

Consicerons le probeme (1), en faisant lI'importante hypottese que la suite de bruits
thgthll est une suite de variables akatoires independantes. Dans ce cas (sous des con-
ditions d'existence de solution) on sait (voir [12, 18]) qu'il existe un contréle optimal

U,/ th01 qui secrit comme fonction de letat X, i.e.

al  est une strakgie, c'esta dire une fonction qui va de l'espaceX; desetatsa l'instant t
dans I'espace des controlebl;a l'instant t. Pour construire cette straegie nous e nissons
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la fonction valeur de Bellman, obtenue par ecurrence arrere :

Vi X1 = K(XT)h . 8xT 2 X7 ; (4a)
i
Vi Xy = mZIB E Lt Xy W 1 + Visr fe X, bWy 8xt 2 X;: (4b)
u t

La fonction valeur V; : X; ! R s'interpete comme le codt minimal du syseme en
partant d'unetat x; 2 X;a l'instant t. Ainsi, lequation de ecurrence (4) s'interpete en
disant que le contréle optimala l'instant t est celui qui minimise, en moyenne, la somme
du codt instantare Lt X¢;u;W,,; etdu coot futur Vivp  fy X¢;u; W, . Une strakgie
optimale f (g/_,* est alors donree par

h [
t(xt) 2argmin  E Ly X; ;W + Vi fe Xy Wi,
u2 Ut

La programmation dynamique est une nmethode de cecomposition en temps, puisque
I'on esout T probemesa un pas de temps, au lieu d'un probemea T pas de temps. Ainsi la
complexie est lireaire en temps, et non plus exponentielle comme le serait une approche
gloutonne. En revanche elle recessite le recours a une notion detat, et la complexie
est exponentielle en la dimension de letat. Ainsi la Programmation Dynamique ne sera
nuneriqguement e cace que si la dimension de letat n'est pas trop importante (en pratique
unetat de dimension 4 ou 5 esta la limite de nos capacies de calcul).

Parfois le probeme (1) ne satisfait pas I'hypothese des bruits independants, mais on
peut se ramenera une forme avec bruits incependants si onetend letat. Par exemple, si
les bruits ont une dynamique d'ordre 1,a savoir

a fW tgthol est une suite de variables akatoires incependantes. Le nouveletat

R.= XgW, ; (6)

est appek unetat informationnel , et suit la dynamique

R = e XpW it woWw, (7)

Avec cetetatetendu nous pouvons utiliser une approche par programmation dynamique.
Le probeme (1) consicere la somme sur les akas (esperance) d'un somme temporelle

de colts. Nous pesentons dans la section suivante une extension du cadre d'application

de la Programmation Dynamique, et ses liens avec la propree de consistance temporelle.

Cadre Gereral et Consistance Temporelle

Un probeme d'optimisation dynamique stochastique (en temps discret) est un
probeme de cecision quentielle sous incertitudes. Cela signi e, en reprenant les notations
du probeme (1), que nous avons une suite dd +1 colts akatoires C, = Ly X ;U W, 4
a \minimiser". Pour pouvoir minimiser il faut pouvoir comparer des processus stochas-
tigues. Une rrethode gererique simple, consistea ageger le processus de colts en un eel,
parfois appek lequivalent certain du processus de colts. La theorie des mesures de risque
dynamique s'ineresse aux operateurs associanta un processus de colts sonequivalent cer-
tain. Une manere de faire consistea aggeger en temps les dierents codts, pour obtenir
une variable akatoire, puisa les aggeger en aka pour obtenir un eel. Par exemple, dans
le probeme (1), les colts sont aggegs en temps par la somme inter-temporelle, puis en
aka par l'esperance. D'autres aggegations sont possibles. Nous pouvons consicerer un



agegateur temporel global : RT*1 | R, et un agegateur G sur I'aka global (qui prend
pour argument une variable akatoire et esta valeur dansR). Le probeme (1) secrit alors

h n oi
)r(n_iS G Lo XgUpW, by 1 X sUp W JK(X ) (8a)
sttt Xy = Xo (8b)
Xigg =Tt XU Wiy t=0;::5,T 1, (8c)
t XUy =0 t=0;:::;T 1, (8d)
U, F =0;:::5;T 1. (8e)

Nous pesentons au chapitre 2 des conditions, pour esoudre ce probeme par Program-
mation Dynamique. Pesentons rapidement ces conditions et leurs consquences.

L'agegateur temporel global peut secrire
n o} n 0

C; & = o0 C; 1 Gy T 1Cr 1,Cr

L'agegateur en aka global peut sécrire
[ h [
G J wy; wr =G w7 Gy wr 7' Gt J Wy, YW X

al chaqgue G; est un operateur prenant pour argument des fonctions dew; et pour
valeur des eels.

Chaque agegateur G; en aka sur un pas de temps (resp. temporel {) est croissant
(resp. croissant en sa seconde variable).

Les agegateurs commutent,ahsavoir _
[ n 0

Gi+1 t ;7 = t ;G
En e et, sous ces hypotleses, nous montrons que le probeme (8) peut se eecrire sous
forme imbrli'qte% :

)r(n_iLr} Gi1 o Lo XpUgpW,: G2 1

h n oi W
Gr 1 71 Lt 1 X: U s W1 ;G K(X5) (%9a)
sitt Xy= Xo (9b)
Xigp = e X oUW, t=0;::5;T 1,(9c)
t XyU, =0 t=0;:::T  1;(9d)
U, F =0;::5;T 1:(9)

On ceduit naturellement de cette formulation imbrigquee une suite de probemes d'optimi-
sation, indies par le F‘emt)s et letat initial.

Pt (X) )r<ﬂ|U Gt t Lt XiUyWyyy Gt a1

Y
h n oi
Gr 1 11Lt 1 Xy U W ;G K(X )
sttt X, =X
X 4= X Uu;w =t T
XU =0 =t T

u F =t T



6 CHAPITRE 0. INTRODUCTION

On ¢k nit une fonction valeur V; : X; 7! R qui donne en fonction de letat initial la valeur
du probeme P . Cette fonction est obtenue par une ecurrence arrere,a savoir

V1 X1 = K(XT) h . 8XT 2 X7, (108.)
n oi
Vi Xy = mZIB Gt t Lt Xy W Ve fe XUy Wiy 8xi 2 Xy : (10Db)
uz Ut

On ceduit des fonctions valeurs une straegie optimale pour le probeme (9) (et donc pour
le probeEme (8)) en selectionnant, a la date t, le controle u 2 U; ealisant le minimum
de (10b) (a1 x; cesigne letat courant).

Ainsi nous avons un cadre treorique gereral pouretablir uneequation de programma-
tion dynamique (equations du type de (10)). Nous avons au passageetabli que la suite de
probkme P; etait consistante (en temps). En e et nous avons construit une straegie
optimale pour le probeme Pg(Xg), et monte que cette strakgie etait egalement opti-
male pour les probemesPy, avect 1. Au chapitre 2, nous & nissons peciement les
conditions evogles plus haut, et cemontrons les esultats annones. De plus nous nous
attardons sur les liens entre ces dierents probemes d'optimisation et les mesures de
risque dynamique. En particulier il existe dans cette literature une notion de consistance
temporelle que nous relionsa celleevoqiee pour les suites de probemes d'optimisation.

Stochastic Dual Dynamic Programming

Le chapitre 2etend le cadre de la Programmation Dynamique, mais ne s'occupe pas des
di cules nuneriques de mise en oeuvre, en particulier du probeme de la makdiction de
la dimension. L'algorithme SDDP (Stochastic Dual Dynamic Programming), connu depuis
1991, exploite lequation de programmation dynamique pour construire une approximation
pohedrale des fonctions valeursV;. L'avantage nurnerique principal consistanta se ramener
a des probemes que l'on sait esoudre de manere e cace (typiquement des probemes
lireaires), et ainsi de pouvoir attaquer des probemes de dimension plus grande que ce
que n‘autorise une simple programmation dynamique. Pesentons en quelques mots cet
algorithme.

On consicere le probeme (1), avec I'nypothese que les bruits sont independants. On
note V; la valeur de Bellman assocee au probeme, obtenue par lequation (4). On suppose
que les fonctions de cootlL; et K soient convexes, et que les fonctions de dynamiqul
soient a nes. Dans ce cas les valeurs de Bellman/; sont convexes. On suppose que l'on
dispose, a l'ieration k de l'algorithme, d'approximations des fonctions de Bellmanvt(k)

qui \eri ent Vt(k) V;. L'algorithme se deroule ensuite en deux temps :
dans une phase avant on cetermine une trajectoire de letata partir des approxima-
tions des fonctions valeurs,
dans une phase arrere on aneliore les approximations des fonctions valeurs au niveau
de cette trajectoire.
On tire au hasard une suite d'ata wt(k) th1' On en ceduit une trajectoire xfk) IT:O
du syseme obtenuea partir des approximations de la fonction valeur :
ng) -0 -

i) h |
uEk) 2 argminE L x(k);u;WHl + Vt(+kl) fy XEk);u;WHl ;
k k k

9 =t vl

Notons que si les approximations de la fonction de Bellman etaient exactes)/t(k) = W,
alors la trajectoire obtenue est la trajectoire optimale du probeme.



Maintenant que l'on dispose d'une trajectoire xgk) ;I—:O’ on peut ceterminer, pour

chaque instant t, une coupe de la fonction valeurs V;. Plus peciement, en esolvant le

probeme i
- (k). - +y® (k). - :

mulnE Le X¢ su; Wiy Vi fe Xg iUy Wy

on obtient, par nethode de dualie et en exploitant la convexie de la fonction V;, une

fonction a ne

k k) . k
Wy . 0

qui est en dessous de la fonction valeuy;. On peut donc aneliorer I'approximation de la
fonction V4, en @ nissant

n (0]
k+1 k k k k
VP O=max V0 0+ 19 {9

Nous montrons au chapitre 3 que cet algorithme converge dans le sens ai les fonctions
valeurs approxirmrees Vt(k) convergent vers la fonctionV; aux points visies par une tra-
jectoire optimale du syseme. Le esultat du chapitre 3etend les preuves jusqua pesent
dans deux directions :

jusqua maintenant les fonctions de coltsL; et K etaient supposes lireaires, et nous
ne faisons qu'une hypottese de convexie;

nous avons construit une classe d'algorithme assez large incluant les diverses vari-
antes de SDDP rencontees dans la literature.

Dualie en Optimisation Stochastique

La treorie de la dualie permet de transformer une contrainte en un coot. Cette ap-
proche sera utilisee pour construire une nethode de cecomposition spatiale.

Dans un premier temps nous pesentons le sckema de cecomposition par les prix comme
motivation pour la seconde partie du manuscrit. Puis nousevoquons les di culesaetablir
des esultats de quali cation des contraintes dans un espace &, p < +1 , requis par la
cecomposition par les prix. Nous donnons ensuite des esultats de quali cation pour l'es-
pace ! . Finalement, nous adaptons l'algorithme d'Uzawa (qui requiert de tels esultats
de quali cation)a l'espace L1 en pesentant des esultats de convergence.

Becomposition par les Prix

Nous pesentons ici, sur un probeme simple, la nmethode de decomposition par les
prix. Cette methode peut étre intuitivement comprise ainsi. Consicerons un probeme de
production ai un cecideur dispose de N centrale de production (indie par i), chacune
produisant (u;) pour le contréle u;, et devant satisfaire une certaine demande. La de-
mande est incopoee dans l'une des fonctions de production de sorte que la contrainte
degalie o re-demande sécrit

X
i(Uu)=0: (11)
i=1

Par ailleurs, choisir le controleu; cotte L;(u;), et I'objectif du cecideur est de minimiser
la somme (suri) des coqts.

La decomposition par les prix consistea remplacer la contrainte (11) par un syseme de
prix. Pour obtenir un bon prix on suppose qu'un coordinateur propose un prix (par unie
produite) a toutes les centrales. Chacune annonce alors la quantie qu'elle produit, et le
coordinateur peut ajuster son prix. Plus peciement,a l'ieration Kk, le coordinateur xe un
prix ptk) = &) pour la production des centrales j(uj). Chaque centrale maximise alors
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son pro t,a savoir les gains obtenu p®) ;(u;) par la production moins le codt local L; (u;),
et obtient une solution ui(k). Puis le coordinateur compare la somme des productions avec
la demande. Si la demande n'est pas satisfaite le prix est augmene, si la demande est
tepas®ee par la production, le prix est eduit, et I'on peut passera letape k + 1 avec le
nouveau prix.

Matrematiquement parlant, consicerons le probeme suivant :

X
min Li(up) (12a)
fuigh, i1
sttt uj 2 U3 8i 2 [1;N]; (12b)
X

i(u)=0: (12c)
i=1

Sous des conditions techniques, ce probeme estequivalenta

X X
min  max Li(uj) + i(up) (13a)
fugly 2Ry i=1

sttt uj 2 U39 8i 2 [LN]: (13b)

Si nous disposons d'une hypothese de quali cation des contraintes, nous pouvonsechanger
les operateurs min et max dans le probeme (13), pour obtenir

max  min Li(u)+  i(u) (14a)
2R fuigl, i=1
sttt uj 2 U39 8i 2 [1;N]: (14b)

On remarque alors que le probkme de minimisation inerieure, i.e.a >, consiste a
minimiser une somme de colts locaux cetermires par des controles independants. Ainsi,
la somme des minimas est le minimum de la somme et le probeme (14) devient

X
max 1 ngiin Li(ui)+ i(ui) (15a)
1=
st uj2 U (15b)
Pour un multiplicateur = & donre, nous avonsN probemes de minimisation £paes,

qui sont les sous-probemes de la methode de cecomposition. lls secrivent comme suit.
min - Li(ui) + ) (ui) (16a)
sttt uj 2 U (16b)
Ces probemes sont misa jour en ajustant le prix, par exemple avec
X
(D= e ) (17)
i=1

a > 0 estun pas donre etui(k) une solution optimale du probeme (16). Cette formule

de misea jour fait partie de l'algorithme d'Uzawa, rappek etetendu au chapitre 6.



Probémes de Quali cations des Contraintes en Optimisation Stochas-
tique

Pour pouvoir remplacer une contrainte par un prix il faut utiliser la treorie de la
dualie, brevementevoqiee au chapitre 4. Cette tteorie consistea construire une famille
de probemes perturkesa partir du probeme d'origine, ce dernier netant plus qu'un cas
particulier (le cas au la perturbation est nulle). La fonction quia une perturbation donree
associe la valeur du probeme perturte est appege fonction valeur. En utilisant des outils
d'analyse convexe on peut alors construire un probeme dual du probeme original, et
les proprees de egularie (semi-continuie inkrieure, sous-dierentiabilie) permettent
detablir des liens entre le probeme initial et son dual. On note toutefois que le dual
epend des perturbations choisies.

Les contraintes d'un probeme d'optimisation seront dites qualiees si elles peuvent étre
remplaees par un prix, ou, en d'autres termes, si les valeurs du probeme primal et dual
sontegales et que le probkme dual admet une solution optimale. Une condition recessaire
et su sante, mais abstraite, pour cela est que la fonction valeur soitegalea sa bi-conjuglee
de Fenchel. Une condition su sante courante est rappekea la proposition 4.10.

Cette technologie matfematique met en lumere l'importance du choix des espaces
dans lequel on pose le probeme d'optimisation, ainsi que de l'espace de perturbation
choisi pour construire le probeme dual. Dans le cadre de I'optimisation stochastique,
pour utiliser des nethodes de gradient on est tene de se placer dans un espace de Hilbert,
par exemple I'espace B des fonctions de care inegrables. Nous exposons em4.2 deux
exemples montrant les di cules d'un tel choix. Dans le premier exemple, nous pesentons
un probeme simple, avec toutes les \bonnes proprees” que I'on pourrait souhaiter a
premere vue, dont cependant les contraintes ne sont pas qualiees dans £ Dans le second
exemple nous montrons que méme lorsque les contraintes sont qualiees, la condition
su sante de quali cation n'est pas \eriee.

Existence de Multiplicateur dans L!

Le chapitre 4 montre qu'il est di cile d'avoir des contraintes presque stres qualiees
dans L2. Le chapitre 5etablit un esultat de quali cation des contraintes presque sores
dans Lt .

Dans ce chapitre nous montrons que, si la fonction coot) : L1 | R[ + 1
est nie partout, alors des contraintes a nes, presque stres, degalie et les contraintes
de non-anticipativie admettent un multiplicateur L . En d'autres termes il existe un
mecanisme de prix qui peut remplacer cette contrainte. Cependant, I'hypottese de nitude
sur L' interdit la pesence de contraintes de bornes presque stres. Nous trouvons dans
la literature (T. Rockafellar et R. Wets) des esultats de quali cation de contraintes
d'iregalie sous une hypotlese de relatively complete recourse

Nous montrons egalement comment les hypotheses conduisanta la quali cation des
contraintes s'appliquent sur un probeme d'optimisation dynamique stochastique.

Algorithme d'Uzawa dans L' ;F;P

Le chapitre 6 est consacea l'extension de l'algorithme d'Uzawa (ck ni dans un espace
de Hilbert, par exemple L? en optimisation stochastique)a I'espace de Banach non e exif
L . Ene et l'algorithme d'Uzawa peut étre utilise comme algorithme de coordination dans
une nmethode de decomposition par les prix, mais requiert une hypothese de quali cation
des contraintes. Or le chapitre 4 a monte que la quali cation des contraintes dans 12 est
di cilea \eri er, tandis que le chapitre 5 fournit des hypotteses de quali cation dans L ! .

Il'y a deux diculesa passer de L 2a L' . D'une part il faut donner du sens a
l'algorithme d'Uzawa, qui exploite I'identi cation d'un Hilbert avec son dual topologique
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dans sa phase de misea jour. D'autre part, il faut adapter la preuve de convergence qui
repose sur des estimations classiques dans un espace Hilbertien.
Deux esultats principaux sonta retenir.
Avec des hypotheses comparables au cas Hilbertien, plus exigeantes sur la continuie
des fonctions mises en jeu, mais se contentant de I'existence d'un multiplicateur3,
nous montrons la convergence (au sens'L) d'une sous-suite de la suite de controle
gereee par l'algorithme d'Uzawa.
Sous les mémes hypotreses, mais avec l'existence d'un multiplicateur?, nous ren-
forcons le esultat classique de convergence £ en prouvant la convergence au sens
LY de la suite des contréles donree par l'algorithme d'Uzawa.
Finalement, nous montrons comment l'algorithme conduit naturellement a une
nmethode de decomposition par les prix pour un probeme d'optimisation dynamique
stochastique. Cependant le multiplicateura manipuler est un processus stochastique et
non plus un vecteur d'un espace de dimension nie comme cktait le cas dans un cadre
ckterministe. Ceci a deux defauts majeurs :
d'une part le multiplicateur vit dans un espace gigantesque, et I'ajuster prendra un
grand nombre d'ierations;
d'autre part les sous-probemes obtenus ne sont pas forement beaucoup plus simples
a esoudre que le probkme d'origine.

Ces points sont traies dans la troiseme partie du manuscrit.

Becomposition Spatiale en Optimisation Stochastique

Nous montrons, au chapitre 6 qu'une nethode de decomposition par les prix directe-
ment appliqiee a un probeme d'optimisation stochastique dynamique fournit des sous-
probemes diciles a esoudre. Nous proposons donc d'approximer le probeme d'orig-
ine pour pouvoir appliquer la decomposition par les prix et obtenir des sous-probemes
nuneriqguement solvables.

Epiconvergence de Probémes relaxes

Le chapitre 7 s'ineressea la relaxation de contraintes presque sires en optimisation
stochastique. En e et, consicerons le probkme sous forme abstraite

(P) min J U
u2uad y
U

si: =0
On peut le relaxer, c'esta dire a aiblir les contraintes, ou encore elargir I'ensemble des
contréles admissibles. La relaxation que I'on consicere consistea remplacer la contrainte
presque slre

u =0,;

par une contrainte en esperance conditionnelle
h i
E U B =0:

Pour une tribu B = F, on note P, le probkme relae.
Le esultat principal du chapitre 7 dit que si
la fonction objectif J : U ! R est continue,
la fonction contrainte : U !V est continue,
la suite de tribu  F, . converge vers la tribu globale du probemeF,
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alors la suite de probeme B, ., epiconverge vers le probeme original. En pratique cela
signi e que chacune des valeurs d'adterence de la suiteU,, . des contrbles optimaux
assoces aux probemes relaxes P, est solution du probkme d'origine.

Nous montrons aussi des exemples de fonctionk et qui sont continues. En e et
ces fonctions allant d'un espace de variables akatoires dans un autre espace de variable
akatoire I'hypotrese de continuie est a priori assez abstraite. Nous montrons que la
topologie de la convergence en probabilie permet de mockliser un certain nombre de
contraintes comme une fonction continue.

Algorithm DADP (Dual Approximate Dynamic Programming)

Le chapitre 8 est consackea l'algorithme DADP (Dual Approximate Dynamic Program-
ming). Cet algorithme peut-étre vu comme une nethode de cecomposition par les prix sur
un certain type de relaxation du probeme d'origine, de telle sorte que les sous-probeémes
soient solvables nuneriquement par programmation dynamique.

On consicere le probbme 1, ai les controbles et letat secrivent comme une collection
de controles locaux (i.e.U, = UL:ii;uN et X, = X[} XN ) et les fonctions
de colts et de cg,ntralntes presque s()res comme une solmme de fonctions locales (i.e.
Lt X;U;W = IlL'X'U W oet  X;U;W = IltX'U ;W ). Dans
ce cas l'algorithme DADP consistea relaxer la contrainte presque sare 1d par

a1 Y, est un processus d'information \eri ant
Y = ft Yo W,

Sur le probeme approxine on peut alorsecrire une cecomposition par les prix en dualisant
la contrainte appoxiree. Le gain par rapporta une cecomposition par les prix standards
tient au fait que I'on peut se contenter de multiplicateur = ( ,;:::; ;) telque  soit
mesurable par rapporta Y,. Ainsi, d'une part I'espace des multiplicateurs est plus petit,
d'autre part les sous-probemes peuvent se esoudre par programmation dynamique avec
letatetendu X t' ;Y. acomparera letat X, pour la esolution directe par programmation
dynamique du probeme global.
Le chapitre 8 pesente, etape par etape, l'algorithme DADP brevement evoqle ci-

dessus. Nous donnons ensuite diverses interpetations de I'algorithme :

methode de cecomposition par les prix d'un probeme approxine,

nmethode d'approximation du multiplicateur pour une cecomposition par les prix du

probeme original,

approche par egle de ccision du probeme dual.
Les esultats des chapitres 4a 7 sont utiliees pouretablir des conditions de convergence
de l'algorithme. Finalement une application nunerique encourageante est pesente.

Conclusion

Le sujet des nethodes de decomposition-coordination en optimisation stochastique
reste tes largement inexploe. Sans étre exhaustif, citons quelques pistes de ceveloppement
possibles.

A l'aide du cadre ceveloppe au chapitre 2, les liens entre la consistance temporelle
des mesures de risque dynamique et des suites de probemes d'optimisation doivent
étre pecises.
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La convergence de l'algorithme SDDP, donree au chapitre 3, s'appuie sur le fait que
les akas prennent des valeurs discetes. Il y a de nombreuses raisons de penser que
la preuve peut étreetenduea des variables akatoires continues, mais cela recessite
de traiter des di cules interentes au cadre in ni-dimensionnel.

Pouretendre les conditions d'existence de multiplicateur (obtenues au chapitre 5)
au cas de contraintes d'iregalie nous pensons qu'il faut adapter les esultats de la
literature qui utilisent la notion de relatively complete recourse Ceux-ci permettront
d'avoir un esultat de quali cation en pesence de bornes sur le contrble.

Le esultat de convergence que nous avons obtenu au chapitre 6 pour l'algorithme
d'Uzawa devrait pouvoir &tre anelioe pour obtenir la convergence de la suite des
contréles (pour le moment nous avons simplement la convergence d'une sous-suite).
Nous avons vu au chapitre 7 qu'une suite de relaxation d'un probeme d'optimisa-
tion, al une contrainte presque-sire est remplace par une contrainte en esgerance
conditionnelle, epiconverge vers le probeme original lorsque l'information con-
verge. Cependant l'algorithme DADP ne cherche pasa faire converger l'informa-
tion vers l'information globale du probeme. Ainsi, il faudrait compéter le esultat
depiconvergence pour obtenir des estimations d'erreurs leesa I'approximation faite
lorsque I'on utilise I'algorithme DADP.

Sur un plan nunrerique il faut comparer les algorithmes DADP et SDDP (e&rence
actuelle) sur un probeme de gestion d'une valee hydraulique de grande taille. Dans
un second temps, l'algorithme SDDP pourrait tre inegea DADP comme outil de
esolution des sous-probemes.

Finalement notons que nous avons principalement etude une approche de
cecomposition par les prix. |l existe, en cdeterministe, d'autres nethodes de
cecompositionaetendre au cadre stochastique.



Chapter 1

Preliminaries

If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.

John von Neumann
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Before diving into the core of the manuscript, we develop the framing of multistage
stochastic optimization problems inx1.1, and we present a uni ed treatment of decomposi-
tion resolution methods in x1.2. Finally, we detail in x1.3 the setting of a dam management
problem, that serves as an illustrative thread running throughout the manuscript.

Introduction

We open this chapter with considerations on mathematical optimization and modelling.

What is Mathematical Optimization

In this manuscript, we consider optimization in the sense of minimizing* an objective
function 2 under constraints. This objective function can be a cost in an economic problem,
an energy in a physical problem, a likelihood in a statistical problem, etc. The objective

1. Some applications require to maximize a function (in economics, for instance), which is obviously
the same problem as minimizing the opposite function.

2. The community of multi-objective optimization considers multiple objectives at the same time |
see [66,106]
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function J maps a setU of controls® into R. Solving an optimization problem generally
means nding the set of minimizers of the objective function, or at least one minimizerul,
as well as the value of the minimum. The eld of mathematical optimization is concerned
with nding:

conditions of existence (and sometimes of uniqueness) of a local or global minimizer

of the objective function on a set ofadmissible controls

su cient conditions of optimality;

necessary conditions of optimality that reduce the set of controls to explore;

algorithms yielding a sequence of controls converging to an optimal control;

speed of convergence of such algorithms;

bound on the error made when the algorithm is stopped;

etc.

The general optimization problem we consider is written

min J(u) (1.1a)
u2uad y
st. (w2 C; (1.1b)

where J is the objective function, U2 is a constraint set of a vector spaceU, C is the
constraint cone of a vector spaceV, : U !V is the constraint function, andu2 U is a
control. A control u is said to be admissibleif u 2 U2 and ( u) 2 C. A control u! is
said to be optimal if we haveJ(ul)  J(u), for any admissible control u.

Notice that we have distinguished to types of constraints: aset membershipconstraint
( u)2 C, and an abstract constraint u 2 U2%. The set membership constraint is classi-
cally represented by several equality and inequality constraints, and, in this manuscript,
we will often treat it by duality, whereas the abstract constraint will be kept as such. Of
course, there is latitude in choosing to model a constraint as part of (u) 2 C or as part
of u2 U2, sinceUa can accept any kind of constraint.

The Art of Modelling

In practice, a \real-life" optimization problem is not given in mathematical form, but
has to be casted and formulated as such. Crafting a model is a trade-o between, on the
one hand, realism and complexity, and, on the other hand, mathematical tractability.

In the special case of fashioning a multistage optimization problem, we distinguish
three elements to be identi ed:

the control variables and their timing;

the objective function (or criterion) J, that re ects multiple conicting interests
quanti ed and weighted each against the other, while other objectives will be for-
mulated as constraints;

the constraints that restrict control variables, and incorporate objectives outside the
criterion J.

In this manuscript, we shed special light on constraints and, in the perspective of
multistage stochastic optimization, we put forward three types of constraints.

Physical constraints.  They result from physical laws, e.g. the maximum speed of a
vehicle, the maximum volume of a reservoir, the dynamical evolution of stocks, etc.

Information constraints. They state what is the information available when choosing
a control. In a stochastic setting, we will mostly represent them by measurability
constraints.

3. We use indi erently the terminology decision or control (though control is generally reserved to
trajectories of decisions).
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Objectives as constraints. They represent other objectives than the criterionJ. In
this sense, they are \soft constraints" re ecting preferences of the decision-maker
(like risk constraints).

Physical and information constraints have to be satis ed whatever the cost, as they derive
from physical laws. They are called \hard constraints" because we cannot \negotiate"
with them. By contrast, constraints that can be negotiated with, at the modelling level,
are called \soft constraints". For instance, constraints representing objectives, e.g. risk
constraints, could be loosened by the decision-maker. Moreover, some physical constraints
could be loosened through complex mechanisms not represented in the mathematical prob-
lem (we could upgrade our engine to have a higher speed, or extend a reservoir to have
more capacity, etc.). For soft constraints, the multipliers (see the duality theory of Chap-
ter 4) give precious informations, as they can be interpreted as the marginal cost of
in nitesimally relaxing a constraint.

1.1 Framing Stochastic Optimization Problems

Before tackling resolution methods inx1.2, we focus on how to frame stochastic opti-
mization problems. We start with stochastic static optimization problems in x1.1.1, then
move to multistage stochastic optimization problems inx1.1.2.

1.1.1 Framing of a Static Stochastic Optimization Problem

In most problems, uncertainties abound. In stochastic optimization, these uncertainties
are modeled by random variable$ or stochastic processes, together with their joint prob-
ability distributions. ° Selecting possible classes of probabilities, re ecting in particular
dependencies between random variables, is a modelling issue. Specifying the parameters
of the law is a statistical problem that has also to be dealt with, although it is not a part
of the optimization problem itself.

With uncertainties, the cost itself becomes a random variable. As one cannot easily
rank two random variables (when is one random cost \better" than another?), one usually
averages out and aggregates the random cost to produce a single number. The most used
random aggregatoris the mean, or mathematical expectation. In some cases ( hancial
problems), the expectation is taken with respect to another probability (namely the risk-
neutral probability) than the original one, or alternative random aggregators, representing
alternative risk preferences, can be used (see.2.2 for a presentation of risk measures).
In Chapter 2, we will consider a large spectrum of uncertainty aggregators.

The traditional stochastic optimization problem is formulated as

min EJU;W) (1.2a)
u2uady
st U B (1.2b)
where
( ;F;P)is a probability space, andE is the mathematical expectation;
U is the space of all random variabledJ : ! U, whereU is a measurable space;
W : | W is arandom variable that representsexogenous noisewhere W is a

measurable space;

4. We use random variable as a generic term that includes random vectors and stochastic processes.
Throughout this manuscript, we write random variables in bold. We consistently use the notation W for
the noises, i.e. the exogenous random variables.

5. In a connex area known asrobust optimization (see [13,15]), uncertainties are modeled as sets of
values that the uncertain parameters can take, and optimization is performed with respect to the worst
possible case.
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J:U W! Risthe objective function, de ned on the product set of controls and
uncertainties;

B F is a sigma-algebra, and the notationU B stands for \U is a random
variable measurable with respect to the sigma-algebrd”, namely

Uu B (U) B ; (1.3)

and captures measurability or information constraints; intuitively, the sigma-
algebra B represents the information available to the decision-maker when choosing
the control U ;

U2 js a subset ofU that represents all remaining constraints like set membership
constraints (say, inequality or equality constraints), risk constraints, etc.

We wish to highlight the speci cities of stochastic optimization w.r.t. deterministic
optimization. In this perspective, we focus on the information constraints, and we lay
out di erent ways to represent them mathematically. Instead of the \algebraic formula-
tion" (1.3), we can use an almost-sure equality:

Uu EU B =0; P as: (1.4)

When the sigma-algebraB is generated by a random variableX : ! X, that is,
when B = (X ), and when U is a separable complete metric space, a result due to
J. Doob (see [35, Chapter 1, p. 18]) states thaly X is equivalent to the existence of
a measurable function : X! U suchthatU = (X ). Thus, we obtain a \functional
formulation" of an information constraint:

U X)) 0 9 : X! U measurable, such thatU = (X): (1.5)

We distinguish two notions of solution, depending on the sigma-algebra in (1.2b).

Open-Loop. An open-loop solutionis U f; ; g, that is, a constant random variable.
Then, the random variable is represented by its unique value.

Closed-Loop. By contrast, a closed-loop solution may depend on the uncertainty:
U B ,wheref;; g( B F .

1.1.2 Multistage Stochastic Optimization Problem

By contrast with static stochastic problems, a multistage stochastic problem introduces
stages| labeled with integers t = 0;:::;T 1, with horizon T 2 | and several
measurability constraints instead of only one in (1.2b). The general multistage stochastic
optimization problem reads

min EJ(U,; U W 1.6a
(UO;:::;UT 1)2Uad U ( 0 T1 ) ( )
sit: U, By 8t2[0;T 1]; (1.6b)
where
( ;F;P)is a probability space, andE is the mathematical expectation;
U is the space of all random variables (J o ;U 1) ! U Ut 1, where
all U; are measurable spaces;
W . | W is arandom variable that representsexogenous noisewhere W is a
measurable space;
J : Up Ur 1 W! Risthe objective function;

B: F is asigma-algebra, fort 2 [0;T 1], and the condition U, B { captures
measurability or information constraints at staget;
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U 2 js a subset ofU that represents all remaining constraints, including ones that
connect di erent stages.
Now, we wish to highlight the speci cities of multistage stochastic optimization w.r.t.
multistage deterministic optimization in a setting where information ows sequentially.

Open-Loop. An open-loop solutionis (U ,;:::;Up ;) such that U, f; ; g for all
t2 [0, T 1], thatis, U, is a constant random variable.

Closed-Loop. By contrast, a closed-loop solutionmay depend on the uncertainty when
f,; g( By F foratleastonet2 [O;T 1].

The case ofinformation accumulation | also called perfect memory | is grasped with
the inclusions
BO B T 1: (1'7)

Until now, we did not require that the exogenous noise W be a sequence
Wo, it W, . But, when W is a random process, we can capture the property of
non-anticipativity by

8t2[0;T 1] Bt (Woriit W) - (1.8)

The formalism (1.6) covers the case wherdB; F does not depend on past controls
Uyt Up 4 (like Bi = (Wg; i W,)), and the case whereB; F indeed depends on
The two most important multistage stochastic optimization theories can be distin-
guished according to how they handle the information constraints (1.6b):
in the Stochastic Programming framework, the information is generally encoded in
a tree, and the sigma-algebraB; corresponds to the set of nodes at stage
in the Stochastic Optimal Control framework, the sigma-algebraB; is (X ) gener-
ated by an information state X ;, produced by a controlled dynamics.
Both theories incorporate a non-anticipativity property, as well as information accumula-
tion (under the Markovian setup in Stochastic Optimal Control). We now present Stochas-
tic Programming and Stochastic Optimal Control with a focus on the information con-
straints (1.6b).

Stochastic Programming (SP)

In Stochastic Programming, the probability space ( ;F;P) is called scenario space
where scenarios stand for sequences ofincertainties. The sequential structure of informa-
tion arrival about uncertainty is represented either by a subset of a product space or by a
so-calledscenario tree (see Figure 1.1).

For the sake of simplicity, in this manuscript we only consider Stochastic Programming
for nite scenario spaces. For a set of scenario we suppose given

a probability P on ;

control setsUy, ..., Ut 1;

an uncertainty set W and a mappingW : ! W that represents exogenous noises
an objective function J : Ug Ur 1 WI!I R

Stochastic Programming with Scenario Space In Stochastic Programming, the
nite probability space ( ;F;P) can be represented as a subset of a product space

0 T 1; (1.92)

where the set ; supports the uncertainties at stept, so that a scenario is denoted by

b =(loiiiitt 1)=f!sg-5r:01: (1.9b)



18 CHAPTER 1. PRELIMINARIES

Figure 1.1: A scenario tree

A possible solution is a family of controls u;(! ) 2 U; doubly indexed by stept and
uncertainty ! . The non-anticipativity constraint (Constraint (1.6b) where B; = Fy) is
captured by the requirement that, for all t 2 [O; T 1],

8(1;! 92 2 fryg,=f1% = w()=uw(l9: (1.10)
The general stochastic programming problem reads
X
min PflgJd fu(!)g o, W()
ffuloz 9" o (1.11)

s:t: constraint (1.10)

We develop in Table 1.1 the correspondence between the framing of Stochastic Pro-
gramming problems with scenario space and the abstract framing ox1.1.2.

Stochastic Programming with Scenario Tree The stochastic programming commu-
nity often presents problems on a scenario tree. We give a formal de nition of a scenario
tree (for a nite ), and proceed to explain links between the representations.

Denition 1.1.  Consider the sequence N th01 of partitions of the set , such that
N¢+1 is a re nement of N; (i.e. any element of N1 is contained in an element ofNy).
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Stochastic Programming Abstract
formulation formulation
States of Nature 0 T 1
nite set measurable space
Probability fPflggo: P

Solution ff u(! g2 g’ fU, Gt
82 ; 82[0T 1] 8t2[0;T 1]

flsOizo = F13050 ) ut(!) = w(' 9 U B

Table 1.1: Correspondence between Stochastic Programming with scenario space framing
and abstract framing

. . . T 1 . . .
A scenario forestis given byT = Ny =0 + P - A scenario treeis a scenario forest where

No=f g,andNy 1= flgj! 2

Hence, on a scenario tree, a scenariol 2 is associated with aleaf of the tree
fl'g2 Nt 1. A nodeof deptht of the tree T, is an element of N;. A node n is said to
be an ascendantof a nodem if m n, we denote bya(m) the set of ascendant nodes of
m. Conversely,m is a descendantof n. For a node n 2 N, we de ne its set of children
node r(n) as the nodesm 2 N1 that are descendant ofn. The genealogyof a node is
the collection of all its ascendants.

We also de ne the functionsn; : I N  satisfying! 2 n¢(!): its the function
mapping the event! with its corresponding node at timet.

Note that, with this construction, from the probability P on , we have the probability
of each nodemn 2 T.

From a set of uncertainties 0 T 1, We can construct a tree in the following
way: a noden; 2 N is given by (when non-empty)
ne(!):= 192 j 8s2[0;t]; flsgig=f12%, 6;;

wheref! sgi_, is a sequence satisfying s 2 5. Conversely, we easily construct a product
set of uncertainties from a tree, and identify the tree with a subset (see Figure 1.4).
A possil%le solution is a family of controls indexed by the nodes of the tree
T 1

Une 1oon, 0’ where, for any time t, and any noden; 2 N, up, 2 Ux.

In this way, the information constraints (1.10) are automatically captured in the very
indexing of a possible solution by the nodes; of the tree: at stept, a solution can only
depend on past uncertainties! g, ..., ! ;.

The general stochastic programming problem reads

X

min P ! J
fUn9n2T|2

Un n2a(f!g);W ! : (1.12)

A usual speci c class of problems, additive in time, reads

X1X X
min Pm Lt Xn;Un:Wn (1.13a)

funiGnean ¢ t=0 n2N{ m2r(n)

st Xm=Tft Xn;Un;Wn ; 8m2r(n); 8n2Ny 8t: (1.13b)
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In this formulation the variables fXxngnh27 is called aphysical state
We develop in Table 1.2 the correspondence between the framing of Stochastic Pro-
gramming problems with scenario tree and the abstract framing ofx1.1.2.

Stochastic Programming Abstract
formulation formulation
States of Nature T/ Nt 1
tree (forest) / leaves measurable space
Information N¢ Bt
nodes at time't sigma-algebra
Probability fP N Onony P
Solution fUnGnan, th01 fU,g 0"
U, B, 8t2[0T 1]

Table 1.2: Correspondence between Stochastic Programming with scenario tree framing
and abstract framing

Stochastic Optimal Control (SOC)

In Stochastic Optimal Control, the information constraints (1.6b) are materialized by
means of a so-calledstate. The framing comprises aStochastic Dynamic System(SDS)
consisting of

a sequence X; g of sets ofstates,

T 1
a sequence U 0 of sets ofcontrols;

T 1 _
a sequence W; of sets ofuncertainties,;

a sequence f; g L of functions, wheref; : X; U; W ! X1, play the role of

dynamics at time t;

a probability space ( ;F;P);

exogenous noisesW,g/_,*, where eachw, takes values inWj;

an objective function J : Xg Xt Ug Ur 1 Wy Wt 1! R.
The sigma-algebras

8t2[0;T 1] Ft= Wy W, (1.14)

form the lItration F of past noises, and we naturally de neF-adapted processes. For an
F-adapted sequencd UtgtT:ol of controls | that is, random variables U, with value in Uy,
and such that U, F ¢ | and an initial state Xo 2 Xo, we obtain a sequencd X tgtho of
states as follows:

8t2[0,T 1] Xy = e XU W,

We observe that, for any timet 2 [1;T], X, is measurable w.rt. Fy 1 F by construc-
tion.
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We denote
X =fX,05; U=1fUgLh W =1fw,gt: (1.15)
The general stochastic r(])ptimal control problem read$
[
>r(n_ilrj EJX;U;W) (1.16a)
st X = fe XU W, 8t2[0;T 1]; (1.16b)
U, B 8t2[o0;T 1]; (1.16¢)

where By F  is a sigma-algebra, fort 2 [0; T 1], and the conditionsU, B  captures
measurability or information constraints at staget.

Here again, we wish to highlight the speci cities of multistage stochastic optimization
w.r.t. multistage deterministic optimization, in a setting where information ows sequen-
tially. Since By F ¢, the condition (1.16c) implies that the control U, is chosen knowing

measurable with respect toF;.
We distinguish several classes of information structures, depending oB; in the con-
dition (1.16c), hence several notions ofolution.

Open-Loop. An open-loop solutionis one where the condition (1.16c) reads), f, ; g,
forallt 2 [0;T 1]. In other words,B; =f; ; g,forallt2 [O;T 1].

Closed-Loop. A solution satisfying the condition (1.16c) is aclosed loop solutionas soon
asf,; g( Bt F (foratleastonet 2 [O;T 1]. The following subdivisions are
helpful in practice.

In the Decision-Hazard setting, By = (X ) in (1.16¢) so that decisionsU, X,
are taken before knowing the uncertaintyW, at time t, and only according to the
current state X ;. By the Doob result (1.5), a solution can be expressed as state
feedbackU, = (X ), where :X;! U.

In the Hazard-Decision setting, By = (X ;W,) in (1.16c) so that decisionsU,

(X W,) are taken after knowing the uncertainty at time t, according to the
current state X, and the current uncertainty W,. By the Doob result (1.5), a
solution can be expressed abl, = (X ;W,), where :X¢ W;! U.

The largest class of closed loop solutions is of course obtained whd) = F;
forall t 2 [0;T 1]. When the exogenous noise§W,g/_,* form a sequence of
independent random variables, it can be shown that there is no loss of optimality
in reducing the search to the class of Hazard-Decision feedback solutions, namely
Bt = (X,;W,). When the size of the state spaceX; does not increase witht, and
neither doesW;, this property has major consequences for numerical applications.
A smaller class of closed loop solutions is obtained wheB; = F; 1 for all t 2
[0;T 1]. When the exogenous noise"sthtT:O1 form a sequence of independent
random variables, it can be shown that there is no loss of optimality in reducing
the search to the class of state feedback solutions, namelg; = (X,). When
the size of the state spaceX; does not increase witht, this property has major
consequences for numerical applications.

This general form (1.16) is not common, and one generally rather considers a time
additive expression for the cost function, namely,

hxk 1 [
min E Le X UpW, + K X (1.17a)
=f 19" t=0
st Xigg =Tt X UpgW, 8t2[0;T 1]; (2.17b)
U, = (X)), o Xe D Uy 8t2[0;T 1]; (1.17¢c)

6. In Chapter 2, we consider other aggregators in time and uncertainties.
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where
Li: Xy U W 7! Ris the instantaneous costat step t, forall t 2 [0; T 1], and
K : Xt ! Risthe nal cost;

the policies  are measurable mappings, for alt 2 [0; T 1], and capture informa-
tion constraints;

Remark 1.2. We discuss the notion of state inx1.2.4. The quantity X ; is an information
state when the conditionU, B { in (1.16c) can be replaced by the conditiorJ, X,
where X ; is F¢-measurable.

In Problem (1.17), the condition (1.17c) suggests that the stateX , is an information
state as the decision are taken in function of it; we say \suggests" because this relies on the
implicit assumption that there is no loss of optimality in reducing the search to the class of
state feedback solutions, instead of the largest class of adapted controls. In Probl€in16),
X, is simply the physical state (and might or might not be an information state, depending
on additional assumptions).

As just discussed, the form (1.17) is especially adapted to the case where the exogenous
noisesttgthol form a sequence of independent random variables. We will come back to
that point when we address Dynamic Programming inx1.2.4.

Connection between SP and SOC

The SOC framing includes the SP one, at the expense of introducing a state like in
Table 1.3.

Stochastic Programming Stochastic Optimal Control
formulation formulation
States of Nature 0 T 1
nite set measurable space
Exogenous noise Wy= ¢, W,: |  projection
Probability fPflgago> P
State Xt:(Yo;W;UO;:::;Ut 1)
Information Fe= Wy W,
Dynamics fe(Xe; Uy W) = (X5 Ut)

Table 1.3: Turning a Stochastic Programming framing into Stochastic Optimal Control
framing

Observe that the state X , at staget is huge, as it includes all the exogenous noisé#
and the past controlsU ;:::;U, ;. Observe also the not common fact that the stateX ,
at staget includesall the noisesW =
As a consequence, the stateX , is not Fi-measurable, hence is not observable by the
decision-maker at staget and cannot be the input of any implementable feedback. What
is more, the dimension of the state grows with the stages, as re ected in the dynamics that
just extends the vector x; by adding u; to the right: the state X , at staget keeps track

state", and it will again be discussed inx1.2.4. This is not an information state as it is not

totally observable (see Remark 1.2), whereas we will see that the conditional distribution
of the maximal state X , knowing F¢ is. In practice, depending on the speci cities of the
model, it may happen that smaller states can be displayed.
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1.1.3 Discussion of complexity

We point out in what sense multistage stochastic optimization problems are complex,
and then quickly review di erent approaches to address their numerical resolution.

More precise and involved discussion on the complexity of multistage stochastic opti-
mization problems can be found in [111,112]. In particular the question of approximating
the underlying probability is discussed.

Multistage Stochastic Problems are Complex

To give a feeling of the complexity of a multistage stochastic optimization problem, we
assume that controls take their values in a nite set of cardinal n,. Therefore, there are

(nu)Tj ]

possible solutions (not all of them are admissible).

To account for non-anticipativity and restrict solutions, we suppose that the sample
space is a product of T copies with cardinalny, sothatj j=(ny)T. Hence, the number
of possible solutions is

(nu)T(nw)T ;

and the number of non-anticipative ones is

w)' 1

PT l(n )s
(ny) s=o Y™ =(ny) w T (1.18)

This number is also the number of possible solutions when the set is represented by the
leaves o]‘Da tree of depthT, each node havingn,, children, because then the number of

. T
nodesis {o'ng = ekt

Discussing Resolution Methods to Address Complex Optimization Problems

Most \real life" optimization problems are too complex to be numerically solved di-
rectly. We brie y list some of the many ways found in the academic literature to tackle
complex optimization problems, pointing to well-known references, without aiming at ex-
haustivity.

Heuristic. We can look for heuristic solution, either by looking for the solutions in a
more limited class of solutions (approximate dynamic programming { see [19, 83]{
and machine learning {see [54]{ are classical approaches), or by cunningly trying to
nd a good solution through method like simulated annealing (see [60]), or genetic
algorithms (see [51]).

Speci ¢ problems.  We can also make some approximation of the problem itself, and
make the most of some mathematical properties of the (approximated problem).
For example, one nds very e cient algorithms for linear programming problems
(see [33]), quadratic programming, semi-de nite programming, conic programming,
(see [4,14,119]) large classes of mixed integer linear programming (see [68]), etc.

Decompaosition. Decomposition approaches (see [12, 30, 98]) consist in partitioning the
original optimization problem into several subproblemsusually coordinated by a
master problem We then solve each subproblem independently, and send the relevant
part of the solutions to the master problem. The master problem then adjusts the
subproblems, that are to be solved again, and so on. The numerical gain is contained
in the fact that, if the original problem is of size S, solving N problems of sizeS=N,
even with iterations, might be much faster than solving the original problem.
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1.2 Resolution by Decomposition Methods in Multistage
Stochastic Optimization

We present, in an uni ed framework, the main approaches to decompose multistage
stochastic optimization problems for numerical resolution.

To x ideas and simplify the exposition, we present a setting where all variables are
parametrized by discrete indexes. For this purpose, suppose given a nite horizom
(so that time t 2 [0; T]), a nite probability space F; P, endowed with a ltration
F=1F tgg 1 a nite number N of units (space). We consider the multistage stochastic
optimization problem

X X X1 o .
min Pflg Ly X{(1);Ui(t);wW (") (1.19a)
XU 12 i=1 t=0
st X, ()= f XUl )W () 8t; 8i; 8l (1.19b)
¢ X)) u(t) =0 8t; 8! (2.19¢)
i=1
tF 8t; 8i; (1.19d)
where ! is a scenario of uncertainties given byl = I, tT:Ol. The constraint (1.19b)

represents the dynamics of each subsystem, the constraint (1.19c) represents the coupling
constraint between the subsystems (also called units), and the constraint (1.19d) is the
non-anticipativity constraint. Constraints function { are assumed to have image iR"c.

As we have seen irx1.1.2 that the SOC framing includes the SP one, the above setting
applies both to SP and SOC problems.

In Problem (1.19), we have local costs | depending on step t, uncertainty ! and
unit i | and we minimize their sum over time, uncertainty and space. Without con-
straints (1.19b)-(1.19d), Problem (1.19) (illustrated in Figure 1.2a) consists in minimizing
a sum of independent costs. Hence, the minimum of the sum is the sum of the mini-
mums, and the problem is decomposed. However, the local costs are linked (illustrated in
Figure 1.2b)

in time through the dynamic of the system (e.g. Equation (1.19b));

in unit through the coupling constraints (e.g. Equation (1.19c¢));

and in scenario (uncertainty) through the nonanticipativity constraint (e.g. Equa-
tion (1.19d)).

We now lay out di erent ways to divide the original complex problem into easier to solve
subproblems. We propose three angles to decompose the original problem: decomposition
in time (step), decomposition in scenario (uncertainty) and decomposition in space (unit),
as illustrated in Figure 1.3.

Moreover, we distinguish two types of decomposition.

In chained decomposition like Dynamic Programming (see [12, 17]), the original
problem is solved by means of successive smaller subproblems, solved one after the
other (in Dynamic Programming, each subproblem is solved only once). Chained
decomposition relies on a speci ¢ structure of the coupling constraint, like the ow

of time.

In parallel decomposition like Progressive Hedging (see [98,115]), the original prob-
lem is solved by means of parallel smaller subproblems, coordinated and updated
by a master algorithm. These subproblems can be obtained by dualizing the con-
straint, and have to be solved several times before obtaining an optimal solution to
the global problem.
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(a) Local costs (b) Local costs linked

Figure 1.2: Representation of the local costs depending on time, uncertainty (scenario)
and space (unit) and the links induced by the constraints

(&) Time decomposition (b) Uncertainty decomposition (c) Space decomposition

Figure 1.3: Decomposition according to time, uncertainty (scenario) or space (unit). Each
plane carries a problem with coupling in only two dimensions.

1.2.1 Duality and Parallel Decomposition

Before presenting the di erent decompositions approaches, we now illustrate how the
duality theory (recalled in Chapter 4) leads to decomposition schemes. We present here,
in a simple setting, the most usual, known asprice decomposition scheme For clarity, the
units coupling functions ' in (1.19c) are assumed, here, to be real valued.

This price decomposition scheme can be intuitively understood as follows. We consider
a problem where a team ofN units | each of them producing a quantity  ;(u;) function
of the local control u; | has to meet a given demand. Each unit incurs a local cost L (u;),
and the problem consists in minimizing the sum of the local costs. The decomposition
is obtained by replacing the \production equal demand" equality by a price mechanism.
To achieve a proper price, we suppose that a coordinator can impose costs to all units
iteratively. At iteration k, the coordinator sets a pricep® = () for the output of each
unit j(u;). Each unit then minimizes the sum of its local production costL;(u;) minus

the cash ow produced by the output p®) ;(u;), and obtains a solution u’®). Then, the
coordinator collects the production of all units, makes the sum and compares the result
to the demand. If the total production is not enough, he increases the price of the output;

if the total production exceeds the demand, he decreases the price.
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More precisely, we consider the following problem:

X
min Li(up) (1.20a)
fuighy o
sttt uj 2 U 8i 2 [1;N]; (1.20b)
X

i(U)=0; (1.20c)
i=1
where the indexi can represent unit, time, uncertainties or a mix. Under mild technical
conditions, this problem is equivalent to
X

min  max Li(ui)+ i(up) (1.21a)
fuiglly i=1 i=1

sttt uj 2 U9 8i 2 [1;N]: (1.21b)

Under a proper constraint quali cation condition , we can exchange the min operator with
the max operator and obtain

X
max  min Li(u)+  i(u) (1.22a)
2R fuigl, i=1
sttt uj 2 U 8i 2 [1;N]: (1.22b)

Now, consider the inner minimization problem: the objective function is given as a sum of
local costs, each of them determined by local independent controls. Thus, the minimum
of the sum is the sum of the minima, and Problem (1.22) can be written as

mZaF3< ill rralln Li(u)+ () (1.23a)

sttt u; 2 U (1.23b)

For a given = () we now obtain N separate minimization problems, that are the
subproblems of the decompasition method:

min - Li(u)+ 4 i(u) (1.24a)

sttt u; 2 U (1.24b)

These subproblems are updated as the multiplier %) (or equivalently the price) is updated,
like with

X
(D = 4 7 W) (1.25)
i=1
where > 0 is a given parameter, andui(k) an optimal solution of Problem (1.24). This

update formula for the multiplier is part of the equations of the Uzawa algorithm, recalled
and extended in Chapter 6.

Remark 1.3. This price decomposition scheme is the simplest and most well-known of
decomposition schemes, but not the only one. In short, thelecomposition by quantity
approach consists in allocating to each subproblem a given quantity of the demand to
satisfy, and then update the allocation; thedecomposition by prediction approach consists
in allocating to each subproblem a part of the constraint.

Notice that, even if the property of having a sum of costs over units seems to be fun-
damental for decomposition, the Auxiliary Problem Principle (see [30]) allows to extends
these decomposition schemes to general (non-additive) costs and constraint functions.
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The second part of the manuscript (Chapters 4, 5 and 6) is dedicated to the duality
theory in stochastic optimization as a tool for parallel decomposition.

1.2.2 Spatial Decomposition

The spatial decomposition (by prices) relies on the idea of dualizing the coupling
constraint (1.19c). It will be developed in x6.3 and in Chapter 8.

We now apply to Problem (1.19) a price decomposition scheme, presented ki.2.1, by
dualizing the spatial constraint (1.19c¢). Since there areT j j constraints of dimensionn,
the set of multipliers is of dimensionT j j n¢. Problem (1.19), with constraint (1.19c)
dualized, reads

X XK1 ox .
min  max Pflg Ly X (1) U)W (1)
XU 12 t=0 i=1
+ (1) ¢ XU
i=1
st X, ()= f XU )W, () 8t; 8i; 8!;
Ut F 8t; 8i:

t

Assuming constraint quali cation, this problem is equivalent to

X X Xkt _
max min Pflg Lt X (1)Ut )W ()
=g XU 12 t=0 - |
+ () XU
st XL, ()= XUl )w () 8t 8i; 8!;

Ul F g 8t 8i:

For a given multiplier (), we obtain N parallel inner minimization problems

X xr .
min. Pflg Ly X (1)Ut );w(h)
X! 12 t=0
+ Py Txieypuie)
st X, ()= f{ XUl )w () gt; 8l
Ul F 8t:

t

We denote U {;(k) and X i;(k) an optimal solution. We update the multipliers with

X
st2[0;T 1 8 2 ; *P)= o)+ Fx&u®e) s @ze)
i=1

where > 0 is a given parameter.

Remark 1.4. As discussed inx1.2.1, this price decomposition has an insightful interpre-
tation. The multiplier (! ) can be interpreted as the marginal cost of the output at time
along scenario! . It is worth noting that the prices form a stochastic procesd tgthol, that
can be represented as an element of the huge spaR€ ") '. We show in Remark 6.12
how we can only consider non-anticipative processes. The method presented in Chapter 8
consists precisely in restricting the space of multipliers over which the maximization is
done.
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1.2.3 Scenario Decomposition

The decomposition scenario by scenario consists in dualizing the non-anticipativity
constraint, and then solving subproblems for each scenario (using any of the tools available
for deterministic problems). The Progressive Hedging (PH) Algorithm stands as the state
of the art in this domain, but we also present the Stochastic Pontryaguin approach.

Progressive Hedging (PH)

We consider Problem (1.19) written on a treeT. We then have

X X X . . .

min Pfmg Ly X ;U ;W (1.27a)
funiGnean ¢ g n2T m2r(n) i=1
sit: Xo=fl XUl W 8i; 8m2r(n); 8n2Ny 8t
(1.27b)
¢ XU, =0; 8i; 8m2r(n); 8n2Ny 8t:
i=1

(2.27¢)

Note that we have one decisioru, per node on the tree; this materializes the information
constraint (1.19d), the one that is dualized in the Progressive Hedging algorithm. For this
purpose, we introduce new control variables (see Figure 1.4), that is, a sequentetgthol

of controls for each scenarid (associated to a leaf of the tree), as in Problem (1.19). It
means that, with a given noden 2 T, are associatednj control variables, that is, one per
scenario going through this node. The non-anticipativity constraint (1.19d) is represented
by

8i 2 [Ln]; 8t2[0;T 1], 8(!;! 9 2n? ult)=ule9: (1.28)
We introduce U, the mean control on noden 2 N, de ned by

ul !
Ui = —tan-t ' . (1.29)
jnj

5 =

We denote by n(! ) the node of deptht in which ! is contained. Hence, Equation (1.28)
can be rewritten as

8t2[0;T 1], 8 2 ; Ui()= Uy (1.30)

and Problem (1.19) now reads

X xx1r .
min Pflg Lt X3(1); U)W () (1.31a)
X v 12 i=1 t=0
st X, ()= fXI)hule)w () ; 8t; 8i; 8l (1.31b)
EXieyuliey =o; 8, 8l (1.31c)

i=1
Ui(t) = U, 8t 8i; 8: (1.31d)
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Figure 1.4: From scenario tree to set of scenarios

We dualize Constraint (1.31d), and, under constraint quali cation, obtain

X X xr oo .
max — min Pflg Lt X4(1); U)W (1)
U 12 i=1 t=0 _ _ _
+ ) UIe) U,
st X ()= XU RW0) s 8L 8 8
EX L)) =0; 8 8!,
i=1

where is of dimensionj j N ny, T. We now X, for each noden 2 T, a mean
control Ur(,k). For each scenariol 2 , and each stage t 2 [O;T 1], we x a multiplier

Ek)(! ). The inner minimization of the above problem, for the given multipliers and mean
controls, can be done! per!, and reads

; X iy Y- ) |
) min o Ly X 1)UL )W, () (1.32a)
+ Oy viey uilf (1.32b)
st X, ()= XU )W () ; 8t: 8i; 8l (1.32¢)
EX ) ule) =0; 8t; 8! (1.32d)
i=1

Remark 1.5. It is interesting to note that the non-anticipativity constraint, written in
the form of Equation (1.30), is equivalent to

8 2 [1;N]; 8t2[0;T 1] u' EU/ F =0: (1.33)
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The Progressive Hedging algorithm, schematically presented in Algorithm 1.1, is in
fact more elaborated, as it uses an augmented Lagrangian instead of a simple Lagrangian,
hence adding a quadratic term in the cost of the subproblems (1.32). We refer the reader
to [21,98] for more details.

Data : Initial multipliers  f (1 )gl,* ., and mean control ul®

Result : optimal feedback;
repeat

forall the scenario! 2 do
L Solves the deterministic minimization problem (1.32) for scenario! with a

n2T ’

measurability penalization, and obtain optimal control U (k1) :
Update the mean controls

P k+1
!2nUt(+)(!).

inj ’

8t2[0;T 1], 8n2Ny; ulk+l) =

Update the measurability penalization with

82 ; st2[T 11 )= Pey+ uwm®@d i

untl Ul E U! F; =0;
Algorithm 1.1:  General Scheme of Progressive Hedging

Stochastic Pontryaguin

We present an extension to the stochastic framework of Pontryaguin method. More
details and numerical experiments can be found in [32].

Ignoring the \spatial" coupling constraint (1.19c), and dualizing ’ the dynamics con-
straints (1.19b), (Problem (1.19) reads

XX f LX) UL )WL ()
min min max Pflg Ly X (1);U ()W
fULF gl," X o2 12 =1 t=0 t t t )
o () HEXGORUE W) X ()
(1.34)
For a given control processU (¥, we consider the inner min-max problem,
X X X1 . . i (k)
min max Pflg Lt X1 U ()W)
X 12 i=1 t=0 (1.35)
_ o i (k . _
o) XA nw ) X))
This problem can be solved! per!
XK1 _ 4 i (k)
min max Ly X (1)U ), we(t)
XM O i e (1.36)
. S i (K . .
o) HxdesuiPeyw ey xiL0)
7. To be more specic multiplier | corresponds to the constraint X f{ ; X1 ;U{ 1;W, ;.

However, we want to have local cost depending on state and control of time t, hence the appearance of
multipliers { and },; in Problem (1.34).
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Assuming that we have the necessary regularity conditions (and since we assumed no
bound constraints on U and X ), we write the rst order optimality conditions of this
inner min-max problem and deduce the optimal solutionsX ) and () by

X (()k) = Xo; (1.37a)
X8 =1 x O ulw, t2[0;T 1]; (1.37b)
:=0; (1.37c)

=rafe X uMw 8L x O u®iw, 2 LT 110 .37d)

These conditions involve a co-state stochastic process which is not F -adapted since the
dynamics (1.37c){(1.37d) propagate backwards and therefore , is not Fi-measurable in
general.

Given a control trajectory (Uék); i :;U#k)l), we can solve these equations by, rst
integrating Equations (1.37a)-(1.37b) forward to obtain f X t(k)gLO, and then integrating

Equations (1.37c)-(1.37d) backward to obtain the multiplier processf Ek)gthl. Note that
these integrations are performed scenario per scenario, hence in parallel.
Denote by H the function mini-maximized in Problem (1.34), i.e.

X xxtoo :
HX;U; = Pflg Li X It(' );U't(! )W (1) (1.38)
12 i=1 t=0

ol () FUXGORUE W) X ()
De ne by J the function minimized in Problem (1.34), that is,
J(U)zm)i(n max H X;U; : (12.39)

The Danskin theorem (also known as theenvelop theoremin Economics), states that,
under proper assumptions, the gradient of the functionJ at point U () is given by

rIUM)=r yHXOuw,; ): (1.40)
Hence, the gradient ofJ at U ®) is
rIU®)=r,Le XxOuMw, + o fe xOuow, (1.41)

As the minimization is done over the F-adapted controls, a projected gradient step for the
minimization of J would be

h i
Ut(k+1) = Ut(k) + E ryLt Xt(k);Ut(k)th + 1 ufy xt(k);Ut(k);Wt 55)1 Fo @ (142

Equation (1.42) can be used as an update step of the contrdJJt(k) for this decomposition
method.

1.2.4 Time Decomposition

Not all decompositions by duality lead to powerful formulations. For instance, we
present a (little used) parallel decompaosition approach of time decomposition obtained by
dualization of the dynamic constraint.

On the other hand, as there is a natural ow in time, we can write a chained decom-
position method, the well-known Dynamic Programming approach.
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Dualizing the Dynamics Constraints

We apply to Problem (1.19) a price decomposition scheme, presented inl.2.1, by
dualizing the dynamic constraint (1.19b).

Since thereareN T | | dynamics constraints, the set of multiplier is of dimension
T j j N nx. Dualizing the dynamics constraints (1.19b), Problem (1.19) reads

X X k1 S .
min  max Pflg Ly Xi(1);U ()W (")
+ MXE) WX )U )W)
X
s:t: ¢ X )U) =0; 8t: 8l
i=1
t Fu 8t 8i:

Assuming constraint quali cation, and xing a multiplier ~ (K), we obtain T separate inner
minimization problems

X X o .
xn:;itr}t Lo Pflg Li Xi(1);Ul(); W ()
i Omxm) PO XUl w ) ;
sit: o EXeyule) =o0; 8!
lzil Fq 8i:

We denote U i;(k) and X i;(k) an optimal solution. We update the multipliers with
iy (k+1 i (k i; (k i i (k ik .
RN (PER (DTS SH (DI I SR (PRVKRI(DRIA(Y

This decomposition approach is probably one of the less used decomposition ap-
proaches.

Dynamic Programming (DP)

The Dynamic Programming method is a well-known decomposition in time (see [11]).
As it is usual, we present the Dynamic Programming in a Decision-Hazard setting. It
relies on the assumption that the exogenous noisefsthg ! form a sequence of inde-

that follows (1.19b), is a so-calledinformation state (see Remark 1.2). This state is the
argument of the value function V;: V;(x) is the best possible future cost starting from
time t in state x. The value functions satisfy the Dynamic Programming Equations: the
V; are computed backwards, starting fromVr and solving static optimization problems (see
Algorithm 1.2). The solutions of these static optimization problems provide an optimal
solution as a deterministic function of the current state (state feedback)

ul= {x};

where % : Xy ! U;. Observe that the solution, supposed to satisfy the non-anticipativity
constraint (1.19d), satis es what is a stronger constraint, namely U,  X,. This is an
important property of DP: when the exogenous noised ththol form a sequence of inde-
pendent random variables, there is no loss of optimality in reducing the search to the class
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of state feedback solutions, namelyB; = (X,) instead of By = F{. When the size of the
state spaceX; does not increase witht, this property has major consequences for numer-
ical applications: whereas the space ofF ;-measurable solutions increases (exponentially)
with t, the space of policies { : X; ! U, does not.

Data : Problem data (especially initial point xo and nal cost functions K ');
Result : Bellman function V;, Optimal feedback ; ;

Vr(x)=0;

fort=T 1to Odo

foreach x; 2 X; do

Vi(xy) = min E Lt xg;u' s Wy + Vier Xy
u=fuig) i1
st X!, =l xhu;w, ; 8i (1.43)
X o
txput =0
i=1
t(Xy) is a control u minimizing the above problem ;

Algorithm 1.2:  Dynamic Programming Algorithm

The DP chained decomposition is possible because of a causality principle along the
time axis (this would not be possible for the uncertainty or for space, except under very
speci ¢ conditions).

Remark 1.6. Here, we make the major assumption that the size of the state spaXe does
not increase witht. We suppose that each component of the state takes a nite numbei
of values (hence the state takes at mosiny N values). Solving (1.19) by DP requires to
explore

T ny Vny (1.44)
possible solutions. Comparing with(1.18), we see that DP makes better than brute force
whenever

(nw)7
w

1
logT + N logny +log ny ﬁIognu : (1.45)

Therefore, the DP algorithm outbeats brute force for a large enough numbeF of time
steps. Indeed, it is linear in time, whereas brute force is exponential in time. However,
the complexity of DP is exponential in the numberN of subproblems or, in other words,
in the dimension of the state: this stands as theurse of dimensionality (see [12]).

Discussing DP and the Notion of State

When the exogenous noiseBW ,g_,* form a sequence of independent random variables,
we can write a Dynamic Programming Equation (DPE) like (1.43) with state X . Now,
what happens if this assumption fails? We lay out a theoretical and a practical answer.

The theoretical answer follows [118]. We introduce the \maximal" state (already men-
tioned in Table 1.3)

KR.= xo;W;UgiiU, 4 (1.46)

JUR (1.47)
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Then, there exists a DPE, but with an even larger information state consisting of the
conditional distribution of X, knowing F; [118]. Of course, this state is only of theoretical
interest.

The practical answer has much to do with the \art of modelling”, a compromise be-
tween, on the one hand, realism and complexity, and, on the other hand, mathematical
tractability. Consider that you want to manage a dam, seen as an electricity storage, over
a period of time (seex1.3). The natural physical state is the level of water in the dam,
whereas the information state depends on the water in ows (rain, snow melting, etc.). To
account for (a weak form of) dependency, we can make the assumption that the in ows are
independent random variables, but that their distributions are not stationary, and depend
upon time t to re ect seasonal e ects. In that case, the physical state is an information
state. To account for (a stronger form of) dependency, we can make the assumption that
the in ows follow a so-called \order 1 model" (e.g. an AR-1 model)

W, =t WoW (1.48)

where f W tgthol is a sequence of independent random variables. Here, an information
state is given by

R,= XgoW, (1.49)

with the dynamic
K= T XpgW it woWw, (1.50)
Of course, more realism pushes for incorporating more delays | W, =
fT Wi W, k;\?’\/t | but at the price of increasing the dimension of the informa-
tion state, now being X ;W ;:::; W, | , hitting the wall of the curse of dimensionality.

If the problem is written on a tree, we can write DPE with the couple physical state
x and current node (identi ed with past noises). This is presented inx3.2.1.

Some approaches mix DP and a state of rather large dimension. For instanc&tochas-
tic Dual Dynamic Programming Algorithm (SDDP) makes assumption on the objective
function J (convexity) and on the dynamics functionsf; (linearity). With these, the value
functions are shown to be convex, so that they can be approximated from below by the
class of suprema of nite sets of linear functions. Such a structural property is a mean to
partially overcome the curse of dimensionality of DP. In Chapter 3, we will present SDDP
as a DP approach where information is encoded in a tree and where value functions are
cleverly approximated. Instead of computing the value function for any possible value of
the state, the SDDP algorithm iteratively forges approximations of the value function that
are improved around the states visited by optimal trajectories.

1.2.5 Summary Table

In Table 1.4, we gather the decompaositions listed above. It happens that all the decom-
position methods we looked at are parallel, except the Dynamic Programming approach
(SDDP being a DP like approach). Indeed, chained decomposition is intimately related
to the natural ow of stages. The parallel decompositions that we presented have been
deduced from a price decomposition scheme for di erent constraints. Proving their con-
vergence requires duality results, the main object of the second part of this manuscript
(Chapters 4, 5 and 6).

Interestingly, decompositions can be weaved together or mixed, opening the way for
a large variety of methods. For instance, we will present and dissect in Chapter 8 the
Dual Approximate Dynamic Programming method (DADP). With the distinctions we
established between decompositions, DADP can be seen as a spatial decomposition, where
subproblems can be solved by time decomposition. More precisely, DADP makes it possible
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to solve subproblems by DP, rendering space and time decompositions compatible. In a
di erent setting, the contributions of Chapter 2 can be seen as conditions of compatibility
for time and uncertainty chained decompositions to yield a DPE.

Decomposition
Time Scenario| Space

chained\ parallel | parallel | parallel
Dynamic Programming X
SDDP X
DADP X
Progressive Hedging X
Stochastic Pontryaguin X

Table 1.4: Decomposition Methods

1.3 A Dam Management Example

Here, we detail an example, taken from the energy world, that is used throughout this
manuscript as illustration.

Hydroelectricity is the main renewable energy in many countries (16% of global energy,
and 13% of France energy). It provides a clean (no greenhouse gases emissions), fast-usable
(under 30 seconds) and powerful (20 GW in China) energy that is cheap and substitutable
for the thermal one. Itis all the more important to ensure its proper use that it comes from
a shared limited resource: the reservoirs water. This is the dam hydroelectric production
management purpose.

1.3.1 A Single Dam

Let time t vary in [O; T]. We consider a probability space ;F;P , and a sequence
fW,gi-o! of random variables with value in W. The random variable W, represents the
random water in ow 8 in the dam at time t. The dam is modeled as a Stochastic Dynamic
System, as inx1.1.2, where the physical stateX , is the volume of water available at timet,
and the control U, is the volume of water consumed at timet.

The consumed water at timet induces a cash ow® of L; XU W, o, and the
remaining water at the nal time t is valued by K (X,). We aggregate the random cost
with the expectation, and do not take into account any discount factor. Thus, the problem
we are interested in is the following

'5( 1
min  E Le X ;U W, + K(X 1) (1.51a)
' t=0
st Xy = fe X oUW, 8t2[0;T 1], (1.51Db)
U, F 8t2[0;T 1]; (1.51c¢)
U, 2 U P as; 8t2[0T 1]; (1.51d)
X, 2 X P as; 8t2[0;T 1]: (1.51e)

8. More information, like the prices of electricity can be contained in the random variable W,
9. As usual the problem being in fact a maximization of cash ow we rewrite it as the minimization of
the opposite of those cash- ows.



36 CHAPTER 1. PRELIMINARIES

Constraint (1.51b) is the physical constraint of evolution on the stock of water in the dam.
It is given by the physics of the dam, like

ft X;uuw =Xx u+w:

Constraint (1.51c) is the measurability constraint representing what the manager knows
when he decides the value ol,. We distinguish two classical cases:
the Hazard-Decision case, whereFy = X ;W ,; ; W, , which means that the
manager knows the water input betweent and t+1 when he decides the consumption
in the same period;
the Decision - Hazard case, whereFy = X W, ;W, , , which means that
the manager knows only the past noises and consequently the present volume of
water in the dam.
Constraints (1.51d) and (1.51e) are bound constraints on the control and the state, rep-
resenting the physical limitations of the dam and turbine. Usually we have

X8 =[x;x] and UM =[u;w]:

The local cost function L represents the (opposite of) the gain obtained by selling the
electricity produced by turbining a volume u of water. This gain depends on the market
price (included in W,), the water turbined (the control U,) and the level of water in the

dam (the state X ,): higher level means higher water pressure.

1.3.2 A Chain of Dams

Most times, dams are included in a hydraulic valley, so that dams interact with each
other: the water output of one dam is an input for another dam, etc. Hydraulic valley can
be quite complex see for example Figure 1.5. but, for the sake of simplicity, we present
a cascade of dams as in Figure 1.6. In this setting, the water consumed by damis seen
as an inow of dam i + 1. In particular, we do not consider the cases where one dam
receives the out ow of two other dams, neither when the out ow of one dam can go in
two di erent destinations.

Lettime t vary in [O; T], and dams be labeled withi 2 [1; N ]. We consider a probability
space ;F;P , and the following real valued random variables:

Xti, the storage levelof dami at the beginning of period f;t + 1], (state)

U/{ the hydro turbine out ows of dam i during [t;t + 1], (control)

Zti the water in ows for dam i from dami 1 during [t;t + 1], (additional control)

W/, the external in ows for dam i during [t;t + 1[. (noise)
The additional control Z| is a useful notation and will be used inx8.1.5 to decompose the
system.

The dynamics of the reservoir storage level reads, for the rst dam of the chain:

XL, =fttxtbutbwlho;
Xt out+wl:

For any other dami> 1, we have

X1 o= fixi-ulwiziy:
t+1 t( t .t t- t)- (1.52)

= x| Ul+wi+z];

where _ _ _ _ _
zi=x; b ult+w! t+2zl 1t (1.53)

is the water in ows in dam i coming from dami 1, itis also the total out ows of dam i 1.
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Figure 1.5: Chains of dams in France

The bound constraints are

8t2[0;T 1] X1 Xy Xerr and u U, T (1.54)

Moreover, we assume theHazard-Decision information structure (Uti is chosen once
W, is observed), so that

u Ul min ohX!+wl+zl X (1.55)

We consider the multiple step management of a chain of dams, each dam producing
electricity that is sold at the same price. Thus, the hydroelectric valley obeys the following
valuing mechanism

Nxr oo
Li(X U525 WH+ KY(X 1) 5 (1.56)
i=1 t=0
whereK ! is a function valuing the remaining water at time t in the dam i. As this criterion
is random, we choose to minimize the expected cost, so that the stochastic optimization
problem we address reads

min E * RlLi xhubzhw! o+ K XE (1.57a)
(X;U:Z) 1 oo AR S e T T '
subject to:
Xig = HXGUGZEW); 8 8t (1.57b)

Z{M = g(Xuhzhwl); 8 8t (1.57¢)
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Figure 1.6: A chain of dams scheme

as well as measurability constraints:

U/ F 8 8t: (1.57d)

Theoretically, this problem could be solved by methods like Dynamic Programming.
However, the dimension of the information state required is the number of dams. Thus,
the so-called curse of dimensionality prevents us to apply Dynamic Programming for more
than 5 dams.

In Chapter 3, we present an algorithm using approximations of value functions in
Dynamic Programming to solve this type of problem for a large number of dams. In
Chapter 8, we present a spatial decomposition method.

Conclusion

We conclude this preliminary chapter with a roadmap of the manuscript.

In the rst part of this manuscript, Dynamic Programming: Risk and Convexity, we
focus on chained decomposition, and especially the well-known time decomposition that
constitutes Dynamic Programming. In Chapter 2, we extend the traditional additive in
time and risk neutral setting to more general ones, for which we establish time-consistency
results. We relate the time-consistency property for a sequence of optimization problems
with the time-consistency property of a dynamic risk measure. In Chapter 3, we prove a
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convergence result for the Stochastic Dual Dynamic Programming Algorithm in the case
where (convex) cost functions are no longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization, we rst point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing

LY ;L' in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa Al-

gorithminL?! ;F;P;R" , that requires constraints quali cation. This algorithm is used
to apply a price decomposition scheme to a multistage stochastic optimization problem.
The third part of this manuscript, Stochastic Spatial Decomposition Methodsis de-
voted to the so-calledDual Approximate Dynamic Programming Algorithm. In Chapter 7,
we prove that a sequence of relaxed optimization problems epiconverges to the original
one, where almost sure constraints are replaced by weaker conditional expectation ones,
and that the corresponding sigma-algebras converge. In Chapter 8, we give theoretical
foundations and interpretations for the Dual Approximate Dynamic Programming Algo-
rithm.
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Chapter 2

Time-

Consistency: from

Optimization to Risk Measures

In my next life | want to live my life backwards. You
wake up in an old people's home feeling better every
day. You get kicked out for being too healthy. You
work for 40 years until you're young enough to enjoy
your retirement. You party, drink alcohol, and are
generally promiscuous. then you become a kid, you
play. You have no responsibilities, you become a baby
until you are born. And then you spend your last 9
months oating in luxurious spa-like conditions with
central heating and room service on tap, larger quarters
every day and then Voila! You nish o as an orgasm!

Woody Allen (abbreviated)
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This chapter present a general framework for the chained time decomposition known
as Dynamic Programming. Indeed, usually Dynamic Programming is applied to prob-
lems considering the expectation of an inter-temporal sum of costs. In [105] a risk-averse
dynamic programming theory was developed. Here, we extend the framework by giving
general conditions on the aggregator in time (replacing the intertemporal sum) and the
aggregator in uncertainties (replacing the expectation) to obtain a Dynamic Programming
Equation.

The content of this Chapter has been submitted as an article in a special issue of
European Journal of Operations Researchdedicated to Time Consistency. It is a common
work with M. De Lara.

Introduction

Stochastic optimal control is concerned with sequential decision-making under uncer-
tainty. The theory of dynamic risk measures gives values to stochastic processes (costs)
as time goes on and information accumulates. Both theories coin, under the same vocable
of time-consistency (or dynamic-consistency), two di erent notions. We discuss one after
the other.

In stochastic optimal control, we consider a dynamical process that can be in uenced by
exogenous noises as well as decisions made at every time step. The decision maker wants to
optimize a criterion (for instance, minimize a net present value) over a given time horizon.
As time goes on and the system evolves, observations are made. Naturally, it is generally
more pro table for the decision maker to adapt his decisions to the observations on the
system. He is hence looking for policies (strategies, decision rules) rather than simple
decisions: a policy is a function that maps every possible history of the observations to
corresponding decisions.

The notion of \consistent course of action" (see [73]) is well-known in the eld of
economics, with the seminal work of [113]: an individual having planned his consumption
trajectory is consistent if, reevaluating his plans later on, he does not deviate from the
originally chosen plan. This idea of consistency as \sticking to one's plan" may be extended
to the uncertain case where plans are replaced by decision rules (\Do thus-and-thus if you
nd yourself in this portion of state space with this amount of time left", Richard Bellman
cited in [41]): [53] addresses \consistency" and \coherent dynamic choice", [61] refers to
\temporal consistency".

In this context, we loosely state the property of time-consistency in stochastic optimal
control as follows [26]. The decision maker formulates an optimization problem at timetg
that yields a sequence of optimal decision rules forg and for the following increasing time

at t1 that yields a new sequence of optimal decision rules from time stefds to T. Suppose

the process continues until time T is reached. The sequence of optimization problems
is said to be dynamically consistent if the optimal strategies obtained when solving the
original problem at time tp remain optimal for all subsequent problems. In other words,

dynamic consistency means that strategies obtained by solving the problem at the very
rst stage do not have to be questioned later on.

Now, we turn to dynamic risk measures. At time tg, you value, by means of a risk

. t .
measure t,7, a stochastic process A , tﬁto, that represents a stream of costs indexed by

tail A, ::t of the stochastic process knowing the information obtained and materialized

by a -eld 1Ft1. For this, you use a conditional risk measure ¢,.7 with values in Fy,-
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measurable random variables. Suppose the process continues until timeis reached. The
sequence Tt :Zto of conditional risk measures is called a dynamic risk measure.
Dynamic or time-consistency has been introduced in the context of risk measures (see
[5,28,29,37,84] for de nitions and properties of coherent and consistent dynamic risk mea-
sures). We loosely state the property of time-consistency for dynamic risk measures as fol-

lows. The dynamic risk measure ¢t :ﬁto is said to be time-consistent when the following

property holds. Suppose that two streams of costs, A :Zto and A, :Zto, are such that
they coincide from time t; up to time t; > t; and that, from that last time t;, the tail stream

t . -~ t t -~ t
A t:tj is valued more than A, t:tj (g:7( A, tﬂtj) t1( A, t:tj )). Then, the

t . ~  t t ~ t
whole stream A i0y, is valued more than A T ( g;7( A, ) wTCAL D).

We observe that both notions of time-consistency look quite di erent: the latter is
consistency between successive evaluations of a stochastic processes by a dynamic risk
measure as information accumulates (a form of monotonicity); the former is consistency
between solutions to intertemporal stochastic optimization problems as information ac-
cumulates. We now stress the role of information accumulation in both notions of time-
consistency, because of its role in how the two notions can be connected. For dynamic risk
measures, the ow of information is materialized by a Itration F; :Ztl. In stochastic
optimal control, an amount of information more modest than the past of exogenous noises
is often su cient to make an optimal decision. In the seminal work of [12], the minimal
information necessary to make optimal decisions is captured in @tate variable (see [117]
for a more formal de nition). Moreover, the famous Bellman or Dynamic Programming
Equation (DPE) provides a theoretical way to nd optimal strategies (see [18] for a broad
overview on Dynamic Programming (DP) ).

Interestingly, time-consistency in stochastic optimal control and time-consistency for
dynamic risk measures meet in their use of DPEs. On the one hand, in stochastic optimal
control, it is well known that the existence of a DPE with state x for a sequence of op-
timization problems implies time-consistency when solutions are looked after as feedback
policies that are functions of the state x. On the other hand, proving time-consistency
for a dynamic risk measure appears rather easy when the corresponding conditional risk
measures can be expressed by rested formulation that connects successive time steps.
In both contexts, such nested formulations are possible only for proper information struc-
tures. In stochastic optimal control, a sequence of optimization problems may be consis-
tent for some information structure while inconsistent for a di erent one (see [26]). For
dynamic risk measures, time-consistency appears to be strongly dependent on the un-
derlying information structure (ltration or scenario tree). Moreover, in both contexts,
nested formulations and the existence of a DPE are established under various forms of
decomposability of operators that display monotonicity and commutation properties.

Our objective is to provide a theoretical framework that o ers i) basic ingredients
to jointly de ne dynamic risk measures and corresponding intertemporal stochastic opti-
mization problems ii) common sets of assumptions that lead to time-consistency for both.
Our theoretical framework highlights the role of time and risk preferences, materialized in
one-step aggregatorsin time-consistency. Depending on how you move from one-step time
and risk preferences to intertemporal time and risk preferences, and depending on their
compatibility (commutation), you will or will not observe time-consistency. We also shed
light on the relevance of information structure by giving an explicit role to a dynamical
system with state X .

In x2.1, we present examples of intertemporal optimization problems displaying a DPE,
and of dynamic risk measures (time-consistent or not, nested or not). In2.2, we introduce
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the basic material to formulate intertemporal optimization problems, in the course of which

we de ne \cousins" of dynamic risk measures, namelydynamic uncertainty criteria ; we end

with de nitions of time-consistency, on the one hand, for dynamic risk measures and, in
the other hand, for intertemporal stochastic optimization problems. In x2.3, we introduce

the notions of time and uncertainty-aggregators, de ne their composition, and show four
ways to craft a dynamic uncertainty criterion from one-step aggregators; then, we provide
general su cient conditions for the existence of a DPE and for time-consistency, both for

dynamic risk measures and for intertemporal stochastic optimization problems; we end
with applications. In x2.4, we extend constructions and results to Markov aggregators.

2.1 Introductory Examples

The traditional framework for DP consists in minimizing the expectation of the in-
tertemporal sum of costs as in Problem (2.3). As we see it, the intertemporal sum is an
aggregation over time, and the mathematical expectation is an aggregation over uncer-
tainties. We claim that other forms of aggregation lead to a DPE with the same state
but, before developing this point in x2.3, we lay out in x2.1.1 three settings (more or less
familiar) in which a DPE holds. We do the same job for dynamic risk measures irx2.1.2
with time-consistency.

by Hp, ), the Cartesian product
t t
H[tlitz] = HS ti = HS 82:t1 = Htl Ht2 ; (Zla)
and a generic element by

2= he 2 =(hy;ihg) (2.1b)

t1 =t1

h[tl:tz] = by
In the same vein, we also use the following notation for any sequence

t t
Hie, )= Hs tj = Hs Szztl = Hs s (2.1¢)

In this chapter, we denote by R the setR[f +1g .

2.1.1 Examples of DPEs in Intertemporal Optimization

Anticipating on material to be presented in x2.2.1, we consider a dynamical system
in uenced by exogenous uncertainties and by decisions made at discrete time stepps= 0,
t=1,...,t=T 1, whereT is a positive integer. For anyt 2 [0;T], where [a; ]
denote the set of integers betweera and b, we suppose given a state seX;, and for
any t 2 [O;T 1] a control set Ui, an uncertainty set W; and a mapping f that maps
X¢ Uy Wqiinto X1 . We consider thecontrol stochastic dynamical system

8t 2 [[O,T 1]', X1 = Fe(Xg; Uy W) @ (2.2)

We call policy a sequence = ( t)i2po;r 13 Of mappings where, for allt 2 [O; T 1],
maps X; into U;. We denote by the set of all policies. More generally, for all t 2 [0; T],
we call (tail) policy a sequence = ( s)sopt 13 @nd we denote by  the set of all such
policies.

Let W, ,_, be a sequence of independent random variables (noises). Let: g !
be a sequence of cost functiond; : Xy Uy W; 7! R, and a nal cost function Jt :
Xt Wil R,
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With classic notations, and assuming all proper measurability and integrability condi-
tions, we consider the dynamic optimization problem

K 1

rr12in E J(X U W)+ Ir(X 3 Wo) (2.3a)
t=0

st Xy = Fe(X ;U W), 8t2[0;T 1]; (2.3b)

U, = (X)), 8t2 [0;T 1]: (2.3c)

It is well-known that a DPE with state X can be associated with this problem. The
main ingredients for establishing the DPE are the following: the intertemporal criterion
is time-separable and additive, the expectation is a composition of expectations over the
marginals law (because the random variables W, tT=o are independent), and the sum
and the expectation operators are commuting. Our mainpconcern is to extend these
properties to other \aggregators" than the intertemporal sum th01 and the mathematical
expectation E, and to obtain DPEs with state X , thus retrieving time-consistency.

In this example, we aggregate the streams of cost rst with respect to time (through
the sum over the stages), and then with respect to uncertainties (through the expectation).
This formulation is called TU for \time then uncertainty". All the examples of this x2.1.1
follow this template.

We do not present proofs of the DPEs exposed here as they t into the framework

developed later inx2.3.

Expected and Worst Case with Additive Costs

We present together two settings in which a DPE holds true. They share the same time-
aggregator | time-separable and additive | but with distinct uncertainty-aggregators,
namely the mathematical expectation operator and the so-called \fear" operator.

Expectation Operator Consider, for anyt 2 [0; T], a probability P; on the uncertainty
spaceW; (equipped with a proper -algebra), and the product probability P = Py Pr.
In other formulations of stochastic optimization problems, the probabilities P; are the
image distributions of independent random variables with value in W;. However, we
prefer to ground the problems with probabilities on the uncertainty spaces rather than
with random variables, as this approach will more easily easily extend to other contexts
without stochasticity.

The so-calledvalue function Vi, whose argument is the statex, is the optimal cost-to-go
de ned by

K 1

Vi(X) = m2in E Js(X U W)+ It (X W) (2.4a)
! s=t

st. X, =X; (2.4b)

X = Ft(X U WY); 8s2 ;T 1]; (2.4c)

Us = S(X s) : (2-4d)

The DPE associated with problem (2.3) is
8 h [
< - . .
Vr(x) = Epr JTOGW1) i 2.5)

Vi(X) =min you, Ep, Jt(GU; W)+ Vs fr(Gu; W) 5

for all state x 2 X; and all time t 2 [O; T  1].
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It is well-known that, if there exists a policy 1 (with proper measurability assumptions
that we do not discuss here [see [20]]) such that, for each2 [0; T 1], and eachx 2 X;,
we have h i

E(x) 2argminE Jiy(X;u; W)+ Vier Fe(xsu; W) 5 (2.6)
u2 Ut
then ! is an optimal policy for Problem (2.3).

Time-consistency of the sequence of Problems (2.4), wherruns from O to T, is ensured
by this very DPE, when solutions are looked after as policies over the statx. We insist
that the property of time-consistency may or may not hold depending on the nature of
available information at each time step. Here, our assumption is that the statex; is
available for decision-making at each timet. !

Remark 2.1. To go on with information issues, we can notice that the so-called \non-
anticipativity constraints”, typical of stochastic optimization, are contained in our de ni-
tion of policies. Indeed, we considered policies are function of the state, which a summary
of the past, hence cannot anticipate the future. Why can we take the state as a proper
summary? If, in Problem (2.3), we had considered policies as functions of past uncer-
tainties (non-anticipativity) and had assumed that the uncertainties are independent, it is
well-known that we could have restricted our search to optimal Markovian policies, that
is, only functions of the state. This is why, we consider policies only as functions of the
state.

Fear Operator In [16], Pierre Bernhard coinedfear operator the worst-case operator,
widely considered in the eld of robust optimization (see [67] and [15]).
We consider the optimization problem

K 1

min sup Ji(Xe; U we) + I (X7 W) (2.7a)

2 w2Wp:t] 1o

St Xerr = Fe(Xes Ups We); (2.7b)
U = t(X¢): (2.7¢)

Contrarily to previous examples we do not use bold letters for statex, control u and
uncertainty w as these variables are not random variables. In [17, Section 1.6], it is shown
that the value function

1

Vi(X) = min sup X Js(Xs; Us;Wg) + I (XT;WT) (2.8a)
2t w2Wpery gy

st X = X; (2.8b)

Xs+1 = fs(Xs; Us;Ws) ; (2.8c)

Us = s(Xs): (2.8d)

satis es the DPE

8
> Vr(x)= sup Jr(x;wr);
wt 2Wt .
h I (2.9)
ZVe(x) = min sup Ji(xu;we) + Vier  Fr(uiwy)
u2 Ug wi 2 Wi

for all state x 2 X; and all time t 2 [O; T  1].

1. In the literature on risk measures, information is rather described by lItrations than by variables.
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Expectation with Multiplicative Costs

An expected multiplicative cost appears in a nancial context if we consider a nal
payo K (X ;,;)depending on the nal state of our system, but discounted at ratery(X ;).
In this case, the problem of maximizing the discounted expected product reads

1 1
m2ax E B W K(X )

We present another interesting setting where multiplicative cost appears. In control
problems, we thrive to nd controls such that the state X; satis es constraints of the type
Xt 2 Xy X¢forallt 2 [O; T]. Inadeterministic setting, the problem has either no solution
(there is no policy such that, for all t 2 [O; T], X; 2 X¢) or has a solution depending on the
starting point xo. However, in a stochastic setting, satisfying the constraintx; 2 Xy, for all
time t 2 [O; T] and P almost surely, can lead to problems without solution. For example,
if we add to a controled dynamic a nondegenerate Gaussian random variable, then the
resulting state can be anywhere in the state space, and thus a constrainK, 2 X; X
where X; is, say, a bounded set, cannot be satis ed almost surely.

For such a control problem, we propose alternatively to maximize the probability of
satisfying the constraint (see [40], where this is approach is calledtochastic viability):

mzax P 8t2[0;T], X,2X; (2.10a)
st Xy =ft X oUW, (2.10b)
U, = (X)): (2.10c)

This problem can be written

hyr [
mzaX E - 1th2th ; (lea)
st Xy = fe XpUpW, (2.11b)
U, = (X): (2.11c)
It is shown in [34] that, assuming that noises are independent (i.e the probabilityP can
be written as a product P = Pq Pr), the associated DPE is
8 h [
< V- =E1 ; .
T(X) fx2X1g | (2.12)
Vi(x) =maxuyau, E Llixox,g Visr feOGU; W)

for all state x 2 X; and all time t 2 [O; T  1].
If there exists a measurable policy ! such that, for all t 2 [0;T 1] and all x 2 X;,

h i

E(X)Zargmax E ltxox,g Ve feXXU; W) (2.13)
u2 U

then 1 is optimal for Problem (2.10).

2.1.2 Examples of Dynamic Risk Measures

Consider a probability space ;F;P , and a ltration F = fF.gl. The expression
fASgg denotes an arbitrary, F-adapted, real-valued, stochastic process.



50 CHAPTER 2. TIME-CONSISTENCY

Anticipating on recalls in x2.2.2, we callconditional risk measure a function 7 that
maps tail sequenceszSgtT, where eachA ¢ is Fs measurable, into the set ofF; measur-
able random variables. Adynamic risk measureis a sequencd 1 g of conditional risk
measures.

A dynamic risk measuref .1 g, is said to betime-consistent if, for any couples of
times0 t<t T, the following property holds true. If two adapted stochastic processes
fA Sgg and fA gf satisfy

A =Ag; 8s2[t;t 1]; (2.14a)
w IAG o TAG (2.14b)

then we have:
er fA G T FAY (2.14c)

We now lay out examples of dynamic risk measure.

Expectation and Sum

Unconditional Expectation The rst classical example, related to the optimization
Problem (2.3), consists in the dynamic risk measurd .1 g, given by

hXT i
8t 2 [0; TI; et FAQl = E A, (2.15)

s=t

We write (2.15) under three forms | denoted by TU, UT, NTU, and discussed later
in x2.3.1:

xT
or TAQQf = E Ag (TU)
s=t
X
=  EA, (uTm)
st
h i
=EA+EA,,+ +EA;  +EA; (NTU)

To illustrate the notion, we show that the dynamic risk measure f (1 o, is time-

consistent. Indeed, if two adapted stochastic processef and B satisfy (2.14a) and
(2.14b), with t = t< t T, we conclude that

Xl
v TA of =E tﬁs*' et fA G
S=
Xt _ _
E A+ ¢r FA G = o7 TAY
s=t
Conditional Expectation Now, we consider a \conditional variation" of (2.15) by
de ning
hxr i
et FAQl = E A, Fo: (2.16)

s=t
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We write ? the induced dynamic risk measuref 1 9=, under four forms | denoted by
TU, UT, NTU, NUT, and discussed later in x2.3.1:

X
er TAQl = EM A (TU)
s=t
X
= ETtA, (UT)
o h i
=E" A+E"™ A+ +ET AL +ETA; (NTU)
=A+E"t A+ +ET2AL +ETLA; (NUT)

The dynamic risk measuref ¢t gi-o is time-consistent: indeed, if two adapted stochastic
processeA and B satisfy (2.14a) and (2.14b), witht = t< t T, we conclude that

Xl
6T fésgtT = E —tAA+ ET fésgtf Ft
17
E A+ ¢r FAG Fo= o7 TAY
s=t

AV@R and Sum

In the following examples, it is no longer possible to display three or four equivalent ex-
pressions for the same conditional risk measure. This is why, we present di erent dynamic
risk measures.

Unconditional AV@R For 0 < < 1, we de ne the Average-Value-at-Risk of level
of a random variable X by

n gEx r*0

AV@OR X =inf r+ —— (2.17)
r2rR
Let tho and s :-t=o be two families in (0; 1). We lay out three di erent dynamic
risk measures, given by the following conditional risk measures:
X
et TAQ =AV@R , A (TU)
s=t
. X
er TAG = AV@QR . A, ; (UT)
s=t "
MU Al SAV@R , A +AV@R ., A, *
#
AV@R ;. A; : (NTU)

The dynamic risk measuref ITUgtT:O is not time-consistent, whereas the dynamic risk

measuref T g, and the dynamic risk measuref Y gL, are time consistent, as soon
as the levels s do not depend ont.

2. Here, for notational clarity, we denote by E™ the conditional expectation E Fe .
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Conditional AV@R ForO< < 1,and asubeld G F we de ne the conditional
Average-Value-at-Risk of level of a random variable X knowing G by
. , n EX r" Go©
AV@R®” X = inf r+ : (2.19)

r G-measurable

Let ¢ tT:O and s ;:0 be two families in (0; 1). We lay out four di erent dynamic
risk measures, given by the following conditional risk measures:
T F X
er TAG =AV@R™ A (TU)
s=t
X
ot FAG = AVORT, Ay ; (UT)
s=t
X h i
o fAGl = AVERT, AR, ARG, A, S
s=t "
o fAgl = AV@RT, A+
) st tt t
#
AVOR™ A+ AV@RT A ; (NTU)

Examples of this type are found in papers like [79, 100, 105, 107].

Markovian AV@R Leta policy 2 ,atime t2 [0;T] and a state x; 2 X; be xed.
With this and the control stochastic dynamical system (2.2), we de ne the Markov chain
fX ;‘g;t produced by (2.3b){(2.3c) starting from X , = x;. We also de ne, for each
s2 [t;T], the -algebraXZ* = (X %'). With this, we de ne a conditional risk measure

by "

Xt
XA SAV@RTL A+

# (2.21)
X Xt X Xt
AVAR L A+ AV@RL Ag
n ot .
Repeating the process, we obtain a family 9% 2% g’ such that %% ) is a

dynamic uncertainty criterion, for all sequence X tT:o of states, wherex; 2 X, for all
t2[0;T].

2.2 Time-Consistency: Problem Statement

In x2.2.1, we lay out the basic material to formulate intertemporal optimization prob-
lems. Inx2.2.2, we de ne \cousins" of dynamic risk measures, namelglynamic uncertainty
criteria . In x2.2.3, we provide de nitions of time-consistency, on the one hand, for dynamic
risk measures and, in the other hand, for intertemporal stochastic optimization problems.

2.2.1 Ingredients for Intertemporal Optimization Problems

In x2.2.1, we recall the formalism of Control Theory, with dynamical system, state,
control and costs. Mimicking the de nition of adapted processes in Probability Theory, we
introduce adapted uncertainty processes. Inx2.2.1, we show how to produce an adapted
uncertainty process of costs.
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Dynamical System, State, Control and Costs
We de ne a control T-stage dynamical systemwith T 2, as follows. We consider
a sequence X; g of sets ofstates;
T 1 i
a sequence Ui of sets ofcontrols;
a sequence Wq ; of sets ofuncertainties, and we de ne

Wity = Ws ;; the set of scenarios (2.22a)
Wiy = Ws E); the set of head scenarios8t 2 [0; T] ; (2.22b)
Wisy= Ws tT; the set of tail scenarios, 8t 2 [0;T] ; (2.22c)

a sequence f; ; Lot functions, wheref; : X; Uy W;! X1, to play the role
of dynamics;
a sequence U; g 1 of T multifunctions Ui : Xy U, to play the role of constraints;
a sequence J; g ! of instantaneous cost functionsJ; : Xy Uy W; 7' R, and a
nal cost function Jt : Xt Wy ! R.3

Mimicking the de nition of adapted processes in Probability Theory, we introduce the

following de nition of adapted uncertainty processeswvhere the increasing sequence of head
scenarios sets in (2.22b) corresponds to a ltration.

De nition 2.2.  We say that a sequenc@p.1) = As g is an adapted uncertainty process
if As 2 F Wy R (thatis, As : Wy ! R), for all s 2 [0;T]. In other words,

F(Wp.s: R) ;o is the set of adapted uncertainty processes.

A policy = ( t)izjor 13 is a sequence of functions : X¢ ! U, and we denote by
the set of all policies. More generally, for all t 2 [O; T], we call (tail) policy a sequence
=( s)s2ptt 13 and we denote by  the set of all such policies.

We restrict our search of optimal solutions to so-calledadmissible policies belonging

to a subset @ . An admissible policy 2 2 always satis es:

8t2[0;T 1], 8x2 Xy; t(x) 2 U(x) :

We can express in 29 other types of constraints, such as measurability or integrability
ones when in a stochastic setting. Naturally, we set 2=\ 2ad,

De nition 2.3.  Foranytime t 2 [0; T], statex 2 X; and policy 2 ,the ow X/ ol-,
is de ned by the forward induction:

8 :

< X (W) = x;

C Xiga (W) = fs XE (W5 s(Xi (W);ws 5 8S2[4T]:

The expressionX IXS (w) is the state xs 2 Xs reached at times 2 [0; T], when starting
attime t 2 [O; s] from state x 2 X; and following the dynamics (2.2) with the policy 2
along the scenariow 2 Wig.1y.

Remark 2.4. For0 t s T,the ow X is a function that maps the setW.t; of
scenarios into the state spaceXs:

Xts ‘Wpr! Xs: (2.24)
By (2.23),

3. For notational consistency with the J; for t = [0;T 1], we will often write Jt(X;u;w) to mean
Jr (X;w).
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whent > 0, the expressionX ;s (w) depends only on the inner partwy.s 1; of the
scenariow = W1, hence depends neither on the head; 1;, nor on the tail wigt,
whent = 0, the expressionX g (w) in (2.23) depends only on the headvjy.s 1; of
the scenariow = wjg.t1, hence does not depend on the taws.1y.
This is why we often consider that the owxg;‘; is a function that maps the setW.s 1
of scenarios into the state spaceXs:

8s2[LT]; 8t2[0;s 1] Xts Wps 17! Xs: (2.25)

A state trajectory is a realization of the ow XS;;S (w) ;0 for a given scenariow 2
Wio.r1- The ow property

X'

. X7 o
8;s;s® t<sO<s: 8x2 Xy o XE o X®° (2.26)
t;s

sGs

expresses the fact that we can stop anywhere along a state trajectory and start again.

Producing Streams of Costs

De nition 2.5. For a given policy 2 , and for all timest 2 [O;T] ands2 [t;T], we
de ne the uncertain costs evaluated along the state trajectories by:

Joe © W2 Wpr 70 Js Xgg (W), Xig (W) ;ws (2.27)

Remark 2.6. By Remark 2.4,
whent > 0, the expressioth’;‘; (w) in (2.27) depends only on the inner partwy.
of the scenariow = wig.1}, hence depends neither on the heady; 4;, nor on the
tail Wis+1: T]»
whent = 0, the expressionJg; (w) in (2.27) depends only on the heaav.q) of the
scenariow = W1}, hence does not depend on the tas.q. 7.
This is why we often consider thatJt);‘; is a function that maps the setW/;.q) of scenarios
into R:

8s2 [0;T]; 8t2[0;s]; Jis © Wpg! R: (2.28)

of costs is an adapted uncertainty process.

;T
As a consequence, the stream.]é,‘;’S =0

By (2.27) and (2.23), we have, forallt 2 [0;T]ands2 [t +1;T],
8

< Jig (W) = Je % o(x);we
W12 Wierys , L L OW): (2.29)
Co e (W fwegly) = Jis Y (Fwegfg)

2.2.2 Dynamic Uncertainty Criteria and Dynamic Risk Measures

Now, we stand with a stream Jg ;o of costs, which is an adapted uncertainty
process by Remark 2.4. To craft a criterion to optimize, we need to aggregate such a
stream into a scalar. For this purpose, we de nedynamic uncertainty criterion in x2.2.2,
and relate them to dynamic risk measures inx2.2.2.
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Dynamic Uncertainty Criterion

Inspired by the de nitions of risk measures and dynamic risk measures in Mathemat-
ical Finance, and motivated by intertemporal optimization, we introduce the following
de nitions of dynamic uncertainty criterion, and Markov dynamic uncertainty criterion .
Examples have been given irk2.1.2.

De nition 2.7. A dynamic uncertainty criterion is a sequence %q g\, , such that, for
all't 2 [0;T],
%T is a mapping

T
%t F(WpsR) oo 'F (Wi R) ; (2.30a)
the restriction of %+t to the domain® F(Wp.ssR) ;t yields constant functions,
that is,
T
%t F(WrsiR) (! R (2.30b)
n or

T
T t=0
is a dynamic uncertainty criterion, for all sequence x th0 of states, wherex; 2 X, for
all t 2 [O; T].

A Markov dynamic uncertainty criterion is a family %% | .. o such that %!

We relate dynamic uncertainty criteria and optimization problems as follows.

n or

De nition 2.8.  Given a Markov dynamic uncertainty criterion %t x2X oo’ W€
, =

de ne a Markov optimization problem as the following sequence of families of optimization
problems, indexed byt 2 [0;T], and x 2 X;:

(P)(x) T'qd%: VIO (2.31)

Each Problem (2.31) is indeed well dened by (2.30b), because Jg ::t 2
T
F (W[ts]y R) s=t by (228)

Dynamic Risk Measures in a Nutshell

We establish a parallel between uncertainty criteria and risk measures. For this pur-
pose, when needed, we implicitely suppose that each uncertainty sé¥/, is endowed with
a -algebraWt, so that the set Wq.1 of scenarios is naturally equipped with the Itration

8t 2 [0;TT; Fi = Wq W ¢ f, ;Wwuig f: 'Wrg: (2.32)

Then, we make the correspondence between (see also the correspondence Table 2.1)

the measurable spaceWo.t;; Fr) and the measurable space (;F) in x2.2.2,

the set F Wpp; R of functions and a setL. of random variables that are F-

measurable inx2.2.2,

the set F (W13 R) ;t and a setLt of adapted processes, as in (2.35) ir2.2.2.
Notice that, when the -algebraW; is the complete -algebra made of all subsets o,
F Wy R is exactly the space of random variables that are~i-measurable.

We follow the seminal work [6], as well as [103,104], for recalls about risk measures.

4. Where F (W[.¢; R) is naturally identi ed as a subset of F (W.s; R).
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Static Risk Measures Let ;F be a measurable space. Let be a vector space of
measurable functions taking values inR (for example,L =LP ;F;P;R ). We endow the
spacelL with the following partial order:

8X ;Y 2L; X Y (0 8 P2 ; X)) Y(@):

De nition 2.9. A risk measure(with domain L) is a mapping :L! R.
A convex risk measureis a mapping :L! R displaying the following properties:

Convexity: 8X ;Y 2L; 8t2]0;1]; tX +(1 b)Y t X +1 t) Y ;
Monotonicity: if Y X, then Y X
Translation equivariance: 8c2 R; 8X 21L; (c+ X)=c+ (X):

A coherent risk measureis a convex risk measure :L! R with the following addi-
tional property:
Positive homogeneity: 8t 0; 8X 2L; tX)=1t (X):

Let P be a set of probabilities on ;F and let be a function mapping the space of
probabilities on  ;F onto R. The functional de ned by

(X)=sup Ep X ( P) (2.33)
P2P

is a convex risk measure on a proper domairl (for instance, the bounded functions
over ). The expression
(X)=sup Ep X (2.34)
P2P
de nes a coherent risk measure.
Under proper technical assumptions, it can be shown that any convex or coherent risk
measure can be represented by the above expressions.

Conditional Risk Mappings We present the conditional risk mappings as de ned
in [103], extending the work of [85].

Let ;F be a measurable spacek-; F, F be two -algebras, andL; L ; be
two vector spaces of functions ! R that are measurable with respect toF; and Fo,
respectively.

De nition 2.10. A conditional risk mapping is a mapping :La!L ;.
A convex conditional risk mapping :L2!L 3 has the following properties:

Convexity: 8X ;Y 2L, 8t2]0;1]; tX +(1 t)Y t X +1 t) Y ;

Monotonicity: if Y X, then Y X

Translation equivariance: 8c2 L 1; 8X 2L ; (c+ X)=c+ (X):
Conditional and Dynamic Risk Measures We follow [105, Section 3]. Let ;F
be a measurable space, with a Itration F1 Fr F,andL; L 1 be vector
spaces of functions ! R that are measurable with respect toF4, ..., Fy, respectively.
We set

8t 2 [0;TY; Let = Ly L 1: (2.35)

An element fASgg of L7 is an adapted processsince everyA _ 2 L s is Fs-measurable.
Conditional and dynamic risk measures have adapted processes as arguments, to the dif-
ference of risk measures that take random variables as arguments.

De nition 2.11. Lett 2 [O;T]. A one-step conditional risk mappingis a conditional
risk mapping ¢ :Lt+1 'L t. A conditional risk measureis a mapping 7 :Let 7'L.
A dynamic risk measureis a sequence T tho of conditional risk measures.
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Dynamic uncertainty criteria f %t g/, , as introduced in De nition 2.7 correspond to
dynamic risk measures

Remark 2.12. A conditional risk measure 1 : Lyt 7!L ¢ is said to be monotonous® if,
for all fA _gi-; andfA g, in Lyr, we have
—S

T N T e .
85 2 I[t, T]I, és A s —) tT és s=t tT A s s=t - (236)
Markov Risk Measures In [105], Markov risk measuresare de ned with respect to a

given controlled Markov process. We adapt this de nition to the setting developed in the
Introduction, and we consider the control stochastic dynamical system (2.3b)

X = Fel(X U W) 5

where W, g is a sequence of independent random variables. Then, for all policy, when

U, = «(X,) we obtain a Markov processfX g0y, Where X, = X2 fw gy ' is
given by the ow (2.23).
Let F; tT:O be the ltration dened by F; = ( Wy g). Forany t 2 [O;T], let V;

be a set of functions mappingX; into R such that we havev X éft’; 2 L, for all policy
2 ad

De nition 2.13. A one-step conditional risk measure { 1:L¢!L { 1 is a Markov risk
measurewith respect to the control stochastic dynamical system(2.3b) if there exists a
function ¢ : Vi1 X¢ Ug! R, such that, for any policy 2 ad  and any function
vV 2 Vi+1, We have

t 1 stgE) v X())(;(t)irl stgE)
(2.37)
=t viXop fWgh T Xof fWogh

A Markov risk measure is said to be coherent (resp. convex) if, for any state 2 X,
any control u 2 Uy, the function

V7l L viXu g (2.38)

is a coherent (resp convex) risk measure oVi+1 (equipped with a proper -algebra).

Dynamic Markov uncertainty criteria f%q g/~ , as introduced in De nition 2.7 corre-

spond to Markov risk measures

Correspondence Table

Time-Consistency for Dynamic Risk Measures The literature on risk measures
has introduced a notion oftime-consistency for dynamic risk measuresthat we recall here
(see [7,28,85]).

De nition 2.14. A dynamic risk measuref it gtT:O, where 1 Lyt 7'Ly, is said to
be time-consistent if, for any couples of timesO t< t T, the following property holds
true. If two adapted stochastic processesA Sgg and fﬁsgg in Lot satisfy

észﬁs; 8s2 [t;t 1]; (2.39a)
er FAG o FAY (2.39b)

5. In [105, Section 3], a conditional risk measure is necessarily monotonous, by de nition.
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| Risk Measures | Uncertainty Criteria |
measurable space\ ( ;P (Wiory: F1) \ measurable space
Fi-measurable F Wp: R
adapted processes Lot F (Wi R) Z:o adapted uncertainty
processes
dynamic risk f 100 f%T oo dynamic uncertainty
measure ~ R . i criteria
f o7 L o1
Markov dynamic e o A ox, -0 Markov dynamic
risk measure uncertainty criterion

Table 2.1: Correspondence Table

then we have: o
et fA of ur A (2.39c)

Remark 2.15. In [105], the equality (2.39a) is replaced by the inequality
8s 2 [t;t]; A A_: (2.39d)

S

Depending whether we choosg.39a) or (2.39d) as assumption to de ne a time-consistent
dynamic risk measure, we have to adapt or not an assumption in Theorem 2.31 (see
Remark 2.32).

2.2.3 De nitions of Time-Consistency

With the formalism of x2.2.2, we give a de nition of time-consistency for Markov
optimization problems in x2.2.3, and for Markov dynamic uncertainty criteria in x2.2.3.

Time-Consistency for Markov Optimization Problems

With the formalism of x2.2.2, we here give a de nition of time-consistency for Markov
optimization problems. We refer the reader to De nition 2.8 for the terminology.

Consider the Markov optimization problem (P {)(x) X2 Xq tho de ned in (2.31). For
the clarity of exposition, suppose for a moment that any optimization Problem (P {)(x)
has a unique solution, that we denote % = f (X gl:tl 2 ?d. Consider0 t<t T.
Suppose that, starting from the state x at time t, the ow (2.23) drives you to

X= X2 (w); = bX (2.40)
at time t, along the scenariow 2 Wt and adopting the optimal policy tx 2 f‘d.
Arrived at X, you solve P)(X) and get the optimal policy EX = f sﬁg;fl 2 ?d.
Time-consistency holds true when

8s RN (2.41)

that is, when the \new" optimal policy, obtained by solving ( P)(X), coincides, after timet,
with the \old" optimal policy, obtained by solving ( P)(x). In other words, you \stick to
your plans" (here, a plan is a policy) and do not reconsider your policy whenever you stop
along an optimal path and optimize ahead from this stop point.

To account for non-uniqueness of optimal policies, we propose the following formal
de nition.
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De nition r?'16' For gny policy 2 , suppose given a Markov dynamic uncertainty
T

. . oXts
criterion oy

X2Xi (oo We say that the Markov optimization problem

. : T
(Po)(x) T'rld %T Jt’;‘g ot St2[0T] 8x2X;: (2.42)
t

is time-consistent if, for any couple of timest t in [0;T] and any statex 2 X;, the

following property holds: there exists a policy | = f ]sgl:£1 2 gd such that

f 1ol ! is optimal for Problem Py(x);

the tail policy f ]Sg;fl is optimal for Problem P(X), where X 2 X; is any state

achieved by the owxf,%] in (2.23).

We stress that the above de nition of time-consistency of a sequence of families of
optimization problems is contingent on the state x and on the dynamics f; ; ! by the
ow (2.23). In particular, we assume that, at each time step, the control is taken only in
function of the state: this de nes the class of solutions as policies that are feedbacks of
the state x.

Time-Consistency for Markov Dynamic Uncertainty Criteria

We provide a de nition of time-consistency for Markov dynamic uncertainty criteria,
inspired by the de nitions of time-consistency for, on the one hand, dynamic risk measures
(recalled in x2.2.2) and, on the other hand, Markov optimization problems. We refer the
reader to De nition 2.7 for the terminology.

De nition 2.17.  The Markov dynamic uncertainty criterion ff fVétT Ox 2%, 9o iS said to
be time-consistent if, for any couple of times0 t<t T, the following property holds
true.

If two adapted uncertainty processed A,g) and fAsg), satisfy

As= A 8s2 [t;t]; (2.43a)
o fAY o fASY 8X 2 X ; (2.43b)

then we have:
or FASY or FASY 8x 2 Xy : (2.43c)

This De nition 2.17 of time-consistency is quite di erent from De nition 2.16. Indeed,
if the latter looks after consistency between solutions to intertemporal optimization prob-
lems, the former is a monotonicity property. Several authors establish connections between
these two de nitions [23, 56, 78, 105] for case speci ¢ problems. In the following2.3, we
provide what we think is one of the most systematic connections between time-consistency
for Markov dynamic uncertainty criteria and time-consistency for intertemporal optimiza-
tion problems.

2.3 Proving Joint Time-Consistency

In x2.3.1, we introduce the notions of time and uncertainty-aggregators, de ne their
composition, and outline the general four ways to craft a dynamic uncertainty criterion
from one-step aggregators. Inx2.3.2, we present two ways to craft a nested dynamic
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uncertainty criterion; for each of them, we provide su cient monotonicity assumptions on
one-step aggregators that ensure time-consistency and the existence of a DPE.X8.3.3, we
introduce two commutation properties, that will be the key ingredients for time-consistency
and for the existence of a DPE in non-nested cases. I82.3.4, we present two ways to
craft a non-nested dynamic uncertainty criterion; for each of them, we provide su cient
monotonicity and commutation assumptions on one-step aggregators that ensure time-
consistency and the existence of a DPE.

2.3.1 Aggregators and their Composition

We introduce the notions of time and uncertainty-aggregators, de ne their composition,
and outline the general four ways to craft a dynamic uncertainty criterion from one-step
aggregators.

One-Step Time-Aggregators and their Composition

Time preferences are re ected in how streams of costs | elements ofRT*!, like
fJg; (W)g, introduced in De nition 2.5 | are aggregated with respect to time thanks
to a function : RT*l | R, called multiple-step time-aggregator Commonly, multiple-
step time-aggregators are built progressively backward. IB<2 .1.1, the multiple-step time-

aggregator is the time-separable_and additive cg 1_0 = 4 GCs, Obtained as the initial

value of the backward induction  [_, cs = ( l=t+1 Cs) + G; the time-separable and mul-

ESJhcatlve aggregator Cs ;O = ~ 1, s is the initial value of the backward induction

s_tcS ( “s=t+1 Cs)C- A multiple-step time-aggregator aggregates theT + 1 costs
fJO’t (W)g{_,, whereas a one-step time-aggregator aggregates two costs, the current one
and the \cost-to-go" (as in [117]).

De nition 2.18. A multiple-step time-aggregator is a function mapping R¥ into R, where
k 2. Whenk =2, we call one-step time-aggregatora function mapping R? into R.

A one-step time-aggregator is said to benon-decreasingif it is non-decreasing in its
second variable.

We de ne the composition of time-aggregators as follows.

De nition 2.19. Let 1:R?! R be a one-step time-aggregator and X : R ! R be a
multiple-step time-aggregator. We dene 1 k:RK*1 1 R by

CiCke1 = c; Koo (2.44)

Quite naturaly, we de ne the composition of sequences of one-step time-aggregators
as follows.

De nition 2.20.  Consider a sequence L of one-step time-aggregators  : R R!

t t=0
T 1
R, fort 2 [O;T 1]. Forall t 2 [O;T 1], we de ne the composition s as the
s=t
multiple-step time-aggregator fromR™*1 ! towards R, inductively given by
T 1 T 1 T 1
t= 71 1and s = ot s - (2.45a)
t=T 1 s=t s=t+l
That is, for all sequencec;.t; wherecs 2 R, we have:
T 1 n T 1 0o
s Cut] = ot G s Q1] - (2.45Db)

s=t s=t+1l
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T 1 . .
t oo Of One-step time-aggregators given by

t C;C+1 = t(a)+ t(c)C+r; B2 [O;T 1] (2.46)

Example 2.21. Consider the sequence

where ( t)i2po;r 13 @nd ( 2o, 13 @re sequences of functions, each mapping into R.

We have
T 1 : X Y1
) Cs ; = s Cs r Gy 8t2[0T 1], (2.47)
s=t s=t r=t
with the convention that t(cr) = cr.

Example 2.22. Consider the one-step aggregators
fecg=ci+ e faicg= ac:

The rst one corresponds to the sum, as in(2.3); the second one corresponds to
the product, as in (2.11). As an illustration, we form four compositions (multiple-step
time-aggregators):

fciscoiceg= ¢ fepiceg =i+ ¢+ C3;
fci;coic3g= €1 fepcg = €iCoCs
fci;coicsg=  c; fepicsg = ¢+ CoCs g
fci;crc30= ¢y fepiceg = ci(c+ G3):
T 1
We extend the composition s :R™1 Y1 Rinto a mapping (2.48) as follows.
s=t

De nition 2.23. Consider a sequence Lof one-step time-aggregators, fort 2

t t=0
T 1
[0;T 1]. For t 2 [0;T 1], we de ne the composition® s as a mapping
s=t
T1 T t+1
S F(WpTiR) 'F (Wi R) (2.48)

T t+l
by, for any fAgl 2 F(Wp1);R) ,

T 1 T 1
s fAg w = s TALwg ; 8w2Wpr: (2.49)

s=t s=t

T
In other words, we simply plug the valuesfA; w g/ into s
s=t

One-Step Uncertainty-Aggregators and their Composition

As with time, risk or uncertainty preferences are materialized by a function G :
F(Wp.r;R) ! R, called multiple-step uncertainty-aggregator A multiple-step aggre-
gator is usually de ned on a subsetF of F (W11, R) (for example the measurable and
integrable functions), and then extended toF (W.1}; R) by setting G[A] = + 1 for any
function A 2 F. Indeed, as we are interested in minimizingG, being not de ned or equal
to +1 amount to the same result.

In the rst part of x2.1.1, the multiple-step uncertainty-aggregator is the extended
expectation with respect to the probability P; still denoted by Ep, it is de ned as the
usual expectation if the operand is measurable and integrable, and as ¥ otherwise. In
the second part ofx2.1.1, the multiple-step uncertainty-aggregator is the fear operator,
namely the supremum SUR/2w,y., OVer scenarios inWg.1;.

D E
6. We will consistently use the symbol to denote a mapping with image a set of functions.
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De nition 2.24. lett 2 [0;T] and s 2 [t;T]. A [t:s]-multiple-step uncertainty-
aggregator is a mapping’ GI"Sl from F (W.q;R) into R. Whent = s, we call GI'!l a
t-one-step uncertainty-aggregator

A [t:s]-multiple-step uncertainty-aggregator is said to benon-decreasingif, for any
functions® D, and Dy in F (Wy.q;R), we have

BWit.q] 2 Witg)s Di Wiy Dt Wy =) ¢t p, Gltslp;

Denition 2.25. Lett 2 [1;T] and s 2 [t;T]. To a [t:s]-multiple-step uncertainty-
aggregatorGtsl, we attth a n&apping9

Gl F (Wi R) T F - (Wioy 115R) ; (2.502)

obtained by freezing the rst variables as follows. For anyA : Wy ! R, and any
W[O:S] 2 W[O:S]i we set

h [
G[t:s] A W[O:t 1] = G[t:s] W[t:s] A W[O:t 1];W[t:s] : (2-50b)

Multiple-step uncertainty-aggregators are commonly built progressively backward:
in x2.1.1, the expectation operator Ep, p, Is the initial value of the induction
Ep, p, = EpEp.; p, ; the fear operator SURv2w .1 is the initial value of the in-
duction SUPw2wj.1) = SUPw, 2w, SUPw2w.y. ;-

We de ne the composition of uncertainty-aggregators as follows.

De nition 2.26. Lett2 [0;T]ands2 [t +1;T]. Let Gl : F(W;;R) ! R be at-one-
step uncertainty-aggregator, andG['*'s! : F (Wy,1.4;R) ! R be a[t + 1: s]-multiple-step
uncertainty-aggregator. We de ne the [t:s]-multiple-step uncertainty-aggregator Gt
G[t:s] by

h [
gt gl Ar = G wy 7 G w7 AL W Wi g (2.51)

for all function At 2F Wp.o;R .

Quite naturaly, we de ne the composition of sequences of one-step uncertainty-
aggregators as follows.

De nition 2.27.  We say that a sequence G; tT:o of one-step uncertainty-aggregators is
a chained sequencéf G; is a t-one-step uncertainty-aggregator, for allt 2 [0; T].
Consider a chained sequence G; tT:O of one-step uncertainty-aggregators. Fort 2

T
[0; T], we de ne the composition tGS as the[t: T]-multiple-step uncertainty-aggregator
sS=

T
S:th F Wt R PR3 (2.52)
inductively given by
T T T
s:TGS = Gt and S:th = Gy a1 Gs : (2.53a)
That is, for all function Bt 2F W.1);R , we have:
T h T [
o Gs Bt =Gow 7t Gs Wity 7! Be WoWar) (2.53b)

7. The superscript notation indicates that the domain of the mapping Gl is F (Wiis; R) (not to be
confused with Gy.s) = G °_)).

8. We will consistently use the symbol D to denote a function in F W3R , thatis, D : Wy ! R.

9. See Footnote 6 about the notation h 1.
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Crafting Dynamic Uncertainty Criteria from Aggregators

We outline four ways to craft a dynamic uncertainty criterion from aggregators. Let
ApT1= As ;0 denote an arbitrary adapted uncertainty process (that is, As : Wiy !
R, as in De nition 2.2).

Non Nested Dynamic Uncertainty Criteria The two following ways to craft a
dynamic uncertainty criterion f%q g, display a natural economic interpretation in term
of preferences over streams of uncertain costs lik&g.tj. They mix time and uncertainty
preferences, either rst with respect to uncertainty then with respect to time (UT) or
rst with respect to time, then with respect to uncertainty (TU). However, they are not

directly amenable to a DPE.

TU, ortime, then uncertainty. Let t 2 [O; T] be xed.
First, we aggregateAp.1) with respect to time by means of a multiple-step time-
aggregator ' from RT '*! towards R, and we obtain ' Ap.1; .
Second, we aggregate ! Aprp  with respect to uncertainty by means of a
multiple-step uncertainty-aggregator GIT1, and we obtain

D _Eh i
%t Apt) = G VAL (2.54)

All the examples in x2.1.1 belong to this TU class, and some irx2.1.2.

UT, or uncertainty, then time.
First, we aggregate Aty with respect to uncertainty by means of a sequence

G5t T of multri1pll3e—stepéime—%ngregators G F(WpgsR) ! R, and we

obtain a sequence Gg['Sl A .
nD E S=tog
Second, we aggregate G¢l'Sl Ag by means of a multiple-step time-

aggregator ' from RT ! towards R, and we obtain

nD E ot
%t ApT) = ! Gs[t't] As . : (2.55)
S=
Some examples ink2.1.2 belong to this UT class.
Nested Dynamic Uncertainty Criteria The two following ways to craft a dynamic

uncertainty criterion f%q g, do not display a natural economic interpretation in term
of preferences [65], but they are directly amenable to a DPE. Indeed, they are produced
by a backward induction, nesting uncertainty and time. Consider

on the one hand, a sequence th01 of one-step time-aggregators,

on the other hand, a chained sequenceG; tho of one-step uncertainty-aggregators.

NTU, or nesting time, then uncertainty, then time, etc. We de ne a dynamic uncertainty
criterion by the following backward induction:

(=}

=
—

>
—
|

= I’GTI AT ; . (256&)
h n oi

%r As L, =MGi  Au%ar As L.,  8t2[0T 1]: (2.56b)

By the De nition 2.25 of hG;i, we have, by construction, produced a dynamic uncer-
tainty criterion f %t g{_, (see De nition 2.7). Indeed, recalling that A : Wipg ! R),
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for s2 [0; T], we write

F Wit 115R F Wp iR
z o 2 Ay
%1 At = IGri At ;
.
F WogR _ .,
. n Z—oflT—s{tl )
%t As oy =G {°~ ;YT As o ;
) = Z} ) s=t+1
— Y | % )
F W 1R F WouiR F Wp.iR
8t2[0;T 1]:

NUT, or nesting uncertainty, then time, then uncertainty, etc. We de ne a dynamic
uncertainty criterion by the following backward induction:

o/lT;T At = I'GTI At H . (257&)
|
%r As oy = ot MG ACHGE % As Ly (2.57b)
8t2 [0;T 1]:

Some examples inx2.1.2 belong to this nested class, made of NTU and NUT.

2.3.2 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider
on the one hand, a sequence th01 of one-step time-aggregators,
on the other hand, a chained sequenceG; tho of one-step uncertainty-aggregators.

With these ingredients, we present two ways to craft a nested dynamic uncertainty criterion
f %7 g\, ., as introduced in De nition 2.7. For each of them, we establish time-consistency.

NTU Dynamic Uncertainty Criterion

With a slight abuse of notation, we de ne the sequence (P NV )(x) tho of optimization
problems parameterized by the statex 2 X; as the nesting

"
(PYTY)(X) Tir;d Gt t Jt XU Wi
t
Gt+1 t+1 Jte1 Xee1;Ut+1 s Wesa (2.58a)
h n
Gr 1 71 J7 1 X7 10Ut 1;Wr 1
. )
oi
Gr Jr X7iwy ;
siti X¢ = X; (2.58b)
Xs+1 = fs Xs;Us;Ws 5 (2.58c)
Us = s(Xs) ; (2.58d)
Us 2 Us(Xs) ; (2.58e)

where constraints are satised foralls2 [t; T  1].
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De nition 2.28. We construct inductively a NTU-dynamic uncertainty criterion

ATV tho by, for any adapted uncertainty process As I:o’

ATV Ar = 1Gri At ; 4 (2.59a)

MY AL, =mGi o AR As L.,  8t2[0T 1]: (2.59b)

We de ne the Markov optimization problem (2.58) formally by
s=t ,

(YY) min OB 3% L5 B2I0TE 8x2Xi: (260
t

where the functions J;; are de ned by (2.27).

De nition 2.29.  We de ne the value functions inductively by the DPE

h i
VNV (x)= Gt J7(x; ) ; 8x2 Xt (2.61a)
" #
VIV (x)= inf Gy ¢ Jiu; iVNTY O fuxu ) (2.61b)
u2 Ut (x)

8t2[0;T 1], 8x2 X:

The following Proposition 2.30 expresses su cient conditions under which any Prob-
lem (PNTY)(x), for any time t 2 [0;T 1] and any statex 2 X, can be solved by means
of the value functions f V\NTV gL, in De nition 2.29.

Proposition 2.30. Assume that
forall t 2 [0;T 1],  is non-decreasing,
for all t 2 [0; T], G is non-decreasing.
Assume that there exist3® an admissible policy 1 2 24 such that
" #

l(x) 2 argmin G Jexu; VY fuxur )
t o R (2.62)

8t2[0;T 1], 8x2 X;:

Then, ! is an optimal policy for any Problem (P NV )(x), for all t 2 [0;T] and for all
X 2 X¢, and
VN () = min 7Y 37 [ 8t2 [0;T]; 8x2 X;: (2.63)
2 ad " S s=

Proof. In the proof, we drop the superscript in the value function V\NTY | that we simply
denote by ;. Let 2 2 be a policy. For anyt 2 [0;T], we dene V, (x) as the
intertemporal cost from time t to time T when following policy starting from state x:

Vi )= oY 0 L 8t2 [0:T]: 8x2 X;: (2.64)

10. It may be di cult to prove the existence of a measurable selection among the solutions of (2.62).
Since it is not our intent to consider such issues, we make the assumption that an admissible policy 1 2
exists, where the de nition of the set 2% is supposed to include all proper measurability conditions.
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This expression is well de ned becausds :Wp.q! R, for s2 [t;T] by (2.28).
First, we show that the functions fV, g/, satisfy a backward equation & la Bellman'":

h n oi
Vi (X)= Gt ¢ Je(X t(X); )iV Fe(xs «(x);) & 8t2[0;T 1] 8x2 X;: (2.65)

Indeed, we have,

Vi(x) = AT Jf; by the de nition (2.64) of Vg (x),
= A Ir(x) by (2.27) that de nes J¥i;,
= hGri JT(x;) by the de nition (2.59a) of ATV,
= Gt Jr(x;) by De nition 2.25 of hGri.

We also have, fort 2 [O; T 1],

_ TU x; T
Vt (X) - O,T ‘]t;s s=t

by the de nition (2.64) of V, (x),

n TU T °
_ . X; . X;
= I’th t Jt;t ,0 +1 ;T ‘]t;S s=t+1
by the de nition (2.59b) of TYr,
n (6]
. P fe(x D T
= MG ¢ th;t »9 +EU;T Jtiix;s 1007 s=t+1

by the ow property (2.29),
n o]
= MG ¢ it Vi fu(6 1(X);)

by the de nition (2.64) of V, (x),
n o}
= hGi ¢ J(X t(X); )i Vi Fe(X 1(X);)

by the r?Wnproperty (2.29),

= Gt ot I t(¥); )iV Fr(% 1(%);)
by De nition 2.25 of hG;i.

oi

Second, we show thatV;(x), as de ned in (2.61) is lower than the value of the opti-
mization problem PNV (x) in (2.58). For this purpose, we denote by H;) the following
assertion

(Ho) : 8x2Xy; 8 2 ¥ W(x) V, (X):

By de nition of Vi (x) in (2.64) and of V¢ (x) in (2.61a), assertion H) is true.
Now, assume that H+1) holds true. Let x be an element ofX;. Then, by de nition
of Vi(x) in (2.61b), we obtain

n 0]
Vi(x) ;m‘ad Gt ¢ Jt x5 t(x); M e x5 (%), , (2.66)

since, forall 2 2 we have {(x) 2 Ui(x). By (Ht+1) we have, forany 2 &

Vier  fo X (X); Vier  fe X ¢(X);
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From monotonicity of ; and monotonicity of G;, we deduce:
n o]
Gt ¢ Jt x5 t«(X); M fe X (X);
n 0 (2.67)
Gt t Jt X t(X); M1 fe X e(x);

We obtain:
n 0
Vi (X) ;nfad Gt ¢ Jit x5 «(X); ;M fr X 1(X); by (2.66),
n 0
énfad Gt ¢ It x «(X); sV frr X (%), by (2.67),

= inf ; V; (x) by the de nition (2.64) of V, (x).
2 a

Hence, assertion H¢) holds true.

Third, we show that the lower bound V;(x) for the value of the optimization prob-
lem PNV (x) is achieved for the policy ! in (2.62). For this purpose, we consider the
following assertion

(HY: 8x 2 Xy; V' (x) = V(X)

By de nition of VT](x) in (2.64) and of Vit (x) in (2.61a), (H?) holds true. Fort 2 [O; T 1],
assume that (H2,;) holds true. Let x be in X;. We have

n 0
ViX)= Gr ¢ i X 1) Ve Fux 1007) by de nition of 1 in (2.62),
n ] 0
=G ¢ X 1K) Veer fix 100;) by (HEg)
=V, '(x) by (2.64).
Hence HY holds true, and the proof is complete by induction. O

The following Theorem 2.31 is our main result on time-consistency in the NTU case.

Theorem 2.31. Assume that
forall t 2 [O;T 1], : is non-decreasing,
for all t 2 [0;T], Gt is non-decreasing.

Then
1. the NTU-dynamic uncertainty criterion 9%y tho dened by (2.59) is time-
consistent;
2. the Markov optimization problem (P NTY)(x) 2Xe tho de ned in (2.58) is time-

consistent, as soon as there exists an admissible policy 2 24 such that (2.62)
holds true.

Proof. In the proof, we drop the superscripts inVN™ , (PTY)(x) and %Y .
The second assertion is a straightforward consequence of the property that! is an

optimal policy ** for all Problems (P{)(x). Hence, the Markov optimization problem (2.58)
is time-consistent.

11. In all rigor, we should say that, for all t 2 [0;T 1], the tail policy f 1gl_,! is an optimal policy for
Problem (P¢)(x), for any x 2 X;.
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We now prove the rst assertion.

Let t < T be both in [0; T]. Consider two adapted uncertainty processes A,g) and
fAsgl, where Ag : Wiprp ! Rand As : Wt ! R, satisfying (2.39a) and (2.39b), that
is,

A =As; 8s2 [t;t]; (2.682)
%r fAGl  %r fAsGl | (2.68b)

We show by backward induction that, for all t 2 [t;t], the following statement (H) holds
true:

(H) %t fA0l %t fASG (2.69)
First, we observe that (H;) holds true by assumption (2.68b). Second, let us assume that,

for t > t_, the assertion H¢) holds true. Then, by (H;), and asA; ; = A; 1 by (2.68a),

monotonicity 12 of ; ; yields
n 0 n 0

t 1 Ay 1%t A t 1 At 1;%T FAsY

Monotonicity of G; 1 then gives _ ,
h n 0i h n 0i

WGy 1t 1 Ay 1%t FA hGe i 1 A 1%t fAY
By de nition of % 1.1 in (2.59), we obtain (H; 1). This ends the proof by induction. [

Remark 2.32. As indicated in Remark 2.15, if we choose the inequality
8s2 [t;T]; As As; (2.70)

as assumption to de ne a time-consistent dynamic uncertainty criterion (rather than the
equality (2.43a)), we have to make, in Theorem 2.31, the assumption
\for all t2[0;T 1]"
\the two-variables function (c;;c+1) 7! ¢(C; G+1) IS non-decreasing”,
instead of \for all ¢, the single variable function ¢i+1 7! (G C+1) iS non-
decreasing"”.

NUT Dynamic Uncertainty Criterion

With a slight abuse of notation, we de ne the sequence (P NUT )(x) tT:o of optimization
problems parameterized by the stzaltex 2 Xt as the nesting

(PYYD0)  min ¢ G Jxiusw Gy
t
h i
t+1  Gte1 Jis1 Xe+1 ;U1 s Wes1 5 (2.71a)
n h i
T 1 Gt 1Jd1 1 X7 15Ut ;Wr o1
#)
o]
Gt J1 X1;W ;
st Xt = X; (2.71b)
Xs+1 = fs XsjUs;Ws (2.71c)
Us = s(Xs); (2.71d)
Us 2 Us(Xs) ; (2.71e)
where constraints are satised foralls2 [t; T  1].
12. Recall that, by De nition 2.18, 1 is non-decreasing in its second argument. Remark 2.32 below

will enlighten this comment.
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De nition 2.33. We construct inductively a NUT-dynamic uncertainty criterion
AR’ T by, for any adapted uncertainty process As I:o’

t=0
AT AT = hGTi AT ; (2.72a)
h i
MW AL, = ¢ MG AcihGd YT A L, (2.72b)
8t2[0;T 1]:

We de ne the Markov optimization problem (2.71) formally by
s=t ,

(YD) min ofT 3L L5 B2[0TE Bx2X:  @79)
t

where the functionsJ/; are de ned by (2.27).

De nition 2.34.  We de ne the value functions inductively by the DPE

h i
VYT (x) = Gt J7(x; ) ; 8x2 Xt} (2.74a)
n h i h io
VNI (x) = u;rbf(x) ¢ Gy Ji(x;u; ) Gy VNPT fuur ) (2.74b)
t

8t2[0;T 1], 8x2 X:

The following Proposition 2.35 expresses su cient conditions under which any Prob-
lem (PNYT)(x), for any time t 2 [0;T 1] and any statex 2 X, can be solved by means
of the value functions f V\NUT gL, in De nition 2.34.

Proposition 2.35. Assume that
forall t 2 [0;T 1], : is non-decreasing,
for all t 2 [0;T], G; is non-decreasing.
Assume that there exist$® an admissible policy 1 2 24 such that

n h [ h io
Ix)2argmin ¢ Gy Jixu; ) ;G VT fuu; )
u2 Ut (x) (2.75)
8t2 [0;T 1], 8x 2 X¢:

Then, 1 is an optimal policy for any Problem (PNYT )(x), for all t 2 [0;T] and for all
X 2 X¢, and

VT ) = min T 0% L 8t2 0T 8x2 X (2.76)

2 g " ' -

Proof. In the proof, we drop the superscript in the value function V\NYT | that we simply
denote by ;. Let 2 2 be a policy. For anyt 2 [0;T], we dene V, (x) as the
intertemporal cost from time t to time T when following policy starting from state x:

Vi )= YT 9% L st2 0TI 8x2 X : (2.77)

This expression is well de ned becausds :Wp.q! R, for s2 [t;T] by (2.28).

13. See Footnote 10.



70 CHAPTER 2. TIME-CONSISTENCY

First, we show that the functions fV, g/, satisfy a backward equation & la Bellman":

n h i h io
Vi (X)= ¢ Gt Ji(X; t(X); ) :Gt Vipr Fi(6 t(x);) 5 8t2[0;T 1] 8x2 X;:
(2.78)
Indeed, we have,
Vr(x) =AY 9% by the de nition (2.77) of V; (x),
= A Jr(x) by (2.27) that de nes J¥i;,
= hGri JT(x;) by the de nition (2.72a) of ATV,
= Gt Jr(x;) by De nition 2.25 of hGri.

We also have, fort 2 [O; T 1],

T
Vi) = YT I o
by the de nition (2.77) of V, (x),
h i h [
= MG 3N G BT N L
by the de nition (2.72b) of %'y,
h i h '
= ¢ MG 3N G YT Lo T
by the ow property (2.29)
h i h i

i
= ¢ WG J% shGi Vg fo(X 1(X);)

by the de nition (2.77) of V; (x),
h [ h [
= t MG Je(X; t(X); ) shGe Vi (X ¢(x);)

by the ow property (2.29)
h i h [
= t Gt Ju(X; t(X); ) sGt Veur  Fr(X (X))

by De nition 2.25 of hG;i.

Second, we show thatV;(x), as de ned in (2.74) is lower than the value of the opti-
mization problem P NVT (x) in (2.71). For this purpose, we denote by H;) the following
assertion

(Ho) : 8x2Xy; 8 2 ¥ W(x) V, (X):

By de nition of Vi (x) in (2.77) and of V7 (x) in (2.74a), assertion H) is true.
Now, assume that H+1) holds true. Let x be an element ofX;. Then, by de nition
of Vi(x) in (2.74b), we obtain
h i h i
Vi (X) ;nfad t Gt It X5 t(X); Gt Ve fr X ¢(X); ; (2.79)

since, for all 2 24 we have (x) 2 Uy(x). By (H+1) we have, forany 2

Vier  fe X (X); Vier  fe X ¢(X);
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From monotonicity of ; and monotonicity of G;, we deduce:
h [ h i
t Gt Je X t(X); Gt Vt+1 fr X5 ¢(X);
h i h [ (2.80)
t Gt Je X t(X); Gt Vier fr X5 ¢(X);

We obtain:
h i h i
Vi (x) infad t Gt Je X5 t(X); Gt Ve e X ¢(X); by (2.79),
h i h i
énfad t Gt Jt X t(X); Gt Vier  frer X0 1(X); by (2.80),

= inf ; V; (x) by the de nition (2.77) of V; (x).
2 al

Hence H¢) holds true.

Third, we show that the lower bound V;(x) for the value of the optimization prob-
lem PNVT (x) is achieved for the policy 1 in (2.75). For this purpose, we consider the
following assertion

(HY: 8x 2 Xy; V' (%) = W(X) :

By de nition of VT](x) in (2.77) and of Vr (x) in (2.74a), (HY) holds true. Fort 2 [0; T 1],
assume that H2,;) holds true. Let x be in X;. We have

h [ h [
Vix)= ¢ Gt Jt X E(x); 1Gt Virr e X (X)) by de nition of ! in (2.75),
h [ h : [
= t Gt Jt X %(X); Gt Vi fe X 1(x); by (H21)
=V, ' (x) by (2.77).
Hence HY) holds true, and the proof is complete by induction. O

The following Theorem 2.36 is our main result on time-consistency in the NUT case.

Theorem 2.36. Assume that
forall t 2 [O;T 1],  is non-decreasing,
forall t 2 [0;T], G; is non-decreasing.

Then
1. the NUT-dynamic uncertainty criterion 9 ,TUT tho dened by (2.72) is time-
consistent;
2. the Markov optimization problem (P NYT)(x) 2%, tT:O de ned in (2.71) is time-

consistent, as soon as there exists an admissible policy 2 24 such that (2.75)
holds true.

Proof. In the proof, we drop the superscripts inVNYT, (PNUYT)(x) and %%T.
The second assertion is a straightforward consequence of the property that! is an

optimal policy 4 for all Problems (P)(x). Hence, the Markov optimization problem (2.71)
is time-consistent.

14. See Footnote 11.



72 CHAPTER 2. TIME-CONSISTENCY

We now prove the rst assertion. We suppose given a policy 2 , and a sequence
fxsgd of states, wherexs 2 Xs.

Let t < T be both in [0; T]. Consider two adapted uncertainty processe§ A.g) and
fAsg), where Ag : Wp.rp! Rand As : Wty ! R, satisfying (2.39a) and (2.39b), that
is,

As = As 8s 2 [t; 1] ; (2.81a)
% fAQ % fAsG (2.81b)

We show by backward induction that, for all t 2 [t;t], the following statement (H:) holds

true: o
(Hy) %7 fA %t fAsg (2.82)

First, we observe that (H;) holds true by assumption (2.81b). Second, let us assume that,
for t > t_, the assertion () holds true. Then, by (H), monotonicity of G; ; gives

h i h i
Gy 1i %t fALQ h G 1i %t fASY
As A, ; = A; 1 by (2.81a), monotonicity *> of  ; yields
n h io n_ h o
t 1 Ay G 10 %t fAL t 1 Ay 4G 10 %t A

By de nition of % 1.1 in (2.72), we obtain (H; 1). This ends the proof by induction. [I

2.3.3 Commutation of Aggregators

We introduce two notions of commutation between time and uncertainty aggregators.

TU-Commutation of Aggregators

The following notion of TU-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE.

De nition 2.37. Lett 2 [O;TJands 2 [t +1;T]. A [t:s]-multiple-step uncertainty-
aggregatorG[ts! is said to TU-commute with a one-step time-aggregator if
h [ n h io
G wyg 7' 6Dy Wiy = GG w70 Dy Wiy (2.83)

for any function Dt 2 F (Wy.q; R) and any extended scalac 2 R.

In particular, a one-step time-aggregator TU-commutes with a one-step uncertainty-
aggregator GI*1 if h i 0 o
Gt ¢c = cotlc (2.84)

for any function 1 C; 2 F (W¢; R) and any extended scalarc 2 R.
Example 2.38. If (Wy;F¢;Py) is a probability space and if
g = (O+ (Oc; (2.85)

where :R! Rand :R! R., then the extended’ expectation GI'!l = Ep TU-
commutes with

15. See Footnote 12.

16. We will consistently use the symbol C; to denote a function in F (W;;R), thatis, C; : W;! R.

17. We set 0, so that, when C; 2 F (W;;R) is not integrable with respect to P;, the equality (2.83)
still holds true.
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Proposition 2.39. Consider a sequence tT:ol of one-step time-aggregators and a

chained sequence G; tho of one-step uncertainty-aggregators. Suppose that, for an§
t<s T, Gq TU-IEommutes with .
Dr
Then, tGS TU-commutes with , forany 0 r<t T, thatis,

DT Eh i DT E
Gq r A = . C Gs A ; 80 r<t T; (2.86)

for any extended scalarc 2 R and any function A2 F Wp.r;R .

Proof. We prove by induction that
T T
Gs r ¢;Dy =+ ¢ Gs Dt ; 80 r<t T; (2.87)

s=t s=t

for any extended scalarc 2 R and any function Dy 2F W.r;;R . Fort 2 [1;T], let (H¢)
be the following assertion
(H): 8r2[0t 1], 8c2R; 8D{2F Wpr;R ;
T T (2.88)
G Dt =  c Gs Dt

The assertion HT) is
(Hy): 8r2[0;T 1] ECZ R; S?T 2F Wt;R;
Gr rc¢Dfr = | ¢ Gt Dt
Thus, the assertion (H) is true, since it coincides the property that, forany 0 r<T,
Gt TU-commutes with | (apply (2.83) wheret=T, = |).

Now, suppose that H+1) holds true. Letr<t,c2 RandD{ 2 F Wy ;R . We
have

T h [
¢ Gs r ¢;Dy
S= n
T n o #
= Gy wg 7! (41 Gs W[t+lZT] 7'+ c;Dy Wt;W[t+1:T] ,
by the de nition (2.53) of composition, 4
T h [

= G w7 [ ¢ S Gs W[t+1: T] 7! Dy Wit Wt+1: T]

by (Hi+1) sincer<t<t +1,
and Wh%re, for allwy, D41 s Wt+1: T] 7! D¢ Wi, Wit+1: T] 2F V\g[t:T]; R ;

T h [
= r CGt wt 7! S Gsg W[t+1ZT] 7! Dy Wt;W[t+l:T] ;
by commutation property (2.83) of G; with = r,Since0 r<t T,
T
and whereC; : w; 7! i Gs Wi+1:) 7! Dt WisWie1:1p 2F Wi R
S=
T
= r G tGS D: by the de nition (2.53) of composition.
S=

This ends the induction, hence the proof of (2.87). Then, (2.86) easily follows by the
extensions of De nitions 2.23 and 2.25. O
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UT-Commutation of Aggregators

The following notion of UT-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE. In practice, it is much more restrictive
than TU-commutation.

De nition 2.40.  Lett 2 [0; T]. A multiple-step time-aggregator : R¥*1 | R is said to
UT-commute with a one-step uncertainty-aggregatorGtt if
_Eh X [ nD E o
Glt:tl As oy = Gt Aq P (2.89)
for any adapted uncertainty process As ';:0.

In particular, a one-step time-aggregator UT-commutes with a one-step uncertainty-
aggregator GItU jf
h [ n 0
¢t  Byc = cMB et (2.90)

for any functions B¢, C; in F(W¢; R). Comparing (2.90) with (2.84), we observe that
UT-commutation requires a property bearing on the rst argument of the one-step
time-aggregator , whereas TU-commutation does not. In practical applications, UT-
commutation is much more restrictive than TU-commutation.

Example 2.41. If (W¢;F¢;Py) is a probability space, then the extended expectaticaltt] =
Ep, UT-commutes with , given by c¢;a = (¢)+ (c)c in (2.85), only in the case
where is linear and is a constant. Comparing with Example 2.38, UT-commutation
appears much more restrictive than TU-commutation.

Proposition 2.42. Consider a sequence b of one-step time-aggregators and a

t =0
chained sequence G tT: of one-step uncertainty-aggregators. Suppose that, for ang
t<s T, s TU-commutes with G;.

T 1
Then, s TU-commutes with G,, for any r 2 [O;t 1], thatis, forany Ag ;t,
S=
whereAs 2F Wyt R,
T 1 n o1 T 1 n - 0
s Gr As = Gy s As -, ; 80 r<t T: (291)
s=t s=t s=t -
Proof. We prove by induction that
T 1 n Ot h T 1 n T oi
s Gr Cs = Gy s Cs ooy + 80 r<t T; (292

s=t s=t s=t

forany Csg ;t, whereCs 2 F W,;R .
Fort2 [0;T 1], let (H{) be the following assertion

(Hy): 8r2[0;t 1], 8s2[tT]; 8Cs2F W(;R ;
T 1 n (OF h 1t 1 n - Oi (2.93)
s Gr Cs = Gy s Cs s=t -
s=t s=t s=t
The assertion Hy 1) is
(Ht 1): 8r2[[0;Tn 2]; 8Cr2F WE);R; h8CT 12F Wi R ;

. _ | (2.94)
hti1d G Cr 1;G6GC =G ht i Cr ;Cr
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Thus, the assertion Ht 1) is true, since it coincides the property that, forany0 r<T ,
T 1 TU-commutes with G, (apply (2.89) wheret =T, = 1 1, As= Cs).

Now, suppose that Hi+1) holds true. With r <t, and Cs 2 F W,;R , for all
s 2 [t; T], we have

T 1 n - o T 1 n T 0
i S G Cs ., t Gr Ct; ey S Gr Cs o—in1
by the de nition (2.45) of composition,

h T 1 n T oi
= t Gt Ct ;G ey S Cs s=t+1
by (Hi+1) sincer<t<t +1

h T 1 n T o i
= G ¢ Cy ey S Cs -tn1
by commutation property (2.89) of G, with = t
since 0 r<t T,
h T 1 n T oi
= G s Cs s=t

s=t

by the de nition (2.45) of composition.

T 1
This ends the induction, hence the proof of (2.92). The property that s TU-

s=t
commutes with G,, forany r 2 [0;t 1], easily follows by the extensions of De nitions 2.23
and 2.25. O

2.3.4 Time-Consistency for Non Nested Dynamic Uncertainty Criteria

Consider

on the one hand, a sequence th01 of one-step time-aggregators,
on the other hand, a chained sequenceG; tT:o of one-step uncertainty-aggregators.

T T
With these ingredients, and with the compositions th and Gs introduced in
-

T 1
De nitions 2.27 and 2.25, and s in De nition 2.23, we present two ways to craft
s=t

a non-nested dynamic uncertainty criterion f %t g/_,, as introduced in De nition 2.7.
For each of them, we provide a DPE under the assumption that time and uncertainty
aggregators commute.
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TU Dynamic Uncertainty Criterion

With a slight abuse of notation, we de ne the sequence (P{Y)(x) tho of optimization
problems parameterized by the statex 2 X; as

n 1]

(PtTU )(X) Tiqd Gt G+ Gr
t

t Jt Xe; Ut Wi

n
t+1 Jt+1 Xee1; Ute1 s Wi (2.95a)
n )
T 1 Jd7 1 X7 25Ut 15Wr o1 3 J7 XTiWr
#
st X¢ = X (2.95b)
Xs+1 = fs XsjUsiWs (2.95c¢)
Us = s(Xs); (2.95d)
Us 2 Us(Xs) ; (2.95¢e)

where constraints are satis ed for alls2 [t; T  1].
We de ne the Markov optimization problem (2.95) formally by

(PTYY(x) Tir;dcygy I L 8t2[0TL 8x2Xi; (2.96)
t

where the functions J;; are de ned by (2.27), and where%Y is de ned as follows.
When we compose

* + * +
T 1 T
s Gs

T s=t s=t
F(W:spR) o 'F (W R F (Wit 1:R); (2.97)
we obtain the following De nition.
De nition 2.43.  We de ne the dynamic uncertainty criterion f%Y g7, by!®

DT E T 1
%y = Gs s . 8t2[0T 1]: (2.98)

s=t s=t

When we plug the stream ths < Of costs, introduced in De nition 2.5, into the
operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, rst with respect to time, then
with respect to uncertainty.

We aggregate streams ths (w) ;t of costs, rst with respect to time, thanks to the
. T1 T 1 , T _
function s :RT" 1 R. However, the result s Jps (W), still

s=t s=t
depends upon the scenariav.

T 1
18. With the convention that r is the identity mapping.
T
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T 1 :
Then, we aggregate uncertain intertemporal costsv 7! s Jt);(é (w) ;t |

elements of the setF (W11, R) of functions | second with respect to uncertainty
T

thanks to the multiple-step uncertainty-aggregator tGS F(WrmsR) ! R
S=

The following Theorem 2.44 is our main result on time-consistency in the TU case.

Theorem 2.44. Assume that

forany 0 s<t T, G; TU-commutes with g,
forall t 2 [0;T 1], : is non-decreasing,
for all t 2 [0; T], Gt is non-decreasing.

Then

T

1. the TU-dynamic uncertainty criterion 97 _, de ned by (2.98) is time-consistent;

2. the Markov optimization problem (P {Y)(x) 2%, tho de ned in (2.95) is time-
consistent, as soon as there exists an admissible policy 2 24 such that (2.62)

holds true, where the value functions are the V\NY _ in De nition 2.29.

Proof. Since, for any 0 s <'t T, G¢ TU-commutes with g, the TU- dynamic
uncertainty criterion oy gl , given by De nition 2.43, coincides with 97" g7, given
by De nition 2.28. Indeed, we prove that f %Y g, satis es the backward induction (2.59).

T 1
With the convention ° that L is the identity mapping, we have %Y = hGri,
r=

that is, (2.59a). For any As tT 2 F(WpgR) ;t, we have:
T D s E T 1 n T (o}
R As ooy = _. Gr r As o, by (298),
r=t r=t
! #
D s T 1 n - (0]
= Gt N Gy T As o, by (2.53),
Ds E _— ] #
= Gt —— Gr t At; N r As s=t+1 by (245),
Ds E 131 ] #
= G t Ap - Gr e T As s=t+1

by commutation property (2.91),

= Gt 1 Au%a  As Z=t+1 by (2.98).

19. See Footnote 18
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UT Dynamic Uncertainty Criterion

With a slight abuse of notation, we de ne the sequence (P{T)(x) tho of optimization
problems parameterized by the statex 2 X; a;#s

(PtUT)(X) rzniqd t Gt Jt Xt;up; W
t

t+1  GtGtr1 Jt+1 Xt+1;Ut+1 ;Wi
n h i
71 G Gt 11 1 XT Ut Wy 1

o]
Gt Gt J7t XT:WT 7 (2.99a)
sitt Xy = X; (2.99b)
Xs+1 = fs XsjUs;Ws (2.99c¢)
Us = s(Xs); (2.99d)
Us 2 Us(Xs) ; (2.99¢)
where constraints are satis ed for alls2 [t; T  1].
We de ne the Markov optimization problem (2.99) formally by
(PYT)(x) min %7 3% L. 8t2[0TL 8x2X; (2.100)
2 a v ST

where the functions J;; are de ned by (2.27), and where %[ is de ned as follows. We
de ne the mapping
n S 0 T

Gt FWrgiR) VR (2.101)
forany D, rth 2 F(Wps R) ;t, componentwise by
s h T i n s ot
r:tGr Ds oy = r:tGr Ds - : (2.102)
In the same way, we de ne the mapping (see De nition 2.25):
nD s Eoy . T+l
G, : F(WpsiR) oy !' F(WpuiR) : (2.103)

r=t s=t

De nition 2.45.  We de ne the dynamic uncertainty criterion f% g", by

T 1 nD s EOT
Wl = s G . 8t2[0;T 1]: (2.104)

s=t r=t s=t

The expression%[ is the output of the composition 2°
nD . Eo;
Gr T+1 s
= F (W R) I F (Wi R) -

r=t

T
F (W[O:s]; R) s=t !
When we plug the stream ths ;t of costs, introduced in De nition 2.5, into the
operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, rst with respect to uncertainty,
then with respect to time.

20. With the convention that F (Wp. 13;R) = R, we have %" : F(Wp.s;R) ::1 I R.
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We aggregate the stream Jgq
tainty, producing

< Of uncertain costs, rst with respect to uncer-

ns ) OT h ) | T )
G Jie = G o G Jig (2.105)
= ! S= ! d

thanks to the multiple-step uncertainty-aggregators r_tGr F(WprssR) ! R, for
- 0

n S . T
s 2 [t; T]. However, the resulting quantity Gr Iy t still depends upon
, = ’ s=
time s. nos og
Then, we aggregate the time sequence Gr Iy t of costs, second with
= ! S=

) T 1

respect to time, thanks to ; RTH1 R,

r=t
The following Theorem 2.46 is our main result on time-consistency in the UT case.

Theorem 2.46. Assume that

forany 0 s<t T, G; UT-commutes with g,

forall t 2 [0;T 1],  is non-decreasing,

for all t 2 [0;T], G; is non-decreasing.
Then

1. the UT-dynamic uncertainty criterion — 9f
consistent;

T

=0 dened by (2.104) is time-

2. the Markov optimization problem (P T)(x) 2% tho de ned in (2.99) is time-
consistent, as soon as there exists an admissible policy 2 2 such that (2.75)

holds true, where the value functions are the V,NUT tho in De nition 2.34.

Proof. Since, forany 0 s <t T, Gt UT-commutes with 4, the UT- dynamic
uncertainty criterion % gT,, given by De nition 2.45, coincides with f 9T g, given
by De nition 2.33.

Indeed, we prove thatf %[ g_, satis es the backward induction (2.72).

T 1
With the convention 2! that L is the identity mapping, we have %' = hGi,
r=

that is, (2.72a). For any As tT 2 F(WpsiR) ;t, we have:
T T 1 hD s E or
% As, = ‘ Gr As by (2.104),
r(:t r=t s=t )
T 1 nD s E Ot
= t Gt A r Gy As B by (2.45),
r=t+1 r=t s=t+1
( T 1 n hD s E io T )
= i Gt At ; r Gt _ G, As by (253),
r=t+1 r=t+1 s=t+1
( T 1 nD s E (OF )
= t Gt At ; r Gt Gr As by (2102),
r=t+1 r=t+1 s=t+1
( T 1 nD s E Ot )
= ¢ Gt At ;G r .Gy s
r=t+1 r=t+1 s=t+1
( by co)mmutation property (2.91),
h i

= { GtALG R A I=t+1 by (2.104),

21. See Footnote 18
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This ends the proof. O

2.3.5 Applications

Now, we present applications of Theorem 2.44, that is, the TU case. Indeed, Theo-
rems 2.31 and 2.36 in the nested cases NTU and NUT are less interesting because they
cover cases where time-consistency is commonplace since it only depends on monotonoc-
ity assumptions. Regarding Theorem 2.46, it is not powerful because UT-commutation
appears much more restrictive than TU-commutation: in practice, Theorem 2.46 only
applies to linear one-step time-aggregators c¢;d = ¢ + d (see Example 2.41), that
obviously commute with expectations.

Coherent Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to coherent
risk measures (see De nition 2.9), and we show that they display time-consistency. We
thus extend, to more general one-step time-aggregators, results known for the sum (see
e.g. [105,109)).

We denote by P(W;) the set of probabilities over (W¢; W;). Let Po P (W), ...,
Pr P (Wr7). If A and B are sets of probabilities, thenA B is de ned as

A B=fPa PgjPa2A; Pg2Bg: (2.106)
Let ( t)epo;r 13 a@nd ( t)i2po;r 13 b€ sequences of functions, each mappirig into R, with
the additional property that ; O, forallt2 [O;T 1]. We set, for allt 2 [0; T],
X y1
%% ( As | <) = Sup Ep sup Ep; s As r Ay ; (2.107)
PL2P Pr2P o=t =t

for any adapted uncertain process A; g, with the convention that t(ct) = cr.

Proposition 2.47.  Time-consistency holds true for
the dynamic uncertainty criterion f9 % Oi—o given by (2.107),
the Markov optimization problem

min %% ( 375 ) 8t2[0TL 8x2Xi; (2.108)
2 ad ssT

Where\]t’f;S (w) is de ned by (2.27), as soon as there exists an admissible policy! 2
ad gych that, for allt 2 [0;T 1], for all x 2 X,
n h io
E(X) 2argmin sup Ep, ¢ Ji(x;u; ) + ¢ (XU ) Vi fe(xur )
u2Ue(x) Pi2Pt

where the value functions are given by the following DPE

Vr(x)= sup Ep, J7(X; ) ; (2.109a)
Pr2P T nh

Vi(x)= min  sup Ep, t Ji(x;u; ) (2.109b)
u2Ut(x) p 2P io

+ ¢ (U ) Vier fe(xsu; )

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
the one-step time-aggregators are de ned by

8t2[0;T 1], 8 c;ce1 2 R% t C;C+1 = t(c)+ t(c)c+1 5 (2.110a)
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the one-step uncertainty-aggregators are de ned by

8t2 [0;T 1], 8Ci2F(W;R); G{C; = sup Ep, C; : (2.110b)
P 2P ¢

The DPE (2.109) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, forany 0 t<s T, Gg TU-commutes with . Indeed, letting
¢ be an extended real number inR and Cs a function in F (Ws; R), we have??

n o]
Gs fc;Csg = sup Ep, (a)+ (c¢)Cs by (2.110b) and (2.110a),
Ps2P s N o
= )+ (c) S;JIE Ep,[Cs] as ¢ O;
= (a)+ 1(c)Gs[Cs] by (2.110b),
= fc; Gs[Cslg by (2.110a).
Second, we observe that; is non-decreasing (see De nition 2.24), and thatc+1 2 R 7!
t CiC+1 = t(c)+ (c)c+1 IS non-decreasing, for anyc; 2 R.
This ends the proof. O

The one-step uncertainty-aggregatorsG; in (2.110b) correspond to a coherent risk
measure, by De nition 2.9 and the comments that follow it.

Our result di ers from [105, Theorem 2] in two ways. On the one hand, in [105],
arguments are given to show that there exists an optimal Markovian policy among the set
of adapted policies (that is, having a policy taking as argument the whole past uncertainties
would not give a better cost than a policy taking as argument the current value of the
state). We do not tackle this issue since we directly deal with policies as functions of the
state. Where we suppose that there exists an admissible policy! 2 29 such that (2.62)
holds true, [105] gives conditions ensuring this property. On the other hand, where [105]
restricts to the sum to aggregate instantaneous costs, we consider more general one-step
time-aggregators . For instance, our results applies to the product of costs.

Convex Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see De nition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that; 1
and an additional data ( t)t2[0:717-

Let Po P (Wo), ..., Pt P (Wr), and ( t)i2p0;1] b€ sequence of functions, each
mapping P (W) into R. Let ( t)i2po:17 be sequence of functions, each mapping into R.
We set, for allt 2 [O; T],

XT
%% ( As f)=§gg Ep, sup Ep, s(As)  s(Ps) : (2.111)
t t

Pr2P ¢ o=t

for any adapted uncertain process A; g, with the convention that 1(ct) = cr.

Proposition 2.48. Time-consistency holds true for
the dynamic uncertainty criterion f %} gl-, given by (2.111),

22. This result can also be obtained by use of Proposition 2.52 with | = Ps.
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the Markov optimization problem

min 9% ( 375 ) 8t2[0TL 8x2Xi; (2.112)
2 ad © ssT

Where;lt’;“S (w) is de ned by (2.27), as soon as there exists an admissible policyl 2
ad gych that, for all t 2 [O; T 1], for all x 2 X,
n h [ 0
l0g2argmin sup B ¢ Ji6u; ) + Ve fulu;) WP
u2U;(x) Pt2P ¢

where the value functions are given by the following DPE

Vr(X)= sup Ep, J7(X; ) T(P1); (2.113a)
Pr2Pt
n h
Vi(x) = mi E Ji(x; u;
1) U0 pa, 0 i o
+ Vi fe(xu; ) t(P) (2.113b)

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
the one-step time-aggregators are de ned by

t CiCer = t(C)+ C1; 8t2[0;T 1], 8 cicer 2 R?: (2.114a)
the one-step uncertainty-aggregators are de ned by

Gt Ci =sup Ep, G («(P); 8t2[0;T 1], 8C.2F (W R): (2.114b)
Pt 2P ¢

The DPE (2.113) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.
First, we prove that, forany t 2 [O;T 1Jands2 [t +1;T], Gs TU-commutes with

t. Indeed, letting ¢; be an extended real number inR and Cg a function in F (Ws; R),
we have?®

n 0
Gs fc;Csg = sup Ep, (c)+ Cs s(Ps) by (2.114b) and (2.114a)
Ps2Ps N o
= (c)+ sup Ep[Cq] s(Ps)
Ps2Ps

t(c) + Gs[Cs] by (2.114b)
tf ¢t Gs[Cslg by (2.114a).

Second, we observe that; is non-decreasing (see De nition 2.24), and thatci+1 2 R 7!
t C;C+1 = (¢)+ c+1 is non-decreasing, for anyc; 2 R.
This ends the proof. O

The one-step uncertainty-aggregatorsG; in (2.114b) correspond to a convex risk mea-
sure, by De nition 2.9 and the comments that follow it.

Worst-Case Risk Measures (Fear Operator)

A special case of coherent risk measures consists of the worst case scenario operators,
also called \fear operators” and introduced in x2.1. For this subclass of coherent risk
measures, we show that time-consistency holds for a larger class of time-aggregators than
the ones above.

23. This result can also be obtained by use of Proposition 2.52 with | = Ps.
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Forany t 2 [O;T 1], let fv. be a non empty subset ofW, and let ;:R?! R be
a function which is continuous and non-decreasing in its second variable. We set, for all
t2 [0;T],

(
oC Ty — Ty. .
AT (As ()= _sup t Al Ws () 41 .
Mo (2 ) (2.115)
n o]
T 1 At a(wr 1 wr)Ar(wr) ;
for any adapted uncertain process A; g.
Proposition 2.49. Time-consistency holds true for
the dynamic uncertainty criterion f %% 9=, given by (2.115),
the Markov optimization problem
, S
min, BF ( Jis =) (2.116)

where Ji¢ (w) is de ned by (2.27), as soon as there exists an admissible policy! 2
ad gych that, for all t 2 [O; T 1], for all x 2 X,
n

o]
E(X)Z argmin sup ¢ Jy X;u;we ;Vier foo xpupwe
U2U1(X) Wtzwt
where the value functions are given by the following DPE
Vr(x)= sup Jr(x;wrt); (2.117a)
WTZWT
n 0]
Vi(x)= min sup ¢ Ji x;u;we Vier oo Xoupwe (2.117b)
UZU‘(X)WtZWt

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where the one-step
uncertainty-aggregators are de ned by

Gt C; = sup Ci(wy); 8t2[0;T 1], 8Ci2F (W¢;R): (2.118)
wi 2 Wi
The DPE (2.117) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.
First, we prove that, forany t 2 [0;T 1Jands2 [t +1;T], Gs TU-commutes with
. Indeed, letting ¢; be an extended real number inR and Cs a function in F (Ws; R),
we have?*

h [
Gs tfc;Csg = sup t C; Cs(ws) by (2.118),
ws2 W
n 0
= { C; sup Cs(ws) by continuity of (fc;; g;
w2 Wy

Second, we observe thatG; is non-decreasing (see De nition 2.24), and thatci+1 7!
t(Ct; ¢+1 ) is non-decreasing for anyc; 2 R, by assumption.
This ends the proof. O

Note that CV@’% is simply the fear operator on the Cartesian productht fvr. An

example of monotonous one-step time-aggregator isy C;;C+1 =max C;;C+1 , usedin
the so-called Rawls or maximin criterion [34].

24. This result can also be obtained by use of Proposition 2.52 with | = 5.
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2.3.6 Complements on TU-Commuting Aggregators

Here, we present how we can construct new TU-commuting aggregators from known
TU-commuting aggregators. We do not consider UT-commutation, since we have seen
that it appears much more restrictive than TU-commutation (see Example 2.41).

For this purpose, we consider a xed non empty setl and a mapping from R' to R.

Time-Aggregators

Let ( "2 be a family of one-step time-aggregators. Thanks to the mapping ‘R' 1
R, we de ne the one-step time-aggregator ( ')i2; by

( Dizr cd = 'feidg ,, (2.119)

forall c2 Randd2 R.

Proposition 2.50. Lett 2 [0; T] and G; be at-one-step uncertainty-aggregator. Suppose
that
G; TU-commutes with ', forall i 21,
forall i 2 1 and for all C{ 2 F (W¢;R),
h [ n o]
GG C ., = G¢C _ (2.120)
i21

Then G; TU-commutes with ()2 .

Proof. We set = ( D21 . For c2 R and C; 2 F (W¢;R), we have
h [ h _ [
Gy c.C =G 'fc; Cg o by de nition of in (2.119),
n _ 0 _ _
= Gt 'fc;Gg - by (2.120) with C{ = 'fc;CGqg;
|
n o
= ' GGG L, by TU-commutation (2.83),
= ¢ Gt[Ci] by de nition of in (2.119).
By De nition 2.37, this ends the proof. O]

Uncertainty-Aggregators

Let t 2 [0;T] and fGi'gi»; be a family of t-one-step uncertainty-aggregatgts. Thanks
to the mapping : R' ! R, we de ne the t-one-step uncertainty-aggregator G giz;

by h i

8Ct 2 F (Wi; R); fGi'gar Ct =  G¢ C (2.121)

i21
We do not give the proof of the next Proposition 2.51, as it follows the same line as that
of Proposition 2.50.

Proposition 2.51. Let be a one-step time-aggregator. Suppose that
TU-commutes with G;', for all i 2 | :
forall c2 R, forall i 21 and for all ¢ 2 R,

c, ¢ . = c, d : (2.122)
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h i
Then TU-commutes with fG'gio| .

As a corollary, we obtain the following practical result.

Proposition 2.52. Let be a one-step time-aggregator. Suppose that

G TU-commutes with , forall i 21,

forall c2 R, c¢; is continuous and non-decreasing®®
Then, the t-one-step uncertainty-aggregatorsup,,, G:' TU-commutes with , and so does
infio; G¢', provided infi»; G;' never takes the valuel

Proof. We are going to show that (2.119) holds true, and then the proof is a straightforward
application of Proposition 2.51. We setG; = sup,, G¢' +(1  )infi2; G¢', with 2 [0; 1]
(only at the end, do we take 2f0;1g). Forany (c;G) 2 R F (W¢; R), we have

h [ h [
G ¢CG = ( sup+(1 )i_r;]i)Gt' c;C; by de nition of G ;
i21 i
n _ )
= ( sup+(1 )ir211:) c;G¢' C; by TU-commutation (2.83),
i |
N n o
= sup cG' C +(@ )i_gf c.G!' C
i |
'H 0 n 0

= csupG G +(1 ) Ciigf G C ;
i21 i
by continuity and monotonicity of c,

n 0

= c;( sup+(1 )igT)Gt‘ C: when 2f0;1g:
i21 I

The rest of the proof is a straightforward application of Proposition 2.51. O

The following Proposition 2.53 is an easy extension of Proposition 2.52.

Proposition 2.53.  Suppose that the assumptions of Proposition 2.52 hold true. L,

l,j2Jandl; 1,j2J be nite families of non empty subsets off .
If is ane in its second variable, that is, if

c;d = (o+ (0d; (2.123)
and if (f_jgj 20:F ¢] ,7) are non-negative scalars that sum to one, the convex com-
bination X X _

S inf G'+  j supGy' (2.124)
j20 b j23  i20]

of in mum or supremum of subfamilies offGtigm TU-commutes with , provided
infizLj G:' never takes the valuel
If is linear in its second variable, that is, if

c;d = (od; (2.125)
and if (f_; g24:f gjzj) are non-negative scalars, the combination
X X .
_j inf G' + j supGt' (2.126)
- 121 52T,
j2J j23 i

of in mum or supremum of subfamilies offGtigm TU-commutes with , provided
infizLj Gt' never takes the valuel

25. Instead of the continuity of c; , we can assume that, for all C; 2 F (W;;R), sup,,, Gt'[Ct] is
achieved (always true for | nite).
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2.4 Extension to Markov Aggregators

Here, we extend the results ofx2.3 to the case where we allow one-step time and
uncertainty aggregators of depend on the state. The di culty of this extension is mainly
one of notations. We do not give the proofs because they follow the sketch of those
in x2.3.2 and inx2.3.4. We will reap the bene ts of this extension in x2.4.6, where we
present applications.

2.4.1 Markov Time-Aggregators and their Composition

We allow one-step time-aggregators to depend on the state as follows (De nition 2.54
di ers from De nition 2.18 only through the indexation by the state).

De nition 2.54. Let t 2 [O;T]. A one-step Markov time-aggregatoris a family
o e 2 X of one-step time-aggregators {* : R?! R indexed by the statex; 2 X;.

Now, we introduce the composition of one-step Markov time-aggregators.

n Ot 1

De nition 2.55. Let £ X2Xi 1= be a sequence of one-step Markov time-

aggregators. Lett 2 [O;T 1]. Given a policy 2 and x; 2 X;, we de ne the
Xt
composition t s © F(WpriR) tT 'F (Wp.r)sR) by
t s T 1

Xt n (0] Xt

T —
s FAsG w =
t s T 1 t s T 1

0
fAswgl (2.127)

XA wy N
S
_ T t+l .
for all scenario w 2 Wq.r3, for any sequencef Asgl_, 2 F(Wp.r:R) , that is,
whereAs 2F W ;R .
Notice that the extension, to one-step Markov time-aggregators, of the composition

involves the dynamical system (2.2) and a policy (whereas, in De nition 2.23, the compo-
sition is independent of the policy).

Xt,

Remark 2.56. Observe that we have de ned ' s , dened over functions,
t s T 1
Xt,
but not s , dened over extended reals. Observe also that the image by
t s T 1
Xt
s of any sequencecy 1) of extended reals is not an extended real, but is a
t s T 1
function:
Xt Xt X%Sf; (w)
s QT W = st Cr:Ty - (2.128)
tsT 1 tsT 1

2.4.2 Markov Uncertainty-Aggregators and their Composition

We allow one-step uncertainty-aggregators to depend on the state as follows (De ni-
tion 2.57 di ers from De nition 2.24 only through the indexation by the state).

De nition 2.57. Lett 2 [O;T 1]. A t-one-step Markov uncertainty-aggregatoris a

family G X2 Xe of t-one-step uncertainty-aggregators indexed by the statg 2 X;.
T

We say that a sequence Gi' X 2X; 120 of one-step Markov uncertainty-aggregators
is a chained sequencéf G}' is a t-one-step uncertainty-aggregator, for allt 2 [0; T].
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The extension, to one-step Markov uncertainty-aggregators, of the composition involves
the dynamical system (2.2) and a policy (whereas, in De nition 2.27, the composition is
independent of the policy). The formal de nition is as follows.

n o7
De nition 2.58.  Consider a chained sequence G}
uncertainty-aggregators.
For a policy 2 ,fort 2 [O;T] and for a state x; 2 X;, we de ne the composition

X2Xi 12 of one-step Markov

Xt

- Gs as a functional mappingF Wi.r1;R into R, inductively given by
S

X7,
L Gs= GY (2.129a)

T s

and then backward by, for any functionD¢ 2 F W.t;R ,

n
Xt;

Gs Dy = G w 7!

t s T

# (2.129b)

fr(xe; t(xt)we);

s T Gs  Ws1:7) 7! Dt Wi Wit T

2.4.3 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider n o7 ;
on the one hand, a sequence X2X (o ofone-steg Markov time-aggregators,
T
on the other hand, a chained sequence Gi! X2Xi 12 of one-step Markov
t=

uncertainty-aggregators.
With these ingredients, we present two ways to design a Markov dynamic uncertainty
criterion as introduced in De nition 2.7.

NTU Dynamic Markov Uncertainty Criterion
De nition 2.59. Let a policyn 2  be given. XVe construct inductively aNTU-Markov
T

dynamic uncertainty criterion ot NTY o by

(=]
DX
>
z
5
c
>
_'
|

G At , (21302)

+

(=]
O
o

=2
—
C
>
(7]
(7]
I

T Xt i Xt coft(Xt; t(Xt); ) NTU T .
L C AL I At’}Pl;T As ota1 '

8t2[0;T 1]; (2.130b)
for any sequencef xsgg of states, wherexs 2 Xs.

We de ne the Markov optimization problem

T .
s=t

(P MNTU y(x) Tir;d N 1 8t2 [0;T]; 8x2 X ; (2.131)
t

where the functionsJ;; are de ned by (2.27).
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De nition 2.60.  We de ne the value functions inductively by the DPE

h i
MNTU = X : : )
T W ’ .
V- (x)= Gy Jr(x; ) ; 8x2 Xy (2.1322)
n #
VT 0o = inf GE Jus VT fiOgu ) (2.1320)
t

8t2[0;T 1], 8x2 X;:

The following Proposition 2.61 expresses su cient conditions under which any Prob-
lem (PMNTU )(x), for all t 2 [0; T] and for all x 2 X, can be solved by means of the value
functions in De nition 2.60.

Proposition 2.61. Assume that

forall t 2 [0;T 1], for all x; 2 X, {' is non-decreasing,
for all t 2 [O;T], for all x; 2 X;, Gi“ is non-decreasing.

Assume that there exist$® an admissible policy 1 2 24 such that
n #

Ix)2 argminG* % Ji(xu; VUINTY  fixu; )
t u2 U (x) v ot t (2.133)

8t2[0;T 1], 8x2 X;:

Then, 1 is an optimal policy for any Problem (P MNTV )(x), for all t 2 [0; T] and for all
X 2 X¢, and

T .
s=t ’

VtMNTU x) = mind O/P’T’ NTU ‘]tX’S 8t2[0;T];, 8x2 X;: (2.134)
2 ° '

The following Theorem 2.62 is our main result on time-consistency in the NTU Markov
case.

Theorem 2.62. Assume that
forall t 2 [O;T 1], for all x; 2 X, i‘t is non-decreasing,
for all t 2 [0; T, for all x; 2 X;, G}* is non-decreasing.
Then

1. F]or all policy o 2 , the NTU-Markov dynamic uncertainty criterion
T

%tT ; NTU 2% 1o de ned by (2.130) is time-consistent;

2. the Markov optimization problem  (PMNTV )(x) 2%, tho dened in (2.131) is

time-consistent, as soon as there exists an admissible policy! 2 2 such
that (2.133) holds true.

26. See Footnote 10.
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NUT Dynamic Markov Uncertainty Criterion
De nition 2.63. Leta policyn 2  be given. XVe construct inductively aNUT-Markov
T

dynamic uncertainty criterion oy T o Y

()/q(T; ; NUT At

G Ar h; . (2.135a)
i
O/P(,EI';;NUT As -sr:t — i(t f'G%“i A
h i
VGi([i O}P:-gx;tT; t(xt););; NUT As 1-=t+1 :
8t2[0;T 1]; (2.135b)
for any sequencef xsgg=O of states, wherexs 2 Xs.

We de ne the Markov optimization problem

T .
s=t

(P{VINUT )(X) Tiqd %QT s NUT ths 8t2[0;T];, 8x2 X;; (2.136)
t

where the functions J;; are de ned by (2.27).

De nition 2.64.  We de ne the value functions inductively by the DPE

h i
VMNUT () = GX J1(x; ) ; 8x2 Xt ; (2.137a)
VMNIT (x) = inf ¥ G AU 6 VMNUT £y ) (2.137b)
u t (X

8t2 [0;T 1]; 8x2 X;:

The following Proposition 2.65 expresses su cient conditions under which any Prob-
lem (PMNUT )(x), for all t 2 [0; T] and for all x 2 X, can be solved by means of the value
functions in De nition 2.64.

Proposition 2.65. Assume that
forall t 2 [0;T 1], for all x; 2 X, {' is non-decreasing,
for all t 2 [O;T], for all x; 2 X, Gi“ is non-decreasing.
Assume that there existd’ an admissible policy 1 2 24 such that

lx) 2 argmin ¥ G Ji(x;u; ) ;G VMNT  fixu; )
‘ o Lo v t (2.138)

8t2 [0;T 1], 8x2 X;:

Then, 1 is an optimal policy for any Problem (P MNUT )(x), for all t 2 [0; T] and for all
X 2 X¢, and

8t2[0;T];, 8x2 X;: (2.139)

MNUT — : v NUT X; T i
Vt (x) = nz“nad %(,T ‘]t;s s=t !
t

The following Theorem 2.66 is our main result on time-consistency in the NUT Markov
case.

27. See Footnote 10.
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Theorem 2.66. Assume that
forall t 2 [O;T 1], for all x; 2 X;, {' is non-decreasing,
for all t 2 [0; T], for all x; 2 X;, G}* is non-decreasing.
Then

1. Lor all policy o 2 , the NUT-Markov dynamic uncertainty criterion
T

%tT ; NUT 2% 1o de ned by (2.135) is time-consistent;

2. the Markov optimization problem (P MNUT )(x) wox, t=o dened in (2.136) is

time-consistent, as soon as there exists an admissible policyl 2 2 such
that (2.138) holds true.

2.4.4 Commutation of Markov Aggregators

We extend the results on commutation obtained inx2.3.3 to Markov time and uncer-
tainty aggregators. We d% not give thg proofs.
T 1

Consider a sequence [

n or
sequence Gft

Sio% of one-step Markov time-aggregators and a
12Xt =0

X2Xi 1o of one-step Markov uncertainty-aggregators.

TU-Commutation of Markov Aggregators

The following Proposition 2.67 extends Proposition 2.39 to one-step Markov aggrega-
tors.

Proposition 2.67. Suppose that, for any0 t<s T, for any states x; 2 X; and
Xs 2 Xs, G¥s TU-commutes with .

Then, for anproIi%y 2 ,any0 r<t T, any statesx; 2 X; and x; 2 X;,
Xt
- Gs and [ TU-commute, that is,

S

Xt, hD E | D E Xt
Gs oA = ¢ Gs A (2.140)

for any extended scalarc 2 R and any function A2 F Wp.r;R .

UT-Commutation of Markov Aggregators

The following Proposition 2.68 extends Proposition 2.42 to one-step Markov aggrega-
tors.

Proposition 2.68. Suppose that, for any0 t<s T, for any states x; 2 X; and
Xs 2 Xs, %5 TU-commutes with G{*.
Then, for any policy 2 ,forany 0 r<t T, any statesx; 2 X; and x; 2 X;,

Xt
s TU-commutes with hG¥ri, that is,
t s T 1

Xt} n (08 Xt n TO
s hGrr i As = hGJ'i s As

: 2.141
ts T 1 t tsT 1 t ( )

forany As L., whereAs2F Wy rpiR .
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2.4.5 Time-Consistency for Non Nested Dynamic Uncertainty Criteria
TU Dynamic Markov Uncertainty Criterion

De nition 2.69. Leﬁ a policy 2 o be given. We de ne the TU-Markov dynamic
T

; itAar ;i TU 28
uncertainty criterion (VﬁtT X2Xi 1= by
S TU Xt; Xt
%L = Gs s 5 S8t2[0;T];, 8xt2 X;: (2.142)
’ tsT tsT 1

We de ne the Markov optimization problem

(PMTY)(x) min LN Z_t : 8t2[0;T]; 8x2 X:; (2.143)
2 ad sss
where the functionsJ/; are de ned by (2.27).
The following Theorem 2.70 is our main result on time-consistency in the TU Markov

case.

Theorem 2.70. Assume that

forany 0 s<t T, for any statesx; 2 X; and xs 2 Xs, Gf* TU-commutes with

Xs
S

forall t 2 [O;T 1], for all x; 2 Xy, i‘t is non-decreasing,
for all t 2 [0; T], for all x; 2 X;, G}* is non-decreasing.
Then

1. the TU-Markov dynamic uncertainty criterion %"‘T”TU tho de ned by (2.142) is
time-consistent;

2. the Markov optimization problem  (Py** ™™ )(x) . I, dened in (2.143)
is time-consistent, as soon as there exists an admissible policy! 2 2 such
that (2.133) holds true, where the value functions are the VNV tT:o in De ni-
tion 2.60.

UT Dynamic Markov Uncertainty Criterion

For UT-Markov dynamic rlimcertainty 8riteria, we have to restrict the de nition to
T 1

the case where the sequence [ X2Xi 12 of one-step Markov time-aggregators is a
t=

t th01 of one-step time-aggregators (see Remark 2.56).

De nition 2.71. Leﬁ a policy 2 o be given. We de ne the UT-Markov dynamic
T

sequence

; tap ;i UT 29
uncertainty criterion (Véfl- X2Xi (2 by
N T 1 D x; E
o VT = s . Gs i B2[0TE 8xi 2 X:: (2.144)
’ s=t S

We de ne the Markov optimization problem

(PMYT)H(x) Tir;d w3 ;t : 8t2[0;T]; 8x2 X;; (2.145)
t
where the functionsJ;; are de ned by (2.27).
The following Theorem 2.72 is our main result on time-consistency in the UT Markov
case.
28. See Footnote 18
29. See Footnote 18
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Theorem 2.72. Assume that
forany 0 s<t T, for any statesx; 2 X, G{* UT-commutes with g,
forall t 2 [0;T 1], : is non-decreasing,
for all t 2 [0; T], for all x; 2 X;, G}* is non-decreasing.

Then

1. the UT-Markov dynamic uncertainty criterion 9% YT [ dened by (2.144) is
time-consistent;

2. the Markov optimization problem (P ™/ T)(x) . I, dened in (2.145)

is time-consistent, as soon as there exists an admissible policy! 2 2 such

that (2.138) holds true, where the value functions are the VNVT tT:o in De ni-
tion 2.64. (where  does not depend orxy).

2.4.6 Applications

Now, we present applications of Theorem 2.70, that is, the TU Markov case (see the
discussion introducing x2.3.5).

Coherent Markov Risk Measures

We introduce a class of TU Markov dynamic uncertainty criteria, that are related to co-
herent risk measures (see De nition 2.9), and we show that they display time-consistency.

Forall t 2 [0; T] and all x; 2 X, let be givenP¢(x¢) P (Wy). Let ( t)izpo;r 13 and
( Ot2goT 13 be sequences of functions, each mapping: R into R, with the additional
property that ; O, forallt2 [O;T 1]. Notice that, to the di erence with the setting
in x2.3.5, { and  can be functions of the statex.

For a policy 2 ,for t2 [0;T] and for a state x; 2 X;, we set

N .
A A L)= s En  swp En,
P2P(xt) Pr2PT(X;t)
X g1 (2.146)
s Xgs i As e Xep A ;

s=t r=t
for any adapted uncertain process A; g, with the convention that 1 (xt;cr) = cr.

Proposition 2.73.  Time-consistency holds true for
the Markov dynamic uncertainty criterion ff %Y * “gy 2x, 97, given by (2.146),
the Markov optimization problem

T

rznigd %y C( e o) Bt2[0TD 8x2 X; (2.147)

where Ji% (w) is de ned by (2.27), as soon as there exists an admissible policyl 2
ad gych that, for all t 2 [O; T 1], for all x 2 X,

n h
I(x)2argmin sup  Ep, ¢ x;J¢(x; U; wy)
UZUt(X) PtZPt(X) |0
+ o X (G uwe) Ve fe(xuywe) o
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where the value functions are given by the following DPE

Vr(x)= sup Ep, J7(X) ; (2.148a)
PTZPT(X) n h
Vi(X) = min sup  Ep, ¢ x;Ji(Xu; ) (2.148b)

u2Ui(X) p 2P ¢ (x) io
+ ¢ X Ji(xXu; ) Vimr fi(xu; )

With the one-step Markov uncertainty-aggregator

G = sup Ep ; (2.149)
P 2P ¢ (X)

X

the expression G, o' *

(see De nition 2.25) de nes a coherent Markov risk measure

(De nition 2.13). The associated function ¢ in (2.37) is given by

h i
t V;X;u = sup Ep, v fi Xxu; : (2.150)
PtZP‘(X)

We see by (2.34) that, for any statex 2 X;, and any control u 2 Uy, the function v 7!
t V;X;u ;is a coherent risk measure (see De nition 2.13).

Convex Markov Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see De nition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that; 1
and an additional data ( t)t2[0:7]-

For all t 2 [0;T] and all x; 2 X, let be given P¢(xy) P (Wy). Let ( t)i2po7y b€
a sequence of functions ¢ mapping Xy P (Wy) into R. Let ( t)i210;T3 b€ @ sequence
of functions  mapping X; R into R. Notice that, to the di erence with the setting
in x2.3.5, { and { can be functions of the statex.

Forapolicy 2 ,atime t2 [0;T] and a statex; 2 X;, we set

(yétT;;cX( Ag ;t): sup Ep, sup Ep,

P12P1(X[) Pr ZPT(XT)
. (2.151)

s Xs;As s(Xs; Ps) ;
s=t

for any adapted uncertain process A; g, with the convention that 1(ct) = cr.

Proposition 2.74.  Time-consistency holds true for
the dynamic uncertainty criterion ff %" ““gy,2x, 9= given by (2.151),
the Markov optimization problem

r;nigdog?; HIE L) 8t2[OTL 8x2 X (2.152)

whereJt’f; (w) is de ned by (2.27), as soon as there exists an admissible policy! 2
ad gych that, for all t 2 [O; T 1], for all x 2 X,
n h [ 0
%(x) 2argmin sup Ep, ¢ x;Ji(Xu; ) + Vs fe(Xu; ) (X Py
u2Ut (x) Pt2P(x)
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where the value functions are given by the following DPE

n o]
Vr(x)= sup Ep, 1 XJ7(X ) (X Pr) ; (2.153a)
Pr ZPT(X) n h

Vi(X) = min sup  Ep, ¢ x;Je(x;u; )
u2Ut(X) p 2P { (x)

[ o]
+ Vi (XU ) t(X; Py) (2.153b)
With the one-step Markov uncertainty-aggregator
n 0
G = sup Ep t(X; Py (2.154)
P12P1(X)
X g,
the expression G; ot 1 (see De nition 2.25) de nes a convex Markov risk measure
(De nition 2.13). The associated function  in (2.37) is given by
n h [ o]
t V;X;u = sup Ep, v ft Xju; W, t(X; Py) (2.155)

P[ 2P t (X)

We see by (2.34) that, for any statex 2 X;, and any control u 2 U, the function v 7!
t V;X;u ;is a convex risk measure (see De nition 2.13).

2.5 Discussion

We discuss how our assumptions and results irx2.3 relate to other results in the
literature on time-consistency for dynamic risk measures

First, we examine the connections between time-consistency for Markov dynamic un-
certainty criteria and the existence of a DPE. When we analyze the literature on time-
consistency for risk measures with our tools (aggregators), we observe that

most, if not all results, are obtained for the speci c case of linear one-step time-

aggregators t Ci;C+1 = Ct + C+1,

a key ingredient to obtain time-consistency is an equation like (2.156a), which corre-

sponds to the commutation of one-step uncertainty-aggregators with the sum (that

is, with the linear one-step time-aggregators actually used).
Therefore, Theorems 2.31, 2.36, 2.44, 2.46 iR2.3 provide an umbrella for most of the
results establishing time-consistency for dynamic risk measures, and yields extensions
to more general time-aggregators than the sum. In [23], time-consistency for dynamic
risk measures is not de ned by a monotonicity property like in [105] but in line with the
existence of a DPE. In [56], the time-consistency property is comparable to De nition 2.16,
though being restricted to the multiplicative time-aggregator.

We discuss to some extent [105] where time-consistency for dynamic risk measures plus
an additional assumption like (2.156a) lead to the existence of a DPE, within the original
framework of Markov risk measuressketched above. Here is the statement of Theorem 1
in [105], with the notations of x2.2.2.

Theorem 2.75 ( [105]). Suppose that a dynamic risk measure .t tho satis es, for all
t 2 [0;T], and all A, 2L the conditions

o7 Ag L, = At ot OAL AL (2.156a)

v 0. = 0: (2.156b)
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Then is time-consistenti, forall O s t T and all fASgg 2 L o7, the following
identity is true:
T
s;T A = st A

rr=s

t A T

r r=s’ 6T ror=t

(2.157)

In [105, Section 5], the nite horizon problem corresponds to Problem (2.95), starting
at t = 0, where the one-step uncertainty aggregatorG; in (2.95) corresponds to the one-
step conditional risk measure ¢, the one-step time-aggregator ; in (2.95) corresponds to
the sum, and the costJ; in (2.95) is denoted ¢; in [105]. Commutation of the one-step
time-aggregators ; and the one-step uncertainty-aggregatorsGs is ensured through the
equivariance translation property (2.156a) of a coherent measure of risk. Monotonicity of
the uncertainty aggregator Gs corresponds to the monotonicity property of a coherent risk
measure, and monotonicity of the time aggregator is obvious. Thus, Theorem 2.44 leads
to the same DPE as [105, Theorem 2].

Let us now focus on the di erences between [105] and our results. In [105], arguments
are given to show that there exists an optimal Markovian policy among the set of adapted
policies (that is, having a policy taking as argument the whole past uncertainties would
not give a better cost than a policy taking as argument the current value of the state).
We do not tackle this issue since we directly deal with policies as functions of the state.
Where we suppose that there exists an admissible policy! 2 24 such that (2.62) holds
true, [105] gives conditions ensuring this property. Finally, where [105] restricts to the sum
to aggregate instantaneous costs, we consider more general one-step time-aggregators
Moreover where we give a su cient condition for a Markovian policy to be optimal, [105]
gives a set of assumptions such that this su cient condition is also necessary (typically
assumption ensuring that minimums are attained).

Second, we discuss the possibility to modify a Markov optimization problem or a
dynamic risk measure, in order to make it time-consistent (if it were not originally). When
sequences of optimization problems are not time-consistent with the original \state", they
can be made time-consistent by extending the state. In [26], this is done for a sequence of
optimization problem under a chance constraint. In [107, Example 1], the sum of AV@R
of costs is considered (given by the dynamic risk measure de ned in 2.1.2 and labeled
(TU)). This formulation is not time consistent. However, exploiting the formulation (2.19)
of AV@R, we suggest to extend the state and add the variable$ rsgg so that, after
transformation, we obtain a problem with expectation as uncertainty aggregator, and sum
as time aggregator, thus yielding time-consistency. In [78], it is shown how a large class
of possibly time-inconsistent dynamic risk measures, called spectral risk measures and
constructed as a convex combination of AV@R, can be made time-consistent by what we
interpret as an extension of the state.
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Chapter 3

Stochastic Dual Dynamic
Programming Algorithm

It is really true what philosophy tells us, that life must
be understood backwards. But with this, one forgets the
second proposition, that it must be lived forwards.

S ren Kierkegaard
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In Chapter 2 we presented a general framework for Dynamic Programming without
any numerical considerations. Here, we are interested with approaches that circumvent
the curse of dimensionality. Indeed, we study algorithms that exploits analytical proper-
ties of the value functions (mainly convexity) to construct approximations of those value
functions.

By contrast with the rest of the manuscript, the formalism of this chapter is the
formalism of the Stochastic Programming community, where the uncertainties are encoded
on a tree. We have seen irx1.1.2 that this framework can be translated to the stochastic
optimal control framework.

The contents of this chapter has been accepted (up to minor modi cations) by the
Mathematics of Operations Researchjournal, under the name \On the convergence of
decomposition methods for multistage stochastic convex programs”. It is a common work
with A. Philpott and P. Girardeau. The abstract is the following.

This chapter prove the almost-sure convergence of a class of sampling-based nested
decomposition algorithms for multistage stochastic convex programs in which the stage
costs are general convex functions of the decisions, and uncertainty is modelled by a
scenario tree. As special cases, our results imply the almost-sure convergence of SDDP,
CUPPS and DOASA when applied to problems with general convex cost functions.
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Introduction

Multistage stochastic programs with recourse are well known in the stochastic pro-
gramming community, and are becoming more common in applications. We are motivated
in this paper by applications in which the stage costs are nonlinear convex functions of
the decisions. Production functions are often modelled as nonlinear concave functions of
allocated resources. For example Finardi and da Silva [47] use this approach to model
hydro electricity production as a concave function of water ow. Smooth nonlinear value
functions also arise when one maximizes pro t with linear demand functions (see e.qg. [81])
giving a concave quadratic objective or when coherent risk measures are de ned by con-
tinuous distributions in multistage problems [108].

Having general convex stage costs does not preclude the use of cutting plane algorithms
for attacking these problems. Kelley's cutting plane method [57] was originally devised for
general convex objective functions, and can be shown to converge to an optimal solution
(see e.g. Ruszczynski [102, Theorem 7.7]), although on some instances this convergence
might be very slow [69]. Our goal in this paper is to extend the convergence result of [102]
to the setting of multi-stage stage stochastic convex programming.

The most well-known application of cutting planes in multi-stage stochastic program-
ming is the stochastic dual dynamic programming (SDDP) algorithm of Pereira and
Pinto [77]. This algorithm constructs feasible dynamic programming policies using an
outer approximation of a (convex) future cost function that is computed using Benders
cuts. The policies de ned by these cuts can be evaluated using simulation, and their
performance measured against a lower bound on their expected cost. This provides a con-
vergence criterion that may be applied to terminate the algorithm when the estimated cost
of the candidate policy is close enough to its lower bound. The SDDP algorithm has led
to a number of related methods [27,38,39,55,80] that are based on the same essential idea,
but seek to improve the method by exploiting the structure of particular applications. We
call these methods DOASA for Dynamic Outer-Approximation Sampling Algorithms but
they are now generically named SDDP methods.

SDDP methods are known to converge almost surely on a nite scenario tree when the
stage problems are linear programs. The rst formal proof of such a result was published
by Chen and Powell [27] who derived this for their CUPPS algorithm. This proof was ex-
tended by Linowsky and Philpott [64] to cover other SDDP algorithms. The convergence
proofs in [27] and [64] make use of an unstated assumption regarding the independence
of sampled random variables and convergent subsequences of algorithm iterates. This as-
sumption was identi ed by Philpott and Guan [80], who gave a simpler proof of almost
sure convergence of SDDP methods based on the nite convergence of the nested decom-
position algorithm (see [38]). This does not require the unstated assumption, but exploits
the fact that the collection of subproblems to be solved has a nite number of dual extreme
points. This begs the question of whether SDDP methods will converge almost surely for
general convex stage problems, where the value functions may admit an in nite number
of subgradients.

In this paper we propose a di erent approach from the one in [27] and [64] and show
how a proof of convergence for sampling-based nested decomposition algorithms on nite
scenario trees can be established for models with convex subproblems (which may not have
polyhedral value functions). Our result is proved for a general class of methods including
all the variations discussed in the literature ( [27,38, 39,55, 77,80]). The proof establishes
convergence with probability 1 as long as the sampling in the forward pass is independent
of previous realizations. Our proof relies heavily on the independence assumption and
makes use of the Strong Law of Large Numbers. In contrast to [80] we have not shown
that convergence is guaranteed in all procedures for constructing a forward pass that visit
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every node of the scenario tree an in nite number of times.

The result we prove works in the space of state variables expressed as random variables
adapted to the ltration de ned by the scenario tree. Because this tree has a nite number
of nodes, this space is compact, and so we may extract convergent subsequences for any
in nite sequence of states. Unlike the arguments in [27] and [64], these subsequences are
not explicitly constructed, and so we can escape the need to assume properties of them
that we wish to be inherited from independent sampling. More precisely Lemma 3.12 gives
us the required independence.

Although the value functions we construct admit an in nite number of subgradients,
our results do require an assumption that serves to bound the norms of the subgradients
used. This assumption is an extension of relatively complete recourse that ensures that
some infeasible candidate solutions to any stage problem can be forced to be feasible by
a suitable control. Since we are working in the realm of nonlinear programming, some
constraint quali cation of this form will be needed to ensure that we can extract subgradi-
ents. In practice, SDDP models use penalties on constraint violations to ensure feasibility,
which implicitly bounds the subgradients of the Bellman functions. Our recourse assump-
tions are arguably weaker, since we do not have a result that shows that they enable an
equivalent formulation with an exact penalization of infeasibility.

The paper is laid out as follows. We rst consider a deterministic multistage problem,
in which the proof is easily understandable. This is then extended inx3.2 to a stochastic
problem formulated in a scenario tree. We close with some remarks about the convergence
of sampling algorithms.

3.1 Deterministic Case

Our convergence proofs are based around showing that a sequence of outer approxima-
tions formed by cutting planes converges to the true Bellman function in the neighborhood
of the optimal state trajectories. We begin by providing a proof that Kelley's cutting plane
method [57] converges when applied to the optimization problem:

W :=min W (u);
u2u

whereU is a nonempty convex subset oR™, and W is a convex nite function on R™. The
result we prove is not directly used in the more complex results that follow, but the main
ideas on which the proofs rely are the same. We believe the reader will nd it convenient
to already have the scheme of the proof in mind when studying the more important results
later on.

Kelley's method generates a sequence of iterates! :on Py solving, at each iteration,
a piecewise linear model of the original problem. The model is then enhanced by adding
a cutting plane based on the valuew u and subgradientg of W at ul. The model at
iteration k is denoted by

WK (u) = max, W u + gu u o

and K :=min oy WK (u) = Wk uk*1 | We have the following resuilt.

Lemma 3.1. If W is convex with uniformly bounded subgradients okJ and U is compact
then
im W u¢ =w:
kKl +1

Proof. This proof is taken from Ruszczynski [102, Theorem 7.7] (see also [101]). Lé&t-
be the set of indexesk such that W +"<W uX < +1 . The proof consists in showing
that K- is nite.



100 CHAPTER 3. SDDP ALGORITHM

Supposeks; ky 2 K- and k; is strictly smaller than k,. We have thatW ukt >W +"
and that W ki Since a new cut is generated att, we have

D E
W ouk o+ gfiu ook owkin) wke T): 8su2u;

where gkt is an element of @W ukt . In particular, choosing u = uk? gives

D E
W uk1 + gkl;ukz Ukl Wkl ukz sz 1 uk2 — ko 1 W -

But "<W uk2 W ,so

D E
n < W ukz W ukl gk]_; uk2 uk]_ ;

and asg‘? 2 @Wuk?2), the subgradient inequality for u = u* yields
D E
w uke  w ouk goue uk

Therefore, sinceW has uniformly bounded subgradients, there exists > 0 such that

"< 2 uk dk o 8kyko 2 Kuiky 6 ky:

BecauseU is compact, K- has to be nite. Otherwise there would exist a convergent
subsequence of uk k. and this last inequality could not hold for su ciently large
indexes within K. This proves the lemma. O

Note that Lemma 3.1 does not imply that the sequence of iterates uk k2N converges..
For instance, if the minimum of W is attained on a\ at" part (if W is not strictly convex),
then the sequence of iterates may not converge. However, the lemma shows that the
sequence ofV values at these iterates will converge.

3.1.1 Multistage Setting

We now consider the multistage case. Lefl be a positive integer. We rst consider
the following deterministic optimal control problem.

K 1

r;r(yiljn Ci (X¢; up) + Vr (x7) (3.1a)
' t=0

St Xger = fe(XejUp) ; 8t2[0;T 1] (3.1b)

Xo IS given; (3.1¢c)

Xt 2 X¢; 8t 2 [0;TT; (3.1d)

Ue 2 Ui (Xt); 8t2[0;T 1] (3.1e)

In what follows we let A ( X) denote the a ne hull of X, and de ne

Bi()=fy2A(X) | kyk< g
We make the following assumptions H1):

1. fort=0;:::;T,; X ¢ R";

1. even though becauseU is compact, there exists a convergent subsequence.
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2. fort =0;:::;T 1, multifunctions U, : R" R™ are assumed to be convex and
nonempty convex compact valued,

5. the nal cost function Vy is nite-valued and Lipschitz-continuous on Xr,
6. fort =0;:::;T 1, there exists { > 0, de ning Xt°.: Xi¢ + By( ¢), such that :

(@) 8x 2 XS 8u2U(x); Ci(x;u) < 1,

(b) for every x 2 X
fe( U(x) \ X 141 6 5.

Assumptions (H1(1) (5)) are made to guarantee that problem (3.1) is a convex opti-
mization problem. Since this problem is in general nonlinear, it also requires a constraint
quali cation to ensure the existence of subgradients. This is the purpose of Assumption
(H1(6)). This assumption means that we can always move fronX; a distance of -} in any
direction and stay in X which is a form of recourse assumption that we callextended
relatively complete recourse(ERCR). We note that this is less stringent than imposing
complete recourse, which would requireX? = R". Finally we note that we never need
to evaluate Cy(x;u) with x 2 X.%hX;, so we may only assume that there exists a convex
function, nite on Xto, that coincides with C; on X;. Of course not all convex cost func-
tions satisfy such a property e.g. x 7! xlog(x) cannot be extended belowx = 0 while
maintaining convexity.

We are now in a position to describe an algorithm for the deterministic control problem
(3.1). The Dynamic Programming (DP) equation associated with (3.1) is as follows. For
allt2 [0;T 1], let

8 .
< Miny oy, (x) [Ct (Xt;Ut) + \fﬁﬂ (ft (Xt;ut))?; Xt 2 Xt
Vt (Xt) = : = Wi (Xt;ut) (3-2)
+1; otherwise.

Here the quantity W (X¢; U;) is the future optimal cost starting at time t from state x and
choosing decisionu;, so that V; (x) = min oy, (x,) Wt (X; U).

The cutting plane method works as follows. At iteration 0, de ne functions V,%, t 2
[0; T 1], to be identically equalto 1 . Attime T, since we know exactly the end value
function, we impose V¢ = Vr for all iterations k 2 N. At each iteration k, the process is
the following.

Starting with x('§ = Xg, at any time staget, solve

K= urpzigm Ce(xup) + V&Y fr(xu); (3.3a)
X2A  Xi

st x= xf [ X (3.3b)

fe(Xup) 2 Xis1 (3.3¢)

Ut 2 Ug(x) (3.3d)

Here K 2A( Xi)is a vector of Lagrange multipliers for the constraint x = x¥. We denote
a minimizer of (3.3) by uK. Its existence is guaranteed by ERCR. Note that constraint

2. Recall that a multifunction U on convex setX is called convexif (1  )U(x)+ U(y) U ((1 )x+vy)
for every x;y 2 X and 2 (0;1).
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(3.3c) can be seen as an induced constraint on;. Thus we can de ne the multifunctions
U :R" R™ by, forall x 2 R";

Gi(x) = fu2Ui(x) | fe(Xur) 2 X410 (3.4)

We can easily check thatJ; is convex (by linearity of f; and convexity of U;) and convex
compact valued (as the intersection of a compact convex set and a closed convex set).
Moreover ERCR guarantee that U;(x) 6 ; for any x 2 X;. Thus (3.3) can be written as

K= min Co(xun)+ VT fr(xu); (3.5a)
ut 2 0 (x)
X2A Xt
st. x = xK [ 4 (3.5b)
AT - t . t .
Now de ne, for any x 2 R":
n D Eo
VE(x):=max VK T(x); K+ Kx o oxko; (3.6)

and move on to the next time staget + 1 by de ning x¥,; = f¢ xKuf .

Remark 3.2. The assumption that X is in A (X;) is made for technical reasons, and

loses little generality. Indeed if K 2 R" is an optimal Lagrange multiplier, then so is its
projection on A (X;). In practice we would expect A (X;) to be the same dimension for
everyt. If this dimension happened to bed strictly less than n, then we might change the
formulation (by a transformation of variables) so that A (X;) = RY.

Remark 3.3. Observe that our algorithm useth'jll when solving the two-stage prob-
lem (3.3) at staget, although most implementations of SDDP and related algorithms pro-
ceed backwards and are thus able to use the freshly updatek‘,jl (although see e.g. [27] for

a similar approach to the one proposed here). In the stochastic case we present a general
framework that encompasses backward passes.

Note that only the last future cost function Vy is known exactly at any iteration. All
the other ones are lower approximations consisting of the maximum ok a ne functions
at iteration k. We naturally have the same lower approximation for function W;. Thus
we de ne for any (x;u) in R"*™

WEOGU) = Cogu)+ Vi fr(xu); (3.7)

and recall
Wi (x;u) = Co(x;u) + Viwr (X u): (3.8)

Using this notation we have

£= min WS xKu o= wft xguk (3.9)
u2 0 (xK)
Since by (3.6) n D Eo
kK ok = KO KO, ok ok
VO xg =maxe ot X X
it follows that
VE X W u): (3.10)

Figure 3.1 gives a view of the relations between all these values at a given iteration.
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Figure 3.1: Relation between the values at a given iteration

3.1.2 Proof of Convergence in the Deterministic Case.

We begin by showing some regularity and monotonicity results for the value functions
and their approximations.
Under assumptions H1), we de ne fort 2 [O; T 1], and for all x 2 R", the extended
value function
Vi(x)= inf fCi(x;u)+ Vie1  fr(Xu)g: (3.11)
u2U¢(x)

Note that the in mum could be taken on UT;(x) U ((x) asVi+1 = 1 whenf¢(x;u) 2
Xi+1 . It is convenient to extend the de nition to t = T by de ning ¥+ = V. We also
observe thatV; V; as these are identical on the domain ol;.

Lemma 3.4. Fort2 O, T 1],

() the value function V; is convex and Lipschitz continuous onXg;
(i) V¢ WY W, and {is dened;
(i) the sequences( £)x2n are bounded.

Proof. (i) We rst show the convexity and Lipschitz continuity of V; on X;. We proceed
by induction backward in time. By assumption V is convex and Lipschitz continuous on
X1. Assume the result is true forVi+; . The function V;(x) is convex by lemma 3.9. Now
by ERCR, for any x 2 X2 U(x) 6 ;. This implies that, for x 2 X% for u 2 G;(x),

Vi(x) Ci(x;u)+ Vier fi(xu) < +1:
By (H1(3)) and the induction hypothesis, for any x 2 X
u7! Ci(x;u)+ Vi fi(xu)

is lower semi-continuous, and so the compactness bf (x) ensures that the in mum in the
de nition of V;(x) is attained, and therefore V;(x) > 1 . V; is Lipschitz continuous on
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Xt as X; is a compact subset of the relative interior of its domain. Finally remarking that
Vi(x) = W (x) if x 2 X gives the conclusion.

(i) As observed above the inequality V;  V; is immediate as the two functions are
identical on the domain of ;.

To show VK V; let us proceed by induction forward in k. Assume that for all
t2[0;T 1], { 'isdenedand VX ! ¥. Note that

1 =V W

so this is true fork = 1 ( 2 is never used). We now de ne, for allt 2 [0;T 1] and all

X2Rn, n (0]

VK(x) = UTEiJn(X) Ciou)+ VKT fi(xu)
't

By hypothesis on U, \'7tk is convex and nite on X which strictly contains X;. Thus \'7tk
restricted to A ( X;) is subdi erentiable at any point of X;. Moreover by de nition of ¥
in (3.3)

£2 @V a(xy (3.12)
Thus K is de ned. By the induction hypothesis and inequality Vi+;  Vi+1 we have that
VKL fe Vi fo
Thus the de nitions of V¥ and ¥, yield
VAN (3.13)

we have by (3.12) that

D E
K+ Exooxk o k0 W) (3.14)

by (3.13). The de nition of VX in (3.6) gives

n D Eo
VEG)=max V) f+ Sx xg

which showsV¥ (x) ¥ (x) by (3.14) and the induction hypothesis. Thus (ii) follows for
all k by induction.
(iii) Finally we show the boundedness of ( )k2n. By de nition of £ we have for all
y2R",
D E
VEY) VRGO F Sy xE (3.15)

Recall that X?= X + By( t), so substituting y = x¥ + Zk‘—fk in (3.15) whenever K 60
t
yields

K
K 2Vk K, t ¢ K ok
— X{ + = AVANRD ¢

We de ne the compact subsetXof dom % as X%:= X(+B; <4 . Now asxf 2 X; we
k

have that x{ + + ;. 2 X% Consequently, by (ii),
t
Kook, Lt
Vit Xp+ = max Vi(x) < +1 :
T 2k ke xax 1(x)
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Moreover by construction the sequence of functions\(tk)kz,\, is increasing, thus
V() V) min Vit(x) > 1
X2Xt
Thus we have that, forallk 2 N andt 2 [O;T 1],

2
k iyl :
t ) sz%ovt(x) xm2>|(nt Vit (x) (3.16)

This completes the proof. O

Corollary 3.5. Under assumptions (H1), the functions VX, t 2 [0;T 1], are
Lipschtiz for some constant for all k2 N .

Proof. By (3.6) and (3.16) the subgradients ofV,X are bounded by

2 .
= max — maxV minV(x) :
2007 1] t x2X® = x2X,

O]

We now prove that both the upper and lower estimates ofV; converge to the exact
value function under assumptions {1).

Theorem 3.6. Consider the sequence of decisionsuk N 9enerated by (3.3) and (3.6),

where eachuX is itself a sequence of decisions in tima = uf;:::;u& |, and consider
the corresponding sequence of state valuegX - Under assumptions(H,), for any t 2

[0;T 1] we have that:

k2

lim W Xlt(;U{< Vi Xr =0 and lim V; Xr Vtk Xlt( =0:
Kt +1 kI +1

Proof. The demonstration proceeds by induction backwards in time. At timet + 1, the
induction hypothesis is the second statement of the theorem. That is,

: k k k =
klllrl’ll Visl  Xip1 Vit1 Xge1 =0

In other words the cuts for the future cost function tend to be exact at x&,; ask tends

to 1 . The induction hypothesis is clearly true at the last time stageT for which we de ned

the approximate value function VT" to be equal to the (known) end value function V.
We have to show the induction hypothesis, hamely

im Vi xK vk xK =0
for time t. Recall (3.10) gives
VX WE T b = c s v
Using the de nition (3.8) of W, we can replaceC; x{;uf to get
VEOxE We xut VT xfa Ve X
Subtracting V; xK we obtain

k k k k. k k k 1 k k
Vi X Vi X Wi X¢; U Vi xp + Ve X Vi X
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Now athk is a lower approximation of V; we have
vk xE v xEo
and by Dynamic Programming equation (3.2)
Wy xEuf v oxk o
Moreover the induction hypothesis at time t + 1 gives
VG s Ve xln o
which by virtue of Lemma 3.10 (with V;+1 replacing f ) implies 3

; k k 1 ok —
k,“Tl Vier Xpr Vea” X =0

o)
VE xk oy oxk Ko
and
W xkuk voxk Ko
which gives the result. O

Theorem 3.6 indicates that the lower approximation at each iteration tends to be exact
on the sequence of state trajectories generated throughout the algorithm. This does not
mean that the future cost function will be approximated well everywhere in the state
space. It only means that the approximation gets better and better in the neighborhood
of an optimal state trajectory.

3.2 Stochastic Case with a Finite Distribution

3.2.1 Stochastic Multistage Problem Formulation.

We now consider that the cost function and dynamics at each timet are in uenced
by a random outcome that has a discrete and nite distribution. We write the problem
on the complete tree induced by this distribution. The set of all nodes is denoted byN
and fOg is the root node. We denote nodes byn and n. (We trust that the context will
dispel any confusion from the use ofm and n as dimensions of variablesu and x.) A
noden here represents a time interval and a state of the world (which has probability )
that pertains over this time interval. We say that a node n is an ascendant ofm if it
is on the path from the root node to nodem (including m). We will denote a(m) the
set of all ascendants ofm, and the depth of noden is one less than the number of its
ascendants. For simplicity we identify this with a time index t, although the results hold
true for scenario trees for which this is not the case. For every noden 2 Nnf Og, p(m)
represents its parent, andr(m) its set of children nodes. Finally L is the set of leaf nodes
of the tree (i.e. those that have degree 1).

3. Corollary 3.5 ensures the  Lipschitz assumption on Vi%; , and the other assumptions are obviously
veri ed.
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This gives the following stochastic program:

X X X
r](nun mCm (Xn;Um) + mVm (Xm) (38.17a)
n2NnfLg m2r(n) m2L
St Xm=fm Xpm)iUm ; 8m 2 Nnf Og; (3.17b)
Xg is given; (3.17¢c)
Xm 2 Xm; 8m 2N ; (3.17d)
Um 2 Um (Xpm)); 8m 2 N nf Og: (8.17¢)

The reader should note that randomness (that appears in the cost and in the dynamics)
is realized before the decision is taken in this model. Hence the control a ecting the
stock* x, is actually indexed by m, a child node ofn. Put di erently, the control adapts
to randomness: there are as many controls as there are children nodesof Observe that
we also now admit the possibility that X; and U;(x) might vary with scenario-tree node,
so we denote them byXm and Um (Xp(m))-

We make the following assumptions Hy):

1. foralln 2 N, X, is nonempty convex compact;

2. for all m 2 Nnf Og; the multifunction U, is nonempty convex and convex compact
valued,;

3. all functions C,, n 2 NnL, V»; m 2 L, are convex lower semicontinuous proper
functions;

4. for all m 2 Nnf Og, the functions f, are a ne;
5. for all m 2 L, Vy, is Lipschitz-continuous on Xp,;
6. There exists > 0 such that for all nodesn 2 NnL ,

@ 8x2Xny+B(); 8m2r(n); fnOGUn(X)\X m 6 ;;
(b) 8x2Xn+ B(); 8u2Un(x); Ca(x;u)< 1.

The convex functions V,, de ne the future cost of having x, remaining in stock at the
end of the stage represented by leaf nodm 2 L . Given an optimal control, we can de ne
(applying the Dynamic Programming principle to Problem (3.17) ) a future cost function
V,, recursively for the other nodesn 2 NnL by

X
Vh(Xn) = —=  min Icm (Xn;Um) + %/in (fm (Xn; Um))?5 (3.18)

n Um2Um (Xn)
m2r(n) Wm (Xn;Um)

In general the future cost function at each node can be di erent from those at other
nodes at the same stage. In the special case where the stochastic process de ned by the
scenario tree is stage-wise independent, the future cost function is identical at every node
at staget. Some form of stage-wise independence is typically assumed in applications as
it enables cuts to be shared across nodes at the same stage, however we do not require
this for our proof.

The algorithm that we consider is an extension of the deterministic algorithm of the
previous section applied, at each iteration, to a set of nodes chosen randomly in the tree
at which we update estimates of the future cost function. We assume that all other nodes
have null updates, in the sense that they just inherit the future cost function from the
previous iteration.

4. We do not make any stage-wise independence assumptions on the random variables that a ect the
system. Hence there is no reason why variablex, should be called a state variable and we prefer calling
it a stock.
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We now describe the algorithm formally. We start the process with™2 = 1 |, "0 =,
for eachn 2 N, and imposeVK = V, for all nodesn 2 L and all k 2 N. We then carry
out a sequence of simulations and updates of the future cost functions as follows.

Simulation  Starting at the root node, generate stocks and decisions for all possible suc-
cessors (in other words, visit the whole tree forward) by solving (3.18) withv* 1
instead of V. Denote the obtained stock variables by &X)n2y and the control
variables by (U)nannf og- Also, for each noden 2 N, impose ¥ = Vi 1(xK)
and K2 @\ 1(xK).

Update Select non-leaf nodes;;ny;:::;n, in the tree. For eachi, xﬁi is a random

variable which is equal to one of thexX. For each selected noden;, and for every
child node m of noden;, solve:

= urmngrﬂ?m Cmn(Um)+ VK1 fo(um); (3.19a)
X2A  Xn,

st x=xK [k (3.19b)

Um 2 Un(X) (3.19¢)

fm(XUm) 2 Xm (3.19d)

As before Ar'fn is a Lagrange multiplier at optimality. We also de ne the multifunc-
tions

Un:x7'fu2Un(x) j fm(Xum)2Xnmg:

For each selected noden;, replace the values ,'ﬁi and ,'§i obtained during the simu-

lation with
k — X _m g
nj m
m2r(n;) M
and
k — X m A
ny — m-
m2r(n;) ni

Finally, we update all future cost functions. For every noden, and any x 2 X,

n D Eo n D Eo
VE(x):=max VK I(x); K+ Kx xkK =max K+ FKx xk

kO k
(3.20)
We will make use of the following de nitions, wherem 2 r(n):
W (Xn;Um) = Cm (Xn;Um) + Vi (Fm (Xn; Um)) (3.21)
WE (Xn;Um) := Cm (Xn;Um) + V& (fm (Xn; Um)) (3.22)

In the case where noden 2 N is selected at iteration k, in other words n = nj, these
de nitions then give

Mo S :
K= min WK1 xKiu =wk 1 xk;uk
U2 (xK)
This leads to X
vk xk —wk boxkegk (3.23)
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Note that we actually only update future cost functions on the selected nodes. Since
the cuts we add at all other nodes are binding on the current model (by construction in
the simulation), there is no point in storing them. Therefore, in practice, one does not
need to sample the whole scenario tree but just enough to attain all selected nodes. In
our proof, we need to look at what happens even on the nodes that are not selected.

The way we select nodes at which to compute cuts varies with the particular algorithm
implementation. For example DOASA uses a single forward pass to select nodes, and then
computes cuts in a backward pass. We represent these selections of nodes usirggkection
random variable y* = (y¥)n2n that is equal to 1 if node n is selected at iterationk and 0
otherwise. This gives aselection stochastic procesgy¥)x2n, taking values in f0; 1gN"Y |
that describes a set of nodes in the tree at which we will compute new cuts in iteratiork.
We let (Fy)k2n denote the ltration generated by (y¥)kan.

To encompass algorithms such as DOASA and SDDP the selection stochastic process
can be viewed as consisting of in nitely many nite subsequences, each consisting of> 0
selections (consisting for example of a sequence of selections of nodes in a backward pass).
This cannot be done arbitrarily, and the way that ( y¥)i2 is constructed must satisfy some
independence conditions from one iteration to the next.

De nition 1. Let be a positive integer. The procesgy¥)yon is called a -admissible
selection processf

() 8M2NnL; 8k2N; 8 2f0;:::; 1g;
ym* =1 =) 8n2am) y5 =yst= =yt =0
and the process de ned by
yn =maxfyn tyn "y Pinye T g (3.24)

satis es

(i) for all m 2 NnL; (¥X)kon is ii.d. and for all k 2 N, and all m 2 NnL, ¥ is
independent of Fy 1

(i) 8n 2 NnL; P(y; =1) > 0.

Property (i) guarantees that when > 1, the updating of cutting planes is done
backwards between stepk and (k+1) . This means that if the linear approximation of
the value function V, is updated at stepk + then neither it or any approximation at
any ascendant node has been updated since stép 1. This implies, as shown in lemma
3.11, thatxX * has not changed since the stef ,i.e.,ifyk * =1then xkK* = xkK . Wwe
explain in section 3.3. how the selection processes of CUPPS (with= 1) and SDDP(with

=T 1)are -admissible.

Property (ii) provides the independence of the selections that we will use to prove
convergence and property (iii) guarantees that all nodes are selected with positive proba-
bility. Without any independence assumption it would be easy to create a case in which
the future cost function at a given node is updated only when the current stock variable
on this node is in a given region, for instance. In such a case the future cost function
could not gather any information about the other parts of the space that the stock vari-
able might visit. In other words, this independence assumption ensures that the values
that are optimal can be attained an in nite number of times. We remark that there is
no independence assumption over the nodes for (yX),onn. at k xed. Thus the se-
lection process could be forced to select whole branches of the tree for example, as it
would for the CUPPS algorithm. More generally, we have independence when for xed

, (V¥ )kon is i.i.d and the next 1 selection values are determined deterministically
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from yk , more precisely if forall 2f0;:::; 1g, there is a deterministic function
such that yk * = (yK ). On the other hand we have independence when the selection
subsequenceyk ;yk *1;::oyk 1),y isiid.

In Section 3.3 we shows that usual algorithm can be represented with a admissible
selection process.

3.2.2 Proof of Convergence in the Stochastic Case.

For everyn 2 N nL we can de ne under assumptions H») the extended value function

X
Vh(x) = —% inf  fCm(X;u)+ Vm fm(xu)g;
n u2Um (x)
m2r(n)

and we note that V, is nite on X,?. We now state a lemma analogous to lemma 3.4.

Lemma 3.7. Foreveryn2N,
(i) the value function V, is convex and Lipschitz-continuous onXg;
(i) VX ¥, V,;and KXis de ned;
(i) the sequences( ¥)xon are bounded, thus there is ,, such thatVK is , Lipschitz.

Proof. We give only a sketch of the proof as it follows exactly the proof of its deterministic
counterpart lemma 3.4.

(i) By induction backward on the tree V,, is convex and nite valued on X2 as the
positive sum of convex nite valued functions, and thus Lipschitz continuous on Xp,
leading to the result asV, = V, on X,.

(i) Assume that for all n 2 NnL we haveVX ' V,. We de ne, for a noden 2 NnL
X 2 R", X

Vkx) = ™ min Cpn(xu)+ VK 1 foL(xu):
m2r(n) n u2U0,(x)

By hypothesis on li)‘m;\'7nk is convex and nite on X thus its restriction on A ( X)
is subdi erentiable on X;. By de nition "X 2 @k(xX ), and thus " is de ned. By
the induction hypothesis and inequality Vi, Vi we have that

8m 2 r(n); VKL fn Vm fm:

Thus de nitions of VX and ¥, yield V¥  ¥,. By de nition of ¥ and construction
of VK we have that V¥ V. Induction leads to inequality (ii).

(iii) Finally we show the boundedness of ( X)kan. As K is an element of @V (xX), we
have D E
VEY) VR Ry oxy (3:25)

so substituting, if K60, y= xk +

R Ek in (3.25) yields

K 2 koK X K ok
- V' XH+ = AN '¢

n n n 2k hk n n

Thus we have that, forallk 2 Nandn 2 N ,

2
k < iyl .
n ox nm+a8>§ 2 Vn (X) Xm2>|(nn V,(x) (3.26)

Which ends the proof.
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Theorem 3.8. Consider the sequence of decisionsuK N 9enerated by the above de-
scribed procedure under assumptiongH»), where eachuK is itself a set of decisions on the
complete tree, and consider the corresponding sequence of state valueX Assume
that the selection process is -admissible for some integer > 0.

Then we have that,P-almost surely:

k2N*

Jim MW xKcuk v, xK =0
' m2r(n) "
and
Jim Vo xkK vk o xk =0

Proof. Because the selection process for nodes in the update step is stochastic, decision
variables as well as approximate future cost functions are stochastic throughout the course
of the algorithm. Thus, during the whole proof, all equalities or inequalities are takenP-
almost surely.

The demonstration follows the same approach as the proof of Theorem 3.6. L&kt be
the maximum depth of the tree. We proceed by backward induction on nodes of xed
depth. The induction hypothesis is

i k k k=
k|Ilrpl Vi Xm Vin Xm =0

for each nodem of depth t + 1. Since for every leaf of the tree those two quantities are
equal, by de nition, the induction hypothesis is true for every noden 2 L.

We start by proving the result for iterations k such that n is selected in the next 1
steps, i.e. such thaty§ =1. Dene 2f0;:::;  1gsuch thaty® * « = 1. Recall that
by lemma 3.11 we havexX * « = xX .

We have by (3.23)

Vnk + Kk XE - Vnk + Kk XE +
X n 0
™ min WE* kb XK un
K
m2r(n) N um2U0m (X5 )
X n 0
- min wk 1 oxK up
k
m2r(n) N Um20mn (X§ )

myyk 1 (k. Kk
Wm Xn +Um
n

m2r(n)
which implies
X h i
VARSI G xKuk vk Dok
m2r(n) n
X m I
= oW xEsuk o+ vE Tk vy XK
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Thus,
k + k k X m k .k k
Vo 7K Xp Vh Xp —Wm Xj iUpy Vh Xp
n
m2r(n)
X
+ Mok ok v, xK
m2r(n) n

Note that, as VX * « is a lower approximation of V,, we know that
VK eoxk v, xK 0;

and, by Dynamic Programming Equation (3.18), that
X
W xK Uk Vo xK O
m2r(n) n

The induction hypothesis
: k k ok —
k!Ilrpl Vi Xm Vin Xm =0

and Lemma 3.10 (with Vi, replacing f ) ° implies

Jim Vi xk vk 1 xK =0
Thus "
Vo xK vkt gk !y;k]:l 0;
and X m k .ok k gkl .
—Wn Xp iUp Vh Xp ! 0:
m2r(n) : yh=1
Thus lemma 3.10 applied with = gives
Vo xK vkt gk !':;:1 0;
and by monotonicity we have VK * « VX Vj, which nally yields
Vi xK vk xk !:::1 o: (3.27)

Now we prove that the values also converge for the iterationk such that ¥ =0, i.e.
the iterations for which node n is not selected between stefk and step (k + 1) 1.
By contradiction, suppose the values do not converge. Then by lemma 3.10 we have that
Va(xK') VK 1(xX ) does not converge to 0. It follows that there is somé' > 0 such that
K- is in nite where

K :=fk2N j V, xk vk 1 xk "o (3.28)

Let ZI denote thej -th element of the setfyX jk 2 K~g. Note that the random variables
vk landxK are measurable with respectto, 1:=  (y<)kok , and thus so is ok

5. Lemma 3.7 (iii) provides a Lipschitz condition on VX.
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from which y¥ is independent. Moreover the  algebra generated by the past realizations
of ¥ is included in F 1. This implies by lemma 3.12 that random variables ¢/ )i2n are
i.i.d. and share the same probability law asy2.

According to the Strong Law of Large Numbers [52, page 294] applied to the random
sequence %! )i 2N, We should then have

1 X

N

2N By =El1= P =1 >0

However, K- \f ¥ =1gis nite because of (3.27) thus we know that there is only a nite
number of indexesj such that z/ =1, the rest being equal to 0. So

X
Ni AN+
j=1
which is a contradiction. This shows that
k k k k1 .
Vi xK (VAREEEIGA !yﬁzo o
and monotonicity shows that,
k k k kil :
Vi Xj Vo Xp !yﬁ:0 0:
which completes the induction. O

3.2.3 Application to Known Algorithms.

In order to illustrate on our result we will apply it to two well known algorithms. For
simplicity we will assume that the tree represents aT -step stochastic decision problem in
which every leaf of the tree is of depthT.

We rst de ne the CUPPS algorithm [27] in this setting. Here at each major iteration
we choose al'  1-step scenario and compute the optimal trajectory while at the same
time updating the value function for each node of the branch. In our setting, this uses a
1-admissible selection processyf)kon de ned by an i.i.d. sequence of random variables,
with yO selecting a single branch of the tree. Theorem 3.8 shows that for every nodethe
upper and lower bound converges, that is

X
lim W xK;uk Vo xK =0
k! +1 n
m2r(n)
and
Jim Vo xK vk xk =o:

We now place the SDDP algorithm [77] and DOASA algorithm [80] in our framework.
There are two phases in each major iteration of the SDDP algorithm, namely a forward
pass, and a backward pass of 1 steps. Given a current polyhedral outer approximation
of the Bellman function (VX 1),onnL » @ major iteration K of the SDDP algorithm consists
in:

selecting uniformly a number N of scenarios N = 1 for DOASA);
simulating the optimal strategy for the problem, that is solving problem (3.19) to

nes one of the selected scenarios;
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Fort=T 1ldowntot=0
for each scenario solving problem (3.19) withvX instead of VX 1,
and de ning

VR (x) =maxfVE 1(x); £ +hK:x xFig:

SDDP ts into our framework as follows. Given N, we dene the T 1-admissible
selection process, (T YK),,y by an i.i.d. sequence of random variables withy® selecting
uniformly a set of N pre-leaves (i.e. nodes whose children are leaves) of the tree. Then
for 2f21;:::;T 29,k2N,n2NnL, we de ne

(
KT n+ ._ 1 ifthere existm 2 r(n)suchthat yn' * t=1
n ' 0 otherwise.

This algorithm is the same as SDDP with N randomly sampled forward passes per stage,
but without the cut sharing feature used when random variables are stage-wise indepen-
dent. Since for every noden of the tree (excepting the leaves) there is a such that
P(yrlf(T AN 1) > 0, theorem 3.8 guarantees the convergence of the lower bound for
every node. This remains true when cuts are shared since the proof of almost-sure con-
vergence is una ected by the addition of extra valid cutting planes at any point during

the course of the algorithm. The proof of theorem 3.8 gives

0;

vk xk vk xk Vi xK

that must satisfy
k k ok k1 .
Vi Xp Vo Xp !%:0 0:

3.3 Discussion

The convergence result we have proved assumes that we compute new cuts at scenario-
tree nodes that are selected independently from the history of the algorithm. This enables
us to use the Strong Law of Large Numbers in the proof. Previous results for multistage
stochastic linear programming [80] require a selection process that visits each node in the
tree in nitely often, which is a weaker condition than independence, since it follows by the
Borel-Cantelli Lemma [52, page 288]. An example would be the deterministic round-robin
selection mentioned in [80]. We do not have a proof of convergence for such a process in
the nonlinear case. It is important to observe that the polyhedral form of V; that was
exploited in the proof of [80] is absent in our problem, and this di erence could prove to
be critical.

The convergence result is proved for a general scenario tree. In SDDP algorithms, the
random variables are usually assumed to be stage-wise independent (or made so by adding
state variables). This means that the future cost functions V,(x) are the same at each
node m at depth t. This allows cutting planes in the approximations to be shared across
these nodes. As we have shown above, the convergence result we have shown here applies
to this situation as a special case. It is worth noting that the class of algorithms covered
by our result is larger than the examples presented in the literature. For example an
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algorithm where we select randomly a node on the whole tree, and then update backwards
from there is proven to converge. One could also think of combining SDDP and CUPPS
algorithms.

In the case where one would want to add cuts at di erent nodes in the tree in the
update step of our procedure, the solving of the subproblems can be done in parallel. This
is the case in CUPPS, where a whole branch of the tree is selected at each iteration. It also
allows us to consider di erent selection strategies, where nodes at a given iteration could
be selected throughout the tree depending on some criteria de ned by the user. In the
rst few iterations, this could highly increase e ciency of the approximation and, because
the solving of the subproblems can be parallelized, would not be very time-consuming.
One should bear in mind however that, at some point, the algorithm has to come back to
an appropriate selection procedure, i.e. one that satis es the independence assumption,
in order to ensure convergence of the algorithm.

Appendix: Technical lemmas

Lemma 3.9. If J :R™! R[flg is convex,U : R" R™ is convex then (x) :=
minyay (x) J (U) is convex. Moreover ifJ is lower-semicontinuous, andU compact non-
empty valued, then the in mum exists and is attained.

Proof. We de ne

U ¢ if u2U(x)

(ux) = +1  otherwise

Then (X) = min yorm J(U) + | (u;x). Fix u; 2 U(x1) and uy 2 U(x2), then for every
2[0;1] u1+(1 Jup 2U(x 1+(1 )X2) by convexity of U. This shows that | (u; x)

is convex, whereby is convex as the marginal function of a jointly convex function.

The second part of the lemma follows immediately from the compactnes&) and lower-

semicontinuity of J. O

Lemma 3.10. Supposef is convex andX is compact, and suppose for any integer, the
sequence of -Lipschitz convex functionsf X;k 2 N satis es

fX (x) fkx) f(x),forall x2X.
Then for any in nite sequence xX 2 X

lim f xK fKk x* =0 im f xk fk xk =o0:
k! +1 k! +1

Proof. If limy +1 f xX K xkK =0 then pointwise monotonicity of f* shows that
limg +1 f xK K xK =0. For the converse, suppose that the result is not true. Then
there is some subsequence k) and x() 2 X with

lim f xkO  fkO k0 =¢ (3.29)
k! +1
and"> 0O;L 2 N with
£oxkO) £ k() NSO

for every | > L . SinceX is compact, we may assume (by taking a further subsequence)
that x*( _ converges tox 2 X . For suciently large I, the Lipschitz continuity of

fk) and kO gives
RO (x ) RO xkO) ok x k<

FhO xkO fk0(x k) x ko< o
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and (3.29) implies that for su ciently large |

fowk() k() k(@) <

It follows that
f k() (X ) f k() (X ) = f k() (X ) f k() Xk(l)
LRV R 0

f XKD k() k()

FEKO kD) kD) ()

>
4

sincef xk(O £k xk() js greater than ", and the other three terms each have an

absolute value smaller than"=4. Consequentlyf kK (x ) > f kO (x )+ 2, for in nitely
many | which contradicts the fact that f* (x ) is bounded above byf (x ). O

Lemma 3.11. If (yX)kon is a -admissible selection process then for alk 2 N, 2
fO;:::; 1g, and all n 2 NnL we have

k + — vk .
k + _— — Xn = Xp s
Yoo =109 VEr L=yl otk L
Proof. Let n,k and be suchthatyk * =1. Let a(n) := (no;ny;:::;n¢) be the sequence

of ascendants ofn; := n, i.e. ng is the root node, and for allt®<t, npo= p(n¢o+1 ). De ne
the hypothesisH (t; ) :

(a) XE[-'— = Xh[’
(b) Vs l=vk 1hft 1.

Let %< and assume that for %and all t° t, H(t® 9 holds true. This is satis ed
for 9=0. Let t°<t and assumeH (t% °+ 1) is true. Since xq is xed, this is satis ed

" 0.
for t°= 0. By de nition of uf * ! we have
k + © : k + O k+ 0 k + O
+ 9+1 : + O+1. + + 941,
Un,a,, 2 arg mlrg Cn,o,, Xn,0 Ut Voo, N Xnyo ;u
u2u xhtg 1
thus by H(t® %+ 1) (a) we have
k + © A k k + © k ©
+ S+l ; . + .
Niog 2 argmin  Cp,,, Xpor U+ Vi, fr Xp,o1 U

k
u20 X0

Now asno,; is an ascendant ofn and °< by property (i) of de nition 1, we have that
the representation of V, ,,, is not updated at iteration 0 i.e.

k + 0_ yk+ 01,
N0y N0y

And thus H (t°+1; 9 (b) gives H(t°+ 1; °%+1) (b), i.e.

Vk + 0: k 1.
N0 N0y
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therefore
0. n 0
k + °+1 ; k . k 1 k . .
noy 2 argmin Cppp Xpoiu + Vyo @ fou Xpouo
u20 xhto
and consequently’
k+ %1 _ k.
N¢0g MOy

which gives by de nition H (t°+1; °+1) (a). Induction on t°givesH (t% °+ 1) for all
t® t, and induction on ©establishesH (t; ) forall 2 [0; ]. O

Lemma 3.12. Let (WX)on be a stochastic process with value ifi0; 1g adapted to a |-
tration (Fk)k2n, such that the number of terms that are non-zero is almost surely in -
nite. Let (y¥)x2n be a sequence of i.i.d discrete random variables. De ne the ltration
Be:= Fx[ (y&::::y® 1) and assume that for allk 2 N, yK is independent ofBy. Let
k(j) denote thej™ integer such thatwk =1, i.e. k(0) =0 and for all j > 0,

kG) =minfl>k(j 1Ljw =1g:
Finally we de ne for all j> 0, the j™ value of (y¥) such thatwk =1, i.e.
zi = yk),
Then (z)k2n is a sequence of i.i.d. random variables equal in law tg°.

Proof. Let Y denote the support ofy®. We start with z'. Fori 2Y,

b3
Pzt=i)= P8I1%I; w'°=0g\fw =1g\fy = ig by f0,1gde nition

= Pfy'=igP81°%I; w'’=0g\f w=1g by independence
=1

b3

Pfy'=ig P8I%I w'’=o0g\fw=1g as')isiid.
1=1

Pfy?=ig

as the sequencewX)y,n must contain a 1 almost surely. Thusz?! is equal in law to y°.

Kq; ;km be m ordered integers, and xb 2f0;1g" andi 2 Y. We have

= P fz=bg\f k(1) = ki;::::k(m)= kmg\fy =ig\f = k(m+1)g

= Py =iP fz=bg\f k(1)= ki;::::k(m)= kmg\f = k(m+1)g

For the last equality we have used the fact that (y¥) is i.i.d. and the fact that k(m +1) is
almost surely nite and thus f = k(m+1)g , is a partition of the set of events.

6. This requires that the choice of optimal control among the set of minimizers is deterministic (say
that with minimum norm).
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Chapter 4

Constraint Quali cation In
Stochastic Optimization

Learn from yesterday, live for today, hope for
tomorrow. The important thing is to not stop

guestioning.
Albert Einstein
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With this Chapter 4, we open the part of the manuscript devoted to constraints in
stochastic optimization, and we lay out ways to tackle constraints through duality meth-
ods.

We rst recall basic materials in the abstract theory of duality, and then discuss,
through simple examples, the adequation of the usual su cient conditions of constraint
quali cation to stochastic optimization problems under almost sure constraints.

Introduction
In the stochastic optimization Problem,
min EJU
U2uaday
st: (U)2 C
an admissible control has to satisfy the following constraint
(u)2 cC P-a.s.

If the probability space ;F ;P isnot nite, the above constraint can be seen as an in nite
number of constraints. In most cases, the Karush-Kuhn-Tucker conditions of optimality
for a constrained problem are given for a nite number of constraints. Dealing with an
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in nite number of constraints raises functional analysis questions over which functional
spaces, endowed with which topology, are chosen for the controls and the multipliers.

In a few words, the abstract duality point of view consists in embedding an optimization
problem (Po) into a family of optimization problems ( Pp) indexed by a perturbation p2 Y .
We denote by ' (p) the value of the perturbed problem (Pp). The dual problem (Do)
consists in computing the value of the biconjugate’ ??(0).

We recall that properties and links between the primal problem (Po) and its dual (Do)
are strongly related to the regularity of the value function ' at p = 0. More precisely an
optimal solution 1 of the dual (Do) is an element of the subdi erential of ' at p = 0.
This is the well-known marginal interpretation of the multiplier: ! is the marginal value
of a perturbation p of the problem (e.g. a modi cation of the constraints of the problem).

In x4.1, we present basics in the theory of abstract duality, detailing the links between
regularity of * and existence of optimal multipliers (that is solutions to the dual prob-
lem). We also expose the special case of the Lagrangian duality and a su cient condition
of quali cation. In x4.2, we work out two examples underlying the di culties of using the
duality theory in a stochastic optimization framework. Indeed simple almost sure con-
straint are shown to be non-quali ed or quali ed but not satisfying the generic su cient
condition of quali cation.

4.1 Abstract Duality Theory

We recall here the abstract theory of duality that can be found in [24, 45, 89].

4.1.1 Introducing the Framework
A family of perturbed optimization problem

We consider paired spaces U;U? , for example a Banach space and its topological
dual (seexA.1.4 for more informations). The spaceU is called the space ofcontrols. In
order to study the following optimization problem:

(Po) Lijgl; J(u) ; (4.1)

whereJ : U ! R, we introduce a spaceY of perturbations paired with Y?. Elements of Y
are denotedp for \perturbation", and elements of its paired space Y? are denoted and
called multipliers. We introduce a perturbed cost functionG : U Y ! R that satis es
the following equation.

G(;0) J(): (4.2)
We consider the family (Pp) b2y of perturbed optimization problem induced by G:
(Pp)  inf  G(uip); (4.3)
and denote' (p) its value, i.e.
(p) := |ur12fU G(u;p) : (4.4)

By (4.2), we know that * (0) is the value of the original optimization problem (4.1).

1. All topological assumptions are done with respect to the topologies compatible with the paired
spaces.
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Introducing the Lagrangian

We introduce the Lagrangian function associated with the family of perturbed prob-

lems (Pp) D2y

71

De nition 4.1. The LagrangianL : U Y R associated to (Pp) 02 is given by

Y

L(u; ) = Gup+ ;p (4.5)

inf
p2y
Fact 4.2. |If for any control u 2 U the function G, : p 7! G(u; p) is convex and l.s.c.(for the
topology attached to the pairing Y;Y? ), then the primal problem (Po) (de ned in (4.1))
can be written

(Po) inf  sup L(u; ): (4.6)
u2uU 2y ?
Proof. By de nition of the Fenchel conjugate of G, (see De nition A.37) we have
n o]
Gi()=sup ;p Gup)
p2yY

Thus by De nition 4.1 we have
8u2U; 8 2Y7” Lu = G]

Consequently the biconjugate ofG, reads
n 0

GI’(p) = sup  ip +Lu
2y?
Changing into and taking p = 0 in the previous expression we obtain

G’(0) = sup L u;
2y

As G, is assumed to be convex and |.s.c, we have by Theorem A.38 th&?’ = G,. Then
Equation (4.2) yields

J(u) = sup L u; ;
2y?

and minimization over u 2 U yields (4.6) O

Introducing the dual problem
With Equation (4.6) in mind, we de ne the dual problem ( Dg) of problem (Pp) as
(Do) sup inf L(u; ): (4.7)
2y ? u2U

v ??

Fact 4.3. The dual problem(Dy) has value' “*(0), where function' is given by (4.4).

Proof. For any multiplier 2 Y ?, we have, by De nition 4.1

inf L(u ) = inf ;gi P+ G(u;p)
= inf P+ (p) by (4.4)
= ") by De nition A:37
Then, we deduce that the value of Do) is given by
sup inf L(u) = sup o tTC ) =t TO)
which end the proof. O

Note that Fact 4.3 allows to introduce the dual problem directly as the problem of
computing ' ??(0).
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Relations between the primal and dual problems

Fact 4.4. The weak duality relation states that the value of the primal problem(Py) is
higher than the value of the dual problenfDg). We call duality gap the (non-negative)
di erence between the value of the primal and dual problems.

Proof. Indeed by Theorem A.38 we know that' >> ' . De nition of ' (0) and Fact 4.3
ends the proof. O

Furthermore we give in the next proposition some links between the regularity of the
value function ' at 0 (given by (4.4)) and the relation between the primal problem (Pg)
(in (4.1)) and the dual problem (Dyg) (in (4.7)). Those results, and more, can be found
in [24,89].

Proposition 4.5.  If the value function ' is convex (which is the case if the perturbed cost
G is jointly convex in (u;p)), and nite 2 at 0 we have:
" (0) = inf( Po)
' ??(0) = sup(Dp) and argmax(Dg) = @'??(0) (that can be empty);
" is l.s.c.at 0i there is no duality gap, i.e inf(Pg) = sup(Dy);
' is subdi erentiable at O if there is no duality gap and there is a solution to the
dual problem i.einf(Pg) = max( Dg) and argmaxDg 6 ;.

De nition 4.6.  Problem P, is said to becalmif ' (p) <1 and @'(p) 6 ;.

4.1.2 A Specic Type of Perturbation

We now show how the classical theory of dualization is inscribed in this abstract duality
theory. The main point is to formulate Problem (Pg) as a problem under constraints, and
to perturb it by perturbing additively the constraint.

Constructing the Lagrangian Duality
Recall Problem (1.1),
(Po) inf  J(u)
u2y ad
st (w2 C

whereJ : U ! R is a proper l.s.c.convex function,U2 a non empty closed convex set,
C Y a closed convex cone and :U !'Y a continuous C convex function (see
De nition A.48). Note that the link with  x4.1.1 is given by

J=J+ gad F ()2 cC
Let us de ne the following perturbed cost function

G(u;p) = J(u)+  yas (U) + (4.8)

wp2uyj (w pz c (WP

and we have, as required,
G(;0)=J3():

Then, Problem (1.1) can be embedded in the following family of perturbed problems

(Pp) inf J(U+ f(uw p2 cg WP : (4.9)
u2yad

2. The convexity and niteness assumptions are su cient but not always necessary.
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which is equivalent to

inf  J(u)
u2uad
st (u p2 C
Equivalently, through Proposition A.39, we can write problem (Pp)

(Pp) inf sup Jw+ ; (u p:
u2u ad 2C?

The Lagrangian introduced in x4.1.1, associated to the family of problemsP g,y ,
reads

L(u; )=Jd(uw+ 5 (u) + gy c2(): (4.10)
Thus Problem (Pg) reads

(Po) inf sup L(u; ); (4.11)
u2u ad 2C?
and Problem (Dg) reads
(Do) sup inf L(u; ): (4.12)
2c? u2ua

Conditions of Quali cation

We give now conditions under which problems Py) (in (4.11)) and (Do) (in (4.12))
are equivalent in the sense that the set of solutions of Problem (4.11) is the same as the
set of solution of Problem (4.12), and their values are equals.

De nition 4.7. Recall that Problem (Pp) admits at least one solution, and is convex.
Then the constraint
(w2 C (4.13)

is said to be qualied if the problem Pq is calm, that is if one of the two following
equivalent statements holds.
i) @'(0) 6 ;,where' is dened as in (4.4).
ii) There is no duality gap and the dual problem(Dg) has an optimal solution.
If Problem (Po) admits an optimal solution, these assertions are equivalent to
i) The Lagrangian L, de ned in (4.10), admits a saddle point onU2 C?, i.e. there
exists (ul; 1)2Ua C? (C? is de ned in SA.4) such that

gu2 U g 2c% La; ) L b L b

Note that it is quite dicult to check these conditions. Thus, we need su cient
conditions of quali cation. We are going to reformulate classical conditions of quali cation
in our framework.

We begin by a lemma on the regularity of the perturbed cost functionG.

Lemma 4.8. The function G de ned in Equation (4.8) is jointly convex and l.s.c.

Proof. As J is convex by assumption, in order to show the joint convexity ofG it is enough
to show that the set
(up)2U® Yj (u) p2 C (4.14)

iS convex.
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For this purpose, consider two pairs (11; p1) and (uz; p2) such that,
8i 2f1;2g; (u) p 2 C;
and t 2 [0;1]. As U is convex, andY is a vector spaceU2 Y is convex and we have
t(u;p) + (1 t)(uzp) 20U Y
Moreover convexity of C gives
tCu)+@ H(u) tpr+(1 tHp 2 C:
Now, by C-convexity of , we have
tur+(1  tuy t(up)+(@1 t)(u) 2 C:
Moreover asC is a closed convex cone, we hav€ + C = C (see Lemma A.47), thus,
tur+(1  tuy tp1+(1 tp 2 C:

and we have shown the convexity of the set (4.14) and thus the convexity oG.
Continuity of , closedness of C and closedness o824 give the closedness of the set

(P 2U Yj u2U® (u p2 C ;

hence the lower semicontinuity of the function

(u;p)2U Y j u2uad;  (u) p2 C
Finally, lower semicontinuity of function J gives the lower semicontinuity of functionG. [

As G de ned in (4.8) is jointly convex, the value function ' de ned in (4.4) is also
convex (see Proposition A.45). Consequently a su cient condition for the constraint (4.13)
to be quali ed is for ' to be continuous at 0. Indeed continuity of a convex function implies
its subdi erentiability (see [9, Proposition 2.36]). Moreover recall that:

a convex function, de ned on a topological linear space, is continuous at a point
in the interior of its domain if and only if it is locally bounded above at this point
(see [9, Proposition 2.14));
a proper l.s.c.convex function, de ned on a Banach space, is continuous on the
interior of its domain (see [9, Proposition 2.16]).
However, there is no general reason for to be I.s.c.. Nonetheless we have the following
proposition (see [24, Proposition 2.153])

Proposition 4.9. Assume thatU and Y are Banach spaces, that the perturbed cost func-
tion G is proper, convex and l.s.c., and' (0) < +1 (where the value function' is given
by (4.4)). Then 02 ri dom(' ) implies that @'(0) 6 ;, hence

We now give the usual constraint quali cation condition.

Proposition 4.10. Assume thatU and Y are Banach spaces, and that the perturbed cost
function G is proper, convex and |.s.c.. Then, under the following assumption

(CQC) 02r U\ dom@d) +C ; (4.15)

Constraint (4.13) is quali ed.
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Proof. (Pp) de ned in (4.9) is feasible i
9u 2 U\ dom(J); (u p2 C;

which can be written
p2 U\ dom(@) + C;

thus,
dom(' )= U\ dom(@J) + C:

Proposition 4.9 ends the proof. O

Proposition 4.10 is sometimes stated withoutU24 or dom(J). Indeed the cost function
can always be replaced byl + as and in this case the minimization in u is done on the
whole spaceU. In other words we could easily choos&)2 to be a subset of dom{).

Remark 4.11. The condition (CQC) (in (4.15)) is equivalent to
02ri dom() : (4.16)

This su cient condition is quite strong (as it will be illustrated in the next section). Indeed
in most cases a convex function is subdi erentiable also on the border of its domain. For
example iff : E ! R is a nite convex function, and C a closed convex set, then the
I.s.c.function f + ¢ is subdi erentiable at any point of its domain (i.e C).
An example of function that is not subdi erentiable on the border of its domain would
be 8
2+1 if x< O
'(x)=>0 if x=0 :
" xlog(x) ifx>0

At x =0 this function admits a tangent (toward the interior of the domain) with in nite
slope, thus, is not subdi erentiable. If the function admitted a nite sloped tangent it would
be subdi erentiable.

Almost Sure Constraint in LP ;F;P;R" Display Empty Interior

We claim that the su cient condition of quali cation (4.15) is scarcely satis ed in a
stochastic optimization setting if we chooseY =LP ;F;P with p< 1 . By contrast, if
Yy=L1 :F: P , this condition is more often satis ed.

Proposition 4.12. Consider a probability space ;F;P , whereF is not nite modulo
P.3 Considerp2 [1;1 ), and a setU2 (R " that is not an a ne subspace of R". Then,
the set n o]
ud= U2LP ;F;PR" U2U¥ pas. ;
has an empty relative interior in LP.

Proof. ConsiderU 2 U2 p2 [1;+1 ) and x 2 A ( Ua)nUad, We are going to exhibit a
sequence U, . such that for all n 2 N, we haveU 2 U and U, ! (» U.

Since F is not nite modulo P, we can consider a sequence &f -measurable events
fAngn2n With P(Ap) > 0 and such that limy P(A,) = 0. Then, we de ne

X on Ap;
U, =
U elsewhere
We have U, U ;= U x1a, . Thus, dominated convergence theorem ensures
that U ! L» U. However, by construction, for any n, we have that U, 2yad, O

3. See De nition 5.1.
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The space ! , endowed with the norm topology, is better suited for almost sure
constraint as shown in the next proposition.

Proposition 4.13.  Consider a setU2d R" such thatint(U2) 6 ;. Then the set

n (0}
vd= u2L! ;F;PR" j U2UY Pas. ;

has a non-empty interior.

Proof. Consideru 2 int(U2%), and "> 0 such that Bgre(u;") U249, Then the (constant)
random variable U u is such that, for all random variable V- 2 B 1 (U;"), i.e. such
that kU V ko1 < ,wehaveV 2 Bro(u;") U2 P-as. ThusV 2 U2, O

The following practical corollary is a direct application of Proposition 4.13 and Propo-
sition 4.10.

Corollary 4.14. Consider a closed convex set)2 R". Consider the a ne constraint
function :L 1! F;P;R" ! L' ;F;P;RP such that there is a matrixA 2 Mp.n(R)
and a vectorb2 RP with

8U 2L F;P;R"; (U)= AU + b; P-as.

Assume thatJ is convex, proper, and continuous onU. If 02 ri AU ad 4+ b then the
constraint

(U)=0;
in the following problem,
Jn W
sst: (U)=0
U 2y P-a.s.

is quali ed.

4.2 Working Out Two Examples on Constraint Quali ca-
tion

In this section, we develop two examples that reveal delicate issues related to duality in
stochastic optimization. In a rst example we show that, even on a seemingly innocuous
problem (inspired by R. Wets) there might not exist a dual multiplier in L 2. In a second
example we show that a multiplier might exist even if the su cient quali cation condition
(CQC) (4.15) is not satis ed.

4.2.1 An Example with a Non-Quali ed Constraint

We elaborate on an example from R. Weté. Where R. Wets focused on a discretiza-
tion of the probability space approach to show that when re ning the discretization the
multiplier would converges toward a singular measure. On the other hand we, cast the
problem in a strongly convex setting and derive directly the conditions of quali cation.

Let ;F;P be a probability space. Let be a random variable uniform on [Z 2],

> 0 a positive real number. We consider the optimization problem

4., CEA-EDF-INRIA 2013 summer school.
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2 2
X g(v+ )

wope (173
X a (4.17b)
x Y) (4.17¢)
Y 0 (4.17d)

where x is a deterministic real variable andY is a random variable. For technical issues
we assume that 2 <a .

We can easily nd the optimal solution. Noting that 0, a careful look on the
constraints shows that, Y being positive, X has to be greater than almost surely, thus,
X is greater than essupp() = 2. Consequently, from 0, we see that

x! =maxf2;ag
Yl 0

is an optimal solution of Problem (4.17) and yields a value of
maxf a; 2g° N 2
2 2
Now using the notations of abstract duality (x4.1), we set the set of perturbation
Y=R L? ;F;P,R L% ;F;PR:

Consider the family of perturbed problem, in L? spaces,

(4.18)

with P =(p1;P,;P3) 2Y, and denote by’ P its value. Note that the perturbation P
has a deterministic part (p1) and a stochastic part (P, and P).
Problem (4.18) is cast in the general framework of«4.1.2 with the constraint function

(xY)= a x x+Y; Y ;
and the cone of constraints
C= (vi;VyVy)2Y j vi 0, V, 0 Pas, V; 0 Pas. :

Lower semicontinuity of the value function "at 0

As J is convex and is C-convex, we obtain by Lemma 4.8 that' is convex. Moreover,
the value function ' related to Problem (4.18) can be made explicit, and its regularity at
0 studied (in order to nd properties of the dual and primal problems).
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Fact 4.15. Then, in an L2-neighborhood of 0, the value function ' related to Prob-
lem (4.18) is given by

"(P)= max a+ pj;essupp + P,+max ; P, ;0
! 2 (4.19)
P+ 7 #
+E 2 + fessupp(P 4+ P,+ )<1g :

with optimal solution

(

x = max a+ pi;essu max i P, + +P, ;0
P1, ESSUPP 3 ? (4.20)
Yl= max Py
Proof. Note that Problem (4.18) admits a solution if
essupp P;+ P,+ <1 : (4.21)

Indeed, in this case, the solution &!;Y 1) de ned in (4.20) is admissible. On the other
hand if (4.21) does not hold, then the two last constraints of Problem (4.18) cannot be
satis ed almost surely with a nite x.
Now, if conditions (4.21) hold true, then, for a given admissibleY , the solution of
) x2 h(Y + )2|
mnorE T
X at px

X Y+ +P, P-as.
is given by
x =max a+ ppessuppY + +P, ;0 ; (4.22)

with value

2
max a+ pp;essuppyY + + P, ;0 E(Y + )2
+

2 2
Thus, we consider the minimization inY of

2
max a+ pj;essuppY + + P, ;0 E (Y + )2
+

2 2

min
Y
st Py Y
The rst term of the sum is non decreasing with respect toY . Moreover, for kP k, 2
small enough,as 2 <a ,a+p;>2 and essuppY + + P, < essuppY +2
Hence, ifY 0, a+ pi;essuppY + + P, ;0 = a+ p1. As 0 the second term is
also non decreasing with respect tor from . Thus,
Yl=max Py :
is optimal for any x 2 R.
Now from (4.22) we obtain
X1 =max at+ p1; essupp Y 1+ +P, ;0 =max a+pg;essupp maxP,;; + +P, ;0

Evaluating the cost function J at (X 1;Y ) coupled with the condition of admissibility
(4.21) yields the expression of . O
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Fact 4.16. The value function' is l.s.c.at 0.

Proof. We now show that' is I.s.c.(for the strong and weak [? topologies) at 0.
As the mapping x 7! (x + )" is a contraction, if P, converges in 12 towards
P,then (P,+ )* 1N CONnverges in 12 towards (P + )*. Thus the function

hy:P 7! E((P3+2 )*)?

is continuous.
The mapping
P7 +P, maxfP; g

is continuous. So, by Lemma A.56, the mapping
P 7! essupp + P,+max ; Ps

is |.s.c, and as the mappingP 7! a+ p; is continuous we have (Lemma A.54) that
the mapping

hp:P 7! max a+ py;essupp + P,+max , P30

is I.s.c.As the function h, is non-negative, we haveh3 = (h})?. Moreover the
mapping x 7! (x*)? is non-decreasing, thus we obtain by Lemma A.53 the lower
semicontinuity of h.

By Lemma A.56 we know that the function P 7! essupp + P,+ P; isls.c., thus
its level sets are closed and the set

D= P 2L?jessuppPs+ P,+ )<M ;

is closed.
Finally, h1 being continuous, andh; l.s.ch;+ hy is |.s.c., and by Lemma A.55, the function

" =hithat p
is I.s.c.. O

From the lower semicontinuity of the value function at the origin, Problem (4.17) and
its dual in the sense ofx4.1.2 have the same value. By Proposition 4.5, there is no duality

gap.

Non-Subdi erentiability of "at 0

Fact 4.17. If a < 2, the value function' (de ned by (4.4) and given by (4.19) ) is not
subdi erentiable at O.

Proof. The proof is by contradiction. Suppose that there exists | 2 @'(0) L2. Then
we have, for allP 2 L2,
"(P) ') h Lipi: (4.23)

We now display a family of perturbations that implies that the L 2 norm of ! is not nite,
hence a contradiction.
Consider the perturbation "2P.., where

P.= 0 1="1 ,p " ;0
|— 72

PZ;"
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As we have
+ ..2p2;.- = 1 2[0;2 “)g+( ")1f 2[2 ";2]g
we obtain
essupp + "*P,. =2 "
Moreover, for 0< " 2 a, (" exists asa< 2),
n , o, 5
max a+ pi-;essupp + "“P,. ;0 = 2 "7
k% 2

=0
which in turn yields

(P =@ ) = 2R
Consequently, from the subgradient inequality (4.23) we obtain

-("ZP..")Z (0 _ §+1 h 1:p.i:

Consequently, for" < 1=2, we haveh ];P..i < 0, and thus,

201 jh 1P

However the Cauchy-Schwartz inequality yields

2

s+1 jh LR i iz jiPejiz =i jiz:
Taking the limits " ! 0 leads to a contradiction. Therefore 1 does not exist, which means
that @'(0) = ; : ' is not subdi erentiable at O. O

From this fact we conclude that the dual problem (de ned by L2 perturbations) has
no solution for a < 2.

Working out the Dual Problem

We now write the dual problem (for L? perturbations) of Problem (4.17), and derive
a ma>§imizing sequence that does not converge in4, but converges toward an element of
Lt
Following x4.1.2 the dual of Problem (4.17) is given by
X2 h(Y + )2I

sug )I(I’IJ 7+ET + 1(a X))+ E L x+Y) Y 5 (4.24)

where = 1; ,; 5 isanelementofR L2 ;F;P;,R L2 ;F;PR.

Fact 4.18. The optimal value of the dual problem is given by

2
-+ max f a; 2g°=2
which is equal to' (0) (by (4.19)). Thus, as already obtained in Fact 4.16, there is no
duality gap.

If a< 2, then we can construct a maximizing sequence of Problerf#.24) that does not
converges inL2. If a> 2, then we have an optimal solution to Problem(4.24) that lies in
L2, thus ' is subdi erentiable at 0.
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Proof. For a given multiplier = ( 1; 5 3), the minimization part of Problem (4.24)
can be written as
SNy o n h(Y + )2 io
min — ( 1+ E[ ,J)x+a+E , +min E ———F—+( , 3)Y :
X 2 Y 2
I {z b {z }
(A) (B)

Part (A) is easily minimized as it is a second order polynom irx, with value

+E 2
GrEL e

Part (B) is also easily solved as we can interchange the inf and the expectation (becauge
is measurable with respect to , see [96, Theorem 14.60] ). Thus the minimum is attained
for
vi= o+ 5,
with value .
h( )2 |
: > (2 A+ 5 )

Thus Problem (4.24) now becomes

E

2 .
2 E[ 2] h ( 3 2)2 |

1
sup —+ a E[ ,] 1 ———+E +E ——== + ( )
PR 0 2 2 2 2 2 3 2

For given , and ;, the maximization in 1 is quadratic (in R). The unconstrained
optimum being 1= a E[ ,], thusthe optimum is ]1=(a E[ ,])*. Maximizationin 4
can be done under the expectation and thus, the optimum is achieved for3] =( ,+ )",
As and , are non-negative we have ;] = ,+ . Hence the remaining maximization
problem in , reads

E +32 E 2 2
sup ((a [ 2]) ) (E[ 2]) +E , +— (4.25)
, 0 2 2 2
First we solve Problem (4.25) over the set of , suchthatE ,  a. In this case, we
have to solve

2 n E 2 (o}
— + sup ELLD", ¢ ,
2 , 0 2
E[ 5] a

This problem can be written

2 n 2 o]
— + sup sup —+ E ;
2 M a , 0 2 2

E[ ,=M

and the supremum in , is obtained by concentrating the mass on the highest value of
. A maximizing sequence is given byMk1¢o 1oy 29 2 L2, which converges (up to
the canonical injection) in L?! ? towards ]2= M ¢ =4. Moreover sup 2M M 2=2
M a
is attained at M1 = maxf 2; ag and has the following value

maxf a; 2g?

2maxfa; 2g >
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Now consider the set of multipliers such thatE[ ,] a. Then, Problem (4.25) reads

2 n 52 0
—+ sup — aE[ ,J+E ,
o 2

2
E[ 5] a
Thus, we need to solve
2 Ng2 o]
sup sup ——+ — aM+E ,
oM a ,0 2 2
E[ =M

and, as previously, we concentrate the mass of, over the highest values of , leading to
2 n g2 0
—+ — +
> Oskjﬂp .2 (2 aM
which is maximized forM = aif a< 2, and maximized forM =0 if a 2. Note that in
this case the optimal multiplier is no longer a singular measure.
Collecting results we consider separately the case whee< 2 and wherea 2.
Assume that a < 2. Then, maximization over the set of multipliers such that
E[ ,] a, yields avalue of 2=2+2 whereas maximization over the set of multipliers
such that E[ ,] < a yields a value of 2=2+2a a?=2 which is smaller. Consequently
the optimal value of Problem (4.25) is

2=2+2;
and a maximizing sequence is

K
&) =2kl 1=y 29

Assume that a 2. Then, maximization over the set of multipliers such that
E[ ,] a, yields a value of 2=2 + 2a a’=2 whereas maximization over the set
of multipliers such that E[ ,] < a yields a value of 2=2 + a?=2 which is bigger.
Consequently the optimal value of Problem (4.25) is

222 + a%=2;

and the supremum is attained in

N_.
1
o

This ends the proof. O

We have thus seen on this example that:
The value function ' is I.s.c. at 0 (in the L? topology), and thus there is no duality
gap. This is checked through explicit computation of the dual problem.
If a < 2 the function ' is not subdi erentiable at 0, thus the constraints are not
quali ed. We can however construct an optimal solution in L?*
If a 2, there exists an optimal multiplier in L2, and thus the constraints are
quali ed.

Remark 4.19. Note that if a < 2 then the constraints on the random variableY imply
constraints on the variablex. Indeed, according to Constraint (4.17c) we havex Y +
and by Constraint (4.17d) we obtain x (P-a.s.), and as x is deterministic this is
equivalent tox essupp() =2. This last constraint is stronger than Constraint (4.17hb).
This is an induced constraints

On the other hand, whena 2, we are in the so-calledrelatively complete recourse
case as for everyx a, there is an admissibleY . In other words there is no induced
constraints. Hence, results by R.T.Rockafellar and R. Wets (see [93]) imply the existence
of a L multiplier in this case.
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4.2.2 Second Example: Su cient Condition is not Necessary

Let ;F;P be a probability space. We consider the following minimization problem,

. 1 2
Lan1 éE U (4.26a)
sit: U=0 P-as. (4.26b)

where the solutions are looked after in the spacei ;F;P;R .
The unique admissible solution isU! = 0, and the optimal value is 0.

Fact 4.20. In Problem (4.26) the P-almost sure constraintU =0 is quali ed (for the Ba-
nach L2) but does not satisfy the su cient constraint quali cation (CQC) given in  (4.15).
However it satis es (CQC) for the Banach L1 .

Proof. We embed Problem (4.26) in the following family of problems indexed by a B
perturbation P,

. 1 5

L|Jnf1 EE U

st: U=P P-as.

with value ' (P ). We easily obtain that

kPk% _
5 * fp 1g-

(P)=

Asforall P 2 L2 we have' (P) ' (0), it comes by de nition that ' is I.s.c.at 0 and that
02 @'(0).
Moreover the dual problem is given by

hy 2 i h 2i
su info E —+ U = su E = 0:
2|_pz U 1 2 ZEZ 2
Consequently there is no duality gap, and an optimal multiplier is ! = 0.

However, in the framework ofx4.1.2, we have chosen
U¥=fu2L? ;F;P,R |j U 1 P-asg

and =1d, C = f0g. Thus ( U3\ dom(J))+ C = U which is of empty interior (by
Proposition 4.12). Consequently this example does not satisfy the su cient quali cation
condition (CQC) (see (4.15)).

If we considerU=L1 :F:P;R we have

vd=fu2L! ;F;PRR j U 1 P-asg

and
( U3\ dom(d))+ C = U :

Finally we have that, through Proposition 4.13,
02 int U3 ;

which ends the proof. O
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4.3 Discussion

We have presented the classical abstract framework for duality in convex optimization,
and applied it to almost sure constraints in stochastic optimization.
Working with L P spaces, withp < +1 , we have shown on simple, seemingly innocuous
examples, that:
the constraint might not be quali ed,
even when the constraint is quali ed, the usual su cient condition of quali cation
may fail.
We conclude with the observation that LP spaces, withp < +1 , might not be the proper
setting to treat almost sure constraint by duality.
By contrast, the L topology might be better suited for almost sure constraint. Unfor-
tunately, the topological dual of L? is well-known to be a rich space, di cult to handle. In
the next chapter, we provide conditions that lead to constraint quali cation in stochastic

optimization problems, using the L ;LY duality.
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things in the least obvious way.

G. Polya

Obvious is the most dangerous word in mathematics.

E. Bell
Contents
5.1 Topologieson L' F;P;RY ... ... ... . ... ... ... 138
51.1 Thespacel F;P;RY .. .. ... . ... ... ....... 138
5.1.2 Weak and WeaK Topology of L* . . ... ............ 140
5.1.3 Mackey topology LY ;LY ... ... ... .. ... ... .. .. 141
5.2 A Duality Result Through Mackey-Continuity . . . . . . .. .. 142
5.2.1 Problem Statement. . . . ... ... oL 142
5.2.2 WeakK Closedness of Ane Subspaces of L ;F;P;RY . ... 143
5.2.3 Adualitytheorem . . .. ... .. ... ... .. ... .. ..., 144
5.2.4 Discussing the Local L' ;L' -Continuityof J .. ... ..... 147
5.3 Application to a Multistage Problem . . . ... ... ...... 149

In Chapter 4, we recalled the abstract theory of duality, with a focus on constraint
quali cation. We underlined that constraint quali cation of almost sure constraints in
stochastic optimization raises specic issues. In particular, we have shown on generic
examples that the topologies on I?, for p < +1 , may often fail to yield quali ed almost
sure constraints. We have also seen thatin L , paired with its dual, the su cient condition
of quali cation applies. In this Chapter 5, we provide conditions under which almost sure

constraints are quali ed in the duality L ;L? .

In x5.1, we present several topologies onL ;F;P;RY , each topology inducing a
di erent duality pairing, hence di erent results about constraint quali cation. In  x5.2, we
provide our main result, mainly extending the work of R. Wets in [116]. Finally, in x5.3,
we showcase an application to a multistage stochastic optimization problem.
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5.1 Topologies on L' ;F;P;R¢

In this section, we recall results of functional analysis. More precisely we present some
topologies on the set L F:PRY of essentially bounded functiong.

Moreover, we have restrained ourselves to random variables taking values RY. Indeed
a control process of aT -stage problem, each stage having nite dimensional controls and
state, is a stochastic process taking values in a nite dimensional space. If we were
interested in problem with continuous controls we could consider random variables taking
values into [0;T] (e.g. L ;F;P;RIT] ). Some results are available for more general
image spaces.

Almost all the following results can be found, in a more general setting, in functional
analysis books. For an easy but insightful introduction (for the Lebesgue measure) see [25],
for general results in in nite dimension see [3,22]. A brief selection of general results is
given in xA.1.

5.1.1 The space L' ;F;P;R¢

Let ;F ;P be a probability space. The set of essentially boundedr -measurable
functions L1 ;F:P;RY can be equipped with an equivalence relation stating that
X Yi X =Y P as. The set of equivalence classes is denoted by

LY ;F;PRY =LY FPRY =

For notational simplicity, we will sometimes write L 1 instead of L! ‘F:P;RY |
The set L° ;F:P:RY is the space of (equivalence class off -measurable functions
taking values inRY. The setL! ;F;P;RY isthe subspaceof £ ;F;P;RY ofintegrable
functions, i.e. such that
z
8X 2 L' ;F:P;RY; E kX kge = kX (1 )kgedP(! ) < +1 :

The usual norm of Lt is, foreveryX 2 L' ;F;P;RY, X =E X

Lt Rd -

De nition 5.1. A -algebraF is said to be not nite modulo P if one of following equiv-
alent assertions holds true:

I) n 0
inf P A A2F; PA >0 =0; (5.1)

i) The number of F-measurable eventsA 2  of positive probability is not nite,
i) there exists a F-measurable, real valued, random variableX such that,

8n 2 N; PX =n >0:
Proof. Consider the following equivalence relation on the -algebraF
A B | PA B =0;

where
A B:= AnB [ BnA

We work in the class of equivalencd- =

1. Those topologies can be de ned on any Banach space (or even for some cases on topological spaces)
and most results recalled here remain true.
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) ) i) Let A, ,, bea minimizing sequence of (5.1), such that

1
8n 2 N; O< P A, Z—n:

De ne, for all n 2 N, the sets
Bn = [k nAk;

and
Cn = Anan+1

Thus Bn ,yand Cn ., arealsominimizing sequences of (5.1), indeeld B,
1=2" L, andP C, 1=2"

Moreover there is a subsequenceC,, ., such that each term is of positive prob-
ability. Otherwise, we would have N 2 N such that

8n N; PC, =0;

hence,
8n > N; AN Bn:

As P Ay > 0 it contradicts the fact that Bj P is a minimizing subsequence.
Thus Cp, ., Is anon-nite sequence ofF -measurable, disjoint, events of positive
probability. P

i) ) i) We chooseX = i, kic,, .

i) ) i) If the inmum in (5.1) is " > 0 the number of disjoint event of positive
probability is nite (at most 1 ="). Thus the number of events inF=  of positive
probability is nite.

iii) ) i) Eachevents X =n is of positive probability.

n2N
]

Remark 5.2. If the -algebraF is nite modulo P thenL! ;F;P;RY is a nite di-
mensional space. As it is an Hilbert space, the weak and weakopologies (and hence the
Mackey topology), presented hereafter, are equivalent.

Forany X 2 L' ;F;P;RY we denote by X
n 0

X , :=inf M 2R[f +1g P X M =0 : (5.2)

the essential supremum ofX , i.e.

Rd

The topology yx induced by kk, . is called the norm topology. The convergence of a
sequence X , _,, Of random variables toward X in the norm topology is simply denoted
by X, ! X. .
Moreover, we dene by L! ° the set of continuous (for the norm topology) linear
forms on L . The natural norm on L! 7 is de ned by, for any v2 L*? ?
kvk , »=sup jv(X)i X 2L X [ 1
We have the following results.
?
Fact 5.3. We gather here some useful results oh! and its topological dual L*
Consider a probability space ;F;P .
If F is not nite modulo P, L' ; .. is a non re exive Banach space.
The Banach spacel_l ‘F:P;RY is separable i the -algebraF is nite modulo P.
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The Banach spacel! is dense (for the norm topology) inLP, for any p 2 [1;1 ]
(recall that a probability measure is nite and see [3, Theorem 13.8] orxB.2).

The topological dual of the Banach spacé.! , denoted by L! ?, is isometrically
isomorphic to the setba ;F;P of all nitely additive, nite, signed measures de-
ned on , which are absolutely continuous with respect t®, equipped with the total
variation norm (see [42, Theorem 1V.8.16]).

There is a canonical injection i of L' into L?! ? where forallY 2 L1,

i(Y): X TTEY X
We give a short proof of the second point, wherd = 1,

Proof. If F is not nite, there exists a random variable X such that for every n 2 N,

P(X = n)> 0. For any sequencau 2 0;1 N, where u = (Up)n2n, We de ne the bounded
random variable X
X, = unl

u X =n
n2N

Note that for every sequenceu andv in 0;1 N such that u 6 v, we have

X X

u v i =Supjun  vqpj=1:

n2N
Thus we have an enumerable number of points in L equally distant to each other, thus
no countable sequence in L can be dense, and thus L is not separable.
On the other hand if F is nite it is generated by a nite partition (say of cardinal
N),and L ;F;P;RY is isomorphic to RN ". O

5.1.2 Weak and Weak ? Topology of L*?
Weak Topology RIS

Recall that L1 7 is the set of continuous (for the norm topology) linear forms on L1 .
The weak topology L1 : L?! ? is, by de nition, the coarsest topology such that every
element in L* 7 is still continuous.

Fact 5.4. The weak topology is separated. We denote by, * X the fact that a sequence

X o naon Weakly converges towarK . We have

X *X (0 8 Y2 L7 hy ;X ith Y;Xi: (5.3)
Fact 5.5. The weak topology is coarser than the strong topology:
L1, L’ K
We have the following additional properties linking the weak and strong topologies.
If X, ! X,thenX * X.

If X, * X,then X, 17isboundedandX 1 lim, X, 1

Ll
If X,* X andY,! Y, thenhy ;X ilh Y ;Xi.
A convex set is closed in the norm topology i it is closed in the weak-topology.
Consequently a convex function is l.s.c for the norm topology i it is I.s.c for the

weak topology.
Note that this fact is not restrained to L 1

Fact 5.6 (Eberlein{Smulian). A set is weakly compact i it is weakly sequentially compact
(see [3, 6.35]).
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Weak ? Topology L' ;L?

?

We go on by coarsening the topology L' ; L1 .

We dene by L!:L! the coarsest topology on It such that every L!-linear form
onL! :F:P:RY is continuous, i.e. such that for everyY 2 L1 ;F;P;RY , the linear
form X 7' E X Y is continuous. As L1 :F:P;RY is the topological dual (for the
norm topology of LY) of L ;F;P;RY, L!:L! isthe so-calledweaK topology of L .

We denote byX | * X the fact that sequence X | . weakly’ converges towardX ,
and we have

X, * X 0 8 Y2LY EY X, ! EY X : (5.4)
The main interest of the weak’ topology is given by the Banach-Alaoglu-Bourbaki
Theorem (see [3, Theorem 5.105]), recalled in the following fact.

Fact 5.7. The norm-closed unit ball is weak compact, hence any bounded and we&k
closed set is weakcompact.

Notice that, if F is not nite modulo P, the unit ball is not compact in the weak
topology. Indeed, if it were the case Kakutani's theorem would imply that L is re exive.

Fact 5.8. We have the following inclusion of topologies:
Ll ,Ll Ll ,(Ll )? Kk .

We have the following additional properties on the wedktopology, wheref X  gnzn is a
sequence oLl , and f Y gn2n is @ sequence ot.1.

The weaK topology is separated.

If X, * X,thenX_ * X.

If X,* X,then X _ . is bounded and X lim X

1 1 — n1°-

?
1

L
If X, * X andi(Y,)! i(Y), thenhy ;X ith Y Xi.

5.1.3 Mackey topology LYt

The weak’ topology L ;L' is dened as the coarsest topology such that the E
linear forms are continuous. The Mackey topology L! ;L! is dened as the nest
topology such that the only continuous linear forms are the L linear form.

Thus the Mackey topology is ner than the weak”’ topology. Hence, it is easier for a
functional J : L' ! R to be Mackey continuous, than to be weak continuous.

Fact 5.9. We have the following inclusion of topologies:

Ll ;Ll Ll ;Ll Ll ;(Ll )? Kk
We have the following additional properties.
Lt
X, * X = X! X =) X, * X.

The Mackey topology L% ;L! is separated.
A convex set is closed in L1 :LY i itisclosedin L1;L!.

Lt Lt
X! X = 8Y2L' ;F;PR; EY X, X I 0:

n Rd

2. As noted by H.Brezis, one could be surprised that we thrive to obtain coarser topologies. The reason
is that a coarser topology implies more compact sets, which are useful for existence results.
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There is a practical characterization of the convergence of a sequence in the Mackey
topology by M.Nowak [71, Theorem 2.3]

Proposition 5.10. The sequence X LY ;LY -converges towardX i

n n2N

op2 [L+1); X

sup, X, ; <+1

X

Remark 5.11. We have presented di erent topologies onL! as they induce di erent
pairings. For example we can consider:

the natural pairing L*; L* ?  of a Banach space with its topological dual, where
LY is either endowed with the strong or weak topology;
the pairing L! ;L' that coincide with the previous one (up to canonical injection),
whereL! is either endowed with the weakor Mackey topology.

In the following section we present a duality result using the pairing L* ;L' , whereL!

is endowed with the Mackey topology L* ;L .

5.2 A Duality Result Through Mackey-Continuity

In [116] R.Wets exhibited conditions such that the non-anticipativity constraints are
quali ed in the pairing L? ;L . Here we extend the results to more general a ne con-
straint.

In x5.2.1 we present the optimization problem. Inx5.2.2 we gives some results of weék
closedness of an a ne subspace of L. Those results are used irx5.2.3 which follow closely
the proof given in [116]. Inx5.2.4 we discuss one important continuity assumption made
in the proof.

5.2.1 Problem Statement

Let Ube L! ;F;P;RY, and U be an a ne subspace ofU.

We consider a cost functionj : R4 I R[ +1 ,assumed to be a convex normal
integrand (see [96] for de nitions and properties), with the following assumption, known
as strict feasibility condition ,

9">0; 9U,2U%; 8u2R% kukga " =) j(Ug+u)<+1 P-as. (5.5)
This strict feasibility condition is essential for the results. We de ne the objective function
J:U! Rby 7

J:UTMEjJ U = juUl)! drl!): (5.6)

Finally, we consider the problem

mn Ej U : (5.7)
u2uad y

We consider the pairing Y ;X ,whereY 2 L%, X 2 L' given by

Y ;X =EY X
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5.2.2 Weak ? Closedness of A ne Subspaces of L! ;F;P;R¢

We show conditions for a ne subspaces of ' ;F:;P;RY to be weak closed, and
give some examples. This closedness assumption is required to prove the duality result in
x5.2.3. Simultaneously we obtain weak continuity 3 results for linear operators useful in
Chapter 6.

Proposition 5.12.  Consider a linear operator
‘LY F;PR" ! LY G F;PR™ ;
and a vectorb2 LY ;F;P;R™ . Assume that there exist a linear operator

Y.Lt cF:PR™ 1 LY FPR"

such that:
D E D E
8X 2L F;P,R"; 8Y 2L' ;F;PR"™; Y; X =YY ;X
(5.8)
Then the linear operator is weak continuous and the a ne set
n o]
vud= x 2L ;F;P;R" X =B ; (5.9)

is weak closed.

Proof. Consider a net X, - inuvad L1 :F:P;R" converging weakly towards X ,

and a random variableY 2 L! :F:P;R™ .
We have, for anyi 21 , by de nition of Y,

Ehv; X, i =EhVYY ;Xii
As YY 2LY :F:P;R", the linear form
X7TE YY X ;
is weak continuous (by de nition of the weak ? topology). Hence,
im E YY X, =E YY X =EY X
Xi! X
n 0
In other words the net X, " converges weakly toward X . Hence, the function
|
Lt FPRYI! LY G FPRT

is continuous if both spaces are endowed with their weaktopology.

As fB g is a weaK-closed set, we have thatU® = 1 fB g is weak'-closed.
O]
Corollary 5.13. Consider a matrix A 2 M nn(R), and a random variable B 2
LY  ;F;P;,R™ . Then the linear operator : L ' ;F;P;,R" ! L' ;F;P,R™,
de ned by
8Xx 2L F;PR"; X =AX : (5.10)

is weak continuous, hence the a ne space
uads = U 2Lt F;PR" AU=B P as: ; (5.11)

is weakly closed.

3. By weak’ continuity we means the continuity of the function from L ' to L both endowed with
the weak’ topology.
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Proof. The operator Y:L! :F;P;R™ ! L' ;F:P;R", dened by
g8y 2L! ;F;P,R™; Yy =ATy ;
is linear and such that
8X 2L' ;F;PR"; 8Y 2L" ;F;PR™; Y; X = YY ;X
Thus, is weak ? continuous by Proposition 5.12, andU?$: in (5.11) is weak closed. [

Corollary 5.14. Consider a Itration F = fF ogI Yon E;P. Then,fort2 [0;T 1],
the linear operator {:L! ;F;P;RY I L1 :F:P;RY, dened by

8Xx 2L! F:P:RY; ¢ X =ZEX F X

is weak continuous.
Hence, the linear space

N:= u2Lt ;F;PRT 8t2[0;T 1, EU, Fi =U, ; (5.12)
is weakly closed.

Proof. We construct the right operator to apply Proposition 5.12.
For t 2 [1;n], linear operator {:L' ;F;P;RY I L' ;F;P;RY, dened by

gy 2L ;F;P;RY; YY =EY Fy Y ;

coincide with onL ¥ ;F:;P;RY and, is such that

8Xx 2L ;F;PRY; 8Y 2L' ;F;PRY; Y X = {Y ;X
Indeed,
h i h i
EY t X =EY EX F¢ EY X
h i
=EEY F X EY X by Lemma B.3
h i
=E Y X
Hence, Proposition 5.12 gives the weakcontinuity of .
We have
'R 1
N = L fog
t=1
thus, N is weak closed. O

5.2.3 A duality theorem
In this section we show the following rst order optimality conditions.

Theorem 5.15. Assume thatj is a convex normal integrand, thatU2d is a weaK closed
ane subspace of L1 :F;P;RY and thatJ given by (5.6) is continuous in the Mackey
topology L ;L! at some pointU, 2 uad\ dom(J). Then the control Ul 2 U2 is an
optimal solution to
inf Ej U
U2uad

if and only if there exist 12 LY ;F;P;RY such that
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U! minimizes on U the following Lagrangian®
h [
LU; ' =gju +u I ;

?
and 12 yad

In order to show this Theorem, we need a few preliminary results. We follow the work
of R.Wets in [116] for non-anticipativity constraints.
Consider the problem
inf JU + [w U : 5.13
Ju Usd (5.13)
In Lemma 5.16 we show thatJ is weak-l.s.c, and hence LI :L! -l.s.c. However
Theorem 5.17 requires a stronger assumption: the continuity of) at a point U,. This
assumption is discussed irx5.2.4.

Lemma 5.16. If j is a normal convex integrand satisfying (5.5), then the Fenchel conju-
gate (de ned in De nition A.37) of J in the pairing L ;L' , is given by

Z
7 =Ej? = ynndr();
and
i’C;t)=sup u j(ut)
u2Rd
Moreover, we have
J7=17:
Thus, J is weakK-I.s.c.
Proof. It is a direct application of [88, Theorem 3]. O

Theorem 5.17. Assume thatU? is an a ne space. Assume that|j is a convex normal
integrand, and that J given by (5.6) is continuous in the Mackey topology L' ;L' at
some pointU, 2 Uad\ dom(J). Then, we have

inf J U = max J?
U 20 ad 5 yad

Proof. Notice that as the set U2 is weak closed convex, the function yad IS also convex
and weakK l.s.c., and hence LI ;L! -Is.c.
By using an extension of Fenchel's duality theorem as given in [87, Theorem 1] we have

n (0] n 0

Ui% JU + yau U = max J? Zjad ; (5.14)

Indeed both functions are convex, andJ is continuous in the Mackey topology L% ;L?!
at U, 2 U3, where  is nite.

Moreover,
? - ‘Ui = :
Uad = L%%)gdh Ui = ad : (5.15)
We conclude by combining (5.14) and (5.15). O

A by product of this proof is given, as U2 is an a ne space, in Equation (5.15).

4. Recall that U s an a ne space, hence we do not need to specify the point at which the dual cone,
given in De nition A.40, is evaluated.
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Corollary 5.18. Suppose that the assumptions of Theorem 5.17 hold true. Then, a control
U! minimizes J if and only if there exists 2 U2 ? such that

12 @Jju!

. . . . ?
Moreover, those 1 are the points whereJ? achieves its minimum over Uad * .

Proof. Throughout the proof we consider the Mackey topology L!:L' on
LY ;F;P;RY . Thus, the topological dual of L' is L', and any subgradients are el-
ements of LL.

Consider a control Ul 2 U2 Note that Ul minimizes J on U i 0 2 @J +

ua Ul . By [88, Theorem 3], this is equivalent to 02 @J Ul + @ .« U! , and
thus to the existence of 1 2 LY suchthat 1 2 @ y« U! and 12 @J U!l.
Finally, we have

@ yad U] = Uad ? .

Indeed 2 @ yaa U! i
8u 2 U, ;U Ul o;
and, asU2 is a vector space, it is equivalent to
8u 2 U, U Ul =0:
Th]us the existence ofU] minimizing J over U9, impliesthat 12 U ? and 12
@Ju’ .

On the other hand assume that there is such a !.
As 12 @Ju! , we have

gu2u; Ju Jul+ HURN VI
which can be written as
J u! Iyl supn hu Ju 0;
[= iz )
37

and leads to (the other inequality being always satis ed)
Jul +37 1= g 1 Ul

Similarly, as 12 @y« U! we have

yad U]+ EJad ]:E ]U],
and, as L?Jad = a7 (see Equation (5.15)) we obtain
yad U] + ? ] =E ] U]
yad
Thus,
? .
pa UL+ e D= g Ul Y I
or, equivalently,
] 1 = ? ] 1 = ? ] 1 .
yad U +J U - J yad ? - J yad ? )

as U 7 s a vector space. Hence, Theorem 5.17 achieves the proof. O
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As we said at the beginning we now end the section by the proof of Theorem 5.15.

Proof. By Corollary 5.18, the control U! is a minimizer of J over U4 i there is 12
@JU! \ U 7 Moreover U! minimizes the LagrangianL(U; 1) on Ui

02@J+hli Ul
and, by the continuity assumption and [88, Theorem 3], this condition can be written as
02@J Ul +@ h'l;i U!

As the subdierential of h 1;iis 1 | thisis equivalentto 12 @Jul . O

5.2.4 Discussing the Local LY ;L' -Continuity of J

It is worthwhile to elaborate on the Mackey continuity assumption of J at point U,
in Theorem 5.17. Indeed Lemma 5.16 show thatl is weak |.s.c everywhere, which is
equivalent to be Mackey l.s.c everywhere agl is convex. However assuming that] is
Mackey upper-semicontinuous at pointU, is a weaker assumption than assuming wedk
upper-semicontinuity at point U,,.

First we show that if J is nite then J is Mackey continuous. Then, we give conditions
onj for J to be nite. Finally we show that, unfortunately, if the optimization problem
include almost sure bounds, then the functiond cannot be Mackey continuous at a point
Uo.

Conditions for Mackey Continuity

We show Mackey continuity if J (de ned in (5.6)) is nite. First we need a de nition
and a lemma.

De nition 5.19. We say thatJ : U ! R has the Lebesgue propertyif for any sequence
U, .,y Such that
SUpnon U, 4 < +1,
Un | a.s. U ’
we haveJ(U,)! J U .

Lemma 5.20. Suppose thafj is a convex integrand and that) (de ned in (5.6)) is nite
everywhere onL  ;F;P;RY . Then, J has the Lebesgue property.

Proof. Consider a sequenceU, . converging almost surely towardU, and such that

sup U, ;, M< +1:
n2N
As, for almost all ', u 7! j(u;!) is convex and nite, it is also continuous. As | is
measurable in! | it is a Caratheodory integrand, and thus a normal integrand.
By a measurable selection argument [96, Theorem 14.37], there exists 2 L° satisfying

V., Mand
jj(V)j= juth)y<1;
i (V)j kuTR?XM ji(u)j
almost surely. In particular we have, foralln 2 N, jj(U,)j | j(V)].
Moreover, by continuity in u of j we have, for almost all! ,

JULE) ! ajU)Y):

Now asJ(V) < +1 , Lebesgue dominated convergence theorem ensure tha(U ) !
J U . O
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Proposition 5.21. Assume thatj is a convex integrand and thatJ is nite everywhere
onL! ;F;P;RY. Then,Jis L! ;L -sequentially continuous.

Proof. Recall that, for a sequence xn |, in a topological space, the sequencexn ,,
converges towardx if from any subsequence we can extract a further subsequence con-
verging toward X.

Assume that U, . L*;L! -converges towardU. Then, by Property 5.10, we
have that thereisap 1suchthat U, . convergesin P toward U, and, in particular,

that U, ., converges in probability.

Consider the sequenceJ (U ) For any subsequence J U M) o we are going
n

n2N-’
to construct a sub-subsequence converging toward$ U .

As U (n) n2n CONvVerges in probability (as a subsequence of a sequence converging
in probability) toward U, we have a further subsequenceU M) n2N converging almost

surely towards U. Moreover Property 5.10 ensures that sug,y U, ;, < +1 . Thus,
Lemma 5.20 guarantees convergence ofl (U (n)) 1oy toward J U, hence the conver-

gence of J(U,) ,, toward J U . O

Corollary 5.22. Assume thatj is a convex integrand and thatJ is nite everywhere on
LY ;F;P;RY . Then, Jis L ;L' -continuous®.

Proof. In the proof of [88, Theorem 3], it is shown that, under strict feasibility assumption
(satis ed by niteness of J), we have

9Y, 2 L' such that j °(Yq; )* 2 L*:

Using Lemma 5.20, the result is a direct application of [72, Theorem 3.4]. O

Condition on | that Ensures Finiteness of J

As the niteness of J is an assumption on the integral cost, we gives some set of
assumptions on the integrandj that implies that J is nite everywhereonL! ;F;P;RY .

Proposition 5.23.  If there exists aU, 2 L  ;F;P;RY such thatE jj(Uy; )j < 1
and if the family of functions x 7! j(x;! )j! 2 is P-almost surely equi-LipschitZ® on
any bounded set, then] is nite.

Proof. Let U, 2 LY  :F;P;RY be such that E jj(Ug; )i < +1. ConsiderU 2
LY ;F:;P. Let be an almost sure Lipschitz constant ofx 7! j(x;!) on the ball

of center 0 and radius max U | ; Uy , . Then we have, almost surely,

Ut i Ugt g+ ju Ugj jjUgt j+ U+ Uy,

thereforeJ U < +1 . O

5. This result is stronger than Proposition 5.21. However it relies on a result found in a pre-print, with
an involved proof that | have not been able to grasp, whereas the proof of Proposition 5.21 is a personal
contribution.

6. In fact we only require that the Lipschitz coe cient is integrable. Moreover we can replace Lipschitz
continuity assumption by Helder continuity assumptions.
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Mackey Discontinuity Caused by Almost Sure Bounds

We show that almost sure constraints represented in the objective function] implies
that at any point of its domain J is not Mackey-continuous.

Proposition 5.24.  Consider a convex normal integrandj : RY I R, Consider a set
U2 (R 9 and de ne the set of random variable
n 0
uds:= U 2Lt ;F;P;RY u2ud p as.

Then, at any point U, 2 dom J \U 2%, whereJ is given by (5.6), the function
F:U 7'\](U)+ uU2uas. ;
is not Mackey continuous.

Proof. Consider a pointx 2 R4n U2, and a random variable U, 2 dom J \U &S Let
X be random variable uniform on [Q 1]. De ne the sequence of random variables

U, =Ug+ x Uyly 1:
We have
Moreover,
X Uy X 1+t Uy 4
Lt
Hence, Proposition 5.10 ensure thatU, ! U. However, as, for anyn 2 N,

U, 2 U when X %, we have that U, 2 U35, hencef U, =+1. And, by
assumption¥ U, < 1 ,thus U, 9 ¥ U, . Therefore, ¥is not Mackey continuous
at U, ]

To sum up, we are able to dualize some a ne constraints if there is no non-dualized con-
straints. In [116] the only type of constraint considered is the so-called non-anticipativity
constraints (we show in the following section that they fall in the class of a ne constraint
that can be dualized). We add to those constraints some a ne almost sure constraints.
However, we are not able to show the existence of optimal multiplier in presence of almost
sure bounds on the control.

5.3 Application to a Multistage Problem

In this section, we present a multistage problem with a ne almost sure constraint and
show the existence of a multiplier in L.

We consider a sequence of noiseswW, tT:Ol, with W, 2 LY G F:P;R™ | for any
t2[0;T 1]. We denote byF; the -algebra generated by the past noises:

Fii= Wy, YW

and by F the induced ltration F= F; th01_
given by

8t2[0;T 1], Xigp = e XD W, (5.16)
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where the control process D tgthol is a stochastic process adapted té-, and for each time
t2 [T 1],D,2L! ;F;P;R"Y .

For each timet 2 [O; T 1], we consider a local cost.; : R™*N¢*"w I R and a nal
costK : R™ I R. We also consider linear constraint functions ; ;: R™*"d I R" and a
sequence of-adapted stochastic process B

t t2[0;T 1]
Finally the problem reads,
hk 1 [
)r(n_ig E L X ;DyW, + K(X ) (5.17a)
’ t=0
sttt Xg= Xo (5.17b)
Xiyp =t Xi;D W, (5.17¢)
D, Fu (5.17d)
t(X;Dy) = B, P as: (5.17e)

Lemma 5.25. Assume that,
the random noisesW, are essentially bounded,
the local cost functionsL; are nite and convex in (X¢; d;), continuous in w;;
the evolution functionsf; are ane in (x¢;d;), continuous in w;;
the constraint functions ; are ane.
Then Problem (5.17) can be written

min J U ;
U 2uad

where
JU)=EjU) ;

with j a convex normal integrand. MoreoverJ is nite on L! and henceisa L*;L! -
continuous function, and U isa L' ;L' -closed a ne space.

Proof. We rst rewrite Problem 5.17 in the framework of x5.2, and then shows the required

continuity and closedness properties.
T 1

1. We reformulate Problem (5.17). We dene the control U = Dy _; 2
LY  ;F;P;R™ . Then, xo being given and constant, we de ne recursively the
functions

xg: o RUMarme) o RN
D;W ‘27! fr1xe1 D;W '2 Dy uW g

The functions x; give the value of X ; in function of the past decisionsf D sgg:g, and
noisesfW g5, and are ane in U.
We de ne (up to P-almost sure equality), the cost
K 1
j(u;):= Lt x¢ D W
t=0
Then J(U) = E[j (U)] is the objective function of Problem (5.17), taking into ac-
count the initial state constraint (5.17b) and the dynamic constraint (5.17c).
The control U satis es constraint (5.17d) and is said to be non-anticipative if it is
an element of the spaceN L' ;F;P;R™" , where
n 0
N:i= Dg., 2L ;F;PRT™ 8s2[0;T 1, EDg Fs =Dy :
(5.19)

t 1 T 1

-0 ;D W, +K xr D ;W -0 : (5.18)

S
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The control U satis es constraint (5.17¢) if it is an element of the subspaceU?s:

given by
uss:= Dyt 82[0T 1 ¢ x D;w ' D, =B,
(5.20)
With these notations, Problem (5.17) can be written
min J U
U2N\WU as

2. We show the L' ;L' -continuity of J.
As, forany t 2 [O;T 1], the function L, is convex, and the function x; is a ne
we obtain the convexity in U of function j. Measurability and continuity of j are
obvious.
Moreover, for allt 2 [O; T 1], the decision variableD , is bounded as an element of
L1, and the random noiseW is bounded by assumption. Thus the state procesX
given by (5.16) is also bounded. Furthermore there are constants 0 and 0
such that X | + U . Consequentlyj is a Caratheodory function, and
J (as denedin (5.6) ) is niteon L .
Thus, by Corollary 5.22, the function J is L ;L' -continuous.

3. We show the L1 ;L! -closedness ofJad.

Corollary 5.13 and 5.14 ensure thatN and U2 are weaK-closed a ne space, hence
Uad = N \U 2% js a weaK-closed a ne space, thusa L! ;L! -closed a ne space.

The proof is complete. O

Lemma 5.25, cast the dynamic problem into the static setting ofx5.2, and thus ensure
the existence of a multiplier for the non-anticipativity constraint coupled with the almost-
sure ane constraint. We now discuss, how the multiplier can be decomposed into one
for the almost sure constraint, and one for the non-anticipativity constraint.

Proposition 5.26. We denote byN the set of non-anticipative controls de ned in Equa-
tion (5.19), and by U25 the set of controls satisfying(5.17e) given in Equation (5.20).
If, for all U 2 U2, the F-adapted part of U is also in U35 i.e.

n Ot 1

EU, Fo 209, (5.21)

then
? ? .

(US\N )? = U2s 7 + N (5.22)

Proof. Consider the linear operator :L* ;F;P;R™® 1 L1 :F;P;RTY , that gives
for each stochastic process it$-adapted part, i.e.
n Ot 1
U = E Ut Ft .
t=0
is a linear operator, admitting an adjoint, with U =N, and N = Id. Moreover,
by assumption U?s- U 25, Hence, Theorem A.43, states that, foranyU 2 N\U 25,

? ?

(U*AN )G = U*S [+ Ng

Finally, noting that U2S- and N are a ne spaces gives the result. O
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Corollary 5.27. Under assumptions of Lemma 5.25, Problem(5.17) admits a L* mul-
tiplier for the non anticipativity constraint (5.17d) coupled with the almost sure con-
straints (5.17e).

Moreover, if the constraint functions  in Problem (5.17) does not depends orX |,
then the multiplier can be decomposed into one multiplier for the almost sure constraints,
and one for the non-anticipativity constraints.

Proof. From Lemma 5.25 we have the assumptions required to apply Theorem 5.15. More-
over, if the constraint functions ¢ in Problem (5.17) does not depends orX , then as-
sumption (5.21) is satis ed, and Proposition 5.26 gives the result. O

Conclusion

In this chapter, we have shown that, if the cost functionJ is nite on L 1 then almost
sure a ne equality constraints and non-anticipativity constraints admit a L -multiplier.
Notice that, when we assume that the cost functionJ is nite on L1, we exclude the
possibility of having almost sure constraints that are not dualized.

If we want to incorporate bound constraints on control variables in the optimization
problem, we should turn to a series of works by T. Rockafellar and R. Wets. In a rst series
[86,91,93,97], they work out the theory of duality on a two-stage stochastic optimization
problem. In [97], they show a result of non-duality gap. In [91] the Kuhn-Tucker conditions
are detailed, whereas in [86] the existence of a multiplier inL* ? is shown. Finally, in [93]
they introduce a condition, slightly weaker than the well-known assumption of relatively
complete recourse, that ensures the existence of a multiplier in L. In [92, 94, 95], they
adapt these results to a multistage optimization problem.

It appears that, in these papers, two types of assumptions are of the upmost impor-
tance: (essential) relatively complete recourse; strict feasibility assumption. We comment
one after the other.

Relatively complete recourse ensures that there is no induced constraint, that is,
that the constraints at later stages do not imply constraints at earlier stages. From
a multistage application point of view, bound constraints on the state would still be
di cult to treat; but bound constraints on the control would be available.

The strict feasibility assumption is mainly used to show the existence of a multiplier
in LY 7. This assumption forbids the direct use of the results of T. Rockafellar
and R. Wets to problems with equality constraints. However, if we look at the proof
of [93, Theorem 3], the strict feasibility assumption is used to ensure the existence
of a multiplier for the rst stage problem (with a linear cost). Hence, the existence
of a multiplier in  L?! ? and relatively complete recourse-like assumptions might be
enough to show the existence of a multiplier in It. Work remains to be done on this
subject.
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We remind the reader that this second part of the manuscript deals with the treatment
of constraints through duality, in stochastic optimization. This Chapter 6 is devoted to the
extension of the Uzawa algorithm, as formulated in an Hilbert space (e.g. £ ;F:P ), to
the Banach space £ ;F;P . The issue is the following. The convergence of the Uzawa
algorithm relies upon a key assumption of constraint quali cation. But, we have seen in
Chapter 4 that almost sure constraints generally fail to be quali ed for the LP duality,
whenp < +1 . In Chapter 5 we derived conditions to obtain an optimal multiplier in
the LY ;L! duality. This chapter is devoted to the extension of the Uzawa algorithm, as
formulated in an Hilbert space (e.g. l> ;F;P), to the Banach space ! ;F;P .

The chapter is organized as follows. k6.1, we recall optimization results (inequalities
and rst order optimality conditions), that are well-known in Hilbert spaces, and that
remain valid in Banach spaces; we also recall the proof of convergence of Uzawa algorithm
in the usual Hilbert spaces case. Inx6.2, this proof is used as a canvas for the proof
of convergence of Uzawa algorithm in the non re exive Banach spaceL ;F;P;R" .
Finally, in x6.3 we present an application to a multistage example.
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Introduction

To address a constraint in an optimization problem, we can dualize it, thus making
it disappears as a constraint and appears as a cost. Consequently, the \min" operator
is replaced by a \minmax" operator. Numerical algorithms address such problems; the
Uzawa algorithm is one of them.

For an objective function J : U ! R, a constraint function : U !V , constraint set
U2 U and a constraint coneC V , we consider the following problem

r;quigd J(u) ; (6.1a)
st:. (w2 C; (6.1b)

where U (resp. V) is a topological space paired withU? (resp. V?). We associate with
this problem the LagrangianL : U V ?! R, introduced in Chapter 4, given by

L(u; )=JWw+ ; (uw Vo - (6.2)
Thus, Problem (6.1) reads

minmax JUE s (W) ey (6-3)

whereC? V 7 is the dual cone given by

C’= 2V? j 8x2C; X 5, O
The dual problem of Problem (6.3) reads
1 + . .
n;%)o( ug]Ulgd ‘](u) ’ ( U) V?;V’ (64)
and the inner minimization problem for a given multiplier is
min Ju+ 5 (U) oy (6.5)

u2uad

An iteration of the Uzawa algorithm consists in xing the multiplier  of the constraint,
then solving the inner minimization problem (6.5), and nally updating the multiplier.
The update step can be seen, under the right assumptions, as a gradient step over the
multiplier. It is described in Algorithm 6.1, where proj 5 (z) is the projection of z on the
convex setA.
Data : Initial multiplier ©, step > 0
Result : Optimal solution U! and multiplier ! ;

repeat
n 0
u®* 2 argmin - Jw)+ ®:(uw (6.6a)
u2uad
&) =proj . ®@+ gk (6.6b)

until (u®)y2 c;

Algorithm 6.1;  Uzawa Algorithm

6.1 Optimization Results and Classical Uzawa Algorithm

In x6.1.1 we show that some inequalities and rst order optimality conditions usually
presented in an Hilbert setting remain true in a Banach setting. In x6.1.2 we recall the
Uzawa algorithm in an Hilbert setting and its proof that is used as a canvas for the proof
given in x6.2.
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6.1.1 Optimization in a Banach Space

In this synthetic section we underline some relevant di erences between Hilbert and
Banach spaces, and go on to give some inequalities and optimality conditions that are
used inx6.1.2 andx6.2.

Lemma 6.1. Let U be a Banach space and : U ! R a convex and Gateaux di erentiable
function J. We have
JW ;v u I J):

Moreover, if J is strongly convex! of modulusa, we have

aku vk®  J%u) Jqv);u v
Proof. The usual proof in a Hilbert space remains valid in a Banach space. O
Proposition 6.2. Let U be a Banach space. We consider the following problem:

min  Juw+J (u): (6.7)
u2yad

We make the following assumptions:
1. U3 js a non empty, closed convex subset &f,
2. the function J : U ! R is convex and Gateaux-di erentiable,
3. the function J :U! R is convex.
Then, the point u 2 U2 is a solution of Problem (6.7) if and only if

gu2uU® 3%y :u u+J (U J u O: (6.8)
Proof. Assume that u is an optimal solution of Problem (6.7). U2 being convex, we have
8t 2 (0;1; 8u2U; Ju+tlu u +J u+tlu u Ju+J u;
so that, for any t 2 (0; 1],

Ju+t(u u Ju+J u+t(u u J u
t t

By convexity of J we have

J u+t(u u J
t
and by Gateaux-di erentiability of J we have

8t 2 (0; 1];

o Ju+t(u u Ju
lim ( ) = J% ;u u ;
t1 ot t

hence the variational inequality (6.8) holds true.
Now, suppose that (6.8) is satis ed. Then, by convexity ofJ, we have that
gu2u 3%y :u u Jw Ju ;
thus, the optimality of u. O

We apply Inequality (6.8) to Problem (6.5), where J is the objective cost, andJ is
the dual term, and obtain

gu2uU: 3% :u u + ; (u u 0: (6.9)

1. See [70, Section 2.1.3] for equivalent de nitions of strongly convex functions
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6.1.2 Recall of the Convergence Proof of Uzawa Algorithm in a Hilbert
Space

Following [45, Ch.VII], we recall the proof of the Uzawa algorithm. This proof will
be used as a canvas for the proof an extension of the Uzawa algorithm in thell case
developed inx6.2.

From now on the di erential form JYu) 2 U? is associated with the gradientr J(u) 2
U.

We make the following assumptions about Problem (6.1).

Hypothesis 1.
1. The function J : U ! R is strongly convex of modulusa, and Gateaux-di erentiable.
The function : U !V is C-convex (see De nition A.48), and -Lipschitz.
Uad is a non empty, closed convex subset of the Hilbert spate
C is a non empty, closed convex cone of the Hilbert spadé

The Lagrangian L (de ned in (6.2)) admits a saddle-point(u!; 1) on U2 C?, that
is,

a k> w DN

8u2uU¥: 8 2cC?; L ul; Lu; 1 Lou ! (6.10)
6. The step is small enough 0< < 2a= ?).

Let us comment these assumptions.

(&) In general, we do not require condition 5, but obtain it from other assumptions,
e.g. through quali cation conditions.

(b) The strong convexity of J ensures the uniqueness ofil, rst component of the
saddle point, in (6.10).

(c) We do not assume thatJ is I.s.c., as this property is implied by convexity and
di erentiability:

J(v) Juw+ rJw;v u ) IimirJf J(v) J(u):
(d) The right-hand side inequality of (6.10) can be written

ul 2 argminL u; ! ;
u2y ad

with the following optimality condition (see (6.9)),
8u 2 uad: rdu su W+ 1o ul 0:
(e) The left-hand side inequality of (6.10) can be written
8 2C% Ioood 0;
which is equivalent to, asC” is convex,
=proje, T+
forany > 0.

Theorem 6.3. Under Hypothesis 1, the Uzawa Algorithm 6.1 is such that the se-
quencef u®¥) g,y converges towardu! in norm.

Proof. Let (ul; 1) be a saddle point of the LagrangianL given by (6.2). We denote
P = (01
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1. We have that, as the projection on a convex set is a non-expansive function,

2,

’

rD 2= proje,  ®+  ykeD projc- 1+ !

F(0) 4 y(k+D) g2

Developing this expression, and exploiting the -Lipschitz continuity of , we obtain

p(ked) 2 r) 240y, ylkeD W+ 22 gkl 2, (6.11)
2. We apply the optimality condition (6.9), on the one hand for = &) with u= ul
and u = u**D) and, on the other hand, for = ! with u= u*) andu= ul. This
gives
r J u(k+l) ,u] u(k+1) + (k) : u] u(k+1) 0,
r J u] ;u(k+1) u] + ] X u(k+1) u]
Summing both conditions and using the strong convexity ofJ, we obtain
a ukd gl 2
3. Using the last inequality Equation (6.11) yields
p (k+1) 2 r(K) 2 2a 22 k+) ] 2:
The assumption 0 < < 2a= 2 on the step ensures that 2 22> 0, the se-
quence r(k N 1S decreasing and non-negative, thus convergent. Consequently, the
sequence ku® ulk , converges toward O. O

Notice that this proof relies on i) estimations deduced from optimality conditions that
hold in Banach space ii) existence of a saddle-point (which can be obtained with other
assumptions) iii) developing a square norm (in (6.11)). This last point might fail in a
Banach space.

6.2 Uzawa Algorithm in L' ;F;P;R" Spaces

In Problem (6.1), we considered the case where spacésand V were Hilbert spaces.
Now, in the sequel of this chapter, we assume that) and V are the following L spaces:

U=L( ;F;PR"); V=L( ;F;PRP): (6.12)

We assume that ;F;P is a probability space, where the -algebra F is not nite
(modulo P, see De nition 5.1). Indeed, whenF is nite, the space L' ;F;P;R" is
a nite dimensional vector space, hence a Hilbert space; thus, the convergence result of
x6.1.2 holds true.
Moreover, from now on, we assume that we have only equality constraints:

the cone of constraints in Problem (6.1) isC = 0 ;

C-convexity of the constraint function implies that is an a ne function;

projc- is the identity function.
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Thus, Problem (6.1) reads

min J(u); (6.13a)
u2uad |1
st (w=0; (6.13b)

and the algorithm de ned in 6.1 reads
n 0

U (k+1) — arg mn JU + (k) : §] : (6.148)
u2uyad
(k+1) —  (K) 4 ( U(k+1)) : (6.14b)

where we choose to take @ inL! :F:P;RP .

We underline the di erences between Hilbert spaces and Banach spaces ¥6.2.1, and
then explain in x6.2.2 why the Uzawa update (6.14b) is well de ned. We give a result of
convergence of a subsequence the algorithm ix6.2.3, although using strong assumptions
and discuss why we do not obtain the convergence of the whole sequencex®.2.4.

6.2.1 Discussing Di erences Between Hilbert and Banach Spaces

The spacesU = L' F;P;R" andV =L! ;F;P;RP given in (6.12) are non-
re exive, non-separable, Banach spaces. Hence they do not have the properties displayed
by Hilbert spaces, and useful for optimization.

Perks of an Hilbert Space

In an Hilbert space H we know that
i) the weak and weak topologies are identical,
i) the spaceH and its topological dual can be identi ed.

Point i) allows to formulate existence of minimizer results. Indeed, the weak-closed
bounded subsets oH are weak compact, (Banach-Alaoglu Theorem A.24). Hence, weakly
closed bounded subsets are weakly compact. A convex set is closed i it is weakly closed,
and a convex function is |.s.c. i itis weakly |.s.c.. Thus, a convex (strongly) I.s.c. function
f :H! R, coercive on the closed convex subsd#?d H , admits a minimum on U4,
Indeed, coercivity implies that we can consider a bounded subset d§2°; its closed convex
hull is weakly compact and, asf is weakly I.s.c., Bolzano Weierstrass theorem ensures the
existence of a minimum.

Point ii) allows to write gradient-like algorithms. Indeed, it allows to represent the
di erential of a (di erentiable) function f : H! R as the inner product with a vector
g2 H called gradient. Wit this, we can propose gradient-like minimization algorithms as
follows: at any iteration k, we have a pointu®) 2 H, and the gradientg® = r f u® 2
H: the new point u**1) is a linear combination of the former point u®> and of the gradient
g, e.g. (6.14b).

Di culties Appearing in a Banach Space

In a re exive Banach spacekE, i) still holds true, and thus the existence of a minimizer
remains easy to show. Howeveii) does not hold any longer. Indeed, the di erential of
a di erentiable function f : E! R at point x 2 E can be represented through a duality
product 0 (x) : h 7! g;x , but g belongs to the topological dual ofE, which cannot be
identied to E (if E is not an Hilbert space). Thus, a gradient algorithm whereu®*1) s
a linear combination of u® 2 E and g¥) 2 E%does not have any sense.
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In a non-re exive Banach spaceE, neither i) nor ii) hold true. However, if E is the
topological dual of a Banach space, then the Banach-Alaoglu theorem (Theorem A.24)
holds, and weakly closed bounded subset, oE are weak compact. In this case, weaRk
lower semicontinuity of a function f, coupled with its coercivity, leads to the existence of
a minimizer of f (this point is developed in Theorem 6.4).

Here, we warn the reader that we are not sure of the existence of strongly convex
functions in a non-re exive Banach space. As an illustration of the di culty, it is shown
in [24, Remark 3.67] that if f is twice di erentiable and strongly convex on a spaceH ,
then H is Hilbertizable.

6.2.2 Making Sense of Uzawa Algorithm in L ;F;P;R" for Equality
Constraint

We have seen that a gradient-like formula, for instance the Uzawa update step (6.14b),
does not make sense in a generic Banach space. However, we will now show that it is well
denedinL! :F:P,R".

Specicities of L' ;F:P;R"

The Banach space L :F:P;R" is non-re exive, non-separable because the -
algebraF is not nite (Proposition 5.3).
However, as L ;F;P;R" is the topological dual of the Banach space
LY ;F;P;R" ,the Banach-Alaoglu theorem holds, paving the way for a proof of existence
of a minimizer (see below). Moreover, ¢t ‘F:P;R" can be identi ed with a subset of
?
its topological dual L*! ;F;P;R"™ . Thus, the update step (6.14b) make sense: it
?
is a linear combination of elements of L :F;P;R" . Consequently, &) N 1S
a sequence of elements ofL! ?, Nevertheless, if © is represented by an element of

LY, then & is represented by a sequence of elements of L As we make the

assumption that © can be represented by an element of 1L, we consider from now on

that () is a sequence of elements of!L.

Existence of Solutions

The following theorem shows that there exists a solution to Problem (6.13), and that
the minimization problem in the primal step (6.14a) has also a solution.
Theorem 6.4. Assume that:

1. the constraint set U4 is weakly closed,

2. the constraint ane function : U!V is weakli continuous,

3. the objective functiond : U ! R is weaK l.s.c. and coercive onuad,

4. there exists an admissible control, i.e.

dom@)\U &\ lfog 6 ;:

Then, Problem (6.13) admits at least one solution.
Moreover, for any 2 L :F:P;RP, the following argmin is not empty:

n 0
argmin J U + U 6 ;:
U2uad

Finally, if J is strictly convex, then the above argmin is reduced to a single point.
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Note that coercivity of J is ensured either whenJ is strongly convex, or whenU?d is
bounded. We can also replace the coercivity ofl by a slightly weaker assumption: we
assume thatJ has a non empty, bounded, level set.

Proof. By weak’ continuity of the constraint function , and by weak ~ closedness of the
set f Og, we have the weak closedness of the set

1fog = U2U | U =0

By weak’ closedness of the set)d we have the weak closedness of the set 1 f0g \U ad,
As J is weak l.s.c., we then have the weak lower semicontinuity of the function

FUTII U + Crogw e U

By coercivity of J on U2 (see De nition A.51), we have the coercivity of J. Thus,
there exist" > 0 andr > 0O such that

8u 2 U u r=) Ju inf JV +":
V 2U
We obtain
inf JU = inf JU
U 2U kUk r

Moreover, Banach-Alaoglu theorem (Theorem A.24) ensures that the set

U2U j kUk r

is weak compact. Thus, weak lower semicontinuity of J” ensures the existence of a
minimum of J, which is nite, hence the existence of a solution to Problem (6.13).
Furthermore, continuity of the function implies continuity of

u 7! U
and thus weak’ lower semicontinuity of
u7nJu + ; U

With the same ideas as those developed earlier, we obtain the existence of a minimum.
Strict convexity of J implies strict convexity of

u7trJu + ; U ;

and thus the announced uniqueness of its minimum. O

6.2.3 Convergence Results
We have thus shown that, under assumptions of Theorem 6.4, the Uzawa algo-

rithm (6.14) is well de ned, and that the sequence of controls U®) (resp. of multi-
pliers 0 _)areelementsof ' ;F;P .

We now present a convergence result for algorithm (6.14).
Theorem 6.5. Assume that

1. J:U! R is a proper, weaK l.s.c., Gateaux-di erentiable, strongly 2 a-convex func-
tion,

2. The existence of a strongly convex function on L! is not clear.
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2. : U!V isane, weak ? continuous and -Lipschitz for the norm L?! ,
3. there exists an admissible control, i.e.

dom@)\u @\  lfog 6 ;;

4. U js weakK closed,

5. there exists an optimal multiplier (denoted 1) to the constraint u =0
in LY( ;F;P;RP),
6. the step is such that < 22,

Then, there exists a subsequenceU (") o Of the sequence given by Algorithn(6.14)
converging in L1 toward the optimal control U! of Problem (6.13).

Proof. By x6.2.2 and Theorem 6.4, the sequencdd) K g\ andf gy given by (6.14)
are well de ned.

We rst provide upper bounds and x notations before giving the convergence result.

Upper bounds. We exploit the fact that an optimal multiplier ! is in L(RP), and
that L (RP) is dense in this space. By density of £ in L1, we have

8">0 9 .2L'; k1 ke U (6.15)
from which we deduce
8k2N; k ® Ik k ® L ka+":

Forall 2L!(RP) L?RP) L(RP), we have (Jensen's inequality)

k K. k K2, k K :
As ( kD )y2 L1 (RP) L2(RP), by (6.14b) we have

Kk (k+1) --kfz = k & ..kfz+2 (k) o ( U(k+1)) + 2 ( U(k+1)) 52:
As is -Lipschitz and ( U!) =0, we obtain
( U(k+1)) 52 ( U(k+1)) ( U]) ﬁl 2y (k+1) U]kEl :

From optimality conditions and strong convexity of J (see point 2 in the proof of
Theorem 6.3), and using U! =0, we obtain

(k) W ( U (k+1)) akU (k+l) U ]kE1 + ] w ( U (k+l))
Moreover, we have, by -Lipschitz continuity of , and by (6.15)
oo cuty gD gl
Finally, we get

k D k2, kW K, a2 Hku®D Ul

6.16
+2 " kU Ul (640
=2a 2250 = => 0
" 6.17
q=k ® K 0 vi = kU ylks 0 617

With these notations, inequality (6.16) becomes

Gt G VE+2 'V ok (6.18)
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Convergence of a subsequence. Inequality (6.18) can be written as

R
q

We show that jvi, "] 1+ 2w holds true for an in nite number of k.

Indeed, if it were not the case, there would existK 2 N, such that for all k K, the
inequality

(e "> Y=

would hold true. Thus, we would have

G G e A= e mag w2

leadingtoq ! x 1 , which is not possible asg, 0.

Consequently, there is a subsequendevs, () Gk2n that remains in a ball of center zero
and radius of order”. Thus, we can construct a subsequencévg)dkan converging to-
ward 0. Now, recalling that, by de nition, vx = kU &*D Uk 1 , we obtain the conver-

gence of Uy .,y toward UTin LT . O

6.2.4 Diculty to Obtain the Convergence of the Whole Sequence

The result of convergence obtained in Theorem 6.5 is not fully satisfactory, because
we made quite strong assumptions (Lipschitz continuity of , strong convexity of J, etc.)
but only obtained the convergence of a subsequence toward an optimal solution. We now
point out a di culty if we want to improve this result.

Proposition 6.6. Assume that sup. @, < 1. Then the sequencef U, gkan, given
by (6.14), converges towardU ! in the spaceL! ( ;F;P;U).

Proof. Inequality (6.18) can be written

Gor G V(W 2"): (6.19)
Summing up these inequalities from index 0 up to indexk leads, asq';+1 0 by de nition,
to
0 g o vilvi 2"):
1=0
Since sup. oy < 1 , we deduce that
X
9M > 0; 8"> 0; 8k> 0 vilvy 2") M: (6.20)
1=0
Letting " going to 0, we nd that
X
8k > 0; Vi M

The series of general termvlf is converging, and thus the sequenced vigkon CON-
verges toward zero. Thus, the sequencdU,gwon converges toward u! in the
space L1 ( ;F;P;U). O

Proposition 6.6 requires an assumption di cult to check. However if there exist an
optimal multiplier 1 in L? we can take, forall"> 0, "= 1, hence," 7! q, is constant.
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Corollary 6.7. Assume that
1. J:U! R is a proper, weaK |.s.c., Gateaux-di erentiable, a-convex function,
2. : U!V isane, weak ’ continuous and -Lipschitz for the norm L! |
3. there exists an admissible control, i.e.

dom@)\u &\ lfog 6 ; ;

4. UM js weaK closed,

5. there exists an optimal multiplier (denoted 1) to the constraint Uu =0
in L2( ;F;P;RP),

6. the step is such that < 22,

Then, the sequence U® = by Algorithm (6.14) converges inL' toward the optimal
control U! of Problem (6.13).

Proof. For all "> 0, we set ~ = ! hence," 7! q, is constant, and Proposition 6.6
achieve the proof. O

Note that we obtain a convergence result stronger than the one obtained by Theo-
rem 6.3 if the problem was set in [2. Indeed, the convergence of the sequenceJ (M 0

2N
is given in L1 instead of LZ.

Remark 6.8. The assumptionsup., 3¢y < 1 in Proposition 6.6 is quite strong. Without
this assumption, Assertion (6.20) does not hold true, and we have only

X
8'>0, 9M-; 8k2N; Vk(vk ") M- (6.21)
1=0

The question is: is it enough to show the convergence 6f/,g,n toward 0. The answer,
negative, is given by Fact 6.9.

Fact 6.9. There exists a sequence u, |, Of non-negative reals such that(6.21) holds
true, but that does not converges toward.

Proof. Consider the sequence de ned as

1=k ifn2[ng+1;ng+ k?]

=" if n = ng

(6.22)

where (nk)kan is de ned by

No
Nk+1

1;

ne+ k?+1; 8k 2 N: (6.23)

In other words, the sequencd uxgkon takes the value 1, then E2 four times, then 1, then
1=3 nine times, and so on. In particular, the sequence does not converge toward O.

We now show that this sequence satis es (6.21). For a givei > 0, x ko 2=", and
N 2 N. We have

X Reo X
Un(up ") = Un(up ")+ un(up ")
n=1 n=1 n=ng,+1
P Nk n P N n
Let M" = k:c])_ Un(Un ) We ShOW that k=nk0+1 Un(Un ) O
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Indeed fork ko, and | 2 [1;k?], we have

" 11 "
Unk+l(unk+l ): E E 2k
This inequality leads to, for k Ko,
r>(+1 ku
Up(up ") 1 > 0:

n=nNg

Summing up, if we denote byK the largest integer such thatnk N, we have

X\I %0 X( &4_1 X\|
Un(un  ")= un(un ")+ Une+1(Une+1 ")+ Pn(u{} ? YE
n=1 =1 k=Ko (1=1 n=ng +1 | = 0_
f |;{/|Z } | {z }
This ends the proof. -

6.3 Application to a Multistage Problem

We consider a multistage problem, comparable to the one presented ir5.3, but with
some more constraint on the control. We suppose that the noise takes a nite number of
values, so that the space £ is nite dimensional °.

We consider a sequence W, T= ' of noises, with w, 2Lt F;PR™ , for any

t2[0;T 1]. We denote byF; the -algebra generated by the past noises
Fi= Wy W,
and by F the induced Itration F= F; th01_
We consider the dynamical system

8t2[0;T 1], Xigp = e XD W, (6.24)

where the control process D tgthol is a stochastic process adapted té-, and for each time
t2[0;T 1],D,2 LY ;F;P;R"™ . The evolutions functions fy : R™*Na*Mw | RN
are assumed to be ane in (x;d) and continuous in w.

For each time t 2 [O;T 1], we consider a convex (jointly in (x;d)) cost L; :
RM™x*Na*Mw 1 R and continuous in w, and a convex nal cost K : R™ | R. We
also consider linear constraint functions ¢ : R™*"d I R and a F-adapted sequence of
random variables B, th01 (they are stochastic target of the constraint function).

Finally, the problem reads,

hi 1 i
min  E Lt X ;D W, + K(X7) (6.25a)
' t=0
sttt Xy = Xo (6.25b)
Xigg =t XD W, (6.25¢)
D, F ¢ (6.25d)
D, 2D, (6.25e)
X, 2 X8, (6.25f)
t(X;D)= B, P as: (6.259)

3. This assumption is required to obtain the strong convexity of the global cost. In a nite dimensional
setting, most topological consideration are equivalent. However, we choose to still dinstinguish them as
we suppose nitess of the alea only to obtain the strong convexity of the cost global cost.
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Remark 6.10. Problem (6.25) dier from Problem (5.17) only through Con-
straints (6.25e) and (6.25f). Hence, with those constraint we do not have results of exis-
tence of an optimal multiplier. However, the existence of an optimal multiplier is an as-
sumption of Proposition 6.11, which allow the existence of Constraint§6.25e)and (6.25f).
Moreover, we believe that results in the literature (see [93{95]) could be adapted to show the
existence ofL-optimal multiplier even with constraint on the control (Constraint (6.25€)).

Then, the algorithm given by (6.14) , reads®

hk 1 [
x D p&) 2 argmin E Le X;DgW, + & (X;D, ; (6.26a)
DX t=0

(k+) - Wy x D p ke B, ; (6.26b)

where X ;D satis es constraints (6.25b)-(6.25f), that is, all constraints except the almost
sure constraint dualized, i.e. constraint (6.25g).

Proposition 6.11. Assume that,

1. the cost functionsL; are Gateaux-di erentiable (in (x; u)), strongly-convex (in (x; u))
functions and continuous in w;

the constraint functions ; : R™*Nd 1 R"c are a ne;
the evolution functionsfy : R™*Nd*Mw I RN gre ane (in  (X;u;w));
the constraint setsxtaOI and U{"d are weaK closed, convex;

there exists an admissible control, i.e. a processX ;D satisfying all constraints of
Problem (6.25);
6. there exists an optimal multiplier process (denoted !) to the constraint (6.25g);

in LY( ;F;P;RT") (this is, satis ed if there is neither constraint (6.25€) nor con-
straint (6.25f)).

Then, there exists a subsequenceD (") o Of the sequence given by Algorithn{6.26)
converging in L' toward the optimal control of Problem (6.25).

a r w N

Proof. We apply the results of x6.2.3 to Problem (6.25). We de ne the cost function J
and constraint function relative to Problem (6.25), and show the required assumptions.
First, we need to cast Problem (6.25) into the framework of Problem (6.13). We de ne
the control U = Dy I 2L ;F;P,R™ =U.
Then, Xg being given and constant, we de ne recursively the functions

x¢:  RT(emw) o R

t 2

uw 7! fi 1 x¢ 1+ D ;W -0

;D 1, Wt 1

that maps the sequence of controls and noises toward the state. Note that the functions
Xt are a ne. Hence, the output of the dynamical system (6.24) can be represented by

X =AU + BW + C;
were A and B, and C are deterministic matrices.
Now we de ne the cost function

hk 1 [
L X;U;W =E Le X UpW,
t=0

4. We use the notational convention Lt (x;d;w) = K (x).
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and the objective function
h [
JU =Z=EL AU+ BW +C;U;W

If each L; is strongly-convex, thenL is also strongly-convex in &;u), henceJ is strongly
convex (for the L2-norm, equivalent to the L1 -norm by niteness of the noise). By assump-
tions on functions L; and f+, the objective function J is proper and Gateaux-di erentiable.
Note that J is nite on L 1 , consequently Lemma 5.16 implies that) is weak’-I.s.c..

We de ne the constraint function

= o;iiny 1 LY G FRRTME 1 LY G E PRTe
where (:L' :F:;P;R™ 1 L1 :F:P;R" s given by

tU = (P AU+BW +C;D, B,= {PfAU;D, B,; (6.27)
where B, is a Fi-measurable random variable, andP{ is the projector such that
PtXX = X,. In particular is ane. Note that the functions Xt and ; are ane
on a nite dimensional space, and hence Lipschitz. Consequently, functions ; (and thus
yare L ! -Lipschitz. Moreover, Corollary 5.13 gives the weak continuity of the constraint
function .

We now construct the setU2 of admissible controls. LetX 2 be the Cartesian product
X8 X 2 and D be the Cartesian productD§? D 24 . The linear mappings
U 7t AU, U 7! PYU (wherePYU = D,) and the constraint functions ; are weak dual
continuous (see Corollary 5.13).

Note that the linear mappings X 7! PX AU + BW + C are weakly’ continuous (see
Corollary 5.13). Hence, fort 2 [1;T], the set

n 0
uza2u PX AU +BW +C 2X; ;

is weak closed convex as the the inverse image of a weaklosed convex set by a weak
continuous a ne function. Consequently, the set
n 0
ugdd= uU2u PX AU + BW +C 2Xy; 8t2[LT] ;

is weak closed convex as an intersection of such sets.
We denote N4 the set of essentially bounded F-adapted processes with value irR"d,

It is the set N "¢, where N is de ned in (5.12). By Corollary 5.14, the set Ng is weak’
closed convex. In a nutshell, a controlU satis es:

constraint (6.25e) if it is an element of D29;

constraint (6.25f) if it is an element of UQ“;

constraint (6.25d) if it is an element of Ng.
Hence, the constraint setUd given by

udd = pad\uU 9\N g;

is a weak closed convex set.

Finally, by Corollary 5.27, if U2 = Ny, we have optimal multipliers in L for con-
straints (6.259).

With those notations, Problem (6.25) reads

mn J U
U 2uad

sit: U =0
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Moreover Algorithm (6.14) correspond to Algorithm (6.26).
Hence, for small enough, all the assumptions in Theorem 6.5 are satis ed; this ends
the proof. O

Remark 6.12. Note that, by Lemma B.3, it is easy to see that, if l is an optimal
multiplier for constraints (6.25g), then so is its F-adapted part, that is, the process !
where

8t2 [0;T];, 1= IRy

Interestingly, the multiplier in () in Algorithm (6.26) is an essentially bounded,F-
adapted stochastic process.

However, we cannot write a Dynamic Programming equation for Problem(6.26a) with
the state X . Indeed, the multiplier () should be seen as a correlated;-adapted noise.
Hence, the natural state is the past noise§W .g_,, and Dynamic Programming methods
are numerically untractable to solve Problem(6.26a).

In Chapter 8, we will present a method where the multiplier is approximated by its
conditional expectation with respect to a given information proces®’ , following a dynamic
Yisr = ft Y ;W, . This allows to use Dynamic Programming with an extended state

XY, to solve the minimization part (equation (6.26a)) of Uzawa algorithm.

Conclusion

We have provided conditions ensuring convergence of a subsequence of¥) N Tor
the Uzawa algorithm in L ;F;P . Our key assumption is the existence of a sad-
dle point for the Lagrangian in the L!;L! pairing. Work remains to be done on the
subject. Indeed, the strong convexity assumption on the objective function usually en-
sures the convergence of the whole primal sequences(k) o toward the optimal value.
With the bounds that we have derived, we were only able to obtain the convergence of
a subsequence of u(k) N Tighter bounds might give better convergence results, and
alternative schemes of proof should be investigated.

Moreover, we have made an abstract weak continuity (or lower-semicontinuity) as-
sumption; we should study its potential of applicability.

Finally, we have restricted ourselves to the case of equality constraints; more generic
constraint require a careful look at the projection step in the Uzawa algorithm.

In x6.3, we have applied the Uzawa algorithm to a multistage process. However, we
have seen that the minimization part of the Uzawa algorithm is not straightforward in this
case. In the nal part of this manuscript, we will develop and adapt this idea, in order
to apply the Uzawa algorithm for the spatial decomposition of stochastic optimization
problems.
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Epiconvergence of Relaxed
Stochastic Problems

Truth is much too complicated to allow anything but
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At the end of Chapter 6 we saw that a price decomposition scheme over the coupling
spatial constraints does not leads to tractable subproblems. In Chapter 8, we propose a
tractable price decomposition scheme over an approximation of the original problem.

In this Chapter, we study the approximation required. Roughly, this approximation
relax an almost sure constraint into a conditional expectation constraint. Were the condi-
tioning is done with respect to a -algebraF, . We study the convergence of a sequence
of approximated problem when the -algebra converges.

Introduction

Stochastic optimization problems often consist in minimizing a cost over a set of ran-
dom variables. If the set of events is in nite, the minimization is done over an in nite
dimensional space. Consequently there is a need for approximation. We are interested
in the approximation of almost sure constraints, say (U) = 0 almost surely (a.s.), by a
conditional expectation constraint like E (U) Fj 0 a.s.

Consider the following problem,

Lrpzlﬂ JW); (7.1a)

st: (U)=0 as.; (7.1b)
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where the set of controlsU is a set of random variables over a probability space ;F;P .

If is not nite, U may be of in nite dimension. Moreover the constraint (7.1b) is a func-
tional constraint that can roughly be seen as an in nity of constraints. For tractability
purposes we consider approximations of this problem. In order to give theoretical results
for the approximations of Problem (7.1) the right notion of convergence is epi-convergence.
Indeed, under some additional technical conditions, the epi-convergence ensures the con-
vergence of both the optimal value and the optimal solutions.

One way of approximating Problem (7.1) consists in approximating the probability
P. Roughly speaking the Sample Average Approximation procedure consist in simulating
a set of scenarios under the real probabilityP. Then we solve Problem (7.1) under the
empirical probability on the set of simulated scenarios. In this literature (see [43], [59]) the
authors are interested in problems where the controls are deterministic. However other
epi-convergence results have been shown for more general spaces of controls, including
spaces of random variables or random processes (see [120] and references therein, as well
as [74], [76], [75]). More generally, the idea of discretizing or quantizing the set , for
example by use of nite scenario trees has been largely studied in the eld of Stochastic
Programming (see [110] for a thorough presentation).

Instead of approximating the probability space we propose a way to approximate con-
straints, especially almost sure constraints. The main idea is to replace a constraint by its
conditional expectation with respect to (w.r.t.) a -algebraB. This is in some sense an
aggregation of constraints. This approximation appears when considering duality schemes
for dynamic stochastic optimization problem.

More precisely, we relax the almost sure constraint (7.1b) by replacing it by its condi-
tional expectation, i.e.

E (U) B =0: (7.2)

If is an integrable optimal multiplier for Constraint (7.1b), then g = E B is
an optimal multiplier for Constraint (7.2). This leads to look for B-measurable multiplier,
which may authorize decomposition-coordination methods where the sub-problems are
easily solvable. This is presented in Chapter 8.

The chapter is organized as follows. x7.1 presents the general form of the problem
considered and its approximation. x7.2 shows, after a few recalls on convergence notions
of random variables, functions and -algebras, conditions on the sequence of approximate
problems guaranteeing its convergence toward the initial problem. The main assump-
tions are the Kudo's convergence of -algebra, and the continuity - as operators - of the
constraint function and objective function J. Finally x7.3 gives some examples of con-
tinuous objective and constraint functions that represent usual stochastic optimization
problems. Finally x7.4 presents a decomposition-coordination algorithm using this type
of relaxation and developed in the Chapter 8.

7.1 Problem Statement

We consider a probability space ;F;P and a topological spaces of controldJ. Let
V be the spaces of random variables with value in a Banack with nite moment of order
p2[11),denotedV =LP( ;F;P;V).

We consider now a stochastic optimization problem

Lran|B J(U); (7.3a)
st (U)2 C; (7.3b)

with J mapping U into R[f +1g , and mapping U into V. We assume thatC V isa
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closed convex cone of/, and that V is a separable Banach space with separable dual (the
fact that C is a cone is not essential for our results).

To give an example of cost operator, assume that LY :F:P;U, whereU is a
Banach. The usual choice for the criterion is the expected cosg(U) := E j(U) , for
a suitable cost functionj : U ! R. Other choices could be risk measures (see [6] for
example) like Conditional-Value-at-Risk (see [90] for a de nition), worst-case or robust
approaches. The constraint operator cover various cases, for example

almost sure constraint: U (!):= U() ,where mapsUinto Vand U 2
C is realized almost surely;

measurability constraint: U :=EU B U,with C= f0g, expresses thatU

is measurable with respect to the -algebraB, thatis, EU B = U;

risk constraint; U = (U) a, where is a conditional risk measure, andC is

the cone of positive random variables.

We introduce a stability assumption of the set C that will be made throughout this
paper.

De nition 7.1.  We consider a sequencdF ,gnon Of sub- elds of F. The closed convex
cone C is said to be stable w.rt. Fn ., ifforall n2 N we have
8V 2 C; E[V jFr]2C:

A rst widely used example would be C = f0g, or more generally any deterministic
closed convex cone, another example would be the set of almost surely positive random
variables.

We now consider the following relaxation of Problem (7.3)

min J(U); (7.4a)
u2u
stt E(U) Fp, 2 C; (7.4b)

where C is assumed to be stable w.r.t the sequenceF,
We denote the set of admissible controls of Problem (7.3)

ud:= U 2U (U)2 C ; (7.5)
and the corresponding set of admissible controls of Problem (7.4)
ud:= u2u E(U) F, 2 C : (7.6)

Problems (7.3) and (7.4) can also be written' as

I CORMRCOR (7.7)
=J)
and
min IJ(U)+ bea (U) (7.8)
=Jn(U)

Note that we have F, F , and that C is stable w.r.t fF hg,on, thus U3 U 29
Problem (7.4) is a relaxation of the original Problem (7.3) as it has the same objective
function but a wider set of admissible controls.

1. We use the notation , for the characteristic function of A, that is the function such that , (x) =0
if x2A,and ,(x)=+ 1 elsewhere.
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Replacing an almost sure constraint by a conditional expectation constraint is similar
to an aggregation of constraints. For example consider a nite set = f!igi>p1:n 2, with
a probability P such that, for all i 2 [1;N], we haveP(! ;) = p; > 0. Consider a partition
B = fBi0giz[1;8j) Of , and the -algebraFg generated by the partition B. Assume that
C = f0g, then the relaxation presented consists in replacing the constraint

(u)y=o0 P-a.s.
which is equivalent to N constraints
8i 2 [LLNT]; Ui)N=0;
by the collection of jBj N (wherejBj is the number of sets in the partition B) constraints

X
8l 2 [1;jBjI; pi (U('i)=0:
i2B,

7.2 Epiconvergence Result

In this section we show the epiconvergence of the sequence of approximated cost func-
tions f Jhgn2n (de ned in (7.8)) towards J (de ned in (7.7)). First, we recall some results
on convergence of random variables, epiconvergence of functions and convergence of
algebras. Moreover a technical result is required.

7.2.1 Preliminaries
Assume thatp 2 [1;+1 ) and denoteq 2 (1;+ 1 ] such that 1=g+1=p= 1. Recall that
V is a separable Banach space with separable dus .

Convergence of random variables

A sequence K )non Of LP( ;F;P;V) is said to converges strongly toward X 2
LP( ;F;P;V), and denoted X | ! |p X if

: P _n.
nI!|{nE X, X v =0:

A sequence K )non Of LP( ;F;P;V) is said to weakly converges toward X 2
LP( ;F;P;V), and denoted X , * o X if

8X 02 LY ;F:P;V ):; n||i1m EX, X;XYyw =0:
For more details we refer the reader to [99].

Epiconvergence of functions

We rst recall the de nition of the Painlewe-Kuratowski convergence of sets. Let E be

a topological space and consider a sequenté,gnon Of subsets ofE. Then the inner limit

of f Angn2n is the set of accumulation points of any sequencexq)n2n such that x, 2 Ay,
i.e,

lim,An = fX2E j 8n2N; Xn2Ap; kI'ilm Xn = X0 ; (7.9)

2. We denote by [a; b] the set of all integers between a and b.
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and the outer limit of fA,gnon is the set of accumulation points of any sub-sequence
(Xn, k2N Of a sequencd Xpgn2n such that xp 2 Ap, i.e,

limpAn=fx2E | 9fnggkan; 8K 2 N; Xp, 2 Apg; I(Ililm Xn, = XQ: (7.10)

We say that f A,gn2on cOnverges towardA in the Painleve-Kuratowski sense if
A = limpAp =lim A, :

A sequencef Jhgn2on Of functions taking value into R[f +1g is said to epi-converge
toward a function J if the sequence of epigraphs o8, converges toward the epigraph of
J, in the Painlewe-Kuratowski sense. For more details and properties of epi-convergence,
see Rockafellar-Wets [96] in nite dimension, and Attouch [8] for in nite dimension.

Convergences of  -algebras

Let F be a -algebra andfF hgnon @ sequence of sub- elds of. It is said that the
sequencefF gn2n Kudo-converges toward the -algebraF; , and denotedF, ' F 1, if

foreach setF 2F, E 1 Fj N converges in probability toward E 1 F1

In [62], Kudo shows that F, | F 1 if and only if for each integrable random variable
X ,E X Fp convergesinL!toward E X Fj; . In[82], Piccinini extends this result
to the convergence inLP in the strong or weak sense with the following lemma.

Lemma 7.2. Let ;F;P be a probability space and F, ,, be a sequence of sub-
algebras ofF . The following statements are equivalent:

1. Fh'F 1,

2.8X 2LP( ;F;PV); EX Fn ! hEX F1 ,

3.8X 2LP( ;F;PV); EX Fn * 1 pEX F1

We have the following useful proposition where both the random variable and the
-algebra are parametrized byn.

Proposition 7.3. Assume thatF, ! F 1, and X ! |»p X (resp. X, * 1» X ) then
EXn Fn ! LpEX Fi (resp.EXn Fn *LpEX Fi )

Proof. The weak-limit case is detailed in [82]. We show the strong convergence case. If
X I 1o X, then

n
JEX, Fn EX Fiiw jiEX, Fn EX Fpjj
+jEX Fn EX F jjs
As the conditional expectation is a contraction operator, we have
ijXn Fn E X Fnijp ijn ijLp! 0:
Moreover we have
JEX Fn EX Fijj! 0
by Lemma 7.2, hence the result. O

We nish by a few properties on the Kudo-convergence of -algebras (for more details
we refer to [62] and [31]):

1. the topology associated with the Kudo-convergence is metrizable;
2. the set of - elds generated by the partitions of is dense in the set of all -algebras;

3. if a sequence of random variablesX ,)n2n converges in probability toward X and
for all n 2 N we have (X)) (X'), then we have the Kudo-convergence of
(X)) o toward  (X).
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7.2.2 Main result

Recall that U is endowed with a topology , and that V =LP ;F;P;V , with p2
[1;1).

Theorem 7.4. Let V be endowed with the strong or weak topology. Assume th@t is
stable w.r.t fF ngnon. If the two mappings and J are continuous, and if (Fn)n2n Kudo-
converges towardF , then fJhgnon (de ned in (7.7)) epi-converges towardJ™ (de ned in

(7.8)).

Note that fF ,gnon IS NOt assumed to be a ltration, and that F, is not assumed to
be nite.

Proof. To prove the epi-convergence of J;,gn2n toward J it is su cient to show that U2
(de ned in (7.6)) converges toward U2 (de ned in (7.5)) in the Painle\e-Kuratowski sense.
Indeed it implies the epiconvergence of (ur?d )n2n toward vad and adding a continuous
function preserves the epi-convergence (Attouch [8, Th 2.15] ).

By stability of C w.r.t. fF hg,2n We have that, for all n 2 N, U3 U 29 and thus
U Jiminf, U39 (for any x 2 U2 take the constant sequence equal tx).

We now show that U  limsup, U2 Let U be an element of limsup U24. By
De nition (7.10), there is a sequence U, ., that -converges toU, such that for all
k2N, E (U,)jFn 2 C. As is continuous, we have ( U, )! ( U) strongly
(resp. weakly) in LP. Moreover we have thatF,, ! F , and consequently by Lemma 7.3,

E ( Unk) Fnk ' LDE ( U)JF :( U)

Thus ( U) is the limit of a sequence in C. By closedness ofC (weak and strong asC
is convex3), we have that ( U)2 C andthusU 2 U3, O

The practical consequences for the convergence of the approximation (7.4) toward the
original Problem 7.3 is given in the following Corollary.

Corollary 7.5. Assume thatF, ! F , and that J and are continuous. Then the
sequence of Problemg7.4) approximates Problem(7.3) in the following sense. Iff U gnon
is a sequence of control such that for alh 2 N,

Jn(U,) < LjnZ]:JJ;](U)+ "n: where Iinm " =0
then, for every converging sub-sequenc(eJnk)kZN, we have
J I|Ln Uy, = rl51|2r3J J(U)zllrE Jn, U

Nk

Moreover if Fn ., is a ltration, then the convergences are monotonous in the sense
that the optimal value is non-decreasing inn.

Proof. The convergence result is a direct application of Attouch [8, Th. 1.10, p. 27].
Monotonicity is given by the fact that, if fF hgnon iS @ Itration, then for n > m then
U3 U 0

3. if C is non-convex we need it to be sequentially closed.
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7.2.3 Dynamic Problem

We extend Problem (7.3) into the following dynamic problem

min  J(U) ;

U 2u

st (U)2 C 8t2[LT]; (7.11)
Ut Fi;

whereU, F . stands for \U, is Fi-measurable". HereU is a stochastic process of control
(Uizpty dened on ;F;P with value in U. We have T constraints operators
taking values in LP( ;F; P; Vi), where (Ft)i2p1:77 IS @ sequence of -algebra. Note that
(Ft)t21;77 is not necessarily a ltration. Then, for each t 2 [1;T] we de ne a sequence
of approximating -algebra (Fn:t)n2n. Forall t 2 [1; T], C; is a closed convex cone stable
w.rt Fpt n2N-

Finally we consider the sequence of approximated problem

min J(U);

(7.12)
stt E «(U) Fnt 2 C 8t2[LT]:

Furthermore we denote
Utad = Ut 2 U t(Ut) 2 Ct ;

and
U= U2U  E (U) Fnr 2 G

We de ne the set of admissible controls for the original problem
Uad - Ugd U _?d .
and accordingly for the relaxed problem
Ud=u3% U &5

In order to show the convergence of the approximation proposed here, we consider the
functions

..T-(U)z\] u + Uad(U);
and

JhU)=J U + ya(U);

and show the epi-convergence af;, to J. The interaction between the di erent time-step
are integrated in the objective function J.

Theorem 7.6. If and J are continuous, and if for all t 2 [1;T], (Ftn)n2n Kudo-
converges toFy, then Jn . epi-converges toJ-

Proof. The proof is deduced from the one of Theorem 7.4. By following the same steps
we obtain the Painlewe-Kuratowski convergence ofUﬁ‘;‘E to U9, and thus the convergence
of their Cartesian products. O
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7.3 Examples of Continuous Operators

The continuity of J and as operators required in Theorem 7.4 is an abstract assump-
tion. This section presents conditions for some classical constraint and objective functions
to be representable by continuous operators. Before presenting those results we show a
technical lemma that allows us to prove convergence for the topology of convergence in
probability by considering sequences of random variables converging almost surely.

7.3.1 A technical Lemma

Lemma 7.7. Let : E! F, where(E; p) is a space of random variables endowed with

the topology of convergence in probability, andF; ) is a topological space. Assume that

is such that if fU_gn2n converges almost surely towardJ , then ( U )!  ( U). Then
is a continuous operator from (E; p) into (F; ).

Proof. We recall rst a well known property (see for example [44, Th 2.3.3]). Letf Xngnon
be a sequence in a topological space. If from any sub-sequence,, ., We can extract
a sub-sub-sequencex (n,) ,,, CONverging tox , then fx,gnzn converges tox . Indeed
suppose thatfx,gn2n does not converges towardx . Then there exist an open setO
containing X and a sub-sequence Xp, k2N such that for all k 2 N, x,, 2 O, and no
sub-sub-sequence can converges 10, hence a contradiction.
Let U, gn2n be a sequence converging in probability tdJ . We consider the sequence

( Uy .,y iIn F. We choose a sub-sequence Un, o~ BY assumption U, .
converges in probability toward U, thus we haveU, ! p U. Consequently there exist a
sub-sub-sequencaJ () converging almost surely toU, and consequently U ()

U . Therefore is sequentially continuous, and as the topology of convergence in
probability is metrizable, is continuous. O

Remark 7.8. This Lemma does not imply the equivalence between convergence almost
sure and convergence in probability as you cannot endow with the \topology of almost
sure convergence" as almost sure convergence is not generally induced by a topology.

However note thatfU_g,on converges in probability towardU i from any sub-
sequence off U, gn2n We can extract a further sub-sequence converging almost surely to
U (see [44, Th 2.3.2]).

7.3.2 Objective function

Let U be a space of random variables on ;F ;P , with value in a Banach U.

The most classical objective function is givenas] U := E j(U) ,wherej :U! R
is a measurable, bounded cost function. This objective function expresses a risk-neutral
attitude; indeed a random cost with high variance or a deterministic cost with the same
expectation are considered equivalent. Recently in order to capture risk-averse attitudes,
coherent risk measures (as de ned in [6]), or more generally convex risk measures (as
de ned in [48]), have been prominent in the literature.

Following [104], we callconvex risk measurean operator : X ! RJ[f +1g verifying

Convexity: for all 2 [0;1] and all X;Y 2 X ; we have

X +(1 )Y X +(@ ) Y ;

Monotonicity: for all X;Y 2 X suchthat X Y we have (X) (Y);
Translation equivariance: for all constantc2 R and all X 2 X, we have (X + ¢) =
(X)+c;
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where X is a linear space of measurable functions. We focus on the case whexe =
LY ( ;F;P;R), and assume that (0)=0.

Proposition 7.9. Let U be a set of random variables endowed with the topology of conver-
gence in probability, andJ U := j(U) , wherej : U! R is continuous and bounded,
and a lower semicontinuous convex risk measure. Then) : U ! R is continuous.

Proof. Note that as j is bounded,j(U) 2 X for any U 2 U. Then we know that ( [104])
there is a convex set of probabilitiesP such that

(X')=sup Eq X a9(Q) ;
Q2P

where g is convex and weak*-lowersemicontinuous on the space of nite signed measures
on ( ;F). Moreover any probability in P is absolutely continuous w.r.t P.

Consider a sequencéU ,gn2n of elements ofU converging in probability toward U 2 U.
Let M be a majorant of j, we have j(U) (M)= M < +1 . By denition of , for
all "> 0 there is a probability P- 2 P such that

Ep. j(U) go(P) j(U) "

As P- is absolutely continuous w.r.t P, the convergence in probability underP of fU, gn2n
implies the convergence of probability underP- and in turn the convergence in law under
P-. By de nition of convergence in law we have that

imEp. j(Uy)  o(P)= Ep j(U)  o(P):
Let be a positive real, and set' = =2, andN 2 N such that forall n N,
jEp. j(U,) Ep j(U)] 3 (7.13)

Then, recalling that

ju Er_j(U) 9a(P)) j U 5 (7.14)
Vi
we have that foralln N,
j(Uy) =supEq j(U,) 9(Q)
Q2P
Er j(U)) gP,
Er j(U) 9P, 3 by (7.13);
z 2
j(U) by (7.14);
and thus
ju o+ j U, ju

2
Thus lim, j(U,) = j(U) . Hence the continuity of J. O
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The assumptions of this Proposition can be relaxed in di erent ways.

In a rst place, if the convex risk measure is simply the expectation then we can
simply endow U with the topology of convergence in law. In this case the continuity
assumption onj can also be relaxed. Indeed if U . converges in law towardU , and
if the set K of points wherej is continuous is such thatP(U 2 K) =1, then E j(U,)
converges towardE j(U) .

Otherwise assume thatU is a set of random variables endowed with the topology of
convergence in probability, and thatj continuous. Moreover if we can ensure thaj (U ) is
dominated by some integrable (for all probability of P) random variable, thenJ : U ! R
is continuous. Indeed we consider a sequenc®,, ,, almost surely converging toU . We
modify the proof of Proposition 7.9 by using a dominated convergence theorem to show
that lim, Ep. j(U,) = Ep. j(U) . Lemma 7.7 concludes the proof.

7.3.3 Constraint operator

We present some usual constraints and how they can be represented by an operator
that is continuous and take values intoV.

Almost sure constraint

From Lemma 7.7, we obtain a rst important example of continuous constraints.

Proposition 7.10.  Suppose thatU is the set of random variables on ;F ;P , with value
in U, endowed with the topology of convergence in probability. Assume that: U! V is
continuous and bounded. Then the operator U (! ):= U(') mapsU into V and is
continuous.

Proof. The function being continuous, is also Borel measurable.Thus for alU 2 U, for
all Borel setV  V, we have

(U) ‘v)=t12 U2 Yv)g2F |

thus ( U) is F-measurable. Boundedness of insure the existence of moment of all order
of ( U). Thus is well de ned.

Suppose that U, ., converges toU almost surely. Then by boundedness of ,

we have that U, U f’/ N is bounded, and thus by dominated convergence

theorem we have that

nI!ilrn U, = U inLP( ;F;P;V);
which is exactly
nI!ilm u, = U
Consequently by Lemma 7.7 we have the continuity of . O

We note that boundedness of is only necessary in order to use the dominated conver-
gence theorem. Thus an alternative set of assumptions is given in the following proposition.

Proposition 7.11. Let B be a sub-eld of F. If U =L ° B:P, with the topology of
convergence in probability, and if is -Helder, with pEepthen U (1):= U()
is well de ned and continuous as an operator mappindJ into V.
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Proof. By de nition a function  mapping U into V is -Helder if there exist a constant
C > 0 such that for all u;u®in U we have

W W, Cu u,;

in particular the 1-Helder continuity is the Lipschitz continuity.
Following the previous proof we just have to check that the sequence

U, U 3 N is dominated by some integrable variable. Indeed, the Helder
n
assumption implies
P
U, U y chu, U y

p
And as p p°, and U, and U are elements of ° F: P, Unk U y is integrable.
O

Measurability constraint

When considering a dynamic stochastic optimization problem, measurability con-
straints are used to represent the nonanticipativity constraints. They can be expressed by
stating that a random variable and its conditional expectation are equal.

Proposition 7.12. We setU =L P F:PV , with p® p. Assume that
either U is equipped with the strong topology, and/ is equipped with the strong or
weak topology,
or U and V are equipped with the weak topology.

If Bisasub-eldofF,then U :=E U B U, is well de ned and continuous.

Proof. In a rst place note thatas p° p,U V ;andifV 2VthenEV B 2V as
the conditional expectation is a contraction. Thus forallU 2 U, we have (U) 2 V.
Consider a sequencéU gn2n of U strongly converging in LP toward U 2 U. We have
iy, Uiip i Uy Ulip*tiiEU, U Bijp
2jU,  Uijjp
2jU, Ujjp! 0:
Thus the strong continuity of is proven.

Now consider fU_gnon converging weakly in LP toward U 2 U. We have, for all
Y 2 L9

h i h i
EEU, B Y= EUEY B ;
h i
! EUEY B ;
" h i
= EEU BY

Thus we have the weak convergence of the conditional expectation and therefore of .
Finally as the strong convergence imply the weak convergence we have the continuity
from U-strong into V-weak. O

Until now the topology of convergence in probability has been largely used. If we
endow U with the topology of convergence in probability in the previous proposition we
will obtain continuity of on a subset of U. Indeed if a set of random variablesU2® such
that there exist a random variable in LP" ;F;P dominating every random variable in
Uad, then a sequence converging almost surely will converge for the”” norm and we can
follow the previous proof to show the continuity of on U2,
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Risk constraints

Risk attitude can be expressed through the criterion or through constraints. We have
seen that a risk measure can be chosen as objective function, we now show that conditional
risk measure can be used to de ne some constraints.

Let be a conditional risk mapping as de ned in [103], and more precisely maps U
into V whereU = LP ;F;P;U andV = LP :B;P;V , with B F , and veries the
following properties

Convexity: forall 2U, 2][0;1]andall X;Y 2V; we have

X +(1 )Y X +(@ ) Y

Monotonicity: for all X;Y 2V suchthat X Y we have (X) (Y);
Translation equivariance: forallc2V andall X 2U, we have (X +c)= (X)+¢c:

Proposition 7.13. Let U be endowed with the topology of convergence in probability, and
V endowed with the strong topology. If is a conditional risk mapping, is a continuous

bounded cost function mappingU into R, and a 2 V, then U := U ais
continuous.

Proof. Consider a sequence of random variablesU, . converging in probability toward
U, . Let :LPC ;B;P;U)! LP( ;B;P;U) be a selector ofV = LP( ;B;P;U), i.e. for
anyU 2 LP( ;F;P;U), (U)2U. Forany! 2 ,any U 2 LP( ;F;P;U) we de ne

r(U)= (U )():
Note that for P-almostall! 2 ,the function ,(U):= , (U) ;satis es the conditions
of Proposition 7.9. Thus for P-almost all ! 2 , 1 (U,) |, converges toward | (U, ).
Thus we have shown that ( U,) _,, converges almost surely toward U, . By bound-
edness of and monotonicity of we obtain the boundedness of ( U) .. Thus almost
sure convergence and dominated convergence theorem ensure that U,) ., converges
in LP toward U, , hence the continuity of . O

Another widely used risk measure, even if it has some serious drawbacks, is the Value-
at-Risk. If X is a real random variable its value at risk of level can be de ned as
VaR (X ):=inf fF, *( )gwhereFx (x) := P(X  X).

Proposition 7.14. If : U ! R is continuous, and if U is such that everyU 2 U
have a continuous distribution function, then ( U) := VaR U is continuous if we

have endowedJ with the topology of convergence in law, and a fortiori for the topology of
convergence in probability.

Proof. By de nition of convergence in law, if U ! U in law, then U, ,on CONverges
in law toward U and we have, forallx 2 R, F (yy(X) ! F (u)(x). Thus ( U.)
converges toward (U ), and as ( U) is real-valued, is continuous.

n2N

Note that in Proposition 7.14 the constraint function take deterministic values. Thus
considering the conditional expectation of this constraint yields exactly the same con-
straint. However consider a constraint ; : U ! R of this form, and another con-
straint >, : U !V . Thenif 1 and 5 are continuous, then so is the constraint

=( 1; 2)! R V . Thus we can apply Theorem 7.4 on the coupled constraint.
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7.4 Application to a Multistage Problem

In this section we say a few words about how the approximation of an almost sure
constraint by a conditional expectation { as presented in section 7.2 { can be used.

We are interested in an electricity production problem with N power stations coupled
by an equality constraint. At time step t, each power stationi have an internal state
Xt, and is a ected by a random exogenous nois&V /. For each power station, and each
time step t, we have a controIQt 2 Qt’ that must be measurable with respect to F¢
where F; is the -algebra generated by all past noisesF; = WS' 10 n0 st Moreover
there is a coupling constraint expressing thqg the total production must be equal to the
demand. This constraint is represented as |\, I(Ql) = 0, where | is a continuous
bounded function from Qt’ into V, for all i 2 [1;n]. The cost to be minimized is a sum
over time and power stations of all current local costL} X!; Ql; W/ .

Finally the problem reads

min E Lt X{; QW (7.15a)
XQ i 1 t=0

st X,y = f{ (X Qt,W h 8t; 8i; (7.15b)

X cl) = x}) 8i; (7.15¢)

Qi 2 Q¥ 8t 8i; (7.15d)

Qi F i 8t 8i; (7.15€)
X

1(Qp =0 8t 8i: (7.15f)

i=1

For the sake of brevity, we denote byA the set of random processesX ; Q) verifying
constraints (7.15b), (7.15c) and (7.15d).

Let assume that all random variables are inL? spaces and dualize the coupling con-
straint (7.15f). We do not study here the relation between the primal and the following
dual problem (see [95] and [94] for an alternative formulation involving duality between
L1 and its dual).

max min E X L xohw! + Q)
2L2 (X Q)2A 1 10 toerxe T thxt

st Qf F. 8; 8i

(7.16)

We solve this problem using a gradient-like algorithm on . Thus for a xed &) we
have to solveN problems of smaller size than Problem (7.16).

X ‘
LN B L Xsouw! + 7@
' t=0

st Qf F. 8t 8i

(7.17)

Note that the process () has no given dynamics but can be chosen to be adapted to
the ltration ( Ft)t=1...T1. Consequently solving Problem (7.17) by Dynamic Programming
is possible but numerically di cult as we need to keep all the past realizations of the noises
in the state. In fact the so-called curse of dimensionality prevent us to solve numerically
this problem.
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Nevertheless it has recently been proposed in [10] to replace by E ¢ Y, , whereY,
is a random variable measurable with respect to ¥, ;;W,) instead of . This is similar
to a decision rule approach for the dual as we are restraining the control to a certain
class, theY,-measurable in our case. Thus Problem (7.17) can be solved by Dynamic
Programming with the augmented state (X {;Y,). It has also been shown that, under some
non-trivial conditions, using E ¢ Y, instead of . is equivalent to solving

mn E X LI X Ql:w| (7.18a)
(X 1Q)2A - t At YWt
st Q! F 8t; 8i (7.18b)
hwy i
E QhH vr =0 8t; 8i: (7.18c)

i=1

Problem (7.18) is a relaxation of Problem (7.15) where the almost sure constraint
(7.15f) is replaced by the constraint (7.18c). Now consider a sequence of information
processesY (M), each generating a -algebraF,, and their associated relaxation @)
(as speci ed in Problem 7.18) of Problem (7.15) (denoted P)). Those problems correspond
to Problems (7.11) and (7.12) with

J(U)=E Lt X{;QuwW,
i=1 t=0

whereU = (QM);,p1:ng and X | follow the dynamic equation (7.15b). We also have

e
t(Uy) = 1(Qp)
i=1
and C; = f0g.

Assume that for all t 2 [1;T], and all i 2 [1;N] the cost functions L} and constraint
function | are continuous, and that Q3! is a compact subset of an Euclidean space.
Moreover we assume that the noise variabledV,' are essentially bounded. Finally we
endow the space of control processes with the topology of convergence in probability.
Then by induction we have that the state processes and the control processes are essentially
bounded, thus so is the costL} X !;U/; W/ . Thus the cost function can be e ectively
replaced by bounded functions. Consequently Proposition 7.9 insures thal is continuous
if U is equipped with the topology of convergence in probability. Similarly Proposition
7.10 insures that is continuous.

Thus Theorem 7.6 implies that our sequence of approximated problemdR,) converges
toward the initial problem ( P). More precisely assume thatf U, gn2n is @ sequence of -
optimal solution of Pp, i.e. U, verifying constraint (7.18c) and J(U,)) < infy pyaa J(U)+
"n, with ("n)n2n @ sequence of positive real number converging to 0. Then we can extract
a subsequencel, )kzn converging almost surely to an optimal solution of (), and the
limit of the approximated value of (Py) converges to the value of P).

Conclusion

In this Chapter we have considered a sequence of optimization problemP, where
each problem is a relaxation of an optimization problem P . This relaxation is given by
replacing an almost sure constraint by a conditional expectation constraint with respect to
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a -algebraF,. We have shown that, if the cost and constraint functions are continuous
and if the sequence of -algebrasfF ,gn2n converges toward the global -algebra, then
the sequence of optimization problems P, converges toward the original problem P .

In the next chapter, we apply this relaxation to a multistage optimization problem in
order to obtain a tractable price decomposition scheme.
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Chapter 8

Dual Approximate Dynamic
Programming Algorithm

If you can't solve a problem, then there is an easier
problem you can solve: nd it.

Georg Polya
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In this nal chapter, we present a spatial decomposition algorithm that solves an ap-
proximation of a multistage stochastic optimization problem. We illustrate the approach
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on the hydraulic valley example of x1.3.2. This algorithm, called DADP for Dual Ap-
proximate Dynamic Programming, was rst described in [10], following preliminary works
in [114] and [50]; numerical studies can be found in [1,50].

In x8.1, we provide a bird eye view of the method. Inx8.2, we describe each step of
the DADP algorithm. In x8.3, we use the results of Chapters 4 to 7 to provide theoretical
foundations to the algorithm. In x8.4, we display numerical results for the 3-dam valley
example (seex1.3.2). Finally, in x8.5, we discuss the design of the information process
that appears in the approximation step.

As this Chapter is pretty heavy on notations and indexes, the quanti er 8 will often
be omitted. In addition, many variables are indexed by the dynamic subsystemi, and
the time t; most of the time, when we omit an index, it means the collection, e.g.X =

Xt wprpiznng X5 Xt =0 X X{ .2y We also assume that spaceX =

Xt I U= U I and W = W; I are subsets of nite dimensional vector spaces. More
precisely, we denote bynx the dimension of A ( X;), ny the dimension of A (U;), and
nw the dimension of A (W,); it is for notational sobriety only that these dimensions are
assumed to be the same for every time&. The integer nc denotes the dimension of the
image space of the constraint functions |.

t =

8.1 Overview of the DADP Method

We considerN stochastic dynamic systems coupled by almost sure equality constraints.
The global cost to be minimized is the expectation of a sum over theN systems of the
sum over time of local costs. The problem considered is detailed i®8.1.1. Our objective
here is to obtain feedbacks (strategies), for a large scale stochastic dynamical problem.

The price decomposition scheme consists in dualizing the coupling constraints, xing a
multiplier, and obtaining N uncoupled subproblems. From the solution of each subproblem
we update the multiplier before iterating. However, we show inx8.1.2 that this price
decomposition scheme leads to subproblems which are too di cult to solve by Dynamic
Programming (dimension of the state too important). Thus, we propose an approximation
method called Dual Approximate Dynamic Programming (DADP) and based on the main
following ideas?:

relaxing the almost sure coupling equality constraints into conditional expectation
constraint,

using a price decomposition scheme to obtain subproblems,

solving the subproblems through methods like Dynamic Programming.

The approximation idea behind the Dual Approximate Dynamic Programming
(DADP) algorithm is presented in x8.1.3. A presentation of the scheme of DADP method
is given in x8.1.4 (a more detailed presentation is done irx8.2). Its application on the
hydraulic valley example is presented inx8.1.5.

8.1.1 Presentation of the Spatially Coupled Problem

We are interested in a production problem involving N units. Each unit i has an
internal state Xti at time step t, and is a ected by a random exogenous nois&V . The
global exogenous noiséthg ! is assumed to be time-independent. Time dependence
could be represented by extending the state, and incorporating information of the noise
in it. On the other hand, for a given time t, the sequencef W/ gl is not assumed to
be independent (between units). Moreover we assume a Hazard-Decision setting, that is,
that the control taken at time t is chosen once the uncertaintW, is known.

1. Dierent interpretations of the DADP algorithm are given in 8.3.1.
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_ For each uniti 2 [1;N], and each time stept 2 [O; T 1], we have to make a decision
u/ 2 Ut?id that must be measurable with respect toF¢, whereF; is the -algebra generated
by all past noises:

_ i
Fe= W 1i NO st
We denote F the lItration fF +g].

We consider an almost sure coupling constraint represented as

Pxhulbw, =0 P as: (8.1)

For example, each | can represent the production of uniti at time t and a constraint on
the global production at time t is represented through Equation (8.1). Moreover, as in the
dam example (seex1.3.2), if some controls are shared by two dynamical systems, then it is
formulated by de ning one control for each dynamical system, and stating their equality
in (8.1).

Finally, the cost to be minimized is the expectation of a sum over time and over unit
of all current local costsLi X [;Ul; W, .

The overall problem can be formulated

min E Ly X{;U5W, (8.2a)
XU i=1 t=0

0= Xo (8.2b)

X iy = FHX5ULWY) (8.2¢)

u/ 2 u@ (8.2d)

U/ F (8.2¢)

t X Uhw, =0 (8.2f)

where constraint (8.2c)-(8.2f) are to be understood for all timet 2 [O; T] (constraint (8.2c)
fort 2 [O;T 1] only) and constraints (8.2b)-(8.2e) for all unit i 2 [1;N].

Note that, if it were not for constraint (8.2f), Problem (8.2) would lead to a sum of
independent subproblems, that could be optimized independently.

8.1.2 First Idea: Price Decomposition Scheme

In x6.3, we presented how Uzawa algorithm can be applied to a multistage problem.
However, in Chapter 6 we did not specify how to solve the minimization problem for a
given multiplier. Here, we use the Uzawa algorithm as the master problem in a price
decomposition approach to Problem (8.2), and show its limits.

Let us assume that all random variables used in Problem (8.2) are in £, and that
the problem has a L optimal multiplier for the coupling constraint (8.2f). There are
three reasons for choosing the spacell. First, assuming that the states and control are
essentially bounded is a reasonable modernization for most industrial problems. Second,
there exists - see Chapter 5 - condition for existence of multiplier in the L ;L' pairing,
whereas the examples of Chapter 4 show that it is more delicate infLwith p < 1 . Third,

a convergence in & has an easier interpretation than a convergence in £.
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We dualize (see Chapter 4) the coupling constraints (8.2f) (in the L ;L1 pairing) to
obtain

: XX iy RVENTIE
>r<n;|8 rg?_)l( E 1 e Lt Xt’Ut’Wt oot Xt’Ut’Wt
Xl = HX 105w 63)
X b= xb
u/ 2 uad
Ul F¢:
Note that the multiplier  is a stochastic process = tho.
We now consider the dual problem (see Chapter 4)
; A X ERVENTL IRVATL
e )r<n;|l51 E o Ly XU Wi + ¢ XU W,y
X = FiX UG WY ©8.4)
X = xb
u/ 2 ugd
U/ F¢:
Fact 8.1. If there exists an optimal multiplier process = f Sgg ! such that 2

LY ;F;P;R"c , then there exists an optimal multiplier process that isF-adapted.

Proof. Indeed, for , in LY :F:P, the conditional expectation w.r.t the -algebraF; is
de ned, and we have,
h o i h S i
E  E { X;;UW, Fe =EE | Ft E { X5ULGW,  Fy

Hence, we replace , by the Fi-measurableE |, F; that yields the same value for
Problem (8.4). O

From now on we will consider that the multiplier process is F-adapted.
We can solve the maximization part of the dual problem using a gradient-like algorithm

on . Thus, for a xed multiplier process (), we have to solveN independent problems
of smaller size

> S
mn E LI xhuhw, + & Txhulw,
x hul t=0
X = X
u; 2 U
Utl Ft:

Problem (8.2) is a multistage problem with a physical stateX , = fX |gl\, , a ected by
a time independent noise procesﬁwtgg. Hence, the stateX, is an information state in
the sense of Dynamic Programming (se&l1.2.4 ) and Problem (8.2) can be solved through
Dynamic Programming with a state of dimensionN  dim (X}).
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If it were not for the term ) 1 X[:U/;W, in the objective function of Prob-

lem (8.5), we would have a problem with a physical stateXti a ected by the time inde-
pendent noise procesﬁthg. Hence, the Dynamic Programming would be far faster: the
dimension of the state is divided byN .

Unfortunately, with the term & 1 X 1:U/:W, Problem (8.5) is a problem with a

(k)

physical state Xt‘, and two random noises : W, and ;. The noisethgg process is
(KT 1

time-independent, but the noise process ;’g;_," is not time independent. All we know
is that it is a F-adapted information process. Hencea priori, Problem (8.5) can be solved
by Dynamic Programming, by using fWSgtszé as the information state at time t. However,

this state is not necessarily smaller than the state of the global problem (Problem (8.2)).
(k)

If we could show that the multiplier process ;™ had a dynamic, say
(k) — (k) . .ok .
t_httlv 'ts’Wt’
then Problem (8.5) could be solved with the information statef X !; Ek)l; ; Ek)sg. Ona

very speci ¢c example it has been shown in [114] that the multiplier process has a dynamic.
In the following section, we construct an approximation of Problem (8.2) such that its
multiplier process is a function of a stochastic process with a dynamic. Our goal is
to solve Problem (8.5) by Dynamic Programming with the extended information state
X5HY .

8.1.3 Second ldea: Constraint Relaxation

We have seen in the previous section that, if we apply a price decomposition scheme
to Problem (8.2) the subproblems (8.5) cannot be solved numerically by the Dynamic
Programming approach because of the curse of dimensionality. Thus, we approximate
Problem (8.2) by relaxing the almost sure constraints, in order to obtain subproblems
with a smaller dimension state, and thus numerically solvable by Dynamic Programming.

. . . T 1

For this purpose, we consider a stochastic processY, ,_,~ (uncontrolled), called an

information process, that follows a dynamic

8t2 [0, T 1], Yo = F1(Y, W) (8.6)

where f7 are known deterministic functions. The choice of the information process is
arbitrary, but determines the quality of the method. It will be discussed in x8.4 and x8.5.
For simplicity, we present the algorithm with only one information process. However,
it can be extended to multiple information processes, a ected to di erent constraints. This
will be done in the dam valley example on which we illustrate the method.
We replace, in Problem (8.2), constraint (8.2f) by its conditional expectation w.r.t the
information process (see constraint (8.7f)):

min E Lt X{;ULW, (8.7a)
XU i=1 t=0
X = fI(X 5 U5hwW) (8.7b)
X b= xb (8.7¢)
u/ 2 u@ (8.7d)
Ul F (8.7¢)
hy i

E Pxhulw, oy, =0 (8.7f)
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This type of relaxation was studied in Chapter 7.
Inthe L' ;L' pairing, we de ne the Lagrangian function

LU, =E Ly XGUGW, + ( E ¢ XGULSWE Y, 5 (88)
i=1 t=0

where the state processX follows the dynamic equation (8.7b).
Thus, we obtain the following dual problem

: X\IXTii.i. IRVENEE
mza|1_>1< )r(n;lg E o Ly X5ULW + B XGULW, Y,
X = X
U/ 2uad
Ul F
Lemma 8.2. Assume that there exists an optimal process = t tT:O for the maxi-

mization part of Problem (8.9), with ; 2 L ;F:P;RP . Then, the process ! de ned
by
{ =B ¢ Y

is also an optimal solution to Problem (8.9).

Proof. Indeed if ,2 L' ;F;P,then we have,
h S i h S i
E ,E IXhuiw, Y, =EE , Y, E XL Uuliw, Y,
Using this equality in (8.8)
L(U: )=LU; D;

hence the result. O]
Thus, we can restrict ourselves to multiplier processes , such that for all time t 2

[0;T], . is measurable w.r.tY,.
Consequently, using once more Lemma B.3, we can write Problem (8.9) as

max min E Ly X UGWe + 0 XGUGW,
t Ytz xhul t=0
Xt = Fl(XGUGWY) (8.10)
X 6= Xp
u/ 2 u@
UtI F t -

Problem (8.10) is equivalent to Problem (8.9), but is simpler:
the multiplier process of Problem (8.10) lives in a smaller linear space,
the dual cost in the objective function of Problem (8.10) no longer requires to com-
pute a conditional expectation.
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Note that, for a given multiplier Ek), we have to solve theN following separate inner

minimization subproblems.

x o
min E Ly X;UL5wW, + gk) ¢ XU Wy
X hu! t=0
Xg+1 =_fti(Xti;Uti?VVt) (8.11)
X o= Xp
U/ 2 u
U/ F:

Each inner minimization problem can be solved by Dynamic Programming with the ex-

tended state X !;Y, . Indeed, x a multiplier %) measurable w.r.tY,, and represented by

a measurable function §k) such that Ek)(Yt) = §k). Recalling that the noisesttgg !

are assumed to be time-independent, we can write the following Dynamic Programming
equation for the inner minimization problem.

Vi Xy = min  E Li XGUSGW + ) 1§ XGUSW, + Vi X Yo
U Wy
Xt = Fixs U W)
Ytl-i-l = f-.t' yt;Wt
U/ 203

Thus, we can solve the inner minimization problem for a given multiplier, by applying
Dynamic Programming to the N separate problems.

Remark 8.3. For notational simplicity, we relaxed the almost sure constraint (8.2f) in

its conditional expectation with respect to one information process (see Equatior{8.7f)).
However, exactly the same approach can be done with several constraints. More precisely,
we consider,

8j 2 [1,J1; dXHULGW,=0; P as.; (8.12)
i=1
and their relaxed counterpart

8 2 [1,J]; E dxhubw, y! =0; (8.13)
i=1

wherefYtj Oi2[o: 13 IS an information process. There is no diculty in extending the
results to this type of relaxation. This is done in the dam example irx8.1.5 and thereafter.

8.1.4 General Scheme

We now describe more precisely the DADP algorithm in Algorithm 8.1 given an infor-

mation process Y, th01 satisfying (8.6).

Iteration k of Algorithm 8.1 starts with a multiplier process Ek). The N inner mini-

mization problems (8.11) are solved, for example, by Dynamic Programming.

From these resolutions, we obtain aslack process §k) de ned by

X : .

K [ H(K) Ly E(K). .

W= Ix i w, (8.14)
i=1
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where X ;U™ T is the solution process of Problem (8.11).

Then, we update the multiplier process by a gradient like step
8t 2 [0; T1; febm W g 0y (8.15)

for a given > 0. As §") is measurable w.r.tY,, and Y, is a nite dimensional random
variable, a result from Doob (extended in [36, Chapter 1, p.18]) allows us to represent

Ek) as a function fk) of Y,. Moreover, if Y, takes a nite number of values, §k) can be
represented by a nite dimensional vector. The update (8.15) of the multiplier process

f fk)gtzﬂoﬂ ends iteration k of the DADP algorithm.

Data : Information process evolution functionsf; and starting point yg initial
multipliers EO);

Result : optimal multipliers 1 admissible feedback ;

repeat

forall the i2 [1;N] do

| Solve Problem (8.11) ;
forall the t2 [O;T 1] do
Estmate E X Y, ;
Update the multiplier : §k> (8.15);
untl E ¥ Y, ' O
Compute admissible feedbacks ;
Algorithm 8.1:  General Scheme of DADP

We sum up the information structure and notations:
W, is the noise happening at the beginning of the time periodtft + 1],

Fi= W t:O is the -algebra of all information contained in the noises realized
before timet + 1,
U, = Uti iN:1 is the control applied at the end of the time period [t; t +1[, measurable
w.r.t Fi,
X, = Xti N: is the state of the system at the beginning of {;t + 1[, is measurable
w.rt F; 1 (note that this time the index is t 1),
Y, is the information variable measurable w.r.t Fy,

. Is the multiplier of the almost sure constraint (8.2f), measurable w.r.t Fy,

. Is the multiplier of the conditional constraint (8.7f) measurable w.r.t Y, F ¢,

and we have ;= Y, ,where . is a deterministic function.

8.1.5 An Hydraulic Valley Example

We illustrate the DADP algorithm on the example of a chain of N dams presented in
x1.3.2, more thoroughly developed in [1].

First of all, to recover the framework of Problem (8.2), with dynamical system coupled
through constraints, we need to duplicate the outow of dami 1. It means that we
considethi as a control variable pertaining to the dami, and submitted to the constraint

8i2 [2N];, zi=dg*? f<ti 1;U{{Z L.z| ;;Wti 1y and z! oO: (8.16)

gl 1
=Hy
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Figure 8.1: From a coupled formulation to a decomposed formulation of the dam problem

Intuitively the control Zti is the water \bought" by the dam i to the dami 1. The price
of this exchange is the multiplier 't to constraint (8.16). Note that, if the price is not the
actual optimal multiplier, the physical constraint stating that the out ow of dam i goes
into dam i + 1 will not be satis ed. Schematically, this can be seen on Figure 8.1. Note
also that there areN 1 constraint, henceN 1 multiplier processes.

In order to t the framework of Problem (8.2), the coupling constraint is given by

L Xhuhzhw! o= 00 ;0 g HEwW/ o0 50
t t t t t |{%} t t
ith position

so that constraint (8.2f) coincides with constraint (8.16).
We now explicit the relaxation (8.7). In the rest of the presentation, for notational

. .. . . . T
simplicity, we consider only one information process Y, . However, we can choose one
information process per coupling constraint. Hence, for anyi 2 [2;N], we consider an

information process Yti th01, and we relax constraint (8.16) into
h . . o
8i2[2N];, Egqg *H; hw/?! z! Y/ =0; and Z! oO0: (8.17)
We assume that the information processed Yt‘g{\‘:1 satisfy (8.6); more precisely that
there are known deterministic functions f{ such that
8i2 [LN], 8t2[0T 1 Y\ =7 Y)W,
Thus, the relaxed optimization problem (8.7) reads now

X
max  min  E Ly H{; W,

(8.18)

ui;z{ F
Eg "H{ Zw/ ' Zz! Y/ =0:
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For notational consistency, we introduce a ctitious {\”1 0, and the dual problem (8.10)
reads

max. min E Lt H W, + |t+l g Hi W ¢ Zy
{ Ytl i=1 HI t=0
b= %
Xt = fl HEW (8.19)
Yia = 1YW
ul;z! 20
uszl Fy:

8.2 DADP Algorithm Step by Step

Here, we present each step of the DADP algorithm and illustrate it with the dam valley
example.

8.2.1 Initialization

The Uzawa algorithm (see Chapter 6) is close to a gradient algorithm for the dual
problem. Consequently, we need a good starting point for this gradient algorithm. In
some cases, if the random variables were deterministic, the problem could be e ciently
solved exactly, yielding the exact Bellman function. From this Bellman function we can
determine (see below for an example on the dam valley) the optimal multiplier. Thus, a
good idea for an initial © would be the (deterministic) optimal multiplier for the problem
on the mean scenario. More precisely we consider Problem (8.2) where eaéh, is replaced
by E W, . This new problem is deterministic and can be solved by speci ¢ methods.

Example 8.4. Let fwtgthol be a scenario of noise. We consider the following determin-
istic optimization problem, close to the one presented irx8.1.5

X _
min Li(Xi;up;wi;zg) + Ki(xT) (8.20a)
(xuz) g =1 i=1
Xty fi(xtupwiz) =0 (8.20b)
zZ* gi(x};ulwliz) =0 (8.20c)

We denote by |,; the multiplier of the dynamic equation (8.20b) and by t”l the
multiplier of (8.20c). We dualize (8.20b) and (8.20c) and write the optimality equation
on z; (recall that for all t2 [0;T 1], we have setzyy 0).

@, i @ . @,
t+1 t
@z @z @z
We obtain, for all t 2 [O; T 1], the following backward (ini) equations to determine
¢ (recall that N*1 o)

8i2 [LN 1], 8t2[0T 1J; i=0: (8.21)

(v e + Nooef
t @@z _ t+1@_@z . ol (8.22)
= Gie i, G G 8i 2 [LN 1]

In order to obtain the multiplier ~ we write the Dynamic Programming equation for
Problem (8.20).
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e - (8.23
Voxe =min o Liodiubwgiz) 62
(uz) .4
+Vep L xEubwdizt o G EN xNuN s wlN ;N
where the minimum is taken under constraint (8.20c).
After dualization, rst order optimality conditions in  z{ of Problem (8.23) are given by

@IL_i_ @.@Ml @ i+1

@z @Z @k @z !
By identi cation of (8.24) with (8.21), we deduce the expression of!:

+ 1=0: (8.24)

i @V
t = ax Xt (8.25)
Thus, equation (8.22) can be written
( N — eIy + ef N
t ol anZ’ @“1 et : (8.26)
i= @ 8w @, = 8y 8i 2 [LN 1]

Hence, we obtain a starting multiplier © by setting © | given by (8.26).

We have seen on the deterministic hydraulic valley example that, if we know the
Bellman function of a problem, we can obtain the optimal multiplier tT:Ol. Note that
the same computation can be done in a non-deterministic setting, and having the exact

Bellman functions would give the exact multiplier process as well.

8.2.2 Solving the Inner Problem

At each step of the DADP algorithm (Algorithm 8.1), we have to solve the N inner
minimization problems (8.11). For the DADP algorithm, the only output needed to up-
date the multipliers, is the stochastic process () de ned in (8.14). Consequently, the
inner problems can be solved by any methods available (e.g Stochastic Dual Approximate
Dynamic Programming - see Chapter 3).

Without further assumptions, the Dynamic Programming method is available. At iter-
ation k, we initialize the Bellman function V;/®) K, and proceed recursively backward

in time to construct Vti;(k). For every possible value ofX | denoted x} and value of Y,
denotedy;, we solve

min E Ly Xit;Uti;Wt + Ek) Yi tXp UG W, +Vtijr(1k) Xti+1;Y
t

t+1
X i = FxUGWY)

Yt+1 = fT(yt;Wt)

Uti = 4 Xit;Yt;Wt

U/ 203

(8.27)

where the minimization is done on the policies ! that are bounded functions mapping
Xt Yt W;into U;. The optimal value of Problem (8.27) is the local Bellman value

VR (xd ).
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