
Contributions to decomposition methods in stochastic

optimization

Vincent Leclere

To cite this version:

Vincent Leclere. Contributions to decomposition methods in stochastic optimization.
Optimization and Control [math.OC]. Université Paris-Est, 2014. English. <NNT :
2014PEST1092>. <tel-01148466>

HAL Id: tel-01148466

https://pastel.archives-ouvertes.fr/tel-01148466

Submitted on 4 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://pastel.archives-ouvertes.fr/tel-01148466


UNIVERSITÉ PARIS-EST

ÉCOLE DOCTORALE MSTIC
MATHEMATIQUES, SCIENCES ET TECHNOLOGIES
DE L’INFORMATION ET DE LA COMMUNICATION

THÈSE

pour obtenir le titre de

Docteur

de l’Université Paris-Est

Spécialité : Mathématiques Appliquées

Présentée et soutenue par

Vincent Leclère

Contributions to Decomposition Methods

in Stochastic Optimization

Thèse co-dirigée par Pierre Carpentier et Michel De Lara

préparée au sein de l’équipe Optimisation et Systèmes du
laboratoire CERMICS de l’École des Ponts ParisTech

soutenue le 25 Juin 2014

Jury :

Rapporteurs : Alexander Shapiro - Georgia Tech
Roger J.-B. Wets - University of California, Davis

Président : Frédéric Bonnans - INRIA, École Polytechnique

Directeurs : Pierre Carpentier - ENSTA ParisTech

Michel De Lara - École des Ponts ParisTech

Examinateurs : René Aı̈d - EDF R&D
Jérôme Bolte - TSE, Toulouse I Capitole
Romuald Elie - Université Paris-Est

Invité : Laurent El Ghaoui - University of California, Berkeley
Alejandro Jofré - University of Chile, Santiago



ii



Abstract

Stochastic optimal control addresses sequential decision-making under uncertainty. As
applications leads to large-size optimization problems, we count on decomposition meth-
ods to tackle their mathematical analysis and their numerical resolution. We distinguish
two forms of decomposition. In chained decomposition, like Dynamic Programming, the
original problem is solved by means of successive smaller subproblems, solved one after
the other. In parallel decomposition, like Progressive Hedging, the original problem is
solved by means of parallel smaller subproblems, coordinated and updated by a master
algorithm.

In the first part of this manuscript, Dynamic Programming: Risk and Convexity, we
focus on chained decomposition; we address the well known time decomposition that
constitutes Dynamic Programming with two questions. In Chapter 2, we extend the
traditional additive in time and risk neutral setting to more general ones for which we
establish time-consistency. In Chapter 3, we prove a convergence result for the Stochastic
Dual Dynamic Programming Algorithm in the case where (convex) cost functions are no
longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization, we first point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing(

L∞,L1
)

in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa

Algorithm in L∞
(
Ω,F ,P;Rn

)
.

The third part of this manuscript, Stochastic Spatial Decomposition Methods, is devoted
to the so-called Dual Approximate Dynamic Programming Algorithm. In Chapter 7, we
prove that a sequence of relaxed optimization problems epiconverges to the original one,
where almost sure constraints are replaced by weaker conditional expectation ones and
that corresponding σ-fields converge. In Chapter 8, we give theoretical foundations and
interpretations to the Dual Approximate Dynamic Programming Algorithm.



Résumé

Le contrôle optimal stochastique (en temps discret) s’intéresse aux problèmes de
décisions séquentielles sous incertitude. Les applications conduisent à des problèmes d’op-
timisation de grande taille. En réduisant leur taille, les méthodes de décomposition perme-
ttent le calcul numérique des solutions. Nous distinguons ici deux formes de décomposition.
La décomposition châınée, comme la Programmation Dynamique, résout successivement
des sous-problèmes de petite taille. La décomposition parallèle, comme le Progressive Hedg-
ing, consiste à résoudre itérativement et parallèlement les sous-problèmes coordonnés par
un algorithme mâıtre.

Dans la première partie de ce manuscrit, Dynamic Programming : Risk and Convexity,
nous nous intéressons à la décomposition châınée, en particulier temporelle, connue sous le
nom de Programmation Dynamique. Dans le chapitre 2, nous étendons le cas traditionel,
risque-neutre, de la somme en temps des coûts à un cadre plus général pour lequel nous
établissons des résultats de cohérence temporelle. Dans le chapitre 3, nous étendons le
résultat de convergence de l’algorithme SDDP (Stochastic Dual Dynamic Programming
Algorithm) au cas où les fonctions de coûts (convexes) ne sont plus polyèdrales.

Puis, nous nous tournons vers la décomposition parallèle, en particulier vers les
méthodes de décomposition obtenues en dualisant les contraintes (contraintes spatiales
presque sûres, ou de non-anticipativité). Dans la seconde partie de ce manuscrit, Duality
in Stochastic Optimization, nous commençons par souligner que de telles contraintes peu-
vent soulever des problèmes de dualité délicats (chapitre 4). Nous établissons un résultat

de dualité dans les espaces pairés
(

L∞,L1
)

au chapitre 5. Finalement, au chapitre 6, nous

montrons un résultat de convergence de l’algorithme d’Uzawa dans L∞
(
Ω,F ,P;Rn

)
. qui

requiert l’existence d’un multiplicateur optimal.
La troisième partie de ce manuscrit, Stochastic Spatial Decomposition Methods, est

consacrée à l’algorithme connu sous le nom de DADP (Dual Approximate Dynamic Pro-
gramming Algorithm). Au chapitre 7, nous montrons qu’une suite de problèmes d’opti-
misation —dans lesquelles une contrainte presque sûre est relaxée en une contrainte en
espérance conditionnelle— épi-converge vers le problème original si la suite des tribus
converge vers la tribu globale. Finalement, au chapitre 8, nous présentons l’algorithme
DADP, des interprétations, des résultats de convergence basés sur la seconde partie du
manuscript.



iii

Notations

We lay out the general rules and conventions followed in the manuscript:
• the random variables are written in bold,
• the letter x refers to a state, u refers to a control and w refers to a noise,
• the symbol ] refers to optimality,
• the letters j and J refer to the objective function, and the letter Θ to the constraint

function.
Here are the main notations:

[[a, b]] set of integers between a and b{
un
}n1

n=n0
sequence

{
un0 , un0+1, · · · , un1

}
(also written

{
un
}n1

n0
)[

At
]t2
t=t1

Cartesian product of sets At1 × · · · ×At2
w.r.t. with respect to
σ(X ) σ-field generated by the random variable X
X � F the random variable X is measurable w.r.t. the σ-field F
X � Y the random variable X is σ(Y )-measurable
xn → x the sequence (xn)n∈N (strongly) converges towards x
xn ⇀ x the sequence (xn)n∈N weakly-converges towards x(
Ω,F ,P

)
probability space equipped with σ-algebra F and probability P

F
(
E,F

)
space of functions mapping E into F

Lp(Ω,F ,P;E) space of all F-measurable functions
with finite moment of order p taking value in E

Lp(Ω,F ,P;E) Banach space of all equivalence classes of Lp(Ω,F ,P) functions,
up to almost sure equality

E, EP mathematical expectation w.r.t. probability P
P-a.s., a.s. P-almost surely

lim upper limit
lim lower limit
χA indicator function taking value 0 on A, and +∞ elsewhere
1A characteristic function taking value 1 on A, and 0 elsewhere

dom f domain of f , i.e. set of points where f is finite
f ≡ g means that the functions f and g are equal everywhere
Aff(A) affine hull of the set A
|A| cardinal of the (finite) set A

〈y , x〉Y,X duality pairing of y ∈ Y against x ∈ X
x · y usual Euclidian scalar product of x ∈ Rn against y ∈ Rn
X? topological dual of X (i.e. the space of the continuous linear forms on X)

int(A) interior of set A
ri(A) relative interior of set A
P(A) the set of subsets of A

R the set of extended reals R ∪ {+∞} ∪ {−∞}
R̄ the set R ∪ {+∞} (used in Chapter 2)



iv



Contents

Introduction 1

1 Preliminaries 13

1.1 Framing Stochastic Optimization Problems . . . . . . . . . . . . . . . . . . 15

1.2 Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 A Dam Management Example . . . . . . . . . . . . . . . . . . . . . . . . . . 35

I Dynamic Programming: Risk and Convexity 41

2 Time-Consistency: from Optimization to Risk Measures 43

2.1 Introductory Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Time-Consistency: Problem Statement . . . . . . . . . . . . . . . . . . . . . 52

2.3 Proving Joint Time-Consistency . . . . . . . . . . . . . . . . . . . . . . . . 59

2.4 Extension to Markov Aggregators . . . . . . . . . . . . . . . . . . . . . . . . 86

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3 Stochastic Dual Dynamic Programming Algorithm 97

3.1 Deterministic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.2 Stochastic Case with a Finite Distribution . . . . . . . . . . . . . . . . . . . 106

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

II Duality in Stochastic Optimization 119

4 Constraint Qualification in Stochastic Optimization 121

4.1 Abstract Duality Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.2 Two Examples on Constraint Qualification . . . . . . . . . . . . . . . . . . 128

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 Constraint Qualification in
(

L∞,L1
)

137

5.1 Topologies on L∞
(
Ω,F ,P;Rd

)
. . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 A Duality Result Through Mackey-Continuity . . . . . . . . . . . . . . . . . 142

5.3 Application to a Multistage Problem . . . . . . . . . . . . . . . . . . . . . . 149

6 Uzawa Algorithm in L∞
(
Ω,F ,P;Rn

)
153

6.1 Optimization Results and Classical Uzawa Algorithm . . . . . . . . . . . . . 154

6.2 Uzawa Algorithm in L∞
(
Ω,F ,P;Rn

)
Spaces . . . . . . . . . . . . . . . . . . 157

6.3 Application to a Multistage Problem . . . . . . . . . . . . . . . . . . . . . . 164



vi CONTENTS

III Stochastic Spatial Decomposition Methods 169

7 Epiconvergence of Relaxed Stochastic Problems 171
7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
7.2 Epiconvergence Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.3 Examples of Continuous Operators . . . . . . . . . . . . . . . . . . . . . . . 178
7.4 Application to a Multistage Problem . . . . . . . . . . . . . . . . . . . . . . 183

8 Dual Approximate Dynamic Programming Algorithm 187
8.1 Overview of the DADP Method . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.2 DADP Algorithm Step by Step . . . . . . . . . . . . . . . . . . . . . . . . . 196
8.3 Theoretical Analysis of the DADP Method . . . . . . . . . . . . . . . . . . 203
8.4 Numerical Results for the Hydraulic Valley Example . . . . . . . . . . . . . 209
8.5 Discussion on the Information Model . . . . . . . . . . . . . . . . . . . . . . 212

Conclusion 219

A Analysis 221
A.1 Topology and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
A.2 Convexity and Lower Semicontinuity . . . . . . . . . . . . . . . . . . . . . . 229

B Probability 233
B.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
B.2 Recalls on Lp

(
Ω,F ,P;Rn

)
-spaces . . . . . . . . . . . . . . . . . . . . . . . . 234

B.3 Convergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography 236



Remerciements

Toutes les grandes personnes ont d’abord été des
enfants, mais peu d’entre elles s’en souviennent.

Le petit prince

À la fin de ces trois années de thèse, je me rends compte que j’ai énormément de monde
à remercier – et certains à plus d’un titre–, pour leur aide, conseils et soutien durant cette
période. J’espère n’oublier personne, même si cela me semble une tâche impossible.

Mes remerciements vont tout d’abord à mes deux rapporteurs, A. Shapiro et
Roger. Wets qui m’ont fait l’honneur de bien vouloir lire et commenter mes travaux.
Ils ne cèdent en gratitude qu’à mes directeurs de thèse, P. Carpentier et M. De Lara, qui,
aidé de J-P. Chancelier, m’ont accompagnés tout au long de cette thèse. Je leur suis infin-
iment reconnaissant pour leurs conseils –mathématiques, méthodologiques, linguistiques
ou stylistiques– et du temps qu’ils m’ont consacrés. Je remercie également le jury pour
leur présence, leur remarques et leur lecture de ce manuscrit, quand bien même les astres
ce soient alignés contre la présence physique de certains le jour de la soutenance.

Durant ma thèse j’ai eu l’occasion de travailler avec divers chercheurs de grande qualité.
Je tiens particulièrement à remercier : A. Ruszczynński pour son attention et ses conseils
avisés lors de mon séjour à RUTGERS ; A. Philpott pour sa disponibilité, sa réactivité
et son accueil chaleureux lors de mon séjour à Auckland ; V. Guiguès pour sa présence
et ses remarques pertinentes lors de mon passage à Rio. J’ai également collaboré avec
le département OSIRIS d’EDF R&D, et je tiens à remercier – dans le désordre et sans
prétendre à l’exhaustivité – R. Aı̈d, L. Andrieu, K. Barty, A. Ben Abbès, S. Charousset,
A. Dallagi, A. Lenoir, N. Oudjane tant pour les discussions amicales ou mathématiques
que pour leur soutien constant. Merci aussi à ceux qui m’ont donné l’occasion d’enseigner
durant la thèse et en particulier J.C. Gilbert pour un cours d’optimisation différentiable
d’une qualité incomparable et J.F. Delmas pour un exigeant cours de probabilité et statis-
tique. Je n’oublie pas les élèves qui ont eu la patience de m’écouter et m’ont permis de
mieux comprendre en me forçant à (ré)expliquer d’une manière toujours nouvelle. Merci
aussi à PGMO et au groupe MODE de la SMAI qui participent à la vie de la communauté
de l’optimisation française.

Je tiens à souligner que si j’ai pu réaliser ma thèse dans de très bonnes conditions,
matérielles et humaines c’est grâce au CERMICS, laboratoire de l’École des Ponts Paris-
Tech au sein duquel je vais avoir la chance de pouvoir poursuivre mon activité de recherche,
et à l’UMA laboratoire de l’ENSTA ParisTech, qui m’ont accueilli. Je remercie également
le corps des Ponts des Eaux et des Forêts pour m’avoir offert la possibilité de faire une
thèse en son sein et en particulier S. Piperno et les membres de la CFD-IPEF pour leur
suivi attentif. Une pensée particulière à S. Cach pour sa disponibilité à nous guider dans
les méandres administratifs.

Durant ces années de thèse j’ai navigué en compagnie d’un certain nombre d’autres
thésards. En premier lieu Jean-Christophe, avec lequel j’ai beaucoup collaboré. Une
part non négligeable de mes remerciements doit être dédié à Laurent, toujours prêt à



viii CONTENTS

discuter, sur le coin d’une table avec un café de tel ou tel problème. Sans oubliter les
autres doctorants du CERMICS et en particulier ceux de l’équipe optimisation, Pauline,
Thomas, Axel, Daniel...

Mais avant d’arriver en thèse il a bien fallu apprendre le B.A.BA et pour cela ma
reconnaissance va à un certain nombre d’enseignants : à l’instit qui m’a donné des tables
d’additions plus difficiles, au professeur de collège qui s’est battu contre “les recettes de
cuisine” au profit d’une compréhension de chaque étape, à celle qui m’a demandé de ne
pas perdre mon esprit curieux, ou celle qui nous avait accordé le droit de ne pas faire les
exercices si on était capables de les faire aux tableaux et enfin à la directrice qui a permis
à ce lycée merveilleux d’exister. Mais surtout à mes profs de prépa -et leurs colleurs- et en
particulier M. Cornil qui m’a appris la rigueur. Un grand merci aussi aux professeurs de l’X
et du master OJME, qui m’ont permis de trouver une branche des mathématiques qui me
plaisait. En particulier F. Bonnans, J. Bolte qui me font l’honneur d’être également dans
mon jury, mais aussi S. Sorin, S. Gaubert, P. Combettes, P. Cardialaguet, J. Renault...

Je souhaite également souligner le soutien que la communauté mathématique peut
apporter sur internet à de jeunes étudiants au travers des forums (tout spécialement maths-
forum et les-mathematiques.net) où des gens parfois très compétent prennent le temps de
répondre à diverses questions de mathématiques, plus ou moins pointues. Je leur dois
certains exemples ou références de ce manuscrit.

Il y a bien sûr tout un groupe d’amis de longue date qui ont su supporter mon envie de
lire le Variational Analysis au pied d’une paroi d’escalade, ou mes tentatives désespérées de
vulgarisation après deux mojitos et demi. Ils ont aussi été là quand le moral a pu baisser,
avant de remonter, car si une chose est certaine c’est que le moral n’est pas une fonction
unimodale du temps. Je cite Cyril, Gégé, Manu, Balthos, Ginette, Marina, Adrien, Xel,
Guillaume, Camille, Aurélie, Baloo, Sabrina et demande pardon à tout ceux que j’ai pu
oublier. Une place à part aussi pour ceux qui ont pu suivre eux aussi un chemin de thèse,
je pense à Cyrille, Antony et Martin en particulier. Un merci aussi sincère que farfelu
à Abricot qui a fait son possible pour chauffer mes genoux le plus longtemps possible et
Edmond Rostand qui a laissé un beau guide de vie. Et surtout, surtout, un grand merci
à Lili qui a veillé sur moi durant les mois de rédaction.

Finalement, recourant à l’expression de la langue de Shakespeare : last but not least,
je tiens à remercier profondément ma famille pour tout ce qu’elle a fait. Je remercie mon
frère pour les heures passées à construire ensemble des mondes merveilleux. Je remercie
mon père, pour m’avoir fait jouer avec les maths en me vendant le chien et rachetant la
maison avec des pièces jaunes, ou en me racontant qu’“il existe des nombres qui n’existent
pas: on les appellent les nombres imaginaires” bien avant l’heure. Je le remercie aussi
pour toutes les fois où il m’a aidé à faire des choix d’autant plus difficiles qu’il n’y en a
pas de mauvais. Je remercie ma mère pour toutes ses attentions et sa capacité à m’aider
et me soutenir quelles que soit les conditions ou les raisons.



Introduction

Mathematicians are like Frenchmen : whatever you say
to them they translate into their own language and
forthwith it is something entirely different.

Johann Wolfang von Goethe

Ce premier chapitre introductif est l’occasion de situer et présenter les travaux exposés
dans ce manuscrit. Dans un premier temps nous présentons le cadre général de l’optimi-
sation stochastique dynamique en temps discret, et donnons un aperçu des méthodes de
décomposition. Nous présentons ensuite les trois parties du manuscrit. La première est
consacrée à la programmation dynamique. La seconde à la théorie de la dualité dans le
cadre de l’optimisation stochastique qui sera utile pour mettre en oeuvre des méthodes
de décomposition telle que la décomposition par les prix. La troisième partie exploite les
résultats de la seconde pour construire une méthode de décomposition spatiale en optimi-
sation stochastique.

Optimisation Stochastique en Temps Discret

Cadre Général

L’optimisation, au sens mathématique, a pour but de trouver le minimum d’une fonc-
tion objectif sous un ensemble de contraintes. La fonction objectif dénotée J : U →
R ∪ {+∞} peut être, dans un contexte économique, un coût ; dans un contexte physique
une énergie ; ou encore, dans un contexte statistique, l’opposé d’un maximum de vraisem-
blance. Au cours de cette thèse nous utiliserons le vocabulaire du monde économique.
La fonction objectif sera donc un coût, dénoté classiquement J , son argument un contrôle
dénoté classiquement u. Notons que, dans de très nombreux cas, un problème réel comporte
des incertitudes. Parfois ces incertitudes peuvent être négligées et un cadre déterministe
être suffisant. Dans d’autres cas ces incertitudes peuvent être modélisées par une variable
aléatoire W , le problème devient alors un problème d’optimisation stochastique.

Nous nous intéressons particulièrement à l’optimisation stochastique dynamique en
temps discret à horizon fini. Pour cela nous considérons un système dynamique contrôlé
défini par un état initial x0 et une équation d’évolution

Xt+1 = ft(Xt,Ut,Wt+1) .

L’état physique du système à l’instant t+ 1 est dénoté Xt+1 et est déterminé par son état
à l’instant t ainsi que par le contrôle Ut choisi à l’instant t. Le terme “temps discret”
souligne que la variable de temps t est discrète et non continue (auquel cas le système
dynamique serait dirigé par une équation différentielle). Le terme “horizon fini” signifie
qu’il existe un instant T à partir duquel le comportement du système ne nous intéresse
plus.



2 CHAPITRE 0. INTRODUCTION

Nous considérons à chaque pas de temps un coût instantané Lt
(
Xt,Ut,Wt+1

)
qui

dépend de l’état actuel du système Xt, du contrôle choisi Ut et d’un bruit Wt+1. Nous
considérons également un coût final K(XT ) qui dépend de l’état final du système dy-
namique. Nous avons donc T + 1 coûts différents, chacun étant aléatoire. Ces suites de
coûts aléatoires sont agrégées pour pouvoir être comparées. Il existe diverses manières de
les agréger. La plus courante consiste à minimiser l’espérance de la somme en temps de
ces coûts. Une zoologie des approches alternatives sera présentée au chapitre 2. Dans le
cas usuel le problème d’optimisation s’écrit

min
X ,U

E
[ T−1∑
t=0

Lt
(
Xt,Ut,Wt+1

)
+K(XT )

]
(1a)

s.t. X0 = x0 (1b)

Xt+1 = ft
(
Xt,Ut,Wt+1

)
t = 0, . . . , T − 1, (1c)

θt
(
Xt,Ut

)
= 0 t = 0, . . . , T − 1, (1d)

Ut � Ft t = 0, . . . , T − 1 . (1e)

La notation Ut � Ft, signifie que Ut est mesurable par rapport à Ft. Cette contrainte
(contrainte (1e)) représente l’information disponible à l’instant t pour prendre la décision
Ut. Habituellement, la tribu Ft est donnée par

Ft = σ
(
W1, . . . ,Wt

)
. (2)

En d’autres termes, le contrôle Ut est pris en connaissant tous les bruits passés. Une famille

de décisions
{
Ut
}T−1

t=1
qui vérifie les contraintes de mesurabilité (contrainte (1e)), où Ft

est donné par (2), est dite non-anticipative, car elle n’anticipe pas le futur.

Méthodes de Décomposition

Un problème d’optimisation stochastique dynamique est a priori difficile à résoudre.
En effet, supposons que les bruits soient une suite de variables aléatoires indépendantes
prenant 3 valeurs, et que chaque contrôle Ut puisse prendre deux valeurs (typiquement

marche ou arrêt), alors le nombre de contrôles non anticipatifs est 2(3T+1−1)/2, ce qui est
rapidement colossal. En effet, la complexité du problème est exponentielle en l’horizon de
temps, ainsi qu’en la taille des variables. En particulier, tester toutes les solutions d’un
problème d’optimisation dynamique stochastique est numériquement impossible dès que
l’on sort des problèmes les plus triviaux.

Pour attaquer les problèmes complexes il existe de nombreuses méthodes, exploitant
les propriétés spécifiques des problèmes, ou mettant en place des heuristiques. Parmi elles
nous nous intéressons aux méthodes de décomposition. Une approche par décomposition
consiste à construire, à partir du problème original, un ensemble de sous-problèmes plus
simples à résoudre. Itérativement les sous-problèmes sont résolus, puis ajustés jusqu’à ce
que les solutions des sous-problèmes permettent de synthétiser la solution du problème
global. Nous présentons en §1.2 une approche unifiée des méthodes de décomposition.

Supposons que chaque coût 1 Lt
(
Xt,Ut,Wt+1

)
est en fait une somme de coûts locaux

Lt
(
Xt,Ut,Wt+1

)
=

N∑
i=1

Lit
(
Xi
t ,U

i
t ,Wt+1

)
,

1. Oublions quelques temps le coût final K



3

oùUt =
{
U i
t

}N
i=1

etXt =
{
Xi
t

}N
i=1

. Supposons qu’il en va de même pour la contrainte (1d).
Ainsi le problème (1) devient

min
X ,U

∑
ω∈Ω

N∑
i=1

T−1∑
t=0

P
(
{ω}

)
Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
(3a)

s.t. X i
t+1(ω) = f it

(
X i

t(ω),U i
t(ω),Wt(ω)

)
∀t, ∀i, ∀ω (3b)

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0 ∀t, ∀ω (3c)

U i
t � Ft ∀t, ∀i , (3d)

On peut noter que le problème d’optimisation consiste à minimiser une somme en temps
(variable t), en unité (variable i) et en aléa (variable ω). Sans les contraintes nous au-
rions donc |Ω| × T × N problèmes indépendants dont on veut minimiser la somme. Si
les problèmes sont indépendants (les variables vivent dans un produit cartésien) alors
la somme des minima est le minimum de la somme. En d’autres termes il suffit de min-
imiser chaque coût Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
par rapport à U i

t(ω) pour obtenir la solution
du problème global. Malheureusement ces différents coûts ne sont pas indépendants. En
d’autres termes, les contrôles X i

t(ω),U i
t(ω) doivent répondre à des contraintes :

• en temps, à cause de l’équation de dynamique du système (Contrainte (3b)) ;
• en espace, à cause de la contrainte couplante du problème (Contrainte (3c)) ;
• en aléa, à cause de la contrainte de mesurabilité des contrôles (Contrainte (3d)).

Nous présenterons plus tard comment les méthodes de dualité permettent de remplacer
les contraintes par un mécanisme de prix, et donc de décomposer le problème (3) en une
somme de problèmes indépendants.

Nous allons commencer par une autre approche, dite de décomposition châınées, où
l’on résout successivement des problèmes de plus petite taille. Cette approche porte le nom
de Programmation Dynamique.

Autour de la Programmation Dynamique

La programmation dynamique est une méthode générale de résolution d’un problème
d’optimisation multi-étape. Elle s’appuie sur la notion d’état, qui sera discutée en 1.2.4.

Dans un premier temps nous faisons une présentation simple et succincte de cette
méthode, puis nous présentons les résultats principaux du chapitre 2 qui étend la Pro-
grammation Dynamique à un cadre plus général, finalement nous présentons les résultats
principaux du chapitre 3 qui exploite la programmation dynamique pour construire un
algorithme efficace de résolution de problème d’optimisation stochastique dynamique.

Programmation Dynamique

Considérons le problème (1), en faisant l’importante hypothèse que la suite de bruits
{Wt}

T−1
t=1 est une suite de variables aléatoires indépendantes. Dans ce cas (sous des con-

ditions d’existence de solution) on sait (voir [12, 18]) qu’il existe un contrôle optimal{
Ut

]
}T−1

t=0
qui s’écrit comme fonction de l’état Xt, i.e.

Ut
] = πt

(
Xt

]
)
,

où πt est une stratégie, c’est à dire une fonction qui va de l’espace Xt des états à l’instant t
dans l’espace des contrôles Ut à l’instant t. Pour construire cette stratégie nous définissons



4 CHAPITRE 0. INTRODUCTION

la fonction valeur de Bellman, obtenue par récurrence arrière :

VT
(
xT
)

= K(xT ) ∀xT ∈ XT , (4a)

Vt
(
xt
)

= min
u∈Ut

E
[
Lt
(
xt, u,Wt+1

)
+ Vt+1 ◦ ft

(
xt, u,Wt+1

)]
∀xt ∈ Xt . (4b)

La fonction valeur Vt : Xt → R s’interprète comme le coût minimal du système en
partant d’un état xt ∈ Xt à l’instant t. Ainsi, l’équation de récurrence (4) s’interprète en
disant que le contrôle optimal à l’instant t est celui qui minimise, en moyenne, la somme
du coût instantané Lt

(
xt, u,Wt+1

)
et du coût futur Vt+1 ◦ ft

(
xt, u,Wt+1

)
. Une stratégie

optimale {πt}T−1
t=0 est alors donnée par

πt(xt) ∈ arg min
u∈Ut

E
[
Lt
(
xt, u,Wt+1

)
+ Vt+1 ◦ ft

(
xt, u,Wt+1

)]
.

La programmation dynamique est une méthode de décomposition en temps, puisque
l’on résout T problèmes à un pas de temps, au lieu d’un problème à T pas de temps. Ainsi la
complexité est linéaire en temps, et non plus exponentielle comme le serait une approche
gloutonne. En revanche elle nécessite le recours à une notion d’état, et la complexité
est exponentielle en la dimension de l’état. Ainsi la Programmation Dynamique ne sera
numériquement efficace que si la dimension de l’état n’est pas trop importante (en pratique
un état de dimension 4 ou 5 est à la limite de nos capacités de calcul).

Parfois le problème (1) ne satisfait pas l’hypothèse des bruits indépendants, mais on
peut se ramener à une forme avec bruits indépendants si on étend l’état. Par exemple, si
les bruits ont une dynamique d’ordre 1, à savoir

Wt+1 = f̃t
(
Wt, Ŵ t

)
, (5)

où {Ŵ t}
T−1
t=0 est une suite de variables aléatoires indépendantes. Le nouvel état

X̂ t =
(
Xt,Wt

)
, (6)

est appelé un état informationnel, et suit la dynamique

X̂ t+1 =
(
ft
(
Xt,Wt

)
, f̃t
(
Wt, Ŵ t

))
. (7)

Avec cet état étendu nous pouvons utiliser une approche par programmation dynamique.
Le problème (1) considère la somme sur les aléas (espérance) d’un somme temporelle

de coûts. Nous présentons dans la section suivante une extension du cadre d’application
de la Programmation Dynamique, et ses liens avec la propriété de consistance temporelle.

Cadre Général et Consistance Temporelle

Un problème d’optimisation dynamique stochastique (en temps discret) est un
problème de décision séquentielle sous incertitudes. Cela signifie, en reprenant les notations
du problème (1), que nous avons une suite de T+1 coûts aléatoires Ct = Lt

(
Xt,Ut,Wt+1

)
à “minimiser”. Pour pouvoir minimiser il faut pouvoir comparer des processus stochas-
tiques. Une méthode générique simple, consiste à agréger le processus de coûts en un réel,
parfois appelé l’équivalent certain du processus de coûts. La théorie des mesures de risque
dynamique s’intéresse aux opérateurs associant à un processus de coûts son équivalent cer-
tain. Une manière de faire consiste à aggréger en temps les différents coûts, pour obtenir
une variable aléatoire, puis à les aggréger en aléa pour obtenir un réel. Par exemple, dans
le problème (1), les coûts sont aggrégés en temps par la somme inter-temporelle, puis en
aléa par l’espérance. D’autres aggrégations sont possibles. Nous pouvons considérer un



5

agrégateur temporel global Φ : RT+1 → R, et un agrégateur G sur l’aléa global (qui prend
pour argument une variable aléatoire et est à valeur dans R). Le problème (1) s’écrit alors

min
X ,U

G
[
Φ
{
L0

(
X0,U0,W1

)
, . . . , LT−1

(
XT−1,UT−1,WT

)
,K(XT )

}]
(8a)

s.t. X0 = x0 (8b)

Xt+1 = ft
(
Xt,Ut,Wt+1

)
t = 0, . . . , T − 1, (8c)

θt
(
Xt,Ut

)
= 0 t = 0, . . . , T − 1, (8d)

Ut � Ft t = 0, . . . , T − 1. (8e)

Nous présentons au chapitre 2 des conditions, pour résoudre ce problème par Program-
mation Dynamique. Présentons rapidement ces conditions et leurs conséquences.
• L’agrégateur temporel global peut s’écrire

Φ
{
c0, · · · , cT

}
= Φ0

{
c0,Φ1

{
c1, · · ·ΦT−1

{
cT−1, cT

}}}
.

• L’agrégateur en aléa global peut s’écrire

G
[
J
(
w1, · · · , wT

)]
= G1

[
w1 7→ G2

[
· · ·wT 7→ GT

[
J
(
W1, · · · ,WT

)]]]
,

où chaque Gt est un opérateur prenant pour argument des fonctions de wt et pour
valeur des réels.
• Chaque agrégateur Gt en aléa sur un pas de temps (resp. temporel Ψt) est croissant

(resp. croissant en sa seconde variable).
• Les agrégateurs commutent, à savoir

Gt+1

[
Φt

{
·, ·
}]

= Φt

{
·,Gt+1

[
·
]}

.

En effet, sous ces hypothèses, nous montrons que le problème (8) peut se réécrire sous
forme imbriquée :

min
X ,U

G1

[
Φ0

{
L0

(
X0,U0,W1

)
,G2

[
Φ1

{
· · ·

GT−1

[
ΦT−1

{
LT−1

(
XT−1,UT−1,WT

)
,GT

[
K(XT )

]}]}]}]
(9a)

s.t. X0 = x0 (9b)

Xt+1 = ft
(
Xt,Ut,Wt+1

)
t = 0, . . . , T − 1, (9c)

θt
(
Xt,Ut

)
= 0 t = 0, . . . , T − 1, (9d)

Ut � Ft t = 0, . . . , T − 1. (9e)

On déduit naturellement de cette formulation imbriquée une suite de problèmes d’optimi-
sation, indicés par le temps et l’état initial.(
Pt
)
(x) min

X ,U
Gt

[
Φt

{
Lt
(
Xt,Ut,Wt+1

)
,Gt+1

[
Φt+1

{
· · ·

GT−1

[
ΦT−1

{
LT−1

(
XT−1,UT−1,WT

)
,GT

[
K(XT )

]}]}]}]
s.t. Xt = x

Xτ+1 = fτ
(
Xτ ,Uτ ,Wτ+1

)
τ = t, . . . , T − 1,

θτ
(
Xτ ,Uτ

)
= 0 τ = t, . . . , T − 1,

Uτ � Fτ τ = t, . . . , T − 1.



6 CHAPITRE 0. INTRODUCTION

On définit une fonction valeur Vt : Xt 7→ R qui donne en fonction de l’état initial la valeur
du problème

(
P
)
. Cette fonction est obtenue par une récurrence arrière, à savoir

VT
(
xT
)

= K(xT ) ∀xT ∈ XT , (10a)

Vt
(
xt
)

= min
u∈Ut

Gt

[
Φt

{
Lt
(
xt, u,Wt+1

)
, Vt+1 ◦ ft

(
xt, u,Wt+1

)}]
∀xt ∈ Xt . (10b)

On déduit des fonctions valeurs une stratégie optimale pour le problème (9) (et donc pour
le problème (8)) en selectionnant, à la date t, le controle u ∈ Ut réalisant le minimum
de (10b) (où xt désigne l’état courant).

Ainsi nous avons un cadre théorique général pour établir une équation de programma-
tion dynamique (equations du type de (10)). Nous avons au passage établi que la suite de
problème

{(
Pt
)}

était consistante (en temps). En effet nous avons construit une stratégie
optimale pour le problème P0(x0), et montré que cette stratégie était également opti-
male pour les problèmes Pt, avec t ≥ 1. Au chapitre 2, nous définissons précisément les
conditions évoqués plus haut, et démontrons les résultats annoncés. De plus nous nous
attardons sur les liens entre ces différents problèmes d’optimisation et les mesures de
risque dynamique. En particulier il existe dans cette littérature une notion de consistance
temporelle que nous relions à celle évoquée pour les suites de problèmes d’optimisation.

Stochastic Dual Dynamic Programming

Le chapitre 2 étend le cadre de la Programmation Dynamique, mais ne s’occupe pas des
difficultés numériques de mise en oeuvre, en particulier du problème de la malédiction de
la dimension. L’algorithme SDDP (Stochastic Dual Dynamic Programming), connu depuis
1991, exploite l’équation de programmation dynamique pour construire une approximation
polyèdrale des fonctions valeurs Vt. L’avantage numérique principal consistant à se ramener
à des problèmes que l’on sait résoudre de manière efficace (typiquement des problèmes
linéaires), et ainsi de pouvoir attaquer des problèmes de dimension plus grande que ce
que n’autorise une simple programmation dynamique. Présentons en quelques mots cet
algorithme.

On considère le problème (1), avec l’hypothèse que les bruits sont indépendants. On
note Vt la valeur de Bellman associée au problème, obtenue par l’équation (4). On suppose
que les fonctions de coût Lt et K soient convexes, et que les fonctions de dynamique ft
soient affines. Dans ce cas les valeurs de Bellman Vt sont convexes. On suppose que l’on

dispose, à l’itération k de l’algorithme, d’approximations des fonctions de Bellman V
(k)
t

qui vérifient V
(k)
t ≤ Vt. L’algorithme se déroule ensuite en deux temps :

• dans une phase avant on détermine une trajectoire de l’état à partir des approxima-
tions des fonctions valeurs,
• dans une phase arrière on améliore les approximations des fonctions valeurs au niveau

de cette trajectoire.

On tire au hasard une suite d’aléa
{
w

(k)
t

}T
t=1

. On en déduit une trajectoire
{
x

(k)
t

}T
t=0

du système obtenue à partir des approximations de la fonction valeur :

x
(k)
0 = 0 ,

u
(k)
t ∈ arg minE

[
Lt
(
x

(k)
t , u,Wt+1

)
+ V

(k)
t+1 ◦ ft

(
x

(k)
t , u,Wt+1

)]
,

x
(k)
t+1 = ft

(
x

(k)
t , u, w

(k)
t+1

)
.

Notons que si les approximations de la fonction de Bellman étaient exactes V
(k)
t = Vt,

alors la trajectoire obtenue est la trajectoire optimale du problème.



7

Maintenant que l’on dispose d’une trajectoire
{
x

(k)
t

}T
t=0

, on peut déterminer, pour
chaque instant t, une coupe de la fonction valeurs Vt. Plus précisément, en résolvant le
problème

min
u

E
[
Lt
(
x

(k)
t , u,Wt+1

)
+ V

(k)
t+1 ◦ ft

(
x

(k)
t , u,Wt+1

)]
,

on obtient, par méthode de dualité et en exploitant la convexité de la fonction Vt, une
fonction affine

θ
(k)
t +

〈
β

(k)
t , · − x(k)

t

〉
,

qui est en dessous de la fonction valeur Vt. On peut donc améliorer l’approximation de la
fonction Vt, en définissant

V
(k+1)
t (·) = max

{
V

(k)
t (·), θ(k)

t +
〈
β

(k)
t , · − x(k)

t

〉}
.

Nous montrons au chapitre 3 que cet algorithme converge dans le sens où les fonctions

valeurs approximées V
(k)
t convergent vers la fonction Vt aux points visités par une tra-

jectoire optimale du système. Le résultat du chapitre 3 étend les preuves jusqu’à présent
dans deux directions :

• jusqu’à maintenant les fonctions de coûts Lt et K étaient supposées linéaires, et nous
ne faisons qu’une hypothèse de convexité ;
• nous avons construit une classe d’algorithme assez large incluant les diverses vari-

antes de SDDP rencontrées dans la littérature.

Dualité en Optimisation Stochastique

La théorie de la dualité permet de transformer une contrainte en un coût. Cette ap-
proche sera utilisée pour construire une méthode de décomposition spatiale.

Dans un premier temps nous présentons le schéma de décomposition par les prix comme
motivation pour la seconde partie du manuscrit. Puis nous évoquons les difficultés à établir
des résultats de qualification des contraintes dans un espace Lp, p < +∞, requis par la
décomposition par les prix. Nous donnons ensuite des résultats de qualification pour l’es-
pace L∞. Finalement, nous adaptons l’algorithme d’Uzawa (qui requiert de tels résultats
de qualification) à l’espace L∞ en présentant des résultats de convergence.

Décomposition par les Prix

Nous présentons ici, sur un problème simple, la méthode de décomposition par les
prix. Cette méthode peut être intuitivement comprise ainsi. Considérons un problème de
production où un décideur dispose de N centrale de production (indicé par i), chacune
produisant θi(ui) pour le contrôle ui, et devant satisfaire une certaine demande. La de-
mande est incoporée dans l’une des fonctions de production de sorte que la contrainte
d’égalité offre-demande s’écrit

N∑
i=1

θi(ui) = 0 . (11)

Par ailleurs, choisir le contrôle ui coûte Li(ui), et l’objectif du décideur est de minimiser
la somme (sur i) des coûts.

La décomposition par les prix consiste à remplacer la contrainte (11) par un système de
prix. Pour obtenir un bon prix on suppose qu’un coordinateur propose un prix (par unité
produite) à toutes les centrales. Chacune annonce alors la quantité qu’elle produit, et le
coordinateur peut ajuster son prix. Plus précisément, à l’itération k, le coordinateur fixe un
prix p(k) = −λ(k) pour la production des centrales θi(ui). Chaque centrale maximise alors



8 CHAPITRE 0. INTRODUCTION

son profit, à savoir les gains obtenu p(k)θi(ui) par la production moins le coût local Li(ui),

et obtient une solution u
(k)
i . Puis le coordinateur compare la somme des productions avec

la demande. Si la demande n’est pas satisfaite le prix est augmenté, si la demande est
dépassée par la production, le prix est réduit, et l’on peut passer à l’étape k + 1 avec le
nouveau prix.

Mathématiquement parlant, considérons le problème suivant :

min
{ui}Ni=1

N∑
i=1

Li(ui) (12a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] , (12b)

N∑
i=1

θi(ui) = 0 . (12c)

Sous des conditions techniques, ce problème est équivalent à

min
{ui}Ni=1

max
λ∈R

N∑
i=1

Li(ui) + λ
( N∑
i=1

θi(ui)
)

(13a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] . (13b)

Si nous disposons d’une hypothèse de qualification des contraintes, nous pouvons échanger
les opérateurs min et max dans le problème (13), pour obtenir

max
λ∈R

min
{ui}Ni=1

N∑
i=1

Li(ui) + λθi(ui) (14a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] . (14b)

On remarque alors que le problème de minimisation intérieure, i.e. à λ fixé, consiste à
minimiser une somme de coûts locaux déterminés par des contrôles indépendants. Ainsi,
la somme des minimas est le minimum de la somme et le problème (14) devient

max
λ∈R

N∑
i=1

min
ui

Li(ui) + λθi(ui) (15a)

s.t. ui ∈ Uad
i . (15b)

Pour un multiplicateur λ = λ(k) donné, nous avons N problèmes de minimisation séparés,
qui sont les sous-problèmes de la méthode de décomposition. Ils s’écrivent comme suit.

min
ui

Li(ui) + λ(k)θi(ui) (16a)

s.t. ui ∈ Uad
i . (16b)

Ces problèmes sont mis à jour en ajustant le prix, par exemple avec

λ(k+1) = λ(k) + ρ
N∑
i=1

θi(u
(k)
i ) , (17)

où ρ > 0 est un pas donné et u
(k)
i une solution optimale du problème (16). Cette formule

de mise à jour fait partie de l’algorithme d’Uzawa, rappelé et étendu au chapitre 6.



9

Problèmes de Qualifications des Contraintes en Optimisation Stochas-
tique

Pour pouvoir remplacer une contrainte par un prix il faut utiliser la théorie de la
dualité, brièvement évoquée au chapitre 4. Cette théorie consiste à construire une famille
de problèmes perturbés à partir du problème d’origine, ce dernier n’étant plus qu’un cas
particulier (le cas où la perturbation est nulle). La fonction qui à une perturbation donnée
associe la valeur du problème perturbé est appelée fonction valeur. En utilisant des outils
d’analyse convexe on peut alors construire un problème dual du problème original, et
les propriétés de régularité (semi-continuité inférieure, sous-différentiabilité) permettent
d’établir des liens entre le problème initial et son dual. On note toutefois que le dual
dépend des perturbations choisies.

Les contraintes d’un problème d’optimisation seront dites qualifiées si elles peuvent être
remplacées par un prix, ou, en d’autres termes, si les valeurs du problème primal et dual
sont égales et que le problème dual admet une solution optimale. Une condition nécessaire
et suffisante, mais abstraite, pour cela est que la fonction valeur soit égale à sa bi-conjuguée
de Fenchel. Une condition suffisante courante est rappelée à la proposition 4.10.

Cette technologie mathématique met en lumière l’importance du choix des espaces
dans lequel on pose le problème d’optimisation, ainsi que de l’espace de perturbation
choisi pour construire le problème dual. Dans le cadre de l’optimisation stochastique,
pour utiliser des méthodes de gradient on est tenté de se placer dans un espace de Hilbert,
par exemple l’espace L2 des fonctions de carré intégrables. Nous exposons en §4.2 deux
exemples montrant les difficultés d’un tel choix. Dans le premier exemple, nous présentons
un problème simple, avec toutes les “bonnes propriétés” que l’on pourrait souhaiter à
première vue, dont cependant les contraintes ne sont pas qualifiées dans L2. Dans le second
exemple nous montrons que même lorsque les contraintes sont qualifiées, la condition
suffisante de qualification n’est pas vérifiée.

Existence de Multiplicateur dans L1

Le chapitre 4 montre qu’il est difficile d’avoir des contraintes presque sûres qualifiées
dans L2. Le chapitre 5 établit un résultat de qualification des contraintes presque sûres
dans L∞.

Dans ce chapitre nous montrons que, si la fonction coût J : L∞ → R ∪
{

+ ∞
}

est finie partout, alors des contraintes affines, presque sûres, d’égalité et les contraintes
de non-anticipativité admettent un multiplicateur L1. En d’autres termes il existe un
mécanisme de prix qui peut remplacer cette contrainte. Cependant, l’hypothèse de finitude
sur L∞ interdit la présence de contraintes de bornes presque sûres. Nous trouvons dans
la littérature (T. Rockafellar et R. Wets) des résultats de qualification de contraintes
d’inégalité sous une hypothèse de relatively complete recourse

Nous montrons également comment les hypothèses conduisant à la qualification des
contraintes s’appliquent sur un problème d’optimisation dynamique stochastique.

Algorithme d’Uzawa dans L∞
(
Ω,F ,P

)
Le chapitre 6 est consacré à l’extension de l’algorithme d’Uzawa (défini dans un espace

de Hilbert, par exemple L2 en optimisation stochastique) à l’espace de Banach non réflexif
L∞. En effet l’algorithme d’Uzawa peut être utilisé comme algorithme de coordination dans
une méthode de décomposition par les prix, mais requiert une hypothèse de qualification
des contraintes. Or le chapitre 4 a montré que la qualification des contraintes dans L2 est
difficile à vérifier, tandis que le chapitre 5 fournit des hypothèses de qualification dans L∞.

Il y a deux difficultés à passer de L2 à L∞. D’une part il faut donner du sens à
l’algorithme d’Uzawa, qui exploite l’identification d’un Hilbert avec son dual topologique



10 CHAPITRE 0. INTRODUCTION

dans sa phase de mise à jour. D’autre part, il faut adapter la preuve de convergence qui
repose sur des estimations classiques dans un espace Hilbertien.

Deux résultats principaux sont à retenir.

• Avec des hypothèses comparables au cas Hilbertien, plus exigeantes sur la continuité
des fonctions mises en jeu, mais se contentant de l’existence d’un multiplicateur L1,
nous montrons la convergence (au sens L∞) d’une sous-suite de la suite de controle
générée par l’algorithme d’Uzawa.
• Sous les mêmes hypothèses, mais avec l’existence d’un multiplicateur L2, nous ren-

forçons le résultat classique de convergence L2 en prouvant la convergence au sens
L∞ de la suite des contrôles donnée par l’algorithme d’Uzawa.

Finalement, nous montrons comment l’algorithme conduit naturellement à une
méthode de décomposition par les prix pour un problème d’optimisation dynamique
stochastique. Cependant le multiplicateur à manipuler est un processus stochastique et
non plus un vecteur d’un espace de dimension finie comme c’était le cas dans un cadre
déterministe. Ceci a deux défauts majeurs :

• d’une part le multiplicateur vit dans un espace gigantesque, et l’ajuster prendra un
grand nombre d’itérations ;
• d’autre part les sous-problèmes obtenus ne sont pas forcément beaucoup plus simples

à résoudre que le problème d’origine.

Ces points sont traités dans la troisième partie du manuscrit.

Décomposition Spatiale en Optimisation Stochastique

Nous montrons, au chapitre 6 qu’une méthode de décomposition par les prix directe-
ment appliquée à un problème d’optimisation stochastique dynamique fournit des sous-
problèmes difficiles à résoudre. Nous proposons donc d’approximer le problème d’orig-
ine pour pouvoir appliquer la décomposition par les prix et obtenir des sous-problèmes
numériquement solvables.

Épiconvergence de Problèmes relaxés

Le chapitre 7 s’intéresse à la relaxation de contraintes presque sûres en optimisation
stochastique. En effet, considérons le problème sous forme abstraite

(P) min
U∈Uad⊂U

J
(
U
)

s.t. Θ
(
U
)

= 0

On peut le relaxer, c’est à dire affaiblir les contraintes, ou encore élargir l’ensemble des
contrôles admissibles. La relaxation que l’on considère consiste à remplacer la contrainte
presque sûre

Θ
(
U
)

= 0 ,

par une contrainte en espérance conditionnelle

E
[
Θ
(
U
) ∣∣∣ B] = 0 .

Pour une tribu B = Fn on note
(
Pn
)

le problème relaxé.

Le résultat principal du chapitre 7 dit que si

• la fonction objectif J : U → R est continue,
• la fonction contrainte Θ : U → V est continue,
• la suite de tribu

{
Fn
}
n∈N converge vers la tribu globale du problème F ,



11

alors la suite de problème
{
Bn
}
n∈N épiconverge vers le problème original. En pratique cela

signifie que chacune des valeurs d’adhérence de la suite
{
Un
}
n∈N des contrôles optimaux

associés aux problèmes relaxés
(
Pn
)

est solution du problème d’origine.
Nous montrons aussi des exemples de fonctions J et Θ qui sont continues. En effet

ces fonctions allant d’un espace de variables aléatoires dans un autre espace de variable
aléatoire l’hypothèse de continuité est a priori assez abstraite. Nous montrons que la
topologie de la convergence en probabilité permet de modéliser un certain nombre de
contraintes comme une fonction Θ continue.

Algorithm DADP (Dual Approximate Dynamic Programming)

Le chapitre 8 est consacré à l’algorithme DADP (Dual Approximate Dynamic Program-
ming). Cet algorithme peut-être vu comme une méthode de décomposition par les prix sur
un certain type de relaxation du problème d’origine, de telle sorte que les sous-problèmes
soient solvables numériquement par programmation dynamique.

On considère le problème 1, où les contrôles et l’état s’écrivent comme une collection
de contrôles locaux (i.e. Ut =

{
U1
t , . . . ,U

N
t

}
et Xt =

{
X1
t , . . . ,X

N
t

}
) et les fonctions

de coûts et de contraintes presque sûres comme une somme de fonctions locales (i.e.
Lt
(
X ,U ,W

)
=
∑n

i=1 L
i
t

(
Xi,U i,W

)
et θt

(
X ,U ,W

)
=
∑n

i=1 θ
i
t

(
Xi,U i,W

)
). Dans

ce cas l’algorithme DADP consiste à relaxer la contrainte presque sûre 1d par

E
[ n∑
i=1

θit
(
Xi,U i,W

) ∣∣∣ Yt] = 0 ,

où Yt est un processus d’information vérifiant

Yt+1 = f̃t
(
Yt,Wt

)
.

Sur le problème approximé on peut alors écrire une décomposition par les prix en dualisant
la contrainte appoximée. Le gain par rapport à une décomposition par les prix standards
tient au fait que l’on peut se contenter de multiplicateur λ = (λ0, . . . ,λT−1) tel que λt soit
mesurable par rapport à Yt. Ainsi, d’une part l’espace des multiplicateurs est plus petit,
d’autre part les sous-problèmes peuvent se résoudre par programmation dynamique avec
l’état étendu

(
Xi
t ,Yt

)
à comparer à l’étatXt pour la résolution directe par programmation

dynamique du problème global.
Le chapitre 8 présente, étape par étape, l’algorithme DADP brièvement évoqué ci-

dessus. Nous donnons ensuite diverses interprétations de l’algorithme :
• méthode de décomposition par les prix d’un problème approximé,
• méthode d’approximation du multiplicateur pour une décomposition par les prix du

problème original,
• approche par règle de décision du problème dual.

Les résultats des chapitres 4 à 7 sont utilisés pour établir des conditions de convergence
de l’algorithme. Finalement une application numérique encourageante est présentée.

Conclusion

Le sujet des méthodes de décomposition-coordination en optimisation stochastique
reste très largement inexploré. Sans être exhaustif, citons quelques pistes de développement
possibles.
• A l’aide du cadre développé au chapitre 2, les liens entre la consistance temporelle

des mesures de risque dynamique et des suites de problèmes d’optimisation doivent
être précisés.



12 CHAPITRE 0. INTRODUCTION

• La convergence de l’algorithme SDDP, donnée au chapitre 3, s’appuie sur le fait que
les aléas prennent des valeurs discrètes. Il y a de nombreuses raisons de penser que
la preuve peut être étendue à des variables aléatoires continues, mais cela nécessite
de traiter des difficultés inhérentes au cadre infini-dimensionnel.
• Pour étendre les conditions d’existence de multiplicateur (obtenues au chapitre 5)

au cas de contraintes d’inégalité nous pensons qu’il faut adapter les résultats de la
littérature qui utilisent la notion de relatively complete recourse. Ceux-ci permettront
d’avoir un résultat de qualification en présence de bornes sur le contrôle.
• Le résultat de convergence que nous avons obtenu au chapitre 6 pour l’algorithme

d’Uzawa devrait pouvoir être amélioré pour obtenir la convergence de la suite des
contrôles (pour le moment nous avons simplement la convergence d’une sous-suite).
• Nous avons vu au chapitre 7 qu’une suite de relaxation d’un problème d’optimisa-

tion, où une contrainte presque-sûre est remplacée par une contrainte en espérance
conditionnelle, épiconverge vers le problème original lorsque l’information con-
verge. Cependant l’algorithme DADP ne cherche pas à faire converger l’informa-
tion vers l’information globale du problème. Ainsi, il faudrait compléter le résultat
d’épiconvergence pour obtenir des estimations d’erreurs liées à l’approximation faite
lorsque l’on utilise l’algorithme DADP.
• Sur un plan numérique il faut comparer les algorithmes DADP et SDDP (référence

actuelle) sur un problème de gestion d’une vallée hydraulique de grande taille. Dans
un second temps, l’algorithme SDDP pourrait être intégré à DADP comme outil de
résolution des sous-problèmes.
• Finalement notons que nous avons principalement étudié une approche de

décomposition par les prix. Il existe, en déterministe, d’autres méthodes de
décomposition à étendre au cadre stochastique.



Chapter 1

Preliminaries

If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.

John von Neumann

Contents

1.1 Framing Stochastic Optimization Problems . . . . . . . . . . . . 15

1.1.1 Framing of a Static Stochastic Optimization Problem . . . . . . 15

1.1.2 Multistage Stochastic Optimization Problem . . . . . . . . . . . 16

1.1.3 Discussion of complexity . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Decomposition Methods . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Duality and Parallel Decomposition . . . . . . . . . . . . . . . . 25

1.2.2 Spatial Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2.3 Scenario Decomposition . . . . . . . . . . . . . . . . . . . . . . . 28

1.2.4 Time Decomposition . . . . . . . . . . . . . . . . . . . . . . . . 31

1.2.5 Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3 A Dam Management Example . . . . . . . . . . . . . . . . . . . . 35

1.3.1 A Single Dam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

1.3.2 A Chain of Dams . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Before diving into the core of the manuscript, we develop the framing of multistage
stochastic optimization problems in §1.1, and we present a unified treatment of decomposi-
tion resolution methods in §1.2. Finally, we detail in §1.3 the setting of a dam management
problem, that serves as an illustrative thread running throughout the manuscript.

Introduction

We open this chapter with considerations on mathematical optimization and modelling.

What is Mathematical Optimization

In this manuscript, we consider optimization in the sense of minimizing 1 an objective
function 2 under constraints. This objective function can be a cost in an economic problem,
an energy in a physical problem, a likelihood in a statistical problem, etc. The objective

1. Some applications require to maximize a function (in economics, for instance), which is obviously
the same problem as minimizing the opposite function.

2. The community of multi-objective optimization considers multiple objectives at the same time —
see [66,106]



14 CHAPTER 1. PRELIMINARIES

function J maps a set U of controls 3 into R. Solving an optimization problem generally
means finding the set of minimizers of the objective function, or at least one minimizer u],
as well as the value of the minimum. The field of mathematical optimization is concerned
with finding:

• conditions of existence (and sometimes of uniqueness) of a local or global minimizer
of the objective function on a set of admissible controls;
• sufficient conditions of optimality;
• necessary conditions of optimality that reduce the set of controls to explore;
• algorithms yielding a sequence of controls converging to an optimal control;
• speed of convergence of such algorithms;
• bound on the error made when the algorithm is stopped;
• etc.

The general optimization problem we consider is written

min
u∈Uad⊂U

J(u) (1.1a)

s.t. Θ(u) ∈ −C , (1.1b)

where J is the objective function, Uad is a constraint set of a vector space U , C is the
constraint cone of a vector space V, Θ : U → V is the constraint function, and u ∈ U is a
control. A control u is said to be admissible if u ∈ Uad and Θ(u) ∈ −C. A control u] is
said to be optimal if we have J(u]) ≤ J(u), for any admissible control u.

Notice that we have distinguished to types of constraints: a set membership constraint
Θ(u) ∈ −C, and an abstract constraint u ∈ Uad. The set membership constraint is classi-
cally represented by several equality and inequality constraints, and, in this manuscript,
we will often treat it by duality, whereas the abstract constraint will be kept as such. Of
course, there is latitude in choosing to model a constraint as part of Θ(u) ∈ −C or as part
of u ∈ Uad, since Uad can accept any kind of constraint.

The Art of Modelling

In practice, a “real-life” optimization problem is not given in mathematical form, but
has to be casted and formulated as such. Crafting a model is a trade-off between, on the
one hand, realism and complexity, and, on the other hand, mathematical tractability.

In the special case of fashioning a multistage optimization problem, we distinguish
three elements to be identified:

• the control variables and their timing;
• the objective function (or criterion) J , that reflects multiple conflicting interests

quantified and weighted each against the other, while other objectives will be for-
mulated as constraints;
• the constraints that restrict control variables, and incorporate objectives outside the

criterion J .

In this manuscript, we shed special light on constraints and, in the perspective of
multistage stochastic optimization, we put forward three types of constraints.

Physical constraints. They result from physical laws, e.g. the maximum speed of a
vehicle, the maximum volume of a reservoir, the dynamical evolution of stocks, etc.

Information constraints. They state what is the information available when choosing
a control. In a stochastic setting, we will mostly represent them by measurability
constraints.

3. We use indifferently the terminology decision or control (though control is generally reserved to
trajectories of decisions).



1.1. FRAMING STOCHASTIC OPTIMIZATION PROBLEMS 15

Objectives as constraints. They represent other objectives than the criterion J . In
this sense, they are “soft constraints” reflecting preferences of the decision-maker
(like risk constraints).

Physical and information constraints have to be satisfied whatever the cost, as they derive
from physical laws. They are called “hard constraints” because we cannot “negotiate”
with them. By contrast, constraints that can be negotiated with, at the modelling level,
are called “soft constraints”. For instance, constraints representing objectives, e.g. risk
constraints, could be loosened by the decision-maker. Moreover, some physical constraints
could be loosened through complex mechanisms not represented in the mathematical prob-
lem (we could upgrade our engine to have a higher speed, or extend a reservoir to have
more capacity, etc.). For soft constraints, the multipliers (see the duality theory of Chap-
ter 4) give precious informations, as they can be interpreted as the marginal cost of
infinitesimally relaxing a constraint.

1.1 Framing Stochastic Optimization Problems

Before tackling resolution methods in §1.2, we focus on how to frame stochastic opti-
mization problems. We start with stochastic static optimization problems in §1.1.1, then
move to multistage stochastic optimization problems in §1.1.2.

1.1.1 Framing of a Static Stochastic Optimization Problem

In most problems, uncertainties abound. In stochastic optimization, these uncertainties
are modeled by random variables 4 or stochastic processes, together with their joint prob-
ability distributions. 5 Selecting possible classes of probabilities, reflecting in particular
dependencies between random variables, is a modelling issue. Specifying the parameters
of the law is a statistical problem that has also to be dealt with, although it is not a part
of the optimization problem itself.

With uncertainties, the cost itself becomes a random variable. As one cannot easily
rank two random variables (when is one random cost “better” than another?), one usually
averages out and aggregates the random cost to produce a single number. The most used
random aggregator is the mean, or mathematical expectation. In some cases (financial
problems), the expectation is taken with respect to another probability (namely the risk-
neutral probability) than the original one, or alternative random aggregators, representing
alternative risk preferences, can be used (see §2.2.2 for a presentation of risk measures).
In Chapter 2, we will consider a large spectrum of uncertainty aggregators.

The traditional stochastic optimization problem is formulated as

min
U∈Uad⊂U

E
[
J(U ,W )

]
(1.2a)

s.t. U � B (1.2b)

where
• (Ω,F ,P) is a probability space, and E is the mathematical expectation;
• U is the space of all random variables U : Ω→ U, where U is a measurable space;
• W : Ω → W is a random variable that represents exogenous noise, where W is a

measurable space;

4. We use random variable as a generic term that includes random vectors and stochastic processes.
Throughout this manuscript, we write random variables in bold. We consistently use the notation W for
the noises, i.e. the exogenous random variables.

5. In a connex area known as robust optimization (see [13, 15]), uncertainties are modeled as sets of
values that the uncertain parameters can take, and optimization is performed with respect to the worst
possible case.



16 CHAPTER 1. PRELIMINARIES

• J : U×W→ R is the objective function, defined on the product set of controls and
uncertainties;
• B ⊂ F is a sigma-algebra, and the notation U � B stands for “U is a random

variable measurable with respect to the sigma-algebra B”, namely

U � B ⇐⇒ σ(U ) ⊂ B , (1.3)

and captures measurability or information constraints; intuitively, the sigma-
algebra B represents the information available to the decision-maker when choosing
the control U ;
• Uad is a subset of U that represents all remaining constraints like set membership

constraints (say, inequality or equality constraints), risk constraints, etc.
We wish to highlight the specificities of stochastic optimization w.r.t. deterministic

optimization. In this perspective, we focus on the information constraints, and we lay
out different ways to represent them mathematically. Instead of the “algebraic formula-
tion” (1.3), we can use an almost-sure equality:

U − E
[
U
∣∣ B] = 0, P− a.s. (1.4)

When the sigma-algebra B is generated by a random variable X : Ω → X, that is,
when B = σ(X ), and when U is a separable complete metric space, a result due to
J. Doob (see [35, Chapter 1, p. 18]) states that U � X is equivalent to the existence of
a measurable function π : X → U such that U = π(X ). Thus, we obtain a “functional
formulation” of an information constraint:

U � σ(X ) ⇐⇒ ∃π : X→ U measurable, such that U = π(X ) . (1.5)

We distinguish two notions of solution, depending on the sigma-algebra B in (1.2b).

Open-Loop. An open-loop solution is U � {∅,Ω}, that is, a constant random variable.
Then, the random variable is represented by its unique value.

Closed-Loop. By contrast, a closed-loop solution may depend on the uncertainty:
U � B, where {∅,Ω} ( B ⊂ F .

1.1.2 Multistage Stochastic Optimization Problem

By contrast with static stochastic problems, a multistage stochastic problem introduces
stages — labeled with integers t = 0, . . . , T − 1, with horizon T ≥ 2 — and several
measurability constraints instead of only one in (1.2b). The general multistage stochastic
optimization problem reads

min
(U 0,...,UT−1

)∈Uad⊂U
E
[
J(U 0, · · · ,UT−1,W )

]
(1.6a)

s.t. Ut � Bt, ∀t ∈ [[0, T − 1]] , (1.6b)

where
• (Ω,F ,P) is a probability space, and E is the mathematical expectation;
• U is the space of all random variables (U 0, · · · ,UT−1) : Ω→ U0×· · ·×UT−1, where

all Ut are measurable spaces;
• W : Ω → W is a random variable that represents exogenous noise, where W is a

measurable space;
• J : U0 × · · · × UT−1 ×W→ R is the objective function;
• Bt ⊂ F is a sigma-algebra, for t ∈ [[0, T − 1]], and the condition Ut � Bt captures

measurability or information constraints at stage t;



1.1. FRAMING STOCHASTIC OPTIMIZATION PROBLEMS 17

• Uad is a subset of U that represents all remaining constraints, including ones that
connect different stages.

Now, we wish to highlight the specificities of multistage stochastic optimization w.r.t.
multistage deterministic optimization in a setting where information flows sequentially.
We distinguish two notions of solution, depending on the sigma-algebras B0, . . . ,BT−1.

Open-Loop. An open-loop solution is (U 0, . . . ,UT−1) such that Ut � {∅,Ω} for all
t ∈ [[0, T − 1]], that is, Ut is a constant random variable.

Closed-Loop. By contrast, a closed-loop solution may depend on the uncertainty when
{∅,Ω} ( Bt ⊂ F for at least one t ∈ [[0, T − 1]].

The case of information accumulation — also called perfect memory — is grasped with
the inclusions

B0 ⊂ · · · ⊂ BT−1 . (1.7)

Until now, we did not require that the exogenous noise W be a sequence{
W0, . . . ,WT−1

}
. But, when W is a random process, we can capture the property of

non-anticipativity by

∀t ∈ [[0, T − 1]], Bt ⊂ σ(W0, . . . ,Wt) . (1.8)

The formalism (1.6) covers the case where Bt ⊂ F does not depend on past controls
U 0, . . . ,Ut−1 (like Bt = σ(W0, . . . ,Wt)), and the case where Bt ⊂ F indeed depends on
past controls U 0, . . . ,Ut−1 (like Bt = σ(U 0, . . . ,Ut−1)).

The two most important multistage stochastic optimization theories can be distin-
guished according to how they handle the information constraints (1.6b):
• in the Stochastic Programming framework, the information is generally encoded in

a tree, and the sigma-algebra Bt corresponds to the set of nodes at stage t;
• in the Stochastic Optimal Control framework, the sigma-algebra Bt is σ(Xt) gener-

ated by an information state Xt, produced by a controlled dynamics.
Both theories incorporate a non-anticipativity property, as well as information accumula-
tion (under the Markovian setup in Stochastic Optimal Control). We now present Stochas-
tic Programming and Stochastic Optimal Control with a focus on the information con-
straints (1.6b).

Stochastic Programming (SP)

In Stochastic Programming, the probability space (Ω,F ,P) is called scenario space,
where scenarios stand for sequences of uncertainties. The sequential structure of informa-
tion arrival about uncertainty is represented either by a subset of a product space or by a
so-called scenario tree (see Figure 1.1).

For the sake of simplicity, in this manuscript we only consider Stochastic Programming
for finite scenario spaces. For a set of scenario Ω we suppose given
• a probability P on Ω;
• control sets U0, . . . , UT−1;
• an uncertainty set W and a mapping W : Ω→W that represents exogenous noises;
• an objective function J : U0 × · · · × UT−1 ×W→ R.

Stochastic Programming with Scenario Space In Stochastic Programming, the
finite probability space (Ω,F ,P) can be represented as a subset of a product space

Ω ⊂ Ω0 × · · · × ΩT−1 , (1.9a)

where the set Ωt supports the uncertainties at step t, so that a scenario is denoted by

ω = (ω0, . . . , ωT−1) = {ωs}T−1
s=0 . (1.9b)



18 CHAPTER 1. PRELIMINARIES

Noise

Control

State

0 2 31
t

Figure 1.1: A scenario tree

A possible solution is a family of controls ut(ω) ∈ Ut doubly indexed by step t and
uncertainty ω. The non-anticipativity constraint (Constraint (1.6b) where Bt = Ft) is
captured by the requirement that, for all t ∈ [[0, T − 1]],

∀(ω, ω′) ∈ Ω2, {ωs}ts=0 = {ω′s}ts=0 =⇒ ut(ω) = ut(ω
′) . (1.10)

The general stochastic programming problem reads

min
{{ut(ω)}ω∈Ω}T−1

t=0

∑
ω∈Ω

P
(
{ω}

)
J
(
{ut(ω)}T−1

t=0 ,W (ω)
)
.

s.t. constraint (1.10)

(1.11)

We develop in Table 1.1 the correspondence between the framing of Stochastic Pro-
gramming problems with scenario space and the abstract framing of §1.1.2.

Stochastic Programming with Scenario Tree The stochastic programming commu-
nity often presents problems on a scenario tree. We give a formal definition of a scenario
tree (for a finite Ω), and proceed to explain links between the representations.

Definition 1.1. Consider the sequence
{
Nt
}T−1

t=0
of partitions of the set Ω, such that

Nt+1 is a refinement of Nt (i.e. any element of Nt+1 is contained in an element of Nt).



1.1. FRAMING STOCHASTIC OPTIMIZATION PROBLEMS 19

Stochastic Programming Abstract
formulation formulation

States of Nature Ω ⊂ Ω0 × · · · × ΩT−1 Ω
finite set measurable space

Probability {P
(
{ω}

)
}ω∈Ω P

Solution {{ut(ω)}ω∈Ω}T−1
t=0 {Ut}

T−1
t=0

∀ω ∈ Ω, ∀t ∈ [[0, T − 1]], ∀t ∈ [[0, T − 1]],
{ωs}ts=0 = {ω′s}ts=0 ⇒ ut(ω) = ut(ω

′) Ut � Bt

Table 1.1: Correspondence between Stochastic Programming with scenario space framing
and abstract framing

A scenario forest is given by T =
({
Nt
}T−1

t=0
,P
)
. A scenario tree is a scenario forest where

N0 = {Ω}, and NT−1 =
{
{ω} | ω ∈ Ω

}
.

Hence, on a scenario tree, a scenario ω ∈ Ω is associated with a leaf of the tree
{ω} ∈ NT−1. A node of depth t of the tree T , is an element of Nt. A node n is said to
be an ascendant of a node m if m ⊂ n, we denote by a(m) the set of ascendant nodes of
m. Conversely, m is a descendant of n. For a node n ∈ Nt, we define its set of children
node r(n) as the nodes m ∈ Nt+1 that are descendant of n. The genealogy of a node is
the collection of all its ascendants.

We also define the functions nt : Ω → Nt satisfying ω ∈ nt(ω): its the function
mapping the event ω with its corresponding node at time t.

Note that, with this construction, from the probability P on Ω, we have the probability
of each nodes n ∈ T .

From a set of uncertainties Ω ⊂ Ω0×· · ·×ΩT−1, we can construct a tree in the following
way: a node nt ∈ Nt is given by (when non-empty)

nt(ω) :=
{
ω′ ∈ Ω | ∀s ∈ [[0, t]], {ωs}ts=0 = {ω′s}ts=0

}
6= ∅ ,

where {ωs}ts=0 is a sequence satisfying ωs ∈ Ωs. Conversely, we easily construct a product
set of uncertainties from a tree, and identify the tree with a subset (see Figure 1.4).

A possible solution is a family of controls indexed by the nodes of the tree{{
unt
}
nt∈Nt

}T−1

t=0
, where, for any time t, and any node nt ∈ Nt, unt ∈ Ut.

In this way, the information constraints (1.10) are automatically captured in the very
indexing of a possible solution by the nodes nt of the tree: at step t, a solution can only
depend on past uncertainties ω0, . . . , ωt.

The general stochastic programming problem reads

min
{un}n∈T

∑
ω∈Ω

P
({
ω
})
J
({
un
}
n∈a({ω}),W

(
ω
))

. (1.12)

A usual specific class of problems, additive in time, reads

min{
{unt}nt∈Nt

}
t=0

T−1∑
t=0

∑
n∈Nt

∑
m∈r(n)

P
(
m
)
Lt

(
Xn, Um,Wm

)
(1.13a)

s.t. Xm = ft
(
Xn, Um,Wm

)
, ∀m ∈ r(n), ∀n ∈ Nt, ∀t . (1.13b)



20 CHAPTER 1. PRELIMINARIES

In this formulation the variables {xn}n∈T is called a physical state.
We develop in Table 1.2 the correspondence between the framing of Stochastic Pro-

gramming problems with scenario tree and the abstract framing of §1.1.2.

Stochastic Programming Abstract
formulation formulation

States of Nature T / NT−1 Ω
tree (forest) / leaves measurable space

Information Nt Bt
nodes at time t sigma-algebra

Probability {P
({
n
})
}n∈NT−1

P

Solution
{
{un}n∈Nt

}T−1

t=0
{Ut}

T−1
t=0

Ut � Bt, ∀t ∈ [[0, T − 1]]

Table 1.2: Correspondence between Stochastic Programming with scenario tree framing
and abstract framing

Stochastic Optimal Control (SOC)

In Stochastic Optimal Control, the information constraints (1.6b) are materialized by
means of a so-called state. The framing comprises a Stochastic Dynamic System (SDS)
consisting of

• a sequence
{
Xt
}T

0
of sets of states;

• a sequence
{
Ut
}T−1

0
of sets of controls;

• a sequence
{
Wt

}T−1

0
of sets of uncertainties,;

• a sequence
{
ft
}T−1

0
of functions, where ft : Xt × Ut ×Wt → Xt+1, play the role of

dynamics at time t;
• a probability space (Ω,F ,P);
• exogenous noises {Wt}

T−1
t=0 , where each Wt takes values in Wt;

• an objective function J : X0 × · · · ×XT ×U0 × · · · ×UT−1 ×W0 × · · · ×WT−1 → R.
The sigma-algebras

∀t ∈ [[0, T − 1]], Ft = σ
(
W0, · · · ,Wt

)
, (1.14)

form the filtration F of past noises, and we naturally define F-adapted processes. For an
F-adapted sequence {Ut}

T−1
t=0 of controls — that is, random variables Ut with value in Ut,

and such that Ut � Ft — and an initial state x0 ∈ X0, we obtain a sequence {Xt}Tt=0 of
states as follows:

∀t ∈ [[0, T − 1]], Xt+1 = ft
(
Xt,Ut,Wt

)
.

We observe that, for any time t ∈ [[1, T ]], Xt is measurable w.r.t. Ft−1 ⊂ Ft by construc-
tion.



1.1. FRAMING STOCHASTIC OPTIMIZATION PROBLEMS 21

We denote
X = {Xt}

T
t=0, U = {Ut}

T−1
t=0 , W = {Wt}

T−1
t=0 . (1.15)

The general stochastic optimal control problem reads 6

min
X ,U

E
[
J(X ,U ,W )

]
(1.16a)

s.t. Xt+1 = ft
(
Xt,Ut,Wt

)
∀t ∈ [[0, T − 1]] , (1.16b)

Ut � Bt ∀t ∈ [[0, T − 1]] , (1.16c)

where Bt ⊂ Ft is a sigma-algebra, for t ∈ [[0, T − 1]], and the conditions Ut � Bt captures
measurability or information constraints at stage t.

Here again, we wish to highlight the specificities of multistage stochastic optimization
w.r.t. multistage deterministic optimization, in a setting where information flows sequen-
tially. Since Bt ⊂ Ft, the condition (1.16c) implies that the control Ut is chosen knowing
only the past noises W0, . . . ,Wt. This is the so-called nonanticipativity constraint: Ut is
measurable with respect to Ft.

We distinguish several classes of information structures, depending on Bt in the con-
dition (1.16c), hence several notions of solution.

Open-Loop. An open-loop solution is one where the condition (1.16c) reads Ut � {∅,Ω},
for all t ∈ [[0, T − 1]]. In other words, Bt = {∅,Ω}, for all t ∈ [[0, T − 1]].

Closed-Loop. A solution satisfying the condition (1.16c) is a closed loop solution as soon
as {∅,Ω} ( Bt ⊂ Ft for at least one t ∈ [[0, T − 1]]. The following subdivisions are
helpful in practice.
• In the Decision-Hazard setting, Bt = σ(Xt) in (1.16c) so that decisions Ut � Xt

are taken before knowing the uncertainty Wt at time t, and only according to the
current state Xt. By the Doob result (1.5), a solution can be expressed as a state
feedback Ut = πt(Xt), where πt : Xt → Ut.
• In the Hazard-Decision setting, Bt = σ(Xt,Wt) in (1.16c) so that decisions Ut �
σ(Xt,Wt) are taken after knowing the uncertainty at time t, according to the
current state Xt and the current uncertainty Wt. By the Doob result (1.5), a
solution can be expressed as Ut = πt(Xt,Wt), where πt : Xt ×Wt → Ut.
• The largest class of closed loop solutions is of course obtained when Bt = Ft

for all t ∈ [[0, T − 1]]. When the exogenous noises {Wt}
T−1
t=0 form a sequence of

independent random variables, it can be shown that there is no loss of optimality
in reducing the search to the class of Hazard-Decision feedback solutions, namely
Bt = σ(Xt,Wt). When the size of the state space Xt does not increase with t, and
neither does Wt, this property has major consequences for numerical applications.
• A smaller class of closed loop solutions is obtained when Bt = Ft−1 for all t ∈

[[0, T − 1]]. When the exogenous noises {Wt}
T−1
t=0 form a sequence of independent

random variables, it can be shown that there is no loss of optimality in reducing
the search to the class of state feedback solutions, namely Bt = σ(Xt). When
the size of the state space Xt does not increase with t, this property has major
consequences for numerical applications.

This general form (1.16) is not common, and one generally rather considers a time
additive expression for the cost function, namely,

min
π={πt}T−1

t=0

E
[ T−1∑
t=0

Lt
(
Xt,Ut,Wt

)
+K

(
XT

)]
(1.17a)

s.t. Xt+1 = ft
(
Xt,Ut,Wt

)
, ∀t ∈ [[0, T − 1]] , (1.17b)

Ut = πt(Xt), πt : Xt → Ut, ∀t ∈ [[0, T − 1]] , (1.17c)

6. In Chapter 2, we consider other aggregators in time and uncertainties.



22 CHAPTER 1. PRELIMINARIES

where

• Lt : Xt ×Ut ×Wt 7→ R is the instantaneous cost at step t, for all t ∈ [[0, T − 1]], and
K : XT → R is the final cost;
• the policies πt are measurable mappings, for all t ∈ [[0, T − 1]], and capture informa-

tion constraints;

Remark 1.2. We discuss the notion of state in §1.2.4. The quantity Xt is an information
state when the condition Ut � Bt in (1.16c) can be replaced by the condition Ut � Xt,
where Xt is Ft-measurable.

In Problem (1.17), the condition (1.17c) suggests that the state Xt is an information
state as the decision are taken in function of it; we say “suggests” because this relies on the
implicit assumption that there is no loss of optimality in reducing the search to the class of
state feedback solutions, instead of the largest class of adapted controls. In Problem (1.16),
Xt is simply the physical state (and might or might not be an information state, depending
on additional assumptions).

As just discussed, the form (1.17) is especially adapted to the case where the exogenous
noises {Wt}

T−1
t=0 form a sequence of independent random variables. We will come back to

that point when we address Dynamic Programming in §1.2.4.

Connection between SP and SOC

The SOC framing includes the SP one, at the expense of introducing a state like in
Table 1.3.

Stochastic Programming Stochastic Optimal Control
formulation formulation

States of Nature Ω ⊂ Ω0 × · · · × ΩT−1 Ω
finite set measurable space

Exogenous noise Wt = Ωt, Wt : Ω→ Ωt projection

Probability {P
(
{ω}

)
}ω∈Ω P

State X t = (x0,W ,U 0, . . . ,Ut−1)

Information Ft = σ
(
W0, · · · ,Wt

)
Dynamics ft(xt, ut, wt) = (xt, ut)

Table 1.3: Turning a Stochastic Programming framing into Stochastic Optimal Control
framing

Observe that the state X t at stage t is huge, as it includes all the exogenous noises W
and the past controls U 0, . . . ,Ut−1. Observe also the not common fact that the state X t
at stage t includes all the noises W =

{
W0, . . . ,WT−1

}
, be they past, present or future!

As a consequence, the state X t is not Ft-measurable, hence is not observable by the
decision-maker at stage t and cannot be the input of any implementable feedback. What
is more, the dimension of the state grows with the stages, as reflected in the dynamics that
just extends the vector xt by adding ut to the right: the state X t at stage t keeps track
of past controls U 0, . . . ,Ut−1 by accumulating them. This state is called the “maximal
state”, and it will again be discussed in §1.2.4. This is not an information state as it is not
totally observable (see Remark 1.2), whereas we will see that the conditional distribution
of the maximal state X t knowing Ft is. In practice, depending on the specificities of the
model, it may happen that smaller states can be displayed.



1.2. DECOMPOSITION METHODS 23

1.1.3 Discussion of complexity

We point out in what sense multistage stochastic optimization problems are complex,
and then quickly review different approaches to address their numerical resolution.

More precise and involved discussion on the complexity of multistage stochastic opti-
mization problems can be found in [111,112]. In particular the question of approximating
the underlying probability is discussed.

Multistage Stochastic Problems are Complex

To give a feeling of the complexity of a multistage stochastic optimization problem, we
assume that controls take their values in a finite set of cardinal nu. Therefore, there are

(nu)T |Ω|

possible solutions (not all of them are admissible).

To account for non-anticipativity and restrict solutions, we suppose that the sample
space Ω is a product of T copies with cardinal nw, so that |Ω| = (nw)T . Hence, the number
of possible solutions is

(nu)T (nw)T ,

and the number of non-anticipative ones is

(nu)
∑T−1
s=0 (nw)s = (nu)

(nw)T−1
nw−1 . (1.18)

This number is also the number of possible solutions when the set Ω is represented by the
leaves of a tree of depth T , each node having nw children, because then the number of

nodes is
∑T−1

s=0 n
s
w = (nw)T−1

nw−1 .

Discussing Resolution Methods to Address Complex Optimization Problems

Most “real life” optimization problems are too complex to be numerically solved di-
rectly. We briefly list some of the many ways found in the academic literature to tackle
complex optimization problems, pointing to well-known references, without aiming at ex-
haustivity.

Heuristic. We can look for heuristic solution, either by looking for the solutions in a
more limited class of solutions (approximate dynamic programming – see [19, 83]–
and machine learning –see [54]– are classical approaches), or by cunningly trying to
find a good solution through method like simulated annealing (see [60]), or genetic
algorithms (see [51]).

Specific problems. We can also make some approximation of the problem itself, and
make the most of some mathematical properties of the (approximated problem).
For example, one finds very efficient algorithms for linear programming problems
(see [33]), quadratic programming, semi-definite programming, conic programming,
(see [4, 14,119]) large classes of mixed integer linear programming (see [68]), etc.

Decomposition. Decomposition approaches (see [12, 30, 98]) consist in partitioning the
original optimization problem into several subproblems usually coordinated by a
master problem. We then solve each subproblem independently, and send the relevant
part of the solutions to the master problem. The master problem then adjusts the
subproblems, that are to be solved again, and so on. The numerical gain is contained
in the fact that, if the original problem is of size S, solving N problems of size S/N ,
even with iterations, might be much faster than solving the original problem.



24 CHAPTER 1. PRELIMINARIES

1.2 Resolution by Decomposition Methods in Multistage
Stochastic Optimization

We present, in an unified framework, the main approaches to decompose multistage
stochastic optimization problems for numerical resolution.

To fix ideas and simplify the exposition, we present a setting where all variables are
parametrized by discrete indexes. For this purpose, suppose given a finite horizon T
(so that time t ∈ [[0, T ]]), a finite probability space

(
Ω,F ,P

)
, endowed with a filtration

F = {Ft}T−1
0 , a finite number N of units (space). We consider the multistage stochastic

optimization problem

min
X ,U

∑
ω∈Ω

N∑
i=1

T−1∑
t=0

P
(
{ω}

)
Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
(1.19a)

s.t. X i
t+1(ω) = f it

(
X i

t(ω),U i
t(ω),Wt(ω)

)
∀t, ∀i, ∀ω (1.19b)

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0 ∀t, ∀ω (1.19c)

U i
t � Ft ∀t, ∀i , (1.19d)

where ω is a scenario of uncertainties given by ω =
{
ωt
}T−1

t=0
. The constraint (1.19b)

represents the dynamics of each subsystem, the constraint (1.19c) represents the coupling
constraint between the subsystems (also called units), and the constraint (1.19d) is the
non-anticipativity constraint. Constraints function θit are assumed to have image in Rnc .

As we have seen in §1.1.2 that the SOC framing includes the SP one, the above setting
applies both to SP and SOC problems.

In Problem (1.19), we have local costs — depending on step t, uncertainty ω and
unit i — and we minimize their sum over time, uncertainty and space. Without con-
straints (1.19b)-(1.19d), Problem (1.19) (illustrated in Figure 1.2a) consists in minimizing
a sum of independent costs. Hence, the minimum of the sum is the sum of the mini-
mums, and the problem is decomposed. However, the local costs are linked (illustrated in
Figure 1.2b)

• in time through the dynamic of the system (e.g. Equation (1.19b));
• in unit through the coupling constraints (e.g. Equation (1.19c));
• and in scenario (uncertainty) through the nonanticipativity constraint (e.g. Equa-

tion (1.19d)).

We now lay out different ways to divide the original complex problem into easier to solve
subproblems. We propose three angles to decompose the original problem: decomposition
in time (step), decomposition in scenario (uncertainty) and decomposition in space (unit),
as illustrated in Figure 1.3.

Moreover, we distinguish two types of decomposition.

• In chained decomposition, like Dynamic Programming (see [12, 17]), the original
problem is solved by means of successive smaller subproblems, solved one after the
other (in Dynamic Programming, each subproblem is solved only once). Chained
decomposition relies on a specific structure of the coupling constraint, like the flow
of time.
• In parallel decomposition, like Progressive Hedging (see [98,115]), the original prob-

lem is solved by means of parallel smaller subproblems, coordinated and updated
by a master algorithm. These subproblems can be obtained by dualizing the con-
straint, and have to be solved several times before obtaining an optimal solution to
the global problem.



1.2. DECOMPOSITION METHODS 25

unit

time

uncertainty

(a) Local costs

unit

time

uncertainty

(b) Local costs linked

Figure 1.2: Representation of the local costs depending on time, uncertainty (scenario)
and space (unit) and the links induced by the constraints

unit

time

uncertainty

(a) Time decomposition

unit

time

uncertainty

(b) Uncertainty decomposition

unit

time

uncertainty

(c) Space decomposition

Figure 1.3: Decomposition according to time, uncertainty (scenario) or space (unit). Each
plane carries a problem with coupling in only two dimensions.

1.2.1 Duality and Parallel Decomposition

Before presenting the different decompositions approaches, we now illustrate how the
duality theory (recalled in Chapter 4) leads to decomposition schemes. We present here,
in a simple setting, the most usual, known as price decomposition scheme. For clarity, the
units coupling functions θi in (1.19c) are assumed, here, to be real valued.

This price decomposition scheme can be intuitively understood as follows. We consider
a problem where a team of N units — each of them producing a quantity θi(ui) function
of the local control ui — has to meet a given demand. Each unit incurs a local cost Li(ui),
and the problem consists in minimizing the sum of the local costs. The decomposition
is obtained by replacing the “production equal demand” equality by a price mechanism.
To achieve a proper price, we suppose that a coordinator can impose costs to all units
iteratively. At iteration k, the coordinator sets a price p(k) = −λ(k) for the output of each
unit θi(ui). Each unit then minimizes the sum of its local production cost Li(ui) minus

the cash flow produced by the output p(k)θi(ui), and obtains a solution u
(k)
i . Then, the

coordinator collects the production of all units, makes the sum and compares the result
to the demand. If the total production is not enough, he increases the price of the output;
if the total production exceeds the demand, he decreases the price.



26 CHAPTER 1. PRELIMINARIES

More precisely, we consider the following problem:

min
{ui}Ni=1

N∑
i=1

Li(ui) (1.20a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] , (1.20b)

N∑
i=1

θi(ui) = 0 , (1.20c)

where the index i can represent unit, time, uncertainties or a mix. Under mild technical
conditions, this problem is equivalent to

min
{ui}Ni=1

max
λ∈R

N∑
i=1

Li(ui) + λ
( N∑
i=1

θi(ui)
)

(1.21a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] . (1.21b)

Under a proper constraint qualification condition, we can exchange the min operator with
the max operator and obtain

max
λ∈R

min
{ui}Ni=1

N∑
i=1

Li(ui) + λθi(ui) (1.22a)

s.t. ui ∈ Uad
i , ∀i ∈ [[1, N ]] . (1.22b)

Now, consider the inner minimization problem: the objective function is given as a sum of
local costs, each of them determined by local independent controls. Thus, the minimum
of the sum is the sum of the minima, and Problem (1.22) can be written as

max
λ∈R

N∑
i=1

min
ui

Li(ui) + λθi(ui) (1.23a)

s.t. ui ∈ Uad
i . (1.23b)

For a given λ = λ(k), we now obtain N separate minimization problems, that are the
subproblems of the decomposition method:

min
ui

Li(ui) + λ(k)θi(ui) (1.24a)

s.t. ui ∈ Uad
i . (1.24b)

These subproblems are updated as the multiplier λ(k) (or equivalently the price) is updated,
like with

λ(k+1) = λ(k) + ρ
N∑
i=1

θi(u
(k)
i ) , (1.25)

where ρ > 0 is a given parameter, and u
(k)
i an optimal solution of Problem (1.24). This

update formula for the multiplier is part of the equations of the Uzawa algorithm, recalled
and extended in Chapter 6.

Remark 1.3. This price decomposition scheme is the simplest and most well-known of
decomposition schemes, but not the only one. In short, the decomposition by quantity
approach consists in allocating to each subproblem a given quantity of the demand to
satisfy, and then update the allocation; the decomposition by prediction approach consists
in allocating to each subproblem a part of the constraint.

Notice that, even if the property of having a sum of costs over units seems to be fun-
damental for decomposition, the Auxiliary Problem Principle (see [30]) allows to extends
these decomposition schemes to general (non-additive) costs and constraint functions.



1.2. DECOMPOSITION METHODS 27

The second part of the manuscript (Chapters 4, 5 and 6) is dedicated to the duality
theory in stochastic optimization as a tool for parallel decomposition.

1.2.2 Spatial Decomposition

The spatial decomposition (by prices) relies on the idea of dualizing the coupling
constraint (1.19c). It will be developed in §6.3 and in Chapter 8.

We now apply to Problem (1.19) a price decomposition scheme, presented in §1.2.1, by
dualizing the spatial constraint (1.19c). Since there are T×|Ω| constraints of dimension nc,
the set of multipliers is of dimension T ×|Ω|×nc. Problem (1.19), with constraint (1.19c)
dualized, reads

min
X ,U

max
λ

∑
ω∈Ω

P
(
{ω}

) T−1∑
t=0

( N∑
i=1

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)

+ λt(ω) ·
N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

))
s.t. X i

t+1(ω) = f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
∀t, ∀i, ∀ω ,

U i
t � Ft, ∀t, ∀i .

Assuming constraint qualification, this problem is equivalent to

max
λ

N∑
i=1

min
X i,U i

∑
ω∈Ω

P
(
{ω}

) T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λt(ω) · θit

(
X i

t(ω),U i
t(ω)

)
s.t. X i

t+1(ω) = f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
∀t, ∀i, ∀ω ,

U i
t � Ft, ∀t, ∀i .

For a given multiplier λ(k), we obtain N parallel inner minimization problems

min
X i,U i

∑
ω∈Ω

P
(
{ω}

) T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λ

(k)
t (ω) · θit

(
X i

t(ω),U i
t(ω)

)
s.t. X i

t+1(ω) = f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
∀t, ∀ω

U i
t � Ft, ∀t .

We denote U
i,(k)
t and X

i,(k)
t an optimal solution. We update the multipliers with

∀t ∈ [[0, T−1]], ∀ω ∈ Ω, λ
(k+1)
t (ω) = λ

(k)
t (ω)+ρ

( N∑
i=1

θit

(
X

(k)
t (ω),U

(k)
t (ω)

))
, (1.26)

where ρ > 0 is a given parameter.

Remark 1.4. As discussed in §1.2.1, this price decomposition has an insightful interpre-
tation. The multiplier λt(ω) can be interpreted as the marginal cost of the output at time t
along scenario ω. It is worth noting that the prices form a stochastic process {λt}

T−1
t=0 , that

can be represented as an element of the huge space R(Tnc)|Ω|. We show in Remark 6.12
how we can only consider non-anticipative processes. The method presented in Chapter 8
consists precisely in restricting the space of multipliers λ over which the maximization is
done.



28 CHAPTER 1. PRELIMINARIES

1.2.3 Scenario Decomposition

The decomposition scenario by scenario consists in dualizing the non-anticipativity
constraint, and then solving subproblems for each scenario (using any of the tools available
for deterministic problems). The Progressive Hedging (PH) Algorithm stands as the state
of the art in this domain, but we also present the Stochastic Pontryaguin approach.

Progressive Hedging (PH)

We consider Problem (1.19) written on a tree T . We then have

min{
{unt}nt∈Nt

}
t=0

∑
n∈T

∑
m∈r(n)

N∑
i=1

P
(
{m}

)
Lit

(
X i

n,U
i
m,Wm

)
(1.27a)

s.t. X i
m = f it

(
X i

n,U
i
m,Wm

)
, ∀i, ∀m ∈ r(n), ∀n ∈ Nt, ∀t,

(1.27b)

N∑
i=1

θit
(
X i

n,U
i
m

)
= 0, ∀i, ∀m ∈ r(n), ∀n ∈ Nt, ∀t .

(1.27c)

Note that we have one decision un per node on the tree; this materializes the information
constraint (1.19d), the one that is dualized in the Progressive Hedging algorithm. For this
purpose, we introduce new control variables (see Figure 1.4), that is, a sequence {ut}T−1

t=0

of controls for each scenario ω (associated to a leaf of the tree), as in Problem (1.19). It
means that, with a given node n ∈ T , are associated |n| control variables, that is, one per
scenario going through this node. The non-anticipativity constraint (1.19d) is represented
by

∀i ∈ [[1, n]], ∀t ∈ [[0, T − 1]], ∀(ω, ω′) ∈ n2, U it (ω) = U it (ω
′) . (1.28)

We introduce Ūn the mean control on node n ∈ Nt, defined by

Ū in =

∑
ω∈n U

i
t

(
ω
)

|n|
. (1.29)

We denote by nt(ω) the node of depth t in which ω is contained. Hence, Equation (1.28)
can be rewritten as

∀t ∈ [[0, T − 1]], ∀ω ∈ Ω, U it (ω) = Ū int(ω) , (1.30)

and Problem (1.19) now reads

min
X ,U

∑
ω∈Ω

P
(
{ω}

) N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
(1.31a)

s.t. X i
t+1(ω) = f it

(
X i

t(ω),U i
t(ω),Wt(ω)

)
, ∀t, ∀i, ∀ω (1.31b)

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0, ∀t, ∀ω (1.31c)

U it (ω) = Ū int(ω) ∀t, ∀i, ∀ω . (1.31d)



1.2. DECOMPOSITION METHODS 29

t=0 t=1 t=2 t=3 t=T t=0 t=1 t=2 t=3 t=T

N scenarios Scenarios tree

Figure 1.4: From scenario tree to set of scenarios

We dualize Constraint (1.31d), and, under constraint qualification, obtain

max
λ

min
X ,U

∑
ω∈Ω

P
(
{ω}

) N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λit(ω)

(
U i
t (ω)− Ū int(ω)

)
s.t. X i

t+1(ω) = f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
, ∀t, ∀i, ∀ω

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0, ∀t, ∀ω ,

where Λ is of dimension |Ω| × N × nu × T . We now fix, for each node n ∈ T , a mean

control Ū
(k)
n . For each scenario ω ∈ Ω, and each stage t ∈ [[0, T − 1]], we fix a multiplier

λ
(k)
t (ω). The inner minimization of the above problem, for the given multipliers and mean

controls, can be done ω per ω, and reads

min
X (ω),U (ω)

N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
(1.32a)

+ λ
i,(k)
t (ω)

(
U it (ω)− Ū i,(k)

nt(ω)

)
(1.32b)

s.t. X i
t+1(ω) = f it

(
X i

t(ω),U i
t(ω),Wt(ω)

)
, ∀t, ∀i, ∀ω (1.32c)

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0, ∀t, ∀ω . (1.32d)

Remark 1.5. It is interesting to note that the non-anticipativity constraint, written in
the form of Equation (1.30), is equivalent to

∀i ∈ [[1, N ]], ∀t ∈ [[0, T − 1]], U i
t − E

[
U i
t

∣∣ Ft] = 0 . (1.33)



30 CHAPTER 1. PRELIMINARIES

The Progressive Hedging algorithm, schematically presented in Algorithm 1.1, is in
fact more elaborated, as it uses an augmented Lagrangian instead of a simple Lagrangian,
hence adding a quadratic term in the cost of the subproblems (1.32). We refer the reader
to [21,98] for more details.

Data: Initial multipliers
{
{λ(0)

t (ω)}T−1
t=0

}
ω∈Ω

and mean control
{
Ū

(0)
n

}
n∈T ;

Result: optimal feedback;
repeat

forall the scenario ω ∈ Ω do
Solves the deterministic minimization problem (1.32) for scenario ω with a
measurability penalization, and obtain optimal control U (k+1);

Update the mean controls

∀t ∈ [[0, T − 1]], ∀n ∈ Nt, ū(k+1)
n =

∑
ω∈nU

(k+1)
t (ω)

|n|
;

Update the measurability penalization with

∀ω ∈ Ω, ∀t ∈ [[0, T − 1]] λ
(k+1)
t (ω) = λ

(k)
t (ω) + ρ

(
Ut(ω)(k+1) − ū(k+1)

nt(ω)

)
;

until U i
t − E

[
U i
t

∣∣ Ft] = 0;

Algorithm 1.1: General Scheme of Progressive Hedging

Stochastic Pontryaguin

We present an extension to the stochastic framework of Pontryaguin method. More
details and numerical experiments can be found in [32].

Ignoring the “spatial” coupling constraint (1.19c), and dualizing 7 the dynamics con-
straints (1.19b), Problem (1.19) reads

min
{Ut�Ft}

T−1
t=0

{
min
X

max
λ∈Λ

∑
ω∈Ω

N∑
i=1

T−1∑
t=0

P
(
{ω}

)
Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λit+1(ω)

(
f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
−X i

t+1(ω)
)}

.

(1.34)

For a given control process U (k), we consider the inner min-max problem,

min
X

max
λ

∑
ω∈Ω

P
(
{ω}

) N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U
i,(k)
t (ω),Wt(ω)

)
+ λit+1(ω)

(
f it
(
X i

t(ω),U
i,(k)
t (ω),Wt(ω)

)
−X i

t+1(ω)
)
.

(1.35)

This problem can be solved ω per ω

min
X (ω)

max
λ(ω)

N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U
i,(k)
t (ω),Wt(ω)

)
+ λit+1(ω)

(
f it
(
X i

t(ω),U
i,(k)
t (ω),Wt(ω)

)
−X i

t+1(ω)
)
.

(1.36)

7. To be more specific multiplier λit corresponds to the constraint Xi
t − f it−1

(
Xi
t−1,U

i
t−1,Wt−1

)
.

However, we want to have local cost depending on state and control of time t, hence the appearance of
multipliers λit and λit+1 in Problem (1.34).



1.2. DECOMPOSITION METHODS 31

Assuming that we have the necessary regularity conditions (and since we assumed no
bound constraints on U and X ), we write the first order optimality conditions of this
inner min-max problem and deduce the optimal solutions X(k) and λ(k) by

X
(k)
0 = x0 , (1.37a)

X
(k)
t+1 = ft

(
X

(k)
t ,U

(k)
t ,Wt

)
t ∈ [[0, T − 1]] , (1.37b)

λT = 0 , (1.37c)

λt = ∇xft
(
X

(k)
t ,U

(k)
t ,Wt

)
λ

(k)
t+1 +∇xLt

(
X

(k)
t ,U

(k)
t ,Wt

)
t ∈ [[1, T − 1]] . (1.37d)

These conditions involve a co-state stochastic process λ which is not F-adapted since the
dynamics (1.37c)–(1.37d) propagate backwards and therefore λt is not Ft-measurable in
general.

Given a control trajectory (U
(k)
0 , . . . ,U

(k)
T−1), we can solve these equations by, first

integrating Equations (1.37a)-(1.37b) forward to obtain {X(k)
t }Tt=0, and then integrating

Equations (1.37c)-(1.37d) backward to obtain the multiplier process {λ(k)
t }Tt=1. Note that

these integrations are performed scenario per scenario, hence in parallel.
Denote by H the function mini-maximized in Problem (1.34), i.e.

H
(
X ,U ,λ

)
=
∑
ω∈Ω

P
(
{ω}

) N∑
i=1

T−1∑
t=0

Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
(1.38)

+ λit+1(ω)
(
f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
−X i

t+1(ω)
)
.

Define by J the function minimized in Problem (1.34), that is,

J(U ) = min
X

max
λ

H
(
X ,U ,λ

)
. (1.39)

The Danskin theorem (also known as the envelop theorem in Economics), states that,
under proper assumptions, the gradient of the function J at point U (k) is given by

∇J(U (k)) = ∇UH(X(k),U (k),λ(k)) . (1.40)

Hence, the gradient of J at U (k) is

∇J(U (k)) = ∇uLt
(
X

(k)
t ,U

(k)
t ,Wt

)
+∇uft

(
X

(k)
t ,U

(k)
t ,Wt

)
λ

(k)
t+1 . (1.41)

As the minimization is done over the F-adapted controls, a projected gradient step for the
minimization of J would be

U
(k+1)
t = U

(k)
t + ρE

[
∇uLt

(
X

(k)
t ,U

(k)
t ,Wt

)
+∇uft

(
X

(k)
t ,U

(k)
t ,Wt

)
λ

(k)
t+1

∣∣∣ Ft] . (1.42)

Equation (1.42) can be used as an update step of the control U
(k)
t for this decomposition

method.

1.2.4 Time Decomposition

Not all decompositions by duality lead to powerful formulations. For instance, we
present a (little used) parallel decomposition approach of time decomposition obtained by
dualization of the dynamic constraint.

On the other hand, as there is a natural flow in time, we can write a chained decom-
position method, the well-known Dynamic Programming approach.



32 CHAPTER 1. PRELIMINARIES

Dualizing the Dynamics Constraints

We apply to Problem (1.19) a price decomposition scheme, presented in §1.2.1, by
dualizing the dynamic constraint (1.19b).

Since there are N × T × |Ω| dynamics constraints, the set of multiplier is of dimension
T × |Ω| ×N × nX . Dualizing the dynamics constraints (1.19b), Problem (1.19) reads

min
X ,U

max
λ

∑
ω∈Ω

N∑
i=1

T−1∑
t=0

P
(
{ω}

)
Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λit(ω)X i

t(ω)− λit+1(ω)f it
(
X i

t(ω),U i
t(ω),Wt(ω)

)
,

s.t.
N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0, ∀t, ∀ω

U i
t � Ft ∀t, ∀i .

Assuming constraint qualification, and fixing a multiplier λ(k), we obtain T separate inner
minimization problems

min
X t,U t

∑
ω∈Ω

N∑
i=1

P
(
{ω}

)
Lit

(
X i

t(ω),U i
t(ω),Wt(ω)

)
+ λ

i,(k)
t (ω)X i

t(ω)− λi,(k)
t+1 (ω)f it

(
X i

t(ω),U i
t(ω),Wt(ω)

)
,

s.t.

N∑
i=1

θit
(
X i

t(ω),U i
t(ω)

)
= 0, ∀ω

U i
t � Ft ∀i .

We denote U
i,(k)
t and X

i,(k)
t an optimal solution. We update the multipliers with

λ
i,(k+1)
t+1 (ω) = λ

i,(k)
t+1 (ω) + ρ

(
X

i,(k)
t+1 (ω)− f it

(
X

i,(k)
t (ω),U

i,(k)
t (ω),Wt(ω)

))
.

This decomposition approach is probably one of the less used decomposition ap-
proaches.

Dynamic Programming (DP)

The Dynamic Programming method is a well-known decomposition in time (see [11]).
As it is usual, we present the Dynamic Programming in a Decision-Hazard setting. It
relies on the assumption that the exogenous noises {Wt}

T−1
0 form a sequence of inde-

pendent random variables. With this assumption, the original state X = (X 1, . . . ,XN ),
that follows (1.19b), is a so-called information state (see Remark 1.2). This state is the
argument of the value function Vt: Vt(x) is the best possible future cost starting from
time t in state x. The value functions satisfy the Dynamic Programming Equations: the
Vt are computed backwards, starting from VT and solving static optimization problems (see
Algorithm 1.2). The solutions of these static optimization problems provide an optimal
solution as a deterministic function of the current state (state feedback)

U ]
t = π]t

(
X ]

t

)
,

where π]t : Xt → Ut. Observe that the solution, supposed to satisfy the non-anticipativity
constraint (1.19d), satisfies what is a stronger constraint, namely Ut � Xt. This is an
important property of DP: when the exogenous noises {Wt}

T−1
t=0 form a sequence of inde-

pendent random variables, there is no loss of optimality in reducing the search to the class



1.2. DECOMPOSITION METHODS 33

of state feedback solutions, namely Bt = σ(Xt) instead of Bt = Ft. When the size of the
state space Xt does not increase with t, this property has major consequences for numer-
ical applications: whereas the space of Ft-measurable solutions increases (exponentially)
with t, the space of policies πt : Xt → Ut does not.

Data: Problem data (especially initial point x0 and final cost functions Ki);
Result: Bellman function Vt, Optimal feedback πt ;
VT (x) = 0 ;
for t = T − 1 to 0 do

foreach xt ∈ Xt do

Vt(xt) = min
u={ui}N1

E
[ N∑
i=1

Lit
(
xit, u

i,Wt

)
+ Vt+1

(
Xt+1

)]
s.t. Xi

t+1 = f it
(
xit, u

i,Wt

)
, ∀i

N∑
i=1

θit
(
xit, u

i
)

= 0

(1.43)

πt(xt) is a control u minimizing the above problem ;

Algorithm 1.2: Dynamic Programming Algorithm

The DP chained decomposition is possible because of a causality principle along the
time axis (this would not be possible for the uncertainty or for space, except under very
specific conditions).

Remark 1.6. Here, we make the major assumption that the size of the state space Xt does
not increase with t. We suppose that each component of the state takes a finite number nx
of values (hence the state takes at most

(
nx
)N

values). Solving (1.19) by DP requires to
explore

T
(
nx
)N
nu (1.44)

possible solutions. Comparing with (1.18), we see that DP makes better than brute force
whenever

log T +N log nx + log nu ≤
(nw)T − 1

nw − 1
log nu . (1.45)

Therefore, the DP algorithm outbeats brute force for a large enough number T of time
steps. Indeed, it is linear in time, whereas brute force is exponential in time. However,
the complexity of DP is exponential in the number N of subproblems or, in other words,
in the dimension of the state: this stands as the curse of dimensionality (see [12]).

Discussing DP and the Notion of State

When the exogenous noises {Wt}
T−1
t=0 form a sequence of independent random variables,

we can write a Dynamic Programming Equation (DPE) like (1.43) with state X . Now,
what happens if this assumption fails? We lay out a theoretical and a practical answer.

The theoretical answer follows [118]. We introduce the “maximal” state (already men-
tioned in Table 1.3)

X̂ t =
(
x0,W ,U0, . . . ,Ut−1

)
, (1.46)

which satisfies the trivial dynamic equation

X̂ t+1 =
(
X̂ t,Ut

)
. (1.47)



34 CHAPTER 1. PRELIMINARIES

Then, there exists a DPE, but with an even larger information state consisting of the
conditional distribution of X̂ t knowing Ft [118]. Of course, this state is only of theoretical
interest.

The practical answer has much to do with the “art of modelling”, a compromise be-
tween, on the one hand, realism and complexity, and, on the other hand, mathematical
tractability. Consider that you want to manage a dam, seen as an electricity storage, over
a period of time (see §1.3). The natural physical state is the level of water in the dam,
whereas the information state depends on the water inflows (rain, snow melting, etc.). To
account for (a weak form of) dependency, we can make the assumption that the inflows are
independent random variables, but that their distributions are not stationary, and depend
upon time t to reflect seasonal effects. In that case, the physical state is an information
state. To account for (a stronger form of) dependency, we can make the assumption that
the inflows follow a so-called “order 1 model” (e.g. an AR-1 model)

Wt+1 = f̃t
(
Wt, Ŵ t

)
, (1.48)

where {Ŵ t}
T−1
t=0 is a sequence of independent random variables. Here, an information

state is given by
X̂ t =

(
Xt,Wt

)
, (1.49)

with the dynamic

X̂ t+1 =
(
ft
(
Xt,Wt

)
, f̃t
(
Wt, Ŵ t

))
. (1.50)

Of course, more realism pushes for incorporating more delays — Wt+1 =

f̃t
(
Wt, . . . ,Wt−k, Ŵ t

)
— but at the price of increasing the dimension of the informa-

tion state, now being
(
Xt,Wt, . . . ,Wt−k

)
, hitting the wall of the curse of dimensionality.

If the problem is written on a tree, we can write DPE with the couple physical state
x and current node (identified with past noises). This is presented in §3.2.1.

Some approaches mix DP and a state of rather large dimension. For instance, Stochas-
tic Dual Dynamic Programming Algorithm (SDDP) makes assumption on the objective
function J (convexity) and on the dynamics functions ft (linearity). With these, the value
functions are shown to be convex, so that they can be approximated from below by the
class of suprema of finite sets of linear functions. Such a structural property is a mean to
partially overcome the curse of dimensionality of DP. In Chapter 3, we will present SDDP
as a DP approach where information is encoded in a tree and where value functions are
cleverly approximated. Instead of computing the value function for any possible value of
the state, the SDDP algorithm iteratively forges approximations of the value function that
are improved around the states visited by optimal trajectories.

1.2.5 Summary Table

In Table 1.4, we gather the decompositions listed above. It happens that all the decom-
position methods we looked at are parallel, except the Dynamic Programming approach
(SDDP being a DP like approach). Indeed, chained decomposition is intimately related
to the natural flow of stages. The parallel decompositions that we presented have been
deduced from a price decomposition scheme for different constraints. Proving their con-
vergence requires duality results, the main object of the second part of this manuscript
(Chapters 4, 5 and 6).

Interestingly, decompositions can be weaved together or mixed, opening the way for
a large variety of methods. For instance, we will present and dissect in Chapter 8 the
Dual Approximate Dynamic Programming method (DADP). With the distinctions we
established between decompositions, DADP can be seen as a spatial decomposition, where
subproblems can be solved by time decomposition. More precisely, DADP makes it possible



1.3. A DAM MANAGEMENT EXAMPLE 35

to solve subproblems by DP, rendering space and time decompositions compatible. In a
different setting, the contributions of Chapter 2 can be seen as conditions of compatibility
for time and uncertainty chained decompositions to yield a DPE.

Decomposition
Time Scenario Space

chained parallel parallel parallel

Dynamic Programming X
SDDP X
DADP X
Progressive Hedging X
Stochastic Pontryaguin X

Table 1.4: Decomposition Methods

1.3 A Dam Management Example

Here, we detail an example, taken from the energy world, that is used throughout this
manuscript as illustration.

Hydroelectricity is the main renewable energy in many countries (16% of global energy,
and 13% of France energy). It provides a clean (no greenhouse gases emissions), fast-usable
(under 30 seconds) and powerful (20 GW in China) energy that is cheap and substitutable
for the thermal one. It is all the more important to ensure its proper use that it comes from
a shared limited resource: the reservoirs water. This is the dam hydroelectric production
management purpose.

1.3.1 A Single Dam

Let time t vary in [[0, T ]]. We consider a probability space
(
Ω,F ,P

)
, and a sequence

{Wt}
T−1
t=0 of random variables with value in W. The random variable Wt represents the

random water inflow 8 in the dam at time t. The dam is modeled as a Stochastic Dynamic
System, as in §1.1.2, where the physical state Xt is the volume of water available at time t,
and the control Ut is the volume of water consumed at time t.

The consumed water at time t induces a cash flow 9 of −Lt
(
Xt,Ut,Wt

)
, and the

remaining water at the final time t is valued by −K(Xt). We aggregate the random cost
with the expectation, and do not take into account any discount factor. Thus, the problem
we are interested in is the following

min
X ,U

E
[ T−1∑
t=0

Lt
(
Xt,Ut,Wt

)
+K(XT )

]
(1.51a)

s.t Xt+1 = ft
(
Xt,Ut,Wt

)
∀t ∈ [[0, T − 1]] , (1.51b)

Ut � Ft ∀t ∈ [[0, T − 1]] , (1.51c)

Ut ∈ U
ad
t P− a.s., ∀t ∈ [[0, T − 1]] , (1.51d)

Xt ∈ X
ad
t P− a.s., ∀t ∈ [[0, T − 1]] . (1.51e)

8. More information, like the prices of electricity can be contained in the random variable Wt

9. As usual the problem being in fact a maximization of cash flow we rewrite it as the minimization of
the opposite of those cash-flows.



36 CHAPTER 1. PRELIMINARIES

Constraint (1.51b) is the physical constraint of evolution on the stock of water in the dam.
It is given by the physics of the dam, like

ft
(
x, u, w

)
= x− u+ w .

Constraint (1.51c) is the measurability constraint representing what the manager knows
when he decides the value of Ut. We distinguish two classical cases:
• the Hazard-Decision case, where Ft = σ

(
X0,W0, · · · ,Wt

)
, which means that the

manager knows the water input between t and t+1 when he decides the consumption
in the same period;
• the Decision - Hazard case, where Ft = σ

(
X0,W0, · · · ,Wt−1

)
, which means that

the manager knows only the past noises and consequently the present volume of
water in the dam.

Constraints (1.51d) and (1.51e) are bound constraints on the control and the state, rep-
resenting the physical limitations of the dam and turbine. Usually we have

Xad
t = [xt, xt] and Uad

t = [ut, ut] .

The local cost function Lt represents the (opposite of) the gain obtained by selling the
electricity produced by turbining a volume u of water. This gain depends on the market
price (included in Wt), the water turbined (the control Ut) and the level of water in the
dam (the state Xt): higher level means higher water pressure.

1.3.2 A Chain of Dams

Most times, dams are included in a hydraulic valley, so that dams interact with each
other: the water output of one dam is an input for another dam, etc. Hydraulic valley can
be quite complex see for example Figure 1.5. but, for the sake of simplicity, we present
a cascade of dams as in Figure 1.6. In this setting, the water consumed by dam i is seen
as an inflow of dam i + 1. In particular, we do not consider the cases where one dam
receives the outflow of two other dams, neither when the outflow of one dam can go in
two different destinations.

Let time t vary in [[0, T ]], and dams be labeled with i ∈ [[1, N ]]. We consider a probability
space

(
Ω,F ,P

)
, and the following real valued random variables:

• Xi
t , the storage level of dam i at the beginning of period [t, t+ 1[, (state)

• U i
t the hydro turbine outflows of dam i during [t, t+ 1[, (control)

• Zi
t the water inflows for dam i from dam i− 1 during [t, t+ 1[, (additional control)

• W i
t , the external inflows for dam i during [t, t+ 1[. (noise)

The additional control Zi
t is a useful notation and will be used in §8.1.5 to decompose the

system.
The dynamics of the reservoir storage level reads, for the first dam of the chain:

X1
t+1 = f1

t (X1
t ,U

1
t ,W

1
t , 0) ,

= X1
t −U

1
t +W 1

t .

For any other dam i > 1, we have

Xi
t+1 = f it (X

i
t ,U

i
t ,W

i
t ,Z

i
t) ,

= Xi
t −U

i
t +W i

t +Zi
t ,

(1.52)

where
Zi
t = Xi−1

t −U i−1
t +W i−1

t +Zi−1
t (1.53)

is the water inflows in dam i coming from dam i−1, it is also the total outflows of dam i−1.



1.3. A DAM MANAGEMENT EXAMPLE 37

Figure 1.5: Chains of dams in France

The bound constraints are

∀t ∈ [[0, T − 1]], xt+1 ≤Xt+1 ≤ xt+1 and ut ≤ Ut ≤ ut . (1.54)

Moreover, we assume the Hazard-Decision information structure (U i
t is chosen once

Wt is observed), so that

ui ≤ U i
t ≤ min

{
ui,Xi

t +W i
t +Zi

t − x
i
}
. (1.55)

We consider the multiple step management of a chain of dams, each dam producing
electricity that is sold at the same price. Thus, the hydroelectric valley obeys the following
valuing mechanism

N∑
i=1

T−1∑
t=0

Lit(X
i
t ,U

i
t ,Z

i
t ,W

i
t ) +Ki(XT ) , (1.56)

where Ki is a function valuing the remaining water at time t in the dam i. As this criterion
is random, we choose to minimize the expected cost, so that the stochastic optimization
problem we address reads

min
(X ,U ,Z )

E
[ N∑
i=1

( T−1∑
t=0

Lit
(
Xi
t ,U

i
t ,Z

i
t ,W

i
t

)
+Ki

(
Xi
T

))]
, (1.57a)

subject to:

Xi
t+1 = f it (X

i
t ,U

i
t ,Z

i
t ,W

i
t ), ∀i, ∀t , (1.57b)

Zi+1
t = git(X

i
t ,U

i
t ,Z

i
t ,W

i
t ), ∀i, ∀t , (1.57c)



38 CHAPTER 1. PRELIMINARIES

Figure 1.6: A chain of dams scheme

as well as measurability constraints:

U i
t � Ft, ∀i, ∀t . (1.57d)

Theoretically, this problem could be solved by methods like Dynamic Programming.
However, the dimension of the information state required is the number of dams. Thus,
the so-called curse of dimensionality prevents us to apply Dynamic Programming for more
than 5 dams.

In Chapter 3, we present an algorithm using approximations of value functions in
Dynamic Programming to solve this type of problem for a large number of dams. In
Chapter 8, we present a spatial decomposition method.

Conclusion

We conclude this preliminary chapter with a roadmap of the manuscript.

In the first part of this manuscript, Dynamic Programming: Risk and Convexity, we
focus on chained decomposition, and especially the well-known time decomposition that
constitutes Dynamic Programming. In Chapter 2, we extend the traditional additive in
time and risk neutral setting to more general ones, for which we establish time-consistency
results. We relate the time-consistency property for a sequence of optimization problems
with the time-consistency property of a dynamic risk measure. In Chapter 3, we prove a



1.3. A DAM MANAGEMENT EXAMPLE 39

convergence result for the Stochastic Dual Dynamic Programming Algorithm in the case
where (convex) cost functions are no longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization, we first point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing(

L∞,L1
)

in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa Al-

gorithm in L∞
(
Ω,F ,P;Rn

)
, that requires constraints qualification. This algorithm is used

to apply a price decomposition scheme to a multistage stochastic optimization problem.
The third part of this manuscript, Stochastic Spatial Decomposition Methods, is de-

voted to the so-called Dual Approximate Dynamic Programming Algorithm. In Chapter 7,
we prove that a sequence of relaxed optimization problems epiconverges to the original
one, where almost sure constraints are replaced by weaker conditional expectation ones,
and that the corresponding sigma-algebras converge. In Chapter 8, we give theoretical
foundations and interpretations for the Dual Approximate Dynamic Programming Algo-
rithm.



40 CHAPTER 1. PRELIMINARIES



Part I

Dynamic Programming:
Risk and Convexity

41





Chapter 2

Time-Consistency: from
Optimization to Risk Measures

In my next life I want to live my life backwards. You
wake up in an old people’s home feeling better every
day. You get kicked out for being too healthy. You
work for 40 years until you’re young enough to enjoy
your retirement. You party, drink alcohol, and are
generally promiscuous. then you become a kid, you
play. You have no responsibilities, you become a baby
until you are born. And then you spend your last 9
months floating in luxurious spa-like conditions with
central heating and room service on tap, larger quarters
every day and then Voila! You finish off as an orgasm!

Woody Allen (abbreviated)

Contents

2.1 Introductory Examples . . . . . . . . . . . . . . . . . . . . . . . . 46

2.1.1 Examples of DPEs in Intertemporal Optimization . . . . . . . . 46

2.1.2 Examples of Dynamic Risk Measures . . . . . . . . . . . . . . . . 49

2.2 Time-Consistency: Problem Statement . . . . . . . . . . . . . . 52

2.2.1 Ingredients for Intertemporal Optimization Problems . . . . . . . 52

2.2.2 Dynamic Uncertainty Criteria and Dynamic Risk Measures . . . 54

2.2.3 Definitions of Time-Consistency . . . . . . . . . . . . . . . . . . 58

2.3 Proving Joint Time-Consistency . . . . . . . . . . . . . . . . . . 59

2.3.1 Aggregators and their Composition . . . . . . . . . . . . . . . . . 60

2.3.2 Time-Consistency for Nested Dynamic Uncertainty Criteria . . . 64

2.3.3 Commutation of Aggregators . . . . . . . . . . . . . . . . . . . . 72

2.3.4 Time-Consistency for Non Nested Dynamic Uncertainty Criteria 75

2.3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2.3.6 Complements on TU-Commuting Aggregators . . . . . . . . . . . 84

2.4 Extension to Markov Aggregators . . . . . . . . . . . . . . . . . 86

2.4.1 Markov Time-Aggregators and their Composition . . . . . . . . . 86

2.4.2 Markov Uncertainty-Aggregators and their Composition . . . . . 86

2.4.3 Time-Consistency for Nested Dynamic Uncertainty Criteria . . . 87

2.4.4 Commutation of Markov Aggregators . . . . . . . . . . . . . . . 90

2.4.5 Time-Consistency for Non Nested Dynamic Uncertainty Criteria 91

2.4.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



44 CHAPTER 2. TIME-CONSISTENCY

This chapter present a general framework for the chained time decomposition known
as Dynamic Programming. Indeed, usually Dynamic Programming is applied to prob-
lems considering the expectation of an inter-temporal sum of costs. In [105] a risk-averse
dynamic programming theory was developed. Here, we extend the framework by giving
general conditions on the aggregator in time (replacing the intertemporal sum) and the
aggregator in uncertainties (replacing the expectation) to obtain a Dynamic Programming
Equation.

The content of this Chapter has been submitted as an article in a special issue of
European Journal of Operations Research, dedicated to Time Consistency. It is a common
work with M. De Lara.

Introduction

Stochastic optimal control is concerned with sequential decision-making under uncer-
tainty. The theory of dynamic risk measures gives values to stochastic processes (costs)
as time goes on and information accumulates. Both theories coin, under the same vocable
of time-consistency (or dynamic-consistency), two different notions. We discuss one after
the other.

In stochastic optimal control, we consider a dynamical process that can be influenced by
exogenous noises as well as decisions made at every time step. The decision maker wants to
optimize a criterion (for instance, minimize a net present value) over a given time horizon.
As time goes on and the system evolves, observations are made. Naturally, it is generally
more profitable for the decision maker to adapt his decisions to the observations on the
system. He is hence looking for policies (strategies, decision rules) rather than simple
decisions: a policy is a function that maps every possible history of the observations to
corresponding decisions.

The notion of “consistent course of action” (see [73]) is well-known in the field of
economics, with the seminal work of [113]: an individual having planned his consumption
trajectory is consistent if, reevaluating his plans later on, he does not deviate from the
originally chosen plan. This idea of consistency as “sticking to one’s plan” may be extended
to the uncertain case where plans are replaced by decision rules (“Do thus-and-thus if you
find yourself in this portion of state space with this amount of time left”, Richard Bellman
cited in [41]): [53] addresses “consistency” and “coherent dynamic choice”, [61] refers to
“temporal consistency”.

In this context, we loosely state the property of time-consistency in stochastic optimal
control as follows [26]. The decision maker formulates an optimization problem at time t0
that yields a sequence of optimal decision rules for t0 and for the following increasing time
steps t1, . . . , tN = T . Then, at the next time step t1, he formulates a new problem starting
at t1 that yields a new sequence of optimal decision rules from time steps t1 to T . Suppose
the process continues until time T is reached. The sequence of optimization problems
is said to be dynamically consistent if the optimal strategies obtained when solving the
original problem at time t0 remain optimal for all subsequent problems. In other words,
dynamic consistency means that strategies obtained by solving the problem at the very
first stage do not have to be questioned later on.

Now, we turn to dynamic risk measures. At time t0, you value, by means of a risk
measure ρt0,T , a stochastic process

{
At

}tN
t=t0

, that represents a stream of costs indexed by
the increasing time steps t0, t1, . . . , tN = T . Then, at the next time step t1, you value the
tail

{
At

}tN
t=t1

of the stochastic process knowing the information obtained and materialized
by a σ-field Ft1 . For this, you use a conditional risk measure ρt1,T with values in Ft1-



45

measurable random variables. Suppose the process continues until time T is reached. The
sequence

{
ρt,T

}tN
t=t0

of conditional risk measures is called a dynamic risk measure.

Dynamic or time-consistency has been introduced in the context of risk measures (see
[5,28,29,37,84] for definitions and properties of coherent and consistent dynamic risk mea-
sures). We loosely state the property of time-consistency for dynamic risk measures as fol-

lows. The dynamic risk measure
{
ρt,T

}tN
t=t0

is said to be time-consistent when the following

property holds. Suppose that two streams of costs,
{
A
t

}tN
t=t0

and
{
At

}tN
t=t0

, are such that

they coincide from time ti up to time tj > ti and that, from that last time tj , the tail stream{
A
t

}tN
t=tj

is valued more than
{
At

}tN
t=tj

(ρtj ,T (
{
A
t

}tN
t=tj

) ≥ ρtj ,T (
{
At

}tN
t=tj

)). Then, the

whole stream
{
A
t

}tN
t=ti

is valued more than
{
At

}tN
t=ti

(ρti,T (
{
A
t

}tN
t=ti

) ≥ ρti,T (
{
At

}tN
t=ti

)).

We observe that both notions of time-consistency look quite different: the latter is
consistency between successive evaluations of a stochastic processes by a dynamic risk
measure as information accumulates (a form of monotonicity); the former is consistency
between solutions to intertemporal stochastic optimization problems as information ac-
cumulates. We now stress the role of information accumulation in both notions of time-
consistency, because of its role in how the two notions can be connected. For dynamic risk
measures, the flow of information is materialized by a filtration

{
Ft
}tN
t=t1

. In stochastic
optimal control, an amount of information more modest than the past of exogenous noises
is often sufficient to make an optimal decision. In the seminal work of [12], the minimal
information necessary to make optimal decisions is captured in a state variable (see [117]
for a more formal definition). Moreover, the famous Bellman or Dynamic Programming
Equation (DPE) provides a theoretical way to find optimal strategies (see [18] for a broad
overview on Dynamic Programming (DP)).

Interestingly, time-consistency in stochastic optimal control and time-consistency for
dynamic risk measures meet in their use of DPEs. On the one hand, in stochastic optimal
control, it is well known that the existence of a DPE with state x for a sequence of op-
timization problems implies time-consistency when solutions are looked after as feedback
policies that are functions of the state x. On the other hand, proving time-consistency
for a dynamic risk measure appears rather easy when the corresponding conditional risk
measures can be expressed by a nested formulation that connects successive time steps.
In both contexts, such nested formulations are possible only for proper information struc-
tures. In stochastic optimal control, a sequence of optimization problems may be consis-
tent for some information structure while inconsistent for a different one (see [26]). For
dynamic risk measures, time-consistency appears to be strongly dependent on the un-
derlying information structure (filtration or scenario tree). Moreover, in both contexts,
nested formulations and the existence of a DPE are established under various forms of
decomposability of operators that display monotonicity and commutation properties.

Our objective is to provide a theoretical framework that offers i) basic ingredients
to jointly define dynamic risk measures and corresponding intertemporal stochastic opti-
mization problems ii) common sets of assumptions that lead to time-consistency for both.
Our theoretical framework highlights the role of time and risk preferences, materialized in
one-step aggregators, in time-consistency. Depending on how you move from one-step time
and risk preferences to intertemporal time and risk preferences, and depending on their
compatibility (commutation), you will or will not observe time-consistency. We also shed
light on the relevance of information structure by giving an explicit role to a dynamical
system with state X .

In §2.1, we present examples of intertemporal optimization problems displaying a DPE,
and of dynamic risk measures (time-consistent or not, nested or not). In §2.2, we introduce



46 CHAPTER 2. TIME-CONSISTENCY

the basic material to formulate intertemporal optimization problems, in the course of which
we define “cousins” of dynamic risk measures, namely dynamic uncertainty criteria; we end
with definitions of time-consistency, on the one hand, for dynamic risk measures and, in
the other hand, for intertemporal stochastic optimization problems. In §2.3, we introduce
the notions of time and uncertainty-aggregators, define their composition, and show four
ways to craft a dynamic uncertainty criterion from one-step aggregators; then, we provide
general sufficient conditions for the existence of a DPE and for time-consistency, both for
dynamic risk measures and for intertemporal stochastic optimization problems; we end
with applications. In §2.4, we extend constructions and results to Markov aggregators.

2.1 Introductory Examples

The traditional framework for DP consists in minimizing the expectation of the in-
tertemporal sum of costs as in Problem (2.3). As we see it, the intertemporal sum is an
aggregation over time, and the mathematical expectation is an aggregation over uncer-
tainties. We claim that other forms of aggregation lead to a DPE with the same state
but, before developing this point in §2.3, we lay out in §2.1.1 three settings (more or less
familiar) in which a DPE holds. We do the same job for dynamic risk measures in §2.1.2
with time-consistency.

To alleviate notations, for any sequence
{
Hs

}
s=t1,...,t2

of sets, we denote by
[
Hs

]t2
t1

, or
by H[t1:t2], the Cartesian product

H[t1:t2] =
[
Hs

]t2
t1

=
[
Hs

]t2
s=t1

= Ht1 × · · · ×Ht2 , (2.1a)

and a generic element by

h[t1:t2] =
{
ht
}t2
t1

=
{
ht
}t2
t=t1

= (ht1 , . . . , ht2) . (2.1b)

In the same vein, we also use the following notation for any sequence

H[t1:t2] =
{
Hs

}t2
t1

=
{
Hs

}t2
s=t1

=
{
Hs

}
s=t1,...,t2

. (2.1c)

In this chapter, we denote by R̄ the set R ∪ {+∞}.

2.1.1 Examples of DPEs in Intertemporal Optimization

Anticipating on material to be presented in §2.2.1, we consider a dynamical system
influenced by exogenous uncertainties and by decisions made at discrete time steps t = 0,
t = 1, . . . , t = T − 1, where T is a positive integer. For any t ∈ [[0, T ]], where [[a, b]]
denote the set of integers between a and b, we suppose given a state set Xt, and for
any t ∈ [[0, T − 1]] a control set Ut, an uncertainty set Wt and a mapping ft that maps
Xt × Ut ×Wt into Xt+1. We consider the control stochastic dynamical system

∀t ∈ [[0, T − 1]], Xt+1 = ft(Xt, Ut,Wt) . (2.2)

We call policy a sequence π = (πt)t∈[[0,T−1]] of mappings where, for all t ∈ [[0, T − 1]], πt
maps Xt into Ut. We denote by Π the set of all policies. More generally, for all t ∈ [[0, T ]],
we call (tail) policy a sequence π = (πs)s∈[[t,T−1]] and we denote by Πt the set of all such
policies.

Let
{
Wt

}T
t=0

be a sequence of independent random variables (noises). Let
{
Jt
}T−1

0
be a sequence of cost functions Jt : Xt × Ut ×Wt 7→ R, and a final cost function JT :
XT ×WT → R.



2.1. INTRODUCTORY EXAMPLES 47

With classic notations, and assuming all proper measurability and integrability condi-
tions, we consider the dynamic optimization problem

min
π∈Π

E
[ T−1∑
t=0

Jt(Xt,Ut,Wt) + JT (XT ,WT )

]
, (2.3a)

s.t. Xt+1 = ft(Xt,Ut,Wt), ∀t ∈ [[0, T − 1]] , (2.3b)

Ut = πt(Xt), ∀t ∈ [[0, T − 1]] . (2.3c)

It is well-known that a DPE with state X can be associated with this problem. The
main ingredients for establishing the DPE are the following: the intertemporal criterion
is time-separable and additive, the expectation is a composition of expectations over the

marginals law (because the random variables
{
Wt

}T
t=0

are independent), and the sum
and the expectation operators are commuting. Our main concern is to extend these
properties to other “aggregators” than the intertemporal sum

∑T−1
t=0 and the mathematical

expectation E, and to obtain DPEs with state X , thus retrieving time-consistency.
In this example, we aggregate the streams of cost first with respect to time (through

the sum over the stages), and then with respect to uncertainties (through the expectation).
This formulation is called TU for “time then uncertainty”. All the examples of this §2.1.1
follow this template.

We do not present proofs of the DPEs exposed here as they fit into the framework
developed later in §2.3.

Expected and Worst Case with Additive Costs

We present together two settings in which a DPE holds true. They share the same time-
aggregator — time-separable and additive — but with distinct uncertainty-aggregators,
namely the mathematical expectation operator and the so-called “fear” operator.

Expectation Operator Consider, for any t ∈ [[0, T ]], a probability Pt on the uncertainty
space Wt (equipped with a proper σ-algebra), and the product probability P = P0⊗· · ·⊗PT .
In other formulations of stochastic optimization problems, the probabilities Pt are the
image distributions of independent random variables with value in Wt. However, we
prefer to ground the problems with probabilities on the uncertainty spaces rather than
with random variables, as this approach will more easily easily extend to other contexts
without stochasticity.

The so-called value function Vt, whose argument is the state x, is the optimal cost-to-go
defined by

Vt(x) = min
π∈Πt

E
[ T−1∑
s=t

Js(Xs,Us,Ws) + JT (XT ,WT )

]
, (2.4a)

s.t. Xt = x , (2.4b)

Xs+1 = ft(Xs,Us,Ws), ∀s ∈ [[t, T − 1]] , (2.4c)

Us = πs(Xs) . (2.4d)

The DPE associated with problem (2.3) is VT (x) = EPT

[
JT (x,WT )

]
,

Vt(x) = minu∈Ut EPt

[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
,

(2.5)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].



48 CHAPTER 2. TIME-CONSISTENCY

It is well-known that, if there exists a policy π] (with proper measurability assumptions
that we do not discuss here [see [20]]) such that, for each t ∈ [[0, T − 1]], and each x ∈ Xt,
we have

π]t(x) ∈ arg min
u∈Ut

E
[
Jt(x, u,Wt) + Vt+1 ◦ ft(x, u,Wt)

]
, (2.6)

then π] is an optimal policy for Problem (2.3).

Time-consistency of the sequence of Problems (2.4), when t runs from 0 to T , is ensured
by this very DPE, when solutions are looked after as policies over the state x. We insist
that the property of time-consistency may or may not hold depending on the nature of
available information at each time step. Here, our assumption is that the state xt is
available for decision-making at each time t. 1

Remark 2.1. To go on with information issues, we can notice that the so-called “non-
anticipativity constraints”, typical of stochastic optimization, are contained in our defini-
tion of policies. Indeed, we considered policies are function of the state, which a summary
of the past, hence cannot anticipate the future. Why can we take the state as a proper
summary? If, in Problem (2.3), we had considered policies as functions of past uncer-
tainties (non-anticipativity) and had assumed that the uncertainties are independent, it is
well-known that we could have restricted our search to optimal Markovian policies, that
is, only functions of the state. This is why, we consider policies only as functions of the
state.

Fear Operator In [16], Pierre Bernhard coined fear operator the worst-case operator,
widely considered in the field of robust optimization (see [67] and [15]).

We consider the optimization problem

min
π∈Π

sup
w∈W[0:T ]

[ T−1∑
t=0

Jt(xt, ut, wt) + JT (xT , wT )

]
, (2.7a)

s.t. xt+1 = ft(xt, ut, wt), (2.7b)

ut = πt(xt). (2.7c)

Contrarily to previous examples we do not use bold letters for state x, control u and
uncertainty w as these variables are not random variables. In [17, Section 1.6], it is shown
that the value function

Vt(x) = min
π∈Πt

sup
w∈W[t:T ]

[ T−1∑
s=t

Js(xs, us, ws) + JT (xT , wT )

]
, (2.8a)

s.t. xt = x , (2.8b)

xs+1 = fs(xs, us, ws) , (2.8c)

us = πs(xs) . (2.8d)

satisfies the DPE
VT (x) = sup

wT∈WT

JT (x,wT ) ,

Vt(x) = min
u∈Ut

sup
wt∈Wt

[
Jt(x, u, wt) + Vt+1 ◦ ft(x, u, wt)

]
,

(2.9)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].

1. In the literature on risk measures, information is rather described by filtrations than by variables.



2.1. INTRODUCTORY EXAMPLES 49

Expectation with Multiplicative Costs

An expected multiplicative cost appears in a financial context if we consider a final
payoff K(XT+1) depending on the final state of our system, but discounted at rate rt(Xt).
In this case, the problem of maximizing the discounted expected product reads

max
π∈Π

E
[ T−1∏
t=1

( 1

1 + rt(Xt)

)
K(XT )

]
.

We present another interesting setting where multiplicative cost appears. In control
problems, we thrive to find controls such that the state xt satisfies constraints of the type
xt ∈ Xt ⊂ Xt for all t ∈ [[0, T ]]. In a deterministic setting, the problem has either no solution
(there is no policy such that, for all t ∈ [[0, T ]], xt ∈ Xt) or has a solution depending on the
starting point x0. However, in a stochastic setting, satisfying the constraint xt ∈ Xt, for all
time t ∈ [[0, T ]] and P−almost surely, can lead to problems without solution. For example,
if we add to a controled dynamic a nondegenerate Gaussian random variable, then the
resulting state can be anywhere in the state space, and thus a constraint Xt ∈ Xt ⊂ Xt
where Xt is, say, a bounded set, cannot be satisfied almost surely.

For such a control problem, we propose alternatively to maximize the probability of
satisfying the constraint (see [40], where this is approach is called stochastic viability):

max
π∈Π

P
({
∀t ∈ [[0, T ]], Xt ∈ Xt

})
, (2.10a)

s.t Xt+1 = ft
(
Xt,Ut,Wt

)
, (2.10b)

Ut = π(Xt) . (2.10c)

This problem can be written

max
π∈Π

E
[ T∏
t=0

1{Xt∈Xt}

]
, (2.11a)

s.t Xt+1 = ft
(
Xt,Ut,Wt

)
, (2.11b)

Ut = π(Xt) . (2.11c)

It is shown in [34] that, assuming that noises are independent (i.e the probability P can
be written as a product P = P0 ⊗ · · · ⊗ PT ), the associated DPE is VT (x) = E

[
1{x∈XT }

]
,

Vt(x) = maxu∈Ut E
[
1{x∈Xt} · Vt+1 ◦ ft(x, u,Wt)

]
,

(2.12)

for all state x ∈ Xt and all time t ∈ [[0, T − 1]].

If there exists a measurable policy π] such that, for all t ∈ [[0, T − 1]] and all x ∈ Xt,

π]t(x) ∈ arg max
u∈Ut

E
[
1{x∈Xt} · Vt+1 ◦ ft(x, u,Wt)

]
, (2.13)

then π] is optimal for Problem (2.10).

2.1.2 Examples of Dynamic Risk Measures

Consider a probability space
(
Ω,F,P

)
, and a filtration F = {Ft}T0 . The expression

{As}T0 denotes an arbitrary, F-adapted, real-valued, stochastic process.



50 CHAPTER 2. TIME-CONSISTENCY

Anticipating on recalls in §2.2.2, we call conditional risk measure a function ρt,T that
maps tail sequences {As}Tt , where each As is Fs measurable, into the set of Ft measur-
able random variables. A dynamic risk measure is a sequence {ρt,T }T0 of conditional risk
measures.

A dynamic risk measure {ρt,T }Tt=0, is said to be time-consistent if, for any couples of
times 0 ≤ t < t ≤ T , the following property holds true. If two adapted stochastic processes
{A

s
}T0 and {As}

T
0 satisfy

A
s

=As, ∀s ∈ [[t, t− 1]] , (2.14a)

ρt,T
(
{A

s
}Tt
)
≤ρt,T

(
{As}

T
t

)
, (2.14b)

then we have:

ρt,T
(
{A

s
}Tt
)
≤ ρt,T

(
{As}

T
t

)
. (2.14c)

We now lay out examples of dynamic risk measure.

Expectation and Sum

Unconditional Expectation The first classical example, related to the optimization
Problem (2.3), consists in the dynamic risk measure {ρt,T }Tt=0 given by

∀t ∈ [[0, T ]], ρt,T
(
{As}

T
t

)
= E

[ T∑
s=t

As

]
. (2.15)

We write (2.15) under three forms — denoted by TU, UT, NTU, and discussed later
in §2.3.1:

ρt,T
(
{As}

T
t

)
= E

[ T∑
s=t

As

]
(TU)

=

T∑
s=t

E
[
As

]
(UT )

= E

[
At + E

[
At+1 + · · ·+ E

[
AT−1 + E

[
AT

]]
· · ·
]]

(NTU)

To illustrate the notion, we show that the dynamic risk measure {ρt,T }Tt=0 is time-
consistent. Indeed, if two adapted stochastic processes A and B satisfy (2.14a) and

(2.14b), with t = t < t ≤ T , we conclude that

ρt,T
(
{A

s
}Tt
)

=E
[ t−1∑
s=t

A
s

+ ρt,T
(
{A

s
}Tt
)]

≤E
[ t−1∑
s=t

As + ρt,T
(
{As}

T
t

)]
= ρt,T

(
{As}

T
t

)
.

Conditional Expectation Now, we consider a “conditional variation” of (2.15) by
defining

ρt,T
(
{As}

T
t

)
= E

[ T∑
s=t

As

∣∣∣ Ft] . (2.16)



2.1. INTRODUCTORY EXAMPLES 51

We write 2 the induced dynamic risk measure {ρt,T }Tt=0 under four forms — denoted by
TU, UT, NTU, NUT, and discussed later in §2.3.1:

ρt,T
(
{As}

T
t

)
= EFt

[ T∑
s=t

As

]
(TU)

=

T∑
s=t

EFt
[
As

]
(UT )

= EFt

[
At + EFt+1

[
At+1 + · · ·+ EFT−1

[
AT−1 + EFT

[
AT

]]
· · ·
]]

(NTU)

= At + EFt+1

[
At+1 + · · ·+ EFT−2

[
AT−1 + EFT−1

[
AT

]]
· · ·
]

(NUT )

The dynamic risk measure {ρt,T }Tt=0 is time-consistent: indeed, if two adapted stochastic
processes A and B satisfy (2.14a) and (2.14b), with t = t < t ≤ T , we conclude that

ρt,T
(
{A

s
}Tt
)

= E
[ t−1∑
s=t

A
s

+ ρt,T
(
{A

s
}Tt
) ∣∣∣∣ Ft]

≤ E
[ t−1∑
s=t

As + ρt,T
(
{As}

T
t

) ∣∣∣∣ Ft] = ρt,T
(
{As}

T
t

)
.

AV@R and Sum

In the following examples, it is no longer possible to display three or four equivalent ex-
pressions for the same conditional risk measure. This is why, we present different dynamic
risk measures.

Unconditional AV@R For 0 < α < 1, we define the Average-Value-at-Risk of level α
of a random variable X by

AV@Rα

[
X
]

= inf
r∈R

{
r +

E
[
X − r

]+
α

}
. (2.17)

Let
{
αt
}T
t=0

and
{
αt,s
}T
s,t=0

be two families in (0, 1). We lay out three different dynamic
risk measures, given by the following conditional risk measures:

ρt,T
[
{As}

T
t

]
= AV@Rαt

[ T∑
s=t

As

]
, (TU)

ρt,T
[
{As}

T
t

]
=

T∑
s=t

AV@Rαt,s

[
As

]
, (UT )

ρNTUt,T

(
{As}

T
t

)
= AV@Rαt,t

[
At + AV@Rαt,t+1

[
At+1 + · · ·

AV@Rαt,T

[
AT

]
· · ·
]]

. (NTU)

The dynamic risk measure {ρTUt,T }Tt=0 is not time-consistent, whereas the dynamic risk

measure {ρUTt,T }Tt=0 and the dynamic risk measure {ρNTUt,T }Tt=0 are time consistent, as soon
as the levels αt,s do not depend on t.

2. Here, for notational clarity, we denote by EFt
[
·
]

the conditional expectation E
[
·
∣∣ Ft].



52 CHAPTER 2. TIME-CONSISTENCY

Conditional AV@R For 0 < α < 1, and a subfield G ⊂ F we define the conditional
Average-Value-at-Risk of level α of a random variable X knowing G by

AV@RG
α

[
X
]

= inf
r G-measurable

{
r +

E
[(
X − r

)+ ∣∣ G]
α

}
. (2.19)

Let
{
αt
}T
t=0

and
{
αt,s
}T
s,t=0

be two families in (0, 1). We lay out four different dynamic
risk measures, given by the following conditional risk measures:

ρt,T
(
{As}

T
t

)
= AV@RFt

αt

[ T∑
s=t

As

]
, (TU)

ρt,T
(
{As}

T
t

)
=

T∑
s=t

AV@RFt
αt,s

[
As

]
, (UT )

ρt,T
(
{As}

T
t

)
=

T∑
s=t

AV@RFt
αt,t

[
AV@RFt+1

αt,t+1

[
· · ·AV@RFs

αt,s

[
As

]]]
, (UT )

ρt,T
(
{As}

T
t

)
= AV@RFt

αt,t

[
At+

AV@RFt+1
αt,t+1

[
At+1 + · · ·AV@RFT

αt,T

[
AT

]
· · ·
]]

. (NTU)

Examples of this type are found in papers like [79,100,105,107].

Markovian AV@R Let a policy π ∈ Π, a time t ∈ [[0, T ]] and a state xt ∈ Xt be fixed.
With this and the control stochastic dynamical system (2.2), we define the Markov chain
{Xxt

s }
T
s=t produced by (2.3b)–(2.3c) starting from X t = xt. We also define, for each

s ∈ [[t, T ]], the σ-algebra X xts = σ(Xxt
s ). With this, we define a conditional risk measure

by

ρxtt,T
(
{As}

T
t

)
=AV@R

Xxtt
αt,t

[
At+

AV@R
Xxtt+1
αt,t+1

[
At+1 + · · ·AV@R

XxtT
αt,T

[
AT

]
· · ·
]]

.

(2.21)

Repeating the process, we obtain a family
{{
%xtt,T

}
xt∈Xt

}T
t=0

, such that
{
%xtt,T

}T
t=0

is a

dynamic uncertainty criterion, for all sequence
{
xt
}T
t=0

of states, where xt ∈ Xt, for all
t ∈ [[0, T ]].

2.2 Time-Consistency: Problem Statement

In §2.2.1, we lay out the basic material to formulate intertemporal optimization prob-
lems. In §2.2.2, we define “cousins” of dynamic risk measures, namely dynamic uncertainty
criteria. In §2.2.3, we provide definitions of time-consistency, on the one hand, for dynamic
risk measures and, in the other hand, for intertemporal stochastic optimization problems.

2.2.1 Ingredients for Intertemporal Optimization Problems

In §2.2.1, we recall the formalism of Control Theory, with dynamical system, state,
control and costs. Mimicking the definition of adapted processes in Probability Theory, we
introduce adapted uncertainty processes. In §2.2.1, we show how to produce an adapted
uncertainty process of costs.



2.2. TIME-CONSISTENCY: PROBLEM STATEMENT 53

Dynamical System, State, Control and Costs

We define a control T -stage dynamical system, with T ≥ 2, as follows. We consider

• a sequence
{
Xt
}T

0
of sets of states;

• a sequence
{
Ut
}T−1

0
of sets of controls;

• a sequence
{
Wt

}T
0

of sets of uncertainties, and we define

W[0:T ] =
[
Ws

]T
0
, the set of scenarios, (2.22a)

W[0:t] =
[
Ws

]t
0
, the set of head scenarios, ∀t ∈ [[0, T ]] , (2.22b)

W[s:t] =
[
Ws

]T
t
, the set of tail scenarios, ∀t ∈ [[0, T ]] ; (2.22c)

• a sequence
{
ft
}T−1

0
of functions, where ft : Xt × Ut ×Wt → Xt+1, to play the role

of dynamics;

• a sequence
{
Ut
}T−1

0
of T multifunctions Ut : Xt ⇒ Ut, to play the role of constraints;

• a sequence
{
Jt
}T−1

0
of instantaneous cost functions Jt : Xt × Ut ×Wt 7→ R̄, and a

final cost function JT : XT ×WT → R̄. 3

Mimicking the definition of adapted processes in Probability Theory, we introduce the
following definition of adapted uncertainty processes, where the increasing sequence of head
scenarios sets in (2.22b) corresponds to a filtration.

Definition 2.2. We say that a sequence A[0:T ] =
{
As
}T

0
is an adapted uncertainty process

if As ∈ F
(
W[0:s]; R̄

)
(that is, As : W[0:s] → R̄), for all s ∈ [[0, T ]]. In other words,[

F(W[0:s]; R̄)
]T
s=0

is the set of adapted uncertainty processes.

A policy π = (πt)t∈[[0,T−1]] is a sequence of functions πt : Xt → Ut, and we denote by
Π the set of all policies. More generally, for all t ∈ [[0, T ]], we call (tail) policy a sequence
π = (πs)s∈[[t,T−1]] and we denote by Πt the set of all such policies.

We restrict our search of optimal solutions to so-called admissible policies belonging
to a subset Πad ⊂ Π. An admissible policy π ∈ Πad always satisfies:

∀t ∈ [[0, T − 1]], ∀x ∈ Xt, πt(x) ∈ Ut(x) .

We can express in Πad other types of constraints, such as measurability or integrability
ones when in a stochastic setting. Naturally, we set Πad

t = Πt ∩Πad.

Definition 2.3. For any time t ∈ [[0, T ]], state x ∈ Xt and policy π ∈ Π, the flow {Xx,π
t,s }Ts=t

is defined by the forward induction:

∀w ∈W[0:T ],

 Xx,π
t,t (w) = x ,

Xx,π
t,s+1(w) = fs

(
Xx,π
t,s (w), πs(X

x,π
t,s (w)), ws

)
, ∀s ∈ [[t, T ]] .

(2.23)

The expression Xx,π
t,s (w) is the state xs ∈ Xs reached at time s ∈ [[0, T ]], when starting

at time t ∈ [[0, s]] from state x ∈ Xt and following the dynamics (2.2) with the policy π ∈ Π
along the scenario w ∈W[0:T ].

Remark 2.4. For 0 ≤ t ≤ s ≤ T , the flow Xx,π
t,s is a function that maps the set W[0:T ] of

scenarios into the state space Xs:

Xx,π
t,s : W[0:T ] → Xs . (2.24)

By (2.23),

3. For notational consistency with the Jt for t = [[0, T − 1]], we will often write JT (x, u, w) to mean
JT (x,w).



54 CHAPTER 2. TIME-CONSISTENCY

• when t > 0, the expression Xx,π
t,s (w) depends only on the inner part w[t:s−1] of the

scenario w = w[0:T ], hence depends neither on the head w[0:t−1], nor on the tail w[s:T ],
• when t = 0, the expression Xx,π

0,s (w) in (2.23) depends only on the head w[0:s−1] of
the scenario w = w[0:T ], hence does not depend on the tail w[s:T ].

This is why we often consider that the flow Xx,π
t,s is a function that maps the set W[t:s−1]

of scenarios into the state space Xs:

∀s ∈ [[1, T ]], ∀t ∈ [[0, s− 1]], Xx,π
t,s : W[t:s−1] → Xs . (2.25)

A state trajectory is a realization of the flow
{
Xx,π

0,s (w)
}T
s=0

for a given scenario w ∈
W[0:T ]. The flow property

∀t, s, s′, t < s′ < s, ∀x ∈ Xt, Xx,π
t,s ≡ X

Xx,π

t,s′ ,π

s′,s (2.26)

expresses the fact that we can stop anywhere along a state trajectory and start again.

Producing Streams of Costs

Definition 2.5. For a given policy π ∈ Π, and for all times t ∈ [[0, T ]] and s ∈ [[t, T ]], we
define the uncertain costs evaluated along the state trajectories by:

Jx,πt,s : w ∈W[0:T ] 7−→ Js

(
Xx,π
t,s (w), π

(
Xx,π
t,s (w)

)
, ws

)
. (2.27)

Remark 2.6. By Remark 2.4,

• when t > 0, the expression Jx,πt,s (w) in (2.27) depends only on the inner part w[t:s]

of the scenario w = w[0:T ], hence depends neither on the head w[0:t−1], nor on the
tail w[s+1:T ],
• when t = 0, the expression Jx,π0,s (w) in (2.27) depends only on the head w[0:s] of the

scenario w = w[0:T ], hence does not depend on the tail w[s+1:T ].

This is why we often consider that Jx,πt,s is a function that maps the set W[t:s] of scenarios
into R̄:

∀s ∈ [[0, T ]], ∀t ∈ [[0, s]], Jx,πt,s : W[t:s] → R̄ . (2.28)

As a consequence, the stream
{
Jx,π0,s

}T
s=0

of costs is an adapted uncertainty process.

By (2.27) and (2.23), we have, for all t ∈ [[0, T ]] and s ∈ [[t+ 1, T ]],

∀w[t:T ] ∈W[t:T ],


Jx,πt,t (wt) = Jt

(
x, πt(x), wt

)
,

Jx,πt,s (wt, {wr}Tt+1) = J
ft(x,πt(x),wt),π
t+1,s ({wr}Tt+1) .

(2.29)

2.2.2 Dynamic Uncertainty Criteria and Dynamic Risk Measures

Now, we stand with a stream
{
Jx,π0,s

}T
s=0

of costs, which is an adapted uncertainty
process by Remark 2.4. To craft a criterion to optimize, we need to aggregate such a
stream into a scalar. For this purpose, we define dynamic uncertainty criterion in §2.2.2,
and relate them to dynamic risk measures in §2.2.2.



2.2. TIME-CONSISTENCY: PROBLEM STATEMENT 55

Dynamic Uncertainty Criterion

Inspired by the definitions of risk measures and dynamic risk measures in Mathemat-
ical Finance, and motivated by intertemporal optimization, we introduce the following
definitions of dynamic uncertainty criterion, and Markov dynamic uncertainty criterion.
Examples have been given in §2.1.2.

Definition 2.7. A dynamic uncertainty criterion is a sequence {%t,T }Tt=0, such that, for
all t ∈ [[0, T ]],

• %t,T is a mapping

%t,T :
[
F(W[0:s]; R̄)

]T
s=t
→ F(W[0:t]; R̄) , (2.30a)

• the restriction of %t,T to the domain 4
[
F(W[t:s]; R̄)

]T
s=t

yields constant functions,
that is,

%t,T :
[
F(W[t:s]; R̄)

]T
s=t
→ R̄ , (2.30b)

A Markov dynamic uncertainty criterion is a family
{{
%xtt,T

}
xt∈Xt

}T
t=0

, such that
{
%xtt,T

}T
t=0

is a dynamic uncertainty criterion, for all sequence
{
xt
}T
t=0

of states, where xt ∈ Xt, for
all t ∈ [[0, T ]].

We relate dynamic uncertainty criteria and optimization problems as follows.

Definition 2.8. Given a Markov dynamic uncertainty criterion
{{
%xtt,T

}
xt∈Xt

}T
t=0

, we

define a Markov optimization problem as the following sequence of families of optimization
problems, indexed by t ∈ [[0, T ]], and x ∈ Xt:

(Pt)(x) min
π∈Πad

%xt,T

({
Jx,πt,s

}T
s=t

)
. (2.31)

Each Problem (2.31) is indeed well defined by (2.30b), because
{
Jx,πt,s

}T
s=t

∈[
F(W[t:s]; R̄)

]T
s=t

by (2.28).

Dynamic Risk Measures in a Nutshell

We establish a parallel between uncertainty criteria and risk measures. For this pur-
pose, when needed, we implicitely suppose that each uncertainty set Wt is endowed with
a σ-algebraWt, so that the set W[0:T ] of scenarios is naturally equipped with the filtration

∀t ∈ [[0, T ]], Ft =W0 ⊗ · · · ⊗Wt ⊗ {∅,Wt+1} ⊗ · · · ⊗ {∅,WT } . (2.32)

Then, we make the correspondence between (see also the correspondence Table 2.1)

• the measurable space (W[0:T ],FT ) and the measurable space (Ω,F) in §2.2.2,
• the set F

(
W[0:t]; R̄

)
of functions and a set Lt of random variables that are Ft-

measurable in §2.2.2,

• the set
[
F(W[s:T ]; R̄)

]T
s=t

and a set Lt,T of adapted processes, as in (2.35) in §2.2.2.

Notice that, when the σ-algebra Wt is the complete σ-algebra made of all subsets of Wt,
F
(
W[0:t]; R̄

)
is exactly the space of random variables that are Ft-measurable.

We follow the seminal work [6], as well as [103,104], for recalls about risk measures.

4. Where F(W[t:s]; R̄) is naturally identified as a subset of F(W[0:s]; R̄).



56 CHAPTER 2. TIME-CONSISTENCY

Static Risk Measures Let
(
Ω,F

)
be a measurable space. Let L be a vector space of

measurable functions taking values in R (for example, L = Lp
(
Ω,F,P;R

)
). We endow the

space L with the following partial order:

∀X ,Y ∈ L, X ≤ Y ⇐⇒ ∀ω ∈ Ω, X (ω) ≤ Y (ω) .

Definition 2.9. A risk measure (with domain L) is a mapping ρ : L → R.
A convex risk measure is a mapping ρ : L → R displaying the following properties:
• Convexity: ∀X ,Y ∈ L, ∀t ∈ [0, 1], ρ

(
tX+(1− t)Y

)
≤ tρ

(
X
)

+(1− t)ρ
(
Y
)
,

• Monotonicity: if Y ≥X , then ρ
(
Y
)
≥ ρ
(
X
)
,

• Translation equivariance: ∀c ∈ R, ∀X ∈ L, ρ(c+X ) = c+ ρ(X ) .
A coherent risk measure is a convex risk measure ρ : L → R with the following addi-

tional property:
• Positive homogeneity: ∀t ≥ 0, ∀X ∈ L, ρ(tX ) = tρ(X ) .

Let P be a set of probabilities on
(
Ω,F

)
and let Υ be a function mapping the space of

probabilities on
(
Ω,F

)
onto R. The functional defined by

ρ(X ) = sup
P∈P

{
EP
[
X
]
−Υ(P)

}
(2.33)

is a convex risk measure on a proper domain L (for instance, the bounded functions
over Ω). The expression

ρ(X ) = sup
P∈P

EP
[
X
]

(2.34)

defines a coherent risk measure.
Under proper technical assumptions, it can be shown that any convex or coherent risk

measure can be represented by the above expressions.

Conditional Risk Mappings We present the conditional risk mappings as defined
in [103], extending the work of [85].

Let
(
Ω,F

)
be a measurable space, F1 ⊂ F2 ⊂ F be two σ-algebras, and L1 ⊂ L2 be

two vector spaces of functions Ω → R that are measurable with respect to F1 and F2,
respectively.

Definition 2.10. A conditional risk mapping is a mapping ρ : L2 → L1.
A convex conditional risk mapping ρ : L2 → L1 has the following properties:
• Convexity: ∀X ,Y ∈ L2, ∀t ∈ [0, 1], ρ

(
tX+(1−t)Y

)
≤ tρ

(
X
)
+(1−t)ρ

(
Y
)
,

• Monotonicity: if Y ≥X , then ρ
(
Y
)
≥ ρ
(
X
)
,

• Translation equivariance: ∀c ∈ L1, ∀X ∈ L2, ρ(c+X ) = c+ ρ(X ) .

Conditional and Dynamic Risk Measures We follow [105, Section 3]. Let
(
Ω,F

)
be a measurable space, with a filtration F1 ⊂ · · · ⊂ FT ⊂ F, and L1 ⊂ · · · ⊂ LT be vector
spaces of functions Ω → R that are measurable with respect to F1, . . . , FT , respectively.
We set

∀t ∈ [[0, T ]], Lt,T = Lt × · · · × LT . (2.35)

An element {As}
T
0 of Lt,T is an adapted process since every As ∈ Ls is Fs-measurable.

Conditional and dynamic risk measures have adapted processes as arguments, to the dif-
ference of risk measures that take random variables as arguments.

Definition 2.11. Let t ∈ [[0, T ]]. A one-step conditional risk mapping is a conditional
risk mapping ρt : Lt+1 → Lt. A conditional risk measure is a mapping ρt,T : Lt,T 7→ Lt.

A dynamic risk measure is a sequence
{
ρt,T

}T
t=0

of conditional risk measures.



2.2. TIME-CONSISTENCY: PROBLEM STATEMENT 57

Dynamic uncertainty criteria {%t,T }Tt=0, as introduced in Definition 2.7 correspond to
dynamic risk measures.

Remark 2.12. A conditional risk measure ρt,T : Lt,T 7→ Lt is said to be monotonous 5 if,
for all {A

s
}Ts=t and {As}

T
s=t in Lt,T , we have

∀s ∈ [[t, T ]], A
s
≤ As =⇒ ρt,T

({
A
s

}T
s=t

)
≤ ρt,T

({
As

}T
s=t

)
. (2.36)

Markov Risk Measures In [105], Markov risk measures are defined with respect to a
given controlled Markov process. We adapt this definition to the setting developed in the
Introduction, and we consider the control stochastic dynamical system (2.3b)

Xt+1 = ft(Xt,Ut,Wt) ,

where
{
Wt

}T
0

is a sequence of independent random variables. Then, for all policy π, when

Ut = πt(Xt) we obtain a Markov process {Xt}t∈[[0,T ]], where Xt = Xx0,π
0,t

(
{Ws}

t−1
0

)
is

given by the flow (2.23).

Let
{
Ft
}T
t=0

be the filtration defined by Ft = σ(
{
Ws

}t
0
). For any t ∈ [[0, T ]], let Vt

be a set of functions mapping Xt into R such that we have v
(
Xx0,π

0,t

)
∈ Lt, for all policy

π ∈ Πad.

Definition 2.13. A one-step conditional risk measure ρt−1 : Lt → Lt−1 is a Markov risk
measure with respect to the control stochastic dynamical system (2.3b) if there exists a
function Ψt : Vt+1 × Xt × Ut → R, such that, for any policy π ∈ Πad, and any function
v ∈ Vt+1, we have

ρt−1

(
{Ws}

t
0 7→ v

(
Xx0,π

0,t+1

(
{Ws}

t
0

)))
=Ψt

(
v,Xx0,π

0,t

(
{Ws}

t−1
0

)
, πt

(
Xx0,π

0,t

(
{Ws}

t−1
0

)))
.

(2.37)

A Markov risk measure is said to be coherent (resp. convex) if, for any state x ∈ Xt,
any control u ∈ Ut, the function

v 7→ Ψt

(
v, x, u

)
, (2.38)

is a coherent (resp convex) risk measure on Vt+1 (equipped with a proper σ-algebra).

Dynamic Markov uncertainty criteria {%t,T }Tt=0, as introduced in Definition 2.7 corre-
spond to Markov risk measures.

Correspondence Table

Time-Consistency for Dynamic Risk Measures The literature on risk measures
has introduced a notion of time-consistency for dynamic risk measures, that we recall here
(see [7, 28,85]).

Definition 2.14. A dynamic risk measure {ρt,T }Tt=0, where ρt,T : Lt,T 7→ Lt, is said to
be time-consistent if, for any couples of times 0 ≤ t < t ≤ T , the following property holds
true. If two adapted stochastic processes {A

s
}T0 and {As}

T
0 in L0,T satisfy

A
s

=As, ∀s ∈ [[t, t− 1]] , (2.39a)

ρt,T
(
{A

s
}Tt
)
≤ρt,T

(
{As}

T
t

)
, (2.39b)

5. In [105, Section 3], a conditional risk measure is necessarily monotonous, by definition.



58 CHAPTER 2. TIME-CONSISTENCY

Risk Measures Uncertainty Criteria

measurable space (Ω,F) (W[0:T ],FT ) measurable space

Ft-measurable F
(
W[0:t]; R̄

)
adapted processes L0,T

[
F(W[0:s]; R̄)

]T
s=0

adapted uncertainty

processes

dynamic risk {ρt,T }Tt=0 {%t,T }Tt=0 dynamic uncertainty
measure criteria

Markov dynamic
{{
ρxtt,T

}
xt∈Xt

}T
t=0

{{
%xtt,T

}
xt∈Xt

}T
t=0

Markov dynamic

risk measure uncertainty criterion

Table 2.1: Correspondence Table

then we have:
ρt,T

(
{A

s
}Tt
)
≤ ρt,T

(
{As}

T
t

)
. (2.39c)

Remark 2.15. In [105], the equality (2.39a) is replaced by the inequality

∀s ∈ [[t, t]], A
s
≤ As . (2.39d)

Depending whether we choose (2.39a) or (2.39d) as assumption to define a time-consistent
dynamic risk measure, we have to adapt or not an assumption in Theorem 2.31 (see
Remark 2.32).

2.2.3 Definitions of Time-Consistency

With the formalism of §2.2.2, we give a definition of time-consistency for Markov
optimization problems in §2.2.3, and for Markov dynamic uncertainty criteria in §2.2.3.

Time-Consistency for Markov Optimization Problems

With the formalism of §2.2.2, we here give a definition of time-consistency for Markov
optimization problems. We refer the reader to Definition 2.8 for the terminology.

Consider the Markov optimization problem
{{

(Pt)(x)
}
x∈Xt

}T
t=0

defined in (2.31). For
the clarity of exposition, suppose for a moment that any optimization Problem (Pt)(x)
has a unique solution, that we denote πt,x = {πst,x}T−1

s=t ∈ Πad
t . Consider 0 ≤ t < t ≤ T .

Suppose that, starting from the state x at time t, the flow (2.23) drives you to

x = X
x,π

t,t
(w), π = πt,x (2.40)

at time t, along the scenario w ∈ W[0:T ] and adopting the optimal policy πt,x ∈ Πad
t .

Arrived at x, you solve (Pt)(x) and get the optimal policy πt,x = {πst,x}T−1
s=t

∈ Πad
t

.
Time-consistency holds true when

∀s ≥ t, πs
t,x = πs

t,x , (2.41)

that is, when the “new” optimal policy, obtained by solving (Pt)(x), coincides, after time t,
with the “old” optimal policy, obtained by solving (Pt)(x). In other words, you “stick to
your plans” (here, a plan is a policy) and do not reconsider your policy whenever you stop
along an optimal path and optimize ahead from this stop point.

To account for non-uniqueness of optimal policies, we propose the following formal
definition.



2.3. PROVING JOINT TIME-CONSISTENCY 59

Definition 2.16. For any policy π ∈ Π, suppose given a Markov dynamic uncertainty

criterion
{{
%xt,πt,T

}
xt∈Xt

}T
t=0

. We say that the Markov optimization problem

(Pt)(x) min
π∈Πad

t

%x,πt,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.42)

is time-consistent if, for any couple of times t ≤ t in [[0, T ]] and any state x ∈ Xt, the

following property holds: there exists a policy π] = {π]s}T−1
s=t ∈ Πad

t such that

• {π]s}T−1
s=t is optimal for Problem Pt(x);

• the tail policy {π]s}T−1
s=t

is optimal for Problem Pt(x), where x ∈ Xt is any state

achieved by the flow X
x,π]

t,t
in (2.23).

We stress that the above definition of time-consistency of a sequence of families of

optimization problems is contingent on the state x and on the dynamics
{
ft
}T−1

0
by the

flow (2.23). In particular, we assume that, at each time step, the control is taken only in
function of the state: this defines the class of solutions as policies that are feedbacks of
the state x.

Time-Consistency for Markov Dynamic Uncertainty Criteria

We provide a definition of time-consistency for Markov dynamic uncertainty criteria,
inspired by the definitions of time-consistency for, on the one hand, dynamic risk measures
(recalled in §2.2.2) and, on the other hand, Markov optimization problems. We refer the
reader to Definition 2.7 for the terminology.

Definition 2.17. The Markov dynamic uncertainty criterion {{%xtt,T }xt∈Xt}Tt=0 is said to

be time-consistent if, for any couple of times 0 ≤ t < t ≤ T , the following property holds
true.

If two adapted uncertainty processes {As}T0 and {As}T0 , satisfy

As = As, ∀s ∈ [[t, t]] , (2.43a)

ρxt,T
(
{As}Tt

)
≤ ρxt,T

(
{As}Tt

)
, ∀x ∈ Xt , (2.43b)

then we have:

ρ
x
t,T

(
{As}Tt

)
≤ ρ

x
t,T

(
{As}Tt

)
, ∀x ∈ Xt . (2.43c)

This Definition 2.17 of time-consistency is quite different from Definition 2.16. Indeed,
if the latter looks after consistency between solutions to intertemporal optimization prob-
lems, the former is a monotonicity property. Several authors establish connections between
these two definitions [23, 56, 78, 105] for case specific problems. In the following §2.3, we
provide what we think is one of the most systematic connections between time-consistency
for Markov dynamic uncertainty criteria and time-consistency for intertemporal optimiza-
tion problems.

2.3 Proving Joint Time-Consistency

In §2.3.1, we introduce the notions of time and uncertainty-aggregators, define their
composition, and outline the general four ways to craft a dynamic uncertainty criterion
from one-step aggregators. In §2.3.2, we present two ways to craft a nested dynamic



60 CHAPTER 2. TIME-CONSISTENCY

uncertainty criterion; for each of them, we provide sufficient monotonicity assumptions on
one-step aggregators that ensure time-consistency and the existence of a DPE. In §2.3.3, we
introduce two commutation properties, that will be the key ingredients for time-consistency
and for the existence of a DPE in non-nested cases. In §2.3.4, we present two ways to
craft a non-nested dynamic uncertainty criterion; for each of them, we provide sufficient
monotonicity and commutation assumptions on one-step aggregators that ensure time-
consistency and the existence of a DPE.

2.3.1 Aggregators and their Composition

We introduce the notions of time and uncertainty-aggregators, define their composition,
and outline the general four ways to craft a dynamic uncertainty criterion from one-step
aggregators.

One-Step Time-Aggregators and their Composition

Time preferences are reflected in how streams of costs — elements of R̄T+1, like
{Jx,π0,t (w)}Tt=0 introduced in Definition 2.5 — are aggregated with respect to time thanks

to a function Φ : R̄T+1 → R̄, called multiple-step time-aggregator. Commonly, multiple-
step time-aggregators are built progressively backward. In §2.1.1, the multiple-step time-

aggregator is the time-separable and additive Φ
{
cs
}T
s=0

=
∑T

s=0 cs, obtained as the initial

value of the backward induction
∑T

s=t cs = (
∑T

s=t+1 cs) + ct; the time-separable and mul-

tiplicative aggregator Φ
{
cs
}T
s=0

=
∏T
s=0 cs is the initial value of the backward induction∏T

s=t cs = (
∏T
s=t+1 cs)ct. A multiple-step time-aggregator aggregates the T + 1 costs

{Jx,π0,t (w)}Tt=0, whereas a one-step time-aggregator aggregates two costs, the current one
and the “cost-to-go” (as in [117]).

Definition 2.18. A multiple-step time-aggregator is a function mapping R̄k into R̄, where
k ≥ 2. When k = 2, we call one-step time-aggregator a function mapping R̄2 into R̄.

A one-step time-aggregator is said to be non-decreasing if it is non-decreasing in its
second variable.

We define the composition of time-aggregators as follows.

Definition 2.19. Let Φ1 : R̄2 → R̄ be a one-step time-aggregator and Φk : R̄k → R̄ be a
multiple-step time-aggregator. We define Φ1 � Φk : R̄k+1 → R̄ by(

Φ1 � Φk
){
c1, c2, . . . , ck+1

}
= Φ1

{
c1,Φ

k
{
c2, . . . , ck+1

}}
. (2.44)

Quite naturaly, we define the composition of sequences of one-step time-aggregators
as follows.

Definition 2.20. Consider a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators Φt : R̄×R̄→

R̄, for t ∈ [[0, T − 1]]. For all t ∈ [[0, T − 1]], we define the composition
T−1
�
s=t

Φs as the

multiple-step time-aggregator from R̄T+1−t towards R̄, inductively given by

T−1

�
t=T−1

Φt = ΦT−1 and
( T−1

�
s=t

Φs

)
= Φt �

( T−1

�
s=t+1

Φs

)
. (2.45a)

That is, for all sequence c[t:T ] where cs ∈ R̄, we have:( T−1

�
s=t

Φs

)(
c[t:T ]

)
= Φt

{
ct,
( T−1

�
s=t+1

Φs

)(
c[t+1:T ]

)}
. (2.45b)



2.3. PROVING JOINT TIME-CONSISTENCY 61

Example 2.21. Consider the sequence
{

Φt

}T−1

t=0
of one-step time-aggregators given by

Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1, ∀t ∈ [[0, T − 1]] , (2.46)

where (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] are sequences of functions, each mapping R̄ into R.
We have ( T−1

�
s=t

Φs

){
cs
}T
t

=

T∑
s=t

(
αs
(
cs
) s−1∏
r=t

βr
(
cr
))
, ∀t ∈ [[0, T − 1]] , (2.47)

with the convention that αT (cT ) = cT .

Example 2.22. Consider the one-step aggregators

Φ{c1, c2} = c1 + c2, Ψ{c1, c2} = c1c2 .

The first one Φ corresponds to the sum, as in (2.3); the second one Ψ corresponds to
the product, as in (2.11). As an illustration, we form four compositions (multiple-step
time-aggregators):

Φ� Φ{c1, c2, c3} = Φ
{
c1,Φ{c2, c3}

}
= c1 + c2 + c3 ,

Ψ�Ψ{c1, c2, c3} = Ψ
{
c1,Ψ{c2, c3}

}
= c1c2c3 ,

Φ�Ψ{c1, c2, c3} = Φ
{
c1,Ψ{c2, c3}

}
= c1 + c2c3 ,

Ψ� Φ{c1, c2, c3} = Ψ
{
c1,Φ{c2, c3}

}
= c1(c2 + c3).

We extend the composition
( T−1
�
s=t

Φs

)
: R̄T+1−t → R̄ into a mapping (2.48) as follows.

Definition 2.23. Consider a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators, for t ∈

[[0, T − 1]]. For t ∈ [[0, T − 1]], we define the composition 6

〈
T−1
�
s=t

Φs

〉
as a mapping〈

T−1

�
s=t

Φs

〉
:
(
F(W[0:T ]; R̄)

)T−t+1
→ F(W[0:T ]; R̄) (2.48)

by, for any {A}Tt ∈
(
F(W[0:T ]; R̄)

)T−t+1
,(〈

T−1

�
s=t

Φs

〉(
{A}Tt

))(
w
)

=
( T−1

�
s=t

Φs

)(
{At
(
w
)
}Tt
)
, ∀w ∈W[0:T ] . (2.49)

In other words, we simply plug the values {At
(
w
)
}Tt into

( T−1
�
s=t

Φs

)
.

One-Step Uncertainty-Aggregators and their Composition

As with time, risk or uncertainty preferences are materialized by a function G :
F(W[0:T ]; R̄) → R̄, called multiple-step uncertainty-aggregator. A multiple-step aggre-
gator is usually defined on a subset F of F(W[0:T ]; R̄) (for example the measurable and
integrable functions), and then extended to F(W[0:T ]; R̄) by setting G[A] = +∞ for any
function A /∈ F. Indeed, as we are interested in minimizing G, being not defined or equal
to +∞ amount to the same result.

In the first part of §2.1.1, the multiple-step uncertainty-aggregator is the extended
expectation with respect to the probability P; still denoted by EP, it is defined as the
usual expectation if the operand is measurable and integrable, and as +∞ otherwise. In
the second part of §2.1.1, the multiple-step uncertainty-aggregator is the fear operator,
namely the supremum supw∈W[0:T ]

over scenarios in W[0:T ].

6. We will consistently use the symbol
〈 〉

to denote a mapping with image a set of functions.



62 CHAPTER 2. TIME-CONSISTENCY

Definition 2.24. Let t ∈ [[0, T ]] and s ∈ [[t, T ]]. A [t :s]-multiple-step uncertainty-
aggregator is a mapping 7 G[t:s] from F(W[t:s]; R̄) into R̄. When t = s, we call G[t:t] a
t-one-step uncertainty-aggregator.

A [t :s]-multiple-step uncertainty-aggregator is said to be non-decreasing if, for any
functions 8 Dt and Dt in F(W[t:s]; R̄), we have(

∀w[t:s] ∈W[t:s], Dt

(
w[t:s]

)
≤ Dt

(
w[t:s]

))
=⇒ G[t:s]

[
Dt

]
≤ G[t:s]

[
Dt

]
.

Definition 2.25. Let t ∈ [[1, T ]] and s ∈ [[t, T ]]. To a [t :s]-multiple-step uncertainty-
aggregator G[t:s], we attach a mapping 9〈

G[t:s]
〉

: F(W[0:s]; R̄)→ F(W[0:t−1]; R̄) , (2.50a)

obtained by freezing the first variables as follows. For any A : W[0:s] → R̄, and any
w[0:s] ∈W[0:s], we set(〈

G[t:s]
〉 [
A
])(

w[0:t−1]

)
= G[t:s]

[
w[t:s] 7→ A

(
w[0:t−1], w[t:s]

)]
. (2.50b)

Multiple-step uncertainty-aggregators are commonly built progressively backward:
in §2.1.1, the expectation operator EP0⊗···⊗PT is the initial value of the induction
EPt⊗···⊗PT = EPtEPt+1⊗···⊗PT ; the fear operator supw∈W[0:T ]

is the initial value of the in-
duction supw∈W[t:T ]

= supwt∈Wt
supw∈W[t+1:T ]

.
We define the composition of uncertainty-aggregators as follows.

Definition 2.26. Let t ∈ [[0, T ]] and s ∈ [[t+ 1, T ]]. Let G[t:t] : F(Wt; R̄)→ R̄ be a t-one-
step uncertainty-aggregator, and G[t+1:s] : F(W[t+1:s]; R̄) → R̄ be a [t+ 1:s]-multiple-step

uncertainty-aggregator. We define the [t :s]-multiple-step uncertainty-aggregator G[t:t] �
G[t:s] by(

G[t:t] �G[t:s]
)[
At
]

= G[t:t]
[
wt 7→ G[t+1:s]

[
w[t+1:s] 7→ At

(
wt, w[t+1:s]

)]]
, (2.51)

for all function At ∈ F
(
W[t:s]; R̄

)
.

Quite naturaly, we define the composition of sequences of one-step uncertainty-
aggregators as follows.

Definition 2.27. We say that a sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators is
a chained sequence if Gt is a t-one-step uncertainty-aggregator, for all t ∈ [[0, T ]].

Consider a chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators. For t ∈

[[0, T ]], we define the composition
T

�
s=t

Gs as the [t :T ]-multiple-step uncertainty-aggregator

T

�
s=t

Gs : F
(
W[t:T ]; R̄

)
→ R̄ , (2.52)

inductively given by

T

�
s=T

Gs = GT and
( T

�
s=t

Gs

)
= Gt �

( T

�
s=t+1

Gs

)
. (2.53a)

That is, for all function Bt ∈ F
(
W[t:T ]; R̄

)
, we have:( T

�
s=t

Gs

)[
Bt
]

= Gt

[
wt 7→

( T

�
s=t+1

Gs

)[
w[t+1:T ] 7→ Bt

(
wt, w[t+1:T ]

)]]
. (2.53b)

7. The superscript notation indicates that the domain of the mapping G[t:s] is F(W[t:s]; R̄) (not to be
confused with G[t:s] =

{
Gr
}s
r=t

).

8. We will consistently use the symbol D to denote a function in F
(
W[t:s]; R̄

)
, that is, D : W[t:s] → R̄.

9. See Footnote 6 about the notation 〈 〉.



2.3. PROVING JOINT TIME-CONSISTENCY 63

Crafting Dynamic Uncertainty Criteria from Aggregators

We outline four ways to craft a dynamic uncertainty criterion from aggregators. Let

A[0:T ] =
{
As
}T
s=0

denote an arbitrary adapted uncertainty process (that is, As : W[0:s] →
R̄, as in Definition 2.2).

Non Nested Dynamic Uncertainty Criteria The two following ways to craft a
dynamic uncertainty criterion {%t,T }Tt=0 display a natural economic interpretation in term
of preferences over streams of uncertain costs like A[0:T ]. They mix time and uncertainty
preferences, either first with respect to uncertainty then with respect to time (UT) or
first with respect to time, then with respect to uncertainty (TU). However, they are not
directly amenable to a DPE.

TU, or time, then uncertainty. Let t ∈ [[0, T ]] be fixed.

• First, we aggregate A[t:T ] with respect to time by means of a multiple-step time-

aggregator Φt from R̄T−t+1 towards R̄, and we obtain Φt
(
A[t:T ]

)
.

• Second, we aggregate Φt
(
A[t:T ]

)
with respect to uncertainty by means of a

multiple-step uncertainty-aggregator G[t:T ], and we obtain

%t,T
(
A[t:T ]

)
=
〈
G[t:T ]

〉 [
Φt
(
A[t:T ]

)]
. (2.54)

All the examples in §2.1.1 belong to this TU class, and some in §2.1.2.

UT, or uncertainty, then time.

• First, we aggregate A[t:T ] with respect to uncertainty by means of a sequence[
Gs

[t:s]
]T
s=t

of multiple-step time-aggregators Gt
[t:s] : F(W[t:s]; R̄) → R̄, and we

obtain a sequence
{〈

Gs
[t:s]
〉 [
As
]}T

s=t
.

• Second, we aggregate
{〈

Gs
[t:s]
〉 [
As
]}T

s=t
by means of a multiple-step time-

aggregator Φt from R̄T−t+1 towards R̄, and we obtain

%t,T
(
A[t:T ]

)
= Φt

({〈
Gs

[t:t]
〉 [
As
]}T

s=t

)
. (2.55)

Some examples in §2.1.2 belong to this UT class.

Nested Dynamic Uncertainty Criteria The two following ways to craft a dynamic
uncertainty criterion {%t,T }Tt=0 do not display a natural economic interpretation in term
of preferences [65], but they are directly amenable to a DPE. Indeed, they are produced
by a backward induction, nesting uncertainty and time. Consider

• on the one hand, a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators,

• on the other hand, a chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators.

NTU, or nesting time, then uncertainty, then time, etc. We define a dynamic uncertainty
criterion by the following backward induction:

%T,T
(
AT
)

= 〈GT 〉
[
AT
]
, (2.56a)

%t,T

({
As
}T
s=t

)
= 〈Gt〉

[
Φt

{
At, %t+1,T

({
As
}T
s=t+1

)}]
, ∀t ∈ [[0, T − 1]] . (2.56b)

By the Definition 2.25 of 〈Gt〉, we have, by construction, produced a dynamic uncer-
tainty criterion {%t,T }Tt=0 (see Definition 2.7). Indeed, recalling that As : W[0:s] → R̄),



64 CHAPTER 2. TIME-CONSISTENCY

for s ∈ [[0, T ]], we write

F
(
W[0:T−1];R̄

)︷ ︸︸ ︷
%T,T

(
AT
)

= 〈GT 〉
[ F(W[0:T ];R̄

)︷︸︸︷
AT

]
,

%t,T

({
As
}T
s=t

)
︸ ︷︷ ︸
F
(
W[0:t−1];R̄

) = 〈Gt〉
[
Φt

{
At︸︷︷︸

F
(
W[0:t];R̄

), %t+1,T

(
[
F
(
W[0:s];R̄

)]T
s=t+1︷ ︸︸ ︷{

As
}T
s=t+1

)
︸ ︷︷ ︸

F
(
W[0:t];R̄

)
}]
,

∀t ∈ [[0, T − 1]] .

NUT, or nesting uncertainty, then time, then uncertainty, etc. We define a dynamic
uncertainty criterion by the following backward induction:

%T,T
(
AT
)

= 〈GT 〉
[
AT
]
, (2.57a)

%t,T

({
As
}T
s=t

)
= Φt

{
〈Gt〉

[
At
]
, 〈Gt〉

[
%t+1,T

({
As
}T
s=t+1

)]}
, (2.57b)

∀t ∈ [[0, T − 1]] .

Some examples in §2.1.2 belong to this nested class, made of NTU and NUT.

2.3.2 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators,

• on the other hand, a chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators.

With these ingredients, we present two ways to craft a nested dynamic uncertainty criterion
{%t,T }Tt=0, as introduced in Definition 2.7. For each of them, we establish time-consistency.

NTU Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{

(PNTU
t )(x)

}T
t=0

of optimization
problems parameterized by the state x ∈ Xt as the nesting

(PNTU
t )(x) min

π∈Πad
t

Gt

[
Φt

{
Jt
(
xt, ut, wt

)
,

Gt+1

[
Φt+1

{
Jt+1

(
xt+1, ut+1, wt+1

)
, · · · (2.58a)

GT−1

[
ΦT−1

{
JT−1

(
xT−1, uT−1, wT−1

)
,

GT

[
JT
(
xT , wT

)]}]
· · ·
}]}]

,

s.t. xt = x , (2.58b)

xs+1 = fs
(
xs, us, ws

)
, (2.58c)

us = πs(xs) , (2.58d)

us ∈ Us(xs) , (2.58e)

where constraints are satisfied for all s ∈ [[t, T − 1]].



2.3. PROVING JOINT TIME-CONSISTENCY 65

Definition 2.28. We construct inductively a NTU-dynamic uncertainty criterion{
%NTU
t,T

}T
t=0

by, for any adapted uncertainty process
{
As
}T
s=0

,

%NTU
T

(
AT
)

= 〈GT 〉
[
AT
]
, (2.59a)

%NTU
t,T

({
As
}T
s=t

)
= 〈Gt〉

[
Φt

{
At, %

NTU
t+1,T

({
As
}T
s=t+1

)}]
, ∀t ∈ [[0, T − 1]] . (2.59b)

We define the Markov optimization problem (2.58) formally by

(PNTU
t )(x) min

π∈Πad
t

%NTU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.60)

where the functions Jx,πt,s are defined by (2.27).

Definition 2.29. We define the value functions inductively by the DPE

V NTU
T (x) = GT

[
JT (x, ·)

]
, ∀x ∈ XT , (2.61a)

V NTU
t (x) = inf

u∈Ut(x)
Gt

[
Φt

{
Jt(x, u, ·), V NTU

t+1 ◦ ft(x, u, ·)
}]

, (2.61b)

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

The following Proposition 2.30 expresses sufficient conditions under which any Prob-
lem (PNTU

t )(x), for any time t ∈ [[0, T − 1]] and any state x ∈ Xt, can be solved by means
of the value functions {V NTU

t }Tt=0 in Definition 2.29.

Proposition 2.30. Assume that
• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Assume that there exists 10 an admissible policy π] ∈ Πad such that

π]t(x) ∈ arg min
u∈Ut(x)

Gt

[
Φt

{
Jt(x, u, ·),V NTU

t+1 ◦ ft(x, u, ·)
}]

,

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

(2.62)

Then, π] is an optimal policy for any Problem (PNTU
t )(x), for all t ∈ [[0, T ]] and for all

x ∈ Xt, and

V NTU
t (x) = min

π∈Πad
t

%NTU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.63)

Proof. In the proof, we drop the superscript in the value function V NTU
t , that we simply

denote by Vt. Let π ∈ Πad be a policy. For any t ∈ [[0, T ]], we define V π
t (x) as the

intertemporal cost from time t to time T when following policy π starting from state x:

V π
t (x) = %NTU

t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.64)

10. It may be difficult to prove the existence of a measurable selection among the solutions of (2.62).
Since it is not our intent to consider such issues, we make the assumption that an admissible policy π] ∈ Πad

exists, where the definition of the set Πad is supposed to include all proper measurability conditions.



66 CHAPTER 2. TIME-CONSISTENCY

This expression is well defined because Jx,πt,s : W[t:s] → R̄, for s ∈ [[t, T ]] by (2.28).

First, we show that the functions {V π
t }Tt=0 satisfy a backward equation “à la Bellman”:

V π
t (x) = Gt

[
Φt

{
Jt(x, πt(x), ·), V π

t+1◦ft(x, πt(x), ·)
}]
, ∀t ∈ [[0, T−1]], ∀x ∈ Xt . (2.65)

Indeed, we have,

V π
T (x) = %NTU

T,T

(
Jx,πT,T

)
by the definition (2.64) of V π

T (x),

= %NTU
T,T

(
JT (x, ·)

)
by (2.27) that defines Jx,πT,T ,

= 〈GT 〉
[
JT (x, ·)

]
by the definition (2.59a) of %NTU

T ,

= GT

[
JT (x, ·)

]
by Definition 2.25 of 〈GT 〉.

We also have, for t ∈ [[0, T − 1]],

V π
t (x) = %NTU

t,T

({
Jx,πt,s

}T
s=t

)
by the definition (2.64) of V π

t (x),

= 〈Gt〉
[
Φt

{
Jx,πt,t , %

NTU
t+1,T

({
Jx,πt,s

}T
s=t+1

)}]
by the definition (2.59b) of %NTU

t+1,T ,

= 〈Gt〉
[
Φt

{
Jx,πt,t , %

NTU
t+1,T

({
J
ft(x,πt(x),·),π
t+1,s

}T
s=t+1

)}]
by the flow property (2.29),

= 〈Gt〉
[
Φt

{
Jx,πt,t , V

π
t+1 ◦ ft(x, πt(x), ·)

}]
by the definition (2.64) of V π

t (x),

= 〈Gt〉
[
Φt

{
Jt(x, πt(x), ·), V π

t+1 ◦ ft(x, πt(x), ·)
}]

by the flow property (2.29),

= Gt

[
Φt

{
Jt(x, πt(x), ·), V π

t+1 ◦ ft(x, πt(x), ·)
}]

by Definition 2.25 of 〈Gt〉.

Second, we show that Vt(x), as defined in (2.61) is lower than the value of the opti-
mization problem PNTU

t (x) in (2.58). For this purpose, we denote by (Ht) the following
assertion

(Ht) : ∀x ∈ Xt, ∀π ∈ Πad, Vt(x) ≤ V π
t (x) .

By definition of V π
T (x) in (2.64) and of VT (x) in (2.61a), assertion (HT ) is true.

Now, assume that (Ht+1) holds true. Let x be an element of Xt. Then, by definition
of Vt(x) in (2.61b), we obtain

Vt(x) ≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
, (2.66)

since, for all π ∈ Πad we have πt(x) ∈ Ut(x). By (Ht+1) we have, for any π ∈ Πad,

Vt+1 ◦ ft
(
x, πt(x), ·

)
≤ V π

t+1 ◦ ft
(
x, πt(x), ·

)
.



2.3. PROVING JOINT TIME-CONSISTENCY 67

From monotonicity of Φt and monotonicity of Gt, we deduce:

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
≤ Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, V π

t+1 ◦ ft
(
x, πt(x), ·

)}]
.

(2.67)

We obtain:

Vt(x) ≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, Vt+1 ◦ ft

(
x, πt(x), ·

)}]
by (2.66),

≤ inf
π∈Πad

Gt

[
Φt

{
Jt
(
x, πt(x), ·

)
, V π

t ◦ ft+1

(
x, πt(x), ·

)}]
by (2.67),

= inf
π∈Πad

V π
t (x) by the definition (2.64) of V π

t (x).

Hence, assertion (Ht) holds true.

Third, we show that the lower bound Vt(x) for the value of the optimization prob-
lem PNTU

t (x) is achieved for the policy π] in (2.62). For this purpose, we consider the
following assertion

(H ′t) : ∀x ∈ Xt, V π]

t (x) = Vt(x) .

By definition of V π]

T (x) in (2.64) and of VT (x) in (2.61a), (H ′T ) holds true. For t ∈ [[0, T−1]],
assume that (H ′t+1) holds true. Let x be in Xt. We have

Vt(x) = Gt

[
Φt

{
Jt
(
x, π]t(x), ·

)
, Vt+1 ◦ ft(x, π]t(x), ·)

}]
by definition of π] in (2.62),

= Gt

[
Φt

{
Jt
(
x, π]t(x), ·

)
, V π]

t+1 ◦ ft(x, π
]
t(x), ·)

}]
by (H ′t+1)

= V π]

t (x) by (2.64).

Hence (H ′t) holds true, and the proof is complete by induction.

The following Theorem 2.31 is our main result on time-consistency in the NTU case.

Theorem 2.31. Assume that

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the NTU-dynamic uncertainty criterion
{
%NTU
t,T

}T
t=0

defined by (2.59) is time-
consistent;

2. the Markov optimization problem
{{

(PNTU
t )(x)

}
x∈Xt

}T
t=0

defined in (2.58) is time-

consistent, as soon as there exists an admissible policy π] ∈ Πad such that (2.62)
holds true.

Proof. In the proof, we drop the superscripts in V NTU
t , (PNTU

t )(x) and %NTU
t,T .

The second assertion is a straightforward consequence of the property that π] is an
optimal policy 11 for all Problems (Pt)(x). Hence, the Markov optimization problem (2.58)
is time-consistent.

11. In all rigor, we should say that, for all t ∈ [[0, T − 1]], the tail policy {π]s}T−1
s=t is an optimal policy for

Problem (Pt)(x), for any x ∈ Xt.



68 CHAPTER 2. TIME-CONSISTENCY

We now prove the first assertion.
Let t < t be both in [[0, T ]]. Consider two adapted uncertainty processes {As}T0 and

{As}T0 , where As : W[0:T ] → R̄ and As : W[0:T ] → R̄, satisfying (2.39a) and (2.39b), that
is,

As =As, ∀s ∈ [[t, t]] , (2.68a)

%t,T
(
{As}Tt

)
≤%t,T

(
{As}Tt

)
, (2.68b)

We show by backward induction that, for all t ∈ [[t, t]], the following statement (Ht) holds
true:

(Ht) %t,T
(
{As}Tt

)
≤ %t,T

(
{As}Tt

)
. (2.69)

First, we observe that (Ht) holds true by assumption (2.68b). Second, let us assume that,
for t > t, the assertion (Ht) holds true. Then, by (Ht), and as At−1 = At−1 by (2.68a),
monotonicity 12 of Φt−1 yields

Φt−1

{
At−1, %t,T

(
{As}Tt

)}
≤ Φt−1

{
At−1, %t,T

(
{As}Tt

)}
.

Monotonicity of Gt−1 then gives

〈Gt−1〉
[
Φt−1

{
At−1, %t,T

(
{As}Tt

)}]
≤ 〈Gt−1〉

[
Φt−1

{
At−1, %t,T

(
{As}Tt

)}]
.

By definition of %t−1,T in (2.59), we obtain (Ht−1). This ends the proof by induction.

Remark 2.32. As indicated in Remark 2.15, if we choose the inequality

∀s ∈ [[t, t]], As ≤ As , (2.70)

as assumption to define a time-consistent dynamic uncertainty criterion (rather than the
equality (2.43a)), we have to make, in Theorem 2.31, the assumption
“for all t ∈ [[0, T − 1]],”
• “the two-variables function (ct, ct+1) 7→ Φt(ct, ct+1) is non-decreasing”,
• instead of “for all ct, the single variable function ct+1 7→ Φt(ct, ct+1) is non-

decreasing”.

NUT Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{

(PNUT
t )(x)

}T
t=0

of optimization
problems parameterized by the state x ∈ Xt as the nesting

(PNUT
t )(x) min

π∈Πad
t

Φt

{
Gt

[
Jt
(
xt, ut, wt

)]
,Gt

[

Φt+1

{
Gt+1

[
Jt+1

(
xt+1, ut+1, wt+1

)]
, · · · (2.71a)

ΦT−1

{
GT−1

[
JT−1

(
xT−1, uT−1, wT−1

)]
,

GT

[
JT
(
xT , wT

)]}
· · ·
}]}

,

s.t. xt = x , (2.71b)

xs+1 = fs
(
xs, us, ws

)
, (2.71c)

us = πs(xs) , (2.71d)

us ∈ Us(xs) , (2.71e)

where constraints are satisfied for all s ∈ [[t, T − 1]].

12. Recall that, by Definition 2.18, Φt−1 is non-decreasing in its second argument. Remark 2.32 below
will enlighten this comment.



2.3. PROVING JOINT TIME-CONSISTENCY 69

Definition 2.33. We construct inductively a NUT-dynamic uncertainty criterion{
%NUT
t,T

}T
t=0

by, for any adapted uncertainty process
{
As
}T
s=0

,

%NUT
T

(
AT
)

= 〈GT 〉
[
AT
]
, (2.72a)

%NUT
t,T

({
As
}T
s=t

)
= Φt

{
〈Gt〉

[
At
]
, 〈Gt〉

[
%NUT
t+1,T

({
As
}T
s=t+1

)]}
, (2.72b)

∀t ∈ [[0, T − 1]] .

We define the Markov optimization problem (2.71) formally by

(PNUT
t )(x) min

π∈Πad
t

%NUT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.73)

where the functions Jx,πt,s are defined by (2.27).

Definition 2.34. We define the value functions inductively by the DPE

V NUT
T (x) = GT

[
JT (x, ·)

]
, ∀x ∈ XT , (2.74a)

V NUT
t (x) = inf

u∈Ut(x)
Φt

{
Gt

[
Jt(x, u, ·)

]
,Gt

[
V NUT
t+1 ◦ ft(x, u, ·)

]}
, (2.74b)

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

The following Proposition 2.35 expresses sufficient conditions under which any Prob-
lem (PNUT

t )(x), for any time t ∈ [[0, T − 1]] and any state x ∈ Xt, can be solved by means
of the value functions {V NUT

t }Tt=0 in Definition 2.34.

Proposition 2.35. Assume that
• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Assume that there exists 13 an admissible policy π] ∈ Πad such that

π]t(x) ∈ arg min
u∈Ut(x)

Φt

{
Gt

[
Jt(x, u, ·)

]
,Gt

[
V NUT
t+1 ◦ ft(x, u, ·)

]}
,

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .
(2.75)

Then, π] is an optimal policy for any Problem (PNUT
t )(x), for all t ∈ [[0, T ]] and for all

x ∈ Xt, and

V NUT
t (x) = min

π∈Πad
t

%NUT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.76)

Proof. In the proof, we drop the superscript in the value function V NUT
t , that we simply

denote by Vt. Let π ∈ Πad be a policy. For any t ∈ [[0, T ]], we define V π
t (x) as the

intertemporal cost from time t to time T when following policy π starting from state x:

V π
t (x) = %NUT

t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.77)

This expression is well defined because Jx,πt,s : W[t:s] → R̄, for s ∈ [[t, T ]] by (2.28).

13. See Footnote 10.



70 CHAPTER 2. TIME-CONSISTENCY

First, we show that the functions {V π
t }Tt=0 satisfy a backward equation “à la Bellman”:

V π
t (x) = Φt

{
Gt

[
Jt(x, πt(x), ·)

]
,Gt

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}
, ∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

(2.78)
Indeed, we have,

V π
T (x) = %NUT

T,T

(
Jx,πT,T

)
by the definition (2.77) of V π

T (x),

= %NUT
T,T

(
JT (x, ·)

)
by (2.27) that defines Jx,πT,T ,

= 〈GT 〉
[
JT (x, ·)

]
by the definition (2.72a) of %NTU

T ,

= GT

[
JT (x, ·)

]
by Definition 2.25 of 〈GT 〉.

We also have, for t ∈ [[0, T − 1]],

V π
t (x) = %NUT

t,T

({
Jx,πt,s

}T
s=t

)
by the definition (2.77) of V π

t (x),

= Φt

{
〈Gt〉

[
Jx,πt,t

]
, 〈Gt〉

[
%NUT
t+1,T

({
Jx,πt,s

}T
s=t+1

)]}
by the definition (2.72b) of %NUT

t+1,T ,

= Φt

{
〈Gt〉

[
Jx,πt,t

]
, 〈Gt〉

[
%NUT
t+1,T

({
J
ft(x,πt(x),·),π
t+1,s

}T
s=t+1

)]}
by the flow property (2.29)

= Φt

{
〈Gt〉

[
Jx,πt,t

]
, 〈Gt〉

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}
by the definition (2.77) of V π

t (x),

= Φt

{
〈Gt〉

[
Jt(x, πt(x), ·)

]
, 〈Gt〉

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}
by the flow property (2.29)

= Φt

{
Gt

[
Jt(x, πt(x), ·)

]
,Gt

[
V π
t+1 ◦ ft(x, πt(x), ·)

]}
by Definition 2.25 of 〈Gt〉.

Second, we show that Vt(x), as defined in (2.74) is lower than the value of the opti-
mization problem PNUT

t (x) in (2.71). For this purpose, we denote by (Ht) the following
assertion

(Ht) : ∀x ∈ Xt, ∀π ∈ Πad, Vt(x) ≤ V π
t (x) .

By definition of V π
T (x) in (2.77) and of VT (x) in (2.74a), assertion (HT ) is true.

Now, assume that (Ht+1) holds true. Let x be an element of Xt. Then, by definition
of Vt(x) in (2.74b), we obtain

Vt(x) ≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
, (2.79)

since, for all π ∈ Πad we have πt(x) ∈ Ut(x). By (Ht+1) we have, for any π ∈ Πad,

Vt+1 ◦ ft
(
x, πt(x), ·

)
≤ V π

t+1 ◦ ft
(
x, πt(x), ·

)
.



2.3. PROVING JOINT TIME-CONSISTENCY 71

From monotonicity of Φt and monotonicity of Gt, we deduce:

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
≤ Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
V π
t+1 ◦ ft

(
x, πt(x), ·

)]}
.

(2.80)

We obtain:

Vt(x) ≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
by (2.79),

≤ inf
π∈Πad

Φt

{
Gt

[
Jt
(
x, πt(x), ·

)]
,Gt

[
V π
t+1 ◦ ft+1

(
x, πt(x), ·

)]}
by (2.80),

= inf
π∈Πad

V π
t (x) by the definition (2.77) of V π

t (x).

Hence (Ht) holds true.

Third, we show that the lower bound Vt(x) for the value of the optimization prob-
lem PNUT

t (x) is achieved for the policy π] in (2.75). For this purpose, we consider the
following assertion

(H ′t) : ∀x ∈ Xt, V π]

t (x) = Vt(x) .

By definition of V π]

T (x) in (2.77) and of VT (x) in (2.74a), (H ′T ) holds true. For t ∈ [[0, T−1]],
assume that (H ′t+1) holds true. Let x be in Xt. We have

Vt(x) = Φt

{
Gt

[
Jt
(
x, π]t(x), ·

)]
,Gt

[
Vt+1 ◦ ft

(
x, πt(x), ·

)]}
by definition of π] in (2.75),

= Φt

{
Gt

[
Jt
(
x, π]t(x), ·

)]
,Gt

[
V π]

t+1 ◦ ft
(
x, πt(x), ·

)]}
by (H ′t+1)

= V π]

t (x) by (2.77).

Hence (H ′t) holds true, and the proof is complete by induction.

The following Theorem 2.36 is our main result on time-consistency in the NUT case.

Theorem 2.36. Assume that

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the NUT-dynamic uncertainty criterion
{
%NUT
t,T

}T
t=0

defined by (2.72) is time-
consistent;

2. the Markov optimization problem
{{

(PNUT
t )(x)

}
x∈Xt

}T
t=0

defined in (2.71) is time-

consistent, as soon as there exists an admissible policy π] ∈ Πad such that (2.75)
holds true.

Proof. In the proof, we drop the superscripts in V NUT
t , (PNUT

t )(x) and %NUT
t,T .

The second assertion is a straightforward consequence of the property that π] is an
optimal policy 14 for all Problems (Pt)(x). Hence, the Markov optimization problem (2.71)
is time-consistent.

14. See Footnote 11.



72 CHAPTER 2. TIME-CONSISTENCY

We now prove the first assertion. We suppose given a policy π ∈ Π, and a sequence
{xs}T0 of states, where xs ∈ Xs.

Let t < t be both in [[0, T ]]. Consider two adapted uncertainty processes {As}T0 and
{As}T0 , where As : W[0:T ] → R̄ and As : W[0:T ] → R̄, satisfying (2.39a) and (2.39b), that
is,

As = As, ∀s ∈ [[t, t]] , (2.81a)

%t,T
(
{As}Tt

)
≤ %t,T

(
{As}Tt

)
, (2.81b)

We show by backward induction that, for all t ∈ [[t, t]], the following statement (Ht) holds
true:

(Ht) %t,T
(
{As}Tt

)
≤ %t,T

(
{As}Tt

)
. (2.82)

First, we observe that (Ht) holds true by assumption (2.81b). Second, let us assume that,
for t > t, the assertion (Ht) holds true. Then, by (Ht), monotonicity of Gt−1 gives

〈Gt−1〉
[
%t,T

(
{As}Tt

)]
≤ 〈Gt−1〉

[
%t,T

(
{As}Tt

)]
.

As At−1 = At−1 by (2.81a), monotonicity 15 of Φt−1 yields

Φt−1

{
At−1, 〈Gt−1〉

[
%t,T

(
{As}Tt

)]}
≤ Φt−1

{
At−1, 〈Gt−1〉

[
%t,T

(
{As}Tt

)]}
.

By definition of %t−1,T in (2.72), we obtain (Ht−1). This ends the proof by induction.

2.3.3 Commutation of Aggregators

We introduce two notions of commutation between time and uncertainty aggregators.

TU-Commutation of Aggregators

The following notion of TU-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE.

Definition 2.37. Let t ∈ [[0, T ]] and s ∈ [[t + 1, T ]]. A [t :s]-multiple-step uncertainty-
aggregator G[t:s] is said to TU-commute with a one-step time-aggregator Φ if

G[t:s]
[
w[t:s] 7→ Φ

{
c,Dt

(
w[t:s]

)}]
= Φ

{
c,G[t:s]

[
w[t:s] 7→ Dt

(
w[t:s]

)]}
, (2.83)

for any function Dt ∈ F(W[t:s]; R̄) and any extended scalar c ∈ R̄.

In particular, a one-step time-aggregator Φ TU-commutes with a one-step uncertainty-
aggregator G[t:t] if

G[t:t]
[
Φ
{
c, Ct

}]
= Φ

{
c,G[t:t]

[
Ct
]}

, (2.84)

for any function 16 Ct ∈ F(Wt; R̄) and any extended scalar c ∈ R̄.

Example 2.38. If (Wt,Ft,Pt) is a probability space and if

Φ
{
c, ct

}
= α(c) + β(c)ct , (2.85)

where α : R̄ → R and β : R̄ → R+, then the extended 17 expectation G[t:t] = EPt TU-
commutes with Φ.

15. See Footnote 12.
16. We will consistently use the symbol Ct to denote a function in F(Wt; R̄), that is, Ct : Wt → R̄.
17. We set β ≥ 0, so that, when Ct ∈ F(Wt; R̄) is not integrable with respect to Pt, the equality (2.83)

still holds true.



2.3. PROVING JOINT TIME-CONSISTENCY 73

Proposition 2.39. Consider a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators and a

chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators. Suppose that, for any 0 ≤
t < s ≤ T , Gs TU-commutes with Φt.

Then,
〈 T

�
s=t

Gs

〉
TU-commutes with Φr, for any 0 ≤ r < t ≤ T , that is,

〈 T

�
s=t

Gs

〉[
Φr

{
cr, A

}]
= Φr

{
c,
〈 T

�
s=t

Gs

〉[
A
]}
, ∀ 0 ≤ r < t ≤ T , (2.86)

for any extended scalar c ∈ R̄ and any function A ∈ F
(
W[0:T ]; R̄

)
.

Proof. We prove by induction that( T

�
s=t

Gs

)[
Φr

{
c,Dt

}]
= Φr

{
c,
( T

�
s=t

Gs

)[
Dt

]}
, ∀ 0 ≤ r < t ≤ T , (2.87)

for any extended scalar c ∈ R̄ and any function Dt ∈ F
(
W[t:T ]; R̄

)
. For t ∈ [[1, T ]], let (Ht)

be the following assertion

(Ht) : ∀r ∈ [[0, t− 1]], ∀c ∈ R̄, ∀Dt ∈ F
(
W[t:T ]; R̄

)
,( T

�
s=t

Gs

)[
Φr

{
c,Dt

}]
= Φr

{
c,
( T

�
s=t

Gs

)[
Dt

]}
.

(2.88)

The assertion (HT ) is

(HT ) : ∀r ∈ [[0, T − 1]], ∀c ∈ R̄, ∀DT ∈ F
(
WT ; R̄

)
,

GT

[
Φr

{
c,DT

}]
= Φr

{
c,GT

[
DT

]}
.

Thus, the assertion (HT ) is true, since it coincides the property that, for any 0 ≤ r < T ,
GT TU-commutes with Φr (apply (2.83) where t = T , Φ = Φr).

Now, suppose that (Ht+1) holds true. Let r < t, c ∈ R̄ and Dt ∈ F
(
W[t:T ]; R̄

)
. We

have( T

�
s=t

Gs

)[
Φr

{
c,Dt

}]
,

= Gt

[
wt 7→

( T

�
t+1

Gs

)[
w[t+1:T ] 7→ Φr

{
c,Dt

(
wt, w[t+1:T ]

)}]]
,

by the definition (2.53) of composition,

= Gt

[
wt 7→ Φr

{
c,
( T

�
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]}]
by (Ht+1) since r < t < t+ 1,

and where, for all wt, Dt+1 : w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)
∈ F

(
W[t:T ]; R̄

)
,

= Φr

{
c,Gt

[
wt 7→

( T

�
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]]}
,

by commutation property (2.83) of Gt with Φ = Φr, since 0 ≤ r < t ≤ T ,

and where Ct : wt 7→
( T

�
s=t+1

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]
∈ F

(
Wt; R̄

)
,

= Φr

{
c,
( T

�
s=t

Gs

)[
Dt

]}
by the definition (2.53) of composition.

This ends the induction, hence the proof of (2.87). Then, (2.86) easily follows by the
extensions of Definitions 2.23 and 2.25.



74 CHAPTER 2. TIME-CONSISTENCY

UT-Commutation of Aggregators

The following notion of UT-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE. In practice, it is much more restrictive
than TU-commutation.

Definition 2.40. Let t ∈ [[0, T ]]. A multiple-step time-aggregator Φ : R̄k+1 → R̄ is said to
UT-commute with a one-step uncertainty-aggregator G[t:t] if〈

G[t:t]
〉 [

Φ
({
As
}k
s=0

)]
= Φ

({〈
G[t:t]

〉 [
As
]}k

s=0

)
, (2.89)

for any adapted uncertainty process
{
As
}k
s=0

.

In particular, a one-step time-aggregator Φ UT-commutes with a one-step uncertainty-
aggregator G[t:t] if

G[t:t]
[
Φ
{
Bt, Ct

}]
= Φ

{
G[t:t]

[
Bt
]
,G[t:t]

[
Ct
]}

, (2.90)

for any functions Bt, Ct in F(Wt; R̄). Comparing (2.90) with (2.84), we observe that
UT-commutation requires a property bearing on the first argument of the one-step
time-aggregator Φ, whereas TU-commutation does not. In practical applications, UT-
commutation is much more restrictive than TU-commutation.

Example 2.41. If (Wt,Ft,Pt) is a probability space, then the extended expectation G[t:t] =
EPt UT-commutes with Φ, given by Φ

{
c, ct

}
= α(c) + β(c)ct in (2.85), only in the case

where α is linear and β is a constant. Comparing with Example 2.38, UT-commutation
appears much more restrictive than TU-commutation.

Proposition 2.42. Consider a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators and a

chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators. Suppose that, for any 0 ≤
t < s ≤ T , Φs TU-commutes with Gt.

Then,

〈
T−1
�
s=t

Φs

〉
TU-commutes with Gr, for any r ∈ [[0, t−1]], that is, for any

{
As
}T
s=t

,

where As ∈ F
(
W[0:T ]; R̄

)
,〈

T−1

�
s=t

Φs

〉{{
Gr

[
As
]}T

s=t

}
= Gr

[〈
T−1

�
s=t

Φs

〉{{
As
}T
s=t

}]
, ∀0 ≤ r < t ≤ T . (2.91)

Proof. We prove by induction that〈
T−1

�
s=t

Φs

〉{{
Gr

[
Cs
]}T

s=t

}
= Gr

[〈T−1

�
s=t

Φs

〉{{
Cs
}T
s=t

}]
, ∀0 ≤ r < t ≤ T , (2.92)

for any
{
Cs
}T
s=t

, where Cs ∈ F
(
Wr; R̄

)
.

For t ∈ [[0, T − 1]], let (Ht) be the following assertion

(Ht) : ∀r ∈ [[0, t− 1]], ∀s ∈ [[t, T ]], ∀Cs ∈ F
(
Wr; R̄

)
,〈

T−1

�
s=t

Φs

〉{{
Gr

[
Cs
]}T

s=t

}
= Gr

[〈T−1

�
s=t

Φs

〉{{
Cs
}T
s=t

}]
.

(2.93)

The assertion (HT−1) is

(HT−1) : ∀r ∈ [[0, T − 2]], ∀CT ∈ F
(
Wr; R̄

)
, ∀CT−1 ∈ F

(
Wr; R̄

)
,

〈ΦT−1〉
{
Gr

[
CT−1

]
,Gr

[
CT
]}

= Gr

[
〈ΦT−1〉

{
CT−1, CT

}]
.

(2.94)



2.3. PROVING JOINT TIME-CONSISTENCY 75

Thus, the assertion (HT−1) is true, since it coincides the property that, for any 0 ≤ r < T ,
ΦT−1 TU-commutes with Gr (apply (2.89) where t = T , Φ = ΦT−1, As = Cs).

Now, suppose that (Ht+1) holds true. With r < t, and Cs ∈ F
(
Wr; R̄

)
, for all

s ∈ [[t, T ]], we have

〈
T−1

�
s=t

Φs

〉{{
Gr

[
Cs
]}T
s=t

}
= Φt

{
Gr

[
Ct
]
,

〈
T−1

�
s=t+1

Φs

〉{{
Gr

[
Cs
]}T
s=t+1

}}
by the definition (2.45) of composition,

= Φt

{
Gr

[
Ct
]
,Gr

[〈 T−1

�
s=t+1

Φs

〉{{
Cs
}T
s=t+1

}]}
by (Ht+1) since r < t < t+ 1

= Gr

[
Φt

{
Ct,

〈
T−1

�
s=t+1

Φs

〉{{
Cs
}T
s=t+1

}}]
by commutation property (2.89) of Gr with Φ = Φt

since 0 ≤ r < t ≤ T ,

= Gr

[〈T−1

�
s=t

Φs

〉{{
Cs
}T
s=t

}]
by the definition (2.45) of composition.

This ends the induction, hence the proof of (2.92). The property that

〈
T−1
�
s=t

Φs

〉
TU-

commutes with Gr, for any r ∈ [[0, t−1]], easily follows by the extensions of Definitions 2.23
and 2.25.

2.3.4 Time-Consistency for Non Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{

Φt

}T−1

t=0
of one-step time-aggregators,

• on the other hand, a chained sequence
{
Gt

}T
t=0

of one-step uncertainty-aggregators.

With these ingredients, and with the compositions
( T

�
s=t

Gs

)
and

〈
T

�
s=t

Gs

〉
introduced in

Definitions 2.27 and 2.25, and

〈
T−1
�
s=t

Φs

〉
in Definition 2.23, we present two ways to craft

a non-nested dynamic uncertainty criterion {%t,T }Tt=0, as introduced in Definition 2.7.
For each of them, we provide a DPE under the assumption that time and uncertainty
aggregators commute.



76 CHAPTER 2. TIME-CONSISTENCY

TU Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{

(PTU
t )(x)

}T
t=0

of optimization
problems parameterized by the state x ∈ Xt as

(PTU
t )(x) min

π∈Πad
t

Gt

[
Gt+1

[
· · ·GT

[
Φt

{
Jt
(
xt, ut, wt

)
,

Φt+1

{
Jt+1

(
xt+1, ut+1, wt+1

)
, · · · (2.95a)

ΦT−1

{
JT−1

(
xT−1, uT−1, wT−1

)
, JT

(
xT , wT

)}
· · ·
}}]

· · ·

]]
,

s.t. xt = x , (2.95b)

xs+1 = fs
(
xs, us, ws

)
, (2.95c)

us = πs(xs) , (2.95d)

us ∈ Us(xs) , (2.95e)

where constraints are satisfied for all s ∈ [[t, T − 1]].

We define the Markov optimization problem (2.95) formally by

(PTU
t )(x) min

π∈Πad
t

%TU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.96)

where the functions Jx,πt,s are defined by (2.27), and where %TU
t,T is defined as follows.

When we compose

[
F(W[0:s]; R̄)

]T
s=t

〈
T−1

�
s=t

Φs

〉
−−−−−−→ F(W[0:T ]; R̄)

〈
T

�
s=t

Gs

〉
−−−−−−→ F(W[0:t−1]; R̄), (2.97)

we obtain the following Definition.

Definition 2.43. We define the dynamic uncertainty criterion {%TU
t,T }Tt=0 by 18

%TU
t,T =

〈 T

�
s=t

Gs

〉
◦
〈
T−1

�
s=t

Φs

〉
, ∀t ∈ [[0, T − 1]] . (2.98)

When we plug the stream
{
Jx,πt,s

}T
s=t

of costs, introduced in Definition 2.5, into the
operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, first with respect to time, then
with respect to uncertainty.

• We aggregate streams
{
Jx,πt,s (w)

}T
s=t

of costs, first with respect to time, thanks to the

function
( T−1
�
s=t

Φs

)
: R̄T+1 → R̄. However, the result

( T−1
�
s=t

Φs

)({
Jx,πt,s (w)

}T
s=t

)
still

depends upon the scenario w.

18. With the convention that
( T−1

�
r=T

Φr
)

is the identity mapping.



2.3. PROVING JOINT TIME-CONSISTENCY 77

• Then, we aggregate uncertain intertemporal costs w 7→
( T−1
�
s=t

Φs

)({
Jx,πt,s (w)

}T
s=t

)
—

elements of the set F(W[t:T ]; R̄) of functions — second with respect to uncertainty,

thanks to the multiple-step uncertainty-aggregator
T

�
s=t

Gs : F(W[t:T ]; R̄)→ R̄.

The following Theorem 2.44 is our main result on time-consistency in the TU case.

Theorem 2.44. Assume that

• for any 0 ≤ s < t ≤ T , Gt TU-commutes with Φs,
• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the TU-dynamic uncertainty criterion
{
%TU
t,T

}T
t=0

defined by (2.98) is time-consistent;

2. the Markov optimization problem
{{

(PTU
t )(x)

}
x∈Xt

}T
t=0

defined in (2.95) is time-

consistent, as soon as there exists an admissible policy π] ∈ Πad such that (2.62)

holds true, where the value functions are the
{
V NTU
t

}T
t=0

in Definition 2.29.

Proof. Since, for any 0 ≤ s < t ≤ T , Gt TU-commutes with Φs, the TU- dynamic
uncertainty criterion {%TU

t,T }Tt=0, given by Definition 2.43, coincides with {%NTU
t,T }Tt=0, given

by Definition 2.28. Indeed, we prove that {%TU
t,T }Tt=0 satisfies the backward induction (2.59).

With the convention 19 that
( T−1
�
r=T

Φr

)
is the identity mapping, we have %TU

T = 〈GT 〉,

that is, (2.59a). For any
{
As
}T
t
∈
[
F(W[0:s]; R̄)

]T
s=t

, we have:

%TU
t

({
As
}T
s=t

)
=

〈 s

�
r=t

Gr

〉[〈T−1

�
r=t

Φr

〉{{
As
}T
s=t

}]
by (2.98),

= Gt

[〈 s

�
r=t+1

Gr

〉[〈T−1

�
r=t

Φr

〉{{
As
}T
s=t

}]]
by (2.53),

= Gt

[〈 s

�
r=t+1

Gr

〉
Φt

{
At,
( T−1

�
r=t+1

Φr

){
As
}T
s=t+1

}]
by (2.45),

= Gt

[
Φt

{
At,
〈 s

�
r=t+1

Gr

〉[( T−1

�
r=t+1

Φr

){
As
}T
s=t+1

]}]
by commutation property (2.91),

= Gt

[
Φt

(
At, %

TU
t+1

({
As
}T
s=t+1

))]
by (2.98).

19. See Footnote 18



78 CHAPTER 2. TIME-CONSISTENCY

UT Dynamic Uncertainty Criterion

With a slight abuse of notation, we define the sequence
{

(PUT
t )(x)

}T
t=0

of optimization
problems parameterized by the state x ∈ Xt as

(PUT
t )(x) min

π∈Πad
t

Φt

{
Gt

[
Jt
(
xt, ut, wt

)]
,

Φt+1

{
GtGt+1

[
Jt+1

(
xt+1, ut+1, wt+1

)
, · · ·

ΦT−1

{
Gt · · ·GT−1

[
JT−1

(
xT−1, uT−1, wT−1

)]
,

Gt · · ·GT

[
JT
(
xT , wT

)]}]
· · ·
}}

, (2.99a)

s.t. xt = x , (2.99b)

xs+1 = fs
(
xs, us, ws

)
, (2.99c)

us = πs(xs) , (2.99d)

us ∈ Us(xs) , (2.99e)

where constraints are satisfied for all s ∈ [[t, T − 1]].
We define the Markov optimization problem (2.99) formally by

(PUT
t )(x) min

π∈Πad
t

%UT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.100)

where the functions Jx,πt,s are defined by (2.27), and where %UT
t,T is defined as follows. We

define the mapping {( s

�
r=t

Gr

)}T
s=t

:
[
F(W[t:s]; R̄)

]T
s=t
→ R̄T+1 , (2.101)

for any
{
Dr

}T
r=t
∈
[
F(W[t:s]; R̄)

]T
s=t

, componentwise by( s

�
r=t

Gr

)[{
Ds

}T
s=t

]
=
{( s

�
r=t

Gr

)[
Ds

]}T
s=t

. (2.102)

In the same way, we define the mapping (see Definition 2.25):{〈 s

�
r=t

Gr

〉}T
s=t

:
[
F(W[0:s]; R̄)

]T
s=t
→
(
F(W[0:t]; R̄)

)T+1

. (2.103)

Definition 2.45. We define the dynamic uncertainty criterion {%UT
t,T }Tt=0 by

%UT
t,T =

〈
T−1

�
s=t

Φs

〉
◦
{〈 s

�
r=t

Gr

〉}T
s=t
, ∀t ∈ [[0, T − 1]] . (2.104)

The expression %UT
t,T is the output of the composition 20

[
F(W[0:s]; R̄)

]T
s=t

{〈
s

�
r=t

Gr
〉}T

s=t−−−−−−−−−−−→
(
F(W[0:t]; R̄)

)T+1

(
T−1

�
s=t

Φs

)
−−−−−−−→ F(W[0:t]; R̄) .

When we plug the stream
{
Jx,πt,s

}T
s=t

of costs, introduced in Definition 2.5, into the
operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, first with respect to uncertainty,
then with respect to time.

20. With the convention that F(W[0:−1]; R̄) = R̄, we have %UT
0 :

[
F(W[0:s]; R̄)

]T
s=t
→ R̄.



2.3. PROVING JOINT TIME-CONSISTENCY 79

• We aggregate the stream
{
Jx,πt,s

}T
s=t

of uncertain costs, first with respect to uncer-
tainty, producing{ s

�
r=t

Gr

[
Jx,πt,s

]}T
s=t

=

{
Gt

[
Jx,πt,t

]
, . . . ,

( T

�
r=t

Gr

)[
Jx,πt,T

]}
, (2.105)

thanks to the multiple-step uncertainty-aggregators
s

�
r=t

Gr : F(W[t:s]; R̄) → R̄, for

s ∈ [[t, T ]]. However, the resulting quantity
{( s

�
r=t

Gr

)[
Jx,πt,s

]}T
s=t

still depends upon

time s.

• Then, we aggregate the time sequence
{( s

�
r=t

Gr

)[
Jx,πt,s

]}T
s=t

of costs, second with

respect to time, thanks to
( T−1
�
r=t

Φr

)
: R̄T+1 → R̄.

The following Theorem 2.46 is our main result on time-consistency in the UT case.

Theorem 2.46. Assume that
• for any 0 ≤ s < t ≤ T , Gt UT-commutes with Φs,
• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], Gt is non-decreasing.

Then

1. the UT-dynamic uncertainty criterion
{
%UT
t,T

}T
t=0

defined by (2.104) is time-
consistent;

2. the Markov optimization problem
{{

(PUT
t )(x)

}
x∈Xt

}T
t=0

defined in (2.99) is time-

consistent, as soon as there exists an admissible policy π] ∈ Πad such that (2.75)

holds true, where the value functions are the
{
V NUT
t

}T
t=0

in Definition 2.34.

Proof. Since, for any 0 ≤ s < t ≤ T , Gt UT-commutes with Φs, the UT- dynamic
uncertainty criterion {%UT

t,T }Tt=0, given by Definition 2.45, coincides with {%NUT
t,T }Tt=0, given

by Definition 2.33.
Indeed, we prove that {%UT

t,T }Tt=0 satisfies the backward induction (2.72).

With the convention 21 that
( T−1
�
r=T

Φr

)
is the identity mapping, we have %UT

T = 〈GT 〉,

that is, (2.72a). For any
{
As
}T
t
∈
[
F(W[0:s]; R̄)

]T
s=t

, we have:

%N
t

({
As
}T
t

)
=
( T−1

�
r=t

Φr

){〈 s

�
r=t

Gr

〉[
As
]}T

s=t
by (2.104),

= Φt

{
Gt

[
At
]
,
( T−1

�
r=t+1

Φr

){〈 s

�
r=t

Gr

〉[
As
]}T

s=t+1

}
by (2.45),

= Φt

{
Gt

[
At
]
,
( T−1

�
r=t+1

Φr

){
Gt

[〈 s

�
r=t+1

Gr

〉[
As
]]}T

s=t+1

}
by (2.53),

= Φt

{
Gt

[
At
]
,
( T−1

�
r=t+1

Φr

)
Gt

[{〈 s

�
r=t+1

Gr

〉[
As
]}T

s=t+1

]}
by (2.102),

= Φt

{
Gt

[
At
]
,Gt

[( T−1

�
r=t+1

Φr

){〈 s

�
r=t+1

Gr

〉[
As
]}T

s=t+1

]}
by commutation property (2.91),

= Φt

{
Gt

[
At
]
,Gt

[
%N
t

({
As
}T
s=t+1

)]}
by (2.104),

21. See Footnote 18



80 CHAPTER 2. TIME-CONSISTENCY

This ends the proof.

2.3.5 Applications

Now, we present applications of Theorem 2.44, that is, the TU case. Indeed, Theo-
rems 2.31 and 2.36 in the nested cases NTU and NUT are less interesting because they
cover cases where time-consistency is commonplace since it only depends on monotonoc-
ity assumptions. Regarding Theorem 2.46, it is not powerful because UT-commutation
appears much more restrictive than TU-commutation: in practice, Theorem 2.46 only
applies to linear one-step time-aggregators Φ

{
c, d
}

= αc + βd (see Example 2.41), that
obviously commute with expectations.

Coherent Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to coherent
risk measures (see Definition 2.9), and we show that they display time-consistency. We
thus extend, to more general one-step time-aggregators, results known for the sum (see
e.g. [105,109]).

We denote by P(Wt) the set of probabilities over (Wt,Wt). Let P0 ⊂ P(W0), . . . ,
PT ⊂ P(WT ). If A and B are sets of probabilities, then A⊗B is defined as

A⊗B = {PA ⊗ PB|PA ∈ A, PB ∈ B} . (2.106)

Let (αt)t∈[[0,T−1]] and (βt)t∈[[0,T−1]] be sequences of functions, each mapping R̄ into R, with
the additional property that βt ≥ 0, for all t ∈ [[0, T − 1]]. We set, for all t ∈ [[0, T ]],

%co
t,T (
{
As
}T
s=t

) = sup
Pt∈Pt

EPt

[
· · · sup

PT∈PT
EPT

[ T∑
s=t

(
αs
(
As
) s−1∏
r=t

βr
(
Ar
))]
· · ·
]
, (2.107)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (cT ) = cT .

Proposition 2.47. Time-consistency holds true for
• the dynamic uncertainty criterion {%cot,T }Tt=0 given by (2.107),
• the Markov optimization problem

min
π∈Πad

%cot,T (
{
Jx,πt,s

}T
s=t

), ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.108)

where Jx,πt,s (w) is defined by (2.27), as soon as there exists an admissible policy π] ∈
Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+ βt

(
Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT
[
JT (x, ·)

]
, (2.109a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
(2.109b)

+ βt
(
Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
.

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
• the one-step time-aggregators are defined by

∀t ∈ [[0, T − 1]], ∀
(
ct, ct+1

)
∈ R̄2, Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 , (2.110a)



2.3. PROVING JOINT TIME-CONSISTENCY 81

• the one-step uncertainty-aggregators are defined by

∀t ∈ [[0, T − 1]], ∀Ct ∈ F(Wt; R̄), Gt

[
Ct
]

= sup
Pt∈Pt

EPt
[
Ct
]
. (2.110b)

The DPE (2.109) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any 0 ≤ t < s ≤ T , Gs TU-commutes with Φt. Indeed, letting
ct be an extended real number in R̄ and Cs a function in F(Ws; R̄), we have 22

Gs

[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs
[
α(ct) + β(ct)Cs

]}
by (2.110b) and (2.110a),

= αt(ct) + βt(ct) sup
Ps∈Ps

{
EPs [Cs]

}
as βt ≥ 0 ,

= αt(ct) + βt(ct)Gs[Cs] by (2.110b),

= Φt{ct,Gs[Cs]} by (2.110a).

Second, we observe that Gt is non-decreasing (see Definition 2.24), and that ct+1 ∈ R̄ 7→
Φt

{
ct, ct+1

}
= αt(ct) + βt(ct)ct+1 is non-decreasing, for any ct ∈ R̄.

This ends the proof.

The one-step uncertainty-aggregators Gt in (2.110b) correspond to a coherent risk
measure, by Definition 2.9 and the comments that follow it.

Our result differs from [105, Theorem 2] in two ways. On the one hand, in [105],
arguments are given to show that there exists an optimal Markovian policy among the set
of adapted policies (that is, having a policy taking as argument the whole past uncertainties
would not give a better cost than a policy taking as argument the current value of the
state). We do not tackle this issue since we directly deal with policies as functions of the
state. Where we suppose that there exists an admissible policy π] ∈ Πad such that (2.62)
holds true, [105] gives conditions ensuring this property. On the other hand, where [105]
restricts to the sum to aggregate instantaneous costs, we consider more general one-step
time-aggregators Φt. For instance, our results applies to the product of costs.

Convex Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see Definition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that βt ≡ 1
and an additional data (Υt)t∈[[0,T ]].

Let P0 ⊂ P(W0), . . . , PT ⊂ P(WT ), and (Υt)t∈[[0,T ]] be sequence of functions, each
mapping P(Wt) into R̄. Let (αt)t∈[[0,T ]] be sequence of functions, each mapping R̄ into R.
We set, for all t ∈ [[0, T ]],

%cx
t,T (
{
As
}T
t

) = sup
Pt∈Pt

EPt

[
· · · sup

PT∈PT
EPT

[ T∑
s=t

(
αs(As)−Υs(Ps)

)]
· · ·
]
, (2.111)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (cT ) = cT .

Proposition 2.48. Time-consistency holds true for

• the dynamic uncertainty criterion {%cxt,T }Tt=0 given by (2.111),

22. This result can also be obtained by use of Proposition 2.52 with I = Ps.



82 CHAPTER 2. TIME-CONSISTENCY

• the Markov optimization problem

min
π∈Πad

%cxt,T (
{
Jx,πt,s

}T
s=t

), ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.112)

where Jx,πt,s (w) is defined by (2.27), as soon as there exists an admissible policy π] ∈
Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(Pt)

}
,

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT

EPT
[
JT (x, ·)

]
−ΥT (PT ) , (2.113a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt

{
EPt

[
αt
(
Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(Pt)

}
. (2.113b)

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
• the one-step time-aggregators are defined by

Φt

{
ct, ct+1

}
= αt(ct) + ct+1, ∀t ∈ [[0, T − 1]], ∀

(
ct, ct+1

)
∈ R̄2 , (2.114a)

• the one-step uncertainty-aggregators are defined by

Gt

[
Ct
]

= sup
Pt∈Pt

EPt
[
Ct
]
−Υt(Pt), ∀t ∈ [[0, T − 1]], ∀Ct ∈ F(Wt; R̄) . (2.114b)

The DPE (2.113) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any t ∈ [[0, T − 1]] and s ∈ [[t + 1, T ]], Gs TU-commutes with
Φt. Indeed, letting ct be an extended real number in R̄ and Cs a function in F(Ws; R̄),
we have 23

Gs

[
Φt{ct, Cs}

]
= sup

Ps∈Ps

{
EPs
[
α(ct) + Cs

]
−Υs(Ps)

}
by (2.114b) and (2.114a)

= αt(ct) + sup
Ps∈Ps

{
EPs [Cs]−Υs(Ps)

}
= αt(ct) + Gs[Cs] by (2.114b)

= Φt{ct,Gs[Cs]} by (2.114a).

Second, we observe that Gt is non-decreasing (see Definition 2.24), and that ct+1 ∈ R̄ 7→
Φt

{
ct, ct+1

}
= αt(ct) + ct+1 is non-decreasing, for any ct ∈ R̄.

This ends the proof.

The one-step uncertainty-aggregators Gt in (2.114b) correspond to a convex risk mea-
sure, by Definition 2.9 and the comments that follow it.

Worst-Case Risk Measures (Fear Operator)

A special case of coherent risk measures consists of the worst case scenario operators,
also called “fear operators” and introduced in §2.1. For this subclass of coherent risk
measures, we show that time-consistency holds for a larger class of time-aggregators than
the ones above.

23. This result can also be obtained by use of Proposition 2.52 with I = Ps.



2.3. PROVING JOINT TIME-CONSISTENCY 83

For any t ∈ [[0, T − 1]], let W̃t be a non empty subset of Wt, and let Φt : R̄2 → R̄ be
a function which is continuous and non-decreasing in its second variable. We set, for all
t ∈ [[0, T ]],

%wc
t,T (
{
As
}T
t

) = sup{
ws
}T
t
∈W̃t×···×W̃T

Φt

{
At(
{
ws
}T
t

),Φt+1

{
· · · ,

ΦT−1

{
AT−1(wT−1, wT ), AT (wT )

}}}
,

(2.115)

for any adapted uncertain process
{
At
}T

0
.

Proposition 2.49. Time-consistency holds true for
• the dynamic uncertainty criterion {%wct,T }Tt=0 given by (2.115),
• the Markov optimization problem

min
π∈Πad

%wct,T (
{
Jx,πt,s

}T
s=t

) , (2.116)

where Jx,πt,s (w) is defined by (2.27), as soon as there exists an admissible policy π] ∈
Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
,

where the value functions are given by the following DPE

VT (x) = sup
wT∈W̃T

JT (x,wT ) , (2.117a)

Vt(x) = min
u∈Ut(x)

sup
wt∈W̃t

Φt

{
Jt
(
x, u, wt

)
, Vt+1 ◦ ft

(
x, u, wt

)}
. (2.117b)

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where the one-step
uncertainty-aggregators are defined by

Gt

[
Ct
]

= sup
wt∈W̃t

Ct(wt), ∀t ∈ [[0, T − 1]], ∀Ct ∈ F(Wt; R̄) . (2.118)

The DPE (2.117) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any t ∈ [[0, T − 1]] and s ∈ [[t + 1, T ]], Gs TU-commutes with
Φt. Indeed, letting ct be an extended real number in R̄ and Cs a function in F(Ws; R̄),
we have 24

Gs

[
Φt{ct, Cs}

]
= sup

ws∈W̃s

[
Φt

{
ct, Cs(ws)

}]
by (2.118),

= Φt

{
ct, sup

w∈W̃s

[
Cs(ws)

]}
by continuity of Φt{ct, ·} ,

= Φt

{
ct,Gs[Cs]

}
by (2.118).

Second, we observe that Gt is non-decreasing (see Definition 2.24), and that ct+1 7→
Φt(ct, ct+1) is non-decreasing for any ct ∈ R̄, by assumption.

This ends the proof.

Note that %wc
t,T is simply the fear operator on the Cartesian product W̃t×· · ·×W̃T . An

example of monotonous one-step time-aggregator is Φt

{
ct, ct+1

}
= max

{
ct, ct+1

}
, used in

the so-called Rawls or maximin criterion [34].

24. This result can also be obtained by use of Proposition 2.52 with I = W̃s.



84 CHAPTER 2. TIME-CONSISTENCY

2.3.6 Complements on TU-Commuting Aggregators

Here, we present how we can construct new TU-commuting aggregators from known
TU-commuting aggregators. We do not consider UT-commutation, since we have seen
that it appears much more restrictive than TU-commutation (see Example 2.41).

For this purpose, we consider a fixed non empty set I and a mapping Γ from R̄I to R̄.

Time-Aggregators

Let (Φi)i∈I be a family of one-step time-aggregators. Thanks to the mapping Γ : R̄I →
R̄, we define the one-step time-aggregator Γ

[
(Φi)i∈I

]
by

Γ
[
(Φi)i∈I

]{
c, d
}

= Γ
({

Φi{c, d}
}
i∈I

)
, (2.119)

for all c ∈ R̄ and d ∈ R̄.

Proposition 2.50. Let t ∈ [[0, T ]] and Gt be a t-one-step uncertainty-aggregator. Suppose
that
• Gt TU-commutes with ψi, for all i ∈ I,
• for all i ∈ I and for all Cit ∈ F(Wt; R̄),

Gt

[
Γ
({
Cit
}
i∈I
)]

= Γ

({
Gt

[
Cit
]}

i∈I

)
. (2.120)

Then Gt TU-commutes with Γ
[
(Φi)i∈I

]
.

Proof. We set Φ = Γ
[
(Φi)i∈I

]
. For c ∈ R̄ and Ct ∈ F(Wt, R̄), we have

Gt

[
Φ
{
c, Ct

}]
= Gt

[
Γ
({

Φi{c, Ct}
}
i∈I

)]
by definition of Φ in (2.119),

= Γ

({
Gt

[
Φi{c, Ct}

]}
i∈I

)
by (2.120) with Cit = Φi{c, Ct} ,

= Γ

({
Φi
{
c,Gt[Ct]

}
i∈I

})
by TU-commutation (2.83),

= Φ
{
c,Gt[Ct]

}
by definition of Φ in (2.119).

By Definition 2.37, this ends the proof.

Uncertainty-Aggregators

Let t ∈ [[0, T ]] and {Gt
i}i∈I be a family of t-one-step uncertainty-aggregators. Thanks

to the mapping Γ : R̄I → R̄, we define the t-one-step uncertainty-aggregator Γ
[
{Gt

i}i∈I
]

by

∀Ct ∈ F(Wt; R̄), Γ
[
{Gt

i}i∈I
][
Ct
]

= Γ
({

Gt
i
[
Ct
]}
i∈I

)
. (2.121)

We do not give the proof of the next Proposition 2.51, as it follows the same line as that
of Proposition 2.50.

Proposition 2.51. Let Φ be a one-step time-aggregator. Suppose that
• Φ TU-commutes with Gt

i, for all i ∈ I,
• for all c ∈ R̄, for all i ∈ I and for all ci ∈ R̄,

Φ
(
c,Γ
({
ci
}
i∈I
))

= Γ

({
Φ
(
c,
{
ci
})

i∈I

})
. (2.122)



2.4. EXTENSION TO MARKOV AGGREGATORS 85

Then Φ TU-commutes with Γ
[
{Gt

i}i∈I
]
.

As a corollary, we obtain the following practical result.

Proposition 2.52. Let Φ be a one-step time-aggregator. Suppose that
• Gt

i TU-commutes with Φ, for all i ∈ I,
• for all c ∈ R̄, Φ

{
c, ·
}

is continuous and non-decreasing. 25

Then, the t-one-step uncertainty-aggregator supi∈I Gt
i TU-commutes with Φ, and so does

infi∈I Gt
i, provided infi∈I Gt

i never takes the value −∞.

Proof. We are going to show that (2.119) holds true, and then the proof is a straightforward
application of Proposition 2.51. We set Ḡt = θ supi∈I Gt

i+(1−θ) infi∈I Gt
i, with θ ∈ [0, 1]

(only at the end, do we take θ ∈ {0, 1}). For any (c, Ct) ∈ R̄×F(Wt, R̄), we have

Ḡt

[
Φ
{
c, Ct

}]
= (θ sup

i∈I
+(1− θ) inf

i∈I
)Gt

i
[
Φ
{
c, Ct

}]
by definition of Ḡt ,

= (θ sup
i∈I

+(1− θ) inf
i∈I

)Φ
{
c,Gt

i
[
Ct
]}

by TU-commutation (2.83),

= θ sup
i∈I

Φ
{
c,Gt

i
[
Ct
]}

+ (1− θ) inf
i∈I

Φ
{
c,Gt

i
[
Ct
]}

,

= θΦ
{
c, sup

i∈I
Gt

i
[
Ct
]}

+ (1− θ)Φ
{
c, inf
i∈I

Gt
i
[
Ct
]}

,

by continuity and monotonicity of Φ
{
c, ·
}
,

= Φ
{
c, (θ sup

i∈I
+(1− θ) inf

i∈I
)Gt

i
[
Ct
]}

when θ ∈ {0, 1} .

The rest of the proof is a straightforward application of Proposition 2.51.

The following Proposition 2.53 is an easy extension of Proposition 2.52.

Proposition 2.53. Suppose that the assumptions of Proposition 2.52 hold true. Let Ij ⊂
I, j ∈ J and Ij ⊂ I, j ∈ J be finite families of non empty subsets of I.
• If Φ is affine in its second variable, that is, if

Φ
{
c, d
}

= α(c) + β(c)d , (2.123)

and if ({θj}j∈J , {θj}j∈J) are non-negative scalars that sum to one, the convex com-
bination ∑

j∈J
θj inf

i∈Ij
Gt

i +
∑
j∈J

θj sup
i∈Ij

Gt
i (2.124)

of infimum or supremum of subfamilies of {Gt
i}i∈I TU-commutes with Φ, provided

infi∈Ij Gt
i never takes the value −∞.

• If Φ is linear in its second variable, that is, if

Φ
{
c, d
}

= β(c)d , (2.125)

and if ({θj}j∈J , {θj}j∈J) are non-negative scalars, the combination∑
j∈J

θj inf
i∈Ij

Gt
i +
∑
j∈J

θj sup
i∈Ij

Gt
i (2.126)

of infimum or supremum of subfamilies of {Gt
i}i∈I TU-commutes with Φ, provided

infi∈Ij Gt
i never takes the value −∞.

25. Instead of the continuity of Φ
{
c, ·
}

, we can assume that, for all Ct ∈ F(Wt, R̄), supi∈I Gt
i[Ct] is

achieved (always true for I finite).



86 CHAPTER 2. TIME-CONSISTENCY

2.4 Extension to Markov Aggregators

Here, we extend the results of §2.3 to the case where we allow one-step time and
uncertainty aggregators of depend on the state. The difficulty of this extension is mainly
one of notations. We do not give the proofs because they follow the sketch of those
in §2.3.2 and in §2.3.4. We will reap the benefits of this extension in §2.4.6, where we
present applications.

2.4.1 Markov Time-Aggregators and their Composition

We allow one-step time-aggregators to depend on the state as follows (Definition 2.54
differs from Definition 2.18 only through the indexation by the state).

Definition 2.54. Let t ∈ [[0, T ]]. A one-step Markov time-aggregator is a family{
Φxt
t

}
xt∈Xt of one-step time-aggregators Φxt

t : R̄2 → R̄ indexed by the state xt ∈ Xt.

Now, we introduce the composition of one-step Markov time-aggregators.

Definition 2.55. Let
{{

Φxt
t

}
xt∈Xt

}T−1

t=0
be a sequence of one-step Markov time-

aggregators. Let t ∈ [[0, T − 1]]. Given a policy π ∈ Π and xt ∈ Xt, we define the

composition

〈
xt,π
�

t≤s≤T−1
Φs

〉
:
[
F(W[0:T ]; R̄)

]T
t
→ F(W[0:T ]; R̄) by

(〈
xt,π

�
t≤s≤T−1

Φs

〉{
{As}Tt

})(
w
)

=
( xt,π

�
t≤s≤T−1

Φ
X
xt,π
t,s (w)

s

){
{As

(
w
)
}Tt
}
, (2.127)

for all scenario w ∈ W[0:T ], for any sequence {As}Ts=t ∈
(
F(W[0:T ]; R̄)

)T−t+1
, that is,

where As ∈ F
(
W[0:T ]; R̄

)
.

Notice that the extension, to one-step Markov time-aggregators, of the composition
involves the dynamical system (2.2) and a policy (whereas, in Definition 2.23, the compo-
sition is independent of the policy).

Remark 2.56. Observe that we have defined

〈
xt,π
�

t≤s≤T−1
Φs

〉
, defined over functions,

but not
( xt,π
�

t≤s≤T−1
Φs

)
, defined over extended reals. Observe also that the image by〈

xt,π
�

t≤s≤T−1
Φs

〉
of any sequence c[t:T ] of extended reals is not an extended real, but is a

function: (〈
xt,π

�
t≤s≤T−1

Φs

〉{
c[t:T ]

})(
w
)

=
( xt,π

�
t≤s≤T−1

Φ
X
xt,π
t,s (w)

s

){
c[t:T ]

}
. (2.128)

2.4.2 Markov Uncertainty-Aggregators and their Composition

We allow one-step uncertainty-aggregators to depend on the state as follows (Defini-
tion 2.57 differs from Definition 2.24 only through the indexation by the state).

Definition 2.57. Let t ∈ [[0, T − 1]]. A t-one-step Markov uncertainty-aggregator is a
family

{
Gxt
t

}
xt∈Xt of t-one-step uncertainty-aggregators indexed by the state xt ∈ Xt.

We say that a sequence
{{

Gxt
t

}
xt∈Xt

}T
t=0

of one-step Markov uncertainty-aggregators
is a chained sequence if Gxt

t is a t-one-step uncertainty-aggregator, for all t ∈ [[0, T ]].



2.4. EXTENSION TO MARKOV AGGREGATORS 87

The extension, to one-step Markov uncertainty-aggregators, of the composition involves
the dynamical system (2.2) and a policy (whereas, in Definition 2.27, the composition is
independent of the policy). The formal definition is as follows.

Definition 2.58. Consider a chained sequence
{{

Gxt
t

}
xt∈Xt

}T
t=0

of one-step Markov

uncertainty-aggregators.

For a policy π ∈ Π, for t ∈ [[0, T ]] and for a state xt ∈ Xt, we define the composition
xt,π

�
t≤s≤T

Gs as a functional mapping F
(
W[t:T ]; R̄

)
into R̄, inductively given by

xT ,π

�
T≤s≤T

Gs = GxT
T , (2.129a)

and then backward by, for any function Dt ∈ F
(
W[t:T ]; R̄

)
,

( xt,π

�
t≤s≤T

Gs

)[
Dt

]
= Gxt

t

[
wt 7→

( ft(xt,πt(xt),wt),π

�
t+1≤s≤T

Gs

)[
w[t+1:T ] 7→ Dt

(
wt, w[t+1:T ]

)]]
.

(2.129b)

2.4.3 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider

• on the one hand, a sequence
{{

Φxt
t

}
xt∈Xt

}T−1

t=0
of one-step Markov time-aggregators,

• on the other hand, a chained sequence
{{

Gxt
t

}
xt∈Xt

}T
t=0

of one-step Markov

uncertainty-aggregators.

With these ingredients, we present two ways to design a Markov dynamic uncertainty
criterion as introduced in Definition 2.7.

NTU Dynamic Markov Uncertainty Criterion

Definition 2.59. Let a policy π ∈ Π be given. We construct inductively a NTU-Markov

dynamic uncertainty criterion
{{
%xt,π,NTU
t,T

}
xt∈Xt

}T
t=0

by

%xT ,π,NTU
T

(
AT
)

=
〈
GxT
T

〉 [
AT
]
, (2.130a)

%xt,π,NTU
t,T

({
As
}T
s=t

)
= 〈Gxt

t 〉

[
Φxt
t

{
At, %

ft(xt,πt(xt),·),π,NTU
t+1,T

({
As
}T
s=t+1

)}]
,

∀t ∈ [[0, T − 1]] , (2.130b)

for any sequence {xs}T0 of states, where xs ∈ Xs.

We define the Markov optimization problem

(PMNTU
t )(x) min

π∈Πad
t

%xt,π,NTU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.131)

where the functions Jx,πt,s are defined by (2.27).



88 CHAPTER 2. TIME-CONSISTENCY

Definition 2.60. We define the value functions inductively by the DPE

V MNTU
T (x) = Gx

T

[
JT (x, ·)

]
, ∀x ∈ XT , (2.132a)

V MNTU
t (x) = inf

u∈Ut(x)
Gx
t

[
Φx
t

{
Jt(x, u, ·), V MNTU

t+1 ◦ ft(x, u, ·)
}]

, (2.132b)

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

The following Proposition 2.61 expresses sufficient conditions under which any Prob-
lem (PMNTU

t )(x), for all t ∈ [[0, T ]] and for all x ∈ Xt, can be solved by means of the value
functions in Definition 2.60.

Proposition 2.61. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φxt
t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt
t is non-decreasing.

Assume that there exists 26 an admissible policy π] ∈ Πad such that

π]t(x) ∈ arg min
u∈Ut(x)

Gx
t

[
Φx
t

{
Jt(x, u, ·),V MNTU

t+1 ◦ ft(x, u, ·)
}]

,

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

(2.133)

Then, π] is an optimal policy for any Problem (PMNTU
t )(x), for all t ∈ [[0, T ]] and for all

x ∈ Xt, and

V MNTU
t (x) = min

π∈Πad
t

%x,π,NTU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.134)

The following Theorem 2.62 is our main result on time-consistency in the NTU Markov
case.

Theorem 2.62. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φxt
t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt
t is non-decreasing.

Then

1. for all policy π ∈ Π, the NTU-Markov dynamic uncertainty criterion{{
%xt,π,NTU
t,T

}
xt∈Xt

}T
t=0

defined by (2.130) is time-consistent;

2. the Markov optimization problem
{{

(PMNTU
t )(x)

}
x∈Xt

}T
t=0

defined in (2.131) is

time-consistent, as soon as there exists an admissible policy π] ∈ Πad such
that (2.133) holds true.

26. See Footnote 10.



2.4. EXTENSION TO MARKOV AGGREGATORS 89

NUT Dynamic Markov Uncertainty Criterion

Definition 2.63. Let a policy π ∈ Π be given. We construct inductively a NUT-Markov

dynamic uncertainty criterion
{{
%xt,π,NUT
t,T

}
xt∈Xt

}T
t=0

by

%xT ,π,NUT
T

(
AT
)

=
〈
GxT
T

〉 [
AT
]
, (2.135a)

%xt,π,NUT
t,T

({
As
}T
s=t

)
= Φxt

t

{
〈Gxt

t 〉
[
At

]
,

〈Gxt
t 〉
[
%
ft(xt,πt(xt),·),π,NUT
t+1,T

({
As
}T
s=t+1

)]}
,

∀t ∈ [[0, T − 1]] , (2.135b)

for any sequence {xs}Ts=0 of states, where xs ∈ Xs.

We define the Markov optimization problem

(PMNUT
t )(x) min

π∈Πad
t

%xt,π,NUT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.136)

where the functions Jx,πt,s are defined by (2.27).

Definition 2.64. We define the value functions inductively by the DPE

V MNUT
T (x) = Gx

T

[
JT (x, ·)

]
, ∀x ∈ XT , (2.137a)

V MNUT
t (x) = inf

u∈Ut(x)
Φx
t

{
Gx
t

[
Jt(x, u, ·)

]
,Gx

t

[
V MNUT
t+1 ◦ ft(x, u, ·)

]}
, (2.137b)

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .

The following Proposition 2.65 expresses sufficient conditions under which any Prob-
lem (PMNUT

t )(x), for all t ∈ [[0, T ]] and for all x ∈ Xt, can be solved by means of the value
functions in Definition 2.64.

Proposition 2.65. Assume that
• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φxt

t is non-decreasing,
• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt

t is non-decreasing.
Assume that there exists 27 an admissible policy π] ∈ Πad such that

π]t(x) ∈ arg min
u∈Ut(x)

Φx
t

{
Gx
t

[
Jt(x, u, ·)

]
,Gx

t

[
V MNUT
t+1 ◦ ft(x, u, ·)

]}
,

∀t ∈ [[0, T − 1]], ∀x ∈ Xt .
(2.138)

Then, π] is an optimal policy for any Problem (PMNUT
t )(x), for all t ∈ [[0, T ]] and for all

x ∈ Xt, and

V MNUT
t (x) = min

π∈Πad
t

%x,π,NUT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt . (2.139)

The following Theorem 2.66 is our main result on time-consistency in the NUT Markov
case.

27. See Footnote 10.



90 CHAPTER 2. TIME-CONSISTENCY

Theorem 2.66. Assume that

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φxt
t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt
t is non-decreasing.

Then

1. for all policy π ∈ Π, the NUT-Markov dynamic uncertainty criterion{{
%xt,π,NUT
t,T

}
xt∈Xt

}T
t=0

defined by (2.135) is time-consistent;

2. the Markov optimization problem
{{

(PMNUT
t )(x)

}
x∈Xt

}T
t=0

defined in (2.136) is

time-consistent, as soon as there exists an admissible policy π] ∈ Πad such
that (2.138) holds true.

2.4.4 Commutation of Markov Aggregators

We extend the results on commutation obtained in §2.3.3 to Markov time and uncer-
tainty aggregators. We do not give the proofs.

Consider a sequence
{{

Φxt
t

}
xt∈Xt

}T−1

t=0
of one-step Markov time-aggregators and a

sequence
{{

Gxt
t

}
xt∈Xt

}T
t=0

of one-step Markov uncertainty-aggregators.

TU-Commutation of Markov Aggregators

The following Proposition 2.67 extends Proposition 2.39 to one-step Markov aggrega-
tors.

Proposition 2.67. Suppose that, for any 0 ≤ t < s ≤ T , for any states xt ∈ Xt and
xs ∈ Xs, Gxs

s TU-commutes with Φxt
t .

Then, for any policy π ∈ Π, any 0 ≤ r < t ≤ T , any states xt ∈ Xt and xr ∈ Xr,〈
xt,π

�
t≤s≤T

Gs

〉
and

〈
Φxr
r

〉
TU-commute, that is,

〈 xt,π

�
t≤s≤T

Gs

〉[〈
Φxr
r

〉{
c, A

}]
=
〈

Φxr
r

〉{
c,

〈 xt,π

�
t≤s≤T

Gs

〉[
A
]}

, (2.140)

for any extended scalar c ∈ R̄ and any function A ∈ F
(
W[0:T ]; R̄

)
.

UT-Commutation of Markov Aggregators

The following Proposition 2.68 extends Proposition 2.42 to one-step Markov aggrega-
tors.

Proposition 2.68. Suppose that, for any 0 ≤ t < s ≤ T , for any states xt ∈ Xt and
xs ∈ Xs, Φxs

s TU-commutes with Gxt
t .

Then, for any policy π ∈ Π, for any 0 ≤ r < t ≤ T , any states xr ∈ Xr and xt ∈ Xt,〈
xt,π
�

t≤s≤T−1
Φs

〉
TU-commutes with 〈Gxr

r 〉, that is,

〈
xt,π

�
t≤s≤T−1

Φs

〉{{
〈Gxr

r 〉
[
As
]}T

t

}
= 〈Gxr

r 〉
[〈

xt,π

�
t≤s≤T−1

Φs

〉{{
As
}T
t

}]
, (2.141)

for any
{
As
}T
s=t

, where As ∈ F
(
W[0:T ]; R̄

)
.



2.4. EXTENSION TO MARKOV AGGREGATORS 91

2.4.5 Time-Consistency for Non Nested Dynamic Uncertainty Criteria

TU Dynamic Markov Uncertainty Criterion

Definition 2.69. Let a policy π ∈ Π be given. We define the TU-Markov dynamic

uncertainty criterion
{{
%xt,π,TU
t,T

}
xt∈Xt

}T
t=0

by 28

%xt,π,TU
t,T =

〈 xt,π

�
t≤s≤T

Gs

〉
◦
〈

xt,π

�
t≤s≤T−1

Φs

〉
, ∀t ∈ [[0, T ]], ∀xt ∈ Xt . (2.142)

We define the Markov optimization problem

(PMTU
t )(x) min

π∈Πad
t

%MTU
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.143)

where the functions Jx,πt,s are defined by (2.27).
The following Theorem 2.70 is our main result on time-consistency in the TU Markov

case.

Theorem 2.70. Assume that
• for any 0 ≤ s < t ≤ T , for any states xt ∈ Xt and xs ∈ Xs, Gxt

t TU-commutes with
Φxs
s ,

• for all t ∈ [[0, T − 1]], for all xt ∈ Xt, Φxt
t is non-decreasing,

• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt
t is non-decreasing.

Then

1. the TU-Markov dynamic uncertainty criterion
{
%xt,π,TU
t,T

}T
t=0

defined by (2.142) is
time-consistent;

2. the Markov optimization problem
{{

(Pxt,π,MTU
t )(x)

}
x∈Xt

}T
t=0

defined in (2.143)

is time-consistent, as soon as there exists an admissible policy π] ∈ Πad such

that (2.133) holds true, where the value functions are the
{
V NTU
t

}T
t=0

in Defini-
tion 2.60.

UT Dynamic Markov Uncertainty Criterion

For UT-Markov dynamic uncertainty criteria, we have to restrict the definition to

the case where the sequence
{{

Φxt
t

}
xt∈Xt

}T−1

t=0
of one-step Markov time-aggregators is a

sequence
{

Φt

}T−1

t=0
of one-step time-aggregators (see Remark 2.56).

Definition 2.71. Let a policy π ∈ Π be given. We define the UT-Markov dynamic

uncertainty criterion
{{
%xt,π,UT
t,T

}
xt∈Xt

}T
t=0

by 29

%xt,π,UT
t,T =

〈
T−1

�
s=t

Φs

〉
◦
〈 xt,π

�
t≤s≤T

Gs

〉
, ∀t ∈ [[0, T ]], ∀xt ∈ Xt . (2.144)

We define the Markov optimization problem

(PMUT
t )(x) min

π∈Πad
t

%MUT
t,T

({
Jx,πt,s

}T
s=t

)
, ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.145)

where the functions Jx,πt,s are defined by (2.27).
The following Theorem 2.72 is our main result on time-consistency in the UT Markov

case.

28. See Footnote 18
29. See Footnote 18



92 CHAPTER 2. TIME-CONSISTENCY

Theorem 2.72. Assume that

• for any 0 ≤ s < t ≤ T , for any states xt ∈ Xt, Gxt
t UT-commutes with Φs,

• for all t ∈ [[0, T − 1]], Φt is non-decreasing,
• for all t ∈ [[0, T ]], for all xt ∈ Xt, Gxt

t is non-decreasing.

Then

1. the UT-Markov dynamic uncertainty criterion
{
%xt,π,UT
t,T

}T
t=0

defined by (2.144) is
time-consistent;

2. the Markov optimization problem
{{

(Pxt,π,MUT
t )(x)

}
x∈Xt

}T
t=0

defined in (2.145)

is time-consistent, as soon as there exists an admissible policy π] ∈ Πad such

that (2.138) holds true, where the value functions are the
{
V NUT
t

}T
t=0

in Defini-
tion 2.64. (where Φt does not depend on xt).

2.4.6 Applications

Now, we present applications of Theorem 2.70, that is, the TU Markov case (see the
discussion introducing §2.3.5).

Coherent Markov Risk Measures

We introduce a class of TU Markov dynamic uncertainty criteria, that are related to co-
herent risk measures (see Definition 2.9), and we show that they display time-consistency.

For all t ∈ [[0, T ]] and all xt ∈ Xt, let be given Pt(xt) ⊂ P(Wt). Let (αt)t∈[[0,T−1]] and
(βt)t∈[[0,T−1]] be sequences of functions, each mapping Xt × R̄ into R, with the additional
property that βt ≥ 0, for all t ∈ [[0, T − 1]]. Notice that, to the difference with the setting
in §2.3.5, αt and βt can be functions of the state x.

For a policy π ∈ Π, for t ∈ [[0, T ]] and for a state xt ∈ Xt, we set

%xt,π,co
t,T (

{
As
}T
s=t

) = sup
Pt∈Pt(xt)

EPt

[
· · · sup

PT∈PT (X
xt,π
t,T )

EPT

[
T∑
s=t

(
αs
(
Xxt,π
t,s , As

) s−1∏
r=t

βr
(
Xxt,π
t,r , Ar

))]
· · ·
]
,

(2.146)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (xT , cT ) = cT .

Proposition 2.73. Time-consistency holds true for

• the Markov dynamic uncertainty criterion {{%xt,π,cot,T }xt∈Xt}Tt=0 given by (2.146),
• the Markov optimization problem

min
π∈Πad

%x,π,cot,T (
{
Jx,πt,s

}T
s=t

), ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.147)

where Jx,πt,s (w) is defined by (2.27), as soon as there exists an admissible policy π] ∈
Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt
(
x, Jt(x, u, wt)

)
+ βt

(
x, Jt(x, u, wt)

)
Vt+1 ◦ ft(x, u, wt)

]}
,



2.4. EXTENSION TO MARKOV AGGREGATORS 93

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT (x)

EPT
[
JT (x, ·)

]
, (2.148a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt
(
x, Jt(x, u, ·)

)
(2.148b)

+ βt
(
x, Jt(x, u, ·)

)
Vt+1 ◦ ft(x, u, ·)

]}
.

With the one-step Markov uncertainty-aggregator

Gx
t

[
·
]

= sup
Pt∈Pt(x)

EPt
[
·
]
, (2.149)

the expression

〈
G
X0,t−1
t

〉
(see Definition 2.25) defines a coherent Markov risk measure

(Definition 2.13). The associated function Ψt in (2.37) is given by

Ψt

(
v, x, u

)
= sup

Pt∈Pt(x)
EPt

[
v ◦ ft

(
x, u, ·

)]
. (2.150)

We see by (2.34) that, for any state x ∈ Xt, and any control u ∈ Ut, the function v 7→
Ψt

(
v, x, u

)
, is a coherent risk measure (see Definition 2.13).

Convex Markov Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see Definition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that βt ≡ 1
and an additional data (Υt)t∈[[0,T ]].

For all t ∈ [[0, T ]] and all xt ∈ Xt, let be given Pt(xt) ⊂ P(Wt). Let (Υt)t∈[[0,T ]] be
a sequence of functions Υt mapping Xt × P(Wt) into R̄. Let (αt)t∈[[0,T ]] be a sequence
of functions αt mapping Xt × R̄ into R. Notice that, to the difference with the setting
in §2.3.5, αt and Υt can be functions of the state x.

For a policy π ∈ Π, a time t ∈ [[0, T ]] and a state xt ∈ Xt, we set

%xt,π,cx
t,T (

{
As
}T
s=t

) = sup
Pt∈Pt(xt)

EPt

[
· · · sup

PT∈PT (xT )
EPT

[
T∑
s=t

(
αs
(
xs, As

)
−Υs(xs,Ps)

)]
· · ·
]
,

(2.151)

for any adapted uncertain process
{
At
}T

0
, with the convention that αT (cT ) = cT .

Proposition 2.74. Time-consistency holds true for
• the dynamic uncertainty criterion {{%xt,π,cxt,T }xt∈Xt}Tt=0 given by (2.151),
• the Markov optimization problem

min
π∈Πad

%x,π,cxt,T (
{
Jx,πt,s

}T
s=t

), ∀t ∈ [[0, T ]], ∀x ∈ Xt , (2.152)

where Jx,πt,s (w) is defined by (2.27), as soon as there exists an admissible policy π] ∈
Πad such that, for all t ∈ [[0, T − 1]], for all x ∈ Xt,

π]t(x) ∈ arg min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt
(
x, Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(x,Pt)

}
,



94 CHAPTER 2. TIME-CONSISTENCY

where the value functions are given by the following DPE

VT (x) = sup
PT∈PT (x)

{
EPT

[
αT
(
x, JT (x, ·)

)]
−ΥT (x,PT )

}
, (2.153a)

Vt(x) = min
u∈Ut(x)

sup
Pt∈Pt(x)

{
EPt

[
αt
(
x, Jt(x, u, ·)

)
+ Vt+1 ◦ ft(x, u, ·)

]
−Υt(x,Pt)

}
. (2.153b)

With the one-step Markov uncertainty-aggregator

Gx
t

[
·
]

= sup
Pt∈Pt(x)

{
EPt
[
·
]
−Υt(x,Pt)

}
, (2.154)

the expression

〈
G
X0,t−1
t

〉
(see Definition 2.25) defines a convex Markov risk measure

(Definition 2.13). The associated function Ψt in (2.37) is given by

Ψt

(
v, x, u

)
= sup

Pt∈Pt(x)

{
EPt

[
v ◦ ft

(
x, u,Wt

)]
−Υt(x,Pt)

}
. (2.155)

We see by (2.34) that, for any state x ∈ Xt, and any control u ∈ Ut, the function v 7→
Ψt

(
v, x, u

)
, is a convex risk measure (see Definition 2.13).

2.5 Discussion

We discuss how our assumptions and results in §2.3 relate to other results in the
literature on time-consistency for dynamic risk measures

First, we examine the connections between time-consistency for Markov dynamic un-
certainty criteria and the existence of a DPE. When we analyze the literature on time-
consistency for risk measures with our tools (aggregators), we observe that
• most, if not all results, are obtained for the specific case of linear one-step time-

aggregators Φt

{
ct, ct+1

}
= ct + ct+1,

• a key ingredient to obtain time-consistency is an equation like (2.156a), which corre-
sponds to the commutation of one-step uncertainty-aggregators with the sum (that
is, with the linear one-step time-aggregators actually used).

Therefore, Theorems 2.31, 2.36, 2.44, 2.46 in §2.3 provide an umbrella for most of the
results establishing time-consistency for dynamic risk measures, and yields extensions
to more general time-aggregators than the sum. In [23], time-consistency for dynamic
risk measures is not defined by a monotonicity property like in [105] but in line with the
existence of a DPE. In [56], the time-consistency property is comparable to Definition 2.16,
though being restricted to the multiplicative time-aggregator.

We discuss to some extent [105] where time-consistency for dynamic risk measures plus
an additional assumption like (2.156a) lead to the existence of a DPE, within the original
framework of Markov risk measures sketched above. Here is the statement of Theorem 1
in [105], with the notations of §2.2.2.

Theorem 2.75 ( [105]). Suppose that a dynamic risk measure
{
ρt,T

}T
t=0

satisfies, for all
t ∈ [[0, T ]], and all At ∈ Lt the conditions

ρt,T

({
As

}T
s=t

)
= At + ρt,T

({
0,At+1, · · · ,AT

})
, (2.156a)

ρt,T

({
0
}T
s=t

)
= 0 . (2.156b)



2.5. DISCUSSION 95

Then ρ is time-consistent iff, for all 0 ≤ s ≤ t ≤ T and all {As}
T
0 ∈ L0,T , the following

identity is true:

ρs,T

({
Ar

}T
r=s

)
= ρs,t

({
Ar

}t
r=s

, ρt,T
({
Ar

}T
r=t

))
. (2.157)

In [105, Section 5], the finite horizon problem corresponds to Problem (2.95), starting
at t = 0, where the one-step uncertainty aggregator Gt in (2.95) corresponds to the one-
step conditional risk measure ρt, the one-step time-aggregator Φt in (2.95) corresponds to
the sum, and the cost Jt in (2.95) is denoted ct in [105]. Commutation of the one-step
time-aggregators Φt and the one-step uncertainty-aggregators Gs is ensured through the
equivariance translation property (2.156a) of a coherent measure of risk. Monotonicity of
the uncertainty aggregator Gs corresponds to the monotonicity property of a coherent risk
measure, and monotonicity of the time aggregator is obvious. Thus, Theorem 2.44 leads
to the same DPE as [105, Theorem 2].

Let us now focus on the differences between [105] and our results. In [105], arguments
are given to show that there exists an optimal Markovian policy among the set of adapted
policies (that is, having a policy taking as argument the whole past uncertainties would
not give a better cost than a policy taking as argument the current value of the state).
We do not tackle this issue since we directly deal with policies as functions of the state.
Where we suppose that there exists an admissible policy π] ∈ Πad such that (2.62) holds
true, [105] gives conditions ensuring this property. Finally, where [105] restricts to the sum
to aggregate instantaneous costs, we consider more general one-step time-aggregators Φt.
Moreover where we give a sufficient condition for a Markovian policy to be optimal, [105]
gives a set of assumptions such that this sufficient condition is also necessary (typically
assumption ensuring that minimums are attained).

Second, we discuss the possibility to modify a Markov optimization problem or a
dynamic risk measure, in order to make it time-consistent (if it were not originally). When
sequences of optimization problems are not time-consistent with the original “state”, they
can be made time-consistent by extending the state. In [26], this is done for a sequence of
optimization problem under a chance constraint. In [107, Example 1], the sum of AV@R
of costs is considered (given by the dynamic risk measure defined in 2.1.2 and labeled
(TU)). This formulation is not time consistent. However, exploiting the formulation (2.19)
of AV@R, we suggest to extend the state and add the variables {rs}T0 so that, after
transformation, we obtain a problem with expectation as uncertainty aggregator, and sum
as time aggregator, thus yielding time-consistency. In [78], it is shown how a large class
of possibly time-inconsistent dynamic risk measures, called spectral risk measures and
constructed as a convex combination of AV@R, can be made time-consistent by what we
interpret as an extension of the state.



96 CHAPTER 2. TIME-CONSISTENCY



Chapter 3

Stochastic Dual Dynamic
Programming Algorithm

It is really true what philosophy tells us, that life must
be understood backwards. But with this, one forgets the
second proposition, that it must be lived forwards.

Søren Kierkegaard

Contents

3.1 Deterministic Case . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.1.1 Multistage Setting . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.1.2 Proof of Convergence in the Deterministic Case. . . . . . . . . . 103

3.2 Stochastic Case with a Finite Distribution . . . . . . . . . . . . 106

3.2.1 Stochastic Multistage Problem Formulation. . . . . . . . . . . . . 106

3.2.2 Proof of Convergence in the Stochastic Case. . . . . . . . . . . . 110

3.2.3 Application to Known Algorithms. . . . . . . . . . . . . . . . . . 113

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

In Chapter 2 we presented a general framework for Dynamic Programming without
any numerical considerations. Here, we are interested with approaches that circumvent
the curse of dimensionality. Indeed, we study algorithms that exploits analytical proper-
ties of the value functions (mainly convexity) to construct approximations of those value
functions.

By contrast with the rest of the manuscript, the formalism of this chapter is the
formalism of the Stochastic Programming community, where the uncertainties are encoded
on a tree. We have seen in §1.1.2 that this framework can be translated to the stochastic
optimal control framework.

The contents of this chapter has been accepted (up to minor modifications) by the
Mathematics of Operations Research journal, under the name “On the convergence of
decomposition methods for multistage stochastic convex programs”. It is a common work
with A. Philpott and P. Girardeau. The abstract is the following.

This chapter prove the almost-sure convergence of a class of sampling-based nested
decomposition algorithms for multistage stochastic convex programs in which the stage
costs are general convex functions of the decisions, and uncertainty is modelled by a
scenario tree. As special cases, our results imply the almost-sure convergence of SDDP,
CUPPS and DOASA when applied to problems with general convex cost functions.



98 CHAPTER 3. SDDP ALGORITHM

Introduction

Multistage stochastic programs with recourse are well known in the stochastic pro-
gramming community, and are becoming more common in applications. We are motivated
in this paper by applications in which the stage costs are nonlinear convex functions of
the decisions. Production functions are often modelled as nonlinear concave functions of
allocated resources. For example Finardi and da Silva [47] use this approach to model
hydro electricity production as a concave function of water flow. Smooth nonlinear value
functions also arise when one maximizes profit with linear demand functions (see e.g. [81])
giving a concave quadratic objective or when coherent risk measures are defined by con-
tinuous distributions in multistage problems [108].

Having general convex stage costs does not preclude the use of cutting plane algorithms
for attacking these problems. Kelley’s cutting plane method [57] was originally devised for
general convex objective functions, and can be shown to converge to an optimal solution
(see e.g. Ruszczynski [102, Theorem 7.7]), although on some instances this convergence
might be very slow [69]. Our goal in this paper is to extend the convergence result of [102]
to the setting of multi-stage stage stochastic convex programming.

The most well-known application of cutting planes in multi-stage stochastic program-
ming is the stochastic dual dynamic programming (SDDP) algorithm of Pereira and
Pinto [77]. This algorithm constructs feasible dynamic programming policies using an
outer approximation of a (convex) future cost function that is computed using Benders
cuts. The policies defined by these cuts can be evaluated using simulation, and their
performance measured against a lower bound on their expected cost. This provides a con-
vergence criterion that may be applied to terminate the algorithm when the estimated cost
of the candidate policy is close enough to its lower bound. The SDDP algorithm has led
to a number of related methods [27,38,39,55,80] that are based on the same essential idea,
but seek to improve the method by exploiting the structure of particular applications. We
call these methods DOASA for Dynamic Outer-Approximation Sampling Algorithms but
they are now generically named SDDP methods.

SDDP methods are known to converge almost surely on a finite scenario tree when the
stage problems are linear programs. The first formal proof of such a result was published
by Chen and Powell [27] who derived this for their CUPPS algorithm. This proof was ex-
tended by Linowsky and Philpott [64] to cover other SDDP algorithms. The convergence
proofs in [27] and [64] make use of an unstated assumption regarding the independence
of sampled random variables and convergent subsequences of algorithm iterates. This as-
sumption was identified by Philpott and Guan [80], who gave a simpler proof of almost
sure convergence of SDDP methods based on the finite convergence of the nested decom-
position algorithm (see [38]). This does not require the unstated assumption, but exploits
the fact that the collection of subproblems to be solved has a finite number of dual extreme
points. This begs the question of whether SDDP methods will converge almost surely for
general convex stage problems, where the value functions may admit an infinite number
of subgradients.

In this paper we propose a different approach from the one in [27] and [64] and show
how a proof of convergence for sampling-based nested decomposition algorithms on finite
scenario trees can be established for models with convex subproblems (which may not have
polyhedral value functions). Our result is proved for a general class of methods including
all the variations discussed in the literature ( [27,38,39,55,77,80]). The proof establishes
convergence with probability 1 as long as the sampling in the forward pass is independent
of previous realizations. Our proof relies heavily on the independence assumption and
makes use of the Strong Law of Large Numbers. In contrast to [80] we have not shown
that convergence is guaranteed in all procedures for constructing a forward pass that visit



3.1. DETERMINISTIC CASE 99

every node of the scenario tree an infinite number of times.
The result we prove works in the space of state variables expressed as random variables

adapted to the filtration defined by the scenario tree. Because this tree has a finite number
of nodes, this space is compact, and so we may extract convergent subsequences for any
infinite sequence of states. Unlike the arguments in [27] and [64], these subsequences are
not explicitly constructed, and so we can escape the need to assume properties of them
that we wish to be inherited from independent sampling. More precisely Lemma 3.12 gives
us the required independence.

Although the value functions we construct admit an infinite number of subgradients,
our results do require an assumption that serves to bound the norms of the subgradients
used. This assumption is an extension of relatively complete recourse that ensures that
some infeasible candidate solutions to any stage problem can be forced to be feasible by
a suitable control. Since we are working in the realm of nonlinear programming, some
constraint qualification of this form will be needed to ensure that we can extract subgradi-
ents. In practice, SDDP models use penalties on constraint violations to ensure feasibility,
which implicitly bounds the subgradients of the Bellman functions. Our recourse assump-
tions are arguably weaker, since we do not have a result that shows that they enable an
equivalent formulation with an exact penalization of infeasibility.

The paper is laid out as follows. We first consider a deterministic multistage problem,
in which the proof is easily understandable. This is then extended in §3.2 to a stochastic
problem formulated in a scenario tree. We close with some remarks about the convergence
of sampling algorithms.

3.1 Deterministic Case

Our convergence proofs are based around showing that a sequence of outer approxima-
tions formed by cutting planes converges to the true Bellman function in the neighborhood
of the optimal state trajectories. We begin by providing a proof that Kelley’s cutting plane
method [57] converges when applied to the optimization problem:

W ∗ := min
u∈U

W (u) ,

where U is a nonempty convex subset of Rm, and W is a convex finite function on Rm. The
result we prove is not directly used in the more complex results that follow, but the main
ideas on which the proofs rely are the same. We believe the reader will find it convenient
to already have the scheme of the proof in mind when studying the more important results
later on.

Kelley’s method generates a sequence of iterates
(
uj
)
j∈N by solving, at each iteration,

a piecewise linear model of the original problem. The model is then enhanced by adding
a cutting plane based on the value W

(
uj
)

and subgradient gj of W at uj . The model at
iteration k is denoted by

W k (u) := max
1≤j≤k

{
W
(
uj
)

+
〈
gj , u− uj

〉}
,

and θk := minu∈U W
k (u) = W k

(
uk+1

)
. We have the following result.

Lemma 3.1. If W is convex with uniformly bounded subgradients on U and U is compact
then

lim
k→+∞

W
(
uk
)

= W ∗.

Proof. This proof is taken from Ruszczynski [102, Theorem 7.7] (see also [101]). Let Kε

be the set of indexes k such that W ∗ + ε < W
(
uk
)
< +∞. The proof consists in showing

that Kε is finite.



100 CHAPTER 3. SDDP ALGORITHM

Suppose k1, k2 ∈ Kε and k1 is strictly smaller than k2. We have that W
(
uk1
)
> W ∗+ε

and that W ∗ ≥ θk1 . Since a new cut is generated at uk1 , we have

W
(
uk1

)
+
〈
gk1 , u− uk1

〉
≤W k1 (u) ≤W k2−1 (u) , ∀u ∈ U ,

where gk1 is an element of ∂W
(
uk1
)
. In particular, choosing u = uk2 gives

W
(
uk1

)
+
〈
gk1 , uk2 − uk1

〉
≤W k1

(
uk2

)
≤W k2−1

(
uk2

)
= θk2−1 ≤W ∗.

But ε < W
(
uk2
)
−W ∗, so

ε < W
(
uk2

)
−W

(
uk1

)
−
〈
gk1 , uk2 − uk1

〉
,

and as gk2 ∈ ∂W (uk2), the subgradient inequality for u = uk1 yields

W
(
uk2

)
−W

(
uk1

)
≤
〈
gk2 , uk2 − uk1

〉
.

Therefore, since W has uniformly bounded subgradients, there exists κ > 0 such that

ε < 2κ
∥∥∥uk2 − uk1

∥∥∥ , ∀k1, k2 ∈ Kε, k1 6= k2.

Because U is compact, Kε has to be finite. Otherwise there would exist a convergent
subsequence of

{
uk
}
k∈Kε and this last inequality could not hold for sufficiently large

indexes within Kε. This proves the lemma.

Note that Lemma 3.1 does not imply that the sequence of iterates
(
uk
)
k∈N converges 1.

For instance, if the minimum of W is attained on a “flat” part (if W is not strictly convex),
then the sequence of iterates may not converge. However, the lemma shows that the
sequence of W values at these iterates will converge.

3.1.1 Multistage Setting

We now consider the multistage case. Let T be a positive integer. We first consider
the following deterministic optimal control problem.

min
x,u

T−1∑
t=0

Ct (xt, ut) + VT (xT ) (3.1a)

s.t. xt+1 = ft (xt, ut) , ∀t ∈ [[0, T − 1]], (3.1b)

x0 is given, (3.1c)

xt ∈ Xt, ∀t ∈ [[0, T ]], (3.1d)

ut ∈ Ut(xt), ∀t ∈ [[0, T − 1]]. (3.1e)

In what follows we let Aff(X ) denote the affine hull of X , and define

Bt(δ) = {y ∈ Aff(Xt) | ‖ y ‖< δ}.

We make the following assumptions (H1):

1. for t = 0, . . . , T , ∅ ⊂ Xt ⊂ Rn,

1. even though because U is compact, there exists a convergent subsequence.



3.1. DETERMINISTIC CASE 101

2. for t = 0, . . . , T − 1, multifunctions Ut : Rn ⇒ Rm are assumed to be convex 2 and
nonempty convex compact valued,

3. the final cost function VT and functions Ct, t = 0, . . . , T are assumed to be convex
lower semicontinuous proper functions,

4. for t = 0, . . . , T − 1, functions ft are affine,

5. the final cost function VT is finite-valued and Lipschitz-continuous on XT ,

6. for t = 0, . . . , T − 1, there exists δt > 0, defining X ′t :=Xt +Bt(δt), such that :

(a) ∀x ∈ X ′t , ∀u ∈ Ut(x), Ct(x, u) <∞,

(b) for every x ∈ X ′t ,
ft(x,Ut(x)) ∩ Xt+1 6= ∅.

Assumptions (H1(1)− (5)) are made to guarantee that problem (3.1) is a convex opti-
mization problem. Since this problem is in general nonlinear, it also requires a constraint
qualification to ensure the existence of subgradients. This is the purpose of Assumption
(H1(6)). This assumption means that we can always move from Xt a distance of δt

2 in any
direction and stay in X ′t , which is a form of recourse assumption that we call extended
relatively complete recourse (ERCR). We note that this is less stringent than imposing
complete recourse, which would require X ′t = Rn. Finally we note that we never need
to evaluate Ct(x, u) with x ∈ X ′t\Xt, so we may only assume that there exists a convex
function, finite on X ′t , that coincides with Ct on Xt. Of course not all convex cost func-
tions satisfy such a property e.g. x 7→ x log(x) cannot be extended below x = 0 while
maintaining convexity.

We are now in a position to describe an algorithm for the deterministic control problem
(3.1). The Dynamic Programming (DP) equation associated with (3.1) is as follows. For
all t ∈ [[0, T − 1]], let

Vt (xt) =


minut∈Ut(xt) {Ct (xt, ut) + Vt+1 (ft (xt, ut))}︸ ︷︷ ︸

:=Wt(xt,ut)

, xt ∈ Xt

+∞, otherwise.

(3.2)

Here the quantity Wt (xt, ut) is the future optimal cost starting at time t from state x and
choosing decision ut, so that Vt (x) = minu∈Ut(xt)Wt (x, u).

The cutting plane method works as follows. At iteration 0, define functions V 0
t , t ∈

[[0, T − 1]], to be identically equal to −∞. At time T , since we know exactly the end value
function, we impose V k

T = VT for all iterations k ∈ N. At each iteration k, the process is
the following.

Starting with xk0 = x0, at any time stage t, solve

θkt = min
ut∈Rm

x∈Aff
(
Xt
) Ct (x, ut) + V k−1

t+1 ◦ ft (x, ut) , (3.3a)

s.t. x = xkt [βkt ] (3.3b)

ft(x, ut) ∈ Xt+1 (3.3c)

ut ∈ Ut(x) (3.3d)

Here βkt ∈Aff(Xt) is a vector of Lagrange multipliers for the constraint x = xkt . We denote
a minimizer of (3.3) by ukt . Its existence is guaranteed by ERCR. Note that constraint

2. Recall that a multifunction U on convex set X is called convex if (1−λ)U(x)+λU(y) ⊆ U((1−λ)x+λy)
for every x, y ∈ X and λ ∈ (0, 1).



102 CHAPTER 3. SDDP ALGORITHM

(3.3c) can be seen as an induced constraint on ut. Thus we can define the multifunctions
Ũt : Rn ⇒ Rm by, for all x ∈ Rn,

Ũt(x) := {u ∈ Ut(x) | ft(x, ut) ∈ Xt+1}. (3.4)

We can easily check that Ũt is convex (by linearity of ft and convexity of Ut) and convex
compact valued (as the intersection of a compact convex set and a closed convex set).
Moreover ERCR guarantee that Ũt(x) 6= ∅ for any x ∈ Xt. Thus (3.3) can be written as

θkt = min
ut∈Ũt(x)

x∈Aff
(
Xt
) Ct (x, ut) + V k−1

t+1 ◦ ft (x, ut) , (3.5a)

s.t. x = xkt . [βkt ] (3.5b)

Now define, for any x ∈ Rn:

V k
t (x) := max

{
V k−1
t (x) , θkt +

〈
βkt , x− xkt

〉}
, (3.6)

and move on to the next time stage t+ 1 by defining xkt+1 = ft
(
xkt , u

k
t

)
.

Remark 3.2. The assumption that βkt is in Aff(Xt) is made for technical reasons, and
loses little generality. Indeed if βkt ∈ Rn is an optimal Lagrange multiplier, then so is its
projection on Aff(Xt). In practice we would expect Aff(Xt) to be the same dimension for
every t. If this dimension happened to be d strictly less than n, then we might change the
formulation (by a transformation of variables) so that Aff(Xt) = Rd.

Remark 3.3. Observe that our algorithm uses V k−1
t+1 when solving the two-stage prob-

lem (3.3) at stage t, although most implementations of SDDP and related algorithms pro-
ceed backwards and are thus able to use the freshly updated V k

t+1 (although see e.g. [27] for
a similar approach to the one proposed here). In the stochastic case we present a general
framework that encompasses backward passes.

Note that only the last future cost function VT is known exactly at any iteration. All
the other ones are lower approximations consisting of the maximum of k affine functions
at iteration k. We naturally have the same lower approximation for function Wt. Thus
we define for any (x, u) in Rn+m

W k
t (x, u) := Ct (x, u) + V k

t+1 ◦ ft (x, u) , (3.7)

and recall
Wt (x, u) := Ct (x, u) + Vt+1 ◦ ft (x, u) . (3.8)

Using this notation we have

θkt = min
u∈Ũt(xkt )

W k−1
t

(
xkt , u

)
= W k−1

t

(
xkt , u

k
t

)
(3.9)

Since by (3.6)

V k
t

(
xkt

)
= max

k′≤k

{
θk
′
t +

〈
βk
′
t , x

k
t − xk

′
t

〉}
it follows that

V k
t

(
xkt

)
≥W k−1

t (xkt , u
k
t ). (3.10)

Figure 3.1 gives a view of the relations between all these values at a given iteration.



3.1. DETERMINISTIC CASE 103

x

value
Vt(x)

xk
t

Wt

(
xk

t , u
k
t

)

Vt

(
xk

t

)

θk
t = W k−1

t

(
xk

t , u
k
t

)

V k−1
t (x)

θk
t +

〈
βk

t , x− xk
t

〉

Figure 3.1: Relation between the values at a given iteration

3.1.2 Proof of Convergence in the Deterministic Case.

We begin by showing some regularity and monotonicity results for the value functions
and their approximations.

Under assumptions (H1), we define for t ∈ [[0, T − 1]], and for all x ∈ Rn, the extended
value function

Ṽt(x) = inf
u∈Ut(x)

{Ct(x, u) + Vt+1 ◦ ft(x, u)} . (3.11)

Note that the infimum could be taken on Ũt(x) ⊆ Ut(x) as Vt+1 =∞ when ft(x, u) /∈
Xt+1. It is convenient to extend the definition to t = T by defining ṼT = VT . We also
observe that Ṽt ≤ Vt as these are identical on the domain of Vt.

Lemma 3.4. For t ∈ [[0, T − 1]],

(i) the value function Vt is convex and Lipschitz continuous on Xt;
(ii) V k

t ≤ Ṽt ≤ Vt, and βkt is defined;

(iii) the sequences (βkt )k∈N are bounded.

Proof. (i) We first show the convexity and Lipschitz continuity of Vt on Xt. We proceed
by induction backward in time. By assumption VT is convex and Lipschitz continuous on
XT . Assume the result is true for Vt+1. The function Ṽt(x) is convex by lemma 3.9. Now
by ERCR, for any x ∈ X ′t , Ũt(x) 6= ∅. This implies that, for x ∈ X ′t , for u ∈ Ũt(x),

Ṽt(x) ≤ Ct(x, u) + Vt+1 ◦ ft(x, u) < +∞.

By (H1(3)) and the induction hypothesis, for any x ∈ X ′t ,

u 7→ Ct(x, u) + Vt+1 ◦ ft(x, u)

is lower semi-continuous, and so the compactness of Ut(x) ensures that the infimum in the
definition of Ṽt(x) is attained, and therefore Ṽt(x) > −∞. Ṽt is Lipschitz continuous on



104 CHAPTER 3. SDDP ALGORITHM

Xt as Xt is a compact subset of the relative interior of its domain. Finally remarking that
Vt(x) = Ṽt(x) if x ∈ Xt gives the conclusion.

(ii) As observed above the inequality Ṽt ≤ Vt is immediate as the two functions are
identical on the domain of Vt.

To show V k
t ≤ Ṽt let us proceed by induction forward in k. Assume that for all

t ∈ [[0, T − 1]], βk−1
t is defined and V k−1

t ≤ Ṽt. Note that

−∞ = V 0
t ≤ Ṽt,

so this is true for k = 1 (β0
t is never used). We now define, for all t ∈ [[0, T − 1]] and all

x ∈ Rn,

V̂ k
t (x) = min

u∈Ũt(x)

{
Ct(x, u) + V k−1

t+1 ◦ ft(x, u)
}
.

By hypothesis on Ũt, V̂ k
t is convex and finite on X ′t which strictly contains Xt. Thus V̂ k

t

restricted to Aff(Xt) is subdifferentiable at any point of Xt. Moreover by definition of βkt
in (3.3)

βkt ∈ ∂
(
V̂ k
t |Aff(Xt)

)
. (3.12)

Thus βkt is defined. By the induction hypothesis and inequality Ṽt+1 ≤ Vt+1 we have that

V k−1
t+1 ◦ ft ≤ Vt+1 ◦ ft.

Thus the definitions of V̂ k
t and Ṽt yield

V̂ k
t ≤ Ṽt. (3.13)

we have by (3.12) that

θkt +
〈
βkt , x− xkt

〉
≤ V̂ k

t (x) ≤ Ṽt(x) (3.14)

by (3.13). The definition of V k
t in (3.6) gives

V k
t (x) = max

{
V k−1
t (x) , θkt +

〈
βkt , x− xkt

〉}
which shows V k

t (x) ≤ Ṽt(x) by (3.14) and the induction hypothesis. Thus (ii) follows for
all k by induction.

(iii) Finally we show the boundedness of (βkt )k∈N. By definition of βkt we have for all
y ∈ Rn,

V k(y) ≥ V k(xkt ) +
〈
βkt , y − xkt

〉
. (3.15)

Recall that X ′t = Xt + Bt(δt), so substituting y = xkt +
δtβkt

2‖βkt ‖
in (3.15) whenever βkt 6= 0

yields ∥∥∥βkt ∥∥∥ ≤ 2

δt

[
V k
t

(
xkt +

δt
2

βkt
‖βkt ‖

)
− V k

t

(
xkt

)]
.

We define the compact subset X ′′t of dom Ṽt as X ′′t := Xt+Bt
(
δt
2

)
. Now as xkt ∈ Xt we

have that xkt + δt
2

βkt
‖βkt ‖

∈ X ′′t . Consequently, by (ii),

V k
t

(
xkt +

δt
2

βkt
‖βkt ‖

)
≤ max

x∈X ′′t
Ṽt(x) < +∞.



3.1. DETERMINISTIC CASE 105

Moreover by construction the sequence of functions (V k
t )k∈N is increasing, thus

V k
t (xkt ) ≥ V 1

t (xkt ) ≥ min
x∈Xt

V 1
t (x) > −∞.

Thus we have that, for all k ∈ N∗ and t ∈ [[0, T − 1]],∥∥∥βkt ∥∥∥ ≤ 2

δt

[
max
x∈X ′′t

Ṽt(x)− min
x∈Xt

V 1
t (x)

]
. (3.16)

This completes the proof.

Corollary 3.5. Under assumptions (H1), the functions V k
t , t ∈ [[0, T − 1]], are α −

Lipschtiz for some constant α for all k ∈ N∗.

Proof. By (3.6) and (3.16) the subgradients of V k
t are bounded by

α = max
t∈[[0,T−1]]

2

δt

[
max
x∈X ′′t

Ṽt − min
x∈Xt

V 1
t (x)

]
.

We now prove that both the upper and lower estimates of Vt converge to the exact
value function under assumptions (H1).

Theorem 3.6. Consider the sequence of decisions
(
uk
)
k∈N generated by (3.3) and (3.6),

where each uk is itself a sequence of decisions in time uk = uk0, . . . , u
k
T−1, and consider

the corresponding sequence of state values
(
xk
)
k∈N. Under assumptions (H1), for any t ∈

[[0, T − 1]] we have that:

lim
k→+∞

Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
= 0 and lim

k→+∞
Vt

(
xkt

)
− V k

t

(
xkt

)
= 0.

Proof. The demonstration proceeds by induction backwards in time. At time t + 1, the
induction hypothesis is the second statement of the theorem. That is,

lim
k→+∞

Vt+1

(
xkt+1

)
− V k

t+1

(
xkt+1

)
= 0.

In other words the cuts for the future cost function tend to be exact at xkt+1 as k tends
to∞. The induction hypothesis is clearly true at the last time stage T for which we defined
the approximate value function V k

T to be equal to the (known) end value function VT .
We have to show the induction hypothesis, namely

lim
k→+∞

Vt

(
xkt

)
− V k

t

(
xkt

)
= 0

for time t. Recall (3.10) gives

V k
t

(
xkt

)
≥W k−1

t

(
xkt , u

k
t

)
= Ct

(
xkt , u

k
t

)
+ V k−1

t+1

(
xkt+1

)
.

Using the definition (3.8) of Wt, we can replace Ct
(
xkt , u

k
t

)
to get

V k
t

(
xkt

)
≥Wt

(
xkt , u

k
t

)
+
(
V k−1
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

))
.

Subtracting Vt
(
xkt
)

we obtain

V k
t

(
xkt

)
− Vt

(
xkt

)
≥Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
+
(
V k−1
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

))
.



106 CHAPTER 3. SDDP ALGORITHM

Now as V k
t is a lower approximation of Vt we have

V k
t

(
xkt

)
− Vt

(
xkt

)
≤ 0,

and by Dynamic Programming equation (3.2)

Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
≥ 0.

Moreover the induction hypothesis at time t+ 1 gives

V k
t+1

(
xkt+1

)
− Vt+1

(
xkt+1

)
k→∞−−−→ 0,

which by virtue of Lemma 3.10 (with Vt+1 replacing f) implies 3

lim
k→+∞

Vt+1

(
xkt+1

)
− V k−1

t+1

(
xkt+1

)
= 0

so

V k
t

(
xkt

)
− Vt

(
xkt

)
k→∞−−−→ 0,

and

Wt

(
xkt , u

k
t

)
− Vt

(
xkt

)
k→∞−−−→ 0,

which gives the result.

Theorem 3.6 indicates that the lower approximation at each iteration tends to be exact
on the sequence of state trajectories generated throughout the algorithm. This does not
mean that the future cost function will be approximated well everywhere in the state
space. It only means that the approximation gets better and better in the neighborhood
of an optimal state trajectory.

3.2 Stochastic Case with a Finite Distribution

3.2.1 Stochastic Multistage Problem Formulation.

We now consider that the cost function and dynamics at each time t are influenced
by a random outcome that has a discrete and finite distribution. We write the problem
on the complete tree induced by this distribution. The set of all nodes is denoted by N
and {0} is the root node. We denote nodes by m and n. (We trust that the context will
dispel any confusion from the use of m and n as dimensions of variables u and x.) A
node n here represents a time interval and a state of the world (which has probability Φn)
that pertains over this time interval. We say that a node n is an ascendant of m if it
is on the path from the root node to node m (including m). We will denote a(m) the
set of all ascendants of m, and the depth of node n is one less than the number of its
ascendants. For simplicity we identify this with a time index t, although the results hold
true for scenario trees for which this is not the case. For every node m ∈ N\{0}, p(m)
represents its parent, and r(m) its set of children nodes. Finally L is the set of leaf nodes
of the tree (i.e. those that have degree 1).

3. Corollary 3.5 ensures the α−Lipschitz assumption on V kt+1, and the other assumptions are obviously
verified.



3.2. STOCHASTIC CASE WITH A FINITE DISTRIBUTION 107

This gives the following stochastic program:

min
x,u

∑
n∈N\{L}

∑
m∈r(n)

ΦmCm (xn, um) +
∑
m∈L

ΦmVm (xm) (3.17a)

s.t. xm = fm
(
xp(m), um

)
, ∀m ∈ N\{0}, (3.17b)

x0 is given, (3.17c)

xm ∈ Xm, ∀m ∈ N , (3.17d)

um ∈ Um(xp(m)), ∀m ∈ N\{0}. (3.17e)

The reader should note that randomness (that appears in the cost and in the dynamics)
is realized before the decision is taken in this model. Hence the control affecting the
stock 4 xn is actually indexed by m, a child node of n. Put differently, the control adapts
to randomness: there are as many controls as there are children nodes of n. Observe that
we also now admit the possibility that Xt and Ut(x) might vary with scenario-tree node,
so we denote them by Xm and Um(xp(m)).

We make the following assumptions (H2):

1. for all n ∈ N , Xn is nonempty convex compact;

2. for all m ∈ N\{0}, the multifunction Um is nonempty convex and convex compact
valued;

3. all functions Cn, n ∈ N\L, Vm, m ∈ L, are convex lower semicontinuous proper
functions;

4. for all m ∈ N\{0}, the functions fm are affine;

5. for all m ∈ L, Vm is Lipschitz-continuous on Xm;

6. There exists δ > 0 such that for all nodes n ∈ N\L,

(a) ∀x ∈ Xn +B(δ), ∀m ∈ r(n), fm(x,Um(x)) ∩ Xm 6= ∅,
(b) ∀x ∈ Xn +B(δ), ∀u ∈ Um(x), Cn(x, u) <∞.

The convex functions Vm define the future cost of having xm remaining in stock at the
end of the stage represented by leaf node m ∈ L. Given an optimal control, we can define
(applying the Dynamic Programming principle to Problem (3.17) ) a future cost function
Vn recursively for the other nodes n ∈ N\L by

Vn(xn) =
∑

m∈r(n)

Φm

Φn
min

um∈Um(xn)
{Cm (xn, um) + Vm (fm (xn, um))}︸ ︷︷ ︸

Wm(xn,um)

. (3.18)

In general the future cost function at each node can be different from those at other
nodes at the same stage. In the special case where the stochastic process defined by the
scenario tree is stage-wise independent, the future cost function is identical at every node
at stage t. Some form of stage-wise independence is typically assumed in applications as
it enables cuts to be shared across nodes at the same stage, however we do not require
this for our proof.

The algorithm that we consider is an extension of the deterministic algorithm of the
previous section applied, at each iteration, to a set of nodes chosen randomly in the tree
at which we update estimates of the future cost function. We assume that all other nodes
have null updates, in the sense that they just inherit the future cost function from the
previous iteration.

4. We do not make any stage-wise independence assumptions on the random variables that affect the
system. Hence there is no reason why variable xn should be called a state variable and we prefer calling
it a stock.



108 CHAPTER 3. SDDP ALGORITHM

We now describe the algorithm formally. We start the process with θ̂0
n = −∞, β̂0

n = 0,
for each n ∈ N , and impose V k

n = Vn for all nodes n ∈ L and all k ∈ N. We then carry
out a sequence of simulations and updates of the future cost functions as follows.

Simulation Starting at the root node, generate stocks and decisions for all possible suc-
cessors (in other words, visit the whole tree forward) by solving (3.18) with V k−1

instead of V . Denote the obtained stock variables by (xkn)n∈N and the control
variables by (ukn)n∈N\{0}. Also, for each node n ∈ N , impose θkn = V k−1

n (xkn)

and βkn ∈ ∂V k−1
n (xkn).

Update Select non-leaf nodes n1, n2, . . . , nI in the tree. For each i, xkni is a random
variable which is equal to one of the xkn. For each selected node ni, and for every
child node m of node ni, solve:

θ̂km = min
um∈Rm

x∈Aff
(
Xni
) Cm (x, um) + V k−1

m ◦ fm (x, um) , (3.19a)

s.t. x = xkni [β̂km] (3.19b)

um ∈ Um(x) (3.19c)

fm(x, um) ∈ Xm (3.19d)

As before β̂km is a Lagrange multiplier at optimality. We also define the multifunc-
tions

Ũm : x 7→ {u ∈ Um(x) | fm(x, um) ∈ Xm}.

For each selected node ni, replace the values θkni and βkni obtained during the simu-
lation with

θkni =
∑

m∈r(ni)

Φm

Φni

θ̂km

and

βkni =
∑

m∈r(ni)

Φm

Φni

β̂m.

Finally, we update all future cost functions. For every node n, and any x ∈ Xt,

V k
n (x) := max

{
V k−1
n (x) , θkn +

〈
βkn, x− xkn

〉}
= max

k′≤k

{
θkn +

〈
βkn, x− xkn

〉}
.

(3.20)

We will make use of the following definitions, where m ∈ r(n):

Wm (xn, um) := Cm (xn, um) + Vm (fm (xn, um)) (3.21)

W k
m (xn, um) := Cm (xn, um) + V k

m (fm (xn, um)) (3.22)

In the case where node n ∈ N is selected at iteration k, in other words n = ni, these
definitions then give

θ̂km = min
u∈Ũm(xkn)

W k−1
m

(
xkn, u

)
= W k−1

m

(
xkn, u

k
m

)
.

This leads to

V k
n

(
xkn

)
≥

∑
m∈r(n)

Φm

Φn
W k−1
m

(
xkn, u

k
m

)
. (3.23)



3.2. STOCHASTIC CASE WITH A FINITE DISTRIBUTION 109

Note that we actually only update future cost functions on the selected nodes. Since
the cuts we add at all other nodes are binding on the current model (by construction in
the simulation), there is no point in storing them. Therefore, in practice, one does not
need to sample the whole scenario tree but just enough to attain all selected nodes. In
our proof, we need to look at what happens even on the nodes that are not selected.

The way we select nodes at which to compute cuts varies with the particular algorithm
implementation. For example DOASA uses a single forward pass to select nodes, and then
computes cuts in a backward pass. We represent these selections of nodes using a selection
random variable yk = (ykn)n∈N that is equal to 1 if node n is selected at iteration k and 0
otherwise. This gives a selection stochastic process (yk)k∈N, taking values in {0, 1}|N\L|,
that describes a set of nodes in the tree at which we will compute new cuts in iteration k.
We let (Fk)k∈N denote the filtration generated by (yk)k∈N.

To encompass algorithms such as DOASA and SDDP the selection stochastic process
can be viewed as consisting of infinitely many finite subsequences, each consisting of τ > 0
selections (consisting for example of a sequence of selections of nodes in a backward pass).
This cannot be done arbitrarily, and the way that (yk)k∈N is constructed must satisfy some
independence conditions from one iteration to the next.

Definition 1. Let τ be a positive integer. The process (yk)k∈N is called a τ -admissible
selection process if

(i) ∀m ∈ N\L, ∀k ∈ N, ∀κ ∈ {0, . . . , τ − 1},

ykτ+κ
m = 1 =⇒ ∀n ∈ a(m), ykτn = ykτ+1

n = · · · = ykτ+κ−1
n = 0;

and the process defined by

ỹkn := max{ykτn , ykτ+1
n , ykτ+2

n , . . . , ykτ+τ−1
n } (3.24)

satisfies

(ii) for all m ∈ N\L, (ỹkm)k∈N is i.i.d. and for all k ∈ N, and all m ∈ N\L, ỹkm is
independent of Fkτ−1;

(iii) ∀n ∈ N\L, P(ỹkn = 1) > 0.

Property (i) guarantees that when τ > 1, the updating of cutting planes is done
backwards between steps kτ and (k+ 1)τ . This means that if the linear approximation of
the value function Vn is updated at step kτ + κ then neither it or any approximation at
any ascendant node has been updated since step kτ − 1. This implies, as shown in lemma
3.11, that xkτ+κ has not changed since the step kτ , i.e., if ykτ+κ

n = 1 then xkτ+κ = xkτ . We
explain in section 3.3. how the selection processes of CUPPS (with τ = 1) and SDDP(with
τ = T − 1) are τ -admissible.

Property (ii) provides the independence of the selections that we will use to prove
convergence and property (iii) guarantees that all nodes are selected with positive proba-
bility. Without any independence assumption it would be easy to create a case in which
the future cost function at a given node is updated only when the current stock variable
on this node is in a given region, for instance. In such a case the future cost function
could not gather any information about the other parts of the space that the stock vari-
able might visit. In other words, this independence assumption ensures that the values
that are optimal can be attained an infinite number of times. We remark that there is
no independence assumption over the nodes n for (ykn)n∈N\L at k fixed. Thus the se-
lection process could be forced to select whole branches of the tree for example, as it
would for the CUPPS algorithm. More generally, we have independence when for fixed
τ , (ykτ )k∈N is i.i.d and the next τ − 1 selection values are determined deterministically



110 CHAPTER 3. SDDP ALGORITHM

from ykτ , more precisely if for all κ ∈ {0, . . . , τ − 1}, there is a deterministic function φκ
such that ykτ+κ = φκ(ykτ ). On the other hand we have independence when the selection
subsequence (ykτ , ykτ+1, . . . , ykτ+τ−1)k∈N is i.i.d.

In Section 3.3 we shows that usual algorithm can be represented with a τ−admissible
selection process.

3.2.2 Proof of Convergence in the Stochastic Case.

For every n ∈ N \L we can define under assumptions (H2) the extended value function

Ṽn(x) =
∑

m∈r(n)

Φm

Φn
inf

u∈Ũm(x)
{Cm(x, u) + Vm ◦ fm(x, u)} ,

and we note that Ṽn is finite on X ′n. We now state a lemma analogous to lemma 3.4.

Lemma 3.7. For every n ∈ N ,

(i) the value function Vn is convex and Lipschitz-continuous on Xt;
(ii) V k

n ≤ Ṽn ≤ Vn, and βkn is defined;

(iii) the sequences (βkn)k∈N are bounded, thus there is αn such that V k
n is αn−Lipschitz.

Proof. We give only a sketch of the proof as it follows exactly the proof of its deterministic
counterpart lemma 3.4.

(i) By induction backward on the tree Ṽn, is convex and finite valued on X ′n as the
positive sum of convex finite valued functions, and thus Lipschitz continuous on Xn
leading to the result as Ṽn = Vn on Xn.

(ii) Assume that for all n ∈ N\L we have V k−1
n ≤ Ṽn. We define, for a node n ∈ N\L

x ∈ Rn,

V̂ k
n (x) =

∑
m∈r(n)

Φm

Φn
min

u∈Ũn(x)
Cm(x, u) + V k−1

m ◦ fm(x, u).

By hypothesis on Ũm, V̂ k
n is convex and finite on X ′t thus its restriction on Aff(Xt)

is subdifferentiable on Xt. By definition β̂km ∈ ∂V̂ k
n (xkm), and thus β̂km is defined. By

the induction hypothesis and inequality Ṽm ≤ Vm we have that

∀m ∈ r(n), V̂ k−1
m ◦ fm ≤ Vm ◦ fm.

Thus definitions of V̂ k
n and Ṽn yield V̂ k

n ≤ Ṽn. By definition of βkn and construction
of V k

n we have that V k
n ≤ Ṽn. Induction leads to inequality (ii).

(iii) Finally we show the boundedness of (βkn)k∈N. As βkn is an element of ∂V k(xkn), we
have

V k(y) ≥ V k(xkn) +
〈
βkn, y − xkn

〉
. (3.25)

so substituting, if βkn 6= 0, y = xkn + δβkn
2‖βkn‖

in (3.25) yields

∥∥∥βkn∥∥∥ ≤ 2

δ

[
V k
n

(
xkn +

δ

2

βkn
‖βkn‖

)
− V k

n

(
xkn

)]
.

Thus we have that, for all k ∈ N and n ∈ N ,∥∥∥βkn∥∥∥ ≤ 2

δ

[
max

x∈Xn+B(δ/2)
Ṽn(x)− min

x∈Xn
V 1
n (x)

]
. (3.26)

Which ends the proof.



3.2. STOCHASTIC CASE WITH A FINITE DISTRIBUTION 111

Theorem 3.8. Consider the sequence of decisions
(
uk
)
k∈N generated by the above de-

scribed procedure under assumptions (H2), where each uk is itself a set of decisions on the
complete tree, and consider the corresponding sequence of state values

(
xk
)
k∈N. Assume

that the selection process is τ -admissible for some integer τ > 0.
Then we have that, P-almost surely:

lim
k→+∞

∑
m∈r(n)

Φm

Φn
Wm

(
xkτn , u

kτ
m

)
− Vn

(
xkτn

)
= 0.

and

lim
k→+∞

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
= 0.

Proof. Because the selection process for nodes in the update step is stochastic, decision
variables as well as approximate future cost functions are stochastic throughout the course
of the algorithm. Thus, during the whole proof, all equalities or inequalities are taken P-
almost surely.

The demonstration follows the same approach as the proof of Theorem 3.6. Let T be
the maximum depth of the tree. We proceed by backward induction on nodes of fixed
depth. The induction hypothesis is

lim
k→+∞

Vm

(
xkτm

)
− V kτ

m

(
xkτm

)
= 0

for each node m of depth t + 1. Since for every leaf of the tree those two quantities are
equal, by definition, the induction hypothesis is true for every node n ∈ L.

We start by proving the result for iterations kτ such that n is selected in the next τ−1
steps, i.e. such that ỹkn = 1. Define κk ∈ {0, . . . , τ − 1} such that ykτ+κk = 1. Recall that
by lemma 3.11 we have xkτ+κk

n = xkτn .

We have by (3.23)

V kτ+κk
n

(
xkτn

)
= V kτ+κk

n

(
xkτ+κk
n

)
≥
∑

m∈r(n)

Φm

Φn
min

um∈Ũm(xkτn )

{
W kτ+κk−1
m

(
xkτn , um

)}
≥

∑
m∈r(n)

Φm

Φn
min

um∈Ũm(xkτn )

{
W kτ−1
m

(
xkτn , um

)}
=

∑
m∈r(n)

Φm

Φn
W kτ−1
m

(
xkτn , u

kτ
m

)

which implies

V kτ+κk
n

(
xkτn

)
≥

∑
m∈r(n)

Φm

Φn

[
Cm

(
xkτn , u

kτ
m

)
+ V kτ−1

m

(
xkτm

)]
,

=
∑

m∈r(n)

Φm

Φn

[
Wm

(
xkτn , u

kτ
m

)
+
(
V kτ−1
m

(
xkτm

)
− Vm

(
xkτm

))]
.



112 CHAPTER 3. SDDP ALGORITHM

Thus,

V kτ+κk
n

(
xkτn

)
− Vn

(
xkτn

)
≥

∑
m∈r(n)

(
Φm

Φn
Wm

(
xkτn , u

kτ
m

))
− Vn

(
xkτn

)
+

∑
m∈r(n)

Φm

Φn

(
V kτ−1
m

(
xkτm

)
− Vm

(
xkτm

))
.

Note that, as V kτ+κk
n is a lower approximation of Vn we know that

V kτ+κk
n

(
xkτn

)
− Vn

(
xkτn

)
≤ 0,

and, by Dynamic Programming Equation (3.18), that∑
m∈r(n)

(
Φm

Φn
Wm

(
xkτn , u

kτ
m

))
− Vn

(
xkτn

)
≥ 0.

The induction hypothesis

lim
k→+∞

Vm

(
xkτm

)
− V kτ

m

(
xkτm

)
= 0

and Lemma 3.10 (with Vm replacing f) 5 implies

lim
k→+∞

Vm

(
xkτm

)
− V kτ−1

m

(
xkτm

)
= 0.

Thus
Vn

(
xkτn

)
− V kτ+κk

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0,

and ∑
m∈r(n)

(
Φm

Φn
Wm

(
xkτn , u

kτ
m

))
− Vn

(
xkτn

)
k→∞−−−→
ỹkn=1

0.

Thus lemma 3.10 applied with κ = τ gives

Vn

(
xkτn

)
− V kτ+κk−τ

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0,

and by monotonicity we have V kτ+κk−τ
n ≤ V kτ

n ≤ Vn, which finally yields

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=1

0. (3.27)

Now we prove that the values also converge for the iterations k such that ỹkn = 0, i.e.
the iterations for which node n is not selected between step kτ and step (k + 1)τ − 1.
By contradiction, suppose the values do not converge. Then by lemma 3.10 we have that
Vn(xkτn )−V kτ−1

n (xkτn ) does not converge to 0. It follows that there is some ε > 0 such that
Kε is infinite where

Kε := {k ∈ N | Vn

(
xkτn

)
− V kτ−1

n

(
xkτn

)
≥ ε}. (3.28)

Let zj denote the j-th element of the set {ykτn |k ∈ Kε}. Note that the random variables
V kτ−1 and xkτn are measurable with respect to Fkτ−1 := σ

(
(yk
′
)k′<kτ

)
, and thus so is 1k∈Kε

5. Lemma 3.7 (iii) provides a Lipschitz condition on V km.



3.2. STOCHASTIC CASE WITH A FINITE DISTRIBUTION 113

from which ỹkn is independent. Moreover the σ−algebra generated by the past realizations
of ỹkn is included in Fkτ−1. This implies by lemma 3.12 that random variables (zj)j∈N are
i.i.d. and share the same probability law as ỹ0

n.
According to the Strong Law of Large Numbers [52, page 294] applied to the random

sequence (zj)j∈N, we should then have

1

N

N∑
j=1

zj
N→+∞−−−−−→ E[z1] = E[ỹ0

n] = P
(
ỹ0
n = 1

)
> 0.

However, Kε ∩ {ỹkn = 1} is finite because of (3.27) thus we know that there is only a finite
number of indexes j such that zj = 1, the rest being equal to 0. So

1

N

N∑
j=1

zj
N→+∞−−−−−→ 0,

which is a contradiction. This shows that

Vn

(
xkτn

)
− V kτ−1

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0.

and monotonicity shows that,

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0.

which completes the induction.

3.2.3 Application to Known Algorithms.

In order to illustrate on our result we will apply it to two well known algorithms. For
simplicity we will assume that the tree represents a T -step stochastic decision problem in
which every leaf of the tree is of depth T .

We first define the CUPPS algorithm [27] in this setting. Here at each major iteration
we choose a T − 1-step scenario and compute the optimal trajectory while at the same
time updating the value function for each node of the branch. In our setting, this uses a
1-admissible selection process (yk)k∈N defined by an i.i.d. sequence of random variables,
with y0 selecting a single branch of the tree. Theorem 3.8 shows that for every node n the
upper and lower bound converges, that is

lim
k→+∞

∑
m∈r(n)

(
Φm

Φn
Wm

(
xkn, u

k
m

))
− Vn

(
xkn

)
= 0

and
lim

k→+∞
Vn

(
xkn

)
− V k

n

(
xkn

)
= 0.

We now place the SDDP algorithm [77] and DOASA algorithm [80] in our framework.
There are two phases in each major iteration of the SDDP algorithm, namely a forward
pass, and a backward pass of T −1 steps. Given a current polyhedral outer approximation
of the Bellman function (V k̃−1

n )n∈N\L, a major iteration k̃ of the SDDP algorithm consists
in:
• selecting uniformly a number N of scenarios (N = 1 for DOASA);
• simulating the optimal strategy for the problem, that is solving problem (3.19) to

determine a trajectory (for each scenario) (xk̃nt)t∈{0,...,T−1} where (nt)t∈{0,...,T−1} de-
fines one of the selected scenarios;



114 CHAPTER 3. SDDP ALGORITHM

• For t = T − 1 down to t = 0
for each scenario solving problem (3.19) with V k̃

m instead of V k̃−1
m ,

and defining

V k̃
nt(x) = max{V k̃−1

nt (x), θk̃nt + 〈βk̃nt , x− x
k̃
nt〉}.

SDDP fits into our framework as follows. Given N , we define the T − 1-admissible
selection process, (y(T−1)k)k∈N by an i.i.d. sequence of random variables with y0 selecting
uniformly a set of N pre-leaves (i.e. nodes whose children are leaves) of the tree. Then
for κ ∈ {1, . . . , T − 2}, k ∈ N, n ∈ N\L, we define

yk(T−1)+κ
n :=

{
1 if there exist m ∈ r(n) such that y

k(T−1)+κ−1
m = 1

0 otherwise.

This algorithm is the same as SDDP with N randomly sampled forward passes per stage,
but without the cut sharing feature used when random variables are stage-wise indepen-
dent. Since for every node n of the tree (excepting the leaves) there is a κ such that

P(y
k(T−1)+κ
n = 1) > 0, theorem 3.8 guarantees the convergence of the lower bound for

every node. This remains true when cuts are shared since the proof of almost-sure con-
vergence is unaffected by the addition of extra valid cutting planes at any point during
the course of the algorithm. The proof of theorem 3.8 gives

Vn

(
xkτn

)
− V kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0,

and with shared cuts we obtain an improved value function V̆ kτ
n satisfying

V kτ
n

(
xkτn

)
≤ V̆ kτ

n

(
xkτn

)
≤ Vn

(
xkτn

)
that must satisfy

Vn

(
xkτn

)
− V̆ kτ

n

(
xkτn

)
k→∞−−−→
ỹkn=0

0.

3.3 Discussion

The convergence result we have proved assumes that we compute new cuts at scenario-
tree nodes that are selected independently from the history of the algorithm. This enables
us to use the Strong Law of Large Numbers in the proof. Previous results for multistage
stochastic linear programming [80] require a selection process that visits each node in the
tree infinitely often, which is a weaker condition than independence, since it follows by the
Borel-Cantelli Lemma [52, page 288]. An example would be the deterministic round-robin
selection mentioned in [80]. We do not have a proof of convergence for such a process in
the nonlinear case. It is important to observe that the polyhedral form of Vt that was
exploited in the proof of [80] is absent in our problem, and this difference could prove to
be critical.

The convergence result is proved for a general scenario tree. In SDDP algorithms, the
random variables are usually assumed to be stage-wise independent (or made so by adding
state variables). This means that the future cost functions Vm(x) are the same at each
node m at depth t. This allows cutting planes in the approximations to be shared across
these nodes. As we have shown above, the convergence result we have shown here applies
to this situation as a special case. It is worth noting that the class of algorithms covered
by our result is larger than the examples presented in the literature. For example an



3.3. DISCUSSION 115

algorithm where we select randomly a node on the whole tree, and then update backwards
from there is proven to converge. One could also think of combining SDDP and CUPPS
algorithms.

In the case where one would want to add cuts at different nodes in the tree in the
update step of our procedure, the solving of the subproblems can be done in parallel. This
is the case in CUPPS, where a whole branch of the tree is selected at each iteration. It also
allows us to consider different selection strategies, where nodes at a given iteration could
be selected throughout the tree depending on some criteria defined by the user. In the
first few iterations, this could highly increase efficiency of the approximation and, because
the solving of the subproblems can be parallelized, would not be very time-consuming.
One should bear in mind however that, at some point, the algorithm has to come back to
an appropriate selection procedure, i.e. one that satisfies the independence assumption,
in order to ensure convergence of the algorithm.

Appendix: Technical lemmas

Lemma 3.9. If J : Rm → R ∪ {∞} is convex, U : Rn ⇒ Rm is convex then φ(x) :=
minu∈U(x) J(u) is convex. Moreover if J is lower-semicontinuous, and U compact non-
empty valued, then the infimum exists and is attained.

Proof. We define

I(u, x) :=

{
0 if u ∈ U(x)
+∞ otherwise

Then φ(x) = minu∈Rm J(u) + I(u, x). Fix u1 ∈ U(x1) and u2 ∈ U(x2), then for every
λ ∈ [0, 1] λu1 + (1−λ)u2 ∈ U(λx1 + (1−λ)x2) by convexity of U . This shows that I(u, x)
is convex, whereby φ is convex as the marginal function of a jointly convex function.
The second part of the lemma follows immediately from the compactness U and lower-
semicontinuity of J .

Lemma 3.10. Suppose f is convex and X is compact, and suppose for any integer κ, the
sequence of α-Lipschitz convex functions fk, k ∈ N satisfies

fk−κ (x) ≤ fk (x) ≤ f (x) , for all x ∈ X .

Then for any infinite sequence xk ∈ X

lim
k→+∞

f
(
xk
)
− fk

(
xk
)

= 0 ⇐⇒ lim
k→+∞

f
(
xk
)
− fk−κ

(
xk
)

= 0.

Proof. If limk→+∞ f
(
xk
)
− fk−κ

(
xk
)

= 0 then pointwise monotonicity of fk shows that
limk→+∞ f

(
xk
)
−fk

(
xk
)

= 0. For the converse, suppose that the result is not true. Then

there is some subsequence
(
fk(l)

)
l∈N and xk(l) ∈ X with

lim
k→+∞

f
(
xk(l)

)
− fk(l)

(
xk(l)

)
= 0 (3.29)

and ε > 0, L ∈ N with

f
(
xk(l)

)
− fk(l)−κ

(
xk(l)

)
> ε

for every l > L. Since X is compact, we may assume (by taking a further subsequence)
that

(
xk(l)

)
l∈N converges to x∗ ∈ X . For sufficiently large l, the Lipschitz continuity of

fk(l) and fk(l)−κ gives∣∣∣fk(l) (x∗)− fk(l)
(
xk(l)

)∣∣∣ ≤ α‖xk(l) − x∗‖ <
ε

4
,∣∣∣fk(l)−κ

(
xk(l)

)
− fk(l)−κ (x∗)

∣∣∣ ≤ α‖xk(l) − x∗‖ <
ε

4
,



116 CHAPTER 3. SDDP ALGORITHM

and (3.29) implies that for sufficiently large l

f
(
xk(l)

)
− fk(l)

(
xk(l)

)
<
ε

4
.

It follows that

fk(l) (x∗)− fk(l)−κ (x∗) = fk(l) (x∗)− fk(l)
(
xk(l)

)
+fk(l)

(
xk(l)

)
− f

(
xk(l)

)
+f
(
xk(l)

)
− fk(l)−κ

(
xk(l)

)
+fk(l)−κ

(
xk(l)

)
− fk(l)−κ (x∗)

>
ε

4
,

since f
(
xk(l)

)
− fk(l)−κ (xk(l)

)
is greater than ε, and the other three terms each have an

absolute value smaller than ε/4. Consequently fk(l) (x∗) > fk(l)−κ (x∗) + ε
4 , for infinitely

many l which contradicts the fact that fk (x∗) is bounded above by f(x∗).

Lemma 3.11. If (yk)k∈N is a τ -admissible selection process then for all k ∈ N, κ ∈
{0, . . . , τ − 1}, and all n ∈ N\L we have

ykτ+κ
n = 1 =⇒

{
xkτ+κ
n = xkτn ,

V kτ+κ−1
n = V kτ−1

n if k ≥ 1.

Proof. Let n, k and κ be such that ykτ+κ
n = 1. Let a(n) := (n0, n1, . . . , nt) be the sequence

of ascendants of nt := n, i.e. n0 is the root node, and for all t′ < t, nt′ = p(nt′+1). Define
the hypothesis H(t, κ) :

(a) xkτ+κ
nt = xkτnt ,

(b) V kτ+κ−1
nt = V kτ−1

nt , if t ≥ 1.

Let κ′ < κ and assume that for κ′ and all t′ ≤ t, H(t′, κ′) holds true. This is satisfied
for κ′ = 0. Let t′ < t and assume H(t′, κ′ + 1) is true. Since x0 is fixed, this is satisfied
for t′ = 0. By definition of ukτ+κ′+1

nt+1
we have

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτ+κ′+1
nt′

){Cnt′+1

(
xkτ+κ′+1
nt′

, u
)

+ V kτ+κ′
nt′+1

◦ fnt′+1

(
xkτ+κ′+1
nt′

, u
)}

thus by H(t′, κ′ + 1) (a) we have

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτnt′

){Cnt+1

(
xkτnt′ , u

)
+ V kτ+κ′

nt′+1
◦ fnt+1

(
xkτnt′ , u

)}
.

Now as nt′+1 is an ascendant of n and κ′ < κ by property (i) of definition 1, we have that
the representation of Vnt′+1

is not updated at iteration κ′, i.e.

V kτ+κ′
nt′+1

= V kτ+κ′−1
nt′+1

.

And thus H(t′ + 1, κ′) (b) gives H(t′ + 1, κ′ + 1) (b), i.e.

V kτ+κ′
nt′+1

= V kτ−1
nt′+1

,



3.3. DISCUSSION 117

therefore

ukτ+κ′+1
nt′+1

∈ arg min
u∈Ũ
(
xkτnt′

){Cnt+1

(
xkτnt′ , u

)
+ V kτ−1

nt′+1
◦ fnt+1

(
xkτnt′ , u

)}
,

and consequently 6

ukτ+κ′+1
nt′+1

= ukτnt′+1
,

which gives by definition H(t′ + 1, κ′ + 1) (a). Induction on t′ gives H(t′, κ′ + 1) for all
t′ ≤ t, and induction on κ′ establishes H(t, κ) for all κ ∈ [[0, τ ]].

Lemma 3.12. Let (wk)k∈N be a stochastic process with value in {0, 1} adapted to a fil-
tration (Fk)k∈N, such that the number of terms that are non-zero is almost surely infi-
nite. Let (yk)k∈N be a sequence of i.i.d discrete random variables. Define the filtration
Bk := σ

(
Fk ∪σ(y1, . . . , yk−1)

)
and assume that for all k ∈ N, yk is independent of Bk. Let

k(j) denote the jth integer such that wk = 1, i.e. k(0) = 0 and for all j > 0,

k(j) := min{l > k(j − 1)|wl = 1}.

Finally we define for all j > 0, the jth value of (yk) such that wk = 1, i.e.

zj := yk(j).

Then (zk)k∈N is a sequence of i.i.d. random variables equal in law to y0.

Proof. Let Y denote the support of y0. We start with z1. For i ∈ Y ,

P(z1 = i) =

∞∑
l=1

P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1} ∩ {yl = i}

)
by {0,1}definition

=
∞∑
l=1

P
(
{yl = i}

)
P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1}

)
by independence

= P
(
{y0 = i}

) ∞∑
l=1

P
(
{∀l′ < l, wl

′
= 0} ∩ {wl = 1}

)
as (yl) is i.i.d.

= P
(
{y0 = i}

)
as the sequence (wk)k∈N must contain a 1 almost surely. Thus z1 is equal in law to y0.

Now suppose that z = (z1, . . . , zm) is a sequence of i.i.d. random variables. Let
k1, · · · , km be m ordered integers, and fix b ∈ {0, 1}n and i ∈ Y . We have

P
(
{z = b} ∩ {zm+1 = i} ∩ {k(1) = k1, . . . , k(m) = km}

)
=

∞∑
ν=0

P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km} ∩ {yν = i} ∩ {ν = k(m+ 1)}

)
=
∞∑
ν=0

P
(
yν = i

)
P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km} ∩ {ν = k(m+ 1)}

)
= P

(
y0 = i

)
P
(
{z = b} ∩ {k(1) = k1, . . . , k(m) = km}

)
.

For the last equality we have used the fact that (yk) is i.i.d. and the fact that k(m+ 1) is
almost surely finite and thus

(
{ν = k(m+ 1)}

)
ν∈N is a partition of the set of events.

6. This requires that the choice of optimal control among the set of minimizers is deterministic (say
that with minimum norm).



118 CHAPTER 3. SDDP ALGORITHM

Summing over the possible realizations of k(1), . . . , k(m), we obtain

P
(
{z = b} ∩ {zm+1 = i}

)
= P

(
z = b

)
P(y0 = i).

Now summing over the possible realizations of b shows that zm+1 is equal in law to y0.
Thus

P
(
{z = b} ∩ {zm+1 = i}

)
= P

(
{z = b} ∩ {y0 = i}

)
= P

(
z = b

)
P(y0 = i)

= P
(
z = b

)
P(zm+1 = i)

which shows that zm+1 is independent of z and equal in law to y0. Induction over m
completes the proof.



Part II

Duality in Stochastic Optimization

119





Chapter 4

Constraint Qualification in
Stochastic Optimization

Learn from yesterday, live for today, hope for
tomorrow. The important thing is to not stop
questioning.

Albert Einstein

Contents

4.1 Abstract Duality Theory . . . . . . . . . . . . . . . . . . . . . . 122

4.1.1 Introducing the Framework . . . . . . . . . . . . . . . . . . . . . 122

4.1.2 A Specific Type of Perturbation . . . . . . . . . . . . . . . . . . 124

4.2 Two Examples on Constraint Qualification . . . . . . . . . . . . 128

4.2.1 An Example with a Non-Qualified Constraint . . . . . . . . . . . 128

4.2.2 Second Example: Sufficient Condition is not Necessary . . . . . . 135

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

With this Chapter 4, we open the part of the manuscript devoted to constraints in
stochastic optimization, and we lay out ways to tackle constraints through duality meth-
ods.

We first recall basic materials in the abstract theory of duality, and then discuss,
through simple examples, the adequation of the usual sufficient conditions of constraint
qualification to stochastic optimization problems under almost sure constraints.

Introduction

In the stochastic optimization Problem,

min
U∈Uad∈U

E
[
J
(
U
)]

s.t. Θ(U ) ∈ −C

an admissible control has to satisfy the following constraint

Θ(U ) ∈ −C P-a.s.

If the probability space
(
Ω,F ,P

)
is not finite, the above constraint can be seen as an infinite

number of constraints. In most cases, the Karush-Kuhn-Tucker conditions of optimality
for a constrained problem are given for a finite number of constraints. Dealing with an



122 CHAPTER 4. CONSTRAINT QUALIFICATION

infinite number of constraints raises functional analysis questions over which functional
spaces, endowed with which topology, are chosen for the controls and the multipliers.

In a few words, the abstract duality point of view consists in embedding an optimization
problem (P0) into a family of optimization problems (Pp) indexed by a perturbation p ∈ Y.
We denote by ϕ(p) the value of the perturbed problem (Pp). The dual problem (D0)
consists in computing the value of the biconjugate ϕ??(0).

We recall that properties and links between the primal problem (P0) and its dual (D0)
are strongly related to the regularity of the value function ϕ at p = 0. More precisely an
optimal solution λ] of the dual (D0) is an element of the subdifferential of ϕ at p = 0.
This is the well-known marginal interpretation of the multiplier: λ] is the marginal value
of a perturbation p of the problem (e.g. a modification of the constraints of the problem).

In §4.1, we present basics in the theory of abstract duality, detailing the links between
regularity of ϕ and existence of optimal multipliers (that is solutions to the dual prob-
lem). We also expose the special case of the Lagrangian duality and a sufficient condition
of qualification. In §4.2, we work out two examples underlying the difficulties of using the
duality theory in a stochastic optimization framework. Indeed simple almost sure con-
straint are shown to be non-qualified or qualified but not satisfying the generic sufficient
condition of qualification.

4.1 Abstract Duality Theory

We recall here the abstract theory of duality that can be found in [24,45,89].

4.1.1 Introducing the Framework

A family of perturbed optimization problem

We consider paired spaces 1
(
U ,U?

)
, for example a Banach space and its topological

dual (see §A.1.4 for more informations). The space U is called the space of controls. In
order to study the following optimization problem:

(P0) inf
u∈U

J(u) , (4.1)

where J : U → R, we introduce a space Y of perturbations paired with Y?. Elements of Y
are denoted p for “perturbation”, and elements of its paired space Y? are denoted λ and
called multipliers. We introduce a perturbed cost function G : U × Y → R that satisfies
the following equation.

G(·, 0) ≡ J(·) . (4.2)

We consider the family
{

(Pp)
}
p∈Y of perturbed optimization problem induced by G:

(Pp) inf
u∈U

G(u, p) , (4.3)

and denote ϕ(p) its value, i.e.

ϕ(p) := inf
u∈U

G(u, p) . (4.4)

By (4.2), we know that ϕ(0) is the value of the original optimization problem (4.1).

1. All topological assumptions are done with respect to the topologies compatible with the paired
spaces.



4.1. ABSTRACT DUALITY THEORY 123

Introducing the Lagrangian

We introduce the Lagrangian function associated with the family of perturbed prob-
lems

{
(Pp)

}
p∈Y .

Definition 4.1. The Lagrangian L : U × Y? → R associated to
{

(Pp)
}
p∈Y is given by

L(u, λ) := inf
p∈Y

{
G(u, p) +

〈
λ , p

〉}
. (4.5)

Fact 4.2. If for any control u ∈ U the function Gu : p 7→ G(u, p) is convex and l.s.c.(for the
topology attached to the pairing

(
Y,Y?

)
), then the primal problem (P0) (defined in (4.1))

can be written
(P0) inf

u∈U
sup
λ∈Y?

L(u, λ) . (4.6)

Proof. By definition of the Fenchel conjugate of Gu (see Definition A.37) we have

G?u(λ) = sup
p∈Y

{〈
λ , p

〉
−Gu(p)

}
.

Thus by Definition 4.1 we have

∀u ∈ U , ∀λ ∈ Y?, L
(
u, λ

)
= −G?u

(
− λ

)
.

Consequently the biconjugate of Gu reads

G??u (p) = sup
λ∈Y?

{〈
λ , p

〉
+ L

(
u,−λ

)}
.

Changing λ into −λ and taking p = 0 in the previous expression we obtain

G??u (0) = sup
λ∈Y?

L
(
u, λ

)
.

As Gu is assumed to be convex and l.s.c, we have by Theorem A.38 that G??u = Gu. Then
Equation (4.2) yields

J(u) = sup
λ∈Y?

L
(
u, λ

)
,

and minimization over u ∈ U yields (4.6)

Introducing the dual problem

With Equation (4.6) in mind, we define the dual problem (D0) of problem (P0) as

(D0) sup
λ∈Y?

inf
u∈U

L(u, λ) . (4.7)

Fact 4.3. The dual problem (D0) has value ϕ??(0), where function ϕ is given by (4.4).

Proof. For any multiplier λ ∈ Y?, we have, by Definition 4.1

inf
u∈U

L(u, λ) = inf
u∈U

inf
p∈Y

{〈
λ , p

〉
+G(u, p)

}
= inf

p∈Y

{〈
λ , p

〉
+ ϕ(p)

}
by (4.4)

= −ϕ?(−λ) . by Definition A.37

Then, we deduce that the value of (D0) is given by

sup
λ∈Y?

inf
u∈U

L(u, λ) = sup
λ∈Y?

−ϕ?(−λ) = ϕ??(0) ,

which end the proof.

Note that Fact 4.3 allows to introduce the dual problem directly as the problem of
computing ϕ??(0).



124 CHAPTER 4. CONSTRAINT QUALIFICATION

Relations between the primal and dual problems

Fact 4.4. The weak duality relation states that the value of the primal problem (P0) is
higher than the value of the dual problem (D0). We call duality gap the (non-negative)
difference between the value of the primal and dual problems.

Proof. Indeed by Theorem A.38 we know that ϕ?? ≤ ϕ. Definition of ϕ(0) and Fact 4.3
ends the proof.

Furthermore we give in the next proposition some links between the regularity of the
value function ϕ at 0 (given by (4.4)) and the relation between the primal problem (P0)
(in (4.1)) and the dual problem (D0) (in (4.7)). Those results, and more, can be found
in [24,89].

Proposition 4.5. If the value function ϕ is convex (which is the case if the perturbed cost
G is jointly convex in (u, p)), and finite 2 at 0 we have:
• ϕ(0) = inf(P0)
• ϕ??(0) = sup(D0) and arg max(D0) = ∂ϕ??(0) (that can be empty);
• ϕ is l.s.c.at 0 iff there is no duality gap, i.e inf(P0) = sup(D0);
• ϕ is subdifferentiable at 0 if there is no duality gap and there is a solution to the

dual problem i.e inf(P0) = max(D0) and arg maxD0 6= ∅.

Definition 4.6. Problem
(
Pp
)

is said to be calm if ϕ(p) <∞ and ∂ϕ(p) 6= ∅.

4.1.2 A Specific Type of Perturbation

We now show how the classical theory of dualization is inscribed in this abstract duality
theory. The main point is to formulate Problem (P0) as a problem under constraints, and
to perturb it by perturbing additively the constraint.

Constructing the Lagrangian Duality

Recall Problem (1.1),

(P0) inf
u∈Uad

J(u)

s.t. Θ(u) ∈ −C

where J : U → R is a proper l.s.c.convex function, Uad a non empty closed convex set,
C ⊂ Y a closed convex cone and Θ : U → Y a continuous C−convex function (see
Definition A.48). Note that the link with §4.1.1 is given by

J = J + χUad + χΘ(·)∈−C

Let us define the following perturbed cost function

G(u, p) = J(u) + χUad(u) + χ{
(u,p)∈U×Y | Θ(u)−p ∈−C

}(u, p) , (4.8)

and we have, as required,
G(·, 0) = J(·) .

Then, Problem (1.1) can be embedded in the following family of perturbed problems

(Pp) inf
u∈Uad

J(u) + χ{Θ(u)−p ∈−C}
(
u, p
)
. (4.9)

2. The convexity and finiteness assumptions are sufficient but not always necessary.



4.1. ABSTRACT DUALITY THEORY 125

which is equivalent to

inf
u∈Uad

J(u)

s.t. Θ(u)− p ∈ −C

Equivalently, through Proposition A.39, we can write problem (Pp)

(Pp) inf
u∈Uad

sup
λ∈C?

J(u) +
〈
λ,Θ(u)− p

〉
.

The Lagrangian introduced in §4.1.1, associated to the family of problems {Pp}p∈Y ,
reads

L(u, λ) = J(u) +
〈
λ,Θ(u)

〉
+ χUad − χC?(λ) . (4.10)

Thus Problem (P0) reads

(P0) inf
u∈Uad

sup
λ∈C?

L(u, λ) , (4.11)

and Problem (D0) reads

(D0) sup
λ∈C?

inf
u∈Uad

L(u, λ) . (4.12)

Conditions of Qualification

We give now conditions under which problems (P0) (in (4.11)) and (D0) (in (4.12))
are equivalent in the sense that the set of solutions of Problem (4.11) is the same as the
set of solution of Problem (4.12), and their values are equals.

Definition 4.7. Recall that Problem (P0) admits at least one solution, and is convex.
Then the constraint

Θ(u) ∈ −C (4.13)

is said to be qualified if the problem
(
P0

)
is calm, that is if one of the two following

equivalent statements holds.
i) ∂ϕ(0) 6= ∅, where ϕ is defined as in (4.4).
ii) There is no duality gap and the dual problem (D0) has an optimal solution.

If Problem (P0) admits an optimal solution, these assertions are equivalent to
iii) The Lagrangian L, defined in (4.10), admits a saddle point on Uad×C?, i.e. there

exists (u], λ]) ∈ Uad × C? (C? is defined in SA.4) such that

∀u ∈ Uad, ∀λ ∈ C?, L(u], λ) ≤ L(u], λ]) ≤ L(u, λ]) .

Note that it is quite difficult to check these conditions. Thus, we need sufficient
conditions of qualification. We are going to reformulate classical conditions of qualification
in our framework.

We begin by a lemma on the regularity of the perturbed cost function G.

Lemma 4.8. The function G defined in Equation (4.8) is jointly convex and l.s.c.

Proof. As J is convex by assumption, in order to show the joint convexity of G it is enough
to show that the set {

(u, p) ∈ Uad × Y | Θ(u)− p ∈ −C
}

(4.14)

is convex.



126 CHAPTER 4. CONSTRAINT QUALIFICATION

For this purpose, consider two pairs (u1, p1) and (u2, p2) such that,

∀i ∈ {1, 2}, Θ(ui)− pi ∈ −C ,

and t ∈ [0, 1]. As Uad is convex, and Y is a vector space, Uad × Y is convex and we have

t(u1, p1) + (1− t)(u2, p2) ∈ Uad × Y .

Moreover convexity of C gives

tΘ(u1) + (1− t)Θ(u2)−
(
tp1 + (1− t)p2

)
∈ −C .

Now, by C-convexity of Θ, we have

Θ
(
tu1 + (1− t)u2

)
−
(
tΘ(u1) + (1− t)Θ(u2)

)
∈ −C .

Moreover as C is a closed convex cone, we have C + C = C (see Lemma A.47), thus,

Θ
(
tu1 + (1− t)u2

)
−
(
tp1 + (1− t)p2

)
∈ −C .

and we have shown the convexity of the set (4.14) and thus the convexity of G.
Continuity of Θ, closedness of C and closedness of Uad give the closedness of the set{

(u, p) ∈ U × Y | u ∈ Uad, Θ(u)− p ∈ −C
}
,

hence the lower semicontinuity of the function

χ{
(u,p)∈U×Y | u∈Uad, Θ(u)−p ∈−C

} .
Finally, lower semicontinuity of function J gives the lower semicontinuity of functionG.

As G defined in (4.8) is jointly convex, the value function ϕ defined in (4.4) is also
convex (see Proposition A.45). Consequently a sufficient condition for the constraint (4.13)
to be qualified is for ϕ to be continuous at 0. Indeed continuity of a convex function implies
its subdifferentiability (see [9, Proposition 2.36]). Moreover recall that:
• a convex function, defined on a topological linear space, is continuous at a point

in the interior of its domain if and only if it is locally bounded above at this point
(see [9, Proposition 2.14]);
• a proper l.s.c.convex function, defined on a Banach space, is continuous on the

interior of its domain (see [9, Proposition 2.16]).
However, there is no general reason for ϕ to be l.s.c.. Nonetheless we have the following
proposition (see [24, Proposition 2.153])

Proposition 4.9. Assume that U and Y are Banach spaces, that the perturbed cost func-
tion G is proper, convex and l.s.c., and ϕ(0) < +∞ (where the value function ϕ is given
by (4.4)). Then 0 ∈ ri

(
dom(ϕ)

)
implies that ∂ϕ(0) 6= ∅, hence

We now give the usual constraint qualification condition.

Proposition 4.10. Assume that U and Y are Banach spaces, and that the perturbed cost
function G is proper, convex and l.s.c.. Then, under the following assumption

(CQC) 0 ∈ ri
(

Θ
(
Uad ∩ dom(J)

)
+ C

)
, (4.15)

Constraint (4.13) is qualified.



4.1. ABSTRACT DUALITY THEORY 127

Proof. (Pp) defined in (4.9) is feasible iff

∃u ∈ Uad ∩ dom(J), Θ(u)− p ∈ −C ,

which can be written
p ∈ Θ

(
Uad ∩ dom(J)

)
+ C ,

thus,
dom(ϕ) = Θ

(
Uad ∩ dom(J)

)
+ C .

Proposition 4.9 ends the proof.

Proposition 4.10 is sometimes stated without Uad or dom(J). Indeed the cost function
can always be replaced by J + χUad and in this case the minimization in u is done on the
whole space U . In other words we could easily choose Uad to be a subset of dom(J).

Remark 4.11. The condition (CQC) (in (4.15)) is equivalent to

0 ∈ ri
(

dom(ϕ)
)
. (4.16)

This sufficient condition is quite strong (as it will be illustrated in the next section). Indeed
in most cases a convex function is subdifferentiable also on the border of its domain. For
example if f : E → R is a finite convex function, and C a closed convex set, then the
l.s.c.function f + χC is subdifferentiable at any point of its domain (i.e C).

An example of function that is not subdifferentiable on the border of its domain would
be

ϕ(x) =


+∞ if x < 0

0 if x = 0

x log(x) if x > 0

.

At x = 0 this function admits a tangent (toward the interior of the domain) with infinite
slope, thus, is not subdifferentiable. If the function admitted a finite sloped tangent it would
be subdifferentiable.

Almost Sure Constraint in Lp
(
Ω,F ,P;Rn

)
Display Empty Interior

We claim that the sufficient condition of qualification (4.15) is scarcely satisfied in a
stochastic optimization setting if we choose Y = Lp

(
Ω,F ,P

)
with p <∞. By contrast, if

Y = L∞
(
Ω,F ,P

)
, this condition is more often satisfied.

Proposition 4.12. Consider a probability space
(
Ω,F ,P

)
, where F is not finite modulo

P. 3 Consider p ∈ [1,∞), and a set Uad ( Rn that is not an affine subspace of Rn. Then,
the set

Uad =
{
U ∈ Lp

(
Ω,F ,P;Rn

) ∣∣ U ∈ Uad P-a.s.
}
,

has an empty relative interior in Lp.

Proof. Consider U ∈ Uad, p ∈ [1,+∞) and x ∈ Aff(Uad)\Uad. We are going to exhibit a
sequence

{
Un
}
n∈N such that for all n ∈ N, we have Un /∈ Uad and Un →Lp U .

Since F is not finite modulo P, we can consider a sequence of F-measurable events
{An}n∈N with P(An) > 0 and such that limn P(An) = 0. Then, we define

Un =

{
x on An,

U elsewhere.

We have
∥∥Un − U∥∥p =

∥∥(U − x)1An∥∥. Thus, dominated convergence theorem ensures

that Un →Lp U . However, by construction, for any n, we have that Un /∈ Uad.

3. See Definition 5.1.



128 CHAPTER 4. CONSTRAINT QUALIFICATION

The space L∞, endowed with the norm topology, is better suited for almost sure
constraint as shown in the next proposition.

Proposition 4.13. Consider a set Uad ⊂ Rn such that int(Uad) 6= ∅. Then the set

Uad =
{
U ∈ L∞

(
Ω,F ,P;Rn

)
| U ∈ Uad P-a.s.

}
,

has a non-empty interior.

Proof. Consider u ∈ int(Uad), and ε > 0 such that BRn(u, ε) ⊂ Uad. Then the (constant)
random variable U ≡ u is such that, for all random variable V ∈ BL∞(U , ε), i.e. such
that ‖U − V ‖L∞ < ε, we have V ∈ BRn(u, ε) ⊂ Uad P-a.s. Thus V ∈ Uad.

The following practical corollary is a direct application of Proposition 4.13 and Propo-
sition 4.10.

Corollary 4.14. Consider a closed convex set Uad ⊂ Rn. Consider the affine constraint
function Θ : L∞

(
Ω,F ,P;Rn

)
→ L∞

(
Ω,F ,P;Rp

)
such that there is a matrix A ∈Mp,n(R)

and a vector b ∈ Rp with

∀U ∈ L∞
(
Ω,F ,P;Rn

)
, Θ(U ) = AU + b, P-a.s.

Assume that J is convex, proper, and continuous on U . If 0 ∈ ri
(
AUad + b

)
then the

constraint
Θ(U ) = 0 ,

in the following problem,

min
U∈L∞

J(U )

s.t. Θ(U ) = 0

U ∈ Uad P-a.s.

is qualified.

4.2 Working Out Two Examples on Constraint Qualifica-
tion

In this section, we develop two examples that reveal delicate issues related to duality in
stochastic optimization. In a first example we show that, even on a seemingly innocuous
problem (inspired by R. Wets) there might not exist a dual multiplier in L2. In a second
example we show that a multiplier might exist even if the sufficient qualification condition
(CQC) (4.15) is not satisfied.

4.2.1 An Example with a Non-Qualified Constraint

We elaborate on an example from R. Wets 4. Where R. Wets focused on a discretiza-
tion of the probability space approach to show that when refining the discretization the
multiplier would converges toward a singular measure. On the other hand we, cast the
problem in a strongly convex setting and derive directly the conditions of qualification.

Let
(
Ω,F ,P

)
be a probability space. Let ξ be a random variable uniform on [1, 2],

α > 0 a positive real number. We consider the optimization problem

4. CEA-EDF-INRIA 2013 summer school.



4.2. TWO EXAMPLES ON CONSTRAINT QUALIFICATION 129

inf
x,Y

x2

2
+ E

(Y + α)2

2
(4.17a)

x ≥ a (4.17b)

(x− Y ) ≥ ξ (4.17c)

Y ≥ 0 (4.17d)

where x is a deterministic real variable and Y is a random variable. For technical issues
we assume that 2− α < a.

We can easily find the optimal solution. Noting that α ≥ 0, a careful look on the
constraints shows that, Y being positive, x has to be greater than ξ almost surely, thus,
x is greater than essupp(ξ) = 2. Consequently, from α ≥ 0, we see that{

x] = max{2, a}
Y ] ≡ 0

is an optimal solution of Problem (4.17) and yields a value of

max{a, 2}2

2
+
α2

2
.

Now using the notations of abstract duality (§4.1), we set the set of perturbation

Y = R× L2
(
Ω,F ,P;R

)
× L2

(
Ω,F ,P;R

)
.

Consider the family of perturbed problem, in L2 spaces,

inf
x,Y

x2

2
+ E

[(Y + α)2

2

]
︸ ︷︷ ︸

:=J(x,Y )

x ≥ a+ p1

(x− Y ) ≥ ξ + P2 P-a.s.

Y ≥ 0 + P3 P-a.s.

(4.18)

with P = (p1,P2,P3) ∈ Y, and denote by ϕ
(
P
)

its value. Note that the perturbation P
has a deterministic part (p1) and a stochastic part (P2 and P3).

Problem (4.18) is cast in the general framework of §4.1.2 with the constraint function

Θ(x,Y ) =
(
a− x, ξ − x+ Y ,−Y

)
,

and the cone of constraints

C =
{

(v1,V2,V3) ∈ Y | v1 ≥ 0, V2 ≥ 0 P-a.s., V3 ≥ 0 P-a.s.
}
.

Lower semicontinuity of the value function ϕ at 0

As J is convex and Θ is C-convex, we obtain by Lemma 4.8 that ϕ is convex. Moreover,
the value function ϕ related to Problem (4.18) can be made explicit, and its regularity at
0 studied (in order to find properties of the dual and primal problems).



130 CHAPTER 4. CONSTRAINT QUALIFICATION

Fact 4.15. Then, in an L2-neighborhood of 0, the value function ϕ related to Prob-
lem (4.18) is given by

ϕ(P ) =

(
max

{
a+ p1, essupp

(
ξ + P2 + max

{
− α,P3

})
, 0

})2

+ E

[((
P3 + α

)+)2

2

]
+ χ{essupp(P3+P2+ξ)<∞} .

(4.19)

with optimal solution{
x] = max

{
a+ p1, essupp

(
max

{
− α,P3

}
+ ξ + P2

)
, 0
}

Y ] = max
{
P3,−α

} (4.20)

Proof. Note that Problem (4.18) admits a solution if

essupp
(
P3 + P2 + ξ

)
<∞ . (4.21)

Indeed, in this case, the solution (x],Y ]) defined in (4.20) is admissible. On the other
hand if (4.21) does not hold, then the two last constraints of Problem (4.18) cannot be
satisfied almost surely with a finite x.

Now, if conditions (4.21) hold true, then, for a given admissible Y , the solution of

min
x

x2

2
+ E

[(Y + α)2

2

]
x ≥ a+ p1

x ≥ Y + ξ + P2 P-a.s.

is given by
x] = max

{
a+ p1, essupp

(
Y + ξ + P2

)
, 0
}
, (4.22)

with value (
max

{
a+ p1, essupp

(
Y + ξ + P2

)
, 0
})2

2
+

E
[
(Y + α)2

]
2

.

Thus, we consider the minimization in Y of

min
Y

(
max

{
a+ p1, essupp

(
Y + ξ + P2

)
, 0
})2

2
+

E
[
(Y + α)2

]
2

s.t. P3 ≤ Y

The first term of the sum is non decreasing with respect to Y . Moreover, for ‖P ‖L2

small enough, as 2− α < a, a+ p1 > 2− α and essupp
(
Y + ξ +P2

)
< essuppY + 2− α.

Hence, if Y ≤ 0,
{
a+ p1, essupp

(
Y + ξ + P2

)
, 0
}

= a+ p1. As α ≥ 0 the second term is
also non decreasing with respect to Y from −α. Thus,

Y ] = max
{
P3,−α

}
,

is optimal for any x ∈ R.
Now from (4.22) we obtain

X ] = max
{
a+p1, essupp

(
Y ]+ξ+P2

)
, 0
}

= max
{
a+p1, essupp

(
maxP3,−α+ξ+P2

)
, 0
}
.

Evaluating the cost function J at (X ],Y ]) coupled with the condition of admissibility
(4.21) yields the expression of ϕ.



4.2. TWO EXAMPLES ON CONSTRAINT QUALIFICATION 131

Fact 4.16. The value function ϕ is l.s.c.at 0.

Proof. We now show that ϕ is l.s.c.(for the strong and weak L2 topologies) at 0.
• As the mapping x 7→ (x+ α)+ is a contraction, if

(
Pn
)
n∈N converges in L2 towards

P , then
(
(Pn + α)+

)
n∈N converges in L2 towards (P + α)+. Thus the function

h1 : P 7→ E
((P3 + α)+)2

2

is continuous.
• The mapping

P 7→ ξ + P2 −max{P3,−α}

is continuous. So, by Lemma A.56, the mapping

P 7→ essupp
(
ξ + P2 + max

{
− α,P3

})
is l.s.c, and as the mapping P 7→ a + p1 is continuous we have (Lemma A.54) that
the mapping

h2 : P 7→ max

{
a+ p1, essupp

(
ξ + P2 + max

{
− α,P3

})
, 0

}
is l.s.c.As the function h2 is non-negative, we have h2

2 = (h+
2 )2. Moreover the

mapping x 7→ (x+)2 is non-decreasing, thus we obtain by Lemma A.53 the lower
semicontinuity of h.
• By Lemma A.56 we know that the function P 7→ essupp

(
ξ +P2 +P3

)
is l.s.c., thus

its level sets are closed and the set

D =
{
P ∈ L2 | essupp(P3 + P2 + ξ) < M

}
,

is closed.
Finally, h1 being continuous, and h2 l.s.c.h1 +h2 is l.s.c., and by Lemma A.55, the function

ϕ = h1 + h2 + χD

is l.s.c..

From the lower semicontinuity of the value function at the origin, Problem (4.17) and
its dual in the sense of §4.1.2 have the same value. By Proposition 4.5, there is no duality
gap.

Non-Subdifferentiability of ϕ at 0

Fact 4.17. If a < 2, the value function ϕ (defined by (4.4) and given by (4.19) ) is not
subdifferentiable at 0.

Proof. The proof is by contradiction. Suppose that there exists λ] ∈ ∂ϕ(0) ⊂ L2. Then
we have, for all P ∈ L2,

ϕ(P )− ϕ(0) ≥ 〈λ],P 〉 . (4.23)

We now display a family of perturbations that implies that the L2 norm of λ] is not finite,
hence a contradiction.

Consider the perturbation ε2Pε, where

Pε =
(

0,−1/ε1ξ∈[2−ε,2]︸ ︷︷ ︸
P2,ε

, 0
)
.



132 CHAPTER 4. CONSTRAINT QUALIFICATION

As we have
ξ + ε2P2,ε = ξ1{ξ∈[0,2−ε)} + (ξ − ε)1{ξ∈[2−ε,2]} ,

we obtain
essupp

(
ξ + ε2P2,ε

)
= 2− ε .

Moreover, for 0 < ε ≤ 2− a, (ε exists as a < 2),(
max

{
a+ p1,ε︸︷︷︸

=0

, essupp
(
ξ + ε2P2,ε

)
, 0
})2

=
(
2− ε

)2
,

which in turn yields

ϕ(ε2Pε)− ϕ(0) = (2− ε)2 − 22 = −2ε+ ε2 .

Consequently, from the subgradient inequality (4.23) we obtain

ϕ(ε2Pε)− ϕ(0)

ε2
= −2

ε
+ 1 ≥ 〈λ],Pε〉 .

Consequently, for ε < 1/2, we have 〈λ],Pε〉 < 0, and thus,∣∣− 2

ε
+ 1
∣∣ ≤ |〈λ],Pε〉| .

However the Cauchy-Schwartz inequality yields∣∣− 2

ε
+ 1
∣∣ ≤ |〈λ],Pε〉| ≤ ||λ]||2 · ||Pε||2 = ||λ]||2 .

Taking the limits ε→ 0 leads to a contradiction. Therefore λ] does not exist, which means
that ∂ϕ(0) = ∅ : ϕ is not subdifferentiable at 0.

From this fact we conclude that the dual problem (defined by L2 perturbations) has
no solution for a < 2.

Working out the Dual Problem

We now write the dual problem (for L2 perturbations) of Problem (4.17), and derive
a maximizing sequence that does not converge in L2, but converges toward an element of(
L∞
)?

.
Following §4.1.2 the dual of Problem (4.17) is given by

sup
λ≥0

inf
x,Y

x2

2
+ E

[(Y + α)2

2

]
+ λ1(a− x) + E

[
λ2(ξ − x+ Y )− λ3Y

]
, (4.24)

where λ =
(
λ1,λ2,λ3

)
is an element of R× L2

(
Ω,F ,P;R

)
× L2

(
Ω,F ,P;R

)
.

Fact 4.18. The optimal value of the dual problem is given by

α2

2
+ max{a, 2}2/2

which is equal to ϕ(0) (by (4.19)). Thus, as already obtained in Fact 4.16, there is no
duality gap.

If a < 2, then we can construct a maximizing sequence of Problem (4.24) that does not
converges in L2. If a > 2, then we have an optimal solution to Problem (4.24) that lies in
L2, thus ϕ is subdifferentiable at 0.



4.2. TWO EXAMPLES ON CONSTRAINT QUALIFICATION 133

Proof. For a given multiplier λ = (λ1,λ2,λ3), the minimization part of Problem (4.24)
can be written as

min
x

{x2

2
− (λ1 + E[λ2])x+ aλ1 + E

[
λ2ξ

]}
︸ ︷︷ ︸

(A)

+ min
Y

{
E
[(Y + α)2

2
+ (λ2 − λ3)Y

]}
︸ ︷︷ ︸

(B)

.

Part (A) is easily minimized as it is a second order polynom in x, with value

−
(λ1 + E[λ2])2

2
+ aλ1 + E

[
λ2ξ

]
.

Part (B) is also easily solved as we can interchange the inf and the expectation (because Y
is measurable with respect to ξ, see [96, Theorem 14.60] ). Thus the minimum is attained
for

Y ] = −α+ λ3 − λ2 ,

with value

E
[(λ3 − λ2)2

2
+ (λ2 − λ3)(−α+ λ3 − λ2)

]
.

Thus Problem (4.24) now becomes

sup
λ1,λ2,λ3≥0

{
−λ

2
1

2
+
(
a−E[λ2]

)
λ1−

(
E[λ2]

)2

2
+E
[
λ2ξ

]
+E
[
−

(λ3 − λ2)2

2
+α(λ3−λ2)

]}
.

For given λ2 and λ3, the maximization in λ1 is quadratic (in R). The unconstrained

optimum being λ1 = a−E[λ2], thus the optimum is λ]1 = (a−E[λ2])+. Maximization in λ3

can be done under the expectation and thus, the optimum is achieved for λ3
] = (λ2 +α)+.

As α and λ2 are non-negative we have λ3
] = λ2 + α. Hence the remaining maximization

problem in λ2 reads

sup
λ2≥0

{
((a− E[λ2])+)2

2
−

(E[λ2])2

2
+ E

[
λ2ξ

]
+
α2

2

}
. (4.25)

First we solve Problem (4.25) over the set of λ2 such that E
[
λ2

]
≥ a. In this case, we

have to solve
α2

2
+ sup

λ2≥0

E[λ2]≥a

{
−

(E[λ2])2

2
+ E

[
λ2ξ

]}
.

This problem can be written

α2

2
+ sup
M≥a

sup
λ2≥0

E[λ2]=M

{
− M2

2
+ E

[
λ2ξ

]}
,

and the supremum in λ2 is obtained by concentrating the mass on the highest value of
ξ. A maximizing sequence is given by Mk1{(2−1/k)≤ξ≤2} ∈ L2, which converges (up to

the canonical injection) in
(
L∞
)?

towards λ]2 = Mδ{ξ=2}. Moreover sup
M≥a

{
2M −M2/2

}
is attained at M ] = max{2, a} and has the following value

2 max{a, 2} − max{a, 2}2

2
.



134 CHAPTER 4. CONSTRAINT QUALIFICATION

Now consider the set of multipliers such that E[λ2] ≤ a. Then, Problem (4.25) reads

α2

2
+ sup

λ2≥0

E[λ2]≤a

{a2

2
− aE[λ2] + E

[
λ2ξ

]}
.

Thus, we need to solve

sup
0≤M≤a

sup
λ2≥0

E[λ2]=M

α2

2
+
{a2

2
− aM + E

[
λ2ξ

]}

and, as previously, we concentrate the mass of λ2 over the highest values of ξ, leading to

α2

2
+ sup

0≤M≤a

{a2

2
+ (2− a)M

}
.

which is maximized for M = a if a < 2, and maximized for M = 0 if a ≥ 2. Note that in
this case the optimal multiplier is no longer a singular measure.

Collecting results we consider separately the case where a < 2 and where a ≥ 2.
• Assume that a < 2. Then, maximization over the set of multipliers such that
E[λ2] ≥ a, yields a value of α2/2+2 whereas maximization over the set of multipliers
such that E[λ2] < a yields a value of α2/2+2a−a2/2 which is smaller. Consequently
the optimal value of Problem (4.25) is

α2/2 + 2 ,

and a maximizing sequence is

λ
(k)
2 = 2k1{(2−1/k)≤ξ≤2} .

• Assume that a ≥ 2. Then, maximization over the set of multipliers such that
E[λ2] ≥ a, yields a value of α2/2 + 2a − a2/2 whereas maximization over the set
of multipliers such that E[λ2] < a yields a value of α2/2 + a2/2 which is bigger.
Consequently the optimal value of Problem (4.25) is

α2/2 + a2/2 ,

and the supremum is attained in
λ]2 = 0 .

This ends the proof.

We have thus seen on this example that:
• The value function ϕ is l.s.c. at 0 (in the L2 topology), and thus there is no duality

gap. This is checked through explicit computation of the dual problem.
• If a < 2 the function ϕ is not subdifferentiable at 0, thus the constraints are not

qualified. We can however construct an optimal solution in
(
L∞
)?

.
• If a ≥ 2, there exists an optimal multiplier in L2, and thus the constraints are

qualified.

Remark 4.19. Note that if a < 2 then the constraints on the random variable Y imply
constraints on the variable x. Indeed, according to Constraint (4.17c) we have x ≥ Y +ξ,
and by Constraint (4.17d) we obtain x ≥ ξ (P-a.s.), and as x is deterministic this is
equivalent to x ≥ essupp(ξ) = 2. This last constraint is stronger than Constraint (4.17b).
This is an induced constraints.

On the other hand, when a ≥ 2, we are in the so-called relatively complete recourse
case as for every x ≥ a, there is an admissible Y . In other words there is no induced
constraints. Hence, results by R.T.Rockafellar and R. Wets (see [93]) imply the existence
of a L1 multiplier in this case.



4.3. DISCUSSION 135

4.2.2 Second Example: Sufficient Condition is not Necessary

Let
(
Ω,F ,P

)
be a probability space. We consider the following minimization problem,

inf
U≤1

1

2
E
[
U2
]

(4.26a)

s.t. U = 0 P-a.s. (4.26b)

where the solutions are looked after in the space L2
(
Ω,F ,P;R

)
.

The unique admissible solution is U ] = 0, and the optimal value is 0.

Fact 4.20. In Problem (4.26) the P-almost sure constraint U = 0 is qualified (for the Ba-
nach L2) but does not satisfy the sufficient constraint qualification (CQC) given in (4.15).
However it satisfies (CQC) for the Banach L∞.

Proof. We embed Problem (4.26) in the following family of problems indexed by a L2

perturbation P ,

inf
U≤1

1

2
E
[
U2
]

s.t. U = P P-a.s.

with value ϕ(P ). We easily obtain that

ϕ(P ) =
‖P ‖22

2
+ χ{P≤1} .

As for all P ∈ L2 we have ϕ(P ) ≥ ϕ(0), it comes by definition that ϕ is l.s.c.at 0 and that
0 ∈ ∂ϕ(0).

Moreover the dual problem is given by

sup
λ∈L2

inf
U≤1

E
[U2

2
+ λU

]
= sup

λ∈L2

−E
[λ2

2

]
= 0 .

Consequently there is no duality gap, and an optimal multiplier is λ] = 0.
However, in the framework of §4.1.2, we have chosen

Uad = {U ∈ L2
(
Ω,F ,P;R

)
| U ≤ 1 P-a.s.}

and Θ = Id, C = {0}. Thus Θ(Uad ∩ dom(J)) + C = Uad which is of empty interior (by
Proposition 4.12). Consequently this example does not satisfy the sufficient qualification
condition (CQC) (see (4.15)).

If we consider U = L∞
(
Ω,F ,P;R

)
we have

Uad = {U ∈ L∞
(
Ω,F ,P;R

)
| U ≤ 1 P-a.s.}

and
Θ(Uad ∩ dom(J)) + C = Uad .

Finally we have that, through Proposition 4.13,

0 ∈ intUad ,

which ends the proof.



136 CHAPTER 4. CONSTRAINT QUALIFICATION

4.3 Discussion

We have presented the classical abstract framework for duality in convex optimization,
and applied it to almost sure constraints in stochastic optimization.

Working with Lp spaces, with p < +∞, we have shown on simple, seemingly innocuous
examples, that:
• the constraint might not be qualified,
• even when the constraint is qualified, the usual sufficient condition of qualification

may fail.
We conclude with the observation that Lp spaces, with p < +∞, might not be the proper
setting to treat almost sure constraint by duality.

By contrast, the L∞ topology might be better suited for almost sure constraint. Unfor-
tunately, the topological dual of L∞ is well-known to be a rich space, difficult to handle. In
the next chapter, we provide conditions that lead to constraint qualification in stochastic

optimization problems, using the
(

L∞,L1
)

duality.



Chapter 5

Constraint Qualification

in
(

L∞,L1
)

Mathematics consists in proving the most obvious
things in the least obvious way.

G. Pólya

Obvious is the most dangerous word in mathematics.

E. Bell

Contents

5.1 Topologies on L∞(Ω,F ,P;Rd
)

. . . . . . . . . . . . . . . . . . . . . 138

5.1.1 The space L∞(Ω,F ,P;Rd
)

. . . . . . . . . . . . . . . . . . . . . 138

5.1.2 Weak and Weak? Topology of L∞ . . . . . . . . . . . . . . . . . 140

5.1.3 Mackey topology τ
(
L∞,L1

)
. . . . . . . . . . . . . . . . . . . . . 141

5.2 A Duality Result Through Mackey-Continuity . . . . . . . . . . 142

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.2.2 Weak? Closedness of Affine Subspaces of L∞(Ω,F ,P;Rd
)

. . . . 143

5.2.3 A duality theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.2.4 Discussing the Local τ
(
L∞,L1

)
-Continuity of J . . . . . . . . . . 147

5.3 Application to a Multistage Problem . . . . . . . . . . . . . . . 149

In Chapter 4, we recalled the abstract theory of duality, with a focus on constraint
qualification. We underlined that constraint qualification of almost sure constraints in
stochastic optimization raises specific issues. In particular, we have shown on generic
examples that the topologies on Lp, for p < +∞, may often fail to yield qualified almost
sure constraints. We have also seen that in L∞, paired with its dual, the sufficient condition
of qualification applies. In this Chapter 5, we provide conditions under which almost sure

constraints are qualified in the duality
(

L∞,L1
)

.

In §5.1, we present several topologies on L∞
(
Ω,F ,P;Rd

)
, each topology inducing a

different duality pairing, hence different results about constraint qualification. In §5.2, we
provide our main result, mainly extending the work of R. Wets in [116]. Finally, in §5.3,
we showcase an application to a multistage stochastic optimization problem.



138 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

5.1 Topologies on L∞
(
Ω,F ,P;Rd

)
In this section, we recall results of functional analysis. More precisely we present some

topologies on the set L∞
(
Ω,F ,P;Rd

)
of essentially bounded functions 1.

Moreover, we have restrained ourselves to random variables taking values in Rd. Indeed
a control process of a T -stage problem, each stage having finite dimensional controls and
state, is a stochastic process taking values in a finite dimensional space. If we were
interested in problem with continuous controls we could consider random variables taking
values into [0, T ] (e.g. L∞

(
Ω,F ,P;R[0,T ]

)
). Some results are available for more general

image spaces.

Almost all the following results can be found, in a more general setting, in functional
analysis books. For an easy but insightful introduction (for the Lebesgue measure) see [25],
for general results in infinite dimension see [3, 22]. A brief selection of general results is
given in §A.1.

5.1.1 The space L∞
(
Ω,F ,P;Rd

)
Let

(
Ω,F ,P

)
be a probability space. The set of essentially bounded F-measurable

functions L∞
(
Ω,F ,P;Rd

)
can be equipped with an equivalence relation ∼ stating that

X ∼ Y iff X = Y P− a.s.. The set of equivalence classes is denoted by

L∞
(
Ω,F ,P;Rd

)
= L∞

(
Ω,F ,P;Rd

)
/ ∼ .

For notational simplicity, we will sometimes write L∞ instead of L∞
(
Ω,F ,P;Rd

)
.

The set L0
(
Ω,F ,P;Rd

)
is the space of (equivalence class of) F-measurable functions

taking values in Rd. The set L1
(
Ω,F ,P;Rd

)
is the subspace of L0

(
Ω,F ,P;Rd

)
of integrable

functions, i.e. such that

∀X ∈ L1
(
Ω,F ,P;Rd

)
, E

[
‖X‖Rd

]
:=

∫
Ω
‖X (ω)‖RddP(ω) < +∞ .

The usual norm of L1 is, for every X ∈ L1
(
Ω,F ,P;Rd

)
,
∥∥X∥∥

L1 = E
[ ∥∥X∥∥Rd ].

Definition 5.1. A σ-algebra F is said to be not finite modulo P if one of following equiv-
alent assertions holds true:

i)

inf
{
P
(
A
) ∣∣ A ∈ F , P

(
A
)
> 0
}

= 0 , (5.1)

ii) The number of F-measurable events A ∈ Ω of positive probability is not finite,
iii) there exists a F-measurable, real valued, random variable X such that,

∀n ∈ N, P
(
X = n

)
> 0 .

Proof. Consider the following equivalence relation on the σ-algebra F

A ∼ B ⇐⇒ P
(
A∆B

)
= 0 ,

where

A∆B :=
(
A \B

)
∪
(
B \A

)
.

We work in the class of equivalence F/ ∼.

1. Those topologies can be defined on any Banach space (or even for some cases on topological spaces)
and most results recalled here remain true.



5.1. TOPOLOGIES ON L∞
(
Ω,F ,P;RD

)
139

i) ⇒ ii) Let
{
An
}
n∈N be a minimizing sequence of (5.1), such that

∀n ∈ N, 0 < P
(
An
)
≤ 1

2n
.

Define, for all n ∈ N, the sets

Bn := ∪k≥nAk ,

and
Cn := An\Bn+1 .

Thus
{
Bn
}
n∈N and

{
Cn
}
n∈N are also minimizing sequences of (5.1), indeed P

(
Bn
)
≤

1/2n−1, and P
(
Cn
)
≤ 1/2n.

Moreover there is a subsequence
{
Cnk

}
k∈N such that each term is of positive prob-

ability. Otherwise, we would have N ∈ N such that

∀n ≥ N, P
(
Cn
)

= 0 ,

hence,
∀n > N, AN ⊂ Bn .

As P
(
AN
)
> 0 it contradicts the fact that

{
Bn
}
n∈N is a minimizing subsequence.

Thus
{
Cnk

}
k∈N is a non-finite sequence of F-measurable, disjoint, events of positive

probability.
i) ⇒ iii) We choose X =

∑∞
k=1 k1Cnk .

ii) ⇒ i) If the infimum in (5.1) is ε > 0 the number of disjoint event of positive
probability is finite (at most 1/ε). Thus the number of events in F/ ∼ of positive
probability is finite.

iii) ⇒ ii) Each events
({
X = n

})
n∈N

is of positive probability.

Remark 5.2. If the σ-algebra F is finite modulo P then L∞
(
Ω,F ,P;Rd

)
is a finite di-

mensional space. As it is an Hilbert space, the weak and weak? topologies (and hence the
Mackey topology), presented hereafter, are equivalent.

For any X ∈ L∞
(
Ω,F ,P;Rd

)
we denote by

∥∥X∥∥∞ the essential supremum of X , i.e.∥∥X∥∥∞ := inf
{
M ∈ R ∪ {+∞}

∣∣ P
( ∥∥X∥∥Rd ≥M) = 0

}
. (5.2)

The topology τ‖‖ induced by ‖·‖L∞ is called the norm topology. The convergence of a
sequence

{
Xn

}
n∈N of random variables toward X in the norm topology is simply denoted

by Xn →X .
Moreover, we define by

(
L∞
)?

the set of continuous (for the norm topology) linear

forms on L∞. The natural norm on
(
L∞
)?

is defined by, for any v ∈
(
L∞
)?

,

‖v‖(
L∞
)? = sup

{
|v(X )|

∣∣ X ∈ L∞,
∥∥X∥∥∞ ≤ 1

}
.

We have the following results.

Fact 5.3. We gather here some useful results on L∞ and its topological dual
(

L∞
)?

.

Consider a probability space
(
Ω,F ,P

)
.

• If F is not finite modulo P,
(
L∞, τ‖‖

)
is a non reflexive Banach space.

• The Banach space L∞
(
Ω,F ,P;Rd

)
is separable iff the σ-algebra F is finite modulo P.



140 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

• The Banach space L∞ is dense (for the norm topology) in Lp, for any p ∈ [1,∞]
(recall that a probability measure is finite and see [3, Theorem 13.8] or §B.2).
• The topological dual of the Banach space L∞, denoted by

(
L∞
)?

, is isometrically
isomorphic to the set ba

(
Ω,F ,P

)
of all finitely additive, finite, signed measures de-

fined on Ω, which are absolutely continuous with respect to P, equipped with the total
variation norm (see [42, Theorem IV.8.16]).
• There is a canonical injection i of L1 into

(
L∞
)?

, where for all Y ∈ L1,

i(Y ) : X 7→ E
[
Y ·X

]
.

We give a short proof of the second point, when d = 1,

Proof. If F is not finite, there exists a random variable X such that for every n ∈ N,

P(X = n) > 0. For any sequence u ∈
{

0, 1
}N

, where u = (un)n∈N, we define the bounded
random variable

Xu =
∑
n∈N

un1{X=n
} .

Note that for every sequence u and v in
{

0, 1
}N

such that u 6= v, we have∥∥Xu −Xv

∥∥
∞ = sup

n∈N
|un − vn| = 1 .

Thus we have an enumerable number of points in L∞ equally distant to each other, thus
no countable sequence in L∞ can be dense, and thus L∞ is not separable.

On the other hand if F is finite it is generated by a finite partition (say of cardinal
N), and L∞

(
Ω,F ,P;Rd

)
is isomorphic to RN ·n.

5.1.2 Weak and Weak? Topology of L∞

Weak Topology σ
(
L∞,

(
L∞
)?)

Recall that
(
L∞
)?

is the set of continuous (for the norm topology) linear forms on L∞.

The weak topology σ
(
L∞,

(
L∞
)?)

is, by definition, the coarsest topology such that every

element in
(
L∞
)?

is still continuous.

Fact 5.4. The weak topology is separated. We denote by Xn ⇀X the fact that a sequence(
Xn

)
n∈N weakly converges toward X . We have

Xn ⇀X ⇐⇒ ∀ Y ∈
(
L∞
)?
, 〈Y ,Xn〉 → 〈Y ,X 〉 . (5.3)

Fact 5.5. The weak topology is coarser than the strong topology:

σ
(
L∞,

(
L∞
)?) ⊂ τ‖‖ .

We have the following additional properties linking the weak and strong topologies.
• If Xn →X , then Xn ⇀X .
• If Xn ⇀X , then

∥∥Xn

∥∥
∞ is bounded and

∥∥X∥∥∞ ≤ limn

∥∥Xn

∥∥
∞.

• If Xn ⇀X and Yn

(
L∞
)?

−−−−→ Y , then 〈Yn,Xn〉 → 〈Y ,X 〉.
• A convex set is closed in the norm topology iff it is closed in the weak-topology.
• Consequently a convex function is l.s.c for the norm topology iff it is l.s.c for the

weak topology.

Note that this fact is not restrained to L∞

Fact 5.6 (Eberlein–Smulian). A set is weakly compact iff it is weakly sequentially compact
(see [3, 6.35]).



5.1. TOPOLOGIES ON L∞
(
Ω,F ,P;RD

)
141

Weak? Topology σ
(
L∞,L1

)
We go on by coarsening the topology 2 σ

(
L∞,

(
L∞
)?)

.
We define by σ

(
L∞,L1

)
the coarsest topology on L∞ such that every L1-linear form

on L∞
(
Ω,F ,P;Rd

)
is continuous, i.e. such that for every Y ∈ L1

(
Ω,F ,P;Rd

)
, the linear

form X 7→ E
[
X · Y

]
is continuous. As L∞

(
Ω,F ,P;Rd

)
is the topological dual (for the

norm topology of L1) of L1
(
Ω,F ,P;Rd

)
, σ
(
L∞,L1

)
is the so-called weak? topology of L∞.

We denote by Xn
∗−⇀X the fact that sequence

(
Xn

)
n∈N weakly? converges toward X ,

and we have

Xn
∗−⇀X ⇐⇒ ∀ Y ∈ L1, E

[
Y ·Xn

]
→ E

[
Y ·X

]
. (5.4)

The main interest of the weak? topology is given by the Banach-Alaoglu-Bourbaki
Theorem (see [3, Theorem 5.105]), recalled in the following fact.

Fact 5.7. The norm-closed unit ball is weak? compact, hence any bounded and weak?-
closed set is weak?-compact.

Notice that, if F is not finite modulo P, the unit ball is not compact in the weak
topology. Indeed, if it were the case Kakutani’s theorem would imply that L∞ is reflexive.

Fact 5.8. We have the following inclusion of topologies:

σ
(
L∞,L1

)
⊂ σ

(
L∞, (L∞)?

)
⊂ τ‖‖ .

We have the following additional properties on the weak? topology, where {Xn}n∈N is a
sequence of L∞, and {Yn}n∈N is a sequence of L1.
• The weak? topology is separated.
• If Xn ⇀X , then Xn

∗−⇀X .

• If Xn
∗−⇀X , then

∥∥Xn

∥∥
∞ is bounded and

∥∥X∥∥∞ ≤ lim
∥∥Xn

∥∥
∞.

• If Xn
∗−⇀X and i(Yn)

(
L∞
)?

−−−−→ i(Y ), then 〈Yn,Xn〉 → 〈Y ,X 〉.

5.1.3 Mackey topology τ
(
L∞,L1

)
The weak? topology σ

(
L∞,L1

)
is defined as the coarsest topology such that the L1

linear forms are continuous. The Mackey topology τ
(
L∞,L1

)
is defined as the finest

topology such that the only continuous linear forms are the L1 linear form.
Thus the Mackey topology is finer than the weak? topology. Hence, it is easier for a

functional J : L∞ → R to be Mackey continuous, than to be weak? continuous.

Fact 5.9. We have the following inclusion of topologies:

σ
(
L∞,L1

)
⊂ τ

(
L∞,L1

)
⊂ σ

(
L∞, (L∞)?

)
⊂ τ‖‖ .

We have the following additional properties.

• Xn ⇀X =⇒ Xn

τ
(

L∞,L1
)

−−−−−−→X =⇒ Xn
∗−⇀X .

• The Mackey topology τ
(
L∞,L1

)
is separated.

• A convex set is closed in τ
(
L∞,L1

)
iff it is closed in σ

(
L∞,L1

)
.

• Xn

τ
(

L∞,L1
)

−−−−−−→X =⇒ ∀Y ∈ L1
(
Ω,F ,P;R

)
, E

[
Y
∥∥Xn −X

∥∥
Rd
]
→ 0 .

2. As noted by H.Brezis, one could be surprised that we thrive to obtain coarser topologies. The reason
is that a coarser topology implies more compact sets, which are useful for existence results.



142 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

There is a practical characterization of the convergence of a sequence in the Mackey
topology by M.Nowak [71, Theorem 2.3]

Proposition 5.10. The sequence
{
Xn

}
n∈N τ

(
L∞,L1

)
-converges toward X iff{

∃p ∈ [1,+∞), Xn
Lp−→X

supn
∥∥Xn

∥∥
∞ < +∞

Remark 5.11. We have presented different topologies on L∞ as they induce different
pairings. For example we can consider:

• the natural pairing
(

L∞,
(
L∞
)?)

of a Banach space with its topological dual, where

L∞ is either endowed with the strong or weak topology;

• the pairing
(

L∞,L1
)

that coincide with the previous one (up to canonical injection),

where L∞ is either endowed with the weak? or Mackey topology.

In the following section we present a duality result using the pairing
(

L∞,L1
)

, where L∞

is endowed with the Mackey topology τ
(
L∞,L1

)
.

5.2 A Duality Result Through Mackey-Continuity

In [116] R.Wets exhibited conditions such that the non-anticipativity constraints are
qualified in the pairing

(
L∞,L1

)
. Here we extend the results to more general affine con-

straint.

In §5.2.1 we present the optimization problem. In §5.2.2 we gives some results of weak?

closedness of an affine subspace of L∞. Those results are used in §5.2.3 which follow closely
the proof given in [116]. In §5.2.4 we discuss one important continuity assumption made
in the proof.

5.2.1 Problem Statement

Let U be L∞
(
Ω,F ,P;Rd

)
, and Uad be an affine subspace of U .

We consider a cost function j : Rd×Ω→ R∪
{

+∞
}

, assumed to be a convex normal
integrand (see [96] for definitions and properties), with the following assumption, known
as strict feasibility condition,

∃ ε > 0, ∃U0 ∈ U
ad, ∀u ∈ Rd, ‖u‖Rd ≤ ε =⇒ j(U0 + u, ·) < +∞ P-a.s. (5.5)

This strict feasibility condition is essential for the results. We define the objective function
J : U → R by

J : U 7→ E
[
j
(
U
)]

:=

∫
Ω
j
(
U (ω), ω

)
dP(ω) . (5.6)

Finally, we consider the problem

min
U∈Uad⊂U

E
[
j
(
U
)]
. (5.7)

We consider the pairing
〈
Y ,X

〉
, where Y ∈ L1, X ∈ L∞ given by〈
Y ,X

〉
:= E

[
Y ·X

]
.



5.2. A DUALITY RESULT THROUGH MACKEY-CONTINUITY 143

5.2.2 Weak? Closedness of Affine Subspaces of L∞
(
Ω,F ,P;Rd

)
We show conditions for affine subspaces of L∞

(
Ω,F ,P;Rd

)
to be weak? closed, and

give some examples. This closedness assumption is required to prove the duality result in
§5.2.3. Simultaneously we obtain weak? continuity 3 results for linear operators useful in
Chapter 6.

Proposition 5.12. Consider a linear operator

Θ : L∞
(
Ω,F ,P;Rn

)
→ L∞

(
Ω,F ,P;Rm

)
,

and a vector b ∈ L∞
(
Ω,F ,P;Rm

)
. Assume that there exist a linear operator

Θ† : L1
(
Ω,F ,P;Rm

)
→ L1

(
Ω,F ,P;Rn

)
,

such that:

∀X ∈ L∞
(
Ω,F ,P;Rn

)
, ∀Y ∈ L1

(
Ω,F ,P;Rm

)
,

〈
Y ,Θ

(
X
)〉

=
〈

Θ†
(
Y
)
,X
〉
.

(5.8)
Then the linear operator Θ is weak? continuous and the affine set

Uad =
{
X ∈ L∞

(
Ω,F ,P;Rn

) ∣∣ Θ
(
X
)

= B
}
, (5.9)

is weak? closed.

Proof. Consider a net
(
Xi

)
i∈I in Uad ⊂ L∞

(
Ω,F ,P;Rn

)
converging weakly? towards X ,

and a random variable Y ∈ L1
(
Ω,F ,P;Rm

)
.

We have, for any i ∈ I, by definition of Θ†,

E
[
〈Y ,Θ

(
Xi

)
〉
]

= E
[
〈Θ†
(
Y
)
,Xi〉

]
.

As Θ†
(
Y
)
∈ L1

(
Ω,F ,P;Rn

)
, the linear form

X 7→ E
[
Θ†
(
Y
)
·X
]
,

is weak? continuous (by definition of the weak? topology). Hence,

lim
Xi→X

E
[
Θ†
(
Y
)
·Xi

]
= E

[
Θ†
(
Y
)
·X
]

= E
[
Y ·Θ

(
X
)]
.

In other words the net
{

Θ
(
Xi

)}
i∈I

converges weakly? toward Θ
(
X
)
. Hence, the function

Θ : L∞
(
Ω,F ,P;Rn

)
→ L∞

(
Ω,F ,P;Rm

)
is continuous if both spaces are endowed with their weak? topology.

As {B} is a weak?-closed set, we have that Uad = Θ−1
(
{B}

)
is weak?-closed.

Corollary 5.13. Consider a matrix A ∈ Mm,n(R), and a random variable B ∈
L∞
(
Ω,F ,P;Rm

)
. Then the linear operator Θ : L∞

(
Ω,F ,P;Rn

)
→ L∞

(
Ω,F ,P;Rm

)
,

defined by
∀X ∈ L∞

(
Ω,F ,P;Rn

)
, Θ

(
X
)

= AX , (5.10)

is weak? continuous, hence the affine space

Ua.s. :=
{
U ∈ L∞

(
Ω,F ,P;Rn

) ∣∣ AU = B P− a.s.
}
, (5.11)

is weakly? closed.

3. By weak? continuity we means the continuity of the function from L∞ to L∞ both endowed with
the weak? topology.



144 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

Proof. The operator Θ† : L1
(
Ω,F ,P;Rm

)
→ L1

(
Ω,F ,P;Rn

)
, defined by

∀Y ∈ L1
(
Ω,F ,P;Rm

)
, Θ†

(
Y
)

= ATY ,

is linear and such that

∀X ∈ L∞
(
Ω,F ,P;Rn

)
, ∀Y ∈ L1

(
Ω,F ,P;Rm

)
,

〈
Y ,Θ

(
X
)〉

=
〈
Θ†
(
Y
)
,X
〉
.

Thus, Θ is weak? continuous by Proposition 5.12, and Ua.s. in (5.11) is weak? closed.

Corollary 5.14. Consider a filtration F = {F0}T−1
1 on

(
Ω,F ,P

)
. Then, for t ∈ [[0, T−1]],

the linear operator Θt : L∞
(
Ω,F ,P;Rd

)
→ L∞

(
Ω,F ,P;Rd

)
, defined by

∀X ∈ L∞
(
Ω,F ,P;Rd

)
, Θt

(
X
)

= E
[
X
∣∣ Ft]−X ,

is weak? continuous.
Hence, the linear space

N :=
{
U ∈ L∞

(
Ω,F ,P;RdT

) ∣∣ ∀t ∈ [[0, T − 1]], E
[
Ut
∣∣ Ft] = Ut

}
, (5.12)

is weakly? closed.

Proof. We construct the right operator to apply Proposition 5.12.
For t ∈ [[1, n]], linear operator Θ†t : L1

(
Ω,F ,P;Rd

)
→ L1

(
Ω,F ,P;Rd

)
, defined by

∀Y ∈ L1
(
Ω,F ,P;Rd

)
, Θ†t

(
Y
)

= E
[
Y
∣∣ Ft]− Y ,

coincide with Θ on L∞
(
Ω,F ,P;Rd

)
and, is such that

∀X ∈ L∞
(
Ω,F ,P;Rd

)
, ∀Y ∈ L1

(
Ω,F ,P;Rd

)
,

〈
Y ,Θt

(
X
)〉

=
〈
Θ†t
(
Y
)
,X
〉
.

Indeed,

E
[
Y ·Θt

(
X
)]

= E
[
Y · E

[
X
∣∣ Ft]]− E

[
Y ·X

]
= E

[
E
[
Y
∣∣ Ft] ·X]− E

[
Y ·X

]
by Lemma B.3

= E
[
Θ†t
(
Y
)
·X
]
.

Hence, Proposition 5.12 gives the weak? continuity of Θt.
We have

N =

T−1⋂
t=1

Θ−1
t

(
{0}
)
,

thus, N is weak? closed.

5.2.3 A duality theorem

In this section we show the following first order optimality conditions.

Theorem 5.15. Assume that j is a convex normal integrand, that Uad is a weak? closed
affine subspace of L∞

(
Ω,F ,P;Rd

)
and that J given by (5.6) is continuous in the Mackey

topology τ
(
L∞,L1

)
at some point U0 ∈ Uad ∩ dom(J). Then the control U ] ∈ Uad is an

optimal solution to
inf

U∈Uad
E
[
j
(
U
)]

if and only if there exist λ] ∈ L1
(
Ω,F ,P;Rd

)
such that



5.2. A DUALITY RESULT THROUGH MACKEY-CONTINUITY 145

• U ] minimizes on U the following Lagrangian 4

L
(
U ,λ]

)
= E

[
j
(
U
)

+U · λ]
]
,

• and λ] ∈
(
Uad

)⊥
.

In order to show this Theorem, we need a few preliminary results. We follow the work
of R.Wets in [116] for non-anticipativity constraints.

Consider the problem
inf
U∈U

J
(
U
)

+ χUad

(
U
)
. (5.13)

In Lemma 5.16 we show that J is weak?-l.s.c, and hence τ
(
L∞,L1

)
-l.s.c. However

Theorem 5.17 requires a stronger assumption: the continuity of J at a point U0. This
assumption is discussed in §5.2.4.

Lemma 5.16. If j is a normal convex integrand satisfying (5.5), then the Fenchel conju-
gate (defined in Definition A.37) of J in the pairing

(
L∞,L1

)
, is given by

J?
(
λ
)

= E
[
j?
(
λ
)]

=

∫
Ω
j?(λ(ω), ω)dP(ω) ,

and
j?(λ, ω) = sup

u∈Rd

{
u · λ− j(u, ω)

}
.

Moreover, we have
J?? = J .

Thus, J is weak?-l.s.c.

Proof. It is a direct application of [88, Theorem 3].

Theorem 5.17. Assume that Uad is an affine space. Assume that j is a convex normal
integrand, and that J given by (5.6) is continuous in the Mackey topology τ

(
L∞,L1

)
at

some point U0 ∈ Uad ∩ dom(J). Then, we have

inf
U∈Uad

J
(
U
)

= max
λ∈
(
Uad
)⊥−J?(λ) .

Proof. Notice that as the set Uad is weak? closed convex, the function χUad is also convex
and weak? l.s.c., and hence τ

(
L∞,L1

)
-l.s.c.

By using an extension of Fenchel’s duality theorem as given in [87, Theorem 1] we have

inf
U∈U

{
J
(
U
)

+ χUad

(
U
)}

= max
λ∈L1

{
− J?

(
λ
)
− χ?Uad

(
λ
)}

. (5.14)

Indeed both functions are convex, and J is continuous in the Mackey topology τ
(
L∞,L1

)
at U0 ∈ Uad, where χUad is finite.

Moreover,
χ?Uad

(
λ
)

= max
U∈Uad

〈λ,U 〉 = χ(
Uad
)⊥(λ) . (5.15)

We conclude by combining (5.14) and (5.15).

A by product of this proof is given, as Uad is an affine space, in Equation (5.15).

4. Recall that Uad is an affine space, hence we do not need to specify the point at which the dual cone,
given in Definition A.40, is evaluated.



146 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

Corollary 5.18. Suppose that the assumptions of Theorem 5.17 hold true. Then, a control

U ] minimizes J if and only if there exists λ] ∈
(
Uad

)⊥
such that

−λ] ∈ ∂J
(
U ]
)
.

Moreover, those λ] are the points where J? achieves its minimum over
(
Uad

)⊥
.

Proof. Throughout the proof we consider the Mackey topology τ
(
L∞,L1

)
on

L∞
(
Ω,F ,P;Rd

)
. Thus, the topological dual of L∞ is L1, and any subgradients are el-

ements of L1.
Consider a control U ] ∈ Uad. Note that U ] minimizes J on Uad iff 0 ∈ ∂

(
J +

χUad

)(
U ]
)
. By [88, Theorem 3], this is equivalent to 0 ∈ ∂

(
J
)(
U ]
)

+ ∂
(
χUad

)(
U ]
)
, and

thus to the existence of λ] ∈ L1 such that λ] ∈ ∂
(
χUad

)(
U ]
)

and −λ] ∈ ∂
(
J
)(
U ]
)
.

Finally, we have

∂
(
χUad

)(
U ]
)

=
(
Uad

)⊥
.

Indeed λ ∈ ∂
(
χUad

)(
U ]
)

iff

∀U ∈ Uad,
〈
λ,U −U ]

〉
≤ 0 ,

and, as Uad is a vector space, it is equivalent to

∀U ∈ Uad,
〈
λ,U −U ]

〉
= 0 .

Thus the existence of U ] minimizing J over Uad, implies that λ] ∈
(
Uad

)⊥
and −λ] ∈

∂J
(
U ]
)
.

On the other hand assume that there is such a λ].
As −λ] ∈ ∂J

(
U ]
)
, we have

∀U ∈ U , J
(
U
)
≥ J

(
U ]
)

+
〈
− λ],U −U ]

〉
,

which can be written as

J
(
U ]
)
≤
〈
− λ],U ]

〉
− sup
U∈U

{〈
− λ],U

〉
− J

(
U
)}

︸ ︷︷ ︸
J?
(
−λ]
)

,

and leads to (the other inequality being always satisfied)

J
(
U ]
)

+ J?
(
− λ]

)
= −E

[
λ] ·U ]

]
.

Similarly, as λ] ∈ ∂χUad

(
U ]
)

we have

χUad

(
U ]
)

+ χ?Uad

(
λ]
)

= E
[
λ] ·U ]

]
,

and, as χ?Uad = χ(
Uad
)⊥ , (see Equation (5.15)) we obtain

χUad

(
U ]
)

+ χ(
Uad
)⊥(λ]) = E

[
λ] ·U ]

]
.

Thus,
χUad

(
U ]
)

+ χ(
Uad
)⊥(λ]) = −J

(
U ]
)
− J?

(
− λ]

)
,

or, equivalently,

χUad

(
U ]
)

+ J
(
U ]
)

= −J?
(
− λ]

)
− χ(

Uad
)⊥(λ]) = −J?

(
− λ]

)
− χ(

Uad
)⊥(− λ]) ,

as
(
Uad

)⊥
is a vector space. Hence, Theorem 5.17 achieves the proof.



5.2. A DUALITY RESULT THROUGH MACKEY-CONTINUITY 147

As we said at the beginning we now end the section by the proof of Theorem 5.15.

Proof. By Corollary 5.18, the control U ] is a minimizer of J over Uad iff there is −λ] ∈
∂J
(
U ]
)
∩
(
Uad

)⊥
. Moreover U ] minimizes the Lagrangian L(U ,λ]) on U iff

0 ∈ ∂
(
J + 〈λ], ·〉

)(
U ]
)
,

and, by the continuity assumption and [88, Theorem 3], this condition can be written as

0 ∈ ∂
(
J
)(
U ]
)

+ ∂U

(
〈λ], ·〉

)(
U ]
)
.

As the subdifferential of 〈λ], ·〉 is
{
λ]
}

, this is equivalent to −λ] ∈ ∂J
(
U ]
)
.

5.2.4 Discussing the Local τ
(
L∞,L1

)
-Continuity of J

It is worthwhile to elaborate on the Mackey continuity assumption of J at point U0

in Theorem 5.17. Indeed Lemma 5.16 show that J is weak? l.s.c everywhere, which is
equivalent to be Mackey l.s.c everywhere as J is convex. However assuming that J is
Mackey upper-semicontinuous at point U0 is a weaker assumption than assuming weak?

upper-semicontinuity at point U0.
First we show that if J is finite then J is Mackey continuous. Then, we give conditions

on j for J to be finite. Finally we show that, unfortunately, if the optimization problem
include almost sure bounds, then the function J cannot be Mackey continuous at a point
U0.

Conditions for Mackey Continuity

We show Mackey continuity if J (defined in (5.6)) is finite. First we need a definition
and a lemma.

Definition 5.19. We say that J : U → R has the Lebesgue property if for any sequence{
Un
}
n∈N such that

• supn∈N
∥∥Un∥∥∞ < +∞,

• Un
a.s.−−→ U ,

we have J(Un)→ J
(
U
)
.

Lemma 5.20. Suppose that j is a convex integrand and that J (defined in (5.6)) is finite
everywhere on L∞

(
Ω,F ,P;Rd

)
. Then, J has the Lebesgue property.

Proof. Consider a sequence
(
Un
)
n∈N converging almost surely toward U , and such that

sup
n∈N

∥∥Un∥∥∞ ≤M < +∞ .

As, for almost all ω, u 7→ j(u, ω) is convex and finite, it is also continuous. As j is
measurable in ω, it is a Caratheodory integrand, and thus a normal integrand.

By a measurable selection argument [96, Theorem 14.37], there exists V ∈ L0 satisfying∥∥V ∥∥∞ ≤M and
|j(V )| = max

‖u‖Rd≤M
|j(u, ω)| <∞ ,

almost surely. In particular we have, for all n ∈ N, |j(Un)| ≤ |j(V )|.
Moreover, by continuity in u of j we have, for almost all ω,

j(Un(ω), ω)→n j(U (ω), ω) .

Now as J(V ) < +∞, Lebesgue dominated convergence theorem ensure that J(Un)→
J
(
U
)
.



148 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

Proposition 5.21. Assume that j is a convex integrand and that J is finite everywhere
on L∞

(
Ω,F ,P;Rd

)
. Then, J is τ

(
L∞,L1

)
-sequentially continuous.

Proof. Recall that, for a sequence
(
xn
)
n∈N in a topological space, the sequence

(
xn
)
n∈N

converges toward x if from any subsequence we can extract a further subsequence con-
verging toward x.

Assume that
(
Un
)
n∈N τ

(
L∞,L1

)
-converges toward U . Then, by Property 5.10, we

have that there is a p ≥ 1 such that
(
Un
)
n∈N converges in Lp toward U , and, in particular,

that
(
Un
)
n∈N converges in probability.

Consider the sequence
(
J(Un)

)
n∈N. For any subsequence

(
J
(
Uφ(n)

))
n∈N

, we are going

to construct a sub-subsequence converging towards J
(
U
)
.

As
(
Uφ(n)

)
n∈N converges in probability (as a subsequence of a sequence converging

in probability) toward U , we have a further subsequence
(
Uψ(n)

)
n∈N converging almost

surely towards U . Moreover Property 5.10 ensures that supn∈N
∥∥Un∥∥∞ < +∞. Thus,

Lemma 5.20 guarantees convergence of
(
J(Uψ(n))

)
n∈N toward J

(
U
)
, hence the conver-

gence of
(
J(Un)

)
n∈N toward J

(
U
)
.

Corollary 5.22. Assume that j is a convex integrand and that J is finite everywhere on
L∞
(
Ω,F ,P;Rd

)
. Then, J is τ

(
L∞,L1

)
-continuous 5.

Proof. In the proof of [88, Theorem 3], it is shown that, under strict feasibility assumption
(satisfied by finiteness of J), we have

∃Y0 ∈ L1 such that j?(Y0, ·)
+ ∈ L1 .

Using Lemma 5.20, the result is a direct application of [72, Theorem 3.4].

Condition on j that Ensures Finiteness of J

As the finiteness of J is an assumption on the integral cost, we gives some set of
assumptions on the integrand j that implies that J is finite everywhere on L∞

(
Ω,F ,P;Rd

)
.

Proposition 5.23. If there exists a U0 ∈ L∞
(
Ω,F ,P;Rd

)
such that E

[
|j(U0, ·)|

]
< ∞

and if the family of functions
{
x 7→ j(x, ω) | ω ∈ Ω

}
is P-almost surely equi-Lipschitz 6 on

any bounded set, then J is finite.

Proof. Let U0 ∈ L∞
(
Ω,F ,P;Rd

)
be such that E

[
|j(U0, ·)|

]
< +∞. Consider U ∈

L∞
(
Ω,F ,P

)
. Let κ be an almost sure Lipschitz constant of x 7→ j(x, ω) on the ball

of center 0 and radius max
{∥∥U∥∥∞ ,∥∥U0

∥∥
∞
}

. Then we have, almost surely,

|j
(
U , ω

)
| ≤ |j

(
U0, ω

)
|+ κ|U −U0| ≤ |j

(
U0, ω

)
|+ κ

( ∥∥U∥∥∞ +
∥∥U0

∥∥
∞
)
,

therefore J
(
U
)
< +∞.

5. This result is stronger than Proposition 5.21. However it relies on a result found in a pre-print, with
an involved proof that I have not been able to grasp, whereas the proof of Proposition 5.21 is a personal
contribution.

6. In fact we only require that the Lipschitz coefficient is integrable. Moreover we can replace Lipschitz
continuity assumption by Hölder continuity assumptions.



5.3. APPLICATION TO A MULTISTAGE PROBLEM 149

Mackey Discontinuity Caused by Almost Sure Bounds

We show that almost sure constraints represented in the objective function J implies
that at any point of its domain J is not Mackey-continuous.

Proposition 5.24. Consider a convex normal integrand j : Rd × Ω→ R, Consider a set
Uad ( Rd and define the set of random variable

Ua.s. :=
{
U ∈ L∞

(
Ω,F ,P;Rd

) ∣∣ U ∈ Uad P− a.s.
}
.

Then, at any point U0 ∈ dom
(
J
)
∩ Ua.s., where J is given by (5.6), the function

J̃ : U 7→ J(U ) + χU∈Ua.s. ,

is not Mackey continuous.

Proof. Consider a point x ∈ Rd \ Uad, and a random variable U0 ∈ dom
(
J
)
∩ Ua.s.. Let

X be random variable uniform on [0, 1]. Define the sequence of random variables

Un := U0 +
(
x−U0

)
1X≤ 1

n
.

We have ∥∥Un∥∥∞ ≤ ∥∥U01X≤ 1
n

∥∥
∞ +

∥∥x∥∥Rd ≤ ∥∥U0

∥∥
∞ +

∥∥x∥∥Rd .
Moreover,

∥∥Un −U0

∥∥
L1 =

∥∥(x−U0

)
1X≤ 1

n

∥∥
L1 ≤

∥∥x−U0

∥∥
L∞

n
≤
∥∥x∥∥

L∞
+
∥∥U0

∥∥
L∞

n
.

Hence, Proposition 5.10 ensure that Un
τ
(

L∞,L1
)

−−−−−−→ U . However, as, for any n ∈ N,

Un /∈ Uad when X ≤ 1
n , we have that Un /∈ Ua.s., hence J̃

(
Un
)

= +∞. And, by

assumption J̃
(
U0

)
< ∞, thus J̃

(
Un
)
9 J̃

(
U0

)
. Therefore, J̃ is not Mackey continuous

at U0.

To sum up, we are able to dualize some affine constraints if there is no non-dualized con-
straints. In [116] the only type of constraint considered is the so-called non-anticipativity
constraints (we show in the following section that they fall in the class of affine constraint
that can be dualized). We add to those constraints some affine almost sure constraints.
However, we are not able to show the existence of optimal multiplier in presence of almost
sure bounds on the control.

5.3 Application to a Multistage Problem

In this section, we present a multistage problem with affine almost sure constraint and
show the existence of a multiplier in L1.

We consider a sequence of noises
{
Wt

}T−1

t=0
, with Wt ∈ L∞

(
Ω,F ,P;Rnw

)
, for any

t ∈ [[0, T − 1]]. We denote by Ft the σ-algebra generated by the past noises:

Ft := σ
(
W0, · · · ,Wt

)
,

and by F the induced filtration F =
{
Ft
}T−1

t=0
.

given by

∀t ∈ [[0, T − 1]], Xt+1 = ft
(
Xt,Dt,Wt

)
, (5.16)



150 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

where the control process {Dt}
T−1
t=0 is a stochastic process adapted to F, and for each time

t ∈ [[0, T − 1]], Dt ∈ L∞
(
Ω,Ft,P;Rnd

)
.

For each time t ∈ [[0, T − 1]], we consider a local cost Lt : Rnx+nd+nw → R, and a final
cost K : Rnx → R. We also consider linear constraint functions θt : Rnx+nd → Rnc , and a
sequence of F-adapted stochastic process

{
Bt

}
t∈[[0,T−1]]

.

Finally the problem reads,

min
X ,D

E
[ T−1∑
t=0

Lt
(
Xt,Dt,Wt

)
+K(XT )

]
(5.17a)

s.t. X0 = x0 (5.17b)

Xt+1 = ft
(
Xt,Dt,Wt

)
, (5.17c)

Dt � Ft, (5.17d)

θt(Xt,Dt) = Bt P− a.s. (5.17e)

Lemma 5.25. Assume that,
• the random noises Wt are essentially bounded;
• the local cost functions Lt are finite and convex in (xt, dt), continuous in wt;
• the evolution functions ft are affine in (xt, dt), continuous in wt;
• the constraint functions θt are affine.
Then Problem (5.17) can be written

min
U∈Uad

J
(
U
)
,

where
J(U ) = E

[
j(U )

]
,

with j a convex normal integrand. Moreover J is finite on L∞ and hence is a τ
(
L∞,L1

)
-

continuous function, and Uad is a τ
(
L∞,L1

)
-closed affine space.

Proof. We first rewrite Problem 5.17 in the framework of §5.2, and then shows the required
continuity and closedness properties.

1. We reformulate Problem (5.17). We define the control U =
{
Ds

}T−1

s=0
∈

L∞
(
Ω,F ,P;RTnd

)
. Then, x0 being given and constant, we define recursively the

functions

xt : Rt(nd+nw) −→ Rnx{
Dτ ,Wτ

}t−1

τ=0
7−→ ft−1

(
xt−1

({
Dτ ,Wτ

}t−2

τ=0

)
, Dt−1,Wt−1

)
The functions xt give the value of Xt in function of the past decisions {Ds}

t−1
s=0, and

noises {Ws}
t−1
s=0, and are affine in U .

We define (up to P-almost sure equality), the cost

j(U , ·) :=

T−1∑
t=0

Lt

(
xt

({
Dτ ,Wτ

}t−1

τ=0

)
,Dt,Wt

)
+K

(
xT

({
Dτ ,Wτ

}T−1

τ=0

))
. (5.18)

Then J(U ) = E[j(U )] is the objective function of Problem (5.17), taking into ac-
count the initial state constraint (5.17b) and the dynamic constraint (5.17c).

The control U satisfies constraint (5.17d) and is said to be non-anticipative if it is
an element of the space N ⊂ L∞

(
Ω,F ,P;RTnd

)
, where

N :=
{{
Ds

}T
s=0
∈ L∞

(
Ω,F ,P;RTnd

) ∣∣ ∀s ∈ [[0, T − 1]], E
[
Ds

∣∣ Fs] = Ds

}
.

(5.19)



5.3. APPLICATION TO A MULTISTAGE PROBLEM 151

The control U satisfies constraint (5.17e) if it is an element of the subspace Ua.s.

given by

Ua.s. :=

{{
Ds

}T−1

s=0

∣∣ ∀s ∈ [[0, T − 1]], θt

(
xt

({
Dτ ,Wτ

}t−1

τ=0

)
,Dt

)
= Bt

}
.

(5.20)

With these notations, Problem (5.17) can be written

min
U∈N∩Ua.s.

J
(
U
)
.

2. We show the τ
(
L∞,L1

)
-continuity of J .

As, for any t ∈ [[0, T − 1]], the function Lt is convex, and the function xt is affine
we obtain the convexity in U of function j. Measurability and continuity of j are
obvious.

Moreover, for all t ∈ [[0, T − 1]], the decision variable Dt is bounded as an element of
L∞, and the random noise W is bounded by assumption. Thus the state process X
given by (5.16) is also bounded. Furthermore there are constants α ≥ 0 and β ≥ 0
such that

∥∥X∥∥∞ ≤ α + β
∥∥U∥∥∞. Consequently j is a Caratheodory function, and

J (as defined in (5.6) ) is finite on L∞.

Thus, by Corollary 5.22, the function J is τ
(
L∞,L1

)
-continuous.

3. We show the τ
(
L∞,L1

)
-closedness of Uad.

Corollary 5.13 and 5.14 ensure that N and Ua.s. are weak?-closed affine space, hence
Uad = N ∩ Ua.s. is a weak?-closed affine space, thus a τ

(
L∞,L1

)
-closed affine space.

The proof is complete.

Lemma 5.25, cast the dynamic problem into the static setting of §5.2, and thus ensure
the existence of a multiplier for the non-anticipativity constraint coupled with the almost-
sure affine constraint. We now discuss, how the multiplier can be decomposed into one
for the almost sure constraint, and one for the non-anticipativity constraint.

Proposition 5.26. We denote by N the set of non-anticipative controls defined in Equa-
tion (5.19), and by Ua.s. the set of controls satisfying (5.17e) given in Equation (5.20).

If, for all U ∈ Ua.s., the F-adapted part of U is also in Ua.s., i.e.{
E
[
Ut
∣∣ Ft]}T−1

t=0
∈ Ua.s. , (5.21)

then

(Ua.s. ∩N )⊥ =
(
Ua.s.

)⊥
+N⊥ . (5.22)

Proof. Consider the linear operator Θ : L∞
(
Ω,F ,P;RTd

)
→ L∞

(
Ω,F ,P;RTd

)
, that gives

for each stochastic process its F-adapted part, i.e.

Θ
(
U
)

=
{
E
[
Ut
∣∣ Ft]}T−1

t=0
.

Θ is a linear operator, admitting an adjoint, with Θ
(
U
)

= N , and Θ|N = Id. Moreover,
by assumption Θ

(
Ua.s.

)
⊂ Ua.s.. Hence, Theorem A.43, states that, for any U ∈ N ∩Ua.s.,

(Ua.s. ∩N )⊥U =
(
Ua.s.

)⊥
U

+N⊥0 .

Finally, noting that Ua.s. and N are affine spaces gives the result.



152 CHAPTER 5. CONSTRAINT QUALIFICATION IN
(

L∞,L1
)

Corollary 5.27. Under assumptions of Lemma 5.25, Problem (5.17) admits a L1 mul-
tiplier for the non anticipativity constraint (5.17d) coupled with the almost sure con-
straints (5.17e).

Moreover, if the constraint functions θt in Problem (5.17) does not depends on Xt,
then the multiplier can be decomposed into one multiplier for the almost sure constraints,
and one for the non-anticipativity constraints.

Proof. From Lemma 5.25 we have the assumptions required to apply Theorem 5.15. More-
over, if the constraint functions θt in Problem (5.17) does not depends on Xt, then as-
sumption (5.21) is satisfied, and Proposition 5.26 gives the result.

Conclusion

In this chapter, we have shown that, if the cost function J is finite on L∞, then almost
sure affine equality constraints and non-anticipativity constraints admit a L1-multiplier.
Notice that, when we assume that the cost function J is finite on L∞, we exclude the
possibility of having almost sure constraints that are not dualized.

If we want to incorporate bound constraints on control variables in the optimization
problem, we should turn to a series of works by T. Rockafellar and R. Wets. In a first series
[86,91,93,97], they work out the theory of duality on a two-stage stochastic optimization
problem. In [97], they show a result of non-duality gap. In [91] the Kuhn-Tucker conditions
are detailed, whereas in [86] the existence of a multiplier in

(
L∞
)?

is shown. Finally, in [93]
they introduce a condition, slightly weaker than the well-known assumption of relatively
complete recourse, that ensures the existence of a multiplier in L1. In [92, 94, 95], they
adapt these results to a multistage optimization problem.

It appears that, in these papers, two types of assumptions are of the upmost impor-
tance: (essential) relatively complete recourse; strict feasibility assumption. We comment
one after the other.
• Relatively complete recourse ensures that there is no induced constraint, that is,

that the constraints at later stages do not imply constraints at earlier stages. From
a multistage application point of view, bound constraints on the state would still be
difficult to treat; but bound constraints on the control would be available.
• The strict feasibility assumption is mainly used to show the existence of a multiplier

in
(
L∞
)?

. This assumption forbids the direct use of the results of T. Rockafellar
and R. Wets to problems with equality constraints. However, if we look at the proof
of [93, Theorem 3], the strict feasibility assumption is used to ensure the existence
of a multiplier for the first stage problem (with a linear cost). Hence, the existence
of a multiplier in

(
L∞
)?

and relatively complete recourse-like assumptions might be
enough to show the existence of a multiplier in L1. Work remains to be done on this
subject.



Chapter 6

Uzawa Algorithm
in L∞

(
Ω,F ,P;Rn

)
One should always generalize.

Carl Jacobi

Contents

6.1 Optimization Results and Classical Uzawa Algorithm . . . . . 154

6.1.1 Optimization in a Banach Space . . . . . . . . . . . . . . . . . . 155

6.1.2 Recall of the Convergence Proof of Uzawa Algorithm in a Hilbert
Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Uzawa Algorithm in L∞(Ω,F ,P;Rn
)

Spaces . . . . . . . . . . . . 157

6.2.1 Discussing Differences Between Hilbert and Banach Spaces . . . 158

6.2.2 Making Sense of Uzawa Algorithm in L∞(Ω,F ,P;Rn
)

for Equal-
ity Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.3 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.4 Difficulty to Obtain the Convergence of the Whole Sequence . . 162

6.3 Application to a Multistage Problem . . . . . . . . . . . . . . . 164

We remind the reader that this second part of the manuscript deals with the treatment
of constraints through duality, in stochastic optimization. This Chapter 6 is devoted to the
extension of the Uzawa algorithm, as formulated in an Hilbert space (e.g. L2

(
Ω,F ,P

)
), to

the Banach space L∞
(
Ω,F ,P

)
. The issue is the following. The convergence of the Uzawa

algorithm relies upon a key assumption of constraint qualification. But, we have seen in
Chapter 4 that almost sure constraints generally fail to be qualified for the Lp duality,
when p < +∞. In Chapter 5 we derived conditions to obtain an optimal multiplier in
the

(
L∞,L1

)
duality. This chapter is devoted to the extension of the Uzawa algorithm, as

formulated in an Hilbert space (e.g. L2
(
Ω,F ,P

)
), to the Banach space L∞

(
Ω,F ,P

)
.

The chapter is organized as follows. In §6.1, we recall optimization results (inequalities
and first order optimality conditions), that are well-known in Hilbert spaces, and that
remain valid in Banach spaces; we also recall the proof of convergence of Uzawa algorithm
in the usual Hilbert spaces case. In §6.2, this proof is used as a canvas for the proof
of convergence of Uzawa algorithm in the non reflexive Banach space L∞

(
Ω,F ,P;Rn

)
.

Finally, in §6.3 we present an application to a multistage example.



154 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
Introduction

To address a constraint in an optimization problem, we can dualize it, thus making
it disappears as a constraint and appears as a cost. Consequently, the “min” operator
is replaced by a “min max” operator. Numerical algorithms address such problems; the
Uzawa algorithm is one of them.

For an objective function J : U → R, a constraint function Θ : U → V, constraint set
Uad ⊂ U and a constraint cone C ⊂ V, we consider the following problem

min
u∈Uad

J(u) , (6.1a)

s.t. Θ(u) ∈ −C , (6.1b)

where U (resp. V) is a topological space paired with U? (resp. V?). We associate with
this problem the Lagrangian L : U × V? → R, introduced in Chapter 4, given by

L(u, λ) := J(u) +
〈
λ ,Θ(u)

〉
V?,V . (6.2)

Thus, Problem (6.1) reads

min
u∈Uad

max
λ∈C?

J(u) +
〈
λ ,Θ(u)

〉
V?,V , (6.3)

where C? ⊂ V? is the dual cone given by

C? =
{
λ ∈ V? | ∀x ∈ C,

〈
λ , x

〉
V?,V ≥ 0

}
.

The dual problem of Problem (6.3) reads

max
λ∈C?

min
u∈Uad

J(u) +
〈
λ ,Θ(u)

〉
V?,V , (6.4)

and the inner minimization problem for a given multiplier λ is

min
u∈Uad

J(u) +
〈
λ ,Θ(u)

〉
V?,V . (6.5)

An iteration of the Uzawa algorithm consists in fixing the multiplier λ of the constraint,
then solving the inner minimization problem (6.5), and finally updating the multiplier.
The update step can be seen, under the right assumptions, as a gradient step over the
multiplier. It is described in Algorithm 6.1, where projA (z) is the projection of z on the
convex set A.

Data: Initial multiplier λ(0), step ρ > 0 ;

Result: Optimal solution U ] and multiplier λ] ;
repeat

u(k+1) ∈ arg min
u∈Uad

{
J(u) +

〈
λ(k) ,Θ(u)

〉}
, (6.6a)

λ(k+1) = projC?
(
λ(k) + ρΘ

(
u(k+1)

))
. (6.6b)

until Θ(u(k)) ∈ −C;

Algorithm 6.1: Uzawa Algorithm

6.1 Optimization Results and Classical Uzawa Algorithm

In §6.1.1 we show that some inequalities and first order optimality conditions usually
presented in an Hilbert setting remain true in a Banach setting. In §6.1.2 we recall the
Uzawa algorithm in an Hilbert setting and its proof that is used as a canvas for the proof
given in §6.2.



6.1. OPTIMIZATION RESULTS AND CLASSICAL UZAWA ALGORITHM 155

6.1.1 Optimization in a Banach Space

In this synthetic section we underline some relevant differences between Hilbert and
Banach spaces, and go on to give some inequalities and optimality conditions that are
used in §6.1.2 and §6.2.

Lemma 6.1. Let U be a Banach space and J : U → R a convex and Gâteaux differentiable
function J . We have 〈

J ′(u) , v − u
〉
≤ J(v)− J(u) .

Moreover, if J is strongly convex 1 of modulus a, we have

a ‖u− v‖2 ≤
〈
J ′(u)− J ′(v) , u− v

〉
.

Proof. The usual proof in a Hilbert space remains valid in a Banach space.

Proposition 6.2. Let U be a Banach space. We consider the following problem:

min
u∈Uad

J(u) + JΣ(u) . (6.7)

We make the following assumptions:

1. Uad is a non empty, closed convex subset of U ,

2. the function J : U → R is convex and Gâteaux-differentiable,

3. the function JΣ : U → R is convex.

Then, the point ū ∈ Uad is a solution of Problem (6.7) if and only if

∀u ∈ Uad,
〈
J ′
(
ū
)
, u− ū

〉
+ JΣ(u)− JΣ

(
ū
)
≥ 0 . (6.8)

Proof. Assume that ū is an optimal solution of Problem (6.7). Uad being convex, we have

∀t ∈ (0, 1], ∀u ∈ Uad, J
(
ū+ t(u− ū)

)
+ JΣ

(
ū+ t(u− ū)

)
≥ J

(
ū
)

+ JΣ
(
ū
)
,

so that, for any t ∈ (0, 1],

J
(
ū+ t(u− ū)

)
− J

(
ū
)

t
+
JΣ
(
ū+ t(u− ū)

)
− JΣ

(
ū
)

t
≥ 0 .

By convexity of JΣ we have

∀t ∈ (0, 1],
JΣ
(
ū+ t(u− ū)

)
− JΣ

(
ū
)

t
≤ JΣ(u)− JΣ

(
ū
)
,

and by Gâteaux-differentiability of J we have

lim
t→0+

J
(
ū+ t(u− ū)

)
− J

(
ū
)

t
=
〈
J ′
(
ū
)
, u− ū

〉
,

hence the variational inequality (6.8) holds true.

Now, suppose that (6.8) is satisfied. Then, by convexity of J , we have that

∀u ∈ Uad,
〈
J ′
(
ū
)
, u− ū

〉
≤ J(u)− J

(
ū
)
,

thus, the optimality of ū.

We apply Inequality (6.8) to Problem (6.5), where J is the objective cost, and JΣ is
the dual term, and obtain

∀u ∈ Uad,
〈
J ′
(
ū
)
, u− ū

〉
+
〈
λ ,Θ(u)−Θ

(
ū
)〉
≥ 0 . (6.9)

1. See [70, Section 2.1.3] for equivalent definitions of strongly convex functions



156 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
6.1.2 Recall of the Convergence Proof of Uzawa Algorithm in a Hilbert

Space

Following [45, Ch.VII], we recall the proof of the Uzawa algorithm. This proof will
be used as a canvas for the proof an extension of the Uzawa algorithm in the L∞ case
developed in §6.2.

From now on the differential form J ′(u) ∈ U? is associated with the gradient ∇J(u) ∈
U .

We make the following assumptions about Problem (6.1).

Hypothesis 1.

1. The function J : U → R is strongly convex of modulus a, and Gâteaux-differentiable.

2. The function Θ : U → V is C-convex (see Definition A.48), and κ-Lipschitz.

3. Uad is a non empty, closed convex subset of the Hilbert space U .

4. C is a non empty, closed convex cone of the Hilbert space V.

5. The Lagrangian L (defined in (6.2)) admits a saddle-point (u], λ]) on Uad×C?, that
is,

∀u ∈ Uad, ∀λ ∈ C?, L
(
u], λ

)
≤ L

(
u], λ]

)
≤ L

(
u, λ]

)
. (6.10)

6. The step ρ is small enough (0 < ρ < 2a/κ2).

Let us comment these assumptions.
(a) In general, we do not require condition 5, but obtain it from other assumptions,

e.g. through qualification conditions.
(b) The strong convexity of J ensures the uniqueness of u], first component of the

saddle point, in (6.10).
(c) We do not assume that J is l.s.c., as this property is implied by convexity and

differentiability:

J(v) ≥ J(u) +
〈
∇J(u) , v − u

〉
⇒ lim inf

v→u
J(v) ≥ J(u) .

(d) The right-hand side inequality of (6.10) can be written

u] ∈ arg min
u∈Uad

L
(
u, λ]

)
,

with the following optimality condition (see (6.9)),

∀u ∈ Uad,
〈
∇J
(
u]
)
, u− u]

〉
+
〈
λ] ,Θ(u)−Θ

(
u]
)〉
≥ 0 .

(e) The left-hand side inequality of (6.10) can be written

∀λ ∈ C?,
〈
λ− λ] ,Θ

(
u]
)〉
≤ 0 ,

which is equivalent to, as C? is convex,

λ] = projC?
(
λ] + ρΘ

(
u]
))

,

for any ρ > 0.

Theorem 6.3. Under Hypothesis 1, the Uzawa Algorithm 6.1 is such that the se-
quence {u(k)}k∈N converges toward u] in norm.

Proof. Let (u], λ]) be a saddle point of the Lagrangian L given by (6.2). We denote
r(k) = λ(k) − λ].



6.2. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
SPACES 157

1. We have that, as the projection on a convex set is a non-expansive function,∥∥r(k+1)
∥∥2

=
∥∥projC?

(
λ(k) + ρΘ

(
u(k+1)

))
− projC?

(
λ] + ρΘ

(
u]
)) ∥∥2

,

≤
∥∥r(k) + ρ

(
Θ
(
u(k+1)

)
−Θ

(
u]
))∥∥2

.

Developing this expression, and exploiting the κ-Lipschitz continuity of Θ, we obtain∥∥r(k+1)
∥∥2 ≤

∥∥r(k)
∥∥2

+ 2ρ
〈
r(k) ,Θ

(
u(k+1)

)
−Θ

(
u]
)〉

+ ρ2κ2
∥∥u(k+1) − u]

∥∥2
. (6.11)

2. We apply the optimality condition (6.9), on the one hand for λ = λ(k) with u = u]

and ū = u(k+1) and, on the other hand, for λ = λ] with u = u(k+1) and ū = u]. This
gives 〈

∇J
(
u(k+1)

)
, u] − u(k+1)

〉
+
〈
λ(k) ,Θ

(
u]
)
−Θ

(
u(k+1)

)〉
≥ 0 ,〈

∇J
(
u]
)
, u(k+1) − u]

〉
+
〈
λ] ,Θ

(
u(k+1)

)
−Θ

(
u]
)〉
≥ 0 .

Summing both conditions and using the strong convexity of J , we obtain〈
λ(k) − λ] ,Θ

(
u(k+1)

)
−Θ

(
u]
)〉
≤ −

〈
∇J
(
u(k+1)

)
−∇J

(
u]
)
, u(k+1) − u]

〉
,

≤ −a
∥∥u(k+1) − u]

∥∥2
.

3. Using the last inequality Equation (6.11) yields∥∥r(k+1)
∥∥2 ≤

∥∥r(k)
∥∥2 −

(
2aρ− ρ2κ2

)∥∥u(k+1) − u]
∥∥2
.

The assumption 0 < ρ < 2a/κ2 on the step ρ ensures that 2aρ − ρ2κ2 > 0, the se-
quence

{
r(k)
}
k∈N is decreasing and non-negative, thus convergent. Consequently, the

sequence
{
‖u(k) − u]‖

}
k∈N converges toward 0.

Notice that this proof relies on i) estimations deduced from optimality conditions that
hold in Banach space ii) existence of a saddle-point (which can be obtained with other
assumptions) iii) developing a square norm (in (6.11)). This last point might fail in a
Banach space.

6.2 Uzawa Algorithm in L∞
(
Ω,F ,P;Rn

)
Spaces

In Problem (6.1), we considered the case where spaces U and V were Hilbert spaces.
Now, in the sequel of this chapter, we assume that U and V are the following L∞ spaces:

U = L∞(Ω,F ,P;Rn), V = L∞(Ω,F ,P;Rp) . (6.12)

We assume that
(
Ω,F ,P

)
is a probability space, where the σ-algebra F is not finite

(modulo P, see Definition 5.1). Indeed, when F is finite, the space L∞
(
Ω,F ,P;Rn

)
is

a finite dimensional vector space, hence a Hilbert space; thus, the convergence result of
§6.1.2 holds true.

Moreover, from now on, we assume that we have only equality constraints:

• the cone of constraints in Problem (6.1) is C =
{

0
}

;
• C-convexity of the constraint function Θ implies that Θ is an affine function;
• projC? is the identity function.



158 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
Thus, Problem (6.1) reads

min
u∈Uad⊂L∞

J(u) , (6.13a)

s.t. Θ(u) = 0 , (6.13b)

and the algorithm defined in 6.1 reads

U (k+1) = arg min
U∈Uad

{
J
(
U
)

+
〈
λ(k) ,Θ

(
U
)〉}

, (6.14a)

λ(k+1) = λ(k) + ρΘ(U (k+1)) , (6.14b)

where we choose to take λ(0) in L∞
(
Ω,F ,P;Rp

)
.

We underline the differences between Hilbert spaces and Banach spaces in §6.2.1, and
then explain in §6.2.2 why the Uzawa update (6.14b) is well defined. We give a result of
convergence of a subsequence the algorithm in §6.2.3, although using strong assumptions
and discuss why we do not obtain the convergence of the whole sequence in §6.2.4.

6.2.1 Discussing Differences Between Hilbert and Banach Spaces

The spaces U = L∞
(
Ω,F ,P;Rn

)
and V = L∞

(
Ω,F ,P;Rp

)
given in (6.12) are non-

reflexive, non-separable, Banach spaces. Hence they do not have the properties displayed
by Hilbert spaces, and useful for optimization.

Perks of an Hilbert Space

In an Hilbert space H we know that

i) the weak and weak? topologies are identical,

ii) the space H and its topological dual can be identified.

Point i) allows to formulate existence of minimizer results. Indeed, the weak?-closed
bounded subsets ofH are weak? compact, (Banach-Alaoglu Theorem A.24). Hence, weakly
closed bounded subsets are weakly compact. A convex set is closed iff it is weakly closed,
and a convex function is l.s.c. iff it is weakly l.s.c.. Thus, a convex (strongly) l.s.c. function
f : H → R, coercive on the closed convex subset Uad ⊂ H, admits a minimum on Uad.
Indeed, coercivity implies that we can consider a bounded subset of Uad; its closed convex
hull is weakly compact and, as f is weakly l.s.c., Bolzano Weierstrass theorem ensures the
existence of a minimum.

Point ii) allows to write gradient-like algorithms. Indeed, it allows to represent the
differential of a (differentiable) function f : H → R as the inner product with a vector
g ∈ H called gradient. Wit this, we can propose gradient-like minimization algorithms as
follows: at any iteration k, we have a point u(k) ∈ H, and the gradient g(k) = ∇f

(
u(k)

)
∈

H; the new point u(k+1) is a linear combination of the former point u(k) and of the gradient
g(k), e.g. (6.14b).

Difficulties Appearing in a Banach Space

In a reflexive Banach space E, i) still holds true, and thus the existence of a minimizer
remains easy to show. However ii) does not hold any longer. Indeed, the differential of
a differentiable function f : E → R at point x ∈ E can be represented through a duality
product df(x) : h 7→

〈
g , x

〉
, but g belongs to the topological dual of E, which cannot be

identified to E (if E is not an Hilbert space). Thus, a gradient algorithm where u(k+1) is
a linear combination of u(k) ∈ E and g(k) ∈ E′ does not have any sense.



6.2. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
SPACES 159

In a non-reflexive Banach space E, neither i) nor ii) hold true. However, if E is the
topological dual of a Banach space, then the Banach-Alaoglu theorem (Theorem A.24)
holds, and weakly? closed bounded subset, of E are weak? compact. In this case, weak?

lower semicontinuity of a function f , coupled with its coercivity, leads to the existence of
a minimizer of f (this point is developed in Theorem 6.4).

Here, we warn the reader that we are not sure of the existence of strongly convex
functions in a non-reflexive Banach space. As an illustration of the difficulty, it is shown
in [24, Remark 3.67] that if f is twice differentiable and strongly convex on a space H ,
then H is Hilbertizable.

6.2.2 Making Sense of Uzawa Algorithm in L∞
(
Ω,F ,P;Rn

)
for Equality

Constraint

We have seen that a gradient-like formula, for instance the Uzawa update step (6.14b),
does not make sense in a generic Banach space. However, we will now show that it is well
defined in L∞

(
Ω,F ,P;Rn

)
.

Specificities of L∞
(
Ω,F ,P;Rn

)
The Banach space L∞

(
Ω,F ,P;Rn

)
is non-reflexive, non-separable because the σ-

algebra F is not finite (Proposition 5.3).
However, as L∞

(
Ω,F ,P;Rn

)
is the topological dual of the Banach space

L1
(
Ω,F ,P;Rn

)
, the Banach-Alaoglu theorem holds, paving the way for a proof of existence

of a minimizer (see below). Moreover, L∞
(
Ω,F ,P;Rn

)
can be identified with a subset of

its topological dual
(

L∞
(
Ω,F ,P;Rn

))?
. Thus, the update step (6.14b) make sense: it

is a linear combination of elements of
(

L∞
(
Ω,F ,P;Rn

))?
. Consequently,

{
λ(k)

}
k∈N is

a sequence of elements of
(
L∞
)?

. Nevertheless, if λ(0) is represented by an element of

L∞, then
{
λ(k)

}
k∈N is represented by a sequence of elements of L∞. As we make the

assumption that λ(0) can be represented by an element of L∞, we consider from now on
that

{
λ(k)

}
k∈N is a sequence of elements of L∞.

Existence of Solutions

The following theorem shows that there exists a solution to Problem (6.13), and that
the minimization problem in the primal step (6.14a) has also a solution.

Theorem 6.4. Assume that:

1. the constraint set Uad is weakly? closed,

2. the constraint affine function Θ : U → V is weakly? continuous,

3. the objective function J : U → R is weak? l.s.c. and coercive on Uad,

4. there exists an admissible control, i.e.

dom(J) ∩ Uad ∩Θ−1
(
{0}
)
6= ∅ .

Then, Problem (6.13) admits at least one solution.
Moreover, for any λ ∈ L∞

(
Ω,F ,P;Rp

)
, the following argmin is not empty:

arg min
U∈Uad

{
J
(
U
)

+
〈
λ ,Θ

(
U
)〉}
6= ∅ .

Finally, if J is strictly convex, then the above argmin is reduced to a single point.



160 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
Note that coercivity of J is ensured either when J is strongly convex, or when Uad is

bounded. We can also replace the coercivity of J by a slightly weaker assumption: we
assume that J has a non empty, bounded, level set.

Proof. By weak? continuity of the constraint function Θ, and by weak? closedness of the
set {0}, we have the weak? closedness of the set

Θ−1
(
{0}
)

=
{
U ∈ U | Θ

(
U
)

= 0
}
.

By weak? closedness of the set Uad we have the weak? closedness of the set Θ−1
(
{0}
)
∩Uad.

As J is weak? l.s.c., we then have the weak? lower semicontinuity of the function

J̃ : U 7→ J
(
U
)

+ χ{
Θ−1
(
{0}
)
∩Uad

}(U ) .
By coercivity of J on Uad (see Definition A.51), we have the coercivity of J̃ . Thus,

there exist ε > 0 and r > 0 such that

∀u ∈ Uad,
∥∥u∥∥ ≥ r =⇒ J

(
U
)
≥ inf
V ∈U

J̃
(
V
)

+ ε .

We obtain
inf
U∈U

J̃
(
U
)

= inf
‖U ‖≤r

J̃
(
U
)
.

Moreover, Banach-Alaoglu theorem (Theorem A.24) ensures that the set{
U ∈ U | ‖U ‖ ≤ r

}
is weak? compact. Thus, weak? lower semicontinuity of J̃ ensures the existence of a
minimum of J̃ , which is finite, hence the existence of a solution to Problem (6.13).

Furthermore, continuity of the function Θ implies continuity of

U 7→
〈
λ ,Θ

(
U
)〉
,

and thus weak? lower semicontinuity of

U 7→ J
(
U
)

+
〈
λ ,Θ

(
U
)〉
.

With the same ideas as those developed earlier, we obtain the existence of a minimum.
Strict convexity of J implies strict convexity of

U 7−→ J
(
U
)

+
〈
λ ,Θ

(
U
)〉
,

and thus the announced uniqueness of its minimum.

6.2.3 Convergence Results

We have thus shown that, under assumptions of Theorem 6.4, the Uzawa algo-
rithm (6.14) is well defined, and that the sequence of controls

{
U (k)

}
k∈N (resp. of multi-

pliers
{
λ(k)

}
k∈N) are elements of L∞

(
Ω,F ,P

)
.

We now present a convergence result for algorithm (6.14).

Theorem 6.5. Assume that

1. J : U → R is a proper, weak? l.s.c., Gâteaux-differentiable, strongly 2 a-convex func-
tion,

2. The existence of a strongly convex function on L∞ is not clear.



6.2. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
SPACES 161

2. Θ : U → V is affine, weak? continuous and κ-Lipschitz for the norm L∞,

3. there exists an admissible control, i.e.

dom(J) ∩ Uad ∩Θ−1
(
{0}
)
6= ∅ ,

4. Uad is weak? closed,

5. there exists an optimal multiplier (denoted λ]) to the constraint Θ
(
U
)

= 0
in L1(Ω,F ,P;Rp),

6. the step ρ is such that ρ < 2a
κ .

Then, there exists a subsequence
(
U (nk)

)
k∈N of the sequence given by Algorithm (6.14)

converging in L∞ toward the optimal control U ] of Problem (6.13).

Proof. By §6.2.2 and Theorem 6.4, the sequences {U (k)}k∈N and {λ(k)}k∈N given by (6.14)
are well defined.

We first provide upper bounds and fix notations before giving the convergence result.

Upper bounds. We exploit the fact that an optimal multiplier λ] is in L1(Rp), and
that L∞(Rp) is dense in this space. By density of L∞ in L1, we have

∀ε > 0, ∃λε ∈ L∞, ‖λ] − λε‖L1 ≤ ε , (6.15)

from which we deduce

∀k ∈ N, ‖λ(k) − λ]‖L1 ≤ ‖λ(k) − λε‖L1 + ε .

For all λ ∈ L∞(Rp) ⊂ L2(Rp) ⊂ L1(Rp), we have (Jensen’s inequality)

‖λ‖2L1 ≤ ‖λ‖2L2 ≤ ‖λ‖2L∞ .

As (λ(k+1)−λε) ∈ L∞(Rp) ⊂ L2(Rp), by (6.14b) we have

‖λ(k+1) − λε‖
2
L2 = ‖λ(k) − λε‖

2
L2 + 2ρ

〈
λ(k) − λε ,Θ(U (k+1))

〉
+ ρ2

∥∥Θ(U (k+1))
∥∥2

L2 .

• As Θ is κ-Lipschitz and Θ(U ]) = 0, we obtain∥∥Θ(U (k+1))
∥∥2

L2 ≤
∥∥Θ(U (k+1))−Θ(U ])

∥∥2

L∞
≤ κ2‖U (k+1) −U ]‖2L∞ .

• From optimality conditions and strong convexity of J (see point 2 in the proof of
Theorem 6.3), and using Θ

(
U ]
)

= 0, we obtain〈
λ(k) − λε ,Θ(U (k+1))

〉
≤ −a‖U (k+1) −U ]‖2L∞ +

〈
λ] − λε ,Θ(U (k+1))

〉
.

Moreover, we have, by κ-Lipschitz continuity of Θ, and by (6.15)〈
λ] − λε ,Θ(U (k+1))

〉
≤ κε‖U (k+1) −U ]‖L∞ .

Finally, we get

‖λ(k+1) − λε‖
2
L2 ≤ ‖λ(k) − λε‖

2
L2 − (2aρ− ρ2κ2)‖U (k+1) −U ]‖2L∞

+ 2ρκε‖U (k+1) −U ]‖L∞ .
(6.16)

α := 2aρ− ρ2κ2 > 0 β := ρκ/α > 0

qεk := ‖λ(k) − λε‖
2
L2 ≥ 0 vk := ‖U (k+1) −U ]‖L∞ ≥ 0

(6.17)

With these notations, inequality (6.16) becomes

qεk+1 ≤ qεk − αv2
k + 2αβεvk . (6.18)



162 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
Convergence of a subsequence. Inequality (6.18) can be written as

qεk+1 ≤ qεk − α(vk − βε)2 + αβ2ε2 .

We show that |vk − βε| ≤
√

1+αβ2

α ε holds true for an infinite number of k.
Indeed, if it were not the case, there would exists K ∈ N, such that for all k ≥ K, the

inequality

(vk − βε)2 > (1 + αβ2)ε2/α ,

would hold true. Thus, we would have

qεk+1 ≤ qεk − α(1 + αβ2)ε2/α+ αβ2ε2 = qεk − ε2 ,

leading to qεk →k −∞, which is not possible as qεk ≥ 0.
Consequently, there is a subsequence {vsε(k)}k∈N that remains in a ball of center zero

and radius of order ε. Thus, we can construct a subsequence {vs(k)}k∈N converging to-

ward 0. Now, recalling that, by definition, vk = ‖U (k+1) −U ]‖L∞ , we obtain the conver-
gence of

(
Us(k)

)
k∈N toward U ] in L∞.

6.2.4 Difficulty to Obtain the Convergence of the Whole Sequence

The result of convergence obtained in Theorem 6.5 is not fully satisfactory, because
we made quite strong assumptions (Lipschitz continuity of Θ, strong convexity of J , etc.)
but only obtained the convergence of a subsequence toward an optimal solution. We now
point out a difficulty if we want to improve this result.

Proposition 6.6. Assume that supε>0 q
ε
0 < ∞. Then the sequence {Uk}k∈N, given

by (6.14), converges toward U ] in the space L∞(Ω,F ,P;U).

Proof. Inequality (6.18) can be written

qεk+1 ≤ qεk − αvk(vk − 2βε) . (6.19)

Summing up these inequalities from index 0 up to index k leads, as qεk+1 ≥ 0 by definition,
to

0 ≤ qεk+1 ≤ qε0 − α
k∑
l=0

vl(vl − 2βε) .

Since supε>0 q
ε
0 <∞, we deduce that

∃M > 0, ∀ε > 0, ∀k > 0,

k∑
l=0

vl(vl − 2βε) ≤M . (6.20)

Letting ε going to 0, we find that

∀k > 0,

k∑
l=0

v2
l ≤M .

The series of general term v2
k is converging, and thus the sequence {vk}k∈N con-

verges toward zero. Thus, the sequence {Uk}k∈N converges toward U ] in the
space L∞(Ω,F ,P;U).

Proposition 6.6 requires an assumption difficult to check. However if there exist an
optimal multiplier λ] in L2 we can take, for all ε > 0, λε = λ], hence, ε 7→ qε0 is constant.



6.2. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
SPACES 163

Corollary 6.7. Assume that

1. J : U → R is a proper, weak? l.s.c., Gâteaux-differentiable, a-convex function,

2. Θ : U → V is affine, weak? continuous and κ-Lipschitz for the norm L∞,

3. there exists an admissible control, i.e.

dom(J) ∩ Uad ∩Θ−1
(
{0}
)
6= ∅ ,

4. Uad is weak? closed,

5. there exists an optimal multiplier (denoted λ]) to the constraint Θ
(
U
)

= 0
in L2(Ω,F ,P;Rp),

6. the step ρ is such that ρ < 2a
κ .

Then, the sequence
(
U (k)

)
k∈N by Algorithm (6.14) converges in L∞ toward the optimal

control U ] of Problem (6.13).

Proof. For all ε > 0, we set λε = λ], hence, ε 7→ qε0 is constant, and Proposition 6.6
achieve the proof.

Note that we obtain a convergence result stronger than the one obtained by Theo-
rem 6.3 if the problem was set in L2. Indeed, the convergence of the sequence

(
U (n)

)
n∈N

is given in L∞ instead of L2.

Remark 6.8. The assumption supε>0 q
ε
0 <∞ in Proposition 6.6 is quite strong. Without

this assumption, Assertion (6.20) does not hold true, and we have only

∀ε > 0, ∃Mε, ∀k ∈ N,
k∑
l=0

vk(vk − ε) ≤Mε . (6.21)

The question is: is it enough to show the convergence of {vl}l∈N toward 0. The answer,
negative, is given by Fact 6.9.

Fact 6.9. There exists a sequence
{
un
}
n∈N of non-negative reals such that (6.21) holds

true, but that does not converges toward 0.

Proof. Consider the sequence defined as

un =

{
1/k if n ∈ [[nk + 1, nk + k2]]
1 if n = nk

(6.22)

where (nk)k∈N is defined by{
n0 = 1 ,
nk+1 = nk + k2 + 1, ∀k ∈ N .

(6.23)

In other words, the sequence {uk}k∈N takes the value 1, then 1/2 four times, then 1, then
1/3 nine times, and so on. In particular, the sequence does not converge toward 0.

We now show that this sequence satisfies (6.21). For a given ε > 0, fix k0 ≥ 2/ε, and
N ∈ N. We have

N∑
n=1

un(un − ε) =

nk0∑
n=1

un(un − ε) +
N∑

n=nk0
+1

un(un − ε) .

Let Mε =
∑nk0

k=1 un(un − ε). We show that
∑N

k=nk0
+1 un(un − ε) ≤ 0.



164 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
Indeed for k ≥ k0, and l ∈ [[1, k2]], we have

unk+l(unk+l − ε) =
1

k

(1

k
− ε
)
≤ − ε

2k
.

This inequality leads to, for k ≥ k0,

nk+1∑
n=nk

un(un − ε) ≤ 1− kε

2
≤ 0 .

Summing up, if we denote by K the largest integer such that nK ≤ N , we have

N∑
n=1

un(un − ε) =

nk0∑
k=1

un(un − ε)︸ ︷︷ ︸
Mε

+

K∑
k=k0

k2+1∑
l=1

unk+l(unk+l − ε)︸ ︷︷ ︸
≤0

+

N∑
n=nK+1

un(un − ε)︸ ︷︷ ︸
≤0

≤Mε .

This ends the proof.

6.3 Application to a Multistage Problem

We consider a multistage problem, comparable to the one presented in §5.3, but with
some more constraint on the control. We suppose that the noise takes a finite number of
values, so that the space L∞ is finite dimensional 3.

We consider a sequence
{
Wt

}T−1

t=0
of noises, with Wt ∈ L∞

(
Ω,F ,P;Rnw

)
, for any

t ∈ [[0, T − 1]]. We denote by Ft the σ-algebra generated by the past noises

Ft = σ
(
W0, · · · ,Wt

)
,

and by F the induced filtration F =
{
Ft
}T−1

t=0
.

We consider the dynamical system

∀t ∈ [[0, T − 1]], Xt+1 = ft
(
Xt,Dt,Wt

)
, (6.24)

where the control process {Dt}
T−1
t=0 is a stochastic process adapted to F, and for each time

t ∈ [[0, T − 1]], Dt ∈ L∞
(
Ω,Ft,P;Rnd

)
. The evolutions functions ft : Rnx+nd+nw → Rnx

are assumed to be affine in (x, d) and continuous in w.
For each time t ∈ [[0, T − 1]], we consider a convex (jointly in (x, d)) cost Lt :

Rnx+nd+nw → R, and continuous in w, and a convex final cost K : RnX → R. We
also consider linear constraint functions θt : Rnx+nd → Rnc , and a F-adapted sequence of

random variables
{
Bt

}T−1

t=0
(they are stochastic target of the constraint function).

Finally, the problem reads,

min
X ,D

E
[ T−1∑
t=0

Lt
(
Xt,Dt,Wt

)
+K(XT )

]
(6.25a)

s.t. X0 = x0 (6.25b)

Xt+1 = ft
(
Xt,Dt,Wt

)
, (6.25c)

Dt � Ft, (6.25d)

Dt ∈ D
ad
t , (6.25e)

Xt ∈ X
ad
t , (6.25f)

θt(Xt,Dt) = Bt P− a.s. (6.25g)

3. This assumption is required to obtain the strong convexity of the global cost. In a finite dimensional
setting, most topological consideration are equivalent. However, we choose to still dinstinguish them as
we suppose finitess of the alea only to obtain the strong convexity of the cost global cost.



6.3. APPLICATION TO A MULTISTAGE PROBLEM 165

Remark 6.10. Problem (6.25) differ from Problem (5.17) only through Con-
straints (6.25e) and (6.25f). Hence, with those constraint we do not have results of exis-
tence of an optimal multiplier. However, the existence of an optimal multiplier is an as-
sumption of Proposition 6.11, which allow the existence of Constraints (6.25e) and (6.25f).
Moreover, we believe that results in the literature (see [93–95]) could be adapted to show the
existence of L1-optimal multiplier even with constraint on the control (Constraint (6.25e)).

Then, the algorithm given by (6.14) , reads 4

(
X(k+1),D(k+1)

)
∈ arg min

D ,X

{
E
[ T−1∑
t=0

Lt
(
Xt,Dt,Wt

)
+ λ

(k)
t · θt

(
Xt,Dt

)]}
, (6.26a)

λ
(k+1)
t = λ

(k)
t + ρt

(
θt
(
X

(k+1)
t ,D(k+1)

)
−Bt

)
, (6.26b)

where
(
X ,D

)
satisfies constraints (6.25b)-(6.25f), that is, all constraints except the almost

sure constraint dualized, i.e. constraint (6.25g).

Proposition 6.11. Assume that,

1. the cost functions Lt are Gâteaux-differentiable (in (x, u)), strongly-convex (in (x, u))
functions and continuous in w;

2. the constraint functions θt : Rnx+nd → Rnc are affine;

3. the evolution functions ft : Rnx+nd+nw → Rnx are affine (in (x, u, w));

4. the constraint sets X ad
t and Uad

t are weak? closed, convex;

5. there exists an admissible control, i.e. a process
(
X ,D

)
satisfying all constraints of

Problem (6.25);

6. there exists an optimal multiplier process (denoted λ]) to the constraint (6.25g);
in L1(Ω,F ,P;RTnc) (this is, satisfied if there is neither constraint (6.25e) nor con-
straint (6.25f)).

Then, there exists a subsequence
(
D(nk)

)
k∈N of the sequence given by Algorithm (6.26)

converging in L∞ toward the optimal control of Problem (6.25).

Proof. We apply the results of §6.2.3 to Problem (6.25). We define the cost function J
and constraint function Θ relative to Problem (6.25), and show the required assumptions.

First, we need to cast Problem (6.25) into the framework of Problem (6.13). We define

the control U =
{
Ds

}T−1

s=0
∈ L∞

(
Ω,F ,P;RTnd

)
= U .

Then, x0 being given and constant, we define recursively the functions

xt : RT (nd+nw) −→ Rnx(
U,W

)
7−→ ft−1

(
xt−1

({
Dτ ,Wτ

}t−2

τ=0

)
, Dt−1,Wt−1

)
that maps the sequence of controls and noises toward the state. Note that the functions
xt are affine. Hence, the output of the dynamical system (6.24) can be represented by

X = AU +BW + C ,

were A and B, and C are deterministic matrices.
Now we define the cost function

L
(
X ,U ,W

)
= E

[ T−1∑
t=0

Lt
(
Xt,Ut,Wt

)]
,

4. We use the notational convention LT (x, d, w) = K(x).



166 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)
and the objective function

J
(
U
)

= E
[
L
(
AU +BW + C,U ,W

)]
.

If each Lt is strongly-convex, then L is also strongly-convex in (x, u), hence J is strongly
convex (for the L2-norm, equivalent to the L∞-norm by finiteness of the noise). By assump-
tions on functions Lt and ft, the objective function J is proper and Gâteaux-differentiable.
Note that J is finite on L∞, consequently Lemma 5.16 implies that J is weak?-l.s.c..

We define the constraint function

Θ =
(

Θ0, . . . ,ΘT

)
: L∞

(
Ω,F ,P;RTnd

)
→ L∞

(
Ω,F ,P;RTnc

)
,

where Θt : L∞
(
Ω,F ,P;RTnd

)
→ L∞

(
Ω,F ,P;Rnc

)
is given by

Θt

(
U
)

= θt

(
PXt
(
AU +BW + C

)
,Dt

)
−Bt = θt

(
PXt AU ,Dt

)
− B̃ t , (6.27)

where B̃ t is a Ft-measurable random variable, and PXt is the projector such that
PXt X = Xt. In particular Θ is affine. Note that the functions xt and θt are affine
on a finite dimensional space, and hence Lipschitz. Consequently, functions Θt (and thus
Θ) are L∞-Lipschitz. Moreover, Corollary 5.13 gives the weak? continuity of the constraint
function Θ.

We now construct the set Uad of admissible controls. Let X ad be the Cartesian product
X ad

0 ×· · ·×X ad
T , and Dad be the Cartesian product Dad

0 ×· · ·×Dad
T−1. The linear mappings

U 7→ AU , U 7→ PUt U (where PUt U = Dt) and the constraint functions Θt are weak dual
continuous (see Corollary 5.13).

Note that the linear mappings X 7→ PXt
(
AU +BW +C

)
are weakly? continuous (see

Corollary 5.13). Hence, for t ∈ [[1, T ]], the set{
U ∈ U

∣∣ PXt
(
AU +BW + C

)
∈ Xt

}
,

is weak? closed convex as the the inverse image of a weak? closed convex set by a weak?

continuous affine function. Consequently, the set

Uad
X =

{
U ∈ U

∣∣ PXt
(
AU +BW + C

)
∈ Xt, ∀t ∈ [[1, T ]]

}
,

is weak? closed convex as an intersection of such sets.
We denote Nd the set of essentially bounded, F-adapted processes with value in Rnd .

It is the set N nd , where N is defined in (5.12). By Corollary 5.14, the set Nd is weak?

closed convex. In a nutshell, a control U satisfies:
• constraint (6.25e) if it is an element of Dad;
• constraint (6.25f) if it is an element of Uad

X ;
• constraint (6.25d) if it is an element of Nd.

Hence, the constraint set Uad given by

Uad = Dad ∩ Uad
X ∩Nd ,

is a weak? closed convex set.
Finally, by Corollary 5.27, if Uad = Nd, we have optimal multipliers in L1 for con-

straints (6.25g).
With those notations, Problem (6.25) reads

min
U∈Uad

J
(
U
)
.

s.t. Θ
(
U
)

= 0



6.3. APPLICATION TO A MULTISTAGE PROBLEM 167

Moreover Algorithm (6.14) correspond to Algorithm (6.26).
Hence, for ρ small enough, all the assumptions in Theorem 6.5 are satisfied; this ends

the proof.

Remark 6.12. Note that, by Lemma B.3, it is easy to see that, if λ] is an optimal
multiplier for constraints (6.25g), then so is its F-adapted part, that is, the process µ]

where
∀t ∈ [[0, T ]], µ]t = E

[
λ]t
∣∣ Ft] .

Interestingly, the multiplier in λ(k) in Algorithm (6.26) is an essentially bounded, F-
adapted stochastic process.

However, we cannot write a Dynamic Programming equation for Problem (6.26a) with
the state X . Indeed, the multiplier λ(k) should be seen as a correlated, F-adapted noise.
Hence, the natural state is the past noises {Ws}ts=0, and Dynamic Programming methods
are numerically untractable to solve Problem (6.26a).

In Chapter 8, we will present a method where the multiplier is approximated by its
conditional expectation with respect to a given information process Y , following a dynamic
Yt+1 = f̃t

(
Yt,Wt

)
. This allows to use Dynamic Programming with an extended state(

Xt,Yt
)

to solve the minimization part (equation (6.26a)) of Uzawa algorithm.

Conclusion

We have provided conditions ensuring convergence of a subsequence of
{
u(k)

}
k∈N, for

the Uzawa algorithm in L∞
(
Ω,F ,P

)
. Our key assumption is the existence of a sad-

dle point for the Lagrangian in the
(
L∞,L1

)
pairing. Work remains to be done on the

subject. Indeed, the strong convexity assumption on the objective function usually en-
sures the convergence of the whole primal sequence

{
u(k)

}
k∈N toward the optimal value.

With the bounds that we have derived, we were only able to obtain the convergence of
a subsequence of

{
u(k)

}
k∈N. Tighter bounds might give better convergence results, and

alternative schemes of proof should be investigated.
Moreover, we have made an abstract weak? continuity (or lower-semicontinuity) as-

sumption; we should study its potential of applicability.
Finally, we have restricted ourselves to the case of equality constraints; more generic

constraint require a careful look at the projection step in the Uzawa algorithm.
In §6.3, we have applied the Uzawa algorithm to a multistage process. However, we

have seen that the minimization part of the Uzawa algorithm is not straightforward in this
case. In the final part of this manuscript, we will develop and adapt this idea, in order
to apply the Uzawa algorithm for the spatial decomposition of stochastic optimization
problems.



168 CHAPTER 6. UZAWA ALGORITHM IN L∞
(
Ω,F ,P;RN

)



Part III

Stochastic Spatial
Decomposition Methods

169





Chapter 7

Epiconvergence of Relaxed
Stochastic Problems

Truth is much too complicated to allow anything but
approximations.

John von Neumann

Contents

7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 172

7.2 Epiconvergence Result . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.2.2 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

7.2.3 Dynamic Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Examples of Continuous Operators . . . . . . . . . . . . . . . . . 178

7.3.1 A technical Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.2 Objective function . . . . . . . . . . . . . . . . . . . . . . . . . . 178

7.3.3 Constraint operator . . . . . . . . . . . . . . . . . . . . . . . . . 180

7.4 Application to a Multistage Problem . . . . . . . . . . . . . . . 183

At the end of Chapter 6 we saw that a price decomposition scheme over the coupling
spatial constraints does not leads to tractable subproblems. In Chapter 8, we propose a
tractable price decomposition scheme over an approximation of the original problem.

In this Chapter, we study the approximation required. Roughly, this approximation
relax an almost sure constraint into a conditional expectation constraint. Were the condi-
tioning is done with respect to a σ-algebra Fn . We study the convergence of a sequence
of approximated problem when the σ-algebra converges.

Introduction

Stochastic optimization problems often consist in minimizing a cost over a set of ran-
dom variables. If the set of events is infinite, the minimization is done over an infinite
dimensional space. Consequently there is a need for approximation. We are interested
in the approximation of almost sure constraints, say θ(U ) = 0 almost surely (a.s.), by a
conditional expectation constraint like E

[
θ(U )

∣∣ Fn] ≥ 0 a.s.
Consider the following problem,

min
U∈U

J(U ) , (7.1a)

s.t. θ(U ) = 0 a.s. , (7.1b)



172 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

where the set of controls U is a set of random variables over a probability space
(
Ω,F ,P

)
.

If Ω is not finite, U may be of infinite dimension. Moreover the constraint (7.1b) is a func-
tional constraint that can roughly be seen as an infinity of constraints. For tractability
purposes we consider approximations of this problem. In order to give theoretical results
for the approximations of Problem (7.1) the right notion of convergence is epi-convergence.
Indeed, under some additional technical conditions, the epi-convergence ensures the con-
vergence of both the optimal value and the optimal solutions.

One way of approximating Problem (7.1) consists in approximating the probability
P. Roughly speaking the Sample Average Approximation procedure consist in simulating
a set of scenarios under the real probability P. Then we solve Problem (7.1) under the
empirical probability on the set of simulated scenarios. In this literature (see [43], [59]) the
authors are interested in problems where the controls are deterministic. However other
epi-convergence results have been shown for more general spaces of controls, including
spaces of random variables or random processes (see [120] and references therein, as well
as [74], [76], [75]). More generally, the idea of discretizing or quantizing the set Ω, for
example by use of finite scenario trees has been largely studied in the field of Stochastic
Programming (see [110] for a thorough presentation).

Instead of approximating the probability space we propose a way to approximate con-
straints, especially almost sure constraints. The main idea is to replace a constraint by its
conditional expectation with respect to (w.r.t.) a σ-algebra B. This is in some sense an
aggregation of constraints. This approximation appears when considering duality schemes
for dynamic stochastic optimization problem.

More precisely, we relax the almost sure constraint (7.1b) by replacing it by its condi-
tional expectation, i.e.

E
[
θ(U )

∣∣ B] = 0 . (7.2)

If λ is an integrable optimal multiplier for Constraint (7.1b), then λB = E
[
λ
∣∣ B] is

an optimal multiplier for Constraint (7.2). This leads to look for B-measurable multiplier,
which may authorize decomposition-coordination methods where the sub-problems are
easily solvable. This is presented in Chapter 8.

The chapter is organized as follows. §7.1 presents the general form of the problem
considered and its approximation. §7.2 shows, after a few recalls on convergence notions
of random variables, functions and σ-algebras, conditions on the sequence of approximate
problems guaranteeing its convergence toward the initial problem. The main assump-
tions are the Kudo’s convergence of σ-algebra, and the continuity - as operators - of the
constraint function Θ and objective function J . Finally §7.3 gives some examples of con-
tinuous objective and constraint functions that represent usual stochastic optimization
problems. Finally §7.4 presents a decomposition-coordination algorithm using this type
of relaxation and developed in the Chapter 8.

7.1 Problem Statement

We consider a probability space
(
Ω,F ,P

)
and a topological spaces of controls U . Let

V be the spaces of random variables with value in a Banach V with finite moment of order
p ∈ [1,∞), denoted V = Lp(Ω,F ,P;V).

We consider now a stochastic optimization problem

min
U∈U

J(U ) , (7.3a)

s.t. Θ(U ) ∈ −C , (7.3b)

with J mapping U into R∪ {+∞}, and Θ mapping U into V. We assume that C ⊂ V is a



7.1. PROBLEM STATEMENT 173

closed convex cone of V, and that V is a separable Banach space with separable dual (the
fact that C is a cone is not essential for our results).

To give an example of cost operator, assume that U ⊂ L1
(
Ω,F ,P;U

)
, where U is a

Banach. The usual choice for the criterion is the expected cost J(U ) := E
[
j(U )

]
, for

a suitable cost function j : U → R. Other choices could be risk measures (see [6] for
example) like Conditional-Value-at-Risk (see [90] for a definition), worst-case or robust
approaches. The constraint operator Θ cover various cases, for example
• almost sure constraint: Θ

(
U
)
(ω) := θ

(
U (ω)

)
, where θ maps U into V and θ

(
U
)
∈

−C is realized almost surely;
• measurability constraint: Θ

(
U
)

:= E
[
U
∣∣ B]−U , with C = {0}, expresses that U

is measurable with respect to the σ-algebra B, that is, E
[
U
∣∣ B] = U ;

• risk constraint: Θ
(
U
)

:= ρ(U )− a, where ρ is a conditional risk measure, and C is
the cone of positive random variables.

We introduce a stability assumption of the set C that will be made throughout this
paper.

Definition 7.1. We consider a sequence {Fn}n∈N of sub-fields of F . The closed convex
cone C is said to be stable w.r.t.

(
Fn
)
n∈N, if for all n ∈ N we have

∀V ∈ C, E[V | Fn] ∈ C .

A first widely used example would be C = {0}, or more generally any deterministic
closed convex cone, another example would be the set of almost surely positive random
variables.

We now consider the following relaxation of Problem (7.3)

min
U∈U

J(U ) , (7.4a)

s.t. E
[
Θ(U )

∣∣ Fn] ∈ −C , (7.4b)

where C is assumed to be stable w.r.t the sequence
(
Fn
)
n∈N.

We denote the set of admissible controls of Problem (7.3)

Uad :=
{
U ∈ U

∣∣ Θ(U ) ∈ −C
}
, (7.5)

and the corresponding set of admissible controls of Problem (7.4)

Uadn :=
{
U ∈ U

∣∣ E
[
Θ(U )

∣∣ Fn] ∈ −C} . (7.6)

Problems (7.3) and (7.4) can also be written 1 as

min
U∈U

J(U ) + χ
Uad

(U )︸ ︷︷ ︸
:=J̃(U )

, (7.7)

and
min
U∈U

J(U ) + χ
Uadn

(U )︸ ︷︷ ︸
:=J̃n(U )

. (7.8)

Note that we have Fn ⊂ F , and that C is stable w.r.t {Fn}n∈N, thus Uad ⊂ Uadn :
Problem (7.4) is a relaxation of the original Problem (7.3) as it has the same objective
function but a wider set of admissible controls.

1. We use the notation χA for the characteristic function of A, that is the function such that χA(x) = 0
if x ∈ A, and χA(x) = +∞ elsewhere.



174 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

Replacing an almost sure constraint by a conditional expectation constraint is similar
to an aggregation of constraints. For example consider a finite set Ω = {ωi}i∈[[1,N ]]

2, with
a probability P such that, for all i ∈ [[1, N ]], we have P(ωi) = pi > 0. Consider a partition
B = {Bl}l∈[[1,|B|]] of Ω, and the σ-algebra FB generated by the partition B. Assume that
C = {0}, then the relaxation presented consists in replacing the constraint

θ(U ) = 0 P-a.s.

which is equivalent to N constraints

∀i ∈ [[1, N ]], θ(U (ωi)) = 0 ,

by the collection of |B| ≤ N (where |B| is the number of sets in the partition B) constraints

∀l ∈ [[1, |B|]],
∑
i∈Bl

piθ(U (ωi)) = 0 .

7.2 Epiconvergence Result

In this section we show the epiconvergence of the sequence of approximated cost func-
tions {J̃n}n∈N (defined in (7.8)) towards J̃ (defined in (7.7)). First, we recall some results
on convergence of random variables, epiconvergence of functions and convergence of σ-
algebras. Moreover a technical result is required.

7.2.1 Preliminaries

Assume that p ∈ [1,+∞) and denote q ∈ (1,+∞] such that 1/q+ 1/p = 1. Recall that
V is a separable Banach space with separable dual V∗.

Convergence of random variables

A sequence (Xn)n∈N of Lp(Ω,F ,P;V) is said to converges strongly toward X ∈
Lp(Ω,F ,P;V), and denoted Xn →Lp X if

lim
n→∞

E
[ ∥∥Xn −X

∥∥p
V
]

= 0 .

A sequence (Xn)n∈N of Lp(Ω,F ,P;V) is said to weakly converges toward X ∈
Lp(Ω,F ,P;V), and denoted Xn ⇀Lp X if

∀X ′ ∈ Lq(Ω,F ,P;V∗), lim
n→∞

E
[
〈Xn −X ,X ′〉V,V∗

]
= 0 .

For more details we refer the reader to [99].

Epiconvergence of functions

We first recall the definition of the Painlevé-Kuratowski convergence of sets. Let E be
a topological space and consider a sequence {An}n∈N of subsets of E. Then the inner limit
of {An}n∈N is the set of accumulation points of any sequence (xn)n∈N such that xn ∈ An,
i.e,

limnAn = {x ∈ E | ∀n ∈ N, xn ∈ An, lim
k→∞

xn = x} , (7.9)

2. We denote by [[a, b]] the set of all integers between a and b.



7.2. EPICONVERGENCE RESULT 175

and the outer limit of {An}n∈N is the set of accumulation points of any sub-sequence
(xnk)k∈N of a sequence {xn}n∈N such that xn ∈ An, i.e,

limnAn = {x ∈ E | ∃{nk}k∈N, ∀k ∈ N, xnk ∈ Ank , lim
k→∞

xnk = x} . (7.10)

We say that {An}n∈N converges toward A in the Painlevé-Kuratowski sense if

A = limnAn = limnAn .

A sequence {Jn}n∈N of functions taking value into R ∪ {+∞} is said to epi-converge
toward a function J if the sequence of epigraphs of Jn converges toward the epigraph of
J , in the Painlevé-Kuratowski sense. For more details and properties of epi-convergence,
see Rockafellar-Wets [96] in finite dimension, and Attouch [8] for infinite dimension.

Convergences of σ-algebras

Let F be a σ-algebra and {Fn}n∈N a sequence of sub-fields of F . It is said that the
sequence {Fn}n∈N Kudo-converges toward the σ-algebra F∞, and denoted Fn → F∞, if

for each set F ∈ F ,
(
E
[
1F
∣∣ Fn])

n∈N
converges in probability toward E

[
1F
∣∣ F∞].

In [62], Kudo shows that Fn → F∞ if and only if for each integrable random variable
X , E

[
X
∣∣ Fn] converges in L1 toward E

[
X
∣∣ F∞]. In [82], Piccinini extends this result

to the convergence in Lp in the strong or weak sense with the following lemma.

Lemma 7.2. Let
(
Ω,F ,P

)
be a probability space and

(
Fn
)
n∈N be a sequence of sub-σ-

algebras of F . The following statements are equivalent:

1. Fn → F∞,

2. ∀X ∈ Lp(Ω,F ,P;V), E
[
X
∣∣ Fn]→Lp E

[
X
∣∣ F∞],

3. ∀X ∈ Lp(Ω,F ,P;V), E
[
X
∣∣ Fn]⇀Lp E

[
X
∣∣ F∞].

We have the following useful proposition where both the random variable and the
σ-algebra are parametrized by n.

Proposition 7.3. Assume that Fn → F∞, and Xn →Lp X (resp. Xn ⇀Lp X ) then
E
[
Xn

∣∣ Fn]→Lp E
[
X
∣∣ F∞] (resp. E

[
Xn

∣∣ Fn]⇀Lp E
[
X
∣∣ F∞]).

Proof. The weak-limit case is detailed in [82]. We show the strong convergence case. If
Xn →Lp X , then

||E
[
Xn

∣∣ Fn]− E
[
X
∣∣ F]||Lp ≤ ||E[Xn

∣∣ Fn]− E
[
X
∣∣ Fn]||Lp

+ ||E
[
X
∣∣ Fn]− E

[
X
∣∣ F]||Lp

As the conditional expectation is a contraction operator, we have

||E
[
Xn

∣∣ Fn]− E
[
X
∣∣ Fn]||Lp ≤ ||Xn −X ||Lp → 0 .

Moreover we have
||E
[
X
∣∣ Fn]− E

[
X
∣∣ F]||Lp → 0

by Lemma 7.2, hence the result.

We finish by a few properties on the Kudo-convergence of σ-algebras (for more details
we refer to [62] and [31]):

1. the topology associated with the Kudo-convergence is metrizable;

2. the set of σ-fields generated by the partitions of Ω is dense in the set of all σ-algebras;

3. if a sequence of random variables (Xn)n∈N converges in probability toward X and
for all n ∈ N we have σ(Xn) ⊂ σ(X ), then we have the Kudo-convergence of(
σ(Xn)

)
n∈N toward σ(X ).



176 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

7.2.2 Main result

Recall that U is endowed with a topology τ , and that V = Lp
(
Ω,F ,P;V

)
, with p ∈

[1,∞).

Theorem 7.4. Let V be endowed with the strong or weak topology. Assume that C is
stable w.r.t {Fn}n∈N. If the two mappings Θ and J are continuous, and if (Fn)n∈N Kudo-
converges toward F , then {J̃n}n∈N (defined in (7.7)) epi-converges toward J̃ (defined in
(7.8)).

Note that {Fn}n∈N is not assumed to be a filtration, and that Fn is not assumed to
be finite.

Proof. To prove the epi-convergence of {J̃n}n∈N toward J̃ it is sufficient to show that Uadn
(defined in (7.6)) converges toward Uad (defined in (7.5)) in the Painlevé-Kuratowski sense.
Indeed it implies the epiconvergence of (χ

Uadn
)n∈N toward χ

Uad
, and adding a continuous

function preserves the epi-convergence (Attouch [8, Th 2.15] ).

By stability of C w.r.t. {Fn}n∈N we have that, for all n ∈ N, Uad ⊂ Uadn and thus
Uad ⊂ lim infn Uadn (for any x ∈ Uad take the constant sequence equal to x).

We now show that Uad ⊃ lim supn Uadn . Let U be an element of lim supn Uadn . By
Definition (7.10), there is a sequence

{
Unk

}
k∈N that τ -converges to U , such that for all

k ∈ N, E
(
Θ(Unk)|Fnk

)
∈ −C. As Θ is continuous, we have Θ(Unk) → Θ(U ) strongly

(resp. weakly) in Lp. Moreover we have that Fnk → F , and consequently by Lemma 7.3,

E
[
Θ(Unk)

∣∣ Fnk]→Lp E
(
Θ(U )|F

)
= Θ(U) .

Thus Θ(U ) is the limit of a sequence in −C. By closedness of C (weak and strong as C
is convex 3), we have that Θ(U ) ∈ −C and thus U ∈ Uad.

The practical consequences for the convergence of the approximation (7.4) toward the
original Problem 7.3 is given in the following Corollary.

Corollary 7.5. Assume that Fn → F , and that J and Θ are continuous. Then the
sequence of Problems (7.4) approximates Problem (7.3) in the following sense. If {Un}n∈N
is a sequence of control such that for all n ∈ N,

J̃n(Un) < inf
U∈U

J̃n(U ) + εn, where lim
n
εn = 0 ,

then, for every converging sub-sequence (Unk)k∈N, we have

J̃
(

lim
k
Unk

)
= min
U∈U

J̃(U ) = lim
k
J̃nk
(
Unk

)
.

Moreover if
{
Fn
}
n∈N is a filtration, then the convergences are monotonous in the sense

that the optimal value is non-decreasing in n.

Proof. The convergence result is a direct application of Attouch [8, Th. 1.10, p. 27].
Monotonicity is given by the fact that, if {Fn}n∈N is a filtration, then for n > m then
Uadn ⊂ Uadm .

3. if C is non-convex we need it to be sequentially closed.



7.3. EXAMPLES OF CONTINUOUS OPERATORS 177

7.2.3 Dynamic Problem

We extend Problem (7.3) into the following dynamic problem

min
U∈U

J(U ) ,

s.t. Θt(Ut) ∈ −Ct ∀t ∈ [[1, T ]] ,

Ut � Ft ,

(7.11)

where Ut � Ft stands for “Ut is Ft-measurable”. Here U is a stochastic process of control
(Ut)t∈[[1,T ]] defined on

(
Ω,F ,P

)
with value in U. We have T constraints operators Θt

taking values in Lp(Ω,Ft,P;Vt), where (Ft)t∈[[1,T ]] is a sequence of σ-algebra. Note that
(Ft)t∈[[1,T ]] is not necessarily a filtration. Then, for each t ∈ [[1, T ]] we define a sequence
of approximating σ-algebra (Fn,t)n∈N. For all t ∈ [[1, T ]], Ct is a closed convex cone stable
w.r.t

(
Fn,t

)
n∈N.

Finally we consider the sequence of approximated problem

min J(U ) ,

s.t. E
[
Θt(Ut)

∣∣ Fn,t] ∈ −Ct ∀t ∈ [[1, T ]] .
(7.12)

Furthermore we denote

Uadt :=
{
Ut ∈ Ut

∣∣ Θt(Ut) ∈ −Ct
}
,

and

Uadn,t :=
{
Ut ∈ Ut

∣∣ E
[
Θ(Ut)

∣∣ Fn,t] ∈ −Ct} .
We define the set of admissible controls for the original problem

Uad = Uad0 × · · · × UadT ,

and accordingly for the relaxed problem

Uadn = Uadn,0 × · · · × Uadn,T .

In order to show the convergence of the approximation proposed here, we consider the
functions

J̃(U ) = J
(
U
)

+ χUad(U ) ,

and

J̃n(U ) = J
(
U
)

+ χUadn (U ) ,

and show the epi-convergence of J̃n to J̃ . The interaction between the different time-step
are integrated in the objective function J .

Theorem 7.6. If Θ and J are continuous, and if for all t ∈ [[1, T ]], (Ft,n)n∈N Kudo-
converges to Ft, then

(
J̃n
)
n∈N epi-converges to J̃ .

Proof. The proof is deduced from the one of Theorem 7.4. By following the same steps
we obtain the Painlevé-Kuratowski convergence of Uadn,t to Uadt , and thus the convergence
of their Cartesian products.



178 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

7.3 Examples of Continuous Operators

The continuity of J and Θ as operators required in Theorem 7.4 is an abstract assump-
tion. This section presents conditions for some classical constraint and objective functions
to be representable by continuous operators. Before presenting those results we show a
technical lemma that allows us to prove convergence for the topology of convergence in
probability by considering sequences of random variables converging almost surely.

7.3.1 A technical Lemma

Lemma 7.7. Let Θ : E → F , where (E, τP) is a space of random variables endowed with
the topology of convergence in probability, and (F, τ) is a topological space. Assume that Θ
is such that if {Un}n∈N converges almost surely toward U , then Θ(Un) →τ Θ(U ). Then
Θ is a continuous operator from (E, τP) into (F, τ).

Proof. We recall first a well known property (see for example [44, Th 2.3.3]). Let {xn}n∈N
be a sequence in a topological space. If from any sub-sequence

{
xnk
}
k∈N we can extract

a sub-sub-sequence
{
xσ(nk)

}
k∈N converging to x∗, then {xn}n∈N converges to x∗. Indeed

suppose that {xn}n∈N does not converges toward x∗. Then there exist an open set O
containing x∗ and a sub-sequence

{
xnk
}
k∈N such that for all k ∈ N, xnk /∈ O, and no

sub-sub-sequence can converges to x∗, hence a contradiction.

Let {Un}n∈N be a sequence converging in probability to U . We consider the sequence{
Θ(Un)

}
n∈N in F . We choose a sub-sequence

{
Θ
(
Unk

)}
k∈N. By assumption

{
Un
}
n∈N

converges in probability toward U , thus we have Unk →P U . Consequently there exist a

sub-sub-sequence Uσ(nk) converging almost surely to U , and consequently Θ
(
Uσ(nk)

)
→

Θ
(
U
)
. Therefore Θ is sequentially continuous, and as the topology of convergence in

probability is metrizable, Θ is continuous.

Remark 7.8. This Lemma does not imply the equivalence between convergence almost
sure and convergence in probability as you cannot endow U with the “topology of almost
sure convergence” as almost sure convergence is not generally induced by a topology.

However note that {Un}n∈N converges in probability toward U iff from any sub-
sequence of {Un}n∈N we can extract a further sub-sequence converging almost surely to
U (see [44, Th 2.3.2]).

7.3.2 Objective function

Let U be a space of random variables on
(
Ω,F ,P

)
, with value in a Banach U.

The most classical objective function is given as J
(
U
)

:= E
[
j(U )

]
, where j : U → R

is a measurable, bounded cost function. This objective function expresses a risk-neutral
attitude; indeed a random cost with high variance or a deterministic cost with the same
expectation are considered equivalent. Recently in order to capture risk-averse attitudes,
coherent risk measures (as defined in [6]), or more generally convex risk measures (as
defined in [48]), have been prominent in the literature.

Following [104], we call convex risk measure an operator ρ : X → R ∪ {+∞} verifying

• Convexity: for all λ ∈ [0, 1] and all X,Y ∈ X , we have

ρ
(
λX + (1− λ)Y

)
≤ λρ

(
X
)

+ (1− λ)ρ
(
Y
)

;

• Monotonicity: for all X,Y ∈ X such that X ≤ Y we have ρ(X) ≤ ρ(Y );
• Translation equivariance: for all constant c ∈ R and all X ∈ X , we have ρ(X + c) =
ρ(X) + c ,



7.3. EXAMPLES OF CONTINUOUS OPERATORS 179

where X is a linear space of measurable functions. We focus on the case where X =
L∞(Ω,F ,P;R), and assume that ρ(0) = 0.

Proposition 7.9. Let U be a set of random variables endowed with the topology of conver-
gence in probability, and J

(
U
)

:= ρ
(
j(U )

)
, where j : U→ R is continuous and bounded,

and ρ a lower semicontinuous convex risk measure. Then, J : U → R is continuous.

Proof. Note that as j is bounded, j(U ) ∈ X for any U ∈ U . Then we know that ( [104])
there is a convex set of probabilities P such that

ρ(X ) = sup
Q∈P

EQ
(
X
)
− g(Q) ,

where g is convex and weak*-lowersemicontinuous on the space of finite signed measures
on (Ω,F). Moreover any probability in P is absolutely continuous w.r.t P.

Consider a sequence {Un}n∈N of elements of U converging in probability towardU ∈ U .
Let M be a majorant of j, we have ρ

(
j(U )

)
≤ ρ(M) = M < +∞. By definition of ρ, for

all ε > 0 there is a probability Pε ∈ P such that

EPε
(
j(U )

)
− g(Pε) ≥ ρ

(
j(U )

)
− ε .

As Pε is absolutely continuous w.r.t P, the convergence in probability under P of {Un}n∈N
implies the convergence of probability under Pε and in turn the convergence in law under
Pε. By definition of convergence in law we have that

lim
n

EPε
(
j(Un)

)
− g(Pε) = EPε

(
j(U )

)
− g(Pε) .

Let η be a positive real, and set ε = η/2, and N ∈ N such that for all n ≥ N ,

|EPε
(
j(Un)

)
− EPε

(
j(U )

)
| ≤ η

2
. (7.13)

Then, recalling that

ρ
(
j
(
U
))
≥ EP η

2

(
j(U )

)
− g(P η

2
) ≥ ρ

(
j
(
U
))
− η

2
, (7.14)

we have that for all n ≥ N ,

ρ
(
j(Un)

)
= sup

Q∈P
EQ

(
j(Un)

)
− g(Q)

≥ EP η
2

(
j(Un)

)
− g
(
P η

2

)
≥ EP η

2

(
j(U )

)
− g
(
P η

2

)
− η

2
by (7.13),

≥ ρ
(
j(U )

)
− η by (7.14),

and thus

ρ
(
j
(
U
))

+
η

2
≥ ρ
(
j
(
Un
))
≥ ρ
(
j
(
U
))
− η .

Thus limn ρ
(
j(Un)

)
= ρ
(
j(U )

)
. Hence the continuity of J .



180 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

The assumptions of this Proposition can be relaxed in different ways.

In a first place, if the convex risk measure ρ is simply the expectation then we can
simply endow U with the topology of convergence in law. In this case the continuity
assumption on j can also be relaxed. Indeed if

{
Un
}
n∈N converges in law toward U , and

if the set K of points where j is continuous is such that P(U ∈ K) = 1, then E
[
j(Un)

]
converges toward E

[
j(U )

]
.

Otherwise assume that U is a set of random variables endowed with the topology of
convergence in probability, and that j continuous. Moreover if we can ensure that j(U ) is
dominated by some integrable (for all probability of P) random variable, then J : U → R
is continuous. Indeed we consider a sequence

(
Un
)
n∈N almost surely converging to U . We

modify the proof of Proposition 7.9 by using a dominated convergence theorem to show
that limn EPε

(
j(Un)

)
= EPε

(
j(U )

)
. Lemma 7.7 concludes the proof.

7.3.3 Constraint operator

We present some usual constraints and how they can be represented by an operator Θ
that is continuous and take values into V.

Almost sure constraint

From Lemma 7.7, we obtain a first important example of continuous constraints.

Proposition 7.10. Suppose that U is the set of random variables on
(
Ω,F ,P

)
, with value

in U, endowed with the topology of convergence in probability. Assume that θ : U → V is
continuous and bounded. Then the operator Θ

(
U
)
(ω) := θ

(
U (ω)

)
maps U into V and is

continuous.

Proof. The function θ being continuous, is also Borel measurable.Thus for all U ∈ U , for
all Borel set V ⊂ V, we have(

Θ(U )
)−1

(V ) = {ω ∈ Ω | U (ω) ∈ θ−1(V )} ∈ F ,

thus Θ(U ) is F-measurable. Boundedness of θ insure the existence of moment of all order
of Θ(U ). Thus Θ is well defined.

Suppose that
{
Un
}
n∈N converges to U almost surely. Then by boundedness of θ,

we have that
(∥∥θ(Un)− θ(U )∥∥pV )n∈N is bounded, and thus by dominated convergence

theorem we have that

lim
n→∞

θ
(
Un
)

= θ
(
U
)

in Lp(Ω,F ,P;V) ,

which is exactly

lim
n→∞

Θ
(
Un
)

= Θ
(
U
)
.

Consequently by Lemma 7.7 we have the continuity of Θ.

We note that boundedness of θ is only necessary in order to use the dominated conver-
gence theorem. Thus an alternative set of assumptions is given in the following proposition.

Proposition 7.11. Let B be a sub-field of F . If U = Lp
′(

Ω,B,P
)
, with the topology of

convergence in probability, and if θ is γ-Hölder, with γ ≤ p′/p then Θ
(
U
)
(ω) := θ

(
U (ω)

)
is well defined and continuous as an operator mapping U into V.



7.3. EXAMPLES OF CONTINUOUS OPERATORS 181

Proof. By definition a function θ mapping U into V is γ-Hölder if there exist a constant
C > 0 such that for all u, u′ in U we have∥∥θ(u)− θ(u′)

∥∥
V ≤ C

∥∥u− u′∥∥γU ,

in particular the 1-Hölder continuity is the Lipschitz continuity.
Following the previous proof we just have to check that the sequence(∥∥θ(Un)− θ(U )∥∥pV )n∈N is dominated by some integrable variable. Indeed, the Hölder

assumption implies ∥∥∥θ(Unk)− θ(U )∥∥∥pV ≤ Cp ∥∥∥Unk −U∥∥∥pγU .

And as pγ ≤ p′, and Un and U are elements of Lp
′(

Ω,F ,P
)
,
∥∥∥Unk −U∥∥∥pγU is integrable.

Measurability constraint

When considering a dynamic stochastic optimization problem, measurability con-
straints are used to represent the nonanticipativity constraints. They can be expressed by
stating that a random variable and its conditional expectation are equal.

Proposition 7.12. We set U = Lp
′(

Ω,F ,P;V
)
, with p′ ≥ p. Assume that

• either U is equipped with the strong topology, and V is equipped with the strong or
weak topology,
• or U and V are equipped with the weak topology.

If B is a sub-field of F , then Θ
(
U
)

:= E
[
U
∣∣ B]−U , is well defined and continuous.

Proof. In a first place note that as p′ ≥ p, U ⊂ V; and if V ∈ V then E
[
V
∣∣ B] ∈ V as

the conditional expectation is a contraction. Thus for all U ∈ U , we have Θ(U ) ∈ V.
Consider a sequence {Un}n∈N of U strongly converging in Lp

′
toward U ∈ U . We have

||Θ
(
Un
)
−Θ

(
U
)
||p ≤ ||Un −U ||p + ||E

[
Un −U

∣∣ B]||p
≤ 2||Un −U ||p
≤ 2||Un −U ||p′ → 0 .

Thus the strong continuity of Θ is proven.
Now consider {Un}n∈N converging weakly in Lp

′
toward U ∈ U . We have, for all

Y ∈ Lq,

E
[
E
[
Un

∣∣ B] · Y ] = E
[
UnE

[
Y
∣∣ B]] ,

−→
n

E
[
UE

[
Y
∣∣ B]] ,

= E
[
E
[
U
∣∣ B]Y ] .

Thus we have the weak convergence of the conditional expectation and therefore of Θ.
Finally as the strong convergence imply the weak convergence we have the continuity
from U-strong into V-weak.

Until now the topology of convergence in probability has been largely used. If we
endow U with the topology of convergence in probability in the previous proposition we
will obtain continuity of Θ on a subset of U . Indeed if a set of random variables Uad such
that there exist a random variable in Lp

′(
Ω,F ,P

)
dominating every random variable in

Uad, then a sequence converging almost surely will converge for the Lp
′

norm and we can
follow the previous proof to show the continuity of Θ on Uad.



182 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

Risk constraints

Risk attitude can be expressed through the criterion or through constraints. We have
seen that a risk measure can be chosen as objective function, we now show that conditional
risk measure can be used to define some constraints.

Let ρ be a conditional risk mapping as defined in [103], and more precisely ρ maps U
into V where U = Lp

(
Ω,F ,P;U

)
and V = Lp

(
Ω,B,P;V

)
, with B ⊂ F , and verifies the

following properties

• Convexity: for all λ ∈ U , λ ∈ [0, 1] and all X,Y ∈ V, we have

ρ
(
λX + (1− λ)Y

)
≤ λρ

(
X
)

+ (1− λ)ρ
(
Y
)

;

• Monotonicity: for all X,Y ∈ V such that X ≤ Y we have ρ(X) ≤ ρ(Y );
• Translation equivariance: for all c ∈ V and all X ∈ U , we have ρ(X+ c) = ρ(X)+ c .

Proposition 7.13. Let U be endowed with the topology of convergence in probability, and
V endowed with the strong topology. If ρ is a conditional risk mapping, θ is a continuous

bounded cost function mapping U into R, and a ∈ V, then Θ
(
U
)

:= ρ
(
θ
(
U
))
− a is

continuous.

Proof. Consider a sequence of random variables
{
Un
}
n∈N converging in probability toward

U∞. Let π : Lp(Ω,B,P;U) → Lp(Ω,B,P;U) be a selector of V = Lp(Ω,B,P;U), i.e. for
any U ∈ Lp(Ω,F ,P;U), π(U ) ∈ U . For any ω ∈ Ω, any U ∈ Lp(Ω,F ,P;U) we define

ρω(U ) := π(ρ
(
U
)
)(ω) .

Note that for P-almost all ω ∈ Ω, the function Θω(U ) := ρω
(
θ(U )

)
, satisfies the conditions

of Proposition 7.9. Thus for P-almost all ω ∈ Ω,
(
Θω(Un)

)
n∈N converges toward Θω(U∞).

Thus we have shown that
(
Θ(Un)

)
n∈N converges almost surely toward Θ

(
U∞

)
. By bound-

edness of θ and monotonicity of ρ we obtain the boundedness of
(
Θ(Un)

)
n∈N. Thus almost

sure convergence and dominated convergence theorem ensure that
(
Θ(Un)

)
n∈N converges

in Lp toward Θ
(
U∞

)
, hence the continuity of Θ.

Another widely used risk measure, even if it has some serious drawbacks, is the Value-
at-Risk. If X is a real random variable its value at risk of level α can be defined as
V aRα(X ) := inf{F−1

X (α)} where FX (x) := P(X ≤ x).

Proposition 7.14. If θ : U → R is continuous, and if U is such that every U ∈ U
have a continuous distribution function, then Θ(U ) := V aRα

(
θ
(
U
))

is continuous if we

have endowed U with the topology of convergence in law, and a fortiori for the topology of
convergence in probability.

Proof. By definition of convergence in law, if Un → U in law, then
(
θ
(
Un
))
n∈N converges

in law toward θ
(
U
)

and we have, for all x ∈ R, Fθ(Un)(x)→ Fθ(U )(x). Thus
(
Θ(Un)

)
n∈N

converges toward Θ(U ), and as Θ(U ) is real-valued, Θ is continuous.

Note that in Proposition 7.14 the constraint function take deterministic values. Thus
considering the conditional expectation of this constraint yields exactly the same con-
straint. However consider a constraint Θ1 : U → R of this form, and another con-
straint Θ2 : U → V. Then if Θ1 and Θ2 are continuous, then so is the constraint
Θ = (Θ1,Θ2)→ R× V. Thus we can apply Theorem 7.4 on the coupled constraint.



7.4. APPLICATION TO A MULTISTAGE PROBLEM 183

7.4 Application to a Multistage Problem

In this section we say a few words about how the approximation of an almost sure
constraint by a conditional expectation – as presented in section 7.2 – can be used.

We are interested in an electricity production problem with N power stations coupled
by an equality constraint. At time step t, each power station i have an internal state
Xi
t , and is affected by a random exogenous noise W i

t . For each power station, and each
time step t, we have a control Qi

t ∈ Qadt,i that must be measurable with respect to Ft
where Ft is the σ-algebra generated by all past noises: Ft = σ

(
W i

s

)
1≤i≤n,0≤s≤t. Moreover

there is a coupling constraint expressing that the total production must be equal to the
demand. This constraint is represented as

∑N
i=1θ

i
t(Q

i
t) = 0, where θit is a continuous

bounded function from Qad
t,i into V, for all i ∈ [[1, n]]. The cost to be minimized is a sum

over time and power stations of all current local cost Lit
(
Xi
t ,Q

i
t,W

i
t

)
.

Finally the problem reads

min
X ,Q

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,Q

i
t,W

i
t

)]
(7.15a)

s.t. Xi
t+1 = f it (X

i
t ,Q

i
t,W

i
t ) ∀t, ∀i, (7.15b)

Xi
0 = xi0 ∀i, (7.15c)

Qi
t ∈ Q

ad
t,i ∀t, ∀i, (7.15d)

Qi
t � Ft ∀t, ∀i, (7.15e)

N∑
i=1

θit(Q
i
t) = 0 ∀t, ∀i. (7.15f)

For the sake of brevity, we denote by A the set of random processes (X ,Q) verifying
constraints (7.15b), (7.15c) and (7.15d).

Let assume that all random variables are in L2 spaces and dualize the coupling con-
straint (7.15f). We do not study here the relation between the primal and the following
dual problem (see [95] and [94] for an alternative formulation involving duality between
L1 and its dual).

max
λ∈L2

min
(X ,Q)∈A

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,Q

i
t,W

i
t

)
+ λtθ

i
t(Q

i
t)

]
s.t. Qi

t � Ft ∀t, ∀i.

(7.16)

We solve this problem using a gradient-like algorithm on λ. Thus for a fixed λ(k) we
have to solve N problems of smaller size than Problem (7.16).

min
(X ,U )∈A

E
[ T∑
t=0

Lit
(
Xi
t ,Q

i
t,W

i
t

)
+ λ

(k)
t θit(Q

i
t)

]
s.t. Qi

t � Ft ∀t, ∀i.

(7.17)

Note that the process λ(k) has no given dynamics but can be chosen to be adapted to
the filtration (Ft)t=1,..,T . Consequently solving Problem (7.17) by Dynamic Programming
is possible but numerically difficult as we need to keep all the past realizations of the noises
in the state. In fact the so-called curse of dimensionality prevent us to solve numerically
this problem.



184 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS

Nevertheless it has recently been proposed in [10] to replace λt by E
[
λt
∣∣ Yt], where Yt

is a random variable measurable with respect to (Yt−1,Wt) instead of λt. This is similar
to a decision rule approach for the dual as we are restraining the control to a certain
class, the Yt-measurable λ in our case. Thus Problem (7.17) can be solved by Dynamic
Programming with the augmented state (Xi

t ,Yt). It has also been shown that, under some
non-trivial conditions, using E

[
λt
∣∣ Yt] instead of λt is equivalent to solving

min
(X ,Q)∈A

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,Q

i
t,W

i
t

)]
(7.18a)

s.t. Qi
t � Ft ∀t, ∀i, (7.18b)

E
[ N∑
i=1

θit(Q
i
t)
∣∣∣ Yt] = 0 ∀t, ∀i. (7.18c)

Problem (7.18) is a relaxation of Problem (7.15) where the almost sure constraint
(7.15f) is replaced by the constraint (7.18c). Now consider a sequence of information
processes (Y (n))n∈N each generating a σ-algebra Fn, and their associated relaxation (Pn)
(as specified in Problem 7.18) of Problem (7.15) (denoted (P)). Those problems correspond
to Problems (7.11) and (7.12) with

J(U ) = E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,Q

i
t,W

i
t

)]
,

where U = (Q(i))i∈[[1,N ]] and Xi
t follow the dynamic equation (7.15b). We also have

Θt(Ut) =
N∑
i=1

θit(Q
i
t)

and Ct = {0}.
Assume that for all t ∈ [[1, T ]], and all i ∈ [[1, N ]] the cost functions Lit and constraint

function θit are continuous, and that Qadt,i is a compact subset of an Euclidean space.

Moreover we assume that the noise variables W i
t are essentially bounded. Finally we

endow the space of control processes with the topology of convergence in probability.
Then by induction we have that the state processes and the control processes are essentially
bounded, thus so is the cost Lit

(
Xi
t ,U

i
t ,W

i
t

)
. Thus the cost function can be effectively

replaced by bounded functions. Consequently Proposition 7.9 insures that J is continuous
if U is equipped with the topology of convergence in probability. Similarly Proposition
7.10 insures that Θ is continuous.

Thus Theorem 7.6 implies that our sequence of approximated problems (Pn) converges
toward the initial problem (P). More precisely assume that {Un}n∈N is a sequence of εn-
optimal solution of Pn, i.e. Un verifying constraint (7.18c) and J(Un) < infU∈Uadn J(U ) +
εn, with (εn)n∈N a sequence of positive real number converging to 0. Then we can extract
a subsequence (Unk)k∈N converging almost surely to an optimal solution of (P), and the
limit of the approximated value of (Pn) converges to the value of (P).

Conclusion

In this Chapter we have considered a sequence of optimization problem
(
Pn
)

where
each problem is a relaxation of an optimization problem

(
P
)
. This relaxation is given by

replacing an almost sure constraint by a conditional expectation constraint with respect to



7.4. APPLICATION TO A MULTISTAGE PROBLEM 185

a σ-algebra Fn. We have shown that, if the cost and constraint functions are continuous
and if the sequence of σ-algebras {Fn}n∈N converges toward the global σ-algebra, then
the sequence of optimization problems

(
Pn
)

converges toward the original problem
(
P
)
.

In the next chapter, we apply this relaxation to a multistage optimization problem in
order to obtain a tractable price decomposition scheme.



186 CHAPTER 7. EPICONVERGENCE OF RELAXED STOCHASTIC PROBLEMS



Chapter 8

Dual Approximate Dynamic
Programming Algorithm

If you can’t solve a problem, then there is an easier
problem you can solve: find it.

Georg Pólya

Contents

8.1 Overview of the DADP Method . . . . . . . . . . . . . . . . . . 188

8.1.1 Presentation of the Spatially Coupled Problem . . . . . . . . . . 188

8.1.2 First Idea: Price Decomposition Scheme . . . . . . . . . . . . . . 189

8.1.3 Second Idea: Constraint Relaxation . . . . . . . . . . . . . . . . 191

8.1.4 General Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.1.5 An Hydraulic Valley Example . . . . . . . . . . . . . . . . . . . . 194

8.2 DADP Algorithm Step by Step . . . . . . . . . . . . . . . . . . . 196

8.2.1 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

8.2.2 Solving the Inner Problem . . . . . . . . . . . . . . . . . . . . . . 197

8.2.3 Multiplier Process Update . . . . . . . . . . . . . . . . . . . . . . 199

8.2.4 Back to Admissibility . . . . . . . . . . . . . . . . . . . . . . . . 201

8.3 Theoretical Analysis of the DADP Method . . . . . . . . . . . . 203

8.3.1 Interpretations of the DADP method . . . . . . . . . . . . . . . . 203

8.3.2 Consistence of the Approximation . . . . . . . . . . . . . . . . . 204

8.3.3 Existence of Saddle Point . . . . . . . . . . . . . . . . . . . . . . 205

8.3.4 Convergence of Uzawa Algorithm . . . . . . . . . . . . . . . . . . 206

8.3.5 Consequences of Finitely Supported Noises . . . . . . . . . . . . 207

8.3.6 Validity of Solution After Convergence . . . . . . . . . . . . . . . 207

8.3.7 Upper and Lower Bounds . . . . . . . . . . . . . . . . . . . . . . 208

8.4 Numerical Results for the Hydraulic Valley Example . . . . . . 209

8.4.1 Problem Specification . . . . . . . . . . . . . . . . . . . . . . . . 209

8.4.2 Information Processes . . . . . . . . . . . . . . . . . . . . . . . . 210

8.4.3 Results Obtained . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

8.5 Discussion on the Information Model . . . . . . . . . . . . . . . 212

8.5.1 A Short List of Information Processes . . . . . . . . . . . . . . . 212

8.5.2 Difficulties of the Phantom State . . . . . . . . . . . . . . . . . . 213

In this final chapter, we present a spatial decomposition algorithm that solves an ap-
proximation of a multistage stochastic optimization problem. We illustrate the approach



188 CHAPTER 8. DADP ALGORITHM

on the hydraulic valley example of §1.3.2. This algorithm, called DADP for Dual Ap-
proximate Dynamic Programming, was first described in [10], following preliminary works
in [114] and [50]; numerical studies can be found in [1, 50].

In §8.1, we provide a bird eye view of the method. In §8.2, we describe each step of
the DADP algorithm. In §8.3, we use the results of Chapters 4 to 7 to provide theoretical
foundations to the algorithm. In §8.4, we display numerical results for the 3-dam valley
example (see §1.3.2). Finally, in §8.5, we discuss the design of the information process
that appears in the approximation step.

As this Chapter is pretty heavy on notations and indexes, the quantifier ∀ will often
be omitted. In addition, many variables are indexed by the dynamic subsystem i, and
the time t; most of the time, when we omit an index, it means the collection, e.g. X ={
Xi
t

}
t∈[[0,T ]],i∈[[1,N ]]

, Xi =
{
Xi
t

}T
t=0

, Xt =
{
Xi
t

}N
i=1

. We also assume that spaces X =[
Xt
]T
1

, U =
[
Ut
]T
1

and W =
[
Wt

]T
1

are subsets of finite dimensional vector spaces. More
precisely, we denote by nX the dimension of Aff(Xt), nU the dimension of Aff(Ut), and
nW the dimension of Aff(Wt); it is for notational sobriety only that these dimensions are
assumed to be the same for every time t. The integer nC denotes the dimension of the
image space of the constraint functions θit.

8.1 Overview of the DADP Method

We consider N stochastic dynamic systems coupled by almost sure equality constraints.
The global cost to be minimized is the expectation of a sum over the N systems of the
sum over time of local costs. The problem considered is detailed in §8.1.1. Our objective
here is to obtain feedbacks (strategies), for a large scale stochastic dynamical problem.

The price decomposition scheme consists in dualizing the coupling constraints, fixing a
multiplier, and obtainingN uncoupled subproblems. From the solution of each subproblem
we update the multiplier before iterating. However, we show in §8.1.2 that this price
decomposition scheme leads to subproblems which are too difficult to solve by Dynamic
Programming (dimension of the state too important). Thus, we propose an approximation
method called Dual Approximate Dynamic Programming (DADP) and based on the main
following ideas 1:

• relaxing the almost sure coupling equality constraints into conditional expectation
constraint,
• using a price decomposition scheme to obtain subproblems,
• solving the subproblems through methods like Dynamic Programming.

The approximation idea behind the Dual Approximate Dynamic Programming
(DADP) algorithm is presented in §8.1.3. A presentation of the scheme of DADP method
is given in §8.1.4 (a more detailed presentation is done in §8.2). Its application on the
hydraulic valley example is presented in §8.1.5.

8.1.1 Presentation of the Spatially Coupled Problem

We are interested in a production problem involving N units. Each unit i has an
internal state Xi

t at time step t, and is affected by a random exogenous noise W i. The
global exogenous noise {Wt}

T−1
0 is assumed to be time-independent. Time dependence

could be represented by extending the state, and incorporating information of the noise
in it. On the other hand, for a given time t, the sequence {W i

t }Ni=1 is not assumed to
be independent (between units). Moreover we assume a Hazard-Decision setting, that is,
that the control taken at time t is chosen once the uncertainty Wt is known.

1. Different interpretations of the DADP algorithm are given in 8.3.1.



8.1. OVERVIEW OF THE DADP METHOD 189

For each unit i ∈ [[1, N ]], and each time step t ∈ [[0, T − 1]], we have to make a decision
U i
t ∈ Uad

t,i that must be measurable with respect to Ft, where Ft is the σ-algebra generated
by all past noises:

Ft = σ
((
W i

s

)
1≤i≤N,0≤s≤t

)
.

We denote F the filtration {Ft}T0 .

We consider an almost sure coupling constraint represented as

N∑
i=1

θit
(
Xi
t ,U

i
t ,Wt

)
= 0 P− a.s. (8.1)

For example, each θit can represent the production of unit i at time t and a constraint on
the global production at time t is represented through Equation (8.1). Moreover, as in the
dam example (see §1.3.2), if some controls are shared by two dynamical systems, then it is
formulated by defining one control for each dynamical system, and stating their equality
in (8.1).

Finally, the cost to be minimized is the expectation of a sum over time and over unit
of all current local costs Lit

(
Xi
t ,U

i
t ,Wt

)
.

The overall problem can be formulated

min
X ,U

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)]
(8.2a)

Xi
0 = xi0 (8.2b)

Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) (8.2c)

U i
t ∈ U

ad
t,i (8.2d)

U i
t � Ft (8.2e)

N∑
i=1

θit
(
Xi
t ,U

i
t ,Wt

)
= 0 (8.2f)

where constraint (8.2c)-(8.2f) are to be understood for all time t ∈ [[0, T ]] (constraint (8.2c)
for t ∈ [[0, T − 1]] only) and constraints (8.2b)-(8.2e) for all unit i ∈ [[1, N ]].

Note that, if it were not for constraint (8.2f), Problem (8.2) would lead to a sum of
independent subproblems, that could be optimized independently.

8.1.2 First Idea: Price Decomposition Scheme

In §6.3, we presented how Uzawa algorithm can be applied to a multistage problem.
However, in Chapter 6 we did not specify how to solve the minimization problem for a
given multiplier. Here, we use the Uzawa algorithm as the master problem in a price
decomposition approach to Problem (8.2), and show its limits.

Let us assume that all random variables used in Problem (8.2) are in L∞, and that
the problem has a L1 optimal multiplier for the coupling constraint (8.2f). There are
three reasons for choosing the space L∞. First, assuming that the states and control are
essentially bounded is a reasonable modernization for most industrial problems. Second,
there exists - see Chapter 5 - condition for existence of multiplier in the

(
L∞,L1

)
pairing,

whereas the examples of Chapter 4 show that it is more delicate in Lp with p <∞. Third,
a convergence in L∞ has an easier interpretation than a convergence in L2.



190 CHAPTER 8. DADP ALGORITHM

We dualize (see Chapter 4) the coupling constraints (8.2f) (in the
(
L∞,L1

)
pairing) to

obtain

min
X ,U

max
λ∈L1

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ λt · θ

i
t

(
Xi
t ,U

i
t ,Wt

)]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.3)

Note that the multiplier λ is a stochastic process λ =
{
λt
}T
t=0

.
We now consider the dual problem (see Chapter 4)

max
λ∈L1

min
X ,U

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ λt · θ

i
t

(
Xi
t ,U

i
t ,Wt

)]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.4)

Fact 8.1. If there exists an optimal multiplier process λ = {λs}
T−1
0 such that λ ∈

L1
(
Ω,F ,P;RnC

)
, then there exists an optimal multiplier process that is F-adapted.

Proof. Indeed, for λt in L1
(
Ω,F ,P

)
, the conditional expectation w.r.t the σ-algebra Ft is

defined, and we have,

E
[
λt · E

[
θit
(
Xi
t ,U

i
t ,Wt

) ∣∣ Ft]] = E
[
E
[
λt
∣∣ Ft] · E[θit(Xi

t ,U
i
t ,Wt

) ∣∣ Ft]] .
Hence, we replace λt by the Ft-measurable E

[
λt
∣∣ Ft] that yields the same value for

Problem (8.4).

From now on we will consider that the multiplier process λ is F-adapted.
We can solve the maximization part of the dual problem using a gradient-like algorithm

on λ. Thus, for a fixed multiplier process λ(k), we have to solve N independent problems
of smaller size

min
Xi,U i

E
[ T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ λ

(k)
t · θit

(
Xi
t ,U

i
t ,Wt

)]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.5)

Problem (8.2) is a multistage problem with a physical state Xt = {Xi
t}Ni=1, affected by

a time independent noise process {Wt}T0 . Hence, the state Xt is an information state in
the sense of Dynamic Programming (see §1.2.4 ) and Problem (8.2) can be solved through
Dynamic Programming with a state of dimension N × dim(Xit).



8.1. OVERVIEW OF THE DADP METHOD 191

If it were not for the term λ
(k)
t · θit

(
Xi
t ,U

i
t ,Wt

)
in the objective function of Prob-

lem (8.5), we would have a problem with a physical state Xi
t affected by the time inde-

pendent noise process {Wt}T0 . Hence, the Dynamic Programming would be far faster: the
dimension of the state is divided by N .

Unfortunately, with the term λ
(k)
t · θit

(
Xi
t ,U

i
t ,Wt

)
Problem (8.5) is a problem with a

physical state Xi
t , and two random noises : Wt and λ

(k)
t . The noise {Wt}T0 process is

time-independent, but the noise process {λ(k)
t }T−1

t=0 is not time independent. All we know
is that it is a F-adapted information process. Hence, a priori, Problem (8.5) can be solved
by Dynamic Programming, by using {Ws}

t−1
s=0 as the information state at time t. However,

this state is not necessarily smaller than the state of the global problem (Problem (8.2)).

If we could show that the multiplier process λ
(k)
t had a dynamic, say

λ
(k)
t = ht

(
λ

(k)
t−1, · · · ,λ

(k)
t−s,Wt

)
,

then Problem (8.5) could be solved with the information state {Xi
t ,λ

(k)
t−1, · · · ,λ

(k)
t−s}. On a

very specific example it has been shown in [114] that the multiplier process has a dynamic.
In the following section, we construct an approximation of Problem (8.2) such that its
multiplier process is a function of a stochastic process Y with a dynamic. Our goal is
to solve Problem (8.5) by Dynamic Programming with the extended information state(
Xi
t ,Yt

)
.

8.1.3 Second Idea: Constraint Relaxation

We have seen in the previous section that, if we apply a price decomposition scheme
to Problem (8.2) the subproblems (8.5) cannot be solved numerically by the Dynamic
Programming approach because of the curse of dimensionality. Thus, we approximate
Problem (8.2) by relaxing the almost sure constraints, in order to obtain subproblems
with a smaller dimension state, and thus numerically solvable by Dynamic Programming.

For this purpose, we consider a stochastic process
{
Yt
}T−1

t=0
(uncontrolled), called an

information process, that follows a dynamic

∀t ∈ [[0, T − 1]], Yt+1 = f̃t(Yt−1,Wt) , (8.6)

where f̃t are known deterministic functions. The choice of the information process is
arbitrary, but determines the quality of the method. It will be discussed in §8.4 and §8.5.

For simplicity, we present the algorithm with only one information process. However,
it can be extended to multiple information processes, affected to different constraints. This
will be done in the dam valley example on which we illustrate the method.

We replace, in Problem (8.2), constraint (8.2f) by its conditional expectation w.r.t the
information process (see constraint (8.7f)):

min
X ,U

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)]
(8.7a)

Xi
t+1 = f it (X

i
t ,U

i
t ,Wt) (8.7b)

Xi
0 = xi0 (8.7c)

U i
t ∈ U

ad
t,i (8.7d)

U i
t � Ft (8.7e)

E
[ N∑
i=1

θit
(
Xi
t ,U

i
t ,Wt

) ∣∣∣ Yt] = 0 . (8.7f)



192 CHAPTER 8. DADP ALGORITHM

This type of relaxation was studied in Chapter 7.

In the
(
L∞,L1

)
pairing, we define the Lagrangian function

L
(
U ,µ

)
= E

[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ µt · E

[
θit
(
Xi
t ,U

i
t ,Wt

) ∣∣ Yt]] , (8.8)

where the state process X follows the dynamic equation (8.7b).

Thus, we obtain the following dual problem

max
µ∈L1

min
X ,U

E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ µt · E

[
θit
(
Xi
t ,U

i
t ,Wt

) ∣∣ Yt]]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.9)

Lemma 8.2. Assume that there exists an optimal process µ =
{
µt
}T
t=0

for the maxi-

mization part of Problem (8.9), with µt ∈ L1
(
Ω,F ,P;Rp

)
. Then, the process µ] defined

by

µ]t = E
[
µt
∣∣ Yt] ,

is also an optimal solution to Problem (8.9).

Proof. Indeed if µt ∈ L1
(
Ω,F ,P

)
, then we have,

E
[
µt · E

[
θit
(
Xi
t ,U

i
t ,Wt

) ∣∣ Yt]] = E
[
E
[
µt
∣∣ Yt] · E[θit(Xi

t ,U
i
t ,Wt

) ∣∣ Yt]] .
Using this equality in (8.8)

L(U ,µ) = L(U ,µ]) ,

hence the result.

Thus, we can restrict ourselves to multiplier processes µ, such that for all time t ∈
[[0, T ]], µt is measurable w.r.t Yt.

Consequently, using once more Lemma B.3, we can write Problem (8.9) as

max
µt�Yt

N∑
i=1

min
Xi,U i

E
[ T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ µt · θ

i
t

(
Xi
t ,U

i
t ,Wt

)]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.10)

Problem (8.10) is equivalent to Problem (8.9), but is simpler:

• the multiplier process µ of Problem (8.10) lives in a smaller linear space,
• the dual cost in the objective function of Problem (8.10) no longer requires to com-

pute a conditional expectation.



8.1. OVERVIEW OF THE DADP METHOD 193

Note that, for a given multiplier µ
(k)
t , we have to solve the N following separate inner

minimization subproblems.

min
Xi,U i

E
[ T∑
t=0

Lit
(
Xi
t ,U

i
t ,Wt

)
+ µ

(k)
t · θit

(
Xi
t ,U

i
t ,Wt

)]
Xi
t+1 = f it (X

i
t ,U

i
t ,Wt)

Xi
0 = xi0

U i
t ∈ U

ad
t,i

U i
t � Ft .

(8.11)

Each inner minimization problem can be solved by Dynamic Programming with the ex-

tended state
(
Xi
t ,Yt

)
. Indeed, fix a multiplier µ

(k)
t measurable w.r.t Yt, and represented by

a measurable function µ
(k)
t such that µ

(k)
t (Yt) = µ

(k)
t . Recalling that the noises {Wt}

T−1
0

are assumed to be time-independent, we can write the following Dynamic Programming
equation for the inner minimization problem.

V i
t

(
xit, yt

)
= min

U it�Wt

E
[
Lit
(
xit,U

i
t ,Wt

)
+ µt(yt) · θit

(
xit,U

i
t ,Wt

)
+ V i

t+1

(
Xi
t+1,Yt+1

)]
Xi
t+1 = f it (x

i
t,U

i
t ,Wt)

Y i
t+1 = f̃ it

(
yt,Wt

)
U i
t ∈ U

ad
t,i .

Thus, we can solve the inner minimization problem for a given multiplier, by applying
Dynamic Programming to the N separate problems.

Remark 8.3. For notational simplicity, we relaxed the almost sure constraint (8.2f) in
its conditional expectation with respect to one information process (see Equation (8.7f)).
However, exactly the same approach can be done with several constraints. More precisely,
we consider,

∀j ∈ [[1, J ]],

n∑
i=1

Θi,j
t X

i
t ,U

i
t ,Wt = 0, P− a.s. , (8.12)

and their relaxed counterpart

∀j ∈ [[1, J ]], E
[ n∑
i=1

Θi,j
t X

i
t ,U

i
t ,Wt

∣∣ Y j
t

]
= 0 , (8.13)

where {Y j
t }t∈[[0,T−1]] is an information process. There is no difficulty in extending the

results to this type of relaxation. This is done in the dam example in §8.1.5 and thereafter.

8.1.4 General Scheme

We now describe more precisely the DADP algorithm in Algorithm 8.1 given an infor-

mation process
{
Yt
}T−1

t=0
satisfying (8.6).

Iteration k of Algorithm 8.1 starts with a multiplier process µ
(k)
t . The N inner mini-

mization problems (8.11) are solved, for example, by Dynamic Programming.

From these resolutions, we obtain a slack process ∆
(k)
t defined by

∆
(k)
t :=

N∑
i=1

θit
(
X

i,(k)
t ,U

i,(k)
t ,Wt

)
, (8.14)



194 CHAPTER 8. DADP ALGORITHM

where
{
X

i,(k)
t ,U

i,(k)
t

}T
t=0

is the solution process of Problem (8.11).

Then, we update the multiplier process by a gradient like step

∀t ∈ [[0, T ]], µ
(k+1)
t := µ

(k)
t + ρE

[
∆

(k)
t

∣∣ Yt] , (8.15)

for a given ρ > 0. As µ
(k)
t is measurable w.r.t Yt, and Yt is a finite dimensional random

variable, a result from Doob (extended in [36, Chapter 1, p.18]) allows us to represent

µ
(k)
t as a function µ

(k)
t of Yt. Moreover, if Yt takes a finite number of values, µ

(k)
t can be

represented by a finite dimensional vector. The update (8.15) of the multiplier process

{µ(k)
t }t∈[[0,T ]] ends iteration k of the DADP algorithm.

Data: Information process evolution functions f̃t and starting point y0 initial

multipliers µ
(0)
t ;

Result: optimal multipliers µ]t, admissible feedback ;
repeat

forall the i ∈ [[1, N ]] do
Solve Problem (8.11) ;

forall the t ∈ [[0, T − 1]] do
Estimate E

[
∆k
t

∣∣ Yt] ;

Update the multiplier : µ
(k)
t (8.15);

until E
[
∆k
t

∣∣ Yt] ' 0;
Compute admissible feedbacks ;

Algorithm 8.1: General Scheme of DADP

We sum up the information structure and notations:

• Wt is the noise happening at the beginning of the time period [t, t+ 1[,

• Ft = σ
({
Wτ

}t
τ=0

)
is the σ-algebra of all information contained in the noises realized

before time t+ 1,

• Ut =
{
U i
t

}N
i=1

is the control applied at the end of the time period [t, t+1[, measurable
w.r.t Ft,
• Xt =

{
Xi
t

}N
i=1

is the state of the system at the beginning of [t, t+ 1[, is measurable
w.r.t Ft−1 (note that this time the index is t− 1),
• Yt is the information variable measurable w.r.t Ft,
• λt is the multiplier of the almost sure constraint (8.2f), measurable w.r.t Ft,
• µt is the multiplier of the conditional constraint (8.7f) measurable w.r.t σ

(
Yt
)
⊂ Ft,

and we have µt = µt
(
Yt
)
, where µt is a deterministic function.

8.1.5 An Hydraulic Valley Example

We illustrate the DADP algorithm on the example of a chain of N dams presented in
§1.3.2, more thoroughly developed in [1].

First of all, to recover the framework of Problem (8.2), with dynamical system coupled
through constraints, we need to duplicate the outflow of dam i − 1. It means that we
consider Zi

t as a control variable pertaining to the dam i, and submitted to the constraint

∀i ∈ [[2, N ]], Zi
t = gi−1

t

(
Xi−1
t ,U i−1

t ,Zi−1
t︸ ︷︷ ︸

:=Hi−1
t

,W i−1
t

)
, and Z1

t ≡ 0 . (8.16)



8.1. OVERVIEW OF THE DADP METHOD 195

DECOMPOSITION

Figure 8.1: From a coupled formulation to a decomposed formulation of the dam problem

Intuitively the control Zi
t is the water “bought” by the dam i to the dam i− 1. The price

of this exchange is the multiplier λit to constraint (8.16). Note that, if the price is not the
actual optimal multiplier, the physical constraint stating that the outflow of dam i goes
into dam i + 1 will not be satisfied. Schematically, this can be seen on Figure 8.1. Note
also that there are N − 1 constraint, hence N − 1 multiplier processes.

In order to fit the framework of Problem (8.2), the coupling constraint is given by

θit
(
Xi
t ,U

i
t ,Z

i
t ,W

i
t

)
=
(

0, · · · , 0, −Zi
t︸︷︷︸

ithposition

, git
(
H i
t ,W

i
t

)
, 0, · · · , 0

)
,

so that constraint (8.2f) coincides with constraint (8.16).
We now explicit the relaxation (8.7). In the rest of the presentation, for notational

simplicity, we consider only one information process
{
Yt
}T

0
. However, we can choose one

information process per coupling constraint. Hence, for any i ∈ [[2, N ]], we consider an

information process
{
Y i
t

}T−1

t=0
, and we relax constraint (8.16) into

∀i ∈ [[2, N ]], E
[
gi−1
t

(
H i−1
t ,W i−1

t

)
−Zi

t

∣∣∣ Y i
t

]
= 0 , and Z1

t ≡ 0 . (8.17)

We assume that the information processes {Y i
t }Ni=1 satisfy (8.6); more precisely that

there are known deterministic functions f̃ it such that

∀i ∈ [[1, N ]], ∀t ∈ [[0, T − 1]], Y i
t+1 = f̃ it

(
Y i
t ,Wt

)
.

Thus, the relaxed optimization problem (8.7) reads now

max
µ

min
H

E
[ N∑
i=1

T∑
t=0

Lit
(
H i
t ,Wt

)]
Xi

0 = xi0

Xi
t+1 = f it

(
H i
t ,W

i
t

)
Y i
t+1 = f̃ it

(
Y i
t ,W

i
t

)(
U i
t ,Z

i
t

)
∈ Uad

t,i(
U i
t ,Z

i
t

)
� Ft

E
[
gi−1
t

(
H i−1
t ,W i−1

t

)
−Zi

t

∣∣ Y i
t

]
= 0 .

(8.18)



196 CHAPTER 8. DADP ALGORITHM

For notational consistency, we introduce a fictitious µN+1
t ≡ 0, and the dual problem (8.10)

reads

max
µit�Y

i
t

N∑
i=1

min
Hi

E
[ T∑
t=0

Lit
(
H i
t ,Wt

)
+ µi+1

t · git
(
H i
t ,W

i
t

)
− µit ·Z

i
t

]
Xi

0 = xi0

Xi
t+1 = f it

(
H i
t ,W

i
t

)
Y i
t+1 = f̃ it

(
Y i
t ,W

i
t

)(
U i
t ,Z

i
t

)
∈ Uad

t,i(
U i
t ,Z

i
t

)
� Ft .

(8.19)

8.2 DADP Algorithm Step by Step

Here, we present each step of the DADP algorithm and illustrate it with the dam valley
example.

8.2.1 Initialization

The Uzawa algorithm (see Chapter 6) is close to a gradient algorithm for the dual
problem. Consequently, we need a good starting point for this gradient algorithm. In
some cases, if the random variables were deterministic, the problem could be efficiently
solved exactly, yielding the exact Bellman function. From this Bellman function we can
determine (see below for an example on the dam valley) the optimal multiplier. Thus, a
good idea for an initial µ0 would be the (deterministic) optimal multiplier for the problem
on the mean scenario. More precisely we consider Problem (8.2) where eachWt is replaced
by E

[
Wt

]
. This new problem is deterministic and can be solved by specific methods.

Example 8.4. Let {wt}T−1
t=0 be a scenario of noise. We consider the following determin-

istic optimization problem, close to the one presented in §8.1.5

min
(x,u,z)

T−1∑
t=0

N∑
i=1

Lit(x
i
t, u

i
t, w

i
t, z

i
t) +

N∑
i=1

Ki(x
i
T ) (8.20a)

xit+1 − f it (xit, uit, wit, zit) = 0 (8.20b)

zi+1
t − git(xit, uit, wit, zit) = 0 . (8.20c)

We denote by αit+1 the multiplier of the dynamic equation (8.20b) and by βi+1
t the

multiplier of (8.20c). We dualize (8.20b) and (8.20c) and write the optimality equation
on zit (recall that for all t ∈ [[0, T − 1]], we have set z1,t ≡ 0).

∀i ∈ [[1, N − 1]], ∀t ∈ [[0, T − 1]],
∂Lit
∂z
− αit+1 ·

∂f it
∂z
− βi+1

t · ∂g
i
t

∂z
+ βit = 0 . (8.21)

We obtain, for all t ∈ [[0, T − 1]], the following backward (in i) equations to determine
βt (recall that βN+1

t ≡ 0):{
βNt = −∂LNt

∂z + αNt+1 ·
∂fNt
∂z

βit = −∂Lit
∂z + αit+1 ·

∂f it
∂z + βi+1

t · ∂g
i
t

∂z ∀i ∈ [[1, N − 1]]
(8.22)

In order to obtain the multiplier α we write the Dynamic Programming equation for
Problem (8.20).



8.2. DADP ALGORITHM STEP BY STEP 197



VT
(
xT
)

=

N∑
i=1

Ki(x
i
T )

Vt
(
xt
)

= min
(u,z)

N∑
i=1

Lit(x
i
t, u

i
t, w

i
t, z

i
t)

+Vt+1

(
f1
t

(
x1
t , u

1
t , w

1
t , z

1
t

)
, · · · , fNt

(
xNt , u

N
t , w

N
t , z

N
t

))
, (8.23)

where the minimum is taken under constraint (8.20c).
After dualization, first order optimality conditions in zit of Problem (8.23) are given by

∂Lit
∂z

+
∂f it
∂z

.
∂Vt+1

∂xi
− ∂git
∂z

.βi+1
t + αit = 0 . (8.24)

By identification of (8.24) with (8.21), we deduce the expression of αit:

αit = −∂Vt
∂xi

(
xt
)
. (8.25)

Thus, equation (8.22) can be written{
βNt = −∂LNt

∂z +
∂fNt
∂z · α

N
t+1

βit = −∂Lit
∂z −

∂Vt+1

∂xi
· ∂f

i
t

∂z + βi+1
t · ∂g

i
t

∂z ∀i ∈ [[1, N − 1]]
. (8.26)

Hence, we obtain a starting multiplier µ(0) by setting µ
(0)
t ≡ βt given by (8.26).

We have seen on the deterministic hydraulic valley example that, if we know the

Bellman function of a problem, we can obtain the optimal multiplier
{
µt
}T−1

t=0
. Note that

the same computation can be done in a non-deterministic setting, and having the exact
Bellman functions would give the exact multiplier process as well.

8.2.2 Solving the Inner Problem

At each step of the DADP algorithm (Algorithm 8.1), we have to solve the N inner
minimization problems (8.11). For the DADP algorithm, the only output needed to up-
date the multipliers, is the stochastic process ∆(k) defined in (8.14). Consequently, the
inner problems can be solved by any methods available (e.g Stochastic Dual Approximate
Dynamic Programming - see Chapter 3).

Without further assumptions, the Dynamic Programming method is available. At iter-

ation k, we initialize the Bellman function V
i,(k)
T ≡ Ki, and proceed recursively backward

in time to construct V
i,(k)
t . For every possible value of Xi

t denoted xit and value of Yt
denoted yt, we solve

min
πit

E
[
Lit
(
xit,U

i
t ,Wt

)
+ µ

(k)
t

(
Yt
)
· θit
(
xit,U

i
t ,Wt

)
+ V

i,(k)
t+1

(
Xi
t+1,Yt+1

)]
Xi
t+1 = f it (x

i
t,U

i
t ,Wt)

Yt+1 = f̃t(yt,Wt)

U i
t = πit

(
xit, yt,Wt

)
U i
t ∈ U

ad
t,i .

(8.27)

where the minimization is done on the policies πit that are bounded functions mapping
Xit × Yt ×Wt into Ut. The optimal value of Problem (8.27) is the local Bellman value

V
i,(k)
t (xit, yt).



198 CHAPTER 8. DADP ALGORITHM

Once all optimal policies π
i,(k)
t are obtained, we can easily simulate the optimal control

and state processes
(
U
i,(k)
t ,X

i,(k)
t

)
t∈[[0,T ]]

, and thus compute the slack process ∆
(k)
t and

proceed to the update step.

Obviously, if the support of Xi
t or Yt is large (a fortiori infinite), the exact computa-

tion of V
i,(k)
t in (8.27) is not numerically tractable. One solution consists in computing

some values of V
i,(k)
t and interpolating afterward, as is usual in Dynamic Programming.

However, one has to keep in mind that we are solving a relaxed version of Problem (8.2).
Moreover this computation has for main objective to update the multiplier process. Thus,
we do not need to put too much numerical effort in obtaining a precise approximation of

V
i,(k)
t .

Example 8.5. On the dam valley example exposed in §8.1.5, the subproblem associated
with dam i is given by

min
Hi

E
[ T∑
t=0

Lit
(
H i
t ,Wt

)
+ µ

i+1,(k)
t

(
Y i+1
t

)
· git
(
H i
t ,W

i
t

)
− µi,(k)

t

(
Y i
t

)
·Zi

t

]
Y i
t+1 = f̃ it

(
Y i
t ,Wt

)
Y i+1
t+1 = f̃ i+1

t

(
Y i+1
t ,Wt

)
Xi
t+1 = f it

(
H i
t ,W

i
t

)
Xi

0 = xi0(
U i
t ,Z

i
t

)
∈ Uad

t,i(
U i
t ,Z

i
t

)
� Ft .

(8.28)

Problem (8.28) can be solved thanks to the following Dynamic Programming equation 2

V i
t

(
x, yi, yi+1

)
=E

[
min

(u,z)∈Uad
i,t

{
Lit
(
x, u, z,Wt

)
+ µ

i+1,(k)
t (yi+1) · git

(
x, u, z,W i

t

)
− µi,(k)

t ◦ f̃ it−1

(
yi,Wt

)
· z

+ Vt+1

(
ft
(
x, u, z,W i

t

)
, f̃ it
(
yi,Wt

)
, f̃ i+1
t

(
yi+1,Wt

))}]
.

(8.29)

where we compute u and z for each possible value of Wt.

Note that we require a state of dimension 3:

• the physical state x corresponding to the amount of water in dam i;
• the information state yi corresponding to the information process relative to the

equality constraint between the outflow of water gi−1
t (H i−1

t ,W i
t ) from dam i−1 and

the inflow of water Zi
t into dam i;

• the information state yi+1 corresponding to the information process relative to the
equality constraint between the outflow of water git(H

i
t ,W

i
t ) from dam i and the

inflow of water Zi+1
t into dam i+ 1.

Note also that the information processes Y i and Y i+1 are not indexed by k as they are
uncontrolled processes. In §8.5, we discuss on how the information processes can evolve
along the iterations of the algorithm.

2. Being in a Hazard-Decision setting, we are able to exchange the minimization and expectation
operators.



8.2. DADP ALGORITHM STEP BY STEP 199

Solving Problems (8.29) gives an optimal state Xi,(k) and controls U i,(k),Zi,(k). They
can be written with feedback law ηi,(k) and γi,(k) such that

U
i,(k)
t = ηi,(k)

(
X

i,(k)
t ,Y i

t ,Y
i+1
t ,Wt

)
Z
i,(k)
t = γi,(k)

(
X

i,(k)
t ,Y i

t ,Y
i+1
t ,Wt

)
8.2.3 Multiplier Process Update

We look at the multiplier µ
(k)
t from a functional point of view, that is, we consider a

sequence of functions µ
(k)
t such that

∀k ∈ N, ∀t ∈ [[0, T ]], µ
(k)
t = µ

(k)
t

(
Yt
)
. (8.30)

After solving the N subproblems (8.11), we assume that we are able to simulate the
slack process ∆(k) defined in (8.14). We proceed to apply the update step (8.15)

∀t ∈ [[0, T ]], µ
(k+1)
t := µ

(k)
t + ρ · E

[
∆

(k)
t

∣∣ Yt] .
Remark 8.6. Note that the update step (8.15) is a gradient step for the dual problem (8.9).
If the constraint were

∑N
i=1 θi

(
Xt
i ,U

i
t ,Wt

)
∈ −C (for example inequality constraints)

instead of
∑N

i=1 θi
(
Xt
i ,U

i
t ,Wt

)
= 0 a projection step would be required.

Moreover, as the gradient algorithm is known to converge slowly, we might be tempted
to use a more advanced update step, for example a quasi-Newton step. Indeed, under

smoothness assumptions, the conditional expectation E
[
∆

(k)
t

∣∣ Yt] gives the gradient of
the function maximized in Problem (8.9). This yields good numerical results and we know
that, if we find a multiplier process such that the constraint is satisfied, then this multiplier
is optimal and the primal solution is the optimal solution (see §8.3.6 for more details).

In order to estimate E
[
∆

(k)
t

∣∣ Yt] at least two different approaches are possible: Monte-
Carlo method, and Fokker-Planck method.

Monte-Carlo We draw a large number S of scenarios of the couple
(
∆

(k)
t ,Yt

)
denoted

by
{

∆
(k),s
t , Y s

t

}S
s=1

, and use classical regression tools to estimate ∆
(k)
t as a function

of Yt. For example, if Yt takes a finite number of values
(
ylt
)L
l=1

we can estimate

the conditional expectation by Monte-Carlo methods : E[∆
(k)
t | Yt = y

{l}
t ] is the

empirical mean of ∆
(k)
t over the set of realizations such that Yt = y

{l}
t .

Fokker-Planck Assume that we have the probability law of
(
X

i,(k)
t ,Yt

)
. Then, using

the optimal feedbacks obtained when solving the subproblems (8.27), we get:

• the exact probability law of
(
X

i,(k)
t+1 ,Yt+1

)
;

• the probability law of the couple
(
∆

(k)
t ,Yt

)
.

We deduce, by integration of the law of the couple, the law of the conditional expec-

tation E[∆
(k)
t | Yt]. Hence, we can compute forward the exact law of E

[
∆

(k)
t

∣∣ Yt].
To compare these methods we give estimations on their complexity. In the following,

indexes (k) denote the iteration of the algorithm, {l} the values in the support of some
random variables, and [s] the realization of a random variable over a scenario.

Remark 8.7. Assume that every random variable takes a finite number of values and in

particular that we have supp(Yt) = {y{l}t }Ll=1.



200 CHAPTER 8. DADP ALGORITHM

Monte-Carlo By Monte-Carlo method, we do not obtain the exact values of E[∆
(k)
t | Yt =

y
{l}
t ]. For a given possible values y

{l}
t of the information process Yt, the precision of

the estimation of E[∆
(k)
t | Yt = y

{l}
t ] depends on the number nl of simulated scenarios

such that yst = y
{l}
t . Indeed, by the Central Limit Theorem, the asymptotic error on

E[∆
(k)
t | Yt = y

{l}
t ] decreases in O(1/

√
nl). If the information process Yt is uniformly

distributed on its possible values, then this number is roughly nl ' S/L. Furthermore,
we have minl∈[[1,L]] nl ≤ S/L. Moreover, in practice the information process law can
be concentrated on some possible values of Yt, and there are some realizations l such
that nl is far smaller than S/L. In this case, we cannot trust Monte-Carlo estimate

and we may need to use some interpolation methods to estimate E[∆
(k)
t | Yt = y

{l}
t ].

Fokker-Planck On the other hand, Fokker Plank gives exact results. We determine the

complexity of this computation. Assume that we know the law of
(
X

i,(k)
t ,Yt

)
, with

finite support of Nt elements, and the law of Wt (of finite support of | supp
(
Wt

)
|

elements). Then, we can compute, using the optimal feedbacks obtained when solv-

ing the subproblems, the exact law of
(
X

i,(k)
t+1 ,Yt+1

)
in Nt × | supp

(
Wt

)
| operations.

Then, computing the exact conditional expectation E
[
∆

(k)
t+1

∣∣ Yt+1

]
is straightfor-

ward and requires | supp
(
Yt+1

)
| operations. Without any assumptions on the spaces

state Xt and Yt, we can only show that Nt is growing exponentially with time, more
precisely we have Nt ≤

∏t
s=0 | supp

(
Ws

)
|, and this exact computation seems nu-

merically impracticable. However, if we can show that Nt is reasonably small, for
example if the state space Xit, and the information state space Yt are discrete, then

computing the law of
(
X

i,(k)
t+1 ,Yt

)
(and simultaneously the law of

(
∆

(k)
t ,Yt

)
) from

the law of
(
X

i,(k)
t ,Yt

)
is of complexity O

(
|Xit| × |Yt| × |Wt|

)
, and deriving the law of

E
[
∆

(k)
t+1

∣∣ Yt+1

]
is of complexity O

(
| supp

(
Yt+1

)
|
)
.

Example 8.8. Monte-Carlo Approach. In Example 8.5 we obtained feedback laws ηi,(k)

and γi,(k). Using these feedbacks, and a realization of the noises
(
w

[s]
t

)
t∈[[0,T ]]

(s ∈ [[1, S]]),

we obtain a sample of Xi,(k), U i,(k), and Zi,(k), with the following equation (and the
corresponding starting point) 3

u
i,(k),[s]
t = η

i,(k)
t

(
x
i,(k),[s]
t , y

i+1,[s]
t , y

i,[s]
t , w

[s]
t

)
z
i,(k),[s]
t = γ

i,(k)
t

(
x
i,(k),[s]
t , y

i+1,[s]
t , y

i,[s]
t , w

[s]
t

)
x
i,(k),[s]
t+1 = ft

(
x
i,(k),[s]
t , u

i,(k),[s]
t , z

i,(k),[s]
t , w

i,[s]
t

)
y
i,[s]
t+1 = f̃t

(
y
i,[s]
t , w

[s]
t

)
y
i+1,[s]
t+1 = f̃t

(
y
i+1,[s]
t , w

[s]
t

)
Thus, for S realizations of W , we obtain S trajectories of ∆(k) given by

∆
i,(k),[s]
t := gi−1

t

(
x
i−1,(k),[s]
t , u

i−1,(k),[s]
t , z

i−1,(k),[s]
t , w

i,[s]
t

)
− zi,(k),[s]

t .

We fit a function δ
i,(k)
t , that takes the possible values of Y

(i)
t , and give an estimation of

the value of ∆
i,(k)
t . Then, we update the functional multiplier µ

i,(k)
t by

µ
i,(k+1)
t (·) := µ

i,(k)
t (·) + ρδ

i,(k)
t (·) . (8.31)

3. If the same realization of the noises
(
w

[s]
t

)
t∈[[0,T ]]

are used throughout the algorithm, then the

trajectories of the information processes Y i
t can be computed once at the beginning of the algorithm.



8.2. DADP ALGORITHM STEP BY STEP 201

To be more specific, assume that the information process Y i
t takes only discrete values

denoted by
{
y
i,{l}
t

}S
l=1

. Then δ
i,(k)
t can be defined as

∀l ∈ [[1, L]], δ
i,(k)
t

(
y
i,{l}
t

)
=

S∑
s=1

∆
i,(k),[s]
t · 1{

y
i,[s]
t =y

i,{l}
t

}
S∑
s=1

1{
y
i,[s]
t =y

i,{l}
t

} .

This is a Monte Carlo estimation of a conditional expectation. However we cannot choose

the number of simulations satisfying y
i,[s]
t = y

i,{l}
t . More precisely an approximation of

this number is LP
(
Y i
t = y

i,{l}
t

)
, and can even be equal to 0. When this number is small

the Monte-Carlo estimation cannot be trusted, and some interpolation may be a better
approach.

Fokker-Planck approach. Assume, furthermore, that the local state space Xt, and
the information state space Yt are discrete. We compute forward in time the law of(

X
i−1,(k)
t ,X

i,(k)
t ,Y i−1

t ,Y i
t ,Y

i+1
t

)
,

and deduce the exact value of δi,(k). The easiest way to understand this computation is to
see the pseudo-code in Algorithm 8.2, where Pt(x

i−1, xi, yi−1, yi, yi+1) stands for

P
(
X

i−1,(k)
t = xi−1,X

i,(k)
t = xi,Y i−1

t = yi−1,Y i
t = yi,Y i+1

t = yi+1
)
,

πi(y) represents P
(
Y i
t = y

)
, and δi(y) represents δ

i,(k)
t such that E

[
∆
i,(k)
t

∣∣ Y i
t

]
=

δ
i,(k)
t

(
Y i
t

)
. The function δ

i,(k)
t is directly used to update the functional multipliers:

µ
i,(k+1)
t (·) = µ

i,(k)
t (·) + ρδ

i,(k)
t (·) .

8.2.4 Back to Admissibility

We have stressed that the DADP algorithm solves an approximation of Problem (8.2).
More precisely, the coupling constraint (8.2f) is approximated by relaxation (the set of
admissible policies is extended). Thus, even once the algorithm has converged, the optimal
policy found is not supposed to be admissible with respect to the original almost sure
constraint. Hence, any practical implementation must incorporate a way of recovering
admissible strategies.

We propose a natural way of obtaining an admissible strategy for problem (8.2). As-
sume that the method used to solve the inner problem (8.27) yields a local Bellman value
function V i

t : Xit × Yt → R that takes as arguments the local state and the information
state. Roughly speaking, we then approximate the Bellman function of the global prob-
lem as the sum V̂t(x, y) :=

∑N
i=1 V

i
t (xi, y) of the local Bellman functions. An admissible

policy πad is obtained by solving one step of the dynamic programming equation with this
approximate value function. More precisely, we have

πad
t (x, y) ∈ arg min

π
E
[ n∑
i=1

Lit
(
xi,U

i
t ,Wt

)
+ V i

t+1

(
f it
(
xi,U

i
t ,Wt

))
, f̃t
(
y,Wt

)]
Ut = πt(x, y,Wt)

U i
t ∈ U

ad
t,i

N∑
i=1

θi
(
xi,U

i
t ,Wt

)
= 0

(8.32)



202 CHAPTER 8. DADP ALGORITHM

Data: Joint law of
(
X

i−1,(k)
t ,X

i,(k)
t ,Y i−1

t ,Y i
t ,Y

i+1
t

)
;

Result: Joint law of
(
X

i−1,(k)
t+1 ,X

i,(k)
t+1 ,Y

i−1
t+1 ,Y

i
t+1,Y

i+1
t+1

)
, exact function δ

i,(k)
t ;

// Initialization

Pt+1

(
xi−1, xi, yi−1, yi, yi+1

)
= 0 ;

// Joint law of
(
X

i−1,(k)
t ,X

i,(k)
t ,Y i−1

t ,Y i
t ,Y

i+1
t

)
δi(yi) = 0, ∀yi ∈ Yit ; // function δ

i,(k)
t

πi(yi) = 0, ∀yi ∈ Yit ; // P(Y i
t = y)

// Computation of joint laws

forall the
(
xi−1, xi, yi−1, yi, yi+1, w

)
∈ Xi−1

t × Xit × Yi−1
t × Yit × Yi+1

t ×Wt do
p = Pt(x

i, yi, yi+1) · P
(
Wt = w

)
;

// probability of
(
xi−1, xi, yi−1, yi, yi+1, w

)
ui−1 = η

i−1,(k)
t

(
xi−1, yi−1, yi, w

)
;

zi−1 = γ
i−1,(k)
t (xi−1, yi−1, yi, w) ;

ui = η
i,(k)
t (xi, yi, yi+1, w) ;

zi = γ
i,(k)
t (xi, yi, yi+1, w) ;

x̂i−1 = f it

(
xi−1, ui−1, zi−1, wi−1

)
; // value of X

i−1,(k)
t+1

x̂i = f it

(
xi, ui, zi, wi

)
; // value of X

i,(k)
t+1

ŷi−1 = f̃ i−1
t

(
yi−1, w

)
; // value of Y i−1

t+1

ŷi = f̃ it
(
yi, w

)
; // value of Y i

t+1

ŷi+1 = f̃ i+1
t

(
yi+1, w

)
; // value of Y i

t+1

di = gi−1
t

(
xi−1, ui−1, zi−1, wi−1

)
− zi ; // slackness

δi(yi) = δi(yi) + p · di; // E
[
∆
i,(k)
t · 1

Y it =yi

]
πi(yi) = πi(yi) + p; // P

(
Y i
t = yi

)
Pt+1

(
x̂i−1, x̂i, ŷi−1, ŷi, ŷi+1

)
= Pt+1

(
x̂i−1, x̂i, ŷi−1, ŷi, ŷi+1

)
+ p;

// Renormalization of δ
i,(k)
t

forall the yi ∈ Yit do

δi(yi) = δi(yi)/πi(yi) ; // E
[
∆
i,(k)
t · 1

Y it =yi

]
/P
(
X

(k)
t+1 = x,Y i

t+1 = yi
)

Algorithm 8.2: Exact update of multiplier µit for the hydraulic valley example

Notice that the admissible policy πad obtained depends on the physical state xt, the
information state yt and the noise Wt. It means that, to implement and simulate the
strategy πad, we have to compute the information process Yt. This increases the global
state of the system, leading to numerical difficulties. However specific cases, presented
in §8.4 and §8.5, are of interest:

• if the information process Yt is constant, it does not increase the state of the global
problem;
• if the information process Yt is a part of the noise Wt, it does not increase the state

of the global problem (we are in a hazard-decision setting);
• if the information process Yt is aimed at mimicking a function of the state h(Xt)

then it can be replaced in Problem (8.32) by h(Xt) (more information in §8.5).

This heuristic requires to solve the problem on the whole system, but only for one
time step, at the state where the computation of the policy is required. This corresponds
to an iteration of policy iteration algorithm, which is known to be efficient (for infinite
horizon problem). This heuristic gave some good numerical results (see §8.4), but have
few theoretical properties. In particular, we show in §8.4 that a control process obtained



8.3. THEORETICAL ANALYSIS OF THE DADP METHOD 203

when solving Problem (8.7) with Y = 0 gives, after this heuristic is applied, better results
than a control process obtained with a more precise approximation.

Example 8.9. Continuing the examples 8.5 and 8.8, we assume that we obtained, after
a large number of iterations, controls that are (almost) optimal for Problem (8.18). These
controls do not satisfy the almost sure constraint (8.16).

An heuristic to obtain an admissible solution satisfying the almost sure constraint is

given by finding, for each 4 collection of states xt =
{
xit
}N
i=1

, each collection of information

state yt =
{
yit
}N−1

i=1
, and each noise wt, an optimal solution 5

(
uad
t

(
x, y, w

)
, zad
t

(
x, y, w

))
to the following problem

min
u,z

n∑
i=1

Lit
(
xi, ui, zi, wi

)
+ V i

t+1

(
f it
(
xi, ui, zi, wi

)
, f̃ it
(
yi, w

)
, f̃ i+1
t

(
yi+1, w

))
(
ui, zi

)
∈ Uad

t,i

zi = gi−1
(
xi−1, ui−1, zi−1, wi−1

)
.

(8.33)

Notice that, if we want to implement and simulate the admissible strategy (uad, zad) ob-
tained, we need to have computed, at each step, the current information process Yt. If the
information state is a part of the noise (say W i−1), it is readily available. If the infor-
mation process is aimed at mimicking some part of the state (say Xi−1), we can simply
replace yi by xi−1, and f̃ i by f i in the resolution of Problem (8.33).

8.3 Theoretical Analysis of the DADP Method

We present now how the results obtained in Chapters 4-7 apply to the DADP algorithm.

In the overview of the DADP method, we have given one possible interpretation of
the algorithm. Other interpretations are available and presented in §8.3.1. Then, we
go on to give convergence results. First, in §8.3.2, we explain how the relaxation of
constraint (8.2f) into constraint (8.7f) can be understood, and show an epi-convergence of
the approximation result. Then, in §8.3.3, we state the conditions for the existence of a
saddle point, and thus, in §8.3.4, the result of convergence of the coordination algorithm
for a given information process. In §8.3.6, we recall a complimentary result about the
convergence of a dual algorithm. Finally, in §8.3.7, we comment on the bounds obtained
through the DADP algorithm.

8.3.1 Interpretations of the DADP method

We present three way of looking at the DADP method. First, as the resolution of a
relaxation of the primal problem. Then, as an approximation of the multiplier λ. Finally,
as a decision rule approach (i.e. an addition of constraints) for the dual problem.

DADP as Constraint Relaxation.

DADP can be seen as solving the dual of the relaxation (8.7). Hence, the primal
solution obtained is not admissible for the original problem (8.2). This approach was
presented in §8.1.3.

4. Obviously, in practice, we do not compute the whole strategy, but only evaluate it at the points
required for the simulation.

5. We do not dwell on the fact that a measurable selection theorem should be used to turn u]t and z]t
into a strategy.



204 CHAPTER 8. DADP ALGORITHM

DADP as Approximation of λ.

Another way of looking at the DADP consists in considering the subproblem (8.5) As
stated in §8.1.2, this problem cannot be numerically solved by Dynamic Programming,
due to the curse of dimensionality. Hence, in the DADP algorithm, we approximate the

multiplier λ
(k)
t by its conditional expectation with respect to the information process Yt.

Note that keeping track of the multiplier process λ
(k)
t is of no use, as only its conditional

expectation with respect to Yt is updated along the DADP algorithm.

Moreover, assume for the sake of clarity that there is a unique multiplier λ] ∈ L2

solution of Problem (8.4), and a unique solution µ] of Problem (8.9). Then, we have

µ]t = E
[
λ]t
∣∣ Yt]. In other words, the solution µ]t is the projection (in the L2 sense) of the

optimal multipliers λ]t on the linear subset of the σ(Yt)-measurable random variable.

This is the historic way of presenting and understanding the DADP algorithm (see [10,
50]).

DADP as Decision-Rule Approach to the Dual Problem.

Finally, consider the dual problem (8.4). Solving this problem is quite difficult as λ
lives in the set of (F-adapted) integrable stochastic processes. A common approach in the
literature is the so-called decision rule approach (see [49, 63] and reference therein). The
idea behind this approach consists in reducing the space in which the control is looked
for. For example, we can consider feedbacks that are linear in the state only. DADP is
a decision-rule approach to problem (8.4) where the optimal multipliers are searched in
the space of integrable stochastic processes such that λt is measurable with respect to
Yt. In other words, it means that we have added some constraints to the maximization
problem (8.4).

8.3.2 Consistence of the Approximation

In §8.1.1, we showed that, if we apply a spatial decomposition scheme on the original
problem (8.2), then the dual multiplier λ is a F-adapted process. Thus solving the inner
subproblem (8.11) requires an information state of large dimension.

Accordingly, we considered an approximation of the original problem. This approxima-
tion is studied in Chapter 7; more precisely, Problem (8.7) falls in the framework presented
in §7.2.3. We show, in the following proposition, that, if we refine this approximation we
obtain a converging sequence of optimization problems.

Proposition 8.10. Consider Problem (8.2). Assume that, for all i ∈ [[1, N ]] and t ∈
[[0, T − 1]],

• the cost functions Lit, dynamic functions f it and constraint functions θit are contin-
uous;
• the noise variables Wt are essentially bounded;
• the constraint sets Uad

i,t are bounded.

Consider a sequence of information process
{
Y (n)

}
n∈N and a sequence {εn}n∈N of

non-negative reals converging toward 0. Denote by U (n) an εn-optimal solution to the
relaxation (8.7) of Problem (8.2) corresponding to the information process Y (n). Assume

that the sequence
{
σ
(
Y

(n)
t

)}
n∈N of σ-algebra Kudo-converges 6 toward σ

(
Y

(∞)
t

)
.

Then, every cluster point of
{
U (n)

}
n∈N, for the topology of the convergence in proba-

bility, is an optimal solution of the relaxation (8.7) of Problem (8.4) corresponding to the
information process Y (∞).

6. See §7.2.1 for recalls and pointers for this notion.



8.3. THEORETICAL ANALYSIS OF THE DADP METHOD 205

Remark 8.11. The boundedness assumption of the constraint sets Uad
i,t can be replaced by

a coercivity assumption of the local costs Lit. In §8.3.3, and thus in §8.3.4, the boundedness
of Uad

i,t is troublesome to ensure the existence of a L1-multiplier. However, in §8.3.4 the

assumed strong convexity of Lit ensures the coercivity of Lit.

Proof. We use the results of Chapter 7. Denote by U ′t =
{
Uτ
}t
τ=0

the sequence of controls,
and the objective function by

J(U ′T ) = E
[ N∑
i=1

T∑
t=0

Lit
(
Xi
t ,U

i
t ,W

i
t

)]
,

where
{
Xt

}T
t=0

follows the dynamic equations

∀t ∈ [[0, T − 1]], ∀i ∈ [[1, N ]], Xi
t+1 = f it

(
Xi
t ,U

i
t ,Wt

)
.

Denote the constraint functions by

Θt

(
U ′t
)

=
N∑
i=1

θit
(
Xi
t ,U

i
t ,Wt

)
and by Ct = {0} the cone of constraints which is stable with respect to any sequence of
σ-algebra. We endow the set of controls with the topology of convergence in probability.

By boundedness of Uad
t,i , the control variables U i

t are essentially bounded. We show by
induction that the state process Xt is essentially bounded (true for t = 0). If it is true
at time t, then, by continuity of the dynamic functions f it , and essential-boundedness of
Ut, we have that Xt+1 is essentially bounded. Then, by induction and continuity of Lit we
have that Lit

(
Xi
t ,U

i
t ,W

i
t

)
is essentially bounded. Consequently, the cost function can be

replaced by a bounded function. Therefore, Proposition 7.9 ensures that J is continuous.
Similarly, Proposition 7.10 ensures that Θ is continuous.

Thus, Theorem 7.6 implies that the sequence of approximated problems converges
toward the initial problem if σ

(
Y (n)

)
Kudo-converges toward F . More precisely, we can

extract a subsequence (U (nk))k∈N converging almost surely to an optimal solution of Prob-
lem (8.2). More generally, any cluster point (for the convergence in probability topology)
of
(
U (n)

)
n∈N is an optimal solution of Problem (8.2).

Corollary 8.12. Under the assumption of Proposition 8.10, and assuming that, for all

time t ∈ [[0, T ]], σ
(
Y

(∞)
t

)
= Ft, then any cluster point of U (n) is an optimal solution of

Problem (8.2).

8.3.3 Existence of Saddle Point

In Chapter 5, we gave conditions ensuring the existence of a multiplier in the space L1

for almost sure affine constraints. Those conditions rely on the property that the objective
cost J is finite everywhere on the space L∞.

A first interesting fact is the following.

Fact 8.13. If Problem (8.2) admits an optimal multiplier λ] in L1 for constraint (8.2f),
then Problem (8.7) admits an optimal multiplier in L1 for constraint (8.7f), namely

µ]t = E
[
λ]t
∣∣ Yt] .

Proof. This is a direct application of Lemma 8.2.



206 CHAPTER 8. DADP ALGORITHM

The following Proposition is a direct application of the results obtained in §5.3.

Proposition 8.14. In Problem (8.2), assume that
• the random noises Wt are essentially bounded;
• the local cost functions Lit are finite and convex in (xi, ui), continuous in w;
• the dynamic functions f it are affine in (xi, ui), continuous in w;
• the constraint sets Uad

t,i are L∞
(
Ω,F ,P;Ui,t

)
;

• the constraint functions θit are affine.
Then, the coupling constraint (8.2f) admits a multiplier in L1, hence the relaxed coupling
constraint (8.7f) admits a multiplier in L1.

Proof. It is easy to recover the framework of §5.3. Indeed,
• the state Xt (of §5.3), is the collection {Xi

t}Ni=1;
• the control Dt is the collection {U i

t}Ni=1;
• the dynamic functions ft are given, coordinate by coordinate, by the dynamic func-

tions f it ;
• the cost functions Lt are given by Lt =

∑N
i=1 L

i
t;

• the measurability constraints are equivalent.
The only noticeable difference of formulation is in the almost sure constraint. As each θit
is an affine function, we can write

i∑
t

θit
(
Xi
t ,U

i
t ,Wt

)
= AtXt +BtUt + CtWt .

Hence, the coupling constraint (8.2f) reads

AtXt +BtUt = Bt .

Corollary 5.27 ends the proof.

Note that this result does not allow bound constraints on U i
t . Other results about a

multiplier in L1 rely on a relatively complete recourse assumption. In practice, for example
on a dam management problem, effective bounds on the control or the state are enforced
through penalization, which ensure the finiteness of the cost (and hence the relatively
complete recourse assumption). Consequently, it is our belief that we can give better
results of existence of an L1 multiplier, using relatively complete recourse assumption, but
that might not extend dramatically the field of applications.

8.3.4 Convergence of Uzawa Algorithm

We have seen that the DADP algorithm is an Uzawa algorithm in L∞ applied to
Problem (8.3). Uzawa algorithm (see Algorithm 6.1) in Banach spaces was presented and
studied in Chapter 6. Hence, we have the following convergence proposition.

Proposition 8.15. Assume that,
• the noises Wt have a finite support 7;
• the local cost Lit are Gâteaux-differentiable functions, strongly convex (in (x, u)) and

continuous (in w);
• the coupling functions θit are affine;
• the evolution functions ft are affine (in (x, u, w));
• the admissible set Uad

i,t is a weak? closed, non-empty convex set;

• there exists an admissible control, i.e. a process
(
X ,D

)
satisfying all constraints of

Problem (8.7);

7. The finite support assumption is only required to obtain the strong convexity of the global cost.



8.3. THEORETICAL ANALYSIS OF THE DADP METHOD 207

• Constraint (8.7f) admits an optimal multiplier in L1.
Consider the sequence of controls {U (n)}n∈N generated by Algorithm 8.1. Then, for a step
ρ > 0 small enough, there exists a subsequence

{
U (nk)

}
k∈N converging in L∞ toward the

optimal control of the relaxed problem (8.7).
Moreover, if there exists an optimal multiplier 8 in L2 the whole sequence

{
U (n)

}
n∈N

converges in L∞ toward the optimal control of the relaxed problem (8.7).

Proof. We apply the results of §6.3 with a slight modification of the constraint function
Θ in the proof of Proposition 6.11. Indeed, in (6.27), we replace the function Θt by

Θ̂t := E
[
Θt(·)

∣∣ Yt] ,
which is still Lipschitz for the L∞-norm. Considering the linear operator

Θ̂†t := E
[
Θ†t(·)

∣∣ Yt] ,
we can apply Proposition 5.12 to show the weak? continuity of Θ̂t.

If there exists an optimal multiplier in L2, then Corollary 6.7 instead of Proposition 6.11
concludes the proof.

8.3.5 Consequences of Finitely Supported Noises

We now assume that the set of uncertainties W is finite, and point out the consequences
for the previous theoretical results. As W is finite we can represent Problem 8.2 with a
finite set of scenarios Ω. Hence, the sets L∞

(
Ω,F ,P

)
, in which live the control U and

state X , are finite dimensional vector spaces.
In this setting, the results of §8.3.2 are obvious: Kudo-convergence of a sequence of

finitely generated σ-algebras implies that the sequence is eventually stationary and equal
to the limit. Hence, the sequence of relaxed optimization problems is eventually equal to
the limit problem.

With finite Ω, there is no difference between a L1, L2 or L∞ multiplier. In particular
affine equality constraints (with a finite objective function) are qualified and admit an
optimal multiplier without requiring the other assumptions of §8.3.3. More generally
Mangasarian-Fromovitz condition can be used to obtain the existence of multiplier.

The space of controls being a Hilbert space, the usual Uzawa convergence result (re-
called in §6.1.2) holds true. In particular the admissible set is only required to be closed
convex, and the existence of a multiplier yields the convergence of the whole sequence of
controls generated by DADP.

8.3.6 Validity of Solution After Convergence

We have seen that it is difficult to guarantee the convergence of the Uzawa algorithm
in the DADP method. However, if we numerically obtain a multiplier process µ(∞) such
that the corresponding primal solution U (∞), i.e. the solution of the minimization part
of Problem (8.9) for µ = µ(∞), satisfies the coupling constraint (8.7f), then the primal
solution U (∞) is a solution of Problem (8.7). This is a direct consequence of the following
proposition from Everett [46].

Proposition 8.16. Consider an objective function J : U → R, and a constraint function
Θ : U → V, where V is a topological space paired with Y. Consider a closed convex
constraint cone C ⊂ V.

8. The finiteness assumption of the noises implies that an L1 multiplier is also an L2 multiplier. We
keep the difference only so that the finiteness assumption is used to obtain the strong convexity of the
integral cost and nothing else. The complete implication of finitely supported noises is given in §8.3.5.



208 CHAPTER 8. DADP ALGORITHM

Suppose there exist λ] ∈ C?, and u] ∈ U such that

J
(
u]
)

= min
u∈U

{
J(u) + 〈λ],Θ(u)〉

}
,

and

Θ
(
u]
)
∈ −C .

Then, we have

u] ∈ arg min
u∈U

{
J(u) | Θ(u) ∈ −C

}
.

Note that there is no assumption required on the set U , or on the objective and
constraint functions.

Proof. We have

min
u∈U

{
J(u) | Θ(u) ∈ −C

}
= min

u∈U
max
λ∈C?

J(u) + 〈λ,Θ(u)〉 ,

≥ max
λ∈C?

min
u∈U

J(u) + 〈λ,Θ(u)〉 ,

≥ min
u∈U

J(u) + 〈λ],Θ(u)〉 ,

= J
(
u]
)

+ 〈λ],Θ
(
u]
)
〉 ,

≥ J
(
u]
)
,

where the last inequality is obtained by definition of C?. Moreover, as Θ
(
u]
)
∈ −C, we

have,

J
(
u]
)
≥ min

u∈U

{
J(u)

∣∣ Θ(u) ∈ −C
}
.

This ends the proof.

Remember that the update step (8.15) is a gradient step for the maximization of the

dual problem (8.9), the gradient being obtained by E
[
∆

(k)
t

∣∣ Yt]. However, it is known that
the gradient algorithm converges slowly. Hence, we are tempted to use more efficient algo-
rithm like conjugate gradient or quasi-Newton algorithms. The practical consequence of
Proposition 8.16 is that we can numerically use these more efficient algorithms, take note of
their convergence, check that the primal solution U (∞) obtained satisfies constraint (8.7f),
and thus guarantee that U (∞) is indeed an optimal solution of Problem (8.7).

8.3.7 Upper and Lower Bounds

We have seen in §8.1 that the DADP algorithm solves an approximation of the original
Problem (8.2). However, it also provides exact lower and upper bounds of the original
problem.

Lower Bound. Consider the DADP algorithm at a specific iteration k ∈ N. For a given
multiplier process µ(k), we solve the N minimization problems (8.11) and compute
the sum of the N obtained values. We claim that this sum is a lower bound of the
original problem (8.2). Indeed,
• it is the value for µ = µ(k) of the function maximized in Problem (8.10), hence,

it is lower than the value of Problem (8.10);
• by weak duality inequality (see Fact 4.4), the value of Problem (8.10) is lower than

the value of Problem (8.7);
• Problem (8.7) is a relaxation of original minimization problem, thus the value of

Problem (8.7) is lower than the value of Problem (8.2).



8.4. NUMERICAL RESULTS FOR THE HYDRAULIC VALLEY EXAMPLE 209

Upper Bound. Conversely, thanks to a heuristic, e.g. the one presented in §8.2.4, we
have an admissible solution for Problem (8.2), and thus an upper bound of the value
of Problem (8.2).

Note that we automatically compute the lower bound, whereas the upper bound is
only obtained through an heuristic, which can be computationally demanding. Moreover,
the gap between the upper and lower bound does not reduce to 0, unless a solution of
Problem (8.2) satisfies the relaxed constraint (8.7f).

8.4 Numerical Results for the Hydraulic Valley Example

We present numerical results of a three dam valley problem. This problem is a toy-
problem, small enough to be exactly solved by Dynamic Programming. Thus, we have
computed the exact solution and can compare the result of the DADP algorithm, that is,
the upper and lower bounds obtained, with the optimal solution. Moreover, we have been
able to compute the optimal multiplier λ, for the almost sure coupling constraint, and
make some statistical inferences.

A more thorough presentation with more complete results are to be found in [1]. Other
numerical results, on a problem with only one coupling constraint, can be found in [50].

8.4.1 Problem Specification

We present here the characteristics of the numerical problem treated.

We consider the hydraulic valley problem presented in §1.3.2, on which the DADP
algorithm was described in §8.1.5, and developed in each example of §8.2. We consider a
problem with N = 3 dams, and a time horizon T = 11, inspired by real life problem.

The set Xt = X1
t × X2

t × X3
t of state is discretized by step of 2hm3 of water: Xt =

{0, 2, . . . , 60}3. Analogously the control states Ut is discretized by step of 2hm3, and we
have Uit = {0, 2, . . . , 40}.

The random variables {W 1
t ,W

2
t ,W

3
t } are discrete with values in {0, 2, . . . , 40}. They

are time independent, but coupled spatially. Hence, we are able to compute exactly
the expectations in the Dynamic Programming resolution of Problem (8.11), whereas
the update of the multiplier and the upper bound given by the admissible strategy are
evaluated by Monte-Carlo over 100, 000 scenarios.

Hence, all variables (except the cost), are assumed to be discrete. This does not fit
with the assumptions (convexity of the sets) made earlier, but avoids the question of
interpolating.

We have seen that the proof of convergence of DADP (see §8.3.4) requires that the
cost functions are strongly convex. Hence we choose for the local costs

Lit(x, u, z, w) = −ptu+ εuu
2 + εzz

2 ,

and for the final cost

Ki(x) = εx(x− xiT )2 ,

where xiT is the target level of water, and {pt}T0 is a sequence of deterministic prices
modelling the electricity market.

The evolution functions are given by

f it
(
x, u, z, w

)
= x− u+ z + w .

The controls U i
t and Zi

t , and the states Xi
t have almost sure bounds.



210 CHAPTER 8. DADP ALGORITHM

8.4.2 Information Processes

We study three different information processes.

Constant information process Yt ≡ 0. If the information process Y is constant, then
the almost sure constraint, given, for i ∈ {1, 2} and t ∈ [[0, 10]], by

gi−1
t

(
H i−1
t ,W i−1

t

)
−Zi

t = 0 , (8.34)

is replaced by the following constraint in expectation

E
[
gi−1
t

(
H i−1
t ,W i−1

t

)
−Zi

t

]
= 0 . (8.35)

Hence, the multiplier µ of the corresponding relaxed problem (8.7) is almost surely
constant. More precisely, the sequence µ(k) is given by a sequence of vectors in R11.

The main interest of this choice is the numerical efficiency:
• the state required to solve Problem (8.11), by Dynamic Programming, is simply
Xi
t ;

• the maximization over µ is a maximization over R11, a reasonably small vector
space.

Random inflow of the dam upper stream dam Y i
t = W i−1

t . As Y i
t is related to the

constraint linking the dam i−1 with the dam i, we chose the information process to
be the inflow of dam i−1. Thus, the almost sure constraint given by Equation (8.34)
is replaced by

E
[
gi−1
t

(
H i−1
t ,W i−1

t

)
−Zi

t

∣∣∣ W i−1
t

]
= 0 . (8.36)

Constraint (8.36) is closer to the almost sure constraint (8.34) than the expecta-
tion constraint (8.35). However, we can still solve Problem (8.11) by a Dynamic
Programming approach with state Xi

t .

Phantom state of the first dam. As, on this (small) problem, we are able to compute
the optimal solution of the coupled problem (8.2), we are also able to compute the
exact optimal multipliers

(
λ1,],λ2,]

)
(see Example 8.4) . Thus we have studied

statistically the correlation between each optimal multiplier λi,] and the trajectory
of the optimal states Xj,]. It appears that each multiplier is mostly correlated with
the optimal state of the first dam.

Consequently, we want to construct an information process Y 1
t = Y 2

t = Yt that
mimics the process X1

t . We call this information process a phantom state. As X1
t

evolves along the iteration of the DADP algorithm we choose to study an information
process Yt that mimics the optimal state X1,]

t . For numerical simplicity we have
chosen to construct an AR1-like process

Yt+1 = αtYt + βtW
1
t + γt , (8.37)

the coefficients being obtained by regression on the optimal control. Note that, on
a real problem, we do not have the optimal trajectory of the state at our disposal
for such regressions. In §8.5, we develop ideas, and point out difficulties when using
a phantom state as information process.

8.4.3 Results Obtained

The numerical results are summed up in Table 8.1. They were obtained on a personal
laptop with a quad core Intel Core i7 à 2.2 GHz, implemented in C. A quasi-Newton
algorithm is used to update the multipliers.



8.5. DISCUSSION ON THE INFORMATION MODEL 211

DADP - E DADP - W i−1 DADP - dyn. DP

Number of iterations 165 170 25 1

Time (min) 2 3 67 41

Lower Bound −1.386× 106 −1.379× 106 −1.373× 106

Final Value −1.335× 106 −1.321× 106 −1.344× 106 −1.366× 106

Relative Loss −2.3% −3.3% −1.6% ref.

Table 8.1: Numerical results on the 3-dam problem

Let us comment these results. For the sake of clarity, the index 0 denotes the results
related to the optimal solution to the original problem obtained by Dynamic Programming
(i.e. σ(Y 0

t ) = Ft); the index 1 denotes the results related to the constant information
process Y 1 = 0; the index 2 denotes the results related to the noise information process
Y 2,i = W i−1; the index 3 denotes the results related to the information process mimicking

X1,] given in (8.37). We denote V i (resp V
i
) the lower (resp. upper) bound on the value

of the 3-dam problem given by the information process Y i. Note that the upper-bound
is also the value of the admissible, and hence implementable, solution obtained. The
admissible strategy obtained is denoted U ad

i , whereas the solution of the relaxed problem

is denoted U ]
i.

• First of all, the constant information process seems, on this example, to be an efficient
information process. Indeed, the subproblems (8.28) are quite easy to solve (no
increase in dimension) and, the multiplier µ being deterministic, the sequence µ(k)

simply lives in R11. For both these reasons, the algorithm converges quite quickly
(5 times faster than the Dynamic Programming approach on this application). The

lower bound V 1, is 2% under the optimal value, and the upper bound V
1

(which is
also the value of U ad

1 ) is 2.3% above the optimal value.
• The “back-to-admissibility” heuristic that gives, from a solution to the approximated

Problem (8.18), an admissible solution to the 3-dam problem, is not monotonous
with respect to information content. Indeed, the information process Y i = W i−1

yields a finer σ-algebra than the constant information process, hence the solution
U ]

2 is “closer” to the set of admissible solutions than U ]
1. In particular, the upper

bound V
2

is tighter than the upper bound V
1
. However, we see in Table 8.1 that the

admissible strategy U ad
2 obtained for the noise as information is less efficient than

the admissible strategy U ad
1 .

• For the three information processes, the DADP algorithm converges reasonably well
in a short time, even if the multipliers do not stabilize completely due to the dis-
cretization of the different spaces. Obviously the gain in computation time will be
more and more visible with problems with states of higher dimension - e.g. for the
dam valley problem with N > 3. Indeed, solving the dam valley problem has a
complexity exponential in the number of dam, whereas one iteration of the DADP
algorithm is linear in the number of dams; even if the number of gradient step
required increase the DADP algorithm will be relatively faster than the Dynamic
Programming approach for an increasing number of dam.

In a nutshell, it seems that, on the hydraulic valley problem, choosing a constant
information process is a good compromise. In order to obtain better strategies we need
to find a well designed information process Yt. Here, it was possible to find one from the
knowledge of the optimal solution of the global problem. In the next section, we discuss
the design of information model.



212 CHAPTER 8. DADP ALGORITHM

1 ´ 106 2 ´ 106

5.0 ´ 10-7

1.0 ´ 10-6

1.5 ´ 10-6

2.0 ´ 10-6

Figure 8.2: Density of gains obtained with Dynamic Programming (bold black), DADP
with constant information (dotted line), DADP with Y2 (fine dotted line) and DADP
with Y3 (bold Gray).

8.5 Discussion on the Information Model

In this section, we give guiding lines on how to construct an information process Y .
We point out some difficulties related to them. For better understanding, the suggestion
of information processes are presented on the dam example. In particular we explore the
difficulties in choosing an information process that evolves along the iterations.

8.5.1 A Short List of Information Processes

One of the first options, when implementing the DADP algorithm, is to determine the
information process Y that will be used to construct the relaxation (8.7). We present
general ideas that were implemented on the dam valley example (see §8.4).

A constant information process

Choosing Y ≡ 0 is a way of replacing the almost sure constraint (8.2f) by the expected
constraint

E
[ N∑
i=1

θit
(
Xi
t ,U

i
t ,Wt

)]
= 0 .

This is the simplest information process; it can be implemented very simply, on any
problem regardless of its specific properties. The state required for solving the subprob-
lem (8.11) is only the local state Xi, and the multiplier µ is almost surely constant.

On the hydraulic valley, but also on other example in [50], this simple information
process gives good numerical results.



8.5. DISCUSSION ON THE INFORMATION MODEL 213

Part of the noise

The general idea is to use a part of the noise W that is not naturally included in
the subproblem. The main interest is that this method does not increase the state of the
subproblem (8.11) (hence the resolution by Dynamic Programming is not hindered by this
choice of process). Moreover the σ-algebra generated by W i is richer than the σ-algebra
generated by a constant information variable, hence leading to a tighter upper bound.

In the dam valley example, the subproblem i is only concerned with the inflows W i of
dam i. However the outflows of dam i− 1 seem to be strongly correlated with the inflows
of dam i−1. Thus, we choose the information variable Y i

t = W i−1
t , and obtain multipliers

µ
i,(k)
t depending on the value of W i−1

t .

Phantom State

A natural idea for an information process is to use a part of the state X as an infor-
mation process. However, we stated that an information process has to be an uncontrolled
process. Consequently we try to construct a “phantom state”, that is, an uncontrolled
process that mimics a part of the state.

Recall that, in the dam valley example,
{
Y i
t

}T−1

t=0
is the information process related to

the constraint
Zi
t − g

i−1
t

(
Xi−1
t ,U i−1

t ,Wt

)
.

Intuitively, this constraint is quite well explained by the value of Xi−1
t+1 . We are thus trying

to find a “short-memory” stochastic process Y i
t that mimics X

i−1,(k)
t+1 . Here are two ways

to construct such a process.

Statistical regression. At iteration (k − 1), we have computed the process Xi−1,(k−1).
It is reasonable to assume that Xi−1,(k−1) is close to Xi−1,(k). Thus, we can use any
statistical regression tools to find a Markov chain mimicking Xi−1,(k−1).

Given control. If we have a feedback (η, γ) close to the one used for the dam i − 1,
we can derive a phantom state from it. An idea would be to use the last feedback
(η(k), γ(k)); however, this would lead to a second-guessing effect presented in §8.5.2.
Moreover we show in §8.5.2 that the sequence of σ-algebra thus generated might not
converge.

Another problem with this choice of information process is that it would lead to an
information process evolving with each iteration. Unfortunately there is no theoretical
background or interpretation of what the algorithm is solving. Consequently, we suggest
to modify the algorithm as presented in Algorithm 8.3, where the variable n corresponds
to the step of update of the information process, and k to step of the DADP process for
a given information variable Y (n).

8.5.2 Difficulties of the Phantom State

Even if using a phantom state as information process seems a natural idea, it leads
to several difficulties. We first show in §8.5.2 that the phantom state (and in particular
the σ-algebra generated by the phantom state) might not converges. Then, in §8.5.2,
we present the so-called mirror effect, that extends the size of the state needed to solve
subproblems (8.11). Finally, in §8.5.2, we show an heuristic way of reducing the dimension
of the state required to solve subproblems (8.11).

Non Convergence of Phantom State on a Simple Example

We show, on a simple example, that letting the information evolve along the iterations
of the algorithm yields some difficulties.



214 CHAPTER 8. DADP ALGORITHM

Data: Information process evolution functions f̃0
t and starting point y0;

Multipliers µ
(0)
t

Result: Optimal multipliers µ]t, admissible feedback;
repeat

repeat
forall the i ∈ [[1, N ]] do

Solve Problem (8.11);

forall the t ∈ [[0, T − 1]] do
Estimate E

[
∆k
t

∣∣ Yt];
Update the multiplier µn,k  µn,k+1;

until E
[
∆k
t

∣∣ Yt] ' 0;
Compute admissible feedbacks;
Evaluate admissible feedbacks;

Update the information process Y (n)  Y (n+1);

until Y
(n+1)
t ' Y (n)

t ;

Algorithm 8.3: General scheme of DADP with evolving information process

We propose to study the following scheme.
• We consider a stochastic problem (P), with an almost sure coupling constraint
θ(U ) = 0.
• We construct a sequence of approximations of (P) as follows.
• We consider a first approximated problem (P0), where the almost constraint is

replaced by an expectation constraint and derive an optimal control U (0).
• Now, assuming that we have determined an optimal control U (k−1), we consider

the problem (Pk), relaxation of problem (P) where the almost constraint is re-
placed by θ(U (k−1)), and determine its optimal control U (k).

On an example we show that this scheme might not converge.

Example 8.17. Consider the following problem (P)

min
U∈L2

(
U −G

)2
s.t. U = 0 P− a.s. ,

where G is a standard normal random variable. We assume that the σ-algebra F is
given by F = σ(G). The optimal solution of problem (P) is the only admissible solution,
U ] = 0 with optimal value 1. We relax the almost sure constraint into E

[
U
]

= 0. The
approximated problem (P0) reads

min
U∈L2

(
U −G

)2
s.t. E

[
U
]

= 0 ,

with optimal control U (0) = G, and optimal value 0. Then we approximate the constraint
by E

[
U
∣∣ U0

]
= 0, to obtain problem (P1)

min
U∈L2

(
U −G

)2
s.t. E

[
U
∣∣ U (0)

]
= 0 ,

with optimal control U (1) = U ]. Thus we have:



8.5. DISCUSSION ON THE INFORMATION MODEL 215

• for any even number 2k, the optimal control of (P2k) is U (2k) ≡ 0, generating the
trivial σ-algebra {∅,Ω};
• and for any odd number 2k + 1, the optimal control of (P2k+1) is U (2k+1) = G

generating the whole σ-algebra F .

This shows that using a phantom state to construct an information process Y (n) might
not lead to converging σ-algebras σ

(
Y (n)

)
. Hence, the results of §8.3.2 are not available.

Second Guessing Effect

In this section, we present the so-called “second guessing effect”, or how the dimension
of the state of the system required to solve the subproblems (8.11) grows with iterations
when we update the information model.

We consider the following problem (P)

min
X ,U

E
[ T−1∑
t=0

Lt(Xt,Ut,Wt)
]

s.t. Xt+1 = f
(
Xt,Ut,Wt

)
θt(Xt) = 0

We consider the sequence of approximated problems
(
Pk
)

given as follows:(
P0

)
:

min
Xt,Ut

E
[ T−1∑
t=0

Lt(Xt,Ut,Wt)
]

s.t. Xt+1 = f
(
Xt,Ut,Wt

)
E
[
θt(Xt)

]
= 0

which yield an optimal control U ]
t = η(0)(Xt). Then, we define an information variable

Y (0) which is the “phantom state” following the optimal control of problem
(
P0

)
. More

precisely, we have 
Y

(0)
0 = x0

Y
(0)
t+1 = f

(
Y

(0)
t , η(0)(Y

(0)
t )

)︸ ︷︷ ︸
:=f (0)

(
Y

(0)
t

)
and we proceed to define a new problem where the constraint in expectation is refined by
a conditional expectation constraint.(

P1

)
:

min
X ,U

E
[ T−1∑
t=0

Lt(Xt,Ut,Wt)
]

s.t. Xt+1 = f
(
Xt,Ut,Wt

)
Y

(0)
t+1 = f (0)

(
Y

(0)
t

)
E
[
θt(Xt)

∣∣ Y (0)
t

]
= 0



216 CHAPTER 8. DADP ALGORITHM

yields an optimal control U ]
t = η(1)

(
Xt,Y

(0)
t

)
. Then we define an information variable

Y (1) as the “phantom state” following the optimal control of problem
(
P1

)
, i.e.

Y
(1)

0 = x0

Y
(1)
t+1 = f

(
Y

(1)
t , η(1)(Y

(1)
t ,Y

(0)
t )

)︸ ︷︷ ︸
:=f (1)

(
Y

(1)
t ,Y

(0)
t

)
which yield an optimal control U ]

t = η(2)(Xt,Y
(1)
t ,Y

(0)
t ).

More generally, assuming that we have defined an information process Y (k), we can
construct the next problem(

Pk
)
:

min
X ,U

E
[ T−1∑
t=0

Lt(Xt,Ut,Wt)
]

s.t. Xt+1 = f
(
Xt,Ut,Wt

)
Y

(0)
t+1 = f (0)

(
Y

(0)
t

)
Y

(1)
t+1 = f (1)

(
Y

(1)
t ,Y

(0)
t

)
· · ·

Y
(k)
t+1 = f (k)

(
Y

(k)
t ,Y

(k−1)
t , · · · ,Y (0)

t

)
E
[
θt(Xt)

∣∣ Y (k)
t

]
= 0

which yields an optimal control U ]
t = η(k+1)(Xt,Y

(k)
t , · · · ,Y (0)

t ), and we define
Y

(k+1)
0 = x0

Y
(k+1)
t+1 = f

(
Y

(k+1)
t , η(1)(Y

(k+1)
t ,Y

(k)
t , · · · ,Y (0)

t )
)︸ ︷︷ ︸

:=f (k+1)
(
Y

(k+1)
t ,Y

(k)
t ,··· ,Y (0)

t

) . (8.38)

Thus, we see that if we want to use the “last optimal state” as an information variable
in the DADP algorithm, the state size required to solve the subproblems increases for each
update of the information process.

Moreover, if we apply this idea to the hydraulic valley problem, the size of the infor-
mation state increases both with the past information state as presented here, and with
the information state of the upstreams dams.

Replacing a Phantom State by an Actual State

We could consider a stochastic information process Y i mimicking Xi−1. Then,
solving Problem (8.28) by Dynamic programming approach requires to use the state(
Xi
t ,Y

i
t ,Y

i+1
t

)
. However Y i+1

t should mimic Xi
t . Thus replacing Y i+1

t by Xi
t in Prob-

lem (8.28) seems natural, and reduces the size of the state needed for the Dynamic Pro-
gramming.

However, it amounts to replace the duality cost

E
[〈
λit ,Z

i
t − g

i−1
t

(
H i−1
t ,W i−1

t

)〉 ∣∣∣ Y i
t

]
, (8.39)

by

E
[〈
λit ,Z

i
t

〉 ∣∣∣ Xi
t

]
− E

[〈
λit , g

i−1
t

(
H i−1
t ,W i−1

t

)〉 ∣∣∣ Y i
t

]
. (8.40)

Hence, we do not exactly know what problem is solved with this approximation.



8.5. DISCUSSION ON THE INFORMATION MODEL 217

Conclusion

When we consider a multistage stochastic optimization problem (like Problem (8.2)),
a price decomposition scheme, as described in §8.1.2, is untractable for DP treatment.
Indeed, there is no reason that the couple consisting of the original state X and of the
multiplier λ be Markovian; the multiplier λ is an unknown adapted stochastic process.
However, if we restrict ourselves to a specific class of multipliers — like those measurable
w.r.t. a given “information” process Y , corresponding to an approximation of the mul-
tiplier λ — we are solving a relaxation of the original problem (Problem (8.7)). On this
relaxed problem, we have been able to apply a price decomposition scheme, where each
subproblem is solved through Dynamic Programming with an extended state

(
Xi
t ,Yt

)
.

Theoretical results of consistence and convergence of the method were derived from the
results of Chapters 4-7. This method has been tested on a problem small enough to be
compared with the optimal solution. Numerical tests on a real scale problem remain to
be done, and benchmarked against the SDDP algorithm.



218 CHAPTER 8. DADP ALGORITHM



Conclusion

Imagination is more important than knowledge.

Einstein

This manuscript is the result of three years of scientific work at École des Ponts-
ParisTech, within the Optimization and Systems group — whose senior members are Pierre
Carpentier, Jean-Philippe Chancelier and Michel De Lara — and with the participation
of Jean-Christophe Alais, as a fellow PhD student. This work stands in the continuity of
a series done by the group, oftimes in collaboration with EDF R&D.

Contributions of this Manuscript

This manuscript is a contribution to the domain of decomposition methods in discrete-
time stochastic optimal control.

• In Chapter 1, we have presented a global view of decompositions methods in multi-
stage stochastic optimization problems.
• In Chapter 2, we have extended the setting of dynamic programming to allow for

more general aggregation in time than the intertemporal sum, and for more general
aggregation in uncertainty than the expectation. We have focused on the concept of
time consistency of optimization problems, and on the links with the time consistency
concept in the risk measure literature. The content of Chapter 2 has been submitted
to the European Journal of Operations Research.
• In Chapter 3, we have extended the results of convergence of the SDDP algorithm.

Indeed, till now, the proofs of convergence were relying on the piecewise linearity of
the cost functions (in addition to the convexity), whereas our proof only relies on
convexity. The content of Chapter 3 has been accepted for publication in Mathe-
matics of Operations Research (up to minor modifications).
• In Chapter 4, we have detailed two examples showing that the existence of an optimal

multiplier for an almost sure constraint is a delicate issue.
• In Chapter 5, we have extended a result of existence of an L1-multiplier for almost

sure constraints, and have applied it for a multistage problem.
• In Chapter 6, we have provided the Uzawa algorithm in the non-reflexive Banach

space L∞
(
Ω,F ,P;Rn

)
, and have shown a result of convergence of a subsequence.

• In Chapter 7, we have shown an epiconvergence result: a sequence of relaxed opti-
mization problems — where almost sure constraints are replaced by weaker condi-
tional expectation ones — epiconverges to the original one when the corresponding
σ-fields converge. The content of Chapter 7 has been submitted to Mathematics of
Operations Research.
• Finally, in Chapter 8, we have presented the so-called DADP algorithm, given dif-

ferent interpretations and provided conditions of convergence.



220 CHAPTER 8. DADP ALGORITHM

Perspectives

C’est tout ? Ah non, c’est un peu court jeune homme !
On aurait pû dire, oh Dieu, bien des choses en somme.
En variant le ton, par exemple, tenez:

Cyrano de Bergerac

A substantial body of work stands ahead of us.
• Using the framework of Chapter 2, connections between the time consistency of

dynamic risk measures and sequences of optimization problems remains to be further
scrutinized.
• The convergence of SDDP still relies on the property that the uncertainties take

discrete values. There are reasons to think that the proof could be extended to
continuous random variables, but difficulties related to infinite dimensional object
have to be overcome.
• To extend our conditions for the existence of multiplier results to inequality con-

straints we think that existing results relying on relatively complete recourse (hence
allowing at least bounds on the control) could be adapted to our setting.
• The proof of convergence of the Uzawa algorithm in L∞ should be modified in order

to prove the convergence of the whole sequence.
• We have seen that the sequence of approximated problem, where the almost sure

constraint is replaced by its conditional expectation, converges toward the original
problem when information converges. However, DADP works with a fixed infor-
mation. Hence, we should complete these result with bound errors for a given
information process, to make a link with the DADP algorithm.
• The DADP algorithm should be compared with the SDDP algorithm on a large-

scale hydraulic valley. In a second phase SDDP could be integrated in the DADP
algorithm as an alternative mean of solving the subproblems.



Appendix A

Analysis

”Begin at the beginning”, the King said, very gravely,
”and go on till you come to the end: then stop.”

Alice in Wonderland

Contents

A.1 Topology and Duality . . . . . . . . . . . . . . . . . . . . . . . . . 221

A.1.1 General Definitions on Topologies . . . . . . . . . . . . . . . . . 221

A.1.2 Topologies on Banach Spaces . . . . . . . . . . . . . . . . . . . . 224

A.1.3 Sequential Properties . . . . . . . . . . . . . . . . . . . . . . . . . 226

A.1.4 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

A.2 Convexity and Lower Semicontinuity . . . . . . . . . . . . . . . 229

A.2.1 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

A.2.2 Results on Semicontinuity . . . . . . . . . . . . . . . . . . . . . . 231

We give some technical recalls and results.

A.1 Topology and Duality

A.1.1 General Definitions on Topologies

We begin with a survey of the definitions and vocabulary related to topological spaces.
In this section E is a R-vector space E.

Definition A.1 (Topology). A topology τ ⊂ P
(
E
)

is a set of subsets of E satisfying:
• ∅ and E are element of τ ;
• finite intersection of elements of τ are element of τ ;
• any union of elements of τ is an element of τ .
The elements of τ are called τ -open sets. If A is a subset of E such that its comple-

ment 1 is open, it is said to be a closed set.
The couple (E, τ) is called a topological space. We also say that the space E is endowed

with, or equipped with the topology τ .
If P is a set of subset of E, then the topology generated by P , denoted by τ(P ), is the

intersection of all topology on E containing P . We call P a base of τ(P ).

Definition A.2 (Convergence of sequence). Consider a sequence {xn}n∈N of elements of
a topological space

(
E, τ

)
. The sequence {xn}n∈N is said to be τ -converging toward x ∈ E

1. The complement of A (in E) is set of elements of E that are not in A.



222 APPENDIX A. ANALYSIS

if for all open set O ∈ τ containing x, there exists N ∈ N, such that for all n ≥ N ,
xn ∈ O. x is called the limit of {xn}n∈N. A τ -convergent sequence {xn}n∈N, is such that
there exists x ∈ E, such that {xn}n∈N is τ -converging toward x.

A set A ⊂ B ⊂ E is said to be dense in B if for all point x ∈ B, there exists a sequence
of points in A converging toward x.

Fact A.3. Let {xn}n∈N be a sequence in a topological space
(
E, τ

)
. If from any sub-

sequence
{
xnk
}
k∈N we can extract a sub-sub-sequence

{
xσ(nk)

}
k∈N converging to x∗ ∈ E,

then {xn}n∈N converges to x∗.

Proof. Indeed, suppose that {xn}n∈N does not converges toward x∗. Then there exist an
open set O containing x∗ and a sub-sequence

{
xnk
}
k∈N such that for all k ∈ N, xnk /∈ O,

and no sub-sub-sequence can converges to x∗, hence a contradiction.

Definition A.4 (Metric spaces). A distance on E is a function d : E2 → R+ satisfying:

• ∀x ∈ E, d(x, x) = 0;
• ∀(x, y) ∈ E2, d(x, y) = d(y, x);
• ∀(x, y, z) ∈ E3, d(x, y) ≤ d(x, z) + d(z, y);
• ∀(x, y) ∈ E2, d(x, y) = 0 =⇒ x = y.

We call open ball of radius r and center x (relative to the distance d) the set

B(x, r) =
{
x′ ∈ E | d(x, x′) < r

}
.

The topology generated by the distance d, denoted τd, is the topology generated by the set
of open balls relative to the distance d. The topological set (E, τd) is said to be a metric
space. A topological set (E, τ) is said to be metrizable if there exists a distance d on E
such that τ = τd.

Definition A.5 (Separable and separated topologies). A topological space
(
E, τ

)
is said

to be separated if for any distinct points x and x′, there exist two τ -open set O and O′
such that:

x ∈ O, x′ ∈ O′, O ∩O′ = ∅ .

A separated topological space is also called a Hausdorff space.

A separable space is a topological space that contains a countable dense subset.

Fact A.6. A metrizable space is a Hausdorff space.

Definition A.7 (Compactness). Consider a subset A of E. An open cover of A is an
arbitrary collection of open sets {bi}i∈I such that

A ⊂
⋃
i∈I

Bi .

A subset A of E is said to be compact if for all open cover of A there exists a finite number
of indexes {ik}nk=1 such that

A ⊂
n⋃
k=1

Bik .

Fact A.8. A metrizable compact space is separable.

Definition A.9 (Normed spaces). A pseudonorm on E is a function n : E 7→ R+ such
that:

• ∀λ ∈ R, n(λx) = |λ|n(x);
• ∀(x, y) ∈ E2, n(x+ y) ≤ n(x) + n(y).



A.1. TOPOLOGY AND DUALITY 223

A norm on E is a pseudonorm such that n(x) = 0 implies that x = 0. We often denote a
norm by ‖ · ‖, meaning that ‖x‖ = n(x). The function d : E2 → R+, given by d(x, y) =
‖x − y‖ is a distance. The topology generated by a norm is the topology generated by its
corresponding distance. A normed space is a topological space, associated with a given
norm, and endowed with the topology of the norm.

In this manuscript the space Rd is always endowed with the norm 2 topology.

Definition A.10 (Continuity). Consider two topological spaces
(
E, τ

)
and

(
F, τ ′

)
. Let f

be a function mapping E into F .

• The image by f of A ⊂ E is the set

f(A) =
{
f(x) ∈ F | x ∈ A

}
,

and the preimage by f of B ⊂ E is the set

f−1
(
B
)

:=
{
x ∈ E | f(x) ∈ A

}
.

• f is said to be continuous if

∀O ∈ τ ′, f−1
(
O
)
∈ τ .

• Assume that F = R. The epigraph of f is the set

epi(f) =
{

(x, y) ∈ E × R | y ≥ f(x)
}
.

The function f is said to be lower semicontinuous (l.s.c.) if its epigraph is closed;
and upper semicontinuous if −f is l.s.c.. A function that is both lower and upper
semicontinuous is continuous.

Definition A.11. Consider an arbitrary family of functions {fi}i∈I , each mapping E into
a topological space

(
F, τ ′

)
. The topology generated by the family {fi}i∈I , is the coarsest 3

topology such that each function fi is continuous.

A locally convex topology is a topology generated by a family of pseudonorm.

Compactness and lower semicontinuity are very useful to show the existence of solution
to an optimization problem, as recalled in the following theorem.

Theorem A.12. Consider a l.s.c. function f : E → R, and a compact set A ⊂ E. Then
we have,

∃x] ∈ A, ∀x ∈ A, f(x]) ≤ f(x) .

In other words a l.s.c. function admits a minimum on a compact set.

Definition A.13 (Topology Comparison). Consider two topologies τ1 and τ2 on E. If
τ1 ⊂ τ2, τ1 is said to be coarser than τ2, and τ2 is said to be finer than τ1.

Fact A.14. A coarser topology on E implies more compact set, but less continuous and
lower semicontinuous functions. A coarser topology on F implies more continuous func-
tions.

If τ1 ⊂ τ2, then convergence in τ2 implies the convergence in τ1.

2. Any norm, e.g. the euclidian norm, yields the same topology.
3. The discrete topology τ = P

(
E
)

is such that all functions are continuous.



224 APPENDIX A. ANALYSIS

Definition A.15 (Completeness). Consider a metric space
(
E, d

)
, a sequence {xn}n∈N

of elements of E. The diameter of the sequence {xn}n∈N, is

diam
(
{xn}n∈N

)
:= sup

n,m

{
d(xn, xm)

}
.

A Cauchy sequence is a sequence {xn}n∈N, such that

lim
k→∞

diam
(
{xn+k}n∈N

)
= 0 .

The metric space
(
E, d

)
is said to be complete if all its Cauchy sequences admits a limit

(in E). A Banach space is a complete normed space.

Definition A.16 (Inner Product). An inner product on E is a function 〈· , ·〉 : E2 → R
satisfying:
• ∀(x, y) ∈ E2, 〈x , y〉 = 〈y , x〉;
• ∀(x, y) ∈ E2, ∀λ ∈ R, 〈λx , y〉 = λ〈x , y〉;
• ∀(x, y, z) ∈ E3, 〈x+ z , y〉 = 〈x , y〉+ 〈z , y〉;
• ∀x ∈ E, 〈x , x〉 ≥ 0;
• ∀x ∈ E, 〈x , x〉 = 0 =⇒ x = 0.
The function n : E 7→ R, given by n(x) =

√
〈x , x〉 is the norm associated with the

inner product.
If E is complete for the topology induced by the norm associated with the inner product,

it is called an Hilbert space. In particular, an Hilbert space is a Banach space.

A.1.2 Topologies on Banach Spaces

Recall that a linear function mapping E into R is called a linear form.

Definition A.17 (Topological dual). Consider a topological space
(
E, τ

)
. The topological

dual of E is the set of τ -continuous linear form on E. It is denoted E?. If
(
E, ‖‖E

)
is a

Banach space, we define the dual norm as follows

∀y ∈ E?, ‖y‖E? := sup
{
y(x) | ‖x‖E ≤ 1

}
.

Moreover,
(
E?, ‖‖E?

)
is a Banach space.

Definition A.18 (Reflexive spaces). Consider a Banach space E, and its topological E?.
The bidual of E, denoted by E??, is the topological dual of the Banach space E?.

We define the evaluation map E : E → E??, by

E : x 7→
{
E? 3 x? 7→ x?

(
x
)}

.

This is the canonical injection of E into its bidual E??.
If E is surjective, it is an isometric isomorphism of E into E??, and we say that E is

reflexive, and identify E with its bidual.
An Hilbert space is reflexive.

For any Banach space we construct a coarser topology than the norm topology that
has the same continuous linear functionals.

Definition A.19 (Weak topology). Let
(
E, τ‖‖

)
be a Banach space. The weak topology

σ
(
E,E?

)
is the coarsest topology such that the τ‖‖-continuous linear form, are continuous.

Fact A.20. Here are some properties of the weak topology.
• The weak topology is separated.



A.1. TOPOLOGY AND DUALITY 225

• A convex set is closed in the norm topology iff it is closed in the weak topology.
• Consequently a convex function is l.s.c for the norm topology iff it is l.s.c for the

weak topology.
• A sequence strongly converging toward x also weakly converges toward x.

We now consider the topologies on the dual of a Banach space.

Definition A.21 (Weak? topology). Let E be a Banach space and E? its topological dual.
The weak? topology σ

(
E?, E??

)
is the coarsest topology such that the τ‖‖-continuous

linear forms are continuous.
The weak? topology σ

(
E?, E

)
is the coarsest topology such that the linear forms on

E? that are elements of E(E), where E is the valuation map defined in Definition A.18,
are continuous.

The Mackey topology τ
(
E?, E

)
, is the finest topology such that the only τ

(
E?, E

)
-

continuous linear form on E? are the elements of E(E).

Fact A.22. The above topologies display the following properties.
• We have the following inclusion of topologies

σ
(
E?, E

)
⊂ τ

(
E?, E

)
⊂ σ

(
E?, E??

)
⊂ τ‖‖ .

• A convex set is τ
(
E?, E

)
-closed iff it is σ

(
E?, E

)
-closed.

• A convex function f : E? 7→ R is τ
(
E?, E

)
-l.s.c. iff it is σ

(
E?, E

)
-l.s.c..

Fact A.23. For a reflexive Banach space, the weak, weak? and Mackey topologies coincide.

The main interest of introducing the weak? topology is given by the two following
theorems. Banach Alaoglu theorem shows weak? compactness of large class of sets, and
Kakutani theorem shows that it would not be the same with weak compactness in non-
reflexive Banach spaces.

Theorem A.24 (Banach-Alaoglu). Let E be Banach space. Consider its topological dual
E? endowed with the weak? topology σ

(
E?, E

)
. Then the unit ball{

x′ ∈ E? | ‖x′‖E? ≤ 1
}

is weak? compact.

Proof. See [24, Theorem 2.27].

Theorem A.25 (Kakutani). Let E be Banach space. The unit ball{
x ∈ E | ‖x‖E ≤ 1

}
is weakly compact iff E is reflexive.

We conclude these comparison with a last fact on the unit ball.

Fact A.26. Let E be Banach space. The unit ball{
x ∈ E | ‖x‖E ≤ 1

}
is norm-compact iff E is finite dimensional.

On the other hand the weak topology present a few difficulties.

Fact A.27. The following assertion are equivalent.

i) The vector space E is finite dimensional.

ii) The weak and norm topology coincide.

iii) The weak topology is metrizable.

In any infinite dimensional space we have that:
• the weak interior of every closed or open ball is empty;
• the closed unit sphere is weakly dense in the closed unit ball.



226 APPENDIX A. ANALYSIS

A.1.3 Sequential Properties

In metric spaces we are used to sequential definition of topological properties. How-
ever, in non-metrizable spaces (such as some Banach spaces endowed with weak or weak?
topologies), those definitions differ. We obtain comparable characterization by using a
generalization of the sequences: the nets.

In this section we consider two topological spaces
(
E, τ

)
, and

(
F, τ ′

)
.

Definition A.28 (net). Consider a set D. A direction ≺ on D, is a binary relation
satisfying:
• α ≺ β and β ≺ γ imply α ≺ γ;
• α ≺ α;
• for all α and β of D, there exists γ ∈ D, such that α ≺ γ and β ≺ γ.
A directed set, is a set endowed with a partial order.
A net in a set X, is a function x : D → X where D is a directed set. It is denoted

{xα}α∈D.
In a topological space

(
E, τ

)
, a net {xα}α∈D is said to converge toward x ∈ E if, for

any open set O containing x, there exists an index α0 ∈ D, such that for all index α0 ≺ α,
we have xα ∈ O.

Fact A.29. We have the following characterization of topological properties.
• A set C ⊂ E is closed iff every converging net in C has its limit in C.
• A function f : E → F is continuous iff xα →τ x implies f

(
xα
)
→τ ′ f(x).

• A function f : E → R is l.s.c. iff xα →τ x implies limαf
(
xα
)
≤ f(x).

• A set C ⊂ E is compact iff every net in C has a convergent subnet.

If we replace nets by sequences in the above fact we have sequential properties.

Definition A.30 (Sequential properties). We have the following definition of topological
properties.
• A set C ⊂ E is sequentially closed iff every converging sequence in C has its limit

in C.
• A function f : E → F is sequentially continuous iff xn →τ x implies f

(
xn
)
→τ ′ f(x).

• A function f : E → R is sequentially l.s.c. iff xα →τ x implies limnf
(
xn
)
≤ f(x).

• A set C ⊂ E is sequentially compact iff every sequence in C has a convergent sub-
sequence.

Fact A.31. In a first countable space, (e.g. a metric space) sequential properties are
equivalent to their topological counterparts.

Fact A.32. We have the following implications.
• A closed set is sequentially closed.
• A continuous function f : E → F , where F is first countable (e.g. metric), is

sequentially continuous.
• A compact set is sequentially compact.
• A l.s.c. function, is sequentially l.s.c.

We have the following property analogous to Theorem A.12.

Proposition A.33. A sequentially l.s.c. function admit a minimum on a sequentially
compact set.

Finally we have the Eberlein-Smulian theorem.

Theorem A.34 (Eberlein-Smulian). In the weak topology of a normed space compactness
and sequential compactness coincide.

Proof. See [2, Thm 10.15].



A.1. TOPOLOGY AND DUALITY 227

A.1.4 Duality

This section is mostly taken from the book Conjugate duality and optimization by
R.T.Rockafellar [89]. A fundamental point to the study of duality is the fact that (con-
tinuous) linear functions on a given linear space can be seen as elements of a linear space.
In the finite dimensional case the (continuous) linear functions on Rn can be identified
to vectors of Rn through the inner product. This is still the case (for continuous linear
functions) through the Riesz representation theorem in Hilbert spaces. To extend this
representation we present the notion of paired space.

Definition A.35 (Paired spaces). Consider two R-vector spaces E and F . A pairing of
E and F is a bi-linear form

〈
· , ·
〉

on E × F , i.e, for each x ∈ E,〈
x , ·
〉

: y 7→
〈
x , y

〉
,

is a linear function, and for each y ∈ Y ,〈
· , y
〉

: x 7→
〈
x , y

〉
,

is also a linear function.

A topology on X is said to be compatible with the pairing if it is locally convex and
such that all linear function

〈
· , y
〉

is continuous, and such that all continuous linear
functions can be represented in such a way. The definition for compatible topologies on Y
is symmetric.

We say that E and F are paired space if they are two topological vector spaces, endowed
with topologies compatible with a pairing.

Various compatible topologies can be systematically generated and we refer to the
functional analysis books for more precision (e.g. [58]).

Definition A.36 (Adjoint Operator). Consider two paired spaces
(
X,X ′

)
and

(
Y, Y ′

)
,

and a linear operator L : X → Y . A linear operator L† : Y ′ → X ′ is said to be the adjoint
operator of L if it satisfies

∀x ∈ X, ∀y′ ∈ Y ′,
〈
y′ , Lx

〉(
Y ′,Y

) =
〈
L†y′ , x

〉
X′,X

.

Definition A.37 (Fenchel Conjugate). Consider a function f : X → R̄. Its Fenchel
conjugate (for the given pairing) is the function f? : Y → R̄ such that

f?(y) = sup
x∈X

{〈
x , y

〉
− f(x)

}
. (A.1)

The biconjugate is f?? : X → R̄, is given by

f??(x) = sup
y∈Y

{〈
x , y

〉
− f?(y)

}
. (A.2)

Theorem A.38. For any function f : X → R̄ its conjugate f? is a closed convex function
on Y , and f?? is the lower semicontinuous convex hull of f . In particular if f is a proper
convex lower semicontinuous function then f ≡ f??.

We give a useful illustration of this definition. Consider a set C ⊂ X and its indicator
function χC . Then χ?C is the support function of C:

χ?C(y) = sup
x∈C

〈
x , y

〉
. (A.3)



228 APPENDIX A. ANALYSIS

If C is a cone, then χ?C is the indicator of its dual cone C?, where

C? :=
{
y ∈ Y | ∀x ∈ C, 〈x , y〉 ≥ 0

}
. (A.4)

In particular if C is a linear subspace of X we have

C? =
{
y ∈ Y | ∀x ∈ C, 〈x , y〉 = 0

}
. (A.5)

Proposition A.39. For a closed convex cone C ⊂ X, we have

∀x ∈ X, χ−C(x) = sup
y∈C?

〈
y , x

〉
.

Proof. As −C is a closed convex set, χ−C is a l.s.c. convex function, hence

χ−C = χ??−C .

Now by definition

χ?−C(y) = sup
x∈X

{〈
y , x

〉
− χ−C(x)

}
= sup

x∈−C

〈
y , x

〉
= χC?(y) .

And
χ??−C(x) =

(
χC?

)?
(x) = sup

y∈C?

〈
y , x

〉
.

Hence the result.

More generally, we have the following definition of the cone dual of any given set.

Definition A.40 (Dual cone). For any subset X ⊂ E and x ∈ E we define the set
X⊥x ⊂ X ? as follows :

X⊥x :=
{
y ∈ X ?

∣∣ ∀z ∈ X , 〈
y , z − x

〉
≤ 0
}
. (A.6)

Note that if X is an affine subset of E, then X⊥x does not depends on the point x, and the
notation can be omitted.

We now give a –possibly new– result over the dual of the intersection of two sets.
Consider a topological space

(
E, τ

)
.

Lemma A.41. Let L : E → E be a linear operator, admitting an adjoint L†, such that
L(E) = N and L|N = Id then we have :

N⊥x = N⊥0 =
{
y − L†(y)

∣∣ y ∈ E?
}

Proof. Since N is a linear space it is immediate to see that N⊥x does not depend on x and
that the inequality can be replaced by an equality in the definition of N⊥x . We thus have

N⊥x = N⊥0 =
{
y ∈ E?

∣∣ ∀z ∈ E, 〈
y , z − x

〉
= 0
}
.

First, fix y ∈ E?. For all z ∈ N we have〈
y − L†(y) , z

〉
=
〈
y , z − L(z)

〉
= 0 ,

where the last equality is deduced from L|N = Id. We thus have{
y − L†(y)

∣∣ y ∈ E?
}
⊂ N⊥x .

Then, fix y ∈ N⊥0 . For all z ∈ E we have
〈
y , L(z)

〉
= 0 since L(E) = N and thus for

all z ∈ E we have
〈
L†(y) , z

〉
= 0. Thus, for all z ∈ N , we obtain that

〈
y , z

〉
= 0 and〈

L†(y) , z
〉

= 0 which gathered give
〈
y − L†(y) , z

〉
= 0. We thus have

N⊥x ⊂
{
y − L†(y)

∣∣ y ∈ E?
}
,

which achieves the proof.



A.2. CONVEXITY AND LOWER SEMICONTINUITY 229

Lemma A.42. Under assumptions of Lemma A.41 and assuming moreover that x ∈ U∩N
and that L(U) ⊂ U then, for all y ∈ (U ∩N)⊥x , we have that L(y) ∈ U⊥x .

Proof. Fix y ∈ (U ∩N)⊥x . For all z ∈ U we have that L†(z) ∈ U ∩N using the facts that
L(U) ⊂ U and L(E) = N . We thus have

〈
y , L(z) − x

〉
≤ 0 for all z ∈ U . Now, since

x ∈ U ∩ N and L|N = Id we have L(x) = x and using the linearity of L we obtain that〈
L†(z) , z − x

〉
≤ 0 for all y ∈ U which ends the proof.

We now prove the main result.

Theorem A.43. Under assumptions of Lemma A.41 and assuming moreover that x ∈
U ∩N and that L(U) ⊂ U we have that

(U ∩N)⊥x = U⊥x +N⊥0 .

Proof. First, proving that U⊥x + N⊥x ⊂ (U ∩ N)⊥x is immediate and since N⊥x = N⊥0 we
obtain that U⊥x +N⊥0 ⊂ (U ∩N)⊥x .

Let y ∈ (U ∩N)⊥x , then we can write y as y = (y−L†(y)) +L†(y). Using Lemma A.42
we obtain that L†(y) ∈ U⊥x and Using Lemma A.41 we obtain that y − L†(y) ∈ N⊥x . We
thus have y ∈ U⊥x +N⊥x .

A.2 Convexity and Lower Semicontinuity

A.2.1 Convexity

Let E and U be vector spaces.

Definition A.44 (Convexity). A set C ⊂ E is said to be convex iff

∀x ∈ C, ∀y ∈ C, ∀t ∈ [0, 1], tx+ (1− t)y ∈ C . (A.7)

A function f : E → R is said to be convex if its epigraph is a convex set, or equivalently if

∀x ∈ E, ∀y ∈ E, ∀t ∈ [0, 1], f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y) . (A.8)

A function f : E → R is said to be strictly convex iff

∀x ∈ E, ∀y ∈ E, ∀t ∈ (0, 1), f
(
tx+ (1− t)y

)
< tf(x) + (1− t)f(y) . (A.9)

When a function G has two arguments (x, u) and its convex in the couple (x, u) we
say that G is jointly convex.

Proposition A.45. Let G : E × U → R be a jointly convex function. Then the function
defined by

ϕ(x) = inf
u∈E

G(x, u) ,

is convex.

Proof. Consider a pair of point (x1, x2) ∈ E2, and a pair (u1, u2) ∈ U2. We have

ϕ
(
tx1 + (1− t)x2

)
≤ G

(
tx1 + (1− t)x2, tu1 + (1− t)u2

)
≤ tG(x1, u1) + (1− t)G(x2, u2) .

taking the infimum in u1 ∈ U and u2 ∈ U gives the result.



230 APPENDIX A. ANALYSIS

Definition A.46 (Cone). A set C ⊂ E is said to be a cone if

∀t ∈ R+, ∀x ∈ C, tx ∈ C . (A.10)

A salient cone is a cone such that there exist a nonzero vector x ∈ C such that −x ∈ C.
A salient convex cone defines a partial order on E with

∀(x, y) ∈ C2, x 4C y ⇐⇒ y − x ∈ C . (A.11)

Lemma A.47. Let C ⊂ E be a closed convex cone, then

C + C = C .

Proof. Consider a pair of point (c1, c2) of C. By convexity of C, we have c = c1+c2
2 ∈ C.

And as C is a cone, 2c ∈ C. Moreover as C is a closed cone we have 0 ∈ C, thus
C ⊂ C + C.

Definition A.48. For a convex cone C ⊂ E, a function Θ : U → E is said to be C-convex
if

∀(u, v) ∈ C2, Θ
(
tu+ (1− t)v

)
4C tΘ(u) + (1− t)Θ(v) . (A.12)

Proposition A.49. For a convex cone C ⊂ E, if Θ : U → E is a C-convex function then

Uad =
{
u ∈ U | Θ(u) ∈ −C

}
is convex. Moreover if E and U are endowed with topologies such that Θ is sequentially
continuous and C is sequentially closed, then so is Uad.

Note that in metric spaces, and a fortiori in Banach spaces sequential continuity and
continuity are equivalent.

Proof. Consider u and v elements of Uad, and t ∈ [0, 1]. As C is convex, −C is also convex,
thus

tΘ(u) + (1− t)Θ(v) ∈ −C .

By C-convexity of Θ we have

tΘ(u) + (1− t)Θ(v)−Θ
(
tu+ (1− t)v

)
∈ C ,

and as C is a convex cone we have

C + C ⊂ C ,

which leads to
−Θ
(
tu+ (1− t)v

)
∈ C ,

and thus tu+ (1− t)v ∈ Uad.
The sequential continuity result is obvious.

Definition A.50 (Strong convexity). If E is a normed space, a function is said to be
strongly convex of modulus α > 0, or α-convex if

∀t ∈ [0, 1], ∀(x, y) ∈ E2, f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y)− α

2
t(1− t)‖x− y‖E .

Definition A.51 (Coercivity). If E is a normed space, a function f : E 7→ R is said to
be coercive on A ⊂ E if

∀M ∈ R, ∃r > 0, ∀x ∈ A,
∥∥x∥∥ ≥ r =⇒ f(x) ≥M .

In particular a strongly convex function is coercive on E.



A.2. CONVEXITY AND LOWER SEMICONTINUITY 231

A.2.2 Results on Semicontinuity

We recall some results on semicontinuous functions that were needed in the manuscript.

Lemma A.52. Let X and Y be two metric spaces. 4 If f : Y → R is l.s.c and g : X → Y
is continuous, then f ◦ g is l.s.c.

Proof. We consider a sequence {xn}n∈N converging to x. We define yn = g(xn). By
continuity of g, we have that lim inf

xn→x
yn = lim inf

xn→x
g(xn) = g(x). Thus lim inf

xn→x
f ◦ g(xn) =

lim inf
yn→y

f(yn) ≥ f(g(x)).

Lemma A.53. Let X be a metric space. If f : R → R is non-decreasing and g : X → R
is l.s.c, then f ◦ g is l.s.c.

Proof. We consider a sequence {xn}n∈N converging to x. We have that lim inf
xn→x

g(xn) ≥ g(x)

and, by monotonicity of f , we have lim inf
xn→x

f(g(xn)) ≥ f(g(x)).

Lemma A.54. Let X be a metric space. If f : X → R and g : X → R are l.s.c functions
then so are max{f, g} and min{f, g}.

Proof. Recall that a function is l.s.c iff its epigraph is closed. As epi(max{f, g}) = epi(f)∩
epi(g) and epi(min{f, g}) = epi(f) ∪ epi(g), and as epi(f) and epi(g) are closed, so are
epi(min{f, g}) and epi(max{f, g}).

Lemma A.55. Let X be a separated topological space, A a closed convex subset of X,
J : X → R a lower semicontinuous convex function. The function J + χA is convex and
l.s.c..

Proof. By assumption epi(J) is a closed convex subset of E ×R. As A is a closed convex
subset of E, A× R+ is also a closed convex subset of E × R. Thus,

epi
(
J + χA

)
= epi(J) ∩A× R+

is a closed convex set, hence the convexity and lower semicontinuity of J + χA.

Lemma A.56. Then the mapping X 7→ essupp(X ) is lower semicontinuous in the strong
topology of L2

(
Ω,F ,P

)
.

Proof. To prove semicontinuity it is enough to show that the level sets of X 7→ essupp(X )
are closed. Let’s (Xn) be a sequence converging in L2 to X such that essupp(Xn) ≤ M .
We can extract a subsequence (Xnk

) converging almost surely to X . Let’s call Ω′ ⊂ Ω a
set of probability 1 verifying ∀ω ∈ Ω′, limk→∞Xnk

(ω) = X (ω), consequently on this set

X ≤ M and thus
{
X ∈ L2 | essupp(X ) ≤ M

}
is (sequentially) closed (for the strong or

weak topology as the set is convex).

4. We need the equivalence between sequential and classical properties.



232 APPENDIX A. ANALYSIS



Appendix B

Probability

Always pass on what you have learned.

Yoda

Contents

B.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

B.2 Recalls on Lp
(
Ω,F ,P;Rn

)
-spaces . . . . . . . . . . . . . . . . . . . 234

B.3 Convergences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

B.1 Basic Definitions

Definition B.1 (σ-algebra). A σ-algebra F on a set Ω, is a set of subset of Ω satisfying:
• ∅ and Ω are element of F ;
• countable unions of elements of F are element of F ;
• complement of an element of F is in F .

A measurable space is a couple
(
Ω,F

)
where F is a σ-algebra on Ω.

A filtration F =
{
Ft
}T−1

t=0
is an increasing sequence of σ-algebra.

A function f mapping a space endowed with a σ-algebra into another is said to be
measurable if any preimage of the σ-algebra (of the image set) is in the σ-algebra (of the
origin set).

This definition is close to the definition of a topology (see Definition A.1), and a
measurable function comparable to a measurable function.

Definition B.2 (Probability). A probability on a measurable space
(
Ω,F

)
is a function

P mapping F into [0, 1], and satisfying:
• P

(
Ω
)

= 1;
• For any sequence

{
An
}
n∈N of disjunct elements of F , we have

P
( ⋃
n∈N

An
)

=
∑
n∈N

P
(
An
)
.

A probability space is a triple
(
Ω,F ,P

)
where P is a probability on

(
Ω,F

)
.

The expectation w.r.t. probability P is given by

E
[
X
]

=

∫
Ω
X(ω)dP(ω).



234 APPENDIX B. PROBABILITY

The conditional expectation of X w.r.t of sub-σ-algebra G ⊂ F , is defined on L2
(
Ω,F ,P

)
as the G-measurable random variable E

[
X
∣∣ G] satisfying

∀Y ∈ L2
(
Ω,F ,P

)
, E

[
XY

]
= E

[
E
[
X
∣∣ G]Y ] .

It is then extended on L1
(
Ω,F ,P

)
.

Lemma B.3. For every λ ∈ L1
(
Ω,F ,P;Rn

)
, every X ∈ L∞

(
Ω,F ,P;Rn

)
, and every

σ-algebra B ⊂ F ,

E
[
λ · E

[
X
∣∣ B]] = E

[
E
[
λ
∣∣ B] · E[X ∣∣ B]] = E

[
E
[
λ
∣∣ B] ·X] .

Proof. Immediate application of the well known equality E
[
·
]

= E
[
E
[
·
∣∣ Y ]].

B.2 Recalls on Lp
(
Ω,F ,P;Rn

)
-spaces

The subject of Lp
(
Ω,F ,P;Rn

)
-spaces is widely studied and lots of results can be found

in the literature (e.g. [3, Chap. 13]). However note that we are interested in the case where
P is a probability measure, whereas most authors in the functional analysis literature either
works with the Lebesgue measure, or a general measure. A probability measure is more
general than the Lebesgue measure, but is of finite total mass.

Proposition B.4. Consider 1 ≤ p, q ≤ +∞ such that
1

p
+

1

q
= 1, with the convention

1

∞
= 0. We have, for any X ∈ Lp

(
Ω,F ,P;Rn

)
, and any Y ∈ Lq

(
Ω,F ,P;Rn

)
, the Hölder

inequality
‖X · Y ‖1 ≤ ‖X‖p · ‖Y ‖q . (B.1)

Proposition B.5. We have, for all 1 ≤ r ≤ s ≤ ∞

Ls
(
Ω,F ,P;Rn

)
⊂ Lr

(
Ω,F ,P;Rn

)
, (B.2)

and for all X ∈ Ls
(
Ω,F ,P;Rn

)
,

‖X‖r ≤ ‖X‖s . (B.3)

Proof. See [3, Corollary 13.3]. Note that (B.1) holds for any measure, (B.2) for any finite
measure, and (B.3) for probability measures.

Definition B.6. Let
(
Ω,F ,P

)
be a probability space. A function ϕ : Ω → Rn is called

a step-function if there is a sequence of F-measurable sets
(
Ai
)
i∈[[1,N ]]

, and a sequence of

vectors
(
ai
)
i∈[[1,N ]]

such that

ϕ =
N∑
i=1

ai1Ai .

The set of all step-function is a vector space whose interest is given in the following
proposition.

Proposition B.7. For any p ∈ [1,+∞) the space of all step-functions is norm dense in
Lp
(
Ω,F ,P

)
. Thus for any 1 ≤ r ≤ s ≤ +∞, Lr

(
Ω,F ,P

)
is norm dense in Ls

(
Ω,F ,P

)
.

Proof. See [3, Theorem 13.4].

Note that with some more properties on Ω, especially if Ω ⊂ Rm equipped with the
Lebesgue measure, the space of smooth functions with compact support is norm dense in
any Lp for p < +∞.



B.3. CONVERGENCES 235

B.3 Convergences

We quickly review defininitions of convergence in probability. A sequence of random
variable

{
Xn

}
n∈N is said to converges toward X

• almost surely if P
(
Xn →X

)
= 1;

• in probability if ∀ε > 0, P
(
|Xn −X | > ε

)
→ 0;

• in Lp if ||Xn −X ||Lp → 0;
• in law if, for all continuous and bounded function f : X→ R, E

[
f(Xn)

]
→ E

[
f(X )

]
.

We sum up in figure B.1 the following relation between this convergences.
• For +∞ ≥ p > r ≥ 1, convergence in Lp implies convergence in Lr.
• Convergence in L∞ implies almost sure convergence.
• Convergence in Lp, or almost sure imply convergence in probability which in turn

imply convergence in law.
• Dominated convergence theorem can be used together with almost sure convergence

to ensure convergence in L1.
• Convergence in probability implies the almost sure convergence of a subsequence.
Finally, we point out a few topologic properties of this convergences.
• Convergence in Lp is the convergence relative to a norm.
• Convergence in Probability is metrizable.
• Convergence in Law is deduced from a topology (weak? topology).
• Almost sure convergence can not generally be induced by a topology. Indeed, if

almost sure convergence were induced by a topology, then Lemma 7.7, would imply
that convergence in probability imply almost sure convergence. However note that
{Un}n∈N converges in probability toward U iff from any sub-sequence of {Un}n∈N
we can extract a further sub-sequence converging almost surely to U (see [44, Th
2.3.2]).

L∞

Lp

a.s. Lr

P

L

Dominated convergence

Figure B.1: Summing up the relation between probabilistic convergences.



236 APPENDIX B. PROBABILITY



Bibliography

[1] J. C. Alais. Risques et optimisation pour le management d’énergies: application à

l’hydraulique. PhD dissertation, École des Ponts ParisTech, Marne-la-Vallée, France, 2013.

[2] C. Aliprantis and O. Burkinshaw. Positive operators, volume 96. Springer, 1985.

[3] C. D. Aliprantis and K. C. Border. Infinite dimensional analysis: a hitchhiker’s guide.
Springer, 2006.

[4] M.F. Anjos and J.B. Lasserre. Handbook on Semidefinite, Conic and Polynomial Optimiza-
tion. Springer, 2012.

[5] P. Artzner, F. Delbaen, J-M. Eber, D. Heath, and H. Ku. Coherent multiperiod risk adjusted
values and Bellman’s principle. Annals of Operations Research, 152(1):5–22, 2007.

[6] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathematical
Finance, 9:203–228, 1999.

[7] P. Artzner, F. Delbaen, J.M. Eber, D. Heath, and H. Ku. Coherent multiperiod risk mea-
surement. Preprint, www. math. ethz. ch/ delbaen, 2002.

[8] H. Attouch. Variational convergence for functions and operators, volume 1. Pitman Advanced
Pub. Program, 1984.

[9] V. Barbu and T. Precupanu. Convexity and optimization in Banach spaces. Springer, 2012.

[10] K. Barty, P. Carpentier, and P. Girardeau. Decomposition of large-scale stochastic optimal
control problems. RAIRO. Recherche opérationnelle, 44(3):167–183, 2010.

[11] R. Bellman. Dynamic programming and the smoothing problem. Management Science,
3(1):111–113, 1956.

[12] R. E. Bellman. Dynamic Programming. Princeton University Press, Princeton, N.J., 1957.

[13] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization. Princeton University
Press, 2009.

[14] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization – Analysis, Algo-
rithms, and Engineering Applications. MPS-SIAM Series on Optimization 2. SIAM, 2001.

[15] A. Ben-Tal and A. Nemirovski. Robust optimization–methodology and applications. Math-
ematical Programming, 92(3):453–480, 2002.

[16] P. Bernhard. Max-plus algebra and mathematical fear in dynamic optimization. Set-Valued
Analysis, 8(1-2):71–84, 2000.

[17] D. Bertsekas. Dynamic programming and optimal control, volume 1. Athena Scientific Bel-
mont, 1995.

[18] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
Massachusets, second edition, 2000. Volumes 1 and 2.

[19] D. Bertsekas. Approximate dynamic programming. Citeseer, 2011.

[20] D. Bertsekas and S. Shreve. Stochastic optimal control: The discrete time case, volume 139.
Academic Press New York, 1978.

[21] J.R. Birge and F. Louveaux. Introduction to stochastic programming. Springer, 2011.

[22] A. Bobrowski. Functional analysis for probability and stochastic processes: an introduction.
Cambridge University Press, 2005.

[23] K. Boda and J. A Filar. Time consistent dynamic risk measures. Mathematical Methods of
Operations Research, 63(1):169–186, 2006.

[24] J.F. Bonnans and A. Shapiro. Perturbation analysis of optimization problems. Springer,
2000.

[25] H. Brezis. Analyse fonctionelle, volume 5. Masson, 1983.

[26] P. Carpentier, J-P. Chancelier, G. Cohen, M. De Lara, and P. Girardeau. Dynamic consis-
tency for stochastic optimal control problems. Annals of Operations Research, 200(1):247–
263, 2012.



238 BIBLIOGRAPHY

[27] Z. L. Chen and W. Powell. A convergent cutting-plane and partial-sampling algorithm for
multistage linear programs with recourse. Journal of Optimization Theory and Applications,
pages 497–524, 1999.

[28] P. Cheridito, F. Delbaen, and M. Kupper. Dynamic monetary risk measures for bounded
discrete-time processes. Electronic Journal of Probability, 11(3):57–106, 2006.

[29] P. Cheridito and M. Kupper. Composition of time-consistent dynamic monetary risk mea-
sures in discrete time. International Journal of Theoretical and Applied Finance, 14(01):137–
162, 2011.

[30] G. Cohen. Auxiliary problem principle and decomposition of optimization problems. Journal
of optimization Theory and Applications, 32(3):277–305, 1980.

[31] K. D. Cotter. Similarity of information and behavior with a pointwise convergence topology.
Journal of mathematical economics, 15(1):25–38, 1986.

[32] A. Dallagi. Méthodes particulaires en commande optimale stochastique. PhD thesis, Univer-
sité Panthéon-Sorbonne-Paris I, 2007.

[33] G. Dantzig. Linear programming and extensions. Princeton university press, 1965.

[34] M. De Lara and L. Doyen. Sustainable management of natural resources. Springer, 2008.

[35] C. Dellacherie and P.A. Meyer. Probabilités et potentiel. Hermann, Paris, 1975.

[36] C Dellacherie and PA Meyer. Probabilités et potentiel, chapitres i-iv. hermann, paris, 1975.
english translation: Probabilities and potentiel, chapters i-iv, 1978.

[37] K. Detlefsen and G. Scandolo. Conditional and dynamic convex risk measures. Finance and
Stochastics, 9(4):539–561, 2005.

[38] C. J. Donohue. Stochastic Network Programming and the Dynamic Vehicle Allocation Prob-
lem. PhD dissertation, University of Michigan, Ann Arbor, Michigan, 1996.

[39] C. J. Donohue and J. R. Birge. The abridged nested decomposition method for multistage
stochastic linear programs with relatively complete recourse. Algorithmic Operations Re-
search, 1:20–30, 2006.

[40] L. Doyen and M. De Lara. Stochastic viability and dynamic programming. Systems &
Control Letters, 59(10):629–634, 2010.

[41] S. Dreyfus. Richard Bellman on the birth of dynamic programming. Operations Research,
50(1):48–51, 2002.

[42] N. Dunford and J. T Schwartz. Linear Operators. Part 1: General Theory. Interscience
publishers New York, 1958.

[43] J. Dupacová and R. Wets. Asymptotic behavior of statistical estimators and of optimal
solutions of stochastic optimization problems. The annals of statistics, 16(4), 1988.

[44] R. Durrett and R. Durrett. Probability: theory and examples. Cambridge Univ Pr, 2010.

[45] I. Ekeland and R. Téman. Convex analysis and variational problems. Society for Industrial
and Applied Mathematics, 1999.

[46] H. Everett. Generalized Lagrange multiplier method for solving problems of optimum allo-
cation of resources. Operations Research, 11:399–417, 1963.

[47] E.C. Finardi and E.L. da Silva. Solving the hydro unit commitment problem via dual
decomposition and sequential quadratic programming. IEE Transactions on Power Systems,
21(2):835–844, 2006.

[48] H. Föllmer and A. Schied. Convex measures of risk and trading constraints. Finance and
Stochastics, 6:429–447, 2002.

[49] A. Georghiou, W. Wiesemann, and D. Kuhn. Generalized decision rule approximations for
stochastic programming via liftings. Optimization Online, 2010.

[50] P. Girardeau. Résolution de grands problèmes en optimisation stochastique dynamique et
synthèse de lois de commande. PhD thesis, Université Paris-Est, 2010.

[51] D. E. Goldberg et al. Genetic algorithms in search, optimization, and machine learning,
volume 412. Addison-wesley Reading Menlo Park, 1989.

[52] G.R. Grimmett and D.R. Stirzaker. Probability and Random Processes: Second Edition.
Oxford University Press, 1992.

[53] P. Hammond. Changing tastes and coherent dynamic choice. The Review of Economic
Studies, 43(1):159–173, February 1976.

[54] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer,
2009.

[55] M. Hindsberger and A. Philpott. ReSa: A method for solving multi-stage stochastic linear
programs. SPIX Stochastic Programming Symposium, Berlin, 2001.

[56] A. Jobert and L. CG Rogers. Valuations and dynamic convex risk measures. Mathematical
Finance, 18(1):1–22, 2008.



BIBLIOGRAPHY 239

[57] J.E. Kelley Jr. The cutting-plane method for solving convex programs. Journal of the Society
for Industrial & Applied Mathematics, 8(4):703–712, 1960.

[58] J. L Kelley, I. Namioka, W. F Donoghue, K. R Lucas, B.J. Pettis, E. T. Poulsen, G. B.
Price, W. Robertson, W.R. Scott, and K. T. Smith. Linear topological spaces, volume 8. van
Nostrand Princeton, 1963.

[59] A. King and R. Wets. Epi-consistency of convex stochastic programs. Stochastics and
Stochastic Reports, 34(1-2), 1991.

[60] S. Kirkpatrick, M.P. Vecchi, et al. Optimization by simmulated annealing. science,
220(4598):671–680, 1983.

[61] D.M. Kreps and E.L. Porteus. Temporal resolution of uncertainty and dynamic choice theory.
Econometrica: journal of the Econometric Society, 46(1):185–200, 1978.

[62] H. Kudo. A note on the strong convergence of σ-algebras. The Annals of Probability, 2(1):76–
83, 1974.

[63] D. Kuhn, W. Wiesemann, and A. Georghiou. Primal and dual linear decision rules in
stochastic and robust optimization. Mathematical Programming, 130(1), 2011.

[64] K. Linowsky and A. Philpott. On the convergence of sampling-based decomposition algo-
rithms for multistage stochastic programs. Journal of Optimization Theory and Applications,
125:349–366, 2005.

[65] M. Machina. Dynamic consistency and non-expected utility models of choice under uncer-
tainty. Journal of Economic Litterature, 27:1622–1668, 1989.

[66] K. Miettinen. Nonlinear multiobjective optimization, volume 12. Springer, 1999.

[67] J. M. Mulvey, R. J. Vanderbei, and S. A. Zenios. Robust optimization of large-scale systems.
Operations research, 43(2):264–281, 1995.

[68] G. Nemhauser and L. Wolsey. Integer and combinatorial optimization, volume 18. Wiley
New York, 1988.

[69] Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer, Boston, 2004.

[70] Y. Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer, 2004.

[71] M. Nowak. A characterization of the Mackey topology τ(L∞, L1). Proceedings of the Amer-
ican Mathematical Society, 108(3):683–689, 1990.

[72] K. Owari. A robust version of convex integral functionals. arXiv preprint arXiv:1305.6023,
2013.

[73] B. Peleg and M. Yaari. On the existence of a consistent course of action when tastes are
changing. Review of Economic Studies, 40(3):391–401, July 1973.

[74] T. Pennanen. Epi-convergent discretizations of multistage stochastic programs. Mathematics
of Operations Research, 30(1):245–256, 2005.

[75] T. Pennanen. Epi-convergent discretizations of multistage stochastic programs via integra-
tion quadratures. Mathematical Programming, 116(1-2):461–479, 2009.

[76] T. Pennanen and M. Koivu. Epi-convergent discretizations of stochastic programs via inte-
gration quadratures. Numerische mathematik, 100(1):141–163, 2005.

[77] M. V. F. Pereira and L. M. V. G. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical Programming, 52(2):359–375, 1991.

[78] G. Pflug and A. Pichler. On dynamic decomposition of multistage stochastic programs.
Optimization Online preprint, 2:11, 2012.

[79] A. Philpott, V. de Matos, and E. Finardi. On solving multistage stochastic programs with
coherent risk measures. Operations Research, 61(4):957–970, 2013.

[80] A. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming and
related methods. Operations Research Letters, 36(4):450–455, 2008.

[81] A. Philpott and Z. Guan. A multistage stochastic programming model for the New Zealand
dairy industry. International Journal of Production Economics, 134(2):289–299, 2011.

[82] L. Piccinini. A new version of the multivalued fatou lemma. Journal of Applied Analysis,
4(2), 1998.

[83] W. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality, vol-
ume 703. John Wiley & Sons, 2007.

[84] F. Riedel. Dynamic coherent risk measures. Stochastic Processes and their Applications,
112(2):185–200, 2004.

[85] F. Riedel. Dynamic coherent risk measures. Stochastic Processes and their Applications,
112(2):185–200, 2004.



240 BIBLIOGRAPHY

[86] R. T. Rockafellar, R. Wets, et al. Stochastic convex programming: singular multipliers and
extended duality, singular multipliers and duality. Pacific J. Math, 62(2):507–522, 1976.

[87] R.T. Rockafellar. Extension of Fenchel’s duality theorem for convex functions. Duke math-
ematical journal, 33(1):81–89, 1966.

[88] R.T. Rockafellar. Integrals which are convex functionals. Pacific J. Math, 24(3):525–539,
1968.

[89] R.T. Rockafellar. Conjugate duality and optimization, volume 16. Society for Industrial
Applied Mathematics, 1974.

[90] R.T. Rockafellar and S. Uryasev. Conditional value-at-risk for general loss distributions.
Journal of Banking & Finance, 26(7):1443–1471, 2002.

[91] R.T. Rockafellar and R. Wets. Stochastic convex programming: Kuhn-tucker conditions.
Journal of Mathematical Economics, 2(3):349–370, 1975.

[92] R.T. Rockafellar and R. Wets. Nonanticipativity and l1-martingales in stochastic optimiza-
tion problems. In Stochastic Systems: Modeling, Identification and Optimization, II, pages
170–187. Springer, 1976.

[93] R.T. Rockafellar and R. Wets. Stochastic convex programming: relatively complete recourse
and induced feasibility. SIAM Journal on Control and Optimization, 14(3):574–589, 1976.

[94] R.T. Rockafellar and R. Wets. Measures as lagrange multipliers in multistage stochastic
programming. Journal of mathematical analysis and applications, 60(2), 1977.

[95] R.T. Rockafellar and R. Wets. The optimal recourse problem in discrete time: l1-multipliers
for inequality constraints. SIAM Journal on Control and Optimization, 16(1), 1978.

[96] R.T. Rockafellar and R. Wets. Variational Analysis, volume 317. Springer Verlag, 1998.

[97] R.T. Rockafellar, R. Wets, et al. Stochastic convex programming: basic duality. Pacific J.
Math, 62(1):173–195, 1976.

[98] R.T. Rockafellar and R. J-B. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of operations research, 16(1):119–147, 1991.

[99] W. Rudin. Functional analysis. International series in pure and applied mathematics.
McGraw-Hill, New York, 1991.

[100] B. Rudloff, A. Street, and D. M. Valladão. Time consistency and risk averse dynamic
decision models: Definition, interpretation and practical consequences. European Journal
of Operational Research, 2013.

[101] A. Ruszczyński. Decomposition methods. Handbooks in Operations Research and Manage-
ment Science, 10:141–211, 2003.

[102] A. Ruszczyński. Nonlinear Optimization. Princeton University Press, 2011.

[103] A. Ruszczyński and A. Shapiro. Conditional risk mappings. Mathematics of Operations
Research, pages 544–561, 2006.

[104] A. Ruszczyński and A. Shapiro. Optimization of convex risk functions. Mathematics of
Operations Research, pages 433–452, 2006.

[105] A. Ruszczyński. Risk-averse dynamic programming for Markov decision processes. Mathe-
matical Programming, 125:235–261, 2010.

[106] Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of multiobjective optimization, volume
176. Academic press New York, 1985.

[107] A. Shapiro. On a time consistency concept in risk averse multistage stochastic programming.
Operations Research Letters, 37(3):143–147, 2009.

[108] A. Shapiro. Analysis of stochastic dual dynamic programming method. European Journal
of Operational Research, 209(1):63 – 72, 2011.

[109] A. Shapiro. Minimax and risk averse multistage stochastic programming. European Journal
of Operational Research, 219(3):719–726, 2012.

[110] A. Shapiro, D. Dentcheva, and A. Ruszczyński. Lectures on stochastic programming: model-
ing and theory, volume 9. Society for Industrial and Applied Mathematics, 2009.

[111] A. Shapiro and A. Nemirovski. On complexity of stochastic programming problems. In
Continuous optimization. Springer, 2005.

[112] Alexander Shapiro. On complexity of multistage stochastic programs. Operations Research
Letters, 34(1):1–8, 2006.

[113] R. H. Strotz. Myopia and inconsistency in dynamic utility maximization. The Review of
Economic Studies, 23(3):165–180, 1955-1956.

[114] C. Strugarek. Approches variationnelles et autres contributions en optimisation stochastique.
PhD thesis, Ecole des Ponts ParisTech, 2006.



BIBLIOGRAPHY 241

[115] Jean-Paul Watson and David L Woodruff. Progressive hedging innovations for a class of
stochastic mixed-integer resource allocation problems. Computational Management Science,
8(4):355–370, 2011.

[116] R. Wets. On the relation between stochastic and deterministic optimization. In Control The-
ory, Numerical Methods and Computer Systems Modelling, pages 350–361. Springer, 1975.

[117] P. Whittle. Optimization over time. John Wiley & Sons, Inc. New York, NY, USA, 1982.

[118] H. S. Witsenhausen. A standard form for sequential stochastic control. Mathematical Systems
Theory, 7(1):5–11, 1973.

[119] H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite Program-
ming – Theory, Algorithms, and Applications. Kluwer Academic Publishers, 2000.

[120] M. Zervos. On the epiconvergence of stochastic optimization problems. Mathematics of
Operations Research, 24(2), 1999.


	Introduction
	Preliminaries
	Framing Stochastic Optimization Problems
	Decomposition Methods
	A Dam Management Example


	I Dynamic Programming: Risk and Convexity
	Time-Consistency: from Optimization to Risk Measures
	Introductory Examples
	Time-Consistency: Problem Statement
	Proving Joint Time-Consistency
	Extension to Markov Aggregators
	Discussion

	Stochastic Dual Dynamic Programming Algorithm
	Deterministic Case
	Stochastic Case with a Finite Distribution
	Discussion


	II Duality in Stochastic Optimization
	Constraint Qualification in Stochastic Optimization
	Abstract Duality Theory 
	Two Examples on Constraint Qualification
	Discussion

	Constraint Qualification in (to1.5.L,L1)to1.5.
	Topologies on L(to.,F,P;Rd)to.
	A Duality Result Through Mackey-Continuity
	Application to a Multistage Problem

	Uzawa Algorithm in L(to.,F,P;Rn)to.
	Optimization Results and Classical Uzawa Algorithm
	Uzawa Algorithm in L(to.,F,P;Rn)to. Spaces
	Application to a Multistage Problem


	III Stochastic Spatial Decomposition Methods
	Epiconvergence of Relaxed Stochastic Problems
	Problem Statement
	Epiconvergence Result
	Examples of Continuous Operators
	Application to a Multistage Problem

	Dual Approximate Dynamic Programming Algorithm
	Overview of the DADP Method
	DADP Algorithm Step by Step
	Theoretical Analysis of the DADP Method
	Numerical Results for the Hydraulic Valley Example
	Discussion on the Information Model


	Conclusion
	Analysis
	Topology and Duality
	Convexity and Lower Semicontinuity

	Probability
	Basic Definitions
	Recalls on Lp(to.,F,P;Rn)to.-spaces
	Convergences


	Bibliography

