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Abstract

Stochastic optimal control addresses sequential decision-making under uncertainty. As
applications leads to large-size optimization problems, we count on decomposition meth-
ods to tackle their mathematical analysis and their numerical resolution. We distinguish
two forms of decomposition. In chained decomposition, like Dynamic Programming, the
original problem is solved by means of successive smaller subproblems, solved one after
the other. In parallel decomposition, like Progressive Hedging, the original problem is
solved by means of parallel smaller subproblems, coordinated and updated by a master
algorithm.

In the �rst part of this manuscript, Dynamic Programming: Risk and Convexity, we
focus on chained decomposition; we address the well known time decomposition that
constitutes Dynamic Programming with two questions. In Chapter 2, we extend the
traditional additive in time and risk neutral setting to more general ones for which we
establish time-consistency. In Chapter 3, we prove a convergence result for the Stochastic
Dual Dynamic Programming Algorithm in the case where (convex) cost functions are no
longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization , we �rst point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing�

L1 ; L1
�

in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa

Algorithm in L 1
�

 ; F ; P; Rn

�
.

The third part of this manuscript, Stochastic Spatial Decomposition Methods, is devoted
to the so-called Dual Approximate Dynamic Programming Algorithm. In Chapter 7, we
prove that a sequence of relaxed optimization problems epiconverges to the original one,
where almost sure constraints are replaced by weaker conditional expectation ones and
that corresponding � -�elds converge. In Chapter 8, we give theoretical foundations and
interpretations to the Dual Approximate Dynamic Programming Algorithm.



R�esum�e

Le contrôle optimal stochastique (en temps discret) s'int�eresse aux probl�emes de
d�ecisions s�equentielles sous incertitude. Les applications conduisent �a des probl�emes d'op-
timisation de grande taille. En r�eduisant leur taille, les m�ethodes de d�ecomposition perme-
ttent le calcul num�erique des solutions. Nous distinguons ici deux formes de d�ecomposition.
La d�ecomposition châ�n�ee, comme la Programmation Dynamique, r�esout successivement
des sous-probl�emes de petite taille. Lad�ecomposition parall�ele , comme le Progressive Hedg-
ing, consiste �a r�esoudre it�erativement et parall�element les sous-probl�emes coordonn�es par
un algorithme mâ�tre.

Dans la premi�ere partie de ce manuscrit,Dynamic Programming : Risk and Convexity,
nous nous int�eressons �a la d�ecomposition châ�n�ee, en particulier temporelle, connue sous le
nom de Programmation Dynamique. Dans le chapitre 2, nous �etendons le cas traditionel,
risque-neutre, de la somme en temps des coûts �a un cadre plus g�en�eral pour lequel nous
�etablissons des r�esultats de coh�erence temporelle. Dans le chapitre 3, nous �etendons le
r�esultat de convergence de l'algorithme SDDP (Stochastic Dual Dynamic Programming
Algorithm ) au cas o�u les fonctions de coûts (convexes) ne sont plus poly�edrales.

Puis, nous nous tournons vers la d�ecomposition parall�ele, en particulier vers les
m�ethodes de d�ecomposition obtenues en dualisant les contraintes (contraintes spatiales
presque sûres, ou de non-anticipativit�e). Dans la seconde partie de ce manuscrit,Duality
in Stochastic Optimization, nous commen�cons par souligner que de telles contraintes peu-
vent soulever des probl�emes de dualit�e d�elicats (chapitre 4). Nous �etablissons un r�esultat

de dualit�e dans les espaces pair�es
�

L1 ; L1
�

au chapitre 5. Finalement, au chapitre 6, nous

montrons un r�esultat de convergence de l'algorithme d'Uzawa dans L1
�

 ; F ; P; Rn

�
. qui

requiert l'existence d'un multiplicateur optimal.
La troisi�eme partie de ce manuscrit, Stochastic Spatial Decomposition Methods, est

consacr�ee �a l'algorithme connu sous le nom de DADP (Dual Approximate Dynamic Pro-
gramming Algorithm). Au chapitre 7, nous montrons qu'une suite de probl�emes d'opti-
misation |dans lesquelles une contrainte presque sûre est relax�ee en une contrainte en
esp�erance conditionnelle| �epi-converge vers le probl�eme original si la suite des tribus
converge vers la tribu globale. Finalement, au chapitre 8, nous pr�esentons l'algorithme
DADP, des interpr�etations, des r�esultats de convergence bas�es sur la seconde partie du
manuscript.
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Notations

We lay out the general rules and conventions followed in the manuscript:
� the random variables are written in bold,
� the letter x refers to a state,u refers to a control and w refers to a noise,
� the symbol ] refers to optimality,
� the letters j and J refer to the objective function, and the letter � to the constraint

function.
Here are the main notations:

[[a; b]] set of integers betweena and b�
un

	 n1

n= n0
sequence

�
un0 ; un0+1 ; � � � ; un1

	
(also written

�
un

	 n1

n0
)

�
A t

� t2

t= t1
Cartesian product of setsA t1 � � � � � A t2

w.r.t. with respect to
� (X ) � -�eld generated by the random variable X

X � F the random variable X is measurable w.r.t. the � -�eld F
X � Y the random variable X is � (Y )-measurable
xn ! x the sequence (xn )n2 N (strongly) converges towardsx
xn * x the sequence (xn )n2 N weakly-converges towardsx�

 ; F ; P

�
probability space equipped with � -algebra F and probability P

F
�
E; F

�
space of functions mappingE into F

L p(
 ; F ; P; E) space of allF -measurable functions
with �nite moment of order p taking value in E

Lp(
 ; F ; P; E) Banach space of all equivalence classes ofL p(
 ; F ; P) functions,
up to almost sure equality

E, EP mathematical expectation w.r.t. probability P
P-a.s., a.s. P-almost surely

lim upper limit
lim lower limit
� A indicator function taking value 0 on A, and +1 elsewhere
1A characteristic function taking value 1 on A, and 0 elsewhere

domf domain of f , i.e. set of points wheref is �nite
f � g means that the functions f and g are equal everywhere
A�( A) a�ne hull of the set A

jAj cardinal of the (�nite) set A
hy ; xi Y;X duality pairing of y 2 Y against x 2 X

x � y usual Euclidian scalar product of x 2 Rn against y 2 Rn

X ? topological dual of X (i.e. the space of the continuous linear forms onX )
int( A) interior of set A
ri( A) relative interior of set A
P(A) the set of subsets ofA

R the set of extended realsR [ f + 1g [ f�1g
�R the set R [ f + 1g (used in Chapter 2)
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Introduction

Mathematicians are like Frenchmen : whatever you say
to them they translate into their own language and
forthwith it is something entirely di�erent.

Johann Wolfang von Goethe

Ce premier chapitre introductif est l'occasion de situer et pr�esenter les travaux expos�es
dans ce manuscrit. Dans un premier temps nous pr�esentons le cadre g�en�eral de l'optimi-
sation stochastique dynamique en temps discret, et donnons un aper�cu des m�ethodes de
d�ecomposition. Nous pr�esentons ensuite les trois parties du manuscrit. La premi�ere est
consacr�ee �a la programmation dynamique. La seconde �a la th�eorie de la dualit�e dans le
cadre de l'optimisation stochastique qui sera utile pour mettre en oeuvre des m�ethodes
de d�ecomposition telle que la d�ecomposition par les prix. La troisi�eme partie exploite les
r�esultats de la seconde pour construire une m�ethode de d�ecomposition spatiale en optimi-
sation stochastique.

Optimisation Stochastique en Temps Discret

Cadre G�en�eral

L'optimisation, au sens math�ematique, a pour but de trouver le minimum d'une fonc-
tion objectif sous un ensemble de contraintes. La fonction objectif d�enot�ee J : U !
R [ f + 1g peut être, dans un contexte �economique, un coût ; dans un contexte physique
une �energie ; ou encore, dans un contexte statistique, l'oppos�e d'un maximum de vraisem-
blance. Au cours de cette th�ese nous utiliserons le vocabulaire du monde �economique.
La fonction objectif sera donc uncoût, d�enot�e classiquement J , son argument uncontrôle
d�enot�e classiquement u. Notons que, dans de tr�es nombreux cas, un probl�eme r�eel comporte
des incertitudes. Parfois ces incertitudes peuvent être n�eglig�ees et un cadre d�eterministe
être su�sant. Dans d'autres cas ces incertitudes peuvent être mod�elis�ees par une variable
al�eatoire W , le probl�eme devient alors un probl�eme d'optimisation stochastique.

Nous nous int�eressons particuli�erement �a l' optimisation stochastique dynamique en
temps discret �a horizon �ni . Pour cela nous consid�erons un syst�eme dynamique contrôl�e
d�e�ni par un �etat initial x0 et une �equation d'�evolution

X t+1 = f t (X t ; U t ; W t+1 ) :

L' �etat physique du syst�eme �a l'instant t + 1 est d�enot�e X t+1 et est d�etermin�e par son �etat
�a l'instant t ainsi que par le contrôle U t choisi �a l'instant t. Le terme \temps discret"
souligne que la variable de tempst est discr�ete et non continue (auquel cas le syst�eme
dynamique serait dirig�e par une �equation di��erentielle). Le terme \horizon �ni" signi�e
qu'il existe un instant T �a partir duquel le comportement du syst�eme ne nous int�eresse
plus.



2 CHAPITRE 0. INTRODUCTION

Nous consid�erons �a chaque pas de temps un coût instantan�eL t
�
X t ; U t ; W t+1

�
qui

d�epend de l'�etat actuel du syst�eme X t , du contrôle choisi U t et d'un bruit W t+1 . Nous
consid�erons �egalement un coût �nal K (X T ) qui d�epend de l'�etat �nal du syst�eme dy-
namique. Nous avons doncT + 1 coûts di��erents, chacun �etant al�eatoire. Ces suites de
coûts al�eatoires sont agr�eg�ees pour pouvoir être compar�ees. Il existe diverses mani�eres de
les agr�eger. La plus courante consiste �a minimiser l'esp�erance de la somme en temps de
ces coûts. Une zoologie des approches alternatives sera pr�esent�ee au chapitre 2. Dans le
cas usuel le probl�eme d'optimisation s'�ecrit

min
X ;U

E
hT � 1X

t=0

L t
�
X t ; U t ; W t+1

�
+ K (X T )

i
(1a)

s:t: X 0 = x0 (1b)

X t+1 = f t
�
X t ; U t ; W t+1

�
t = 0 ; : : : ; T � 1; (1c)

� t
�
X t ; U t

�
= 0 t = 0 ; : : : ; T � 1; (1d)

U t � F t t = 0 ; : : : ; T � 1 : (1e)

La notation U t � F t , signi�e que U t est mesurable par rapport �a F t . Cette contrainte
(contrainte (1e)) repr�esente l'information disponible �a l'instant t pour prendre la d�ecision
U t . Habituellement, la tribu F t est donn�ee par

F t = �
�
W 1; : : : ; W t

�
: (2)

En d'autres termes, le contrôleU t est pris en connaissant tous les bruits pass�es. Une famille

de d�ecisions
�

U t

	 T � 1
t=1 qui v�eri�e les contraintes de mesurabilit�e (contrainte (1e)), o�u F t

est donn�e par (2), est dite non-anticipative, car elle n'anticipe pas le futur.

M�ethodes de D�ecomposition

Un probl�eme d'optimisation stochastique dynamique est a priori di�cile �a r�esoudre.
En e�et, supposons que les bruits soient une suite de variables al�eatoires ind�ependantes
prenant 3 valeurs, et que chaque contrôleU t puisse prendre deux valeurs (typiquement
marche ou arrêt), alors le nombre de contrôles non anticipatifs est 2(3

T +1 � 1)=2, ce qui est
rapidement colossal. En e�et, la complexit�e du probl�eme est exponentielle en l'horizon de
temps, ainsi qu'en la taille des variables. En particulier, tester toutes les solutions d'un
probl�eme d'optimisation dynamique stochastique est num�eriquement impossible d�es que
l'on sort des probl�emes les plus triviaux.

Pour attaquer les probl�emes complexes il existe de nombreuses m�ethodes, exploitant
les propri�et�es sp�eci�ques des probl�emes, ou mettant en place des heuristiques. Parmi elles
nous nous int�eressons aux m�ethodes de d�ecomposition. Une approche par d�ecomposition
consiste �a construire, �a partir du probl�eme original, un ensemble de sous-probl�emes plus
simples �a r�esoudre. It�erativement les sous-probl�emes sont r�esolus, puis ajust�es jusqu'�a ce
que les solutions des sous-probl�emes permettent de synth�etiser la solution du probl�eme
global. Nous pr�esentons enx1.2 une approche uni��ee des m�ethodes de d�ecomposition.

Supposons que chaque coût1 L t
�
X t ; U t ; W t+1

�
est en fait une somme de coûts locaux

L t
�
X t ; U t ; W t+1

�
=

NX

i =1

L i
t

�
X i

t ; U i
t ; W t+1

�
;

1. Oublions quelques temps le coût �nal K
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o�u U t =
�

U i
t

	 N
i =1 et X t =

�
X i

t

	 N
i =1 . Supposons qu'il en va de même pour la contrainte (1d).

Ainsi le probl�eme (1) devient

min
X ;U

X

! 2 


NX

i =1

T � 1X

t=0

P
�
f ! g

�
L i

t

�
X i

t (! ); U i
t (! ); W t (! )

�
(3a)

s:t: X i
t+1 (! ) = f i

t

�
X i

t (! ); U i
t (! ); W t (! )

�
8t; 8i; 8! (3b)

NX

i =1

� i
t

�
X i

t (! ); U i
t (! )

�
= 0 8t; 8! (3c)

U i
t � F t 8t; 8i ; (3d)

On peut noter que le probl�eme d'optimisation consiste �a minimiser une somme en temps
(variable t), en unit�e (variable i ) et en al�ea (variable ! ). Sans les contraintes nous au-
rions donc j
 j � T � N probl�emes ind�ependants dont on veut minimiser la somme. Si
les probl�emes sont ind�ependants (les variables vivent dans un produit cart�esien) alors
la somme des minima est le minimum de la somme. En d'autres termes il su�t de min-
imiser chaque coûtL i

t

�
X i

t (! ); U i
t (! ); W t (! )

�
par rapport �a U i

t (! ) pour obtenir la solution
du probl�eme global. Malheureusement ces di��erents coûts ne sont pas ind�ependants. En
d'autres termes, les contrôlesX i

t (! ); U i
t (! ) doivent r�epondre �a des contraintes :

� en temps, �a cause de l'�equation de dynamique du syst�eme (Contrainte (3b)) ;
� en espace, �a cause de la contrainte couplante du probl�eme (Contrainte (3c)) ;
� en al�ea, �a cause de la contrainte de mesurabilit�e des contrôles (Contrainte (3d)).

Nous pr�esenterons plus tard comment les m�ethodes de dualit�e permettent de remplacer
les contraintes par un m�ecanisme de prix, et donc de d�ecomposer le probl�eme (3) en une
somme de probl�emes ind�ependants.

Nous allons commencer par une autre approche, dite ded�ecomposition châ�n�ees, o�u
l'on r�esout successivement des probl�emes de plus petite taille. Cette approche porte le nom
de Programmation Dynamique.

Autour de la Programmation Dynamique

La programmation dynamique est une m�ethode g�en�erale de r�esolution d'un probl�eme
d'optimisation multi-�etape. Elle s'appuie sur la notion d'�etat, qui sera discut�ee en 1.2.4.

Dans un premier temps nous faisons une pr�esentation simple et succincte de cette
m�ethode, puis nous pr�esentons les r�esultats principaux du chapitre 2 qui �etend la Pro-
grammation Dynamique �a un cadre plus g�en�eral, �nalement nous pr�esentons les r�esultats
principaux du chapitre 3 qui exploite la programmation dynamique pour construire un
algorithme e�cace de r�esolution de probl�eme d'optimisation stochastique dynamique.

Programmation Dynamique

Consid�erons le probl�eme (1), en faisant l'importante hypoth�ese que la suite de bruits
f W t g

T � 1
t=1 est une suite de variables al�eatoires ind�ependantes. Dans ce cas (sous des con-

ditions d'existence de solution) on sait (voir [12, 18]) qu'il existe un contrôle optimal
�

U t
] 	 T � 1

t=0 qui s'�ecrit comme fonction de l'�etat X t , i.e.

U t
] = � t

�
X t

] � ;

o�u � t est une strat�egie, c'est �a dire une fonction qui va de l'espaceXt des �etats �a l'instant t
dans l'espace des contrôlesUt �a l'instant t. Pour construire cette strat�egie nous d�e�nissons
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la fonction valeur de Bellman, obtenue par r�ecurrence arri�ere :

VT
�
xT

�
= K (xT ) 8xT 2 XT ; (4a)

Vt
�
x t

�
= min

u2 Ut
E

h
L t

�
x t ; u; W t+1

�
+ Vt+1 � f t

�
x t ; u; W t+1

� i
8x t 2 Xt : (4b)

La fonction valeur Vt : Xt ! R s'interpr�ete comme le coût minimal du syst�eme en
partant d'un �etat x t 2 Xt �a l'instant t. Ainsi, l'�equation de r�ecurrence (4) s'interpr�ete en
disant que le contrôle optimal �a l'instant t est celui qui minimise, en moyenne, la somme
du coût instantan�e L t

�
x t ; u; W t+1

�
et du coût futur Vt+1 � f t

�
x t ; u; W t+1

�
. Une strat�egie

optimale f � t gT � 1
t=0 est alors donn�ee par

� t (x t ) 2 arg min
u2 Ut

E
h
L t

�
x t ; u; W t+1

�
+ Vt+1 � f t

�
x t ; u; W t+1

� i
:

La programmation dynamique est une m�ethode de d�ecomposition en temps, puisque
l'on r�esout T probl�emes �a un pas de temps, au lieu d'un probl�eme �a T pas de temps. Ainsi la
complexit�e est lin�eaire en temps, et non plus exponentielle comme le serait une approche
gloutonne. En revanche elle n�ecessite le recours �a une notion d'�etat, et la complexit�e
est exponentielle en la dimension de l'�etat. Ainsi la Programmation Dynamique ne sera
num�eriquement e�cace que si la dimension de l'�etat n'est pas trop importante (en pratique
un �etat de dimension 4 ou 5 est �a la limite de nos capacit�es de calcul).

Parfois le probl�eme (1) ne satisfait pas l'hypoth�ese des bruits ind�ependants, mais on
peut se ramener �a une forme avec bruits ind�ependants si on �etend l'�etat. Par exemple, si
les bruits ont une dynamique d'ordre 1, �a savoir

W t+1 = ~f t
�
W t ; cW t

�
; (5)

o�u f cW t g
T � 1
t=0 est une suite de variables al�eatoires ind�ependantes. Le nouvel �etat

cX t =
�
X t ; W t

�
; (6)

est appel�e un �etat informationnel , et suit la dynamique

cX t+1 =
�

f t
�
X t ; W t

�
; ~f t

�
W t ; cW t

� �
: (7)

Avec cet �etat �etendu nous pouvons utiliser une approche par programmation dynamique.
Le probl�eme (1) consid�ere la somme sur les al�eas (esp�erance) d'un somme temporelle

de coûts. Nous pr�esentons dans la section suivante une extension du cadre d'application
de la Programmation Dynamique, et ses liens avec la propri�et�e de consistance temporelle.

Cadre G�en�eral et Consistance Temporelle

Un probl�eme d'optimisation dynamique stochastique (en temps discret) est un
probl�eme de d�ecision s�equentielle sous incertitudes. Cela signi�e, en reprenant les notations
du probl�eme (1), que nous avons une suite deT +1 coûts al�eatoires C t = L t

�
X t ; U t ; W t+1

�

�a \minimiser". Pour pouvoir minimiser il faut pouvoir comparer des processus stochas-
tiques. Une m�ethode g�en�erique simple, consiste �a agr�eger le processus de coûts en un r�eel,
parfois appel�e l'�equivalent certain du processus de coûts. La th�eorie des mesures de risque
dynamique s'int�eresse aux op�erateurs associant �a un processus de coûts son �equivalent cer-
tain. Une mani�ere de faire consiste �a aggr�eger en temps les di��erents coûts, pour obtenir
une variable al�eatoire, puis �a les aggr�eger en al�ea pour obtenir un r�eel. Par exemple, dans
le probl�eme (1), les coûts sont aggr�eg�es en temps par la somme inter-temporelle, puis en
al�ea par l'esp�erance. D'autres aggr�egations sont possibles. Nous pouvons consid�erer un
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agr�egateur temporel global � : RT +1 ! R, et un agr�egateur G sur l'al�ea global (qui prend
pour argument une variable al�eatoire et est �a valeur dans R). Le probl�eme (1) s'�ecrit alors

min
X ;U

G
h
�

n
L 0

�
X 0; U0; W 1

�
; : : : ; L T � 1

�
X T � 1; UT � 1; W T

�
; K (X T )

oi
(8a)

s:t: X 0 = x0 (8b)

X t+1 = f t
�
X t ; U t ; W t+1

�
t = 0 ; : : : ; T � 1; (8c)

� t
�
X t ; U t

�
= 0 t = 0 ; : : : ; T � 1; (8d)

U t � F t t = 0 ; : : : ; T � 1: (8e)

Nous pr�esentons au chapitre 2 des conditions, pour r�esoudre ce probl�eme par Program-
mation Dynamique. Pr�esentons rapidement ces conditions et leurs cons�equences.

� L'agr�egateur temporel global peut s'�ecrire

�
n

c0; � � � ; cT

o
= � 0

�
c0; � 1

n
c1; � � � � T � 1

�
cT � 1; cT

	 o �
:

� L'agr�egateur en al�ea global peut s'�ecrire

G
h
J

�
w1; � � � ; wT

� i
= G1

�
w1 7! G2

h
� � � wT 7! GT

�
J

�
W 1; � � � ; W T

�� i �
;

o�u chaque Gt est un op�erateur prenant pour argument des fonctions dewt et pour
valeur des r�eels.

� Chaque agr�egateur Gt en al�ea sur un pas de temps (resp. temporel 	t ) est croissant
(resp. croissant en sa seconde variable).

� Les agr�egateurs commutent, �a savoir

Gt+1

h
� t

�
�; �

	 i
= � t

n
�; Gt+1

�
�
� o

:

En e�et, sous ces hypoth�eses, nous montrons que le probl�eme (8) peut se r�e�ecrire sous
forme imbriqu�ee :

min
X ;U

G1

"

� 0

(

L 0
�
X 0; U0; W 1

�
; G2

�
� 1

�
� � �

GT � 1

h
� T � 1

n
L T � 1

�
X T � 1; UT � 1; W T

�
; GT

�
K (X T )

� oi �� )#

(9a)

s:t: X 0 = x0 (9b)

X t+1 = f t
�
X t ; U t ; W t+1

�
t = 0 ; : : : ; T � 1; (9c)

� t
�
X t ; U t

�
= 0 t = 0 ; : : : ; T � 1; (9d)

U t � F t t = 0 ; : : : ; T � 1: (9e)

On d�eduit naturellement de cette formulation imbriqu�ee une suite de probl�emes d'optimi-
sation, indic�es par le temps et l'�etat initial.

�
Pt

�
(x) min

X ;U
Gt

"

� t

(

L t
�
X t ; U t ; W t+1

�
; Gt+1

�
� t+1

�
� � �

GT � 1

h
� T � 1

n
L T � 1

�
X T � 1; UT � 1; W T

�
; GT

�
K (X T )

� oi �� )#

s:t: X t = x

X � +1 = f �
�
X � ; U � ; W � +1

�
� = t; : : : ; T � 1;

� �
�
X � ; U �

�
= 0 � = t; : : : ; T � 1;

U � � F � � = t; : : : ; T � 1:
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On d�e�nit une fonction valeur Vt : Xt 7! R qui donne en fonction de l'�etat initial la valeur
du probl�eme

�
P

�
. Cette fonction est obtenue par une r�ecurrence arri�ere, �a savoir

VT
�
xT

�
= K (xT ) 8xT 2 XT ; (10a)

Vt
�
x t

�
= min

u2 Ut
Gt

h
� t

n
L t

�
x t ; u; W t+1

�
; Vt+1 � f t

�
x t ; u; W t+1

� oi
8x t 2 Xt : (10b)

On d�eduit des fonctions valeurs une strat�egie optimale pour le probl�eme (9) (et donc pour
le probl�eme (8)) en selectionnant, �a la date t, le controle u 2 Ut r�ealisant le minimum
de (10b) (o�u x t d�esigne l'�etat courant).

Ainsi nous avons un cadre th�eorique g�en�eral pour �etablir une �equation de programma-
tion dynamique (equations du type de (10)). Nous avons au passage �etabli que la suite de
probl�eme

��
Pt

�	
�etait consistante (en temps). En e�et nous avons construit une strat�egie

optimale pour le probl�eme P0(x0), et montr�e que cette strat�egie �etait �egalement opti-
male pour les probl�emesPt , avec t � 1. Au chapitre 2, nous d�e�nissons pr�ecis�ement les
conditions �evoqu�es plus haut, et d�emontrons les r�esultats annonc�es. De plus nous nous
attardons sur les liens entre ces di��erents probl�emes d'optimisation et les mesures de
risque dynamique. En particulier il existe dans cette litt�erature une notion de consistance
temporelle que nous relions �a celle �evoqu�ee pour les suites de probl�emes d'optimisation.

Stochastic Dual Dynamic Programming

Le chapitre 2 �etend le cadre de la Programmation Dynamique, mais ne s'occupe pas des
di�cult�es num�eriques de mise en oeuvre, en particulier du probl�eme de la mal�ediction de
la dimension. L'algorithme SDDP (Stochastic Dual Dynamic Programming), connu depuis
1991, exploite l'�equation de programmation dynamique pour construire une approximation
poly�edrale des fonctions valeursVt . L'avantage num�erique principal consistant �a se ramener
�a des probl�emes que l'on sait r�esoudre de mani�ere e�cace (typiquement des probl�emes
lin�eaires), et ainsi de pouvoir attaquer des probl�emes de dimension plus grande que ce
que n'autorise une simple programmation dynamique. Pr�esentons en quelques mots cet
algorithme.

On consid�ere le probl�eme (1), avec l'hypoth�ese que les bruits sont ind�ependants. On
note Vt la valeur de Bellman associ�ee au probl�eme, obtenue par l'�equation (4). On suppose
que les fonctions de coûtL t et K soient convexes, et que les fonctions de dynamiquef t

soient a�nes. Dans ce cas les valeurs de BellmanVt sont convexes. On suppose que l'on
dispose, �a l'it�eration k de l'algorithme, d'approximations des fonctions de BellmanV (k)

t

qui v�eri�ent V (k)
t � Vt . L'algorithme se d�eroule ensuite en deux temps :

� dans une phase avant on d�etermine une trajectoire de l'�etat �a partir des approxima-
tions des fonctions valeurs,

� dans une phase arri�ere on am�eliore les approximations des fonctions valeurs au niveau
de cette trajectoire.

On tire au hasard une suite d'al�ea
�

w(k)
t

	 T
t=1 . On en d�eduit une trajectoire

�
x(k)

t

	 T
t=0

du syst�eme obtenue �a partir des approximations de la fonction valeur :

x(k)
0 = 0 ;

u(k)
t 2 arg min E

h
L t

�
x(k)

t ; u; W t+1

�
+ V (k)

t+1 � f t
�
x(k)

t ; u; W t+1

� i
;

x(k)
t+1 = f t

�
x(k)

t ; u; w(k)
t+1

�
:

Notons que si les approximations de la fonction de Bellman �etaient exactesV (k)
t = Vt ,

alors la trajectoire obtenue est la trajectoire optimale du probl�eme.
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Maintenant que l'on dispose d'une trajectoire
�

x(k)
t

	 T
t=0 , on peut d�eterminer, pour

chaque instant t, une coupe de la fonction valeurs Vt . Plus pr�ecis�ement, en r�esolvant le
probl�eme

min
u

E
h
L t

�
x(k)

t ; u; W t+1

�
+ V (k)

t+1 � f t
�
x(k)

t ; u; W t+1

� i
;

on obtient, par m�ethode de dualit�e et en exploitant la convexit�e de la fonction Vt , une
fonction a�ne

� (k)
t +



� (k)

t ; � � x(k)
t

�
;

qui est en dessous de la fonction valeurVt . On peut donc am�eliorer l'approximation de la
fonction Vt , en d�e�nissant

V (k+1)
t (�) = max

n
V (k)

t (�); � (k)
t +



� (k)

t ; � � x(k)
t

� o
:

Nous montrons au chapitre 3 que cet algorithme converge dans le sens o�u les fonctions
valeurs approxim�ees V (k)

t convergent vers la fonctionVt aux points visit�es par une tra-
jectoire optimale du syst�eme. Le r�esultat du chapitre 3 �etend les preuves jusqu'�a pr�esent
dans deux directions :

� jusqu'�a maintenant les fonctions de coûtsL t et K �etaient suppos�ees lin�eaires, et nous
ne faisons qu'une hypoth�ese de convexit�e ;

� nous avons construit une classe d'algorithme assez large incluant les diverses vari-
antes de SDDP rencontr�ees dans la litt�erature.

Dualit�e en Optimisation Stochastique

La th�eorie de la dualit�e permet de transformer une contrainte en un coût. Cette ap-
proche sera utilis�ee pour construire une m�ethode de d�ecomposition spatiale.

Dans un premier temps nous pr�esentons le sch�ema de d�ecomposition par les prix comme
motivation pour la seconde partie du manuscrit. Puis nous �evoquons les di�cult�es �a �etablir
des r�esultats de quali�cation des contraintes dans un espace Lp, p < + 1 , requis par la
d�ecomposition par les prix. Nous donnons ensuite des r�esultats de quali�cation pour l'es-
pace L1 . Finalement, nous adaptons l'algorithme d'Uzawa (qui requiert de tels r�esultats
de quali�cation) �a l'espace L 1 en pr�esentant des r�esultats de convergence.

D�ecomposition par les Prix

Nous pr�esentons ici, sur un probl�eme simple, la m�ethode de d�ecomposition par les
prix. Cette m�ethode peut être intuitivement comprise ainsi. Consid�erons un probl�eme de
production o�u un d�ecideur dispose de N centrale de production (indic�e par i ), chacune
produisant � i (ui ) pour le contrôle ui , et devant satisfaire une certaine demande. La de-
mande est incopor�ee dans l'une des fonctions de production de sorte que la contrainte
d'�egalit�e o�re-demande s'�ecrit

NX

i =1

� i (ui ) = 0 : (11)

Par ailleurs, choisir le contrôleui coûte L i (ui ), et l'objectif du d�ecideur est de minimiser
la somme (suri ) des coûts.

La d�ecomposition par les prix consiste �a remplacer la contrainte (11) par un syst�eme de
prix. Pour obtenir un bon prix on suppose qu'un coordinateur propose un prix (par unit�e
produite) �a toutes les centrales. Chacune annonce alors la quantit�e qu'elle produit, et le
coordinateur peut ajuster son prix. Plus pr�ecis�ement, �a l'it�eration k, le coordinateur �xe un
prix p(k) = � � (k) pour la production des centrales� i (ui ). Chaque centrale maximise alors
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son pro�t, �a savoir les gains obtenu p(k) � i (ui ) par la production moins le coût local L i (ui ),
et obtient une solution u(k)

i . Puis le coordinateur compare la somme des productions avec
la demande. Si la demande n'est pas satisfaite le prix est augment�e, si la demande est
d�epass�ee par la production, le prix est r�eduit, et l'on peut passer �a l'�etape k + 1 avec le
nouveau prix.

Math�ematiquement parlant, consid�erons le probl�eme suivant :

min
f u i gN

i =1

NX

i =1

L i (ui ) (12a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] ; (12b)

NX

i =1

� i (ui ) = 0 : (12c)

Sous des conditions techniques, ce probl�eme est �equivalent �a

min
f u i gN

i =1

max
� 2 R

NX

i =1

L i (ui ) + �
� NX

i =1

� i (ui )
�

(13a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] : (13b)

Si nous disposons d'une hypoth�ese de quali�cation des contraintes, nous pouvons �echanger
les op�erateurs min et max dans le probl�eme (13), pour obtenir

max
� 2 R

min
f u i gN

i =1

NX

i =1

L i (ui ) + �� i (ui ) (14a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] : (14b)

On remarque alors que le probl�eme de minimisation int�erieure, i.e. �a � �x�e, consiste �a
minimiser une somme de coûts locaux d�etermin�es par des contrôles ind�ependants. Ainsi,
la somme des minimas est le minimum de la somme et le probl�eme (14) devient

max
� 2 R

NX

i =1

min
u i

L i (ui ) + �� i (ui ) (15a)

s:t: u i 2 Uad
i : (15b)

Pour un multiplicateur � = � (k) donn�e, nous avonsN probl�emes de minimisation s�epar�es,
qui sont les sous-probl�emes de la m�ethode de d�ecomposition. Ils s'�ecrivent comme suit.

min
u i

L i (ui ) + � (k) � i (ui ) (16a)

s:t: u i 2 Uad
i : (16b)

Ces probl�emes sont mis �a jour en ajustant le prix, par exemple avec

� (k+1) = � (k) + �
NX

i =1

� i (u
(k)
i ) ; (17)

o�u � > 0 est un pas donn�e etu(k)
i une solution optimale du probl�eme (16). Cette formule

de mise �a jour fait partie de l'algorithme d'Uzawa, rappel�e et �etendu au chapitre 6.



9

Probl�emes de Quali�cations des Contraintes en Optimisation Stochas-
tique

Pour pouvoir remplacer une contrainte par un prix il faut utiliser la th�eorie de la
dualit�e, bri�evement �evoqu�ee au chapitre 4. Cette th�eorie consiste �a construire une famille
de probl�emes perturb�es �a partir du probl�eme d'origine, ce dernier n'�etant plus qu'un cas
particulier (le cas o�u la perturbation est nulle). La fonction qui �a une perturbation donn�ee
associe la valeur du probl�eme perturb�e est appel�ee fonction valeur. En utilisant des outils
d'analyse convexe on peut alors construire un probl�eme dual du probl�eme original, et
les propri�et�es de r�egularit�e (semi-continuit�e inf�erieure, sous-di��erentiabilit�e) permettent
d'�etablir des liens entre le probl�eme initial et son dual. On note toutefois que le dual
d�epend des perturbations choisies.

Les contraintes d'un probl�eme d'optimisation seront dites quali��ees si elles peuvent être
remplac�ees par un prix, ou, en d'autres termes, si les valeurs du probl�eme primal et dual
sont �egales et que le probl�eme dual admet une solution optimale. Une condition n�ecessaire
et su�sante, mais abstraite, pour cela est que la fonction valeur soit �egale �a sa bi-conjugu�ee
de Fenchel. Une condition su�sante courante est rappel�ee �a la proposition 4.10.

Cette technologie math�ematique met en lumi�ere l'importance du choix des espaces
dans lequel on pose le probl�eme d'optimisation, ainsi que de l'espace de perturbation
choisi pour construire le probl�eme dual. Dans le cadre de l'optimisation stochastique,
pour utiliser des m�ethodes de gradient on est tent�e de se placer dans un espace de Hilbert,
par exemple l'espace L2 des fonctions de carr�e int�egrables. Nous exposons enx4.2 deux
exemples montrant les di�cult�es d'un tel choix. Dans le premier exemple, nous pr�esentons
un probl�eme simple, avec toutes les \bonnes propri�et�es" que l'on pourrait souhaiter �a
premi�ere vue, dont cependant les contraintes ne sont pas quali��ees dans L2. Dans le second
exemple nous montrons que même lorsque les contraintes sont quali��ees, la condition
su�sante de quali�cation n'est pas v�eri��ee.

Existence de Multiplicateur dans L1

Le chapitre 4 montre qu'il est di�cile d'avoir des contraintes presque sûres quali��ees
dans L2. Le chapitre 5 �etablit un r�esultat de quali�cation des contraintes presque sûres
dans L1 .

Dans ce chapitre nous montrons que, si la fonction coûtJ : L1 ! R [
�

+ 1
	

est �nie partout, alors des contraintes a�nes, presque sûres, d'�egalit�e et les contraintes
de non-anticipativit�e admettent un multiplicateur L 1. En d'autres termes il existe un
m�ecanisme de prix qui peut remplacer cette contrainte. Cependant, l'hypoth�ese de �nitude
sur L1 interdit la pr�esence de contraintes de bornes presque sûres. Nous trouvons dans
la litt�erature (T. Rockafellar et R. Wets) des r�esultats de quali�cation de contraintes
d'in�egalit�e sous une hypoth�ese de relatively complete recourse

Nous montrons �egalement comment les hypoth�eses conduisant �a la quali�cation des
contraintes s'appliquent sur un probl�eme d'optimisation dynamique stochastique.

Algorithme d'Uzawa dans L1
�

 ; F ; P

�

Le chapitre 6 est consacr�e �a l'extension de l'algorithme d'Uzawa (d�e�ni dans un espace
de Hilbert, par exemple L2 en optimisation stochastique) �a l'espace de Banach non r�e
exif
L1 . En e�et l'algorithme d'Uzawa peut être utilis�e comme algorithme de coordination dans
une m�ethode de d�ecomposition par les prix, mais requiert une hypoth�ese de quali�cation
des contraintes. Or le chapitre 4 a montr�e que la quali�cation des contraintes dans L2 est
di�cile �a v�eri�er, tandis que le chapitre 5 fournit des hypoth�eses de quali�cation dans L 1 .

Il y a deux di�cult�es �a passer de L 2 �a L 1 . D'une part il faut donner du sens �a
l'algorithme d'Uzawa, qui exploite l'identi�cation d'un Hilbert avec son dual topologique
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dans sa phase de mise �a jour. D'autre part, il faut adapter la preuve de convergence qui
repose sur des estimations classiques dans un espace Hilbertien.

Deux r�esultats principaux sont �a retenir.
� Avec des hypoth�eses comparables au cas Hilbertien, plus exigeantes sur la continuit�e

des fonctions mises en jeu, mais se contentant de l'existence d'un multiplicateur L1,
nous montrons la convergence (au sens L1 ) d'une sous-suite de la suite de controle
g�en�er�ee par l'algorithme d'Uzawa.

� Sous les mêmes hypoth�eses, mais avec l'existence d'un multiplicateur L2, nous ren-
for�cons le r�esultat classique de convergence L2 en prouvant la convergence au sens
L1 de la suite des contrôles donn�ee par l'algorithme d'Uzawa.

Finalement, nous montrons comment l'algorithme conduit naturellement �a une
m�ethode de d�ecomposition par les prix pour un probl�eme d'optimisation dynamique
stochastique. Cependant le multiplicateur �a manipuler est un processus stochastique et
non plus un vecteur d'un espace de dimension �nie comme c'�etait le cas dans un cadre
d�eterministe. Ceci a deux d�efauts majeurs :

� d'une part le multiplicateur vit dans un espace gigantesque, et l'ajuster prendra un
grand nombre d'it�erations ;

� d'autre part les sous-probl�emes obtenus ne sont pas forc�ement beaucoup plus simples
�a r�esoudre que le probl�eme d'origine.

Ces points sont trait�es dans la troisi�eme partie du manuscrit.

D�ecomposition Spatiale en Optimisation Stochastique

Nous montrons, au chapitre 6 qu'une m�ethode de d�ecomposition par les prix directe-
ment appliqu�ee �a un probl�eme d'optimisation stochastique dynamique fournit des sous-
probl�emes di�ciles �a r�esoudre. Nous proposons donc d'approximer le probl�eme d'orig-
ine pour pouvoir appliquer la d�ecomposition par les prix et obtenir des sous-probl�emes
num�eriquement solvables.

�Epiconvergence de Probl�emes relax�es

Le chapitre 7 s'int�eresse �a la relaxation de contraintes presque sûres en optimisation
stochastique. En e�et, consid�erons le probl�eme sous forme abstraite

(P) min
U 2U ad �U

J
�
U

�

s:t: �
�
U

�
= 0

On peut le relaxer, c'est �a dire a�aiblir les contraintes, ou encore �elargir l'ensemble des
contrôles admissibles. La relaxation que l'on consid�ere consiste �a remplacer la contrainte
presque sûre

�
�
U

�
= 0 ;

par une contrainte en esp�erance conditionnelle

E
h
�

�
U

� �
�
� B

i
= 0 :

Pour une tribu B = Fn on note
�
Pn

�
le probl�eme relax�e.

Le r�esultat principal du chapitre 7 dit que si
� la fonction objectif J : U ! R est continue,
� la fonction contrainte � : U ! V est continue,
� la suite de tribu

�
Fn

	
n2 N converge vers la tribu globale du probl�emeF ,
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alors la suite de probl�eme
�

Bn
	

n2 N �epiconverge vers le probl�eme original. En pratique cela
signi�e que chacune des valeurs d'adh�erence de la suite

�
Un

	
n2 N des contrôles optimaux

associ�es aux probl�emes relax�es
�
Pn

�
est solution du probl�eme d'origine.

Nous montrons aussi des exemples de fonctionsJ et � qui sont continues. En e�et
ces fonctions allant d'un espace de variables al�eatoires dans un autre espace de variable
al�eatoire l'hypoth�ese de continuit�e est a priori assez abstraite. Nous montrons que la
topologie de la convergence en probabilit�e permet de mod�eliser un certain nombre de
contraintes comme une fonction � continue.

Algorithm DADP (Dual Approximate Dynamic Programming)

Le chapitre 8 est consacr�e �a l'algorithme DADP (Dual Approximate Dynamic Program-
ming). Cet algorithme peut-être vu comme une m�ethode de d�ecomposition par les prix sur
un certain type de relaxation du probl�eme d'origine, de telle sorte que les sous-probl�emes
soient solvables num�eriquement par programmation dynamique.

On consid�ere le probl�eme 1, o�u les contrôles et l'�etat s'�ecrivent comme une collection
de contrôles locaux (i.e.U t =

�
U 1

t ; : : : ; U N
t

	
et X t =

�
X 1

t ; : : : ; X N
t

	
) et les fonctions

de coûts et de contraintes presque sûres comme une somme de fonctions locales (i.e.
L t

�
X ; U ; W

�
=

P n
i =1 L i

t

�
X i ; U i ; W

�
et � t

�
X ; U ; W

�
=

P n
i =1 � i

t

�
X i ; U i ; W

�
). Dans

ce cas l'algorithme DADP consiste �a relaxer la contrainte presque sûre 1d par

E
h nX

i =1

� i
t

�
X i ; U i ; W

� �
�
� Yt

i
= 0 ;

o�u Yt est un processus d'information v�eri�ant

Yt+1 = ~f t
�
Yt ; W t

�
:

Sur le probl�eme approxim�e on peut alors �ecrire une d�ecomposition par les prix en dualisant
la contrainte appoxim�ee. Le gain par rapport �a une d�ecomposition par les prix standards
tient au fait que l'on peut se contenter de multiplicateur � = ( � 0; : : : ; � T � 1) tel que � t soit
mesurable par rapport �a Yt . Ainsi, d'une part l'espace des multiplicateurs est plus petit,
d'autre part les sous-probl�emes peuvent se r�esoudre par programmation dynamique avec
l'�etat �etendu

�
X i

t ; Yt

�
�a comparer �a l'�etat X t pour la r�esolution directe par programmation

dynamique du probl�eme global.
Le chapitre 8 pr�esente, �etape par �etape, l'algorithme DADP bri�evement �evoqu�e ci-

dessus. Nous donnons ensuite diverses interpr�etations de l'algorithme :
� m�ethode de d�ecomposition par les prix d'un probl�eme approxim�e,
� m�ethode d'approximation du multiplicateur pour une d�ecomposition par les prix du

probl�eme original,
� approche par r�egle de d�ecision du probl�eme dual.

Les r�esultats des chapitres 4 �a 7 sont utilis�es pour �etablir des conditions de convergence
de l'algorithme. Finalement une application num�erique encourageante est pr�esent�ee.

Conclusion

Le sujet des m�ethodes de d�ecomposition-coordination en optimisation stochastique
reste tr�es largement inexplor�e. Sans être exhaustif, citons quelques pistes de d�eveloppement
possibles.

� A l'aide du cadre d�evelopp�e au chapitre 2, les liens entre la consistance temporelle
des mesures de risque dynamique et des suites de probl�emes d'optimisation doivent
être pr�ecis�es.
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� La convergence de l'algorithme SDDP, donn�ee au chapitre 3, s'appuie sur le fait que
les al�eas prennent des valeurs discr�etes. Il y a de nombreuses raisons de penser que
la preuve peut être �etendue �a des variables al�eatoires continues, mais cela n�ecessite
de traiter des di�cult�es inh�erentes au cadre in�ni-dimensionnel.

� Pour �etendre les conditions d'existence de multiplicateur (obtenues au chapitre 5)
au cas de contraintes d'in�egalit�e nous pensons qu'il faut adapter les r�esultats de la
litt�erature qui utilisent la notion de relatively complete recourse. Ceux-ci permettront
d'avoir un r�esultat de quali�cation en pr�esence de bornes sur le contrôle.

� Le r�esultat de convergence que nous avons obtenu au chapitre 6 pour l'algorithme
d'Uzawa devrait pouvoir être am�elior�e pour obtenir la convergence de la suite des
contrôles (pour le moment nous avons simplement la convergence d'une sous-suite).

� Nous avons vu au chapitre 7 qu'une suite de relaxation d'un probl�eme d'optimisa-
tion, o�u une contrainte presque-sûre est remplac�ee par une contrainte en esp�erance
conditionnelle, �epiconverge vers le probl�eme original lorsque l'information con-
verge. Cependant l'algorithme DADP ne cherche pas �a faire converger l'informa-
tion vers l'information globale du probl�eme. Ainsi, il faudrait compl�eter le r�esultat
d'�epiconvergence pour obtenir des estimations d'erreurs li�ees �a l'approximation faite
lorsque l'on utilise l'algorithme DADP.

� Sur un plan num�erique il faut comparer les algorithmes DADP et SDDP (r�ef�erence
actuelle) sur un probl�eme de gestion d'une vall�ee hydraulique de grande taille. Dans
un second temps, l'algorithme SDDP pourrait être int�egr�e �a DADP comme outil de
r�esolution des sous-probl�emes.

� Finalement notons que nous avons principalement �etudi�e une approche de
d�ecomposition par les prix. Il existe, en d�eterministe, d'autres m�ethodes de
d�ecomposition �a �etendre au cadre stochastique.



Chapter 1

Preliminaries

If people do not believe that mathematics is simple, it is
only because they do not realize how complicated life is.

John von Neumann
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Before diving into the core of the manuscript, we develop the framing of multistage
stochastic optimization problems in x1.1, and we present a uni�ed treatment of decomposi-
tion resolution methods in x1.2. Finally, we detail in x1.3 the setting of a dam management
problem, that serves as an illustrative thread running throughout the manuscript.

Introduction

We open this chapter with considerations on mathematical optimization and modelling.

What is Mathematical Optimization

In this manuscript, we consider optimization in the sense of minimizing1 an objective
function 2 under constraints. This objective function can be a cost in an economic problem,
an energy in a physical problem, a likelihood in a statistical problem, etc. The objective

1. Some applications require to maximize a function (in economics, for instance), which is obviously
the same problem as minimizing the opposite function.

2. The community of multi-objective optimization considers multiple objectives at the same time |
see [66,106]
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function J maps a setU of controls 3 into R. Solving an optimization problem generally
means �nding the set of minimizers of the objective function, or at least one minimizeru] ,
as well as the value of the minimum. The �eld of mathematical optimization is concerned
with �nding:

� conditions of existence (and sometimes of uniqueness) of a local or global minimizer
of the objective function on a set ofadmissible controls;

� su�cient conditions of optimality;
� necessary conditions of optimality that reduce the set of controls to explore;
� algorithms yielding a sequence of controls converging to an optimal control;
� speed of convergence of such algorithms;
� bound on the error made when the algorithm is stopped;
� etc.
The general optimization problem we consider is written

min
u2U ad �U

J (u) (1.1a)

s:t: �( u) 2 � C ; (1.1b)

where J is the objective function, Uad is a constraint set of a vector spaceU, C is the
constraint cone of a vector spaceV, � : U ! V is the constraint function , and u 2 U is a
control. A control u is said to be admissible if u 2 Uad and �( u) 2 � C. A control u] is
said to be optimal if we have J (u] ) � J (u), for any admissible control u.

Notice that we have distinguished to types of constraints: aset membershipconstraint
�( u) 2 � C, and an abstract constraint u 2 Uad. The set membership constraint is classi-
cally represented by several equality and inequality constraints, and, in this manuscript,
we will often treat it by duality, whereas the abstract constraint will be kept as such. Of
course, there is latitude in choosing to model a constraint as part of �(u) 2 � C or as part
of u 2 Uad, sinceUad can accept any kind of constraint.

The Art of Modelling

In practice, a \real-life" optimization problem is not given in mathematical form, but
has to be casted and formulated as such. Crafting a model is a trade-o� between, on the
one hand, realism and complexity, and, on the other hand, mathematical tractability.

In the special case of fashioning a multistage optimization problem, we distinguish
three elements to be identi�ed:

� the control variables and their timing;
� the objective function (or criterion ) J , that re
ects multiple con
icting interests

quanti�ed and weighted each against the other, while other objectives will be for-
mulated as constraints;

� the constraints that restrict control variables, and incorporate objectives outside the
criterion J .

In this manuscript, we shed special light on constraints and, in the perspective of
multistage stochastic optimization, we put forward three types of constraints.

Physical constraints. They result from physical laws, e.g. the maximum speed of a
vehicle, the maximum volume of a reservoir, the dynamical evolution of stocks, etc.

Information constraints. They state what is the information available when choosing
a control. In a stochastic setting, we will mostly represent them by measurability
constraints.

3. We use indi�erently the terminology decision or control (though control is generally reserved to
trajectories of decisions).



1.1. FRAMING STOCHASTIC OPTIMIZATION PROBLEMS 15

Objectives as constraints. They represent other objectives than the criterion J . In
this sense, they are \soft constraints" re
ecting preferences of the decision-maker
(like risk constraints).

Physical and information constraints have to be satis�ed whatever the cost, as they derive
from physical laws. They are called \hard constraints" because we cannot \negotiate"
with them. By contrast, constraints that can be negotiated with, at the modelling level,
are called \soft constraints". For instance, constraints representing objectives, e.g. risk
constraints, could be loosened by the decision-maker. Moreover, some physical constraints
could be loosened through complex mechanisms not represented in the mathematical prob-
lem (we could upgrade our engine to have a higher speed, or extend a reservoir to have
more capacity, etc.). For soft constraints, the multipliers (see the duality theory of Chap-
ter 4) give precious informations, as they can be interpreted as the marginal cost of
in�nitesimally relaxing a constraint.

1.1 Framing Stochastic Optimization Problems

Before tackling resolution methods inx1.2, we focus on how to frame stochastic opti-
mization problems. We start with stochastic static optimization problems in x1.1.1, then
move to multistage stochastic optimization problems in x1.1.2.

1.1.1 Framing of a Static Stochastic Optimization Problem

In most problems, uncertainties abound. In stochastic optimization, these uncertainties
are modeled by random variables4 or stochastic processes, together with their joint prob-
ability distributions. 5 Selecting possible classes of probabilities, re
ecting in particular
dependencies between random variables, is a modelling issue. Specifying the parameters
of the law is a statistical problem that has also to be dealt with, although it is not a part
of the optimization problem itself.

With uncertainties, the cost itself becomes a random variable. As one cannot easily
rank two random variables (when is one random cost \better" than another?), one usually
averages out and aggregates the random cost to produce a single number. The most used
random aggregator is the mean, or mathematical expectation. In some cases (�nancial
problems), the expectation is taken with respect to another probability (namely the risk-
neutral probability) than the original one, or alternative random aggregators, representing
alternative risk preferences, can be used (seex2.2.2 for a presentation of risk measures).
In Chapter 2, we will consider a large spectrum of uncertainty aggregators.

The traditional stochastic optimization problem is formulated as

min
U 2U ad �U

E
�
J (U ; W )

�
(1.2a)

s:t: U � B (1.2b)

where
� (
 ; F ; P) is a probability space, and E is the mathematical expectation;
� U is the space of all random variablesU : 
 ! U, where U is a measurable space;
� W : 
 ! W is a random variable that representsexogenous noise, where W is a

measurable space;

4. We use random variable as a generic term that includes random vectors and stochastic processes.
Throughout this manuscript, we write random variables in bold. We consistently use the notation W for
the noises, i.e. the exogenous random variables.

5. In a connex area known as robust optimization (see [13, 15]), uncertainties are modeled as sets of
values that the uncertain parameters can take, and optimization is performed with respect to the worst
possible case.
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� J : U � W ! R is the objective function, de�ned on the product set of controls and
uncertainties;

� B � F is a sigma-algebra, and the notationU � B stands for \U is a random
variable measurable with respect to the sigma-algebraB", namely

U � B () � (U ) � B ; (1.3)

and captures measurability or information constraints; intuitively, the sigma-
algebra B represents the information available to the decision-maker when choosing
the control U ;

� U ad is a subset ofU that represents all remaining constraints like set membership
constraints (say, inequality or equality constraints), risk constraints, etc.

We wish to highlight the speci�cities of stochastic optimization w.r.t. deterministic
optimization. In this perspective, we focus on the information constraints, and we lay
out di�erent ways to represent them mathematically. Instead of the \algebraic formula-
tion" (1.3), we can use an almost-sure equality:

U � E
�
U

�
� B

�
= 0 ; P � a:s: (1.4)

When the sigma-algebraB is generated by a random variableX : 
 ! X, that is,
when B = � (X ), and when U is a separable complete metric space, a result due to
J. Doob (see [35, Chapter 1, p. 18]) states thatU � X is equivalent to the existence of
a measurable function� : X ! U such that U = � (X ). Thus, we obtain a \functional
formulation" of an information constraint:

U � � (X ) () 9 � : X ! U measurable, such thatU = � (X ) : (1.5)

We distinguish two notions of solution, depending on the sigma-algebraB in (1.2b).

Open-Loop. An open-loop solution is U � f; ; 
 g, that is, a constant random variable.
Then, the random variable is represented by its unique value.

Closed-Loop. By contrast, a closed-loop solution may depend on the uncertainty:
U � B , where f; ; 
 g ( B � F .

1.1.2 Multistage Stochastic Optimization Problem

By contrast with static stochastic problems, a multistage stochastic problem introduces
stages | labeled with integers t = 0 ; : : : ; T � 1, with horizon T � 2 | and several
measurability constraints instead of only one in (1.2b). The general multistage stochastic
optimization problem reads

min
(U 0 ;:::;UT � 1)2U ad �U

E
�
J (U 0; � � � ; UT � 1; W )

�
(1.6a)

s:t: U t � B t ; 8t 2 [[0; T � 1]] ; (1.6b)

where
� (
 ; F ; P) is a probability space, and E is the mathematical expectation;
� U is the space of all random variables (U 0; � � � ; UT � 1) : 
 ! U0 � � � � � UT � 1, where

all Ut are measurable spaces;
� W : 
 ! W is a random variable that representsexogenous noise, where W is a

measurable space;
� J : U0 � � � � � UT � 1 � W ! R is the objective function;
� B t � F is a sigma-algebra, fort 2 [[0; T � 1]], and the condition U t � B t captures

measurability or information constraints at stage t;
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� U ad is a subset ofU that represents all remaining constraints, including ones that
connect di�erent stages.

Now, we wish to highlight the speci�cities of multistage stochastic optimization w.r.t.
multistage deterministic optimization in a setting where information 
ows sequentially.
We distinguish two notions of solution, depending on the sigma-algebrasB0; : : : ; BT � 1.

Open-Loop. An open-loop solution is (U 0; : : : ; UT � 1) such that U t � f; ; 
 g for all
t 2 [[0; T � 1]], that is, U t is a constant random variable.

Closed-Loop. By contrast, a closed-loop solutionmay depend on the uncertainty when
f; ; 
 g ( Bt � F for at least one t 2 [[0; T � 1]].

The case ofinformation accumulation | also called perfect memory | is grasped with
the inclusions

B0 � � � � � B T � 1 : (1.7)

Until now, we did not require that the exogenous noise W be a sequence�
W 0; : : : ; W T � 1

	
. But, when W is a random process, we can capture the property of

non-anticipativity by

8t 2 [[0; T � 1]]; Bt � � (W 0; : : : ; W t ) : (1.8)

The formalism (1.6) covers the case whereBt � F does not depend on past controls
U 0; : : : ; U t � 1 (like Bt = � (W 0; : : : ; W t )), and the case whereBt � F indeed depends on
past controls U 0; : : : ; U t � 1 (like Bt = � (U 0; : : : ; U t � 1)).

The two most important multistage stochastic optimization theories can be distin-
guished according to how they handle the information constraints (1.6b):

� in the Stochastic Programming framework, the information is generally encoded in
a tree, and the sigma-algebraBt corresponds to the set of nodes at staget;

� in the Stochastic Optimal Control framework, the sigma-algebraBt is � (X t ) gener-
ated by an information state X t , produced by a controlled dynamics.

Both theories incorporate a non-anticipativity property, as well as information accumula-
tion (under the Markovian setup in Stochastic Optimal Control). We now present Stochas-
tic Programming and Stochastic Optimal Control with a focus on the information con-
straints (1.6b).

Stochastic Programming (SP)

In Stochastic Programming, the probability space (
 ; F ; P) is called scenario space,
wherescenarios stand for sequences ofuncertainties. The sequential structure of informa-
tion arrival about uncertainty is represented either by a subset of a product space or by a
so-calledscenario tree (see Figure 1.1).

For the sake of simplicity, in this manuscript we only consider Stochastic Programming
for �nite scenario spaces. For a set of scenario 
 we suppose given

� a probability P on 
;
� control sets U0, . . . , UT � 1;
� an uncertainty set W and a mappingW : 
 ! W that represents exogenous noises;
� an objective function J : U0 � � � � � UT � 1 � W ! R.

Stochastic Programming with Scenario Space In Stochastic Programming, the
�nite probability space (
 ; F ; P) can be represented as a subset of a product space


 � 
 0 � � � � � 
 T � 1 ; (1.9a)

where the set 
 t supports the uncertainties at step t, so that a scenario is denoted by

! = ( ! 0; : : : ; ! T � 1) = f ! sgT � 1
s=0 : (1.9b)
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Figure 1.1: A scenario tree

A possible solution is a family of controls ut (! ) 2 Ut doubly indexed by step t and
uncertainty ! . The non-anticipativity constraint (Constraint (1.6b) where Bt = F t ) is
captured by the requirement that, for all t 2 [[0; T � 1]],

8(!; ! 0) 2 
 2; f ! sgt
s=0 = f ! 0

sgt
s=0 =) ut (! ) = ut (! 0) : (1.10)

The general stochastic programming problem reads

min
ff ut (! )g! 2 
 gT � 1

t =0

X

! 2 


P
�
f ! g

�
J

�
f ut (! )gT � 1

t=0 ; W(! )
�

:

s:t: constraint (1.10)
(1.11)

We develop in Table 1.1 the correspondence between the framing of Stochastic Pro-
gramming problems with scenario space and the abstract framing ofx1.1.2.

Stochastic Programming with Scenario Tree The stochastic programming commu-
nity often presents problems on a scenario tree. We give a formal de�nition of a scenario
tree (for a �nite 
), and proceed to explain links between the representations.

De�nition 1.1. Consider the sequence
�

N t
	 T � 1

t=0 of partitions of the set 
 , such that
N t+1 is a re�nement of N t (i.e. any element of N t+1 is contained in an element ofN t ).
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Stochastic Programming Abstract
formulation formulation

States of Nature 
 � 
 0 � � � � � 
 T � 1 

�nite set measurable space

Probability f P
�
f ! g

�
g! 2 
 P

Solution ff ut (! )g! 2 
 gT � 1
t=0 f U t g

T � 1
t=0

8! 2 
 ; 8t 2 [[0; T � 1]]; 8t 2 [[0; T � 1]];
f ! sgt

s=0 = f ! 0
sgt

s=0 ) ut (! ) = ut (! 0) U t � B t

Table 1.1: Correspondence between Stochastic Programming with scenario space framing
and abstract framing

A scenario forestis given byT =
��

N t
	 T � 1

t=0 ; P
�
. A scenario treeis a scenario forest where

N0 = f 
 g, and NT � 1 =
�

f ! g j ! 2 

	

.
Hence, on a scenario tree, a scenario! 2 
 is associated with a leaf of the tree

f ! g 2 N T � 1. A node of depth t of the tree T , is an element of N t . A node n is said to
be an ascendantof a nodem if m � n, we denote bya(m) the set of ascendant nodes of
m. Conversely, m is a descendantof n. For a node n 2 N t , we de�ne its set of children
node r (n) as the nodesm 2 N t+1 that are descendant ofn. The genealogyof a node is
the collection of all its ascendants.

We also de�ne the functions nt : 
 ! N t satisfying ! 2 nt (! ): its the function
mapping the event! with its corresponding node at timet.

Note that, with this construction, from the probability P on 
, we have the probability
of each nodesn 2 T .

From a set of uncertainties 
 � 
 0 �� � �� 
 T � 1, we can construct a tree in the following
way: a nodent 2 N t is given by (when non-empty)

nt (! ) :=
�

! 0 2 
 j 8s 2 [[0; t]]; f ! sgt
s=0 = f ! 0

sgt
s=0

	
6= ; ;

where f ! sgt
s=0 is a sequence satisfying! s 2 
 s. Conversely, we easily construct a product

set of uncertainties from a tree, and identify the tree with a subset (see Figure 1.4).
A possible solution is a family of controls indexed by the nodes of the treen�

un t

	
n t 2N t

oT � 1

t=0
, where, for any time t, and any nodent 2 N t , un t 2 Ut .

In this way, the information constraints (1.10) are automatically captured in the very
indexing of a possible solution by the nodesnt of the tree: at step t, a solution can only
depend on past uncertainties! 0, . . . , ! t .

The general stochastic programming problem reads

min
f un gn 2T

X

! 2 


P
��

!
	�

J
� �

un
	

n2 a(f ! g) ; W
�
!

� �
: (1.12)

A usual speci�c class of problems, additive in time, reads

min�
f un t gn t 2N t

	
t =0

T � 1X

t=0

X

n2N t

X

m2 r (n)

P
�
m

�
L t

�
X n ; Um ; Wm

�
(1.13a)

s:t: X m = f t
�
X n ; Um ; Wm

�
; 8m 2 r (n); 8n 2 N t ; 8t : (1.13b)
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In this formulation the variables f xngn2T is called aphysical state.
We develop in Table 1.2 the correspondence between the framing of Stochastic Pro-

gramming problems with scenario tree and the abstract framing ofx1.1.2.

Stochastic Programming Abstract
formulation formulation

States of Nature T / NT � 1 

tree (forest) / leaves measurable space

Information N t Bt

nodes at time t sigma-algebra

Probability f P
��

n
	�

gn2N T � 1 P

Solution
�

f ungn2N t

	 T � 1
t=0 f U t g

T � 1
t=0

U t � B t , 8t 2 [[0; T � 1]]

Table 1.2: Correspondence between Stochastic Programming with scenario tree framing
and abstract framing

Stochastic Optimal Control (SOC)

In Stochastic Optimal Control, the information constraints (1.6b) are materialized by
means of a so-calledstate. The framing comprises aStochastic Dynamic System(SDS)
consisting of

� a sequence
�

Xt
	 T

0 of sets ofstates;

� a sequence
�

Ut
	 T � 1

0 of sets ofcontrols;

� a sequence
�

Wt
	 T � 1

0 of sets ofuncertainties,;

� a sequence
�

f t
	 T � 1

0 of functions, where f t : Xt � Ut � Wt ! Xt+1 , play the role of
dynamics at time t;

� a probability space (
 ; F ; P);
� exogenous noisesf W t g

T � 1
t=0 , where eachW t takes values inWt ;

� an objective function J : X0 � � � � � XT � U0 � � � � � UT � 1 � W0 � � � � � WT � 1 ! R.
The sigma-algebras

8t 2 [[0; T � 1]]; F t = �
�
W 0; � � � ; W t

�
; (1.14)

form the �ltration F of past noises, and we naturally de�neF-adapted processes. For an
F-adapted sequencef U t g

T � 1
t=0 of controls | that is, random variables U t with value in Ut ,

and such that U t � F t | and an initial state x0 2 X0, we obtain a sequencef X t g
T
t=0 of

states as follows:
8t 2 [[0; T � 1]]; X t+1 = f t

�
X t ; U t ; W t

�
:

We observe that, for any time t 2 [[1; T]], X t is measurable w.r.t. F t � 1 � F t by construc-
tion.
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We denote
X = f X t g

T
t=0 ; U = f U t g

T � 1
t=0 ; W = f W t g

T � 1
t=0 : (1.15)

The general stochastic optimal control problem reads6

min
X ;U

E
h
J (X ; U ; W )

i
(1.16a)

s:t: X t+1 = f t
�
X t ; U t ; W t

�
8t 2 [[0; T � 1]] ; (1.16b)

U t � B t 8t 2 [[0; T � 1]] ; (1.16c)

where Bt � F t is a sigma-algebra, fort 2 [[0; T � 1]], and the conditions U t � B t captures
measurability or information constraints at stage t.

Here again, we wish to highlight the speci�cities of multistage stochastic optimization
w.r.t. multistage deterministic optimization, in a setting where information 
ows sequen-
tially. Since Bt � F t , the condition (1.16c) implies that the control U t is chosen knowing
only the past noisesW 0; : : : ; W t . This is the so-callednonanticipativity constraint: U t is
measurable with respect toF t .

We distinguish several classes of information structures, depending onBt in the con-
dition (1.16c), hence several notions ofsolution.

Open-Loop. An open-loop solutionis one where the condition (1.16c) readsU t � f; ; 
 g,
for all t 2 [[0; T � 1]]. In other words, Bt = f; ; 
 g, for all t 2 [[0; T � 1]].

Closed-Loop. A solution satisfying the condition (1.16c) is a closed loop solutionas soon
as f; ; 
 g ( Bt � F t for at least one t 2 [[0; T � 1]]. The following subdivisions are
helpful in practice.
� In the Decision-Hazard setting, Bt = � (X t ) in (1.16c) so that decisionsU t � X t

are taken before knowing the uncertaintyW t at time t, and only according to the
current state X t . By the Doob result (1.5), a solution can be expressed as astate
feedbackU t = � t (X t ), where � t : Xt ! Ut .

� In the Hazard-Decision setting, Bt = � (X t ; W t ) in (1.16c) so that decisionsU t �
� (X t ; W t ) are taken after knowing the uncertainty at time t, according to the
current state X t and the current uncertainty W t . By the Doob result (1.5), a
solution can be expressed asU t = � t (X t ; W t ), where � t : Xt � Wt ! Ut .

� The largest class of closed loop solutions is of course obtained whenBt = F t

for all t 2 [[0; T � 1]]. When the exogenous noisesf W t g
T � 1
t=0 form a sequence of

independent random variables, it can be shown that there is no loss of optimality
in reducing the search to the class of Hazard-Decision feedback solutions, namely
Bt = � (X t ; W t ). When the size of the state spaceXt does not increase witht, and
neither doesWt , this property has major consequences for numerical applications.

� A smaller class of closed loop solutions is obtained whenBt = F t � 1 for all t 2
[[0; T � 1]]. When the exogenous noisesf W t g

T � 1
t=0 form a sequence of independent

random variables, it can be shown that there is no loss of optimality in reducing
the search to the class of state feedback solutions, namelyBt = � (X t ). When
the size of the state spaceXt does not increase witht, this property has major
consequences for numerical applications.

This general form (1.16) is not common, and one generally rather considers a time
additive expression for the cost function, namely,

min
� = f � t gT � 1

t =0

E
hT � 1X

t=0

L t
�
X t ; U t ; W t

�
+ K

�
X T

� i
(1.17a)

s:t: X t+1 = f t
�
X t ; U t ; W t

�
; 8t 2 [[0; T � 1]] ; (1.17b)

U t = � t (X t ); � t : Xt ! Ut ; 8t 2 [[0; T � 1]] ; (1.17c)

6. In Chapter 2, we consider other aggregators in time and uncertainties.
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where
� L t : Xt � Ut � Wt 7! R is the instantaneous costat step t, for all t 2 [[0; T � 1]], and

K : XT ! R is the �nal cost;
� the policies � t are measurable mappings, for allt 2 [[0; T � 1]], and capture informa-

tion constraints;

Remark 1.2. We discuss the notion of state inx1.2.4. The quantity X t is an information
state when the condition U t � B t in (1.16c) can be replaced by the conditionU t � X t ,
where X t is F t -measurable.

In Problem (1.17), the condition (1.17c) suggests that the stateX t is an information
state as the decision are taken in function of it; we say \suggests" because this relies on the
implicit assumption that there is no loss of optimality in reducing the search to the class of
state feedback solutions, instead of the largest class of adapted controls. In Problem(1.16),
X t is simply the physical state (and might or might not be an information state, depending
on additional assumptions).

As just discussed, the form (1.17) is especially adapted to the case where the exogenous
noisesf W t g

T � 1
t=0 form a sequence of independent random variables. We will come back to

that point when we address Dynamic Programming inx1.2.4.

Connection between SP and SOC

The SOC framing includes the SP one, at the expense of introducing a state like in
Table 1.3.

Stochastic Programming Stochastic Optimal Control
formulation formulation

States of Nature 
 � 
 0 � � � � � 
 T � 1 

�nite set measurable space

Exogenous noise Wt = 
 t , W t : 
 ! 
 t projection
Probability f P

�
f ! g

�
g! 2 
 P

State X t = ( x0; W ; U 0; : : : ; U t � 1)
Information F t = �

�
W 0; � � � ; W t

�

Dynamics f t (x t ; ut ; wt ) = ( x t ; ut )

Table 1.3: Turning a Stochastic Programming framing into Stochastic Optimal Control
framing

Observe that the state X t at stage t is huge, as it includes all the exogenous noisesW
and the past controls U 0; : : : ; U t � 1. Observe also the not common fact that the stateX t
at stage t includes all the noisesW =

�
W 0; : : : ; W T � 1

	
, be they past, present or future!

As a consequence, the stateX t is not F t -measurable, hence is not observable by the
decision-maker at staget and cannot be the input of any implementable feedback. What
is more, the dimension of the state grows with the stages, as re
ected in the dynamics that
just extends the vector x t by adding ut to the right: the state X t at stage t keeps track
of past controls U 0; : : : ; U t � 1 by accumulating them. This state is called the \maximal
state", and it will again be discussed inx1.2.4. This is not an information state as it is not
totally observable (see Remark 1.2), whereas we will see that the conditional distribution
of the maximal state X t knowing F t is. In practice, depending on the speci�cities of the
model, it may happen that smaller states can be displayed.
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1.1.3 Discussion of complexity

We point out in what sense multistage stochastic optimization problems are complex,
and then quickly review di�erent approaches to address their numerical resolution.

More precise and involved discussion on the complexity of multistage stochastic opti-
mization problems can be found in [111,112]. In particular the question of approximating
the underlying probability is discussed.

Multistage Stochastic Problems are Complex

To give a feeling of the complexity of a multistage stochastic optimization problem, we
assume that controls take their values in a �nite set of cardinal nu . Therefore, there are

(nu)T j
 j

possible solutions (not all of them are admissible).
To account for non-anticipativity and restrict solutions, we suppose that the sample

space 
 is a product of T copies with cardinal nw , so that j
 j = ( nw)T . Hence, the number
of possible solutions is

(nu)T (nw )T
;

and the number of non-anticipative ones is

(nu)
P T � 1

s=0 (nw )s
= ( nu)

( n w ) T � 1
n w � 1 : (1.18)

This number is also the number of possible solutions when the set 
 is represented by the
leaves of a tree of depthT, each node havingnw children, because then the number of
nodes is

P T � 1
s=0 ns

w = (nw )T � 1
nw � 1 .

Discussing Resolution Methods to Address Complex Optimization Problems

Most \real life" optimization problems are too complex to be numerically solved di-
rectly. We brie
y list some of the many ways found in the academic literature to tackle
complex optimization problems, pointing to well-known references, without aiming at ex-
haustivity.

Heuristic. We can look for heuristic solution, either by looking for the solutions in a
more limited class of solutions (approximate dynamic programming { see [19, 83]{
and machine learning {see [54]{ are classical approaches), or by cunningly trying to
�nd a good solution through method like simulated annealing (see [60]), or genetic
algorithms (see [51]).

Speci�c problems. We can also make some approximation of the problem itself, and
make the most of some mathematical properties of the (approximated problem).
For example, one �nds very e�cient algorithms for linear programming problems
(see [33]), quadratic programming, semi-de�nite programming, conic programming,
(see [4,14,119]) large classes of mixed integer linear programming (see [68]), etc.

Decomposition. Decomposition approaches (see [12, 30, 98]) consist in partitioning the
original optimization problem into several subproblemsusually coordinated by a
master problem. We then solve each subproblem independently, and send the relevant
part of the solutions to the master problem. The master problem then adjusts the
subproblems, that are to be solved again, and so on. The numerical gain is contained
in the fact that, if the original problem is of size S, solving N problems of sizeS=N,
even with iterations, might be much faster than solving the original problem.
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1.2 Resolution by Decomposition Methods in Multistage
Stochastic Optimization

We present, in an uni�ed framework, the main approaches to decompose multistage
stochastic optimization problems for numerical resolution.

To �x ideas and simplify the exposition, we present a setting where all variables are
parametrized by discrete indexes. For this purpose, suppose given a �nite horizonT
(so that time t 2 [[0; T]]), a �nite probability space

�

 ; F ; P

�
, endowed with a �ltration

F = fF t gT � 1
0 , a �nite number N of units (space). We consider the multistage stochastic

optimization problem

min
X ;U

X

! 2 


NX

i =1

T � 1X

t=0

P
�
f ! g

�
L i

t

�
X i

t (! ); U i
t (! ); W t (! )

�
(1.19a)

s:t: X i
t+1 (! ) = f i

t

�
X i

t (! ); U i
t (! ); W t (! )

�
8t; 8i; 8! (1.19b)

NX

i =1

� i
t

�
X i

t (! ); U i
t (! )

�
= 0 8t; 8! (1.19c)

U i
t � F t 8t; 8i ; (1.19d)

where ! is a scenario of uncertainties given by! =
�

! t
	 T � 1

t=0 . The constraint (1.19b)
represents the dynamics of each subsystem, the constraint (1.19c) represents the coupling
constraint between the subsystems (also called units), and the constraint (1.19d) is the
non-anticipativity constraint. Constraints function � i

t are assumed to have image inRnc .
As we have seen inx1.1.2 that the SOC framing includes the SP one, the above setting

applies both to SP and SOC problems.
In Problem (1.19), we have local costs | depending on step t, uncertainty ! and

unit i | and we minimize their sum over time, uncertainty and space. Without con-
straints (1.19b)-(1.19d), Problem (1.19) (illustrated in Figure 1.2a) consists in minimizing
a sum of independent costs. Hence, the minimum of the sum is the sum of the mini-
mums, and the problem is decomposed. However, the local costs are linked (illustrated in
Figure 1.2b)

� in time through the dynamic of the system (e.g. Equation (1.19b));
� in unit through the coupling constraints (e.g. Equation (1.19c));
� and in scenario (uncertainty) through the nonanticipativity constraint (e.g. Equa-

tion (1.19d)).
We now lay out di�erent ways to divide the original complex problem into easier to solve

subproblems. We propose three angles to decompose the original problem: decomposition
in time (step), decomposition in scenario (uncertainty) and decomposition in space (unit),
as illustrated in Figure 1.3.

Moreover, we distinguish two types of decomposition.
� In chained decomposition, like Dynamic Programming (see [12, 17]), the original

problem is solved by means of successive smaller subproblems, solved one after the
other (in Dynamic Programming, each subproblem is solved only once). Chained
decomposition relies on a speci�c structure of the coupling constraint, like the 
ow
of time.

� In parallel decomposition, like Progressive Hedging (see [98,115]), the original prob-
lem is solved by means of parallel smaller subproblems, coordinated and updated
by a master algorithm. These subproblems can be obtained by dualizing the con-
straint, and have to be solved several times before obtaining an optimal solution to
the global problem.
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(a) Local costs (b) Local costs linked

Figure 1.2: Representation of the local costs depending on time, uncertainty (scenario)
and space (unit) and the links induced by the constraints

(a) Time decomposition (b) Uncertainty decomposition (c) Space decomposition

Figure 1.3: Decomposition according to time, uncertainty (scenario) or space (unit). Each
plane carries a problem with coupling in only two dimensions.

1.2.1 Duality and Parallel Decomposition

Before presenting the di�erent decompositions approaches, we now illustrate how the
duality theory (recalled in Chapter 4) leads to decomposition schemes. We present here,
in a simple setting, the most usual, known asprice decomposition scheme. For clarity, the
units coupling functions � i in (1.19c) are assumed, here, to be real valued.

This price decomposition scheme can be intuitively understood as follows. We consider
a problem where a team ofN units | each of them producing a quantity � i (ui ) function
of the local control ui | has to meet a given demand. Each unit incurs a local cost L i (ui ),
and the problem consists in minimizing the sum of the local costs. The decomposition
is obtained by replacing the \production equal demand" equality by a price mechanism.
To achieve a proper price, we suppose that a coordinator can impose costs to all units
iteratively. At iteration k, the coordinator sets a pricep(k) = � � (k) for the output of each
unit � i (ui ). Each unit then minimizes the sum of its local production cost L i (ui ) minus
the cash 
ow produced by the output p(k) � i (ui ), and obtains a solution u(k)

i . Then, the
coordinator collects the production of all units, makes the sum and compares the result
to the demand. If the total production is not enough, he increases the price of the output;
if the total production exceeds the demand, he decreases the price.
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More precisely, we consider the following problem:

min
f u i gN

i =1

NX

i =1

L i (ui ) (1.20a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] ; (1.20b)

NX

i =1

� i (ui ) = 0 ; (1.20c)

where the index i can represent unit, time, uncertainties or a mix. Under mild technical
conditions, this problem is equivalent to

min
f u i gN

i =1

max
� 2 R

NX

i =1

L i (ui ) + �
� NX

i =1

� i (ui )
�

(1.21a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] : (1.21b)

Under a proper constraint quali�cation condition , we can exchange the min operator with
the max operator and obtain

max
� 2 R

min
f u i gN

i =1

NX

i =1

L i (ui ) + �� i (ui ) (1.22a)

s:t: u i 2 Uad
i ; 8i 2 [[1; N ]] : (1.22b)

Now, consider the inner minimization problem: the objective function is given as a sum of
local costs, each of them determined by local independent controls. Thus, the minimum
of the sum is the sum of the minima, and Problem (1.22) can be written as

max
� 2 R

NX

i =1

min
u i

L i (ui ) + �� i (ui ) (1.23a)

s:t: u i 2 Uad
i : (1.23b)

For a given � = � (k) , we now obtain N separate minimization problems, that are the
subproblems of the decomposition method:

min
u i

L i (ui ) + � (k) � i (ui ) (1.24a)

s:t: u i 2 Uad
i : (1.24b)

These subproblems are updated as the multiplier� (k) (or equivalently the price) is updated,
like with

� (k+1) = � (k) + �
NX

i =1

� i (u
(k)
i ) ; (1.25)

where � > 0 is a given parameter, andu(k)
i an optimal solution of Problem (1.24). This

update formula for the multiplier is part of the equations of the Uzawa algorithm, recalled
and extended in Chapter 6.

Remark 1.3. This price decomposition scheme is the simplest and most well-known of
decomposition schemes, but not the only one. In short, thedecomposition by quantity
approach consists in allocating to each subproblem a given quantity of the demand to
satisfy, and then update the allocation; thedecomposition by prediction approach consists
in allocating to each subproblem a part of the constraint.

Notice that, even if the property of having a sum of costs over units seems to be fun-
damental for decomposition, the Auxiliary Problem Principle (see [30]) allows to extends
these decomposition schemes to general (non-additive) costs and constraint functions.
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The second part of the manuscript (Chapters 4, 5 and 6) is dedicated to the duality
theory in stochastic optimization as a tool for parallel decomposition.

1.2.2 Spatial Decomposition

The spatial decomposition (by prices) relies on the idea of dualizing the coupling
constraint (1.19c). It will be developed in x6.3 and in Chapter 8.

We now apply to Problem (1.19) a price decomposition scheme, presented inx1.2.1, by
dualizing the spatial constraint (1.19c). Since there areT �j 
 j constraints of dimensionnc,
the set of multipliers is of dimensionT � j 
 j � nc. Problem (1.19), with constraint (1.19c)
dualized, reads
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Assuming constraint quali�cation, this problem is equivalent to
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For a given multiplier � (k) , we obtain N parallel inner minimization problems
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We denoteU i; (k)
t and X i; (k)

t an optimal solution. We update the multipliers with

8t 2 [[0; T � 1]]; 8! 2 
 ; � (k+1)
t (! ) = � (k)

t (! )+ �
� NX

i =1

� i
t

�
X (k)

t (! ); U (k)
t (! )

� �
; (1.26)

where � > 0 is a given parameter.

Remark 1.4. As discussed inx1.2.1, this price decomposition has an insightful interpre-
tation. The multiplier � t (! ) can be interpreted as the marginal cost of the output at timet
along scenario! . It is worth noting that the prices form a stochastic processf � t g

T � 1
t=0 , that

can be represented as an element of the huge spaceR(T nc ) j 
 j
. We show in Remark 6.12

how we can only consider non-anticipative processes. The method presented in Chapter 8
consists precisely in restricting the space of multipliers� over which the maximization is
done.
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1.2.3 Scenario Decomposition

The decomposition scenario by scenario consists in dualizing the non-anticipativity
constraint, and then solving subproblems for each scenario (using any of the tools available
for deterministic problems). The Progressive Hedging (PH) Algorithm stands as the state
of the art in this domain, but we also present the Stochastic Pontryaguin approach.

Progressive Hedging (PH)

We consider Problem (1.19) written on a treeT . We then have

min�
f un t gn t 2N t
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X

n2T

X

m2 r (n)

NX
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P
�
f mg

�
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�
(1.27a)

s:t: X i
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m ; W m

�
; 8i; 8m 2 r (n); 8n 2 N t ; 8t;

(1.27b)
NX
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� i
t

�
X i

n ; U i
m

�
= 0 ; 8i; 8m 2 r (n); 8n 2 N t ; 8t :

(1.27c)

Note that we have one decisionun per node on the tree; this materializes the information
constraint (1.19d), the one that is dualized in the Progressive Hedging algorithm. For this
purpose, we introduce new control variables (see Figure 1.4), that is, a sequencef ut gT � 1

t=0
of controls for each scenario! (associated to a leaf of the tree), as in Problem (1.19). It
means that, with a given noden 2 T , are associatedjnj control variables, that is, one per
scenario going through this node. The non-anticipativity constraint (1.19d) is represented
by

8i 2 [[1; n]]; 8t 2 [[0; T � 1]]; 8(!; ! 0) 2 n2; U i
t (! ) = U i

t (! 0) : (1.28)

We introduce �Un the mean control on noden 2 N t , de�ned by

�U i
n =

P
! 2 n U i

t

�
!

�

jnj
: (1.29)

We denote by nt (! ) the node of depth t in which ! is contained. Hence, Equation (1.28)
can be rewritten as

8t 2 [[0; T � 1]]; 8! 2 
 ; U i
t (! ) = �U i

n t (! ) ; (1.30)

and Problem (1.19) now reads
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�
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U i
t (! ) = �U i

n t (! ) 8t; 8i; 8! : (1.31d)
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Figure 1.4: From scenario tree to set of scenarios

We dualize Constraint (1.31d), and, under constraint quali�cation, obtain

max
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where � is of dimension j
 j � N � nu � T . We now �x, for each node n 2 T , a mean
control �U(k)

n . For each scenario! 2 
, and each stage t 2 [[0; T � 1]], we �x a multiplier
� (k)

t (! ). The inner minimization of the above problem, for the given multipliers and mean
controls, can be done! per ! , and reads
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; 8t; 8i; 8! (1.32c)
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�
= 0 ; 8t; 8! : (1.32d)

Remark 1.5. It is interesting to note that the non-anticipativity constraint, written in
the form of Equation (1.30), is equivalent to

8i 2 [[1; N ]]; 8t 2 [[0; T � 1]]; U i
t � E

�
U i

t

�
� F t

�
= 0 : (1.33)
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The Progressive Hedging algorithm, schematically presented in Algorithm 1.1, is in
fact more elaborated, as it uses an augmented Lagrangian instead of a simple Lagrangian,
hence adding a quadratic term in the cost of the subproblems (1.32). We refer the reader
to [21,98] for more details.

Data : Initial multipliers
�

f � (0)
t (! )gT � 1

t=0

	
! 2 
 and mean control

� �U(0)
n

	
n2T ;

Result : optimal feedback;
repeat

forall the scenario ! 2 
 do
Solves the deterministic minimization problem (1.32) for scenario! with a
measurability penalization, and obtain optimal control U (k+1) ;

Update the mean controls

8t 2 [[0; T � 1]]; 8n 2 N t ; �u(k+1)
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P
! 2 n U (k+1)
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;

Update the measurability penalization with
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;
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�
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Algorithm 1.1: General Scheme of Progressive Hedging

Stochastic Pontryaguin

We present an extension to the stochastic framework of Pontryaguin method. More
details and numerical experiments can be found in [32].

Ignoring the \spatial" coupling constraint (1.19c), and dualizing 7 the dynamics con-
straints (1.19b), Problem (1.19) reads
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(1.34)

For a given control processU (k) , we consider the inner min-max problem,
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(1.35)

This problem can be solved! per !
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(1.36)

7. To be more speci�c multiplier � i
t corresponds to the constraint X i

t � f i
t � 1

�
X i

t � 1 ; U i
t � 1 ; W t � 1

�
.

However, we want to have local cost depending on state and control of time t, hence the appearance of
multipliers � i

t and � i
t +1 in Problem (1.34).
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Assuming that we have the necessary regularity conditions (and since we assumed no
bound constraints on U and X ), we write the �rst order optimality conditions of this
inner min-max problem and deduce the optimal solutionsX (k) and � (k) by

X (k)
0 = x0 ; (1.37a)

X (k)
t+1 = f t

�
X (k)

t ; U (k)
t ; W t

�
t 2 [[0; T � 1]] ; (1.37b)

� T = 0 ; (1.37c)

� t = r x f t
�
X (k)

t ; U (k)
t ; W t

�
� (k)

t+1 + r xL t
�
X (k)

t ; U (k)
t ; W t

�
t 2 [[1; T � 1]] : (1.37d)

These conditions involve a co-state stochastic process� which is not F -adapted since the
dynamics (1.37c){(1.37d) propagate backwards and therefore� t is not F t -measurable in
general.

Given a control trajectory ( U (k)
0 ; : : : ; U (k)

T � 1), we can solve these equations by, �rst

integrating Equations (1.37a)-(1.37b) forward to obtain f X (k)
t gT

t=0 , and then integrating

Equations (1.37c)-(1.37d) backward to obtain the multiplier processf � (k)
t gT

t=1 . Note that
these integrations are performed scenario per scenario, hence in parallel.

Denote by H the function mini-maximized in Problem (1.34), i.e.
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De�ne by J the function minimized in Problem (1.34), that is,

J (U ) = min
X

max
�

H
�
X ; U ; �

�
: (1.39)

The Danskin theorem (also known as theenvelop theoremin Economics), states that,
under proper assumptions, the gradient of the functionJ at point U (k) is given by

r J (U (k) ) = r U H (X (k) ; U (k) ; � (k) ) : (1.40)

Hence, the gradient ofJ at U (k) is

r J (U (k) ) = r uL t
�
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�
+ r u f t
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As the minimization is done over theF-adapted controls, a projected gradient step for the
minimization of J would be

U (k+1)
t = U (k)

t + � E
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� (k)

t+1
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�
� F t

i
: (1.42)

Equation (1.42) can be used as an update step of the controlU (k)
t for this decomposition

method.

1.2.4 Time Decomposition

Not all decompositions by duality lead to powerful formulations. For instance, we
present a (little used) parallel decomposition approach of time decomposition obtained by
dualization of the dynamic constraint.

On the other hand, as there is a natural 
ow in time, we can write a chained decom-
position method, the well-known Dynamic Programming approach.
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Dualizing the Dynamics Constraints

We apply to Problem (1.19) a price decomposition scheme, presented inx1.2.1, by
dualizing the dynamic constraint (1.19b).

Since there areN � T � j 
 j dynamics constraints, the set of multiplier is of dimension
T � j 
 j � N � nX . Dualizing the dynamics constraints (1.19b), Problem (1.19) reads
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Assuming constraint quali�cation, and �xing a multiplier � (k) , we obtain T separate inner
minimization problems
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We denoteU i; (k)
t and X i; (k)

t an optimal solution. We update the multipliers with
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This decomposition approach is probably one of the less used decomposition ap-
proaches.

Dynamic Programming (DP)

The Dynamic Programming method is a well-known decomposition in time (see [11]).
As it is usual, we present the Dynamic Programming in a Decision-Hazard setting. It
relies on the assumption that the exogenous noisesf W t g

T � 1
0 form a sequence of inde-

pendent random variables. With this assumption, the original state X = ( X 1; : : : ; X N ),
that follows (1.19b), is a so-calledinformation state (see Remark 1.2). This state is the
argument of the value function Vt : Vt (x) is the best possible future cost starting from
time t in state x. The value functions satisfy the Dynamic Programming Equations: the
Vt are computed backwards, starting fromVT and solving static optimization problems (see
Algorithm 1.2). The solutions of these static optimization problems provide an optimal
solution as a deterministic function of the current state (state feedback)

U ]
t = � ]

t

�
X ]

t

�
;

where � ]
t : Xt ! Ut . Observe that the solution, supposed to satisfy the non-anticipativity

constraint (1.19d), satis�es what is a stronger constraint, namely U t � X t . This is an
important property of DP: when the exogenous noisesf W t g

T � 1
t=0 form a sequence of inde-

pendent random variables, there is no loss of optimality in reducing the search to the class
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of state feedback solutions, namelyBt = � (X t ) instead of Bt = F t . When the size of the
state spaceXt does not increase witht, this property has major consequences for numer-
ical applications: whereas the space ofF t -measurable solutions increases (exponentially)
with t, the space of policies� t : Xt ! Ut does not.

Data : Problem data (especially initial point x0 and �nal cost functions K i );
Result : Bellman function Vt , Optimal feedback � t ;
VT (x) = 0 ;
for t = T � 1 to 0 do

foreach x t 2 Xt do

Vt (x t ) = min
u= f u i gN

1

E
� NX
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L i
t

�
x i

t ; ui ; W t

�
+ Vt+1

�
X t+1

�
�

s:t: X i
t+1 = f i

t
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x i

t ; ui ; W t

�
; 8i

NX
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� i
t

�
x i

t ; ui � = 0

(1.43)

� t (x t ) is a control u minimizing the above problem ;

Algorithm 1.2: Dynamic Programming Algorithm

The DP chained decomposition is possible because of a causality principle along the
time axis (this would not be possible for the uncertainty or for space, except under very
speci�c conditions).

Remark 1.6. Here, we make the major assumption that the size of the state spaceXt does
not increase with t. We suppose that each component of the state takes a �nite numbernx

of values (hence the state takes at most
�
nx

� N values). Solving (1.19) by DP requires to
explore

T
�
nx

� N nu (1.44)

possible solutions. Comparing with(1.18), we see that DP makes better than brute force
whenever

logT + N lognx + log nu �
(nw)T � 1

nw � 1
lognu : (1.45)

Therefore, the DP algorithm outbeats brute force for a large enough numberT of time
steps. Indeed, it is linear in time, whereas brute force is exponential in time. However,
the complexity of DP is exponential in the numberN of subproblems or, in other words,
in the dimension of the state: this stands as thecurse of dimensionality (see [12]).

Discussing DP and the Notion of State

When the exogenous noisesf W t g
T � 1
t=0 form a sequence of independent random variables,

we can write a Dynamic Programming Equation (DPE) like (1.43) with state X . Now,
what happens if this assumption fails? We lay out a theoretical and a practical answer.

The theoretical answer follows [118]. We introduce the \maximal" state (already men-
tioned in Table 1.3)

cX t =
�
x0; W ; U0; : : : ; U t � 1

�
; (1.46)

which satis�es the trivial dynamic equation

cX t+1 =
� cX t ; U t

�
: (1.47)
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Then, there exists a DPE, but with an even larger information state consisting of the
conditional distribution of cX t knowing F t [118]. Of course, this state is only of theoretical
interest.

The practical answer has much to do with the \art of modelling", a compromise be-
tween, on the one hand, realism and complexity, and, on the other hand, mathematical
tractability. Consider that you want to manage a dam, seen as an electricity storage, over
a period of time (seex1.3). The natural physical state is the level of water in the dam,
whereas the information state depends on the water in
ows (rain, snow melting, etc.). To
account for (a weak form of) dependency, we can make the assumption that the in
ows are
independent random variables, but that their distributions are not stationary, and depend
upon time t to re
ect seasonal e�ects. In that case, the physical state is an information
state. To account for (a stronger form of) dependency, we can make the assumption that
the in
ows follow a so-called \order 1 model" (e.g. an AR-1 model)

W t+1 = ~f t
�
W t ; cW t

�
; (1.48)

where f cW t g
T � 1
t=0 is a sequence of independent random variables. Here, an information

state is given by
cX t =

�
X t ; W t

�
; (1.49)

with the dynamic
cX t+1 =

�
f t

�
X t ; W t

�
; ~f t

�
W t ; cW t

� �
: (1.50)

Of course, more realism pushes for incorporating more delays | W t+1 =
~f t

�
W t ; : : : ; W t � k ; cW t

�
| but at the price of increasing the dimension of the informa-

tion state, now being
�
X t ; W t ; : : : ; W t � k

�
, hitting the wall of the curse of dimensionality.

If the problem is written on a tree, we can write DPE with the couple physical state
x and current node (identi�ed with past noises). This is presented in x3.2.1.

Some approaches mix DP and a state of rather large dimension. For instance,Stochas-
tic Dual Dynamic Programming Algorithm (SDDP) makes assumption on the objective
function J (convexity) and on the dynamics functions f t (linearity). With these, the value
functions are shown to be convex, so that they can be approximated from below by the
class of suprema of �nite sets of linear functions. Such a structural property is a mean to
partially overcome the curse of dimensionality of DP. In Chapter 3, we will present SDDP
as a DP approach where information is encoded in a tree and where value functions are
cleverly approximated. Instead of computing the value function for any possible value of
the state, the SDDP algorithm iteratively forges approximations of the value function that
are improved around the states visited by optimal trajectories.

1.2.5 Summary Table

In Table 1.4, we gather the decompositions listed above. It happens that all the decom-
position methods we looked at are parallel, except the Dynamic Programming approach
(SDDP being a DP like approach). Indeed, chained decomposition is intimately related
to the natural 
ow of stages. The parallel decompositions that we presented have been
deduced from a price decomposition scheme for di�erent constraints. Proving their con-
vergence requires duality results, the main object of the second part of this manuscript
(Chapters 4, 5 and 6).

Interestingly, decompositions can be weaved together or mixed, opening the way for
a large variety of methods. For instance, we will present and dissect in Chapter 8 the
Dual Approximate Dynamic Programming method (DADP). With the distinctions we
established between decompositions, DADP can be seen as a spatial decomposition, where
subproblems can be solved by time decomposition. More precisely, DADP makes it possible
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to solve subproblems by DP, rendering space and time decompositions compatible. In a
di�erent setting, the contributions of Chapter 2 can be seen as conditions of compatibility
for time and uncertainty chained decompositions to yield a DPE.

Decomposition
Time Scenario Space

chained parallel parallel parallel

Dynamic Programming X
SDDP X
DADP X
Progressive Hedging X
Stochastic Pontryaguin X

Table 1.4: Decomposition Methods

1.3 A Dam Management Example

Here, we detail an example, taken from the energy world, that is used throughout this
manuscript as illustration.

Hydroelectricity is the main renewable energy in many countries (16% of global energy,
and 13% of France energy). It provides a clean (no greenhouse gases emissions), fast-usable
(under 30 seconds) and powerful (20 GW in China) energy that is cheap and substitutable
for the thermal one. It is all the more important to ensure its proper use that it comes from
a shared limited resource: the reservoirs water. This is the dam hydroelectric production
management purpose.

1.3.1 A Single Dam

Let time t vary in [[0; T]]. We consider a probability space
�

 ; F ; P

�
, and a sequence

f W t g
T � 1
t=0 of random variables with value in W. The random variable W t represents the

random water in
ow 8 in the dam at time t. The dam is modeled as a Stochastic Dynamic
System, as inx1.1.2, where the physical stateX t is the volume of water available at time t,
and the control U t is the volume of water consumed at timet.

The consumed water at time t induces a cash 
ow9 of � L t
�
X t ; U t ; W t

�
, and the

remaining water at the �nal time t is valued by � K (X t ). We aggregate the random cost
with the expectation, and do not take into account any discount factor. Thus, the problem
we are interested in is the following

min
X ;U

E
� T � 1X

t=0

L t
�
X t ; U t ; W t

�
+ K (X T )

�
(1.51a)

s:t X t+1 = f t
�
X t ; U t ; W t

�
8t 2 [[0; T � 1]] ; (1.51b)

U t � F t 8t 2 [[0; T � 1]] ; (1.51c)

U t 2 Uad
t P � a.s.; 8t 2 [[0; T � 1]] ; (1.51d)

X t 2 X ad
t P � a.s.; 8t 2 [[0; T � 1]] : (1.51e)

8. More information, like the prices of electricity can be contained in the random variable W t

9. As usual the problem being in fact a maximization of cash 
ow we rewrite it as the minimization of
the opposite of those cash-
ows.
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Constraint (1.51b) is the physical constraint of evolution on the stock of water in the dam.
It is given by the physics of the dam, like

f t
�
x; u; w

�
= x � u + w :

Constraint (1.51c) is the measurability constraint representing what the manager knows
when he decides the value ofU t . We distinguish two classical cases:

� the Hazard-Decision case, whereF t = �
�
X 0; W 0; � � � ; W t

�
, which means that the

manager knows the water input betweent and t +1 when he decides the consumption
in the same period;

� the Decision - Hazard case, whereF t = �
�
X 0; W 0; � � � ; W t � 1

�
, which means that

the manager knows only the past noises and consequently the present volume of
water in the dam.

Constraints (1.51d) and (1.51e) are bound constraints on the control and the state, rep-
resenting the physical limitations of the dam and turbine. Usually we have

X ad
t = [ x t ; x t ] and Uad

t = [ ut ; ut ] :

The local cost function L t represents the (opposite of) the gain obtained by selling the
electricity produced by turbining a volume u of water. This gain depends on the market
price (included in W t ), the water turbined (the control U t ) and the level of water in the
dam (the state X t ): higher level means higher water pressure.

1.3.2 A Chain of Dams

Most times, dams are included in a hydraulic valley, so that dams interact with each
other: the water output of one dam is an input for another dam, etc. Hydraulic valley can
be quite complex see for example Figure 1.5. but, for the sake of simplicity, we present
a cascade of dams as in Figure 1.6. In this setting, the water consumed by dami is seen
as an in
ow of dam i + 1. In particular, we do not consider the cases where one dam
receives the out
ow of two other dams, neither when the out
ow of one dam can go in
two di�erent destinations.

Let time t vary in [[0; T]], and dams be labeled withi 2 [[1; N ]]. We consider a probability
space

�

 ; F ; P

�
, and the following real valued random variables:

� X i
t , the storage levelof dam i at the beginning of period [t; t + 1[, ( state)

� U i
t the hydro turbine out
ows of dam i during [t; t + 1[, ( control )

� Z i
t the water in
ows for dam i from dam i � 1 during [t; t + 1[, ( additional control )

� W i
t , the external in
ows for dam i during [t; t + 1[. ( noise)

The additional control Z i
t is a useful notation and will be used inx8.1.5 to decompose the

system.
The dynamics of the reservoir storage level reads, for the �rst dam of the chain:

X 1
t+1 = f 1

t (X 1
t ; U 1

t ; W 1
t ; 0) ;

= X 1
t � U 1

t + W 1
t :

For any other dam i > 1, we have

X i
t+1 = f i

t (X i
t ; U i

t ; W i
t ; Z i

t ) ;

= X i
t � U i

t + W i
t + Z i

t ;
(1.52)

where
Z i

t = X i � 1
t � U i � 1

t + W i � 1
t + Z i � 1

t (1.53)

is the water in
ows in dam i coming from dami � 1, it is also the total out
ows of dam i � 1.
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Figure 1.5: Chains of dams in France

The bound constraints are

8t 2 [[0; T � 1]]; x t+1 � X t+1 � x t+1 and ut � U t � ut : (1.54)

Moreover, we assume theHazard-Decision information structure ( U i
t is chosen once

W t is observed), so that

ui � U i
t � min

�
ui ; X i

t + W i
t + Z i

t � x i 	 : (1.55)

We consider the multiple step management of a chain of dams, each dam producing
electricity that is sold at the same price. Thus, the hydroelectric valley obeys the following
valuing mechanism

NX

i =1

T � 1X

t=0

L i
t (X

i
t ; U i

t ; Z i
t ; W i

t ) + K i (X T ) ; (1.56)

whereK i is a function valuing the remaining water at time t in the dam i . As this criterion
is random, we choose to minimize the expected cost, so that the stochastic optimization
problem we address reads

min
(X ;U ;Z )

E
� NX

i =1

� T � 1X

t=0

L i
t

�
X i

t ; U i
t ; Z i

t ; W i
t

�
+ K i � X i

T

� � �
; (1.57a)

subject to:

X i
t+1 = f i

t (X i
t ; U i

t ; Z i
t ; W i

t ); 8i; 8t ; (1.57b)

Z i +1
t = gi

t (X
i
t ; U i

t ; Z i
t ; W i

t ); 8i; 8t ; (1.57c)
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Figure 1.6: A chain of dams scheme

as well as measurability constraints:

U i
t � F t ; 8i; 8t : (1.57d)

Theoretically, this problem could be solved by methods like Dynamic Programming.
However, the dimension of the information state required is the number of dams. Thus,
the so-called curse of dimensionality prevents us to apply Dynamic Programming for more
than 5 dams.

In Chapter 3, we present an algorithm using approximations of value functions in
Dynamic Programming to solve this type of problem for a large number of dams. In
Chapter 8, we present a spatial decomposition method.

Conclusion

We conclude this preliminary chapter with a roadmap of the manuscript.
In the �rst part of this manuscript, Dynamic Programming: Risk and Convexity, we

focus on chained decomposition, and especially the well-known time decomposition that
constitutes Dynamic Programming. In Chapter 2, we extend the traditional additive in
time and risk neutral setting to more general ones, for which we establish time-consistency
results. We relate the time-consistency property for a sequence of optimization problems
with the time-consistency property of a dynamic risk measure. In Chapter 3, we prove a
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convergence result for the Stochastic Dual Dynamic Programming Algorithm in the case
where (convex) cost functions are no longer polyhedral.

Then, we turn to parallel decomposition, especially decomposition methods ob-
tained by dualizing constraints (spatial or non-anticipative). In the second part of this
manuscript, Duality in Stochastic Optimization , we �rst point out that such constraints
lead to delicate duality issues (Chapter 4). We establish a duality result in the pairing�

L1 ; L1
�

in Chapter 5. Finally, in Chapter 6, we prove the convergence of the Uzawa Al-

gorithm in L 1
�

 ; F ; P; Rn

�
, that requires constraints quali�cation. This algorithm is used

to apply a price decomposition scheme to a multistage stochastic optimization problem.
The third part of this manuscript, Stochastic Spatial Decomposition Methods, is de-

voted to the so-calledDual Approximate Dynamic Programming Algorithm. In Chapter 7,
we prove that a sequence of relaxed optimization problems epiconverges to the original
one, where almost sure constraints are replaced by weaker conditional expectation ones,
and that the corresponding sigma-algebras converge. In Chapter 8, we give theoretical
foundations and interpretations for the Dual Approximate Dynamic Programming Algo-
rithm.
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Part I

Dynamic Programming:
Risk and Convexity
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Chapter 2

Time-Consistency: from
Optimization to Risk Measures

In my next life I want to live my life backwards. You
wake up in an old people's home feeling better every
day. You get kicked out for being too healthy. You
work for 40 years until you're young enough to enjoy
your retirement. You party, drink alcohol, and are
generally promiscuous. then you become a kid, you
play. You have no responsibilities, you become a baby
until you are born. And then you spend your last 9
months 
oating in luxurious spa-like conditions with
central heating and room service on tap, larger quarters
every day and then Voila! You �nish o� as an orgasm!

Woody Allen (abbreviated)
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This chapter present a general framework for the chained time decomposition known
as Dynamic Programming. Indeed, usually Dynamic Programming is applied to prob-
lems considering the expectation of an inter-temporal sum of costs. In [105] a risk-averse
dynamic programming theory was developed. Here, we extend the framework by giving
general conditions on the aggregator in time (replacing the intertemporal sum) and the
aggregator in uncertainties (replacing the expectation) to obtain a Dynamic Programming
Equation.

The content of this Chapter has been submitted as an article in a special issue of
European Journal of Operations Research, dedicated to Time Consistency. It is a common
work with M. De Lara.

Introduction

Stochastic optimal control is concerned with sequential decision-making under uncer-
tainty. The theory of dynamic risk measures gives values to stochastic processes (costs)
as time goes on and information accumulates. Both theories coin, under the same vocable
of time-consistency (or dynamic-consistency), two di�erent notions. We discuss one after
the other.

In stochastic optimal control, we consider a dynamical process that can be in
uenced by
exogenous noises as well as decisions made at every time step. The decision maker wants to
optimize a criterion (for instance, minimize a net present value) over a given time horizon.
As time goes on and the system evolves, observations are made. Naturally, it is generally
more pro�table for the decision maker to adapt his decisions to the observations on the
system. He is hence looking for policies (strategies, decision rules) rather than simple
decisions: a policy is a function that maps every possible history of the observations to
corresponding decisions.

The notion of \consistent course of action" (see [73]) is well-known in the �eld of
economics, with the seminal work of [113]: an individual having planned his consumption
trajectory is consistent if, reevaluating his plans later on, he does not deviate from the
originally chosen plan. This idea of consistency as \sticking to one's plan" may be extended
to the uncertain case where plans are replaced by decision rules (\Do thus-and-thus if you
�nd yourself in this portion of state space with this amount of time left", Richard Bellman
cited in [41]): [53] addresses \consistency" and \coherent dynamic choice", [61] refers to
\temporal consistency".

In this context, we loosely state the property of time-consistency in stochastic optimal
control as follows [26]. The decision maker formulates an optimization problem at timet0

that yields a sequence of optimal decision rules fort0 and for the following increasing time
stepst1; : : : ; tN = T. Then, at the next time step t1, he formulates a new problem starting
at t1 that yields a new sequence of optimal decision rules from time stepst1 to T. Suppose
the process continues until time T is reached. The sequence of optimization problems
is said to be dynamically consistent if the optimal strategies obtained when solving the
original problem at time t0 remain optimal for all subsequent problems. In other words,
dynamic consistency means that strategies obtained by solving the problem at the very
�rst stage do not have to be questioned later on.

Now, we turn to dynamic risk measures. At time t0, you value, by means of a risk
measure� t0 ;T , a stochastic process

�
A t

	 tN

t= t0
, that represents a stream of costs indexed by

the increasing time stepst0; t1; : : : ; tN = T. Then, at the next time step t1, you value the
tail

�
A t

	 tN

t= t1
of the stochastic process knowing the information obtained and materialized

by a � -�eld Ft1 . For this, you use a conditional risk measure� t1 ;T with values in Ft1 -
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measurable random variables. Suppose the process continues until timeT is reached. The
sequence

�
� t;T

	 tN

t= t0
of conditional risk measures is called a dynamic risk measure.

Dynamic or time-consistency has been introduced in the context of risk measures (see
[5,28,29,37,84] for de�nitions and properties of coherent and consistent dynamic risk mea-
sures). We loosely state the property of time-consistency for dynamic risk measures as fol-
lows. The dynamic risk measure

�
� t;T

	 tN

t= t0
is said to be time-consistent when the following

property holds. Suppose that two streams of costs,
�

A
t

	 tN

t= t0
and

�
A t

	 tN

t= t0
, are such that

they coincide from time t i up to time t j > t i and that, from that last time t j , the tail stream
�

A
t

	 tN

t= t j
is valued more than

�
A t

	 tN

t= t j
(� t j ;T (

�
A

t

	 tN

t= t j
) � � t j ;T (

�
A t

	 tN

t= t j
)). Then, the

whole stream
�

A
t

	 tN

t= t i
is valued more than

�
A t

	 tN

t= t i
(� t i ;T (

�
A

t

	 tN

t= t i
) � � t i ;T (

�
A t

	 tN

t= t i
)).

We observe that both notions of time-consistency look quite di�erent: the latter is
consistency between successive evaluations of a stochastic processes by a dynamic risk
measure as information accumulates (a form of monotonicity); the former is consistency
between solutions to intertemporal stochastic optimization problems as information ac-
cumulates. We now stress the role of information accumulation in both notions of time-
consistency, because of its role in how the two notions can be connected. For dynamic risk
measures, the 
ow of information is materialized by a �ltration

�
Ft

	 tN

t= t1
. In stochastic

optimal control, an amount of information more modest than the past of exogenous noises
is often su�cient to make an optimal decision. In the seminal work of [12], the minimal
information necessary to make optimal decisions is captured in astate variable (see [117]
for a more formal de�nition). Moreover, the famous Bellman or Dynamic Programming
Equation (DPE) provides a theoretical way to �nd optimal strategies (see [18] for a broad
overview on Dynamic Programming (DP) ).

Interestingly, time-consistency in stochastic optimal control and time-consistency for
dynamic risk measures meet in their use of DPEs. On the one hand, in stochastic optimal
control, it is well known that the existence of a DPE with state x for a sequence of op-
timization problems implies time-consistency when solutions are looked after as feedback
policies that are functions of the state x. On the other hand, proving time-consistency
for a dynamic risk measure appears rather easy when the corresponding conditional risk
measures can be expressed by anested formulation that connects successive time steps.
In both contexts, such nested formulations are possible only for proper information struc-
tures. In stochastic optimal control, a sequence of optimization problems may be consis-
tent for some information structure while inconsistent for a di�erent one (see [26]). For
dynamic risk measures, time-consistency appears to be strongly dependent on the un-
derlying information structure (�ltration or scenario tree). Moreover, in both contexts,
nested formulations and the existence of a DPE are established under various forms of
decomposability of operators that display monotonicity and commutation properties.

Our objective is to provide a theoretical framework that o�ers i) basic ingredients
to jointly de�ne dynamic risk measures and corresponding intertemporal stochastic opti-
mization problems ii) common sets of assumptions that lead to time-consistency for both.
Our theoretical framework highlights the role of time and risk preferences, materialized in
one-step aggregators, in time-consistency. Depending on how you move from one-step time
and risk preferences to intertemporal time and risk preferences, and depending on their
compatibility (commutation), you will or will not observe time-consistency. We also shed
light on the relevance of information structure by giving an explicit role to a dynamical
system with state X .

In x2.1, we present examples of intertemporal optimization problems displaying a DPE,
and of dynamic risk measures (time-consistent or not, nested or not). Inx2.2, we introduce
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the basic material to formulate intertemporal optimization problems, in the course of which
we de�ne \cousins" of dynamic risk measures, namelydynamic uncertainty criteria ; we end
with de�nitions of time-consistency, on the one hand, for dynamic risk measures and, in
the other hand, for intertemporal stochastic optimization problems. In x2.3, we introduce
the notions of time and uncertainty-aggregators, de�ne their composition, and show four
ways to craft a dynamic uncertainty criterion from one-step aggregators; then, we provide
general su�cient conditions for the existence of a DPE and for time-consistency, both for
dynamic risk measures and for intertemporal stochastic optimization problems; we end
with applications. In x2.4, we extend constructions and results to Markov aggregators.

2.1 Introductory Examples

The traditional framework for DP consists in minimizing the expectation of the in-
tertemporal sum of costs as in Problem (2.3). As we see it, the intertemporal sum is an
aggregation over time, and the mathematical expectation is an aggregation over uncer-
tainties. We claim that other forms of aggregation lead to a DPE with the same state
but, before developing this point in x2.3, we lay out in x2.1.1 three settings (more or less
familiar) in which a DPE holds. We do the same job for dynamic risk measures inx2.1.2
with time-consistency.

To alleviate notations, for any sequence
�

Hs
	

s= t1 ;:::;t 2
of sets, we denote by

�
Hs

� t2

t1
, or

by H [t1 :t2 ], the Cartesian product

H [t1 :t2 ] =
�
Hs

� t2

t1
=

�
Hs

� t2

s= t1
= H t1 � � � � � H t2 ; (2.1a)

and a generic element by

h[t1 :t2 ] =
�

ht
	 t2

t1
=

�
ht

	 t2

t= t1
= ( ht1 ; : : : ; ht2 ) : (2.1b)

In the same vein, we also use the following notation for any sequence

H [t1 :t2 ] =
�

Hs
	 t2

t1
=

�
Hs

	 t2

s= t1
=

�
Hs

	
s= t1 ;:::;t 2

: (2.1c)

In this chapter, we denote by �R the set R [ f + 1g .

2.1.1 Examples of DPEs in Intertemporal Optimization

Anticipating on material to be presented in x2.2.1, we consider a dynamical system
in
uenced by exogenous uncertainties and by decisions made at discrete time stepst = 0,
t = 1, . . . , t = T � 1, where T is a positive integer. For any t 2 [[0; T]], where [[a; b]]
denote the set of integers betweena and b, we suppose given a state setXt , and for
any t 2 [[0; T � 1]] a control set Ut , an uncertainty set Wt and a mapping f t that maps
Xt � Ut � Wt into Xt+1 . We consider thecontrol stochastic dynamical system

8t 2 [[0; T � 1]]; X t+1 = f t (X t ; Ut ; Wt ) : (2.2)

We call policy a sequence� = ( � t )t2 [[0;T � 1]] of mappings where, for all t 2 [[0; T � 1]], � t

maps Xt into Ut . We denote by � the set of all policies. More generally, for all t 2 [[0; T]],
we call (tail) policy a sequence� = ( � s)s2 [[t;T � 1]] and we denote by � t the set of all such
policies.

Let
�

W t

	 T
t=0 be a sequence of independent random variables (noises). Let

�
Jt

	 T � 1
0

be a sequence of cost functionsJt : Xt � Ut � Wt 7! R, and a �nal cost function JT :
XT � WT ! R.
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With classic notations, and assuming all proper measurability and integrability condi-
tions, we consider the dynamic optimization problem

min
� 2 �

E
� T � 1X

t=0

Jt (X t ; U t ; W t ) + JT (X T ; W T )
�

; (2.3a)

s.t. X t+1 = f t (X t ; U t ; W t ); 8t 2 [[0; T � 1]] ; (2.3b)

U t = � t (X t ); 8t 2 [[0; T � 1]] : (2.3c)

It is well-known that a DPE with state X can be associated with this problem. The
main ingredients for establishing the DPE are the following: the intertemporal criterion
is time-separable and additive, the expectation is a composition of expectations over the
marginals law (because the random variables

�
W t

	 T
t=0 are independent), and the sum

and the expectation operators are commuting. Our main concern is to extend these
properties to other \aggregators" than the intertemporal sum

P T � 1
t=0 and the mathematical

expectation E, and to obtain DPEs with state X , thus retrieving time-consistency.
In this example, we aggregate the streams of cost �rst with respect to time (through

the sum over the stages), and then with respect to uncertainties (through the expectation).
This formulation is called TU for \time then uncertainty". All the examples of this x2.1.1
follow this template.

We do not present proofs of the DPEs exposed here as they �t into the framework
developed later inx2.3.

Expected and Worst Case with Additive Costs

We present together two settings in which a DPE holds true. They share the same time-
aggregator | time-separable and additive | but with distinct uncertainty-aggregators,
namely the mathematical expectation operator and the so-called \fear" operator.

Expectation Operator Consider, for anyt 2 [[0; T]], a probability Pt on the uncertainty
spaceWt (equipped with a proper � -algebra), and the product probability P = P0
� � �
 PT .
In other formulations of stochastic optimization problems, the probabilities Pt are the
image distributions of independent random variables with value in Wt . However, we
prefer to ground the problems with probabilities on the uncertainty spaces rather than
with random variables, as this approach will more easily easily extend to other contexts
without stochasticity.

The so-calledvalue function Vt , whose argument is the statex, is the optimal cost-to-go
de�ned by

Vt (x) = min
� 2 � t

E
� T � 1X

s= t

Js(X s; Us; W s) + JT (X T ; W T )
�

; (2.4a)

s.t. X t = x ; (2.4b)

X s+1 = f t (X s; Us; W s); 8s 2 [[t; T � 1]] ; (2.4c)

Us = � s(X s) : (2.4d)

The DPE associated with problem (2.3) is
8
<

:

VT (x) = EPT

h
JT (x; W T )

i
;

Vt (x) = min u2 Ut EPt

h
Jt (x; u; W t ) + Vt+1 � f t (x; u; W t )

i
;

(2.5)

for all state x 2 Xt and all time t 2 [[0; T � 1]].
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It is well-known that, if there exists a policy � ] (with proper measurability assumptions
that we do not discuss here [see [20]]) such that, for eacht 2 [[0; T � 1]], and eachx 2 Xt ,
we have

� ]
t (x) 2 arg min

u2 Ut

E
h
Jt (x; u; W t ) + Vt+1 � f t (x; u; W t )

i
; (2.6)

then � ] is an optimal policy for Problem (2.3).
Time-consistency of the sequence of Problems (2.4), whent runs from 0 to T, is ensured

by this very DPE, when solutions are looked after as policies over the statex. We insist
that the property of time-consistency may or may not hold depending on the nature of
available information at each time step. Here, our assumption is that the statex t is
available for decision-making at each timet. 1

Remark 2.1. To go on with information issues, we can notice that the so-called \non-
anticipativity constraints", typical of stochastic optimization, are contained in our de�ni-
tion of policies. Indeed, we considered policies are function of the state, which a summary
of the past, hence cannot anticipate the future. Why can we take the state as a proper
summary? If, in Problem (2.3), we had considered policies as functions of past uncer-
tainties (non-anticipativity) and had assumed that the uncertainties are independent, it is
well-known that we could have restricted our search to optimal Markovian policies, that
is, only functions of the state. This is why, we consider policies only as functions of the
state.

Fear Operator In [16], Pierre Bernhard coinedfear operator the worst-case operator,
widely considered in the �eld of robust optimization (see [67] and [15]).

We consider the optimization problem

min
� 2 �

sup
w2 W[0: T ]

� T � 1X

t=0

Jt (x t ; ut ; wt ) + JT (xT ; wT )
�
; (2.7a)

s.t. x t+1 = f t (x t ; ut ; wt ); (2.7b)

ut = � t (x t ): (2.7c)

Contrarily to previous examples we do not use bold letters for statex, control u and
uncertainty w as these variables are not random variables. In [17, Section 1.6], it is shown
that the value function

Vt (x) = min
� 2 � t

sup
w2 W[t :T ]

� T � 1X

s= t

Js(xs; us; ws) + JT (xT ; wT )
�

; (2.8a)

s.t. x t = x ; (2.8b)

xs+1 = f s(xs; us; ws) ; (2.8c)

us = � s(xs) : (2.8d)

satis�es the DPE
8
><

>:

VT (x) = sup
wT 2 WT

JT (x; wT ) ;

Vt (x) = min
u2 Ut

sup
wt 2 Wt

h
Jt (x; u; w t ) + Vt+1 � f t (x; u; w t )

i
;

(2.9)

for all state x 2 Xt and all time t 2 [[0; T � 1]].

1. In the literature on risk measures, information is rather described by �ltrations than by variables.
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Expectation with Multiplicative Costs

An expected multiplicative cost appears in a �nancial context if we consider a �nal
payo� K (X T +1 ) depending on the �nal state of our system, but discounted at rater t (X t ).
In this case, the problem of maximizing the discounted expected product reads

max
� 2 �

E
� T � 1Y

t=1

� 1
1 + r t (X t )

�
K (X T )

�
:

We present another interesting setting where multiplicative cost appears. In control
problems, we thrive to �nd controls such that the state x t satis�es constraints of the type
x t 2 X t � Xt for all t 2 [[0; T]]. In a deterministic setting, the problem has either no solution
(there is no policy such that, for all t 2 [[0; T]], x t 2 X t ) or has a solution depending on the
starting point x0. However, in a stochastic setting, satisfying the constraintx t 2 X t , for all
time t 2 [[0; T]] and P� almost surely, can lead to problems without solution. For example,
if we add to a controled dynamic a nondegenerate Gaussian random variable, then the
resulting state can be anywhere in the state space, and thus a constraintX t 2 X t � Xt

where Xt is, say, a bounded set, cannot be satis�ed almost surely.
For such a control problem, we propose alternatively to maximize the probability of

satisfying the constraint (see [40], where this is approach is calledstochastic viability):

max
� 2 �

P
� �

8t 2 [[0; T]]; X t 2 X t
	 �

; (2.10a)

s.t X t+1 = f t
�
X t ; U t ; W t

�
; (2.10b)

U t = � (X t ) : (2.10c)

This problem can be written

max
� 2 �

E
h TY

t=0

1f X t 2X t g

i
; (2.11a)

s.t X t+1 = f t
�
X t ; U t ; W t

�
; (2.11b)

U t = � (X t ) : (2.11c)

It is shown in [34] that, assuming that noises are independent (i.e the probabilityP can
be written as a product P = P0 
 � � � 
 PT ), the associated DPE is

8
<

:

VT (x) = E
h
1f x2X T g

i
;

Vt (x) = max u2 Ut E
h
1f x2X t g � Vt+1 � f t (x; u; W t )

i
;

(2.12)

for all state x 2 Xt and all time t 2 [[0; T � 1]].
If there exists a measurable policy� ] such that, for all t 2 [[0; T � 1]] and all x 2 Xt ,

� ]
t (x) 2 arg max

u2 Ut

E
h
1f x2X t g � Vt+1 � f t (x; u; W t )

i
; (2.13)

then � ] is optimal for Problem (2.10).

2.1.2 Examples of Dynamic Risk Measures

Consider a probability space
�

 ; F; P

�
, and a �ltration F = f Ft gT

0 . The expression
f A sgT

0 denotes an arbitrary, F-adapted, real-valued, stochastic process.
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Anticipating on recalls in x2.2.2, we callconditional risk measure a function � t;T that
maps tail sequencesf A sgT

t , where eachA s is Fs measurable, into the set ofFt measur-
able random variables. Adynamic risk measure is a sequencef � t;T gT

0 of conditional risk
measures.

A dynamic risk measure f � t;T gT
t=0 , is said to be time-consistent if, for any couples of

times 0 � t < t � T , the following property holds true. If two adapted stochastic processes
f A

s
gT

0 and f A sgT
0 satisfy

A
s

= A s; 8s 2 [[t; t � 1]] ; (2.14a)

� t;T

�
f A

s
gT

t

�
� � t;T

�
f A sgT

t

�
; (2.14b)

then we have:
� t ;T

�
f A

s
gT

t

�
� � t ;T

�
f A sgT

t

�
: (2.14c)

We now lay out examples of dynamic risk measure.

Expectation and Sum

Unconditional Expectation The �rst classical example, related to the optimization
Problem (2.3), consists in the dynamic risk measuref � t;T gT

t=0 given by

8t 2 [[0; T]]; � t;T
�
f A sgT

t

�
= E

h TX

s= t

A s

i
: (2.15)

We write (2.15) under three forms | denoted by TU, UT, NTU, and discussed later
in x2.3.1:

� t;T
�
f A sgT

t

�
= E

� TX

s= t

A s

�
(TU)

=
TX

s= t

E
�
A s

�
(UT)

= E

"

A t + E
�
A t+1 + � � � + E

h
A T � 1 + E

�
A T

� i
� � �

� #

(NTU)

To illustrate the notion, we show that the dynamic risk measure f � t;T gT
t=0 is time-

consistent. Indeed, if two adapted stochastic processesA and B satisfy (2.14a) and
(2.14b), with t = t < t � T , we conclude that

� t;T
�
f A

s
gT

t

�
= E

� t � 1X

s= t

A
s

+ � t;T

�
f A

s
gT

t

�
�

� E
� t � 1X

s= t

A s + � t;T

�
f A sgT

t

�
�

= � t;T
�
f A sgT

t

�
:

Conditional Expectation Now, we consider a \conditional variation" of (2.15) by
de�ning

� t;T
�
f A sgT

t

�
= E

h TX

s= t

A s

�
�
� Ft

i
: (2.16)
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We write 2 the induced dynamic risk measuref � t;T gT
t=0 under four forms | denoted by

TU, UT, NTU, NUT, and discussed later in x2.3.1:

� t;T
�
f A sgT

t

�
= EFt

� TX

s= t

A s

�
(TU)

=
TX

s= t

EFt
�
A s

�
(UT)

= EFt

"

A t + EFt +1

�
A t+1 + � � � + EFT � 1

h
A T � 1 + EFT

�
A T

� i
� � �

� #

(NTU)

= A t + EFt +1

�
A t+1 + � � � + EFT � 2

�
A T � 1 + EFT � 1

�
A T

��
� � �

�
(NUT )

The dynamic risk measuref � t;T gT
t=0 is time-consistent: indeed, if two adapted stochastic

processesA and B satisfy (2.14a) and (2.14b), with t = t < t � T , we conclude that

� t;T
�
f A

s
gT

t

�
= E

� t � 1X

s= t

A
s

+ � t;T

�
f A

s
gT

t

�
�
�
�
� Ft

�

� E
� t � 1X

s= t

A s + � t;T

�
f A sgT

t

�
�
�
�
� Ft

�
= � t;T

�
f A sgT

t

�
:

AV@R and Sum

In the following examples, it is no longer possible to display three or four equivalent ex-
pressions for the same conditional risk measure. This is why, we present di�erent dynamic
risk measures.

Unconditional AV@R For 0 < � < 1, we de�ne the Average-Value-at-Risk of level �
of a random variable X by

AV@R�
�
X

�
= inf

r 2 R

n
r +

E
�
X � r

� +

�

o
: (2.17)

Let
�

� t
	 T

t=0 and
�

� t;s
	 T

s;t=0 be two families in (0; 1). We lay out three di�erent dynamic
risk measures, given by the following conditional risk measures:

� t;T
�
f A sgT

t

�
= AV@R � t

� TX

s= t

A s

�
; (TU)

� t;T
�
f A sgT

t

�
=

TX

s= t

AV@R� t;s

�
A s

�
; (UT)

� NT U
t;T

�
f A sgT

t

�
= AV@R � t;t

"

A t + AV@R � t;t +1

�
A t+1 + � � �

AV@R� t;T

�
A T

�
� � �

� #

: (NTU)

The dynamic risk measure f � T U
t;T gT

t=0 is not time-consistent, whereas the dynamic risk
measuref � UT

t;T gT
t=0 and the dynamic risk measuref � NT U

t;T gT
t=0 are time consistent, as soon

as the levels� t;s do not depend ont.

2. Here, for notational clarity, we denote by EF t
�

�
�

the conditional expectation E
�

�
�
� Ft

�
.
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Conditional AV@R For 0 < � < 1, and a sub�eld G � F we de�ne the conditional
Average-Value-at-Risk of level � of a random variable X knowing G by

AV@RG
�

�
X

�
= inf

r G-measurable

n
r +

E
��

X � r
� + �

� G
�

�

o
: (2.19)

Let
�

� t
	 T

t=0 and
�

� t;s
	 T

s;t=0 be two families in (0; 1). We lay out four di�erent dynamic
risk measures, given by the following conditional risk measures:

� t;T
�
f A sgT

t

�
= AV@R Ft

� t

� TX

s= t

A s

�
; (TU)

� t;T
�
f A sgT

t

�
=

TX

s= t

AV@RFt
� t;s

�
A s

�
; (UT)

� t;T
�
f A sgT

t

�
=

TX

s= t

AV@RFt
� t;t

�
AV@RFt +1

� t;t +1

h
� � � AV@RFs

� t;s

�
A s

� i
�

; (UT)

� t;T
�
f A sgT

t

�
= AV@R Ft

� t;t

"

A t +

AV@RFt +1
� t;t +1

�
A t+1 + � � � AV@RFT

� t;T

�
A T

�
� � �

� #

: (NTU)

Examples of this type are found in papers like [79,100,105,107].

Markovian AV@R Let a policy � 2 �, a time t 2 [[0; T]] and a state x t 2 Xt be �xed.
With this and the control stochastic dynamical system (2.2), we de�ne the Markov chain
f X x t

s gT
s= t produced by (2.3b){(2.3c) starting from X t = x t . We also de�ne, for each

s 2 [[t; T ]], the � -algebra X x t
s = � (X x t

s ). With this, we de�ne a conditional risk measure
by

� x t
t;T

�
f A sgT

t

�
=AV@R X x t

t
� t;t

"

A t +

AV@R
X x t

t +1
� t;t +1

�
A t+1 + � � � AV@R

X x t
T

� t;T

�
A T

�
� � �

� #

:

(2.21)

Repeating the process, we obtain a family
n �

%x t
t;T

	
x t 2 Xt

oT

t=0
, such that

�
%x t

t;T

	 T
t=0 is a

dynamic uncertainty criterion, for all sequence
�

x t
	 T

t=0 of states, wherex t 2 Xt , for all
t 2 [[0; T]].

2.2 Time-Consistency: Problem Statement

In x2.2.1, we lay out the basic material to formulate intertemporal optimization prob-
lems. In x2.2.2, we de�ne \cousins" of dynamic risk measures, namelydynamic uncertainty
criteria . In x2.2.3, we provide de�nitions of time-consistency, on the one hand, for dynamic
risk measures and, in the other hand, for intertemporal stochastic optimization problems.

2.2.1 Ingredients for Intertemporal Optimization Problems

In x2.2.1, we recall the formalism of Control Theory, with dynamical system, state,
control and costs. Mimicking the de�nition of adapted processes in Probability Theory, we
introduce adapted uncertainty processes. Inx2.2.1, we show how to produce an adapted
uncertainty process of costs.
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Dynamical System, State, Control and Costs

We de�ne a control T-stage dynamical system, with T � 2, as follows. We consider
� a sequence

�
Xt

	 T
0 of sets ofstates;

� a sequence
�

Ut
	 T � 1

0 of sets ofcontrols;

� a sequence
�

Wt
	 T

0 of sets ofuncertainties, and we de�ne

W[0:T ] =
�
Ws

� T
0 ; the set of scenarios, (2.22a)

W[0:t ] =
�
Ws

� t
0; the set of head scenarios, 8t 2 [[0; T]] ; (2.22b)

W[s:t ] =
�
Ws

� T
t ; the set of tail scenarios, 8t 2 [[0; T]] ; (2.22c)

� a sequence
�

f t
	 T � 1

0 of functions, where f t : Xt � Ut � Wt ! Xt+1 , to play the role
of dynamics;

� a sequence
�

Ut
	 T � 1

0 of T multifunctions Ut : Xt � Ut , to play the role of constraints;

� a sequence
�

Jt
	 T � 1

0 of instantaneous cost functionsJt : Xt � Ut � Wt 7! �R, and a
�nal cost function JT : XT � WT ! �R. 3

Mimicking the de�nition of adapted processes in Probability Theory, we introduce the
following de�nition of adapted uncertainty processes, where the increasing sequence of head
scenarios sets in (2.22b) corresponds to a �ltration.

De�nition 2.2. We say that a sequenceA [0:T ] =
�

As
	 T

0 is an adapted uncertainty process
if As 2 F

�
W[0:s]; �R

�
(that is, As : W[0:s] ! �R), for all s 2 [[0; T]]. In other words,

�
F (W[0:s]; �R)

� T
s=0 is the set of adapted uncertainty processes.

A policy � = ( � t )t2 [[0;T � 1]] is a sequence of functions� t : Xt ! Ut , and we denote by
� the set of all policies. More generally, for all t 2 [[0; T]], we call (tail) policy a sequence
� = ( � s)s2 [[t;T � 1]] and we denote by � t the set of all such policies.

We restrict our search of optimal solutions to so-calledadmissible policies belonging
to a subset � ad � �. An admissible policy � 2 � ad always satis�es:

8t 2 [[0; T � 1]]; 8x 2 Xt ; � t (x) 2 Ut (x) :

We can express in �ad other types of constraints, such as measurability or integrability
ones when in a stochastic setting. Naturally, we set �ad

t = � t \ � ad.

De�nition 2.3. For any time t 2 [[0; T]], state x 2 Xt and policy � 2 � , the 
ow f X x;�
t;s gT

s= t
is de�ned by the forward induction:

8w 2 W[0:T ];

8
<

:

X x;�
t;t (w) = x ;

X x;�
t;s+1 (w) = f s

�
X x;�

t;s (w); � s(X x;�
t;s (w)) ; ws

�
; 8s 2 [[t; T ]] :

(2.23)

The expressionX x;�
t;s (w) is the state xs 2 Xs reached at time s 2 [[0; T]], when starting

at time t 2 [[0; s]] from state x 2 Xt and following the dynamics (2.2) with the policy � 2 �
along the scenariow 2 W[0:T ].

Remark 2.4. For 0 � t � s � T , the 
ow X x;�
t;s is a function that maps the setW[0:T ] of

scenarios into the state spaceXs:

X x;�
t;s : W[0:T ] ! Xs : (2.24)

By (2.23),

3. For notational consistency with the J t for t = [[0 ; T � 1]], we will often write JT (x; u; w ) to mean
JT (x; w ).
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� when t > 0, the expressionX x;�
t;s (w) depends only on the inner partw[t :s� 1] of the

scenario w = w[0:T ], hence depends neither on the headw[0:t � 1], nor on the tail w[s:T ],
� when t = 0 , the expressionX x;�

0;s (w) in (2.23) depends only on the headw[0:s� 1] of
the scenariow = w[0:T ], hence does not depend on the tailw[s:T ].

This is why we often consider that the 
owX x;�
t;s is a function that maps the setW[t :s� 1]

of scenarios into the state spaceXs:

8s 2 [[1; T]]; 8t 2 [[0; s � 1]]; X x;�
t;s : W[t :s� 1] ! Xs : (2.25)

A state trajectory is a realization of the 
ow
�

X x;�
0;s (w)

	 T
s=0 for a given scenariow 2

W[0:T ]. The 
ow property

8t; s; s0; t < s 0 < s; 8x 2 Xt ; X x;�
t;s � X

X x;�
t;s 0;�

s0;s (2.26)

expresses the fact that we can stop anywhere along a state trajectory and start again.

Producing Streams of Costs

De�nition 2.5. For a given policy � 2 � , and for all times t 2 [[0; T]] and s 2 [[t; T ]], we
de�ne the uncertain costs evaluated along the state trajectories by:

J x;�
t;s : w 2 W[0:T ] 7�! Js

�
X x;�

t;s (w); �
�
X x;�

t;s (w)
�
; ws

�
: (2.27)

Remark 2.6. By Remark 2.4,
� when t > 0, the expressionJ x;�

t;s (w) in (2.27) depends only on the inner partw[t :s]
of the scenario w = w[0:T ], hence depends neither on the headw[0:t � 1], nor on the
tail w[s+1: T ],

� when t = 0 , the expressionJ x;�
0;s (w) in (2.27) depends only on the headw[0:s] of the

scenario w = w[0:T ], hence does not depend on the tailw[s+1: T ].
This is why we often consider thatJ x;�

t;s is a function that maps the setW[t :s] of scenarios
into �R:

8s 2 [[0; T]]; 8t 2 [[0; s]]; J x;�
t;s : W[t :s] ! �R : (2.28)

As a consequence, the stream
�

J x;�
0;s

	 T
s=0 of costs is an adapted uncertainty process.

By (2.27) and (2.23), we have, for allt 2 [[0; T]] and s 2 [[t + 1 ; T]],

8w[t :T ] 2 W[t :T ];

8
<

:

J x;�
t;t (wt ) = Jt

�
x; � t (x); wt

�
;

J x;�
t;s (wt ; f wr gT

t+1 ) = J f t (x;� t (x);wt );�
t+1 ;s (f wr gT

t+1 ) :
(2.29)

2.2.2 Dynamic Uncertainty Criteria and Dynamic Risk Measures

Now, we stand with a stream
�

J x;�
0;s

	 T
s=0 of costs, which is an adapted uncertainty

process by Remark 2.4. To craft a criterion to optimize, we need to aggregate such a
stream into a scalar. For this purpose, we de�nedynamic uncertainty criterion in x2.2.2,
and relate them to dynamic risk measures inx2.2.2.
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Dynamic Uncertainty Criterion

Inspired by the de�nitions of risk measures and dynamic risk measures in Mathemat-
ical Finance, and motivated by intertemporal optimization, we introduce the following
de�nitions of dynamic uncertainty criterion , and Markov dynamic uncertainty criterion .
Examples have been given inx2.1.2.

De�nition 2.7. A dynamic uncertainty criterion is a sequencef %t;T gT
t=0 , such that, for

all t 2 [[0; T]],
� %t;T is a mapping

%t;T :
�
F (W[0:s]; �R)

� T
s= t ! F (W[0:t ]; �R) ; (2.30a)

� the restriction of %t;T to the domain4
�
F (W[t :s]; �R)

� T
s= t yields constant functions,

that is,
%t;T :

�
F (W[t :s]; �R)

� T
s= t ! �R ; (2.30b)

A Markov dynamic uncertainty criterion is a family
n �

%x t
t;T

	
x t 2 Xt

oT

t=0
, such that

�
%x t

t;T

	 T
t=0

is a dynamic uncertainty criterion, for all sequence
�

x t
	 T

t=0 of states, wherex t 2 Xt , for
all t 2 [[0; T]].

We relate dynamic uncertainty criteria and optimization problems as follows.

De�nition 2.8. Given a Markov dynamic uncertainty criterion
n�

%x t
t;T

	
x t 2 Xt

oT

t=0
, we

de�ne a Markov optimization problem as the following sequence of families of optimization
problems, indexed byt 2 [[0; T]], and x 2 Xt :

(P t )(x) min
� 2 � ad

%x
t;T

� �
J x;�

t;s

	 T
s= t

�
: (2.31)

Each Problem (2.31) is indeed well de�ned by (2.30b), because
�

J x;�
t;s

	 T
s= t 2

�
F (W[t :s]; �R)

� T
s= t by (2.28).

Dynamic Risk Measures in a Nutshell

We establish a parallel between uncertainty criteria and risk measures. For this pur-
pose, when needed, we implicitely suppose that each uncertainty setWt is endowed with
a � -algebraWt , so that the set W[0:T ] of scenarios is naturally equipped with the �ltration

8t 2 [[0; T]]; Ft = W0 
 � � � 
 W t 
 f; ; Wt+1 g 
 � � � 
 f; ; WT g : (2.32)

Then, we make the correspondence between (see also the correspondence Table 2.1)
� the measurable space (W[0:T ]; FT ) and the measurable space (
; F) in x2.2.2,
� the set F

�
W[0:t ]; �R

�
of functions and a set L t of random variables that are Ft -

measurable inx2.2.2,
� the set

�
F (W[s:T ]; �R)

� T
s= t and a setL t;T of adapted processes, as in (2.35) inx2.2.2.

Notice that, when the � -algebra Wt is the complete � -algebra made of all subsets ofWt ,
F

�
W[0:t ]; �R

�
is exactly the space of random variables that areFt -measurable.

We follow the seminal work [6], as well as [103,104], for recalls about risk measures.

4. Where F (W [t :s] ; �R) is naturally identi�ed as a subset of F (W [0: s] ; �R).
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Static Risk Measures Let
�

 ; F

�
be a measurable space. LetL be a vector space of

measurable functions taking values inR (for example, L = L p
�

 ; F; P; R

�
). We endow the

spaceL with the following partial order:

8X ; Y 2 L ; X � Y () 8 ! 2 
 ; X (! ) � Y (! ) :

De�nition 2.9. A risk measure(with domain L ) is a mapping � : L ! R.
A convex risk measureis a mapping � : L ! R displaying the following properties:
� Convexity: 8X ; Y 2 L ; 8t 2 [0; 1]; �

�
tX +(1 � t)Y

�
� t�

�
X

�
+(1 � t)�

�
Y

�
;

� Monotonicity: if Y � X , then �
�
Y

�
� �

�
X

�
;

� Translation equivariance: 8c 2 R; 8X 2 L ; � (c + X ) = c + � (X ) :
A coherent risk measureis a convex risk measure� : L ! R with the following addi-

tional property:
� Positive homogeneity: 8t � 0; 8X 2 L ; � (tX ) = t� (X ) :

Let P be a set of probabilities on
�

 ; F

�
and let � be a function mapping the space of

probabilities on
�

 ; F

�
onto R. The functional de�ned by

� (X ) = sup
P2P

�
EP

�
X

�
� �( P)

	
(2.33)

is a convex risk measure on a proper domainL (for instance, the bounded functions
over 
). The expression

� (X ) = sup
P2P

EP
�
X

�
(2.34)

de�nes a coherent risk measure.
Under proper technical assumptions, it can be shown that any convex or coherent risk

measure can be represented by the above expressions.

Conditional Risk Mappings We present the conditional risk mappings as de�ned
in [103], extending the work of [85].

Let
�

 ; F

�
be a measurable space,F1 � F2 � F be two � -algebras, andL 1 � L 2 be

two vector spaces of functions 
 ! R that are measurable with respect to F1 and F2,
respectively.

De�nition 2.10. A conditional risk mapping is a mapping � : L 2 ! L 1.
A convex conditional risk mapping � : L 2 ! L 1 has the following properties:
� Convexity: 8X ; Y 2 L 2; 8t 2 [0; 1]; �

�
tX +(1 � t)Y

�
� t�

�
X

�
+(1 � t)�

�
Y

�
;

� Monotonicity: if Y � X , then �
�
Y

�
� �

�
X

�
;

� Translation equivariance: 8c 2 L 1; 8X 2 L 2; � (c + X ) = c + � (X ) :

Conditional and Dynamic Risk Measures We follow [105, Section 3]. Let
�

 ; F

�

be a measurable space, with a �ltration F1 � � � � � FT � F, and L 1 � � � � � L T be vector
spaces of functions 
 ! R that are measurable with respect toF1, . . . , FT , respectively.
We set

8t 2 [[0; T]]; L t;T = L t � � � � � L T : (2.35)

An element f A sgT
0 of L t;T is an adapted processsince everyA s 2 L s is Fs-measurable.

Conditional and dynamic risk measures have adapted processes as arguments, to the dif-
ference of risk measures that take random variables as arguments.

De�nition 2.11. Let t 2 [[0; T]]. A one-step conditional risk mapping is a conditional
risk mapping � t : L t+1 ! L t . A conditional risk measure is a mapping � t;T : L t;T 7! L t .

A dynamic risk measureis a sequence
�

� t;T
	 T

t=0 of conditional risk measures.
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Dynamic uncertainty criteria f %t;T gT
t=0 , as introduced in De�nition 2.7 correspond to

dynamic risk measures.

Remark 2.12. A conditional risk measure � t;T : L t;T 7! L t is said to bemonotonous5 if,
for all f A

s
gT

s= t and f A sgT
s= t in L t;T , we have

8s 2 [[t; T ]]; A
s

� A s =) � t;T
��

A
s

	 T
s= t

�
� � t;T

��
A s

	 T
s= t

�
: (2.36)

Markov Risk Measures In [105], Markov risk measuresare de�ned with respect to a
given controlled Markov process. We adapt this de�nition to the setting developed in the
Introduction, and we consider the control stochastic dynamical system (2.3b)

X t+1 = f t (X t ; U t ; W t ) ;

where
�

W t

	 T
0 is a sequence of independent random variables. Then, for all policy� , when

U t = � t (X t ) we obtain a Markov processf X t gt2 [[0;T ]], where X t = X x0 ;�
0;t

�
f W sgt � 1

0

�
is

given by the 
ow (2.23).
Let

�
Ft

	 T
t=0 be the �ltration de�ned by Ft = � (

�
W s

	 t
0). For any t 2 [[0; T]], let Vt

be a set of functions mappingXt into R such that we havev
�
X x0 ;�

0;t

�
2 L t , for all policy

� 2 � ad.

De�nition 2.13. A one-step conditional risk measure� t � 1 : L t ! L t � 1 is a Markov risk
measurewith respect to the control stochastic dynamical system(2.3b) if there exists a
function 	 t : Vt+1 � Xt � Ut ! R, such that, for any policy � 2 � ad, and any function
v 2 Vt+1 , we have

� t � 1

�
f W sgt

0 7! v
�

X x0 ;�
0;t+1

�
f W sgt

0

� � �

=	 t

�
v; X x0 ;�

0;t

�
f W sgt � 1

0

�
; � t

�
X x0 ;�

0;t

�
f W sgt � 1

0

� � �
:

(2.37)

A Markov risk measure is said to be coherent (resp. convex) if, for any statex 2 Xt ,
any control u 2 Ut , the function

v 7! 	 t
�
v; x; u

�
; (2.38)

is a coherent (resp convex) risk measure onVt+1 (equipped with a proper� -algebra).

Dynamic Markov uncertainty criteria f %t;T gT
t=0 , as introduced in De�nition 2.7 corre-

spond to Markov risk measures.

Correspondence Table

Time-Consistency for Dynamic Risk Measures The literature on risk measures
has introduced a notion oftime-consistency for dynamic risk measures, that we recall here
(see [7,28,85]).

De�nition 2.14. A dynamic risk measure f � t;T gT
t=0 , where � t;T : L t;T 7! L t , is said to

be time-consistent if, for any couples of times0 � t < t � T , the following property holds
true. If two adapted stochastic processesf A

s
gT

0 and f A sgT
0 in L 0;T satisfy

A
s

= A s; 8s 2 [[t; t � 1]] ; (2.39a)

� t;T

�
f A

s
gT

t

�
� � t;T

�
f A sgT

t

�
; (2.39b)

5. In [105, Section 3], a conditional risk measure is necessarily monotonous, by de�nition.
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Risk Measures Uncertainty Criteria

measurable space (
 ; F) (W[0:T ]; FT ) measurable space
Ft -measurable F

�
W[0:t ]; �R

�

adapted processes L 0;T
�
F (W[0:s]; �R)

� T
s=0 adapted uncertainty

processes
dynamic risk f � t;T gT

t=0 f %t;T gT
t=0 dynamic uncertainty

measure criteria

Markov dynamic
n�

� x t
t;T

	
x t 2 Xt

oT

t=0

n�
%x t

t;T

	
x t 2 Xt

oT

t=0
Markov dynamic

risk measure uncertainty criterion

Table 2.1: Correspondence Table

then we have:
� t ;T

�
f A

s
gT

t

�
� � t ;T

�
f A sgT

t

�
: (2.39c)

Remark 2.15. In [105], the equality (2.39a) is replaced by the inequality

8s 2 [[t; t]]; A
s

� A s : (2.39d)

Depending whether we choose(2.39a) or (2.39d) as assumption to de�ne a time-consistent
dynamic risk measure, we have to adapt or not an assumption in Theorem 2.31 (see
Remark 2.32).

2.2.3 De�nitions of Time-Consistency

With the formalism of x2.2.2, we give a de�nition of time-consistency for Markov
optimization problems in x2.2.3, and for Markov dynamic uncertainty criteria in x2.2.3.

Time-Consistency for Markov Optimization Problems

With the formalism of x2.2.2, we here give a de�nition of time-consistency for Markov
optimization problems. We refer the reader to De�nition 2.8 for the terminology.

Consider the Markov optimization problem
��

(P t )(x)
	

x2 Xt

	 T
t=0 de�ned in (2.31). For

the clarity of exposition, suppose for a moment that any optimization Problem (P t )(x)
has a unique solution, that we denote� t;x = f � s

t;x gT � 1
s= t 2 � ad

t . Consider 0� t < t � T .
Suppose that, starting from the state x at time t, the 
ow (2.23) drives you to

x = X x;�
t ;t

(w); � = � t ;x (2.40)

at time t, along the scenariow 2 W[0:T ] and adopting the optimal policy � t ;x 2 � ad
t .

Arrived at x, you solve (P t )(x) and get the optimal policy � t; x = f � s
t;xgT � 1

s= t
2 � ad

t .
Time-consistency holds true when

8s � t; � s
t;x = � s

t ;x ; (2.41)

that is, when the \new" optimal policy, obtained by solving ( P t )(x), coincides, after timet,
with the \old" optimal policy, obtained by solving ( P t )(x). In other words, you \stick to
your plans" (here, a plan is a policy) and do not reconsider your policy whenever you stop
along an optimal path and optimize ahead from this stop point.

To account for non-uniqueness of optimal policies, we propose the following formal
de�nition.
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De�nition 2.16. For any policy � 2 � , suppose given a Markov dynamic uncertainty

criterion
n�

%x t ;�
t;T

	
x t 2 Xt

oT

t=0
. We say that the Markov optimization problem

(P t )(x) min
� 2 � ad

t

%x;�
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.42)

is time-consistent if, for any couple of times t � t in [[0; T]] and any state x 2 Xt , the
following property holds: there exists a policy� ] = f � ]

sgT � 1
s= t 2 � ad

t such that

� f � ]
sgT � 1

s= t is optimal for Problem P t (x);

� the tail policy f � ]
sgT � 1

s= t
is optimal for Problem P t (x), where x 2 Xt is any state

achieved by the 
owX x;� ]

t ;t
in (2.23).

We stress that the above de�nition of time-consistency of a sequence of families of
optimization problems is contingent on the state x and on the dynamics

�
f t

	 T � 1
0 by the


ow (2.23). In particular, we assume that, at each time step, the control is taken only in
function of the state: this de�nes the class of solutions as policies that are feedbacks of
the state x.

Time-Consistency for Markov Dynamic Uncertainty Criteria

We provide a de�nition of time-consistency for Markov dynamic uncertainty criteria,
inspired by the de�nitions of time-consistency for, on the one hand, dynamic risk measures
(recalled in x2.2.2) and, on the other hand, Markov optimization problems. We refer the
reader to De�nition 2.7 for the terminology.

De�nition 2.17. The Markov dynamic uncertainty criterion ff %x t
t;T gx t 2 Xt g

T
t=0 is said to

be time-consistent if, for any couple of times 0 � t < t � T , the following property holds
true.

If two adapted uncertainty processesf AsgT
0 and f AsgT

0 , satisfy

As = As; 8s 2 [[t; t]] ; (2.43a)

� x
t;T

�
f AsgT

t

�
� � x

t;T

�
f AsgT

t

�
; 8x 2 Xt ; (2.43b)

then we have:

� x
t ;T

�
f AsgT

t

�
� � x

t ;T

�
f AsgT

t

�
; 8x 2 Xt : (2.43c)

This De�nition 2.17 of time-consistency is quite di�erent from De�nition 2.16. Indeed,
if the latter looks after consistency between solutions to intertemporal optimization prob-
lems, the former is a monotonicity property. Several authors establish connections between
these two de�nitions [23, 56, 78, 105] for case speci�c problems. In the followingx2.3, we
provide what we think is one of the most systematic connections between time-consistency
for Markov dynamic uncertainty criteria and time-consistency for intertemporal optimiza-
tion problems.

2.3 Proving Joint Time-Consistency

In x2.3.1, we introduce the notions of time and uncertainty-aggregators, de�ne their
composition, and outline the general four ways to craft a dynamic uncertainty criterion
from one-step aggregators. Inx2.3.2, we present two ways to craft a nested dynamic
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uncertainty criterion; for each of them, we provide su�cient monotonicity assumptions on
one-step aggregators that ensure time-consistency and the existence of a DPE. Inx2.3.3, we
introduce two commutation properties, that will be the key ingredients for time-consistency
and for the existence of a DPE in non-nested cases. Inx2.3.4, we present two ways to
craft a non-nested dynamic uncertainty criterion; for each of them, we provide su�cient
monotonicity and commutation assumptions on one-step aggregators that ensure time-
consistency and the existence of a DPE.

2.3.1 Aggregators and their Composition

We introduce the notions of time and uncertainty-aggregators, de�ne their composition,
and outline the general four ways to craft a dynamic uncertainty criterion from one-step
aggregators.

One-Step Time-Aggregators and their Composition

Time preferences are re
ected in how streams of costs | elements of �RT +1 , like
f J x;�

0;t (w)gT
t=0 introduced in De�nition 2.5 | are aggregated with respect to time thanks

to a function � : �RT +1 ! �R, called multiple-step time-aggregator. Commonly, multiple-
step time-aggregators are built progressively backward. Inx2.1.1, the multiple-step time-
aggregator is the time-separable and additive �

�
cs

	 T
s=0 =

P T
s=0 cs, obtained as the initial

value of the backward induction
P T

s= t cs = (
P T

s= t+1 cs) + ct ; the time-separable and mul-

tiplicative aggregator �
�

cs
	 T

s=0 =
Q T

s=0 cs is the initial value of the backward induction
Q T

s= t cs = (
Q T

s= t+1 cs)ct . A multiple-step time-aggregator aggregates theT + 1 costs
f J x;�

0;t (w)gT
t=0 , whereas a one-step time-aggregator aggregates two costs, the current one

and the \cost-to-go" (as in [117]).

De�nition 2.18. A multiple-step time-aggregator is a function mapping �Rk into �R, where
k � 2. When k = 2 , we call one-step time-aggregatora function mapping �R2 into �R.

A one-step time-aggregator is said to benon-decreasingif it is non-decreasing in its
second variable.

We de�ne the composition of time-aggregators as follows.

De�nition 2.19. Let � 1 : �R2 ! �R be a one-step time-aggregator and� k : �Rk ! �R be a
multiple-step time-aggregator. We de�ne� 1 � � k : �Rk+1 ! �R by

�
� 1 � � k

� �
c1; c2; : : : ; ck+1

	
= � 1

n
c1; � k �

c2; : : : ; ck+1
	 o

: (2.44)

Quite naturaly, we de�ne the composition of sequences of one-step time-aggregators
as follows.

De�nition 2.20. Consider a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators� t : �R� �R !

�R, for t 2 [[0; T � 1]]. For all t 2 [[0; T � 1]], we de�ne the composition
T � 1
�
s= t

� s as the

multiple-step time-aggregator from �RT +1 � t towards �R, inductively given by

T � 1
�

t= T � 1
� t = � T � 1 and

� T � 1
�
s= t

� s

�
= � t �

� T � 1
�

s= t+1
� s

�
: (2.45a)

That is, for all sequencec[t :T ] where cs 2 �R, we have:

� T � 1
�
s= t

� s

� �
c[t :T ]

�
= � t

n
ct ;

� T � 1
�

s= t+1
� s

� �
c[t+1: T ]

� o
: (2.45b)
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Example 2.21. Consider the sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators given by

� t
�

ct ; ct+1
	

= � t (ct ) + � t (ct )ct+1 ; 8t 2 [[0; T � 1]] ; (2.46)

where (� t )t2 [[0;T � 1]] and (� t )t2 [[0;T � 1]] are sequences of functions, each mapping�R into R.
We have

� T � 1
�
s= t

� s

� �
cs

	 T
t =

TX

s= t

�
� s

�
cs

� s� 1Y

r = t

� r
�
cr

� �
; 8t 2 [[0; T � 1]] ; (2.47)

with the convention that � T (cT ) = cT .

Example 2.22. Consider the one-step aggregators

� f c1; c2g = c1 + c2; 	 f c1; c2g = c1c2 :

The �rst one � corresponds to the sum, as in(2.3); the second one	 corresponds to
the product, as in (2.11). As an illustration, we form four compositions (multiple-step
time-aggregators):

� � � f c1; c2; c3g = �
�

c1; � f c2; c3g
	

= c1 + c2 + c3 ;

	 � 	 f c1; c2; c3g = 	
�

c1; 	 f c2; c3g
	

= c1c2c3 ;

� � 	 f c1; c2; c3g = �
�

c1; 	 f c2; c3g
	

= c1 + c2c3 ;

	 � � f c1; c2; c3g = 	
�

c1; � f c2; c3g
	

= c1(c2 + c3):

We extend the composition
� T � 1

�
s= t

� s

�
: �RT +1 � t ! �R into a mapping (2.48) as follows.

De�nition 2.23. Consider a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators, fort 2

[[0; T � 1]]. For t 2 [[0; T � 1]], we de�ne the composition6
�

T � 1
�
s= t

� s

�
as a mapping

�
T � 1
�
s= t

� s

�
:
�

F (W[0:T ]; �R)
� T � t+1

! F (W[0:T ]; �R) (2.48)

by, for any f AgT
t 2

�
F (W[0:T ]; �R)

� T � t+1
,

� �
T � 1
�
s= t

� s

� �
f AgT

t

� �
�
w

�
=

� T � 1
�
s= t

� s

� �
f A t

�
w

�
gT

t

�
; 8w 2 W[0:T ] : (2.49)

In other words, we simply plug the valuesf A t
�
w

�
gT

t into
� T � 1

�
s= t

� s

�
.

One-Step Uncertainty-Aggregators and their Composition

As with time, risk or uncertainty preferences are materialized by a function G :
F (W[0:T ]; �R) ! �R, called multiple-step uncertainty-aggregator. A multiple-step aggre-
gator is usually de�ned on a subsetF of F (W[0:T ]; �R) (for example the measurable and
integrable functions), and then extended to F (W[0:T ]; �R) by setting G[A] = + 1 for any
function A =2 F. Indeed, as we are interested in minimizingG, being not de�ned or equal
to + 1 amount to the same result.

In the �rst part of x2.1.1, the multiple-step uncertainty-aggregator is the extended
expectation with respect to the probability P; still denoted by EP, it is de�ned as the
usual expectation if the operand is measurable and integrable, and as +1 otherwise. In
the second part of x2.1.1, the multiple-step uncertainty-aggregator is the fear operator,
namely the supremum supw2 W[0: T ]

over scenarios inW[0:T ].

6. We will consistently use the symbol
D E

to denote a mapping with image a set of functions.
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De�nition 2.24. Let t 2 [[0; T]] and s 2 [[t; T ]]. A [t :s]-multiple-step uncertainty-
aggregator is a mapping7 G[t :s] from F (W[t :s]; �R) into �R. When t = s, we call G[t :t ] a
t-one-step uncertainty-aggregator.

A [t :s]-multiple-step uncertainty-aggregator is said to benon-decreasingif, for any
functions 8 D t and D t in F (W[t :s]; �R), we have

�
8w[t :s] 2 W[t :s]; D t

�
w[t :s]

�
� D t

�
w[t :s]

��
=) G[t :s]� D t

�
� G[t :s]� D t

�
:

De�nition 2.25. Let t 2 [[1; T]] and s 2 [[t; T ]]. To a [t :s]-multiple-step uncertainty-
aggregatorG[t :s], we attach a mapping9

D
G[t :s]

E
: F (W[0:s]; �R) ! F (W[0:t � 1]; �R) ; (2.50a)

obtained by freezing the �rst variables as follows. For anyA : W[0:s] ! �R, and any
w[0:s] 2 W[0:s], we set

� D
G[t :s]

E�
A

� � �
w[0:t � 1]

�
= G[t :s]

h
w[t :s] 7! A

�
w[0:t � 1]; w[t :s]

� i
: (2.50b)

Multiple-step uncertainty-aggregators are commonly built progressively backward:
in x2.1.1, the expectation operator EP0 
���
 PT is the initial value of the induction
EPt 
���
 PT = EPt EPt +1 
���
 PT ; the fear operator supw2 W[0: T ]

is the initial value of the in-
duction supw2 W[t :T ]

= supwt 2 Wt
supw2 W[t +1: T ]

.
We de�ne the composition of uncertainty-aggregators as follows.

De�nition 2.26. Let t 2 [[0; T]] and s 2 [[t + 1 ; T]]. Let G[t :t ] : F (Wt ; �R) ! �R be a t-one-
step uncertainty-aggregator, andG[t+1: s] : F (W[t+1: s]; �R) ! �R be a [t + 1: s]-multiple-step
uncertainty-aggregator. We de�ne the [t :s]-multiple-step uncertainty-aggregator G[t :t ] �
G[t :s] by

�
G[t :t ] � G[t :s]

� �
A t

�
= G[t :t ]

h
wt 7! G[t+1: s]� w[t+1: s] 7! A t

�
wt ; w[t+1: s]

�� i
; (2.51)

for all function A t 2 F
�
W[t :s]; �R

�
.

Quite naturaly, we de�ne the composition of sequences of one-step uncertainty-
aggregators as follows.

De�nition 2.27. We say that a sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators is
a chained sequenceif Gt is a t-one-step uncertainty-aggregator, for allt 2 [[0; T]].

Consider a chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators. Fort 2

[[0; T]], we de�ne the composition
T
�
s= t

Gs as the [t :T ]-multiple-step uncertainty-aggregator

T

�
s= t

Gs : F
�
W[t :T ]; �R

�
! �R ; (2.52)

inductively given by
T

�
s= T

Gs = GT and
� T

�
s= t

Gs

�
= Gt �

� T

�
s= t+1

Gs

�
: (2.53a)

That is, for all function B t 2 F
�
W[t :T ]; �R

�
, we have:

� T

�
s= t

Gs

� �
B t

�
= Gt

h
wt 7!

� T

�
s= t+1

Gs

� �
w[t+1: T ] 7! B t

�
wt ; w[t+1: T ]

�� i
: (2.53b)

7. The superscript notation indicates that the domain of the mapping G[t :s] is F (W [t :s] ; �R) (not to be
confused with G[t :s] =

�
Gr

	 s

r = t
).

8. We will consistently use the symbol D to denote a function in F
�
W [t :s] ; �R

�
, that is, D : W [t :s] ! �R.

9. See Footnote 6 about the notation h i.
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Crafting Dynamic Uncertainty Criteria from Aggregators

We outline four ways to craft a dynamic uncertainty criterion from aggregators. Let
A [0:T ] =

�
As

	 T
s=0 denote an arbitrary adapted uncertainty process (that is, As : W[0:s] !

�R, as in De�nition 2.2).

Non Nested Dynamic Uncertainty Criteria The two following ways to craft a
dynamic uncertainty criterion f %t;T gT

t=0 display a natural economic interpretation in term
of preferences over streams of uncertain costs likeA [0:T ]. They mix time and uncertainty
preferences, either �rst with respect to uncertainty then with respect to time (UT) or
�rst with respect to time, then with respect to uncertainty (TU). However, they are not
directly amenable to a DPE.

TU, or time, then uncertainty. Let t 2 [[0; T]] be �xed.
� First, we aggregateA [t :T ] with respect to time by means of a multiple-step time-

aggregator � t from �RT � t+1 towards �R, and we obtain � t
�
A [t :T ]

�
.

� Second, we aggregate �t
�
A [t :T ]

�
with respect to uncertainty by means of a

multiple-step uncertainty-aggregator G[t :T ], and we obtain

%t;T
�
A [t :T ]

�
=

D
G[t :T ]

E h
� t � A [t :T ]

� i
: (2.54)

All the examples in x2.1.1 belong to this TU class, and some inx2.1.2.

UT, or uncertainty, then time.
� First, we aggregate A [t :T ] with respect to uncertainty by means of a sequence

�
Gs

[t :s]� T
s= t of multiple-step time-aggregators Gt

[t :s] : F (W[t :s]; �R) ! �R, and we

obtain a sequence
n D

Gs
[t :s]

E�
As

� oT

s= t
.

� Second, we aggregate
n D

Gs
[t :s]

E�
As

� oT

s= t
by means of a multiple-step time-

aggregator � t from �RT � t+1 towards �R, and we obtain

%t;T
�
A [t :T ]

�
= � t

�n D
Gs

[t :t ]
E�

As
� oT

s= t

�
: (2.55)

Some examples inx2.1.2 belong to this UT class.

Nested Dynamic Uncertainty Criteria The two following ways to craft a dynamic
uncertainty criterion f %t;T gT

t=0 do not display a natural economic interpretation in term
of preferences [65], but they are directly amenable to a DPE. Indeed, they are produced
by a backward induction, nesting uncertainty and time. Consider

� on the one hand, a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators,

� on the other hand, a chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators.

NTU, or nesting time, then uncertainty, then time, etc. We de�ne a dynamic uncertainty
criterion by the following backward induction:

%T;T
�
AT

�
= hGT i

�
AT

�
; (2.56a)

%t;T

� �
As

	 T
s= t

�
= hGt i

h
� t

n
A t ; %t+1 ;T

� �
As

	 T
s= t+1

�oi
; 8t 2 [[0; T � 1]] : (2.56b)

By the De�nition 2.25 of hGt i , we have, by construction, produced a dynamic uncer-
tainty criterion f %t;T gT

t=0 (see De�nition 2.7). Indeed, recalling that As : W[0:s] ! �R),
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for s 2 [[0; T]], we write

F
�

W[0: T � 1] ; �R
�

z }| {
%T;T

�
AT

�
= hGT i

�
F

�
W[0: T ] ; �R

�

z}|{
AT

�
;

%t;T

� �
As

	 T
s= t

�

| {z }
F

�
W[0: t � 1] ; �R

�

= hGt i
�
� t

n
A t|{z}

F
�

W[0: t ] ; �R
�
; %t+1 ;T

�

�
F

�
W[0: s] ; �R

�� T

s= t +1z }| {�
As

	 T
s= t+1

�

| {z }
F

�
W[0: t ] ; �R

�

o �
;

8t 2 [[0; T � 1]] :

NUT, or nesting uncertainty, then time, then uncertainty, etc. We de�ne a dynamic
uncertainty criterion by the following backward induction:

%T;T
�
AT

�
= hGT i

�
AT

�
; (2.57a)

%t;T

� �
As

	 T
s= t

�
= � t

�
hGt i

�
A t

�
; hGt i

h
%t+1 ;T

� �
As

	 T
s= t+1

�i �
; (2.57b)

8t 2 [[0; T � 1]] :

Some examples inx2.1.2 belong to this nested class, made of NTU and NUT.

2.3.2 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider
� on the one hand, a sequence

�
� t

	 T � 1
t=0 of one-step time-aggregators,

� on the other hand, a chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators.
With these ingredients, we present two ways to craft a nested dynamic uncertainty criterion
f %t;T gT

t=0 , as introduced in De�nition 2.7. For each of them, we establish time-consistency.

NTU Dynamic Uncertainty Criterion

With a slight abuse of notation, we de�ne the sequence
�

(P NTU
t )(x)

	 T
t=0 of optimization

problems parameterized by the statex 2 Xt as the nesting

(P NTU
t )(x) min

� 2 � ad
t

Gt

"

� t

(

Jt
�
x t ; ut ; wt

�
;

Gt+1

�
� t+1

�
Jt+1

�
x t+1 ; ut+1 ; wt+1

�
; � � � (2.58a)

GT � 1

h
� T � 1

n
JT � 1

�
xT � 1; uT � 1; wT � 1

�
;

GT
�
JT

�
xT ; wT

�� oi
� � �

�� )#

;

s:t: x t = x ; (2.58b)

xs+1 = f s
�
xs; us; ws

�
; (2.58c)

us = � s(xs) ; (2.58d)

us 2 Us(xs) ; (2.58e)

where constraints are satis�ed for all s 2 [[t; T � 1]].
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De�nition 2.28. We construct inductively a NTU-dynamic uncertainty criterion�
%NTU

t;T

	 T
t=0 by, for any adapted uncertainty process

�
As

	 T
s=0 ,

%NTU
T

�
AT

�
= hGT i

�
AT

�
; (2.59a)

%NTU
t;T

� �
As

	 T
s= t

�
= hGt i

"

� t

�
A t ; %NTU

t+1 ;T

� �
As

	 T
s= t+1

� � #

; 8t 2 [[0; T � 1]] : (2.59b)

We de�ne the Markov optimization problem (2.58) formally by

(P NTU
t )(x) min

� 2 � ad
t

%NTU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.60)

where the functions J x;�
t;s are de�ned by (2.27).

De�nition 2.29. We de�ne the value functions inductively by the DPE

V NTU
T (x) = GT

h
JT (x; �)

i
; 8x 2 XT ; (2.61a)

V NTU
t (x) = inf

u2 Ut (x)
Gt

"

� t

�
Jt (x; u; �); V NTU

t+1 � f t (x; u; �)
� #

; (2.61b)

8t 2 [[0; T � 1]]; 8x 2 Xt :

The following Proposition 2.30 expresses su�cient conditions under which any Prob-
lem (P NTU

t )(x), for any time t 2 [[0; T � 1]] and any statex 2 Xt , can be solved by means
of the value functions f V NTU

t gT
t=0 in De�nition 2.29.

Proposition 2.30. Assume that
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Assume that there exists10 an admissible policy� ] 2 � ad such that

� ]
t (x) 2 arg min

u2 Ut (x)
Gt

"

� t

�
Jt (x; u; �);V NTU

t+1 � f t (x; u; �)
� #

;

8t 2 [[0; T � 1]]; 8x 2 Xt :

(2.62)

Then, � ] is an optimal policy for any Problem (P NTU
t )(x), for all t 2 [[0; T]] and for all

x 2 Xt , and

V NTU
t (x) = min

� 2 � ad
t

%NTU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.63)

Proof. In the proof, we drop the superscript in the value function V NTU
t , that we simply

denote by Vt . Let � 2 � ad be a policy. For any t 2 [[0; T]], we de�ne V �
t (x) as the

intertemporal cost from time t to time T when following policy � starting from state x:

V �
t (x) = %NTU

t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.64)

10. It may be di�cult to prove the existence of a measurable selection among the solutions of (2.62).
Since it is not our intent to consider such issues, we make the assumption that an admissible policy � ] 2 � ad

exists, where the de�nition of the set � ad is supposed to include all proper measurability conditions.
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This expression is well de�ned becauseJ x;�
t;s : W[t :s] ! �R, for s 2 [[t; T ]] by (2.28).

First, we show that the functions f V �
t gT

t=0 satisfy a backward equation \�a la Bellman":

V �
t (x) = Gt

h
� t

n
Jt (x; � t (x); �); V �

t+1 � f t (x; � t (x); �)
oi

; 8t 2 [[0; T � 1]]; 8x 2 Xt : (2.65)

Indeed, we have,

V �
T (x) = %NTU

T;T

�
J x;�

T;T

�
by the de�nition (2.64) of V �

T (x),

= %NTU
T;T

�
JT (x; �)

�
by (2.27) that de�nes J x;�

T;T ,

= hGT i
�
JT (x; �)

�
by the de�nition (2.59a) of %NTU

T ,

= GT
�
JT (x; �)

�
by De�nition 2.25 of hGT i .

We also have, fort 2 [[0; T � 1]],

V �
t (x) = %NTU

t;T

� �
J x;�

t;s

	 T
s= t

�

by the de�nition (2.64) of V �
t (x),

= hGt i
�
� t

n
J x;�

t;t ; %NTU
t+1 ;T

� �
J x;�

t;s

	 T
s= t+1

�o �

by the de�nition (2.59b) of %NTU
t+1 ;T ,

= hGt i
�
� t

n
J x;�

t;t ; %NTU
t+1 ;T

� �
J f t (x;� t (x);�);�

t+1 ;s

	 T
s= t+1

�o �

by the 
ow property (2.29),

= hGt i
�
� t

n
J x;�

t;t ; V �
t+1 � f t (x; � t (x); �)

o �

by the de�nition (2.64) of V �
t (x),

= hGt i
�
� t

n
Jt (x; � t (x); �); V �

t+1 � f t (x; � t (x); �)
o �

by the 
ow property (2.29),

= Gt

h
� t

n
Jt (x; � t (x); �); V �

t+1 � f t (x; � t (x); �)
oi

by De�nition 2.25 of hGt i .

Second, we show thatVt (x), as de�ned in (2.61) is lower than the value of the opti-
mization problem P NTU

t (x) in (2.58). For this purpose, we denote by (H t ) the following
assertion

(H t ) : 8x 2 Xt ; 8� 2 � ad; Vt (x) � V �
t (x) :

By de�nition of V �
T (x) in (2.64) and of VT (x) in (2.61a), assertion (HT ) is true.

Now, assume that (H t+1 ) holds true. Let x be an element ofXt . Then, by de�nition
of Vt (x) in (2.61b), we obtain

Vt (x) � inf
� 2 � ad

Gt

�
� t

n
Jt

�
x; � t (x); �

�
; Vt+1 � f t

�
x; � t (x); �

� o �
; (2.66)

since, for all � 2 � ad we have� t (x) 2 Ut (x). By ( H t+1 ) we have, for any � 2 � ad,

Vt+1 � f t
�
x; � t (x); �

�
� V �

t+1 � f t
�
x; � t (x); �

�
:
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From monotonicity of � t and monotonicity of Gt , we deduce:

Gt

�
� t

n
Jt

�
x; � t (x); �

�
; Vt+1 � f t

�
x; � t (x); �

� o �

� Gt

�
� t

n
Jt

�
x; � t (x); �

�
; V �

t+1 � f t
�
x; � t (x); �

� o �
:

(2.67)

We obtain:

Vt (x) � inf
� 2 � ad

Gt

�
� t

n
Jt

�
x; � t (x); �

�
; Vt+1 � f t

�
x; � t (x); �

� o �
by (2.66),

� inf
� 2 � ad

Gt

�
� t

n
Jt

�
x; � t (x); �

�
; V �

t � f t+1
�
x; � t (x); �

� o �
by (2.67),

= inf
� 2 � ad

V �
t (x) by the de�nition (2.64) of V �

t (x).

Hence, assertion (H t ) holds true.

Third, we show that the lower bound Vt (x) for the value of the optimization prob-
lem P NTU

t (x) is achieved for the policy � ] in (2.62). For this purpose, we consider the
following assertion

(H 0
t ) : 8x 2 Xt ; V � ]

t (x) = Vt (x) :

By de�nition of V � ]

T (x) in (2.64) and of VT (x) in (2.61a), (H 0
T ) holds true. For t 2 [[0; T � 1]],

assume that (H 0
t+1 ) holds true. Let x be in Xt . We have

Vt (x) = Gt

�
� t

n
Jt

�
x; � ]

t (x); �
�
; Vt+1 � f t (x; � ]

t (x); �)
o �

by de�nition of � ] in (2.62),

= Gt

�
� t

n
Jt

�
x; � ]

t (x); �
�
; V � ]

t+1 � f t (x; � ]
t (x); �)

o �
by (H 0

t+1 )

= V � ]

t (x) by (2.64).

Hence (H 0
t ) holds true, and the proof is complete by induction.

The following Theorem 2.31 is our main result on time-consistency in the NTU case.

Theorem 2.31. Assume that
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Then

1. the NTU-dynamic uncertainty criterion
�

%NTU
t;T

	 T
t=0 de�ned by (2.59) is time-

consistent;

2. the Markov optimization problem
��

(P NTU
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.58) is time-

consistent, as soon as there exists an admissible policy� ] 2 � ad such that (2.62)
holds true.

Proof. In the proof, we drop the superscripts inV NTU
t , (P NTU

t )(x) and %NTU
t;T .

The second assertion is a straightforward consequence of the property that� ] is an
optimal policy 11 for all Problems (P t )(x). Hence, the Markov optimization problem (2.58)
is time-consistent.

11. In all rigor, we should say that, for all t 2 [[0; T � 1]], the tail policy f � ]
sgT � 1

s= t is an optimal policy for
Problem (P t )( x), for any x 2 Xt .
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We now prove the �rst assertion.
Let t < t be both in [[0; T]]. Consider two adapted uncertainty processesf AsgT

0 and
f AsgT

0 , where As : W[0:T ] ! �R and As : W[0:T ] ! �R, satisfying (2.39a) and (2.39b), that
is,

As = As; 8s 2 [[t; t]] ; (2.68a)

%t;T

�
f AsgT

t

�
� %t;T

�
f AsgT

t

�
; (2.68b)

We show by backward induction that, for all t 2 [[t; t]], the following statement (H t ) holds
true:

(H t ) %t;T
�
f AsgT

t

�
� %t;T

�
f AsgT

t

�
: (2.69)

First, we observe that (H t ) holds true by assumption (2.68b). Second, let us assume that,
for t > t , the assertion (H t ) holds true. Then, by (H t ), and as A t � 1 = A t � 1 by (2.68a),
monotonicity 12 of � t � 1 yields

� t � 1

n
A t � 1; %t;T

�
f AsgT

t

� o
� � t � 1

n
A t � 1; %t;T

�
f AsgT

t

� o
:

Monotonicity of Gt � 1 then gives

hGt � 1i
h
� t � 1

n
A t � 1; %t;T

�
f AsgT

t

� oi
� h Gt � 1i

h
� t � 1

n
A t � 1; %t;T

�
f AsgT

t

� oi
:

By de�nition of %t � 1;T in (2.59), we obtain (H t � 1). This ends the proof by induction.

Remark 2.32. As indicated in Remark 2.15, if we choose the inequality

8s 2 [[t; t]]; As � As ; (2.70)

as assumption to de�ne a time-consistent dynamic uncertainty criterion (rather than the
equality (2.43a)), we have to make, in Theorem 2.31, the assumption
\for all t 2 [[0; T � 1]],"

� \the two-variables function (ct ; ct+1 ) 7! � t (ct ; ct+1 ) is non-decreasing",
� instead of \for all ct , the single variable function ct+1 7! � t (ct ; ct+1 ) is non-

decreasing".

NUT Dynamic Uncertainty Criterion

With a slight abuse of notation, we de�ne the sequence
�

(P NUT
t )(x)

	 T
t=0 of optimization

problems parameterized by the statex 2 Xt as the nesting

(P NUT
t )(x) min

� 2 � ad
t

� t

(

Gt
�
Jt

�
x t ; ut ; wt

��
; Gt

"

� t+1

�
Gt+1

h
Jt+1

�
x t+1 ; ut+1 ; wt+1

� i
; � � � (2.71a)

� T � 1

n
GT � 1

h
JT � 1

�
xT � 1; uT � 1; wT � 1

� i
;

GT
�
JT

�
xT ; wT

�� o
� � �

� #)

;

s:t: x t = x ; (2.71b)

xs+1 = f s
�
xs; us; ws

�
; (2.71c)

us = � s(xs) ; (2.71d)

us 2 Us(xs) ; (2.71e)

where constraints are satis�ed for all s 2 [[t; T � 1]].

12. Recall that, by De�nition 2.18, � t � 1 is non-decreasing in its second argument. Remark 2.32 below
will enlighten this comment.
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De�nition 2.33. We construct inductively a NUT-dynamic uncertainty criterion�
%NUT

t;T

	 T
t=0 by, for any adapted uncertainty process

�
As

	 T
s=0 ,

%NUT
T

�
AT

�
= hGT i

�
AT

�
; (2.72a)

%NUT
t;T

� �
As

	 T
s= t

�
= � t

�
hGt i

�
A t

�
; hGt i

h
%NUT

t+1 ;T

� �
As

	 T
s= t+1

�i �
; (2.72b)

8t 2 [[0; T � 1]] :

We de�ne the Markov optimization problem (2.71) formally by

(P NUT
t )(x) min

� 2 � ad
t

%NUT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.73)

where the functions J x;�
t;s are de�ned by (2.27).

De�nition 2.34. We de�ne the value functions inductively by the DPE

V NUT
T (x) = GT

h
JT (x; �)

i
; 8x 2 XT ; (2.74a)

V NUT
t (x) = inf

u2 Ut (x)
� t

n
Gt

h
Jt (x; u; �)

i
; Gt

h
V NUT

t+1 � f t (x; u; �)
io

; (2.74b)

8t 2 [[0; T � 1]]; 8x 2 Xt :

The following Proposition 2.35 expresses su�cient conditions under which any Prob-
lem (P NUT

t )(x), for any time t 2 [[0; T � 1]] and any statex 2 Xt , can be solved by means
of the value functions f V NUT

t gT
t=0 in De�nition 2.34.

Proposition 2.35. Assume that
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Assume that there exists13 an admissible policy� ] 2 � ad such that

� ]
t (x) 2 arg min

u2 Ut (x)
� t

n
Gt

h
Jt (x; u; �)

i
; Gt

h
V NUT

t+1 � f t (x; u; �)
io

;

8t 2 [[0; T � 1]]; 8x 2 Xt :
(2.75)

Then, � ] is an optimal policy for any Problem (P NUT
t )(x), for all t 2 [[0; T]] and for all

x 2 Xt , and

V NUT
t (x) = min

� 2 � ad
t

%NUT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.76)

Proof. In the proof, we drop the superscript in the value function V NUT
t , that we simply

denote by Vt . Let � 2 � ad be a policy. For any t 2 [[0; T]], we de�ne V �
t (x) as the

intertemporal cost from time t to time T when following policy � starting from state x:

V �
t (x) = %NUT

t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.77)

This expression is well de�ned becauseJ x;�
t;s : W[t :s] ! �R, for s 2 [[t; T ]] by (2.28).

13. See Footnote 10.
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First, we show that the functions f V �
t gT

t=0 satisfy a backward equation \�a la Bellman":

V �
t (x) = � t

n
Gt

h
Jt (x; � t (x); �)

i
; Gt

h
V �

t+1 � f t (x; � t (x); �)
io

; 8t 2 [[0; T � 1]]; 8x 2 Xt :

(2.78)
Indeed, we have,

V �
T (x) = %NUT

T;T

�
J x;�

T;T

�
by the de�nition (2.77) of V �

T (x),

= %NUT
T;T

�
JT (x; �)

�
by (2.27) that de�nes J x;�

T;T ,

= hGT i
�
JT (x; �)

�
by the de�nition (2.72a) of %NTU

T ,

= GT
�
JT (x; �)

�
by De�nition 2.25 of hGT i .

We also have, fort 2 [[0; T � 1]],

V �
t (x) = %NUT

t;T

� �
J x;�

t;s

	 T
s= t

�

by the de�nition (2.77) of V �
t (x),

= � t

�
hGt i

h
J x;�

t;t

i
; hGt i

h
%NUT

t+1 ;T

� �
J x;�

t;s

	 T
s= t+1

�i �

by the de�nition (2.72b) of %NUT
t+1 ;T ,

= � t

�
hGt i

h
J x;�

t;t

i
; hGt i

h
%NUT

t+1 ;T

� �
J f t (x;� t (x);�);�

t+1 ;s

	 T
s= t+1

�i �

by the 
ow property (2.29)

= � t

�
hGt i

h
J x;�

t;t

i
; hGt i

h
V �

t+1 � f t (x; � t (x); �)
i �

by the de�nition (2.77) of V �
t (x),

= � t

�
hGt i

h
Jt (x; � t (x); �)

i
; hGt i

h
V �

t+1 � f t (x; � t (x); �)
i �

by the 
ow property (2.29)

= � t

�
Gt

h
Jt (x; � t (x); �)

i
; Gt

h
V �

t+1 � f t (x; � t (x); �)
i �

by De�nition 2.25 of hGt i .

Second, we show thatVt (x), as de�ned in (2.74) is lower than the value of the opti-
mization problem P NUT

t (x) in (2.71). For this purpose, we denote by (H t ) the following
assertion

(H t ) : 8x 2 Xt ; 8� 2 � ad; Vt (x) � V �
t (x) :

By de�nition of V �
T (x) in (2.77) and of VT (x) in (2.74a), assertion (HT ) is true.

Now, assume that (H t+1 ) holds true. Let x be an element ofXt . Then, by de�nition
of Vt (x) in (2.74b), we obtain

Vt (x) � inf
� 2 � ad

� t

�
Gt

h
Jt

�
x; � t (x); �

� i
; Gt

h
Vt+1 � f t

�
x; � t (x); �

� i �
; (2.79)

since, for all � 2 � ad we have� t (x) 2 Ut (x). By ( H t+1 ) we have, for any � 2 � ad,

Vt+1 � f t
�
x; � t (x); �

�
� V �

t+1 � f t
�
x; � t (x); �

�
:
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From monotonicity of � t and monotonicity of Gt , we deduce:

� t

�
Gt

h
Jt

�
x; � t (x); �

� i
; Gt

h
Vt+1 � f t

�
x; � t (x); �

� i �

� � t

�
Gt

h
Jt

�
x; � t (x); �

� i
; Gt

h
V �

t+1 � f t
�
x; � t (x); �

� i �
:

(2.80)

We obtain:

Vt (x) � inf
� 2 � ad

� t

�
Gt

h
Jt

�
x; � t (x); �

� i
; Gt

h
Vt+1 � f t

�
x; � t (x); �

� i �
by (2.79),

� inf
� 2 � ad

� t

�
Gt

h
Jt

�
x; � t (x); �

� i
; Gt

h
V �

t+1 � f t+1
�
x; � t (x); �

� i �
by (2.80),

= inf
� 2 � ad

V �
t (x) by the de�nition (2.77) of V �

t (x).

Hence (H t ) holds true.

Third, we show that the lower bound Vt (x) for the value of the optimization prob-
lem P NUT

t (x) is achieved for the policy � ] in (2.75). For this purpose, we consider the
following assertion

(H 0
t ) : 8x 2 Xt ; V � ]

t (x) = Vt (x) :

By de�nition of V � ]

T (x) in (2.77) and of VT (x) in (2.74a), (H 0
T ) holds true. For t 2 [[0; T � 1]],

assume that (H 0
t+1 ) holds true. Let x be in Xt . We have

Vt (x) = � t

�
Gt

h
Jt

�
x; � ]

t (x); �
� i

; Gt

h
Vt+1 � f t

�
x; � t (x); �

� i �
by de�nition of � ] in (2.75),

= � t

�
Gt

h
Jt

�
x; � ]

t (x); �
� i

; Gt

h
V � ]

t+1 � f t
�
x; � t (x); �

� i �
by (H 0

t+1 )

= V � ]

t (x) by (2.77).

Hence (H 0
t ) holds true, and the proof is complete by induction.

The following Theorem 2.36 is our main result on time-consistency in the NUT case.

Theorem 2.36. Assume that
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Then

1. the NUT-dynamic uncertainty criterion
�

%NUT
t;T

	 T
t=0 de�ned by (2.72) is time-

consistent;

2. the Markov optimization problem
��

(P NUT
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.71) is time-

consistent, as soon as there exists an admissible policy� ] 2 � ad such that (2.75)
holds true.

Proof. In the proof, we drop the superscripts inV NUT
t , (P NUT

t )(x) and %NUT
t;T .

The second assertion is a straightforward consequence of the property that� ] is an
optimal policy 14 for all Problems (P t )(x). Hence, the Markov optimization problem (2.71)
is time-consistent.

14. See Footnote 11.
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We now prove the �rst assertion. We suppose given a policy� 2 �, and a sequence
f xsgT

0 of states, wherexs 2 Xs.
Let t < t be both in [[0; T]]. Consider two adapted uncertainty processesf AsgT

0 and
f AsgT

0 , where As : W[0:T ] ! �R and As : W[0:T ] ! �R, satisfying (2.39a) and (2.39b), that
is,

As = As; 8s 2 [[t; t]] ; (2.81a)

%t;T

�
f AsgT

t

�
� %t;T

�
f AsgT

t

�
; (2.81b)

We show by backward induction that, for all t 2 [[t; t]], the following statement (H t ) holds
true:

(H t ) %t;T
�
f AsgT

t

�
� %t;T

�
f AsgT

t

�
: (2.82)

First, we observe that (H t ) holds true by assumption (2.81b). Second, let us assume that,
for t > t , the assertion (H t ) holds true. Then, by (H t ), monotonicity of Gt � 1 gives

hGt � 1i
h
%t;T

�
f AsgT

t

� i
� h Gt � 1i

h
%t;T

�
f AsgT

t

� i
:

As A t � 1 = A t � 1 by (2.81a), monotonicity 15 of � t � 1 yields

� t � 1

n
A t � 1; hGt � 1i

h
%t;T

�
f AsgT

t

� io
� � t � 1

n
A t � 1; hGt � 1i

h
%t;T

�
f AsgT

t

� io
:

By de�nition of %t � 1;T in (2.72), we obtain (H t � 1). This ends the proof by induction.

2.3.3 Commutation of Aggregators

We introduce two notions of commutation between time and uncertainty aggregators.

TU-Commutation of Aggregators

The following notion of TU-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE.

De�nition 2.37. Let t 2 [[0; T]] and s 2 [[t + 1 ; T]]. A [t :s]-multiple-step uncertainty-
aggregatorG[t :s] is said to TU-commute with a one-step time-aggregator� if

G[t :s]
h
w[t :s] 7! �

�
c; Dt

�
w[t :s]

�	 i
= �

n
c;G[t :s]

h
w[t :s] 7! D t

�
w[t :s]

� io
; (2.83)

for any function D t 2 F (W[t :s]; �R) and any extended scalarc 2 �R.

In particular, a one-step time-aggregator � TU-commutes with a one-step uncertainty-
aggregatorG[t :t ] if

G[t :t ]
h
�

�
c; Ct

	 i
= �

n
c;G[t :t ]� Ct

� o
; (2.84)

for any function 16 Ct 2 F (Wt ; �R) and any extended scalarc 2 �R.

Example 2.38. If (Wt ; F t ; Pt ) is a probability space and if

�
�

c; ct
	

= � (c) + � (c)ct ; (2.85)

where � : �R ! R and � : �R ! R+ , then the extended17 expectation G[t :t ] = EPt TU-
commutes with � .

15. See Footnote 12.
16. We will consistently use the symbol Ct to denote a function in F (W t ; �R), that is, Ct : W t ! �R.
17. We set � � 0, so that, when Ct 2 F (W t ; �R) is not integrable with respect to Pt , the equality (2.83)

still holds true.
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Proposition 2.39. Consider a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators and a

chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators. Suppose that, for any0 �
t < s � T, Gs TU-commutes with � t .

Then,
D T

�
s= t

Gs

E
TU-commutes with � r , for any 0 � r < t � T , that is,

D T

�
s= t

Gs

Eh
� r

�
cr ; A

	 i
= � r

�
c;

D T

�
s= t

Gs

E�
A

�
�

; 8 0 � r < t � T ; (2.86)

for any extended scalarc 2 �R and any function A 2 F
�
W[0:T ]; �R

�
.

Proof. We prove by induction that

� T

�
s= t

Gs

� �
� r

�
c; Dt

	
�

= � r

�
c;

� T

�
s= t

Gs

� �
D t

�
�

; 8 0 � r < t � T ; (2.87)

for any extended scalarc 2 �R and any function D t 2 F
�
W[t :T ]; �R

�
. For t 2 [[1; T]], let (H t )

be the following assertion

(H t ) : 8r 2 [[0; t � 1]]; 8c 2 �R; 8D t 2 F
�
W[t :T ]; �R

�
;

� T

�
s= t

Gs

� �
� r

�
c; Dt

	
�

= � r

�
c;

� T

�
s= t

Gs

� �
D t

�
�

:
(2.88)

The assertion (HT ) is

(HT ) : 8r 2 [[0; T � 1]]; 8c 2 �R; 8DT 2 F
�
WT ; �R

�
;

GT

h
� r

�
c; DT

	 i
= � r

�
c;GT

�
DT

�	
:

Thus, the assertion (HT ) is true, since it coincides the property that, for any 0 � r < T ,
GT TU-commutes with � r (apply (2.83) where t = T, � = � r ).

Now, suppose that (H t+1 ) holds true. Let r < t , c 2 �R and D t 2 F
�
W[t :T ]; �R

�
. We

have
� T

�
s= t

Gs

�h
� r

�
c; Dt

	 i
;

= Gt

"

wt 7!
� T

�
t+1

Gs

� �
w[t+1: T ] 7! � r

n
c; Dt

�
wt ; w[t+1: T ]

� o � #

;

by the de�nition (2.53) of composition,

= Gt

"

wt 7! � r

�
c;

� T

�
s= t+1

Gs

�h
w[t+1: T ] 7! D t

�
wt ; w[t+1: T ]

� i � #

by (H t+1 ) since r < t < t + 1,

and where, for all wt , D t+1 : w[t+1: T ] 7! D t
�
wt ; w[t+1: T ]

�
2 F

�
W[t :T ]; �R

�
;

= � r

(

c;Gt

�
wt 7!

� T

�
s= t+1

Gs

�h
w[t+1: T ] 7! D t

�
wt ; w[t+1: T ]

� i � )

;

by commutation property (2.83) of Gt with � = � r , since 0� r < t � T ,

and whereCt : wt 7!
� T

�
s= t+1

Gs

� �
w[t+1: T ] 7! D t

�
wt ; w[t+1: T ]

��
2 F

�
Wt ; �R

�
;

= � r

�
c;

� T

�
s= t

Gs

� �
D t

�
�

by the de�nition (2.53) of composition.

This ends the induction, hence the proof of (2.87). Then, (2.86) easily follows by the
extensions of De�nitions 2.23 and 2.25.
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UT-Commutation of Aggregators

The following notion of UT-commutation between time and uncertainty aggregators
stands as one of the key ingredients for a DPE. In practice, it is much more restrictive
than TU-commutation.

De�nition 2.40. Let t 2 [[0; T]]. A multiple-step time-aggregator� : �Rk+1 ! �R is said to
UT-commute with a one-step uncertainty-aggregatorG[t :t ] if

D
G[t :t ]

E h
�

� �
As

	 k
s=0

�i
= �

�n D
G[t :t ]

E�
As

� o k

s=0

�
; (2.89)

for any adapted uncertainty process
�

As
	 k

s=0 .

In particular, a one-step time-aggregator � UT-commutes with a one-step uncertainty-
aggregatorG[t :t ] if

G[t :t ]
h
�

�
B t ; Ct

	 i
= �

n
G[t :t ]� B t

�
; G[t :t ]� Ct

� o
; (2.90)

for any functions B t , Ct in F (Wt ; �R). Comparing (2.90) with (2.84), we observe that
UT-commutation requires a property bearing on the �rst argument of the one-step
time-aggregator �, whereas TU-commutation does not. In practical applications, UT-
commutation is much more restrictive than TU-commutation.

Example 2.41. If (Wt ; F t ; Pt ) is a probability space, then the extended expectationG[t :t ] =
EPt UT-commutes with � , given by �

�
c; ct

	
= � (c) + � (c)ct in (2.85), only in the case

where � is linear and � is a constant. Comparing with Example 2.38, UT-commutation
appears much more restrictive than TU-commutation.

Proposition 2.42. Consider a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators and a

chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators. Suppose that, for any0 �
t < s � T, � s TU-commutes with Gt .

Then,
�

T � 1
�
s= t

� s

�
TU-commutes with Gr , for any r 2 [[0; t � 1]], that is, for any

�
As

	 T
s= t ,

where As 2 F
�
W[0:T ]; �R

�
,

�
T � 1
�
s= t

� s

� � n
Gr

�
As

� oT

s= t

�
= Gr

� �
T � 1
�
s= t

� s

� n �
As

	 T
s= t

o�
; 80 � r < t � T : (2.91)

Proof. We prove by induction that
�

T � 1
�
s= t

� s

� � n
Gr

�
Cs

� oT

s= t

�
= Gr

h�
T � 1
�
s= t

� s

� n �
Cs

	 T
s= t

oi
; 80 � r < t � T ; (2.92)

for any
�

Cs
	 T

s= t , where Cs 2 F
�
Wr ; �R

�
.

For t 2 [[0; T � 1]], let (H t ) be the following assertion

(H t ) : 8r 2 [[0; t � 1]]; 8s 2 [[t; T ]]; 8Cs 2 F
�
Wr ; �R

�
;

�
T � 1
�
s= t

� s

� � n
Gr

�
Cs

� oT

s= t

�
= Gr

h�
T � 1
�
s= t

� s

� n �
Cs

	 T
s= t

oi
:

(2.93)

The assertion (HT � 1) is

(HT � 1) : 8r 2 [[0; T � 2]]; 8CT 2 F
�
Wr ; �R

�
; 8CT � 1 2 F

�
Wr ; �R

�
;

h� T � 1i
n

Gr
�
CT � 1

�
; Gr

�
CT

� o
= Gr

h
h� T � 1i

�
CT � 1; CT

	 i
:

(2.94)
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Thus, the assertion (HT � 1) is true, since it coincides the property that, for any 0 � r < T ,
� T � 1 TU-commutes with Gr (apply (2.89) where t = T, � = � T � 1, As = Cs).

Now, suppose that (H t+1 ) holds true. With r < t , and Cs 2 F
�
Wr ; �R

�
, for all

s 2 [[t; T ]], we have

�
T � 1
�
s= t

� s

� n �
Gr

�
Cs

�	 T
s= t

o
= � t

�
Gr

�
Ct

�
;
�

T � 1
�

s= t+1
� s

� n �
Gr

�
Cs

�	 T
s= t+1

o�

by the de�nition (2.45) of composition,

= � t

�
Gr

�
Ct

�
; Gr

h�
T � 1
�

s= t+1
� s

� n �
Cs

	 T
s= t+1

oi �

by (H t+1 ) since r < t < t + 1

= Gr

h
� t

�
Ct ;

�
T � 1
�

s= t+1
� s

� n �
Cs

	 T
s= t+1

o� i

by commutation property (2.89) of Gr with � = � t

since 0� r < t � T ,

= Gr

h�
T � 1
�
s= t

� s

� n �
Cs

	 T
s= t

oi

by the de�nition (2.45) of composition.

This ends the induction, hence the proof of (2.92). The property that
�

T � 1
�
s= t

� s

�
TU-

commutes with Gr , for any r 2 [[0; t � 1]], easily follows by the extensions of De�nitions 2.23
and 2.25.

2.3.4 Time-Consistency for Non Nested Dynamic Uncertainty Criteria

Consider

� on the one hand, a sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators,

� on the other hand, a chained sequence
�

Gt
	 T

t=0 of one-step uncertainty-aggregators.

With these ingredients, and with the compositions
� T

�
s= t

Gs

�
and

�
T
�
s= t

Gs

�
introduced in

De�nitions 2.27 and 2.25, and
�

T � 1
�
s= t

� s

�
in De�nition 2.23, we present two ways to craft

a non-nested dynamic uncertainty criterion f %t;T gT
t=0 , as introduced in De�nition 2.7.

For each of them, we provide a DPE under the assumption that time and uncertainty
aggregators commute.
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TU Dynamic Uncertainty Criterion

With a slight abuse of notation, we de�ne the sequence
�

(P TU
t )(x)

	 T
t=0 of optimization

problems parameterized by the statex 2 Xt as

(P TU
t )(x) min

� 2 � ad
t

Gt

"

Gt+1

"

� � � GT

�

� t

�
Jt

�
x t ; ut ; wt

�
;

� t+1

n
Jt+1

�
x t+1 ; ut+1 ; wt+1

�
; � � � (2.95a)

� T � 1

n
JT � 1

�
xT � 1; uT � 1; wT � 1

�
; JT

�
xT ; wT

� o

� � �
o ��

� � �

##

;

s:t: x t = x ; (2.95b)

xs+1 = f s
�
xs; us; ws

�
; (2.95c)

us = � s(xs) ; (2.95d)

us 2 Us(xs) ; (2.95e)

where constraints are satis�ed for all s 2 [[t; T � 1]].
We de�ne the Markov optimization problem (2.95) formally by

(P TU
t )(x) min

� 2 � ad
t

%TU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.96)

where the functions J x;�
t;s are de�ned by (2.27), and where%TU

t;T is de�ned as follows.
When we compose

�
F (W[0:s]; �R)

� T
s= t

*
T � 1
�

s= t
� s

+

������! F (W[0:T ]; �R)

*
T

�
s= t

Gs

+

������! F (W[0:t � 1]; �R); (2.97)

we obtain the following De�nition.

De�nition 2.43. We de�ne the dynamic uncertainty criterion f %TU
t;T gT

t=0 by18

%TU
t;T =

D T

�
s= t

Gs

E
�

�
T � 1
�
s= t

� s

�
; 8t 2 [[0; T � 1]] : (2.98)

When we plug the stream
�

J x;�
t;s

	 T
s= t of costs, introduced in De�nition 2.5, into the

operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, �rst with respect to time, then
with respect to uncertainty.

� We aggregate streams
�

J x;�
t;s (w)

	 T
s= t of costs,�rst with respect to time , thanks to the

function
� T � 1

�
s= t

� s

�
: �RT +1 ! �R. However, the result

� T � 1
�
s= t

� s

�� �
J x;�

t;s (w)
	 T

s= t

�
still

depends upon the scenariow.

18. With the convention that
� T � 1

�
r = T

� r

�
is the identity mapping.
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� Then, we aggregate uncertain intertemporal costsw 7!
� T � 1

�
s= t

� s

�� �
J x;�

t;s (w)
	 T

s= t

�
|

elements of the setF (W[t :T ]; �R) of functions | second with respect to uncertainty,

thanks to the multiple-step uncertainty-aggregator
T
�
s= t

Gs : F (W[t :T ]; �R) ! �R.

The following Theorem 2.44 is our main result on time-consistency in the TU case.

Theorem 2.44. Assume that

� for any 0 � s < t � T , Gt TU-commutes with � s,
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Then

1. the TU-dynamic uncertainty criterion
�

%TU
t;T

	 T
t=0 de�ned by (2.98) is time-consistent;

2. the Markov optimization problem
��

(P TU
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.95) is time-

consistent, as soon as there exists an admissible policy� ] 2 � ad such that (2.62)
holds true, where the value functions are the

�
V NTU

t

	 T
t=0 in De�nition 2.29.

Proof. Since, for any 0 � s < t � T , Gt TU-commutes with � s, the TU- dynamic
uncertainty criterion f %TU

t;T gT
t=0 , given by De�nition 2.43, coincides with f %NTU

t;T gT
t=0 , given

by De�nition 2.28. Indeed, we prove that f %TU
t;T gT

t=0 satis�es the backward induction (2.59).

With the convention 19 that
� T � 1

�
r = T

� r

�
is the identity mapping, we have %TU

T = hGT i ,

that is, (2.59a). For any
�

As
	 T

t 2
�
F (W[0:s]; �R)

� T
s= t , we have:

%TU
t

� �
As

	 T
s= t

�
=

D s

�
r = t

Gr

E� �
T � 1
�
r = t

� r

� n �
As

	 T
s= t

o�
by (2.98),

= Gt

"
D s

�
r = t+1

Gr

E� �
T � 1
�
r = t

� r

� n �
As

	 T
s= t

o� #

by (2.53),

= Gt

"
D s

�
r = t+1

Gr

E
� t

�
A t ;

� T � 1
�

r = t+1
� r

� �
As

	 T
s= t+1

� #

by (2.45),

= Gt

"

� t

�
A t ;

D s

�
r = t+1

Gr

E� � T � 1
�

r = t+1
� r

� �
As

	 T
s= t+1

�� #

by commutation property (2.91),

= Gt

"

� t

�
A t ; %TU

t+1

� �
As

	 T
s= t+1

� � #

by (2.98).

19. See Footnote 18
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UT Dynamic Uncertainty Criterion

With a slight abuse of notation, we de�ne the sequence
�

(P UT
t )(x)

	 T
t=0 of optimization

problems parameterized by the statex 2 Xt as

(P UT
t )(x) min

� 2 � ad
t

� t

(

Gt

"

Jt
�
x t ; ut ; wt

�
#

;

� t+1

�
Gt Gt+1

�
Jt+1

�
x t+1 ; ut+1 ; wt+1

�
; � � �

� T � 1

n
Gt � � � GT � 1

h
JT � 1

�
xT � 1; uT � 1; wT � 1

� i
;

Gt � � � GT
�
JT

�
xT ; wT

�� o �
� � �

� )

; (2.99a)

s:t: x t = x ; (2.99b)

xs+1 = f s
�
xs; us; ws

�
; (2.99c)

us = � s(xs) ; (2.99d)

us 2 Us(xs) ; (2.99e)

where constraints are satis�ed for all s 2 [[t; T � 1]].
We de�ne the Markov optimization problem (2.99) formally by

(P UT
t )(x) min

� 2 � ad
t

%UT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.100)

where the functions J x;�
t;s are de�ned by (2.27), and where%UT

t;T is de�ned as follows. We
de�ne the mapping

n� s

�
r = t

Gr

�o T

s= t
:
�
F (W[t :s]; �R)

� T
s= t ! �RT +1 ; (2.101)

for any
�

D r
	 T

r = t 2
�
F (W[t :s]; �R)

� T
s= t , componentwise by

� s

�
r = t

Gr

�h �
Ds

	 T
s= t

i
=

n� s

�
r = t

Gr

� �
Ds

� oT

s= t
: (2.102)

In the same way, we de�ne the mapping (see De�nition 2.25):

nD s

�
r = t

Gr

EoT

s= t
:
�
F (W[0:s]; �R)

� T
s= t !

�
F (W[0:t ]; �R)

� T +1

: (2.103)

De�nition 2.45. We de�ne the dynamic uncertainty criterion f %UT
t;T gT

t=0 by

%UT
t;T =

�
T � 1
�
s= t

� s

�
�

nD s

�
r = t

Gr

EoT

s= t
; 8t 2 [[0; T � 1]] : (2.104)

The expression%UT
t;T is the output of the composition 20

�
F (W[0:s]; �R)

� T
s= t

nD s

�
r = t

Gr

EoT

s= t�����������!
�

F (W[0:t ]; �R)
� T +1

�
T � 1
�

s= t
� s

�

�������! F (W[0:t ]; �R) :

When we plug the stream
�

J x;�
t;s

	 T
s= t of costs, introduced in De�nition 2.5, into the

operator above, this two-stage process displays a natural economic interpretation in term
of preferences: we mix time and uncertainty preferences, �rst with respect to uncertainty,
then with respect to time.

20. With the convention that F (W [0: � 1] ; �R) = �R, we have %UT
0 :

�
F (W [0: s] ; �R)

� T

s= t
! �R.
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� We aggregate the stream
�

J x;�
t;s

	 T
s= t of uncertain costs, �rst with respect to uncer-

tainty , producing

n s

�
r = t

Gr
�
J x;�

t;s

� oT

s= t
=

�
Gt

h
J x;�

t;t

i
; : : : ;

� T

�
r = t

Gr

� �
J x;�

t;T

�
�

; (2.105)

thanks to the multiple-step uncertainty-aggregators
s
�
r = t

Gr : F (W[t :s]; �R) ! �R, for

s 2 [[t; T ]]. However, the resulting quantity
n� s

�
r = t

Gr

� �
J x;�

t;s

� oT

s= t
still depends upon

time s.

� Then, we aggregate the time sequence
n� s

�
r = t

Gr

� �
J x;�

t;s

� oT

s= t
of costs, second with

respect to time, thanks to
� T � 1

�
r = t

� r

�
: �RT +1 ! �R.

The following Theorem 2.46 is our main result on time-consistency in the UT case.

Theorem 2.46. Assume that
� for any 0 � s < t � T , Gt UT-commutes with � s,
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], Gt is non-decreasing.

Then

1. the UT-dynamic uncertainty criterion
�

%UT
t;T

	 T
t=0 de�ned by (2.104) is time-

consistent;

2. the Markov optimization problem
��

(P UT
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.99) is time-

consistent, as soon as there exists an admissible policy� ] 2 � ad such that (2.75)
holds true, where the value functions are the

�
V NUT

t

	 T
t=0 in De�nition 2.34.

Proof. Since, for any 0 � s < t � T , Gt UT-commutes with � s, the UT- dynamic
uncertainty criterion f %UT

t;T gT
t=0 , given by De�nition 2.45, coincides with f %NUT

t;T gT
t=0 , given

by De�nition 2.33.
Indeed, we prove that f %UT

t;T gT
t=0 satis�es the backward induction (2.72).

With the convention 21 that
� T � 1

�
r = T

� r

�
is the identity mapping, we have %UT

T = hGT i ,

that is, (2.72a). For any
�

As
	 T

t 2
�
F (W[0:s]; �R)

� T
s= t , we have:

%N
t

� �
As

	 T
t

�
=

� T � 1
�
r = t

� r

�nD s

�
r = t

Gr

E�
As

� oT

s= t
by (2.104),

= � t

(

Gt
�
A t

�
;
� T � 1

�
r = t+1

� r

�nD s

�
r = t

Gr

E�
As

� oT

s= t+1

)

by (2.45),

= � t

(

Gt
�
A t

�
;
� T � 1

�
r = t+1

� r

�n
Gt

hD s

�
r = t+1

Gr

E�
As

� io T

s= t+1

)

by (2.53),

= � t

(

Gt
�
A t

�
;
� T � 1

�
r = t+1

� r

�
Gt

� nD s

�
r = t+1

Gr

E�
As

� oT

s= t+1

� )

by (2.102),

= � t

(

Gt
�
A t

�
; Gt

� � T � 1
�

r = t+1
� r

�nD s

�
r = t+1

Gr

E�
As

� oT

s= t+1

� )

by commutation property (2.91),

= � t

(

Gt
�
A t

�
; Gt

h
%N

t

� �
As

	 T
s= t+1

�i
)

by (2.104),

21. See Footnote 18
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This ends the proof.

2.3.5 Applications

Now, we present applications of Theorem 2.44, that is, the TU case. Indeed, Theo-
rems 2.31 and 2.36 in the nested cases NTU and NUT are less interesting because they
cover cases where time-consistency is commonplace since it only depends on monotonoc-
ity assumptions. Regarding Theorem 2.46, it is not powerful because UT-commutation
appears much more restrictive than TU-commutation: in practice, Theorem 2.46 only
applies to linear one-step time-aggregators �

�
c; d

	
= �c + �d (see Example 2.41), that

obviously commute with expectations.

Coherent Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to coherent
risk measures (see De�nition 2.9), and we show that they display time-consistency. We
thus extend, to more general one-step time-aggregators, results known for the sum (see
e.g. [105,109]).

We denote by P(Wt ) the set of probabilities over (Wt ; Wt ). Let P0 � P (W0), . . . ,
PT � P (WT ). If A and B are sets of probabilities, thenA 
 B is de�ned as

A 
 B = f PA 
 PB jPA 2 A; PB 2 B g : (2.106)

Let ( � t )t2 [[0;T � 1]] and (� t )t2 [[0;T � 1]] be sequences of functions, each mapping�R into R, with
the additional property that � t � 0, for all t 2 [[0; T � 1]]. We set, for all t 2 [[0; T]],

%co
t;T (

�
As

	 T
s= t ) = sup

Pt 2P t

EPt

�
� � � sup

PT 2P T

EPT

� TX

s= t

�
� s

�
As

� s� 1Y

r = t

� r
�
A r

� � �
� � �

�
; (2.107)

for any adapted uncertain process
�

A t
	 T

0 , with the convention that � T (cT ) = cT .

Proposition 2.47. Time-consistency holds true for
� the dynamic uncertainty criterion f %co

t;T gT
t=0 given by (2.107),

� the Markov optimization problem

min
� 2 � ad

%co
t;T (

�
J x;�

t;s

	 T
s= t ); 8t 2 [[0; T]]; 8x 2 Xt ; (2.108)

whereJ x;�
t;s (w) is de�ned by (2.27), as soon as there exists an admissible policy� ] 2

� ad such that, for all t 2 [[0; T � 1]], for all x 2 Xt ,

� ]
t (x) 2 arg min

u2 Ut (x)
sup

Pt 2P t

n
EPt

h
� t

�
Jt (x; u; �)

�
+ � t

�
Jt (x; u; �)

�
Vt+1 � f t (x; u; �)

io
;

where the value functions are given by the following DPE

VT (x) = sup
PT 2P T

EPT

�
JT (x; �)

�
; (2.109a)

Vt (x) = min
u2 Ut (x)

sup
Pt 2P t

n
EPt

h
� t

�
Jt (x; u; �)

�
(2.109b)

+ � t
�
Jt (x; u; �)

�
Vt+1 � f t (x; u; �)

io
:

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
� the one-step time-aggregators are de�ned by

8t 2 [[0; T � 1]]; 8
�
ct ; ct+1

�
2 �R2; � t

�
ct ; ct+1

	
= � t (ct ) + � t (ct )ct+1 ; (2.110a)
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� the one-step uncertainty-aggregators are de�ned by

8t 2 [[0; T � 1]]; 8Ct 2 F (Wt ; �R); Gt
�
Ct

�
= sup

Pt 2P t

EPt

�
Ct

�
: (2.110b)

The DPE (2.109) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any 0 � t < s � T, Gs TU-commutes with � t . Indeed, letting
ct be an extended real number in�R and Cs a function in F (Ws; �R), we have22

Gs
�
� t f ct ; Csg

�
= sup

Ps 2P s

n
EPs

�
� (ct ) + � (ct )Cs

� o
by (2.110b) and (2.110a),

= � t (ct ) + � t (ct ) sup
Ps 2P s

n
EPs [Cs]

o
as � t � 0 ;

= � t (ct ) + � t (ct )Gs[Cs] by (2.110b),

= � t f ct ; Gs[Cs]g by (2.110a).

Second, we observe thatGt is non-decreasing (see De�nition 2.24), and thatct+1 2 �R 7!
� t

�
ct ; ct+1

	
= � t (ct ) + � t (ct )ct+1 is non-decreasing, for anyct 2 �R.

This ends the proof.

The one-step uncertainty-aggregatorsGt in (2.110b) correspond to a coherent risk
measure, by De�nition 2.9 and the comments that follow it.

Our result di�ers from [105, Theorem 2] in two ways. On the one hand, in [105],
arguments are given to show that there exists an optimal Markovian policy among the set
of adapted policies (that is, having a policy taking as argument the whole past uncertainties
would not give a better cost than a policy taking as argument the current value of the
state). We do not tackle this issue since we directly deal with policies as functions of the
state. Where we suppose that there exists an admissible policy� ] 2 � ad such that (2.62)
holds true, [105] gives conditions ensuring this property. On the other hand, where [105]
restricts to the sum to aggregate instantaneous costs, we consider more general one-step
time-aggregators � t . For instance, our results applies to the product of costs.

Convex Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see De�nition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that� t � 1
and an additional data (� t )t2 [[0;T ]].

Let P0 � P (W0), . . . , PT � P (WT ), and (� t )t2 [[0;T ]] be sequence of functions, each
mapping P(Wt ) into �R. Let ( � t )t2 [[0;T ]] be sequence of functions, each mapping�R into R.
We set, for all t 2 [[0; T]],

%cx
t;T (

�
As

	 T
t ) = sup

Pt 2P t

EPt

�
� � � sup

PT 2P T

EPT

� TX

s= t

�
� s(As) � � s(Ps)

� �
� � �

�
; (2.111)

for any adapted uncertain process
�

A t
	 T

0 , with the convention that � T (cT ) = cT .

Proposition 2.48. Time-consistency holds true for
� the dynamic uncertainty criterion f %cx

t;T gT
t=0 given by (2.111),

22. This result can also be obtained by use of Proposition 2.52 with I = Ps .
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� the Markov optimization problem

min
� 2 � ad

%cx
t;T (

�
J x;�

t;s

	 T
s= t ); 8t 2 [[0; T]]; 8x 2 Xt ; (2.112)

whereJ x;�
t;s (w) is de�ned by (2.27), as soon as there exists an admissible policy� ] 2

� ad such that, for all t 2 [[0; T � 1]], for all x 2 Xt ,

� ]
t (x) 2 arg min

u2 Ut (x)
sup

Pt 2P t

n
EPt

h
� t

�
Jt (x; u; �)

�
+ Vt+1 � f t (x; u; �)

i
� � t (Pt )

o
;

where the value functions are given by the following DPE

VT (x) = sup
PT 2P T

EPT

�
JT (x; �)

�
� � T (PT ) ; (2.113a)

Vt (x) = min
u2 Ut (x)

sup
Pt 2P t

n
EPt

h
� t

�
Jt (x; u; �)

�

+ Vt+1 � f t (x; u; �)
i

� � t (Pt )
o

: (2.113b)

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where
� the one-step time-aggregators are de�ned by

� t
�

ct ; ct+1
	

= � t (ct ) + ct+1 ; 8t 2 [[0; T � 1]]; 8
�
ct ; ct+1

�
2 �R2 ; (2.114a)

� the one-step uncertainty-aggregators are de�ned by

Gt
�
Ct

�
= sup

Pt 2P t

EPt

�
Ct

�
� � t (Pt ); 8t 2 [[0; T � 1]]; 8Ct 2 F (Wt ; �R) : (2.114b)

The DPE (2.113) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any t 2 [[0; T � 1]] and s 2 [[t + 1 ; T]], Gs TU-commutes with
� t . Indeed, letting ct be an extended real number in�R and Cs a function in F (Ws; �R),
we have23

Gs
�
� t f ct ; Csg

�
= sup

Ps 2P s

n
EPs

�
� (ct ) + Cs

�
� � s(Ps)

o
by (2.114b) and (2.114a)

= � t (ct ) + sup
Ps 2P s

n
EPs [Cs] � � s(Ps)

o

= � t (ct ) + Gs[Cs] by (2.114b)

= � t f ct ; Gs[Cs]g by (2.114a).

Second, we observe thatGt is non-decreasing (see De�nition 2.24), and thatct+1 2 �R 7!
� t

�
ct ; ct+1

	
= � t (ct ) + ct+1 is non-decreasing, for anyct 2 �R.

This ends the proof.

The one-step uncertainty-aggregatorsGt in (2.114b) correspond to a convex risk mea-
sure, by De�nition 2.9 and the comments that follow it.

Worst-Case Risk Measures (Fear Operator)

A special case of coherent risk measures consists of the worst case scenario operators,
also called \fear operators" and introduced in x2.1. For this subclass of coherent risk
measures, we show that time-consistency holds for a larger class of time-aggregators than
the ones above.

23. This result can also be obtained by use of Proposition 2.52 with I = Ps .
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For any t 2 [[0; T � 1]], let fWt be a non empty subset ofWt , and let � t : �R2 ! �R be
a function which is continuous and non-decreasing in its second variable. We set, for all
t 2 [[0; T]],

%wc
t;T (

�
As

	 T
t ) = sup�

ws

	 T

t
2 eWt ����� eWT

� t

(

A t (
�

ws
	 T

t ); � t+1

�
� � � ;

� T � 1

n
AT � 1(wT � 1; wT ); AT (wT )

o � )

;

(2.115)

for any adapted uncertain process
�

A t
	 T

0 .

Proposition 2.49. Time-consistency holds true for
� the dynamic uncertainty criterion f %wc

t;T gT
t=0 given by (2.115),

� the Markov optimization problem

min
� 2 � ad

%wc
t;T (

�
J x;�

t;s

	 T
s= t ) ; (2.116)

whereJ x;�
t;s (w) is de�ned by (2.27), as soon as there exists an admissible policy� ] 2

� ad such that, for all t 2 [[0; T � 1]], for all x 2 Xt ,

� ]
t (x) 2 arg min

u2 Ut (x)
sup

wt 2 eWt

� t

n
Jt

�
x; u; w t

�
; Vt+1 � f t

�
x; u; w t

� o
;

where the value functions are given by the following DPE

VT (x) = sup
wT 2 eWT

JT (x; wT ) ; (2.117a)

Vt (x) = min
u2 Ut (x)

sup
wt 2 eWt

� t

n
Jt

�
x; u; w t

�
; Vt+1 � f t

�
x; u; w t

� o
: (2.117b)

Proof. The setting is that of Theorem 2.44 and Proposition 2.30, where the one-step
uncertainty-aggregators are de�ned by

Gt
�
Ct

�
= sup

wt 2 eWt

Ct (wt ); 8t 2 [[0; T � 1]]; 8Ct 2 F (Wt ; �R) : (2.118)

The DPE (2.117) is the DPE (2.61), which holds true as soon as the assumptions of
Theorem 2.44 hold true.

First, we prove that, for any t 2 [[0; T � 1]] and s 2 [[t + 1 ; T]], Gs TU-commutes with
� t . Indeed, letting ct be an extended real number in�R and Cs a function in F (Ws; �R),
we have24

Gs
�
� t f ct ; Csg

�
= sup

ws 2 eWs

h
� t

�
ct ; Cs(ws)

	 i
by (2.118),

= � t

n
ct ; sup

w2 eWs

�
Cs(ws)

� o
by continuity of � t f ct ; �g ;

= � t
�

ct ; Gs[Cs]
	

by (2.118).

Second, we observe thatGt is non-decreasing (see De�nition 2.24), and thatct+1 7!
� t (ct ; ct+1 ) is non-decreasing for anyct 2 �R, by assumption.

This ends the proof.

Note that %wc
t;T is simply the fear operator on the Cartesian productfWt � � � � � fWT . An

example of monotonous one-step time-aggregator is �t
�

ct ; ct+1
	

= max
�

ct ; ct+1
	

, used in
the so-called Rawls or maximin criterion [34].

24. This result can also be obtained by use of Proposition 2.52 with I = eWs .
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2.3.6 Complements on TU-Commuting Aggregators

Here, we present how we can construct new TU-commuting aggregators from known
TU-commuting aggregators. We do not consider UT-commutation, since we have seen
that it appears much more restrictive than TU-commutation (see Example 2.41).

For this purpose, we consider a �xed non empty setI and a mapping � from �RI to �R.

Time-Aggregators

Let (� i ) i 2 I be a family of one-step time-aggregators. Thanks to the mapping � : �RI !
�R, we de�ne the one-step time-aggregator �

�
(� i ) i 2 I

�
by

�
�
(� i ) i 2 I

��
c; d

	
= �

� �
� i f c; dg

	
i 2 I

�
; (2.119)

for all c 2 �R and d 2 �R.

Proposition 2.50. Let t 2 [[0; T]] and Gt be at-one-step uncertainty-aggregator. Suppose
that

� Gt TU-commutes with  i , for all i 2 I ,
� for all i 2 I and for all C i

t 2 F (Wt ; �R),

Gt

h
�

��
C i

t

	
i 2 I

� i
= �

� n
Gt

�
C i

t

� o

i 2 I

�
: (2.120)

Then Gt TU-commutes with �
�
(� i ) i 2 I

�
.

Proof. We set � = �
�
(� i ) i 2 I

�
. For c 2 �R and Ct 2 F (Wt ; �R), we have

Gt

h
�

�
c; Ct

	 i
= Gt

h
�

� �
� i f c; Ct g

	
i 2 I

�i
by de�nition of � in (2.119),

= �
� n

Gt
�
� i f c; Ct g

� o

i 2 I

�
by (2.120) with C i

t = � i f c; Ct g ;

= �
� n

� i � c;Gt [Ct ]
	

i 2 I

o�
by TU-commutation (2.83),

= �
�

c;Gt [Ct ]
	

by de�nition of � in (2.119).

By De�nition 2.37, this ends the proof.

Uncertainty-Aggregators

Let t 2 [[0; T]] and f Gt
i gi 2 I be a family of t-one-step uncertainty-aggregators. Thanks

to the mapping � : �RI ! �R, we de�ne the t-one-step uncertainty-aggregator �
h
f Gt

i gi 2 I

i

by

8Ct 2 F (Wt ; �R); �
h
f Gt

i gi 2 I

i �
Ct

�
= �

� �
Gt

i � Ct
�	

i 2 I

�
: (2.121)

We do not give the proof of the next Proposition 2.51, as it follows the same line as that
of Proposition 2.50.

Proposition 2.51. Let � be a one-step time-aggregator. Suppose that
� � TU-commutes with Gt

i , for all i 2 I ,
� for all c 2 �R, for all i 2 I and for all ci 2 �R,

�
�

c; �
��

ci 	
i 2 I

� �
= �

� n
�

�
c;

�
ci 	

�

i 2 I

o�
: (2.122)
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Then � TU-commutes with �
h
f Gt

i gi 2 I

i
.

As a corollary, we obtain the following practical result.

Proposition 2.52. Let � be a one-step time-aggregator. Suppose that
� Gt

i TU-commutes with � , for all i 2 I ,
� for all c 2 �R, �

�
c; �

	
is continuous and non-decreasing.25

Then, the t-one-step uncertainty-aggregatorsupi 2 I Gt
i TU-commutes with � , and so does

inf i 2 I Gt
i , provided inf i 2 I Gt

i never takes the value�1 .

Proof. We are going to show that (2.119) holds true, and then the proof is a straightforward
application of Proposition 2.51. We set �Gt = � supi 2 I Gt

i +(1 � � ) inf i 2 I Gt
i , with � 2 [0; 1]

(only at the end, do we take � 2 f 0; 1g). For any (c; Ct ) 2 �R � F (Wt ; �R), we have

�Gt

h
�

�
c; Ct

	 i
= ( � sup

i 2 I
+(1 � � ) inf

i 2 I
)Gt

i
h
�

�
c; Ct

	 i
by de�nition of �Gt ;

= ( � sup
i 2 I

+(1 � � ) inf
i 2 I

)�
n

c;Gt
i � Ct

� o
by TU-commutation (2.83),

= � sup
i 2 I

�
n

c;Gt
i � Ct

� o
+ (1 � � ) inf

i 2 I
�

n
c;Gt

i � Ct
� o

;

= � �
n

c;sup
i 2 I

Gt
i � Ct

� o
+ (1 � � )�

n
c; inf

i 2 I
Gt

i � Ct
� o

;

by continuity and monotonicity of �
�

c; �
	

;

= �
n

c;(� sup
i 2 I

+(1 � � ) inf
i 2 I

)Gt
i � Ct

� o
when � 2 f 0; 1g :

The rest of the proof is a straightforward application of Proposition 2.51.

The following Proposition 2.53 is an easy extension of Proposition 2.52.

Proposition 2.53. Suppose that the assumptions of Proposition 2.52 hold true. LetI j �
I , j 2 J and I j � I , j 2 J be �nite families of non empty subsets ofI .

� If � is a�ne in its second variable, that is, if

�
�

c; d
	

= � (c) + � (c)d ; (2.123)

and if (f � j gj 2 J ; f � j gj 2 J ) are non-negative scalars that sum to one, the convex com-
bination X

j 2 J

� j inf
i 2 I j

Gt
i +

X

j 2 J

� j sup
i 2 I j

Gt
i (2.124)

of in�mum or supremum of subfamilies of f Gt
i gi 2 I TU-commutes with � , provided

inf i 2 I j
Gt

i never takes the value�1 .
� If � is linear in its second variable, that is, if

�
�

c; d
	

= � (c)d ; (2.125)

and if (f � j gj 2 J ; f � j gj 2 J ) are non-negative scalars, the combination
X

j 2 J

� j inf
i 2 I j

Gt
i +

X

j 2 J

� j sup
i 2 I j

Gt
i (2.126)

of in�mum or supremum of subfamilies of f Gt
i gi 2 I TU-commutes with � , provided

inf i 2 I j
Gt

i never takes the value�1 .

25. Instead of the continuity of �
�

c; �
	

, we can assume that, for all Ct 2 F (W t ; �R), supi 2 I Gt
i [Ct ] is

achieved (always true for I �nite).
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2.4 Extension to Markov Aggregators

Here, we extend the results ofx2.3 to the case where we allow one-step time and
uncertainty aggregators of depend on the state. The di�culty of this extension is mainly
one of notations. We do not give the proofs because they follow the sketch of those
in x2.3.2 and in x2.3.4. We will reap the bene�ts of this extension in x2.4.6, where we
present applications.

2.4.1 Markov Time-Aggregators and their Composition

We allow one-step time-aggregators to depend on the state as follows (De�nition 2.54
di�ers from De�nition 2.18 only through the indexation by the state).

De�nition 2.54. Let t 2 [[0; T]]. A one-step Markov time-aggregator is a family�
� x t

t

	
x t 2 Xt

of one-step time-aggregators� x t
t : �R2 ! �R indexed by the statex t 2 Xt .

Now, we introduce the composition of one-step Markov time-aggregators.

De�nition 2.55. Let
n �

� x t
t

	
x t 2 Xt

oT � 1

t=0
be a sequence of one-step Markov time-

aggregators. Let t 2 [[0; T � 1]]. Given a policy � 2 � and x t 2 Xt , we de�ne the

composition
�

x t ;�
�

t � s� T � 1
� s

�
:

�
F (W[0:T ]; �R)

� T
t ! F (W[0:T ]; �R) by

� � x t ;�
�

t � s� T � 1
� s

� n
f AsgT

t

o�
�
w

�
=

� x t ;�
�

t � s� T � 1
�

X x t ;�
t;s (w)

s

�n
f As

�
w

�
gT

t

o
; (2.127)

for all scenario w 2 W[0:T ], for any sequencef AsgT
s= t 2

�
F (W[0:T ]; �R)

� T � t+1
, that is,

where As 2 F
�
W[0:T ]; �R

�
.

Notice that the extension, to one-step Markov time-aggregators, of the composition
involves the dynamical system (2.2) and a policy (whereas, in De�nition 2.23, the compo-
sition is independent of the policy).

Remark 2.56. Observe that we have de�ned
�

x t ;�
�

t � s� T � 1
� s

�
, de�ned over functions,

but not
� x t ;�

�
t � s� T � 1

� s

�
, de�ned over extended reals. Observe also that the image by

�
x t ;�
�

t � s� T � 1
� s

�
of any sequencec[t :T ] of extended reals is not an extended real, but is a

function: � � x t ;�
�

t � s� T � 1
� s

�
�

c[t :T ]
	

�
�
w

�
=

� x t ;�
�

t � s� T � 1
�

X x t ;�
t;s (w)

s

� �
c[t :T ]

	
: (2.128)

2.4.2 Markov Uncertainty-Aggregators and their Composition

We allow one-step uncertainty-aggregators to depend on the state as follows (De�ni-
tion 2.57 di�ers from De�nition 2.24 only through the indexation by the state).

De�nition 2.57. Let t 2 [[0; T � 1]]. A t-one-step Markov uncertainty-aggregator is a
family

�
Gx t

t

	
x t 2 Xt

of t-one-step uncertainty-aggregators indexed by the statex t 2 Xt .

We say that a sequence
��

Gx t
t

	
x t 2 Xt

	 T
t=0 of one-step Markov uncertainty-aggregators

is a chained sequenceif Gx t
t is a t-one-step uncertainty-aggregator, for allt 2 [[0; T]].
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The extension, to one-step Markov uncertainty-aggregators, of the composition involves
the dynamical system (2.2) and a policy (whereas, in De�nition 2.27, the composition is
independent of the policy). The formal de�nition is as follows.

De�nition 2.58. Consider a chained sequence
n�

Gx t
t

	
x t 2 Xt

oT

t=0
of one-step Markov

uncertainty-aggregators.
For a policy � 2 � , for t 2 [[0; T]] and for a state x t 2 Xt , we de�ne the composition

x t ;�
�

t � s� T
Gs as a functional mappingF

�
W[t :T ]; �R

�
into �R, inductively given by

xT ;�

�
T � s� T

Gs = GxT
T ; (2.129a)

and then backward by, for any functionD t 2 F
�

W[t :T ]; �R
�

,

� x t ;�

�
t � s� T

Gs

� �
D t

�
= Gx t

t

"

wt 7!

� f t (x t ;� t (x t );wt );�

�
t+1 � s� T

Gs

��
w[t+1: T ] 7! D t

�
wt ; w[t+1: T ]

� � #

:

(2.129b)

2.4.3 Time-Consistency for Nested Dynamic Uncertainty Criteria

Consider

� on the one hand, a sequence
n�

� x t
t

	
x t 2 Xt

oT � 1

t=0
of one-step Markov time-aggregators,

� on the other hand, a chained sequence
n�

Gx t
t

	
x t 2 Xt

oT

t=0
of one-step Markov

uncertainty-aggregators.
With these ingredients, we present two ways to design a Markov dynamic uncertainty
criterion as introduced in De�nition 2.7.

NTU Dynamic Markov Uncertainty Criterion

De�nition 2.59. Let a policy � 2 � be given. We construct inductively aNTU-Markov

dynamic uncertainty criterion
n�

%x t ;�; NTU
t;T

	
x t 2 Xt

oT

t=0
by

%xT ;�; NTU
T

�
AT

�
=



GxT

T

� �
AT

�
; (2.130a)

%x t ;�; NTU
t;T

� �
As

	 T
s= t

�
= hGx t

t i

"

� x t
t

�
A t ; %f t (x t ;� t (x t );�);�; NTU

t+1 ;T

� �
As

	 T
s= t+1

� � #

;

8t 2 [[0; T � 1]] ; (2.130b)

for any sequencef xsgT
0 of states, wherexs 2 Xs.

We de�ne the Markov optimization problem

(P MNTU
t )(x) min

� 2 � ad
t

%x t ;�; NTU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.131)

where the functions J x;�
t;s are de�ned by (2.27).
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De�nition 2.60. We de�ne the value functions inductively by the DPE

V MNTU
T (x) = Gx

T

h
JT (x; �)

i
; 8x 2 XT ; (2.132a)

V MNTU
t (x) = inf

u2 Ut (x)
Gx

t

"

� x
t

�
Jt (x; u; �); V MNTU

t+1 � f t (x; u; �)
� #

; (2.132b)

8t 2 [[0; T � 1]]; 8x 2 Xt :

The following Proposition 2.61 expresses su�cient conditions under which any Prob-
lem (P MNTU

t )(x), for all t 2 [[0; T]] and for all x 2 Xt , can be solved by means of the value
functions in De�nition 2.60.

Proposition 2.61. Assume that
� for all t 2 [[0; T � 1]], for all x t 2 Xt , � x t

t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Assume that there exists26 an admissible policy� ] 2 � ad such that

� ]
t (x) 2 arg min

u2 Ut (x)
Gx

t

"

� x
t

�
Jt (x; u; �);V MNTU

t+1 � f t (x; u; �)
� #

;

8t 2 [[0; T � 1]]; 8x 2 Xt :

(2.133)

Then, � ] is an optimal policy for any Problem (P MNTU
t )(x), for all t 2 [[0; T]] and for all

x 2 Xt , and

V MNTU
t (x) = min

� 2 � ad
t

%x;�; NTU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.134)

The following Theorem 2.62 is our main result on time-consistency in the NTU Markov
case.

Theorem 2.62. Assume that
� for all t 2 [[0; T � 1]], for all x t 2 Xt , � x t

t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Then

1. for all policy � 2 � , the NTU-Markov dynamic uncertainty criterionn�
%x t ;�; NTU

t;T

	
x t 2 Xt

oT

t=0
de�ned by (2.130) is time-consistent;

2. the Markov optimization problem
��

(P MNTU
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.131) is

time-consistent, as soon as there exists an admissible policy� ] 2 � ad such
that (2.133) holds true.

26. See Footnote 10.



2.4. EXTENSION TO MARKOV AGGREGATORS 89

NUT Dynamic Markov Uncertainty Criterion

De�nition 2.63. Let a policy � 2 � be given. We construct inductively aNUT-Markov

dynamic uncertainty criterion
n�

%x t ;�; NUT
t;T

	
x t 2 Xt

oT

t=0
by

%xT ;�; NUT
T

�
AT

�
=



GxT

T

� �
AT

�
; (2.135a)

%x t ;�; NUT
t;T

��
As

	 T
s= t

�
= � x t

t

�
hGx t

t i
h
A t

i
;

hGx t
t i

h
%f t (x t ;� t (x t );�);�; NUT

t+1 ;T

� �
As

	 T
s= t+1

�i �
;

8t 2 [[0; T � 1]] ; (2.135b)

for any sequencef xsgT
s=0 of states, wherexs 2 Xs.

We de�ne the Markov optimization problem

(P MNUT
t )(x) min

� 2 � ad
t

%x t ;�; NUT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.136)

where the functions J x;�
t;s are de�ned by (2.27).

De�nition 2.64. We de�ne the value functions inductively by the DPE

V MNUT
T (x) = Gx

T

h
JT (x; �)

i
; 8x 2 XT ; (2.137a)

V MNUT
t (x) = inf

u2 Ut (x)
� x

t

�
Gx

t

�
Jt (x; u; �)

�
; Gx

t

�
V MNUT

t+1 � f t (x; u; �)
�
�

; (2.137b)

8t 2 [[0; T � 1]]; 8x 2 Xt :

The following Proposition 2.65 expresses su�cient conditions under which any Prob-
lem (P MNUT

t )(x), for all t 2 [[0; T]] and for all x 2 Xt , can be solved by means of the value
functions in De�nition 2.64.

Proposition 2.65. Assume that
� for all t 2 [[0; T � 1]], for all x t 2 Xt , � x t

t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Assume that there exists27 an admissible policy� ] 2 � ad such that

� ]
t (x) 2 arg min

u2 Ut (x)
� x

t

�
Gx

t

�
Jt (x; u; �)

�
;Gx

t

�
V MNUT

t+1 � f t (x; u; �)
�
�

;

8t 2 [[0; T � 1]]; 8x 2 Xt :

(2.138)

Then, � ] is an optimal policy for any Problem (P MNUT
t )(x), for all t 2 [[0; T]] and for all

x 2 Xt , and

V MNUT
t (x) = min

� 2 � ad
t

%x;�; NUT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt : (2.139)

The following Theorem 2.66 is our main result on time-consistency in the NUT Markov
case.

27. See Footnote 10.
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Theorem 2.66. Assume that
� for all t 2 [[0; T � 1]], for all x t 2 Xt , � x t

t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Then

1. for all policy � 2 � , the NUT-Markov dynamic uncertainty criterionn�
%x t ;�; NUT

t;T

	
x t 2 Xt

oT

t=0
de�ned by (2.135) is time-consistent;

2. the Markov optimization problem
��

(P MNUT
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.136) is

time-consistent, as soon as there exists an admissible policy� ] 2 � ad such
that (2.138) holds true.

2.4.4 Commutation of Markov Aggregators

We extend the results on commutation obtained inx2.3.3 to Markov time and uncer-
tainty aggregators. We do not give the proofs.

Consider a sequence
n�

� x t
t

	
x t 2 Xt

oT � 1

t=0
of one-step Markov time-aggregators and a

sequence
n�

Gx t
t

	
x t 2 Xt

oT

t=0
of one-step Markov uncertainty-aggregators.

TU-Commutation of Markov Aggregators

The following Proposition 2.67 extends Proposition 2.39 to one-step Markov aggrega-
tors.

Proposition 2.67. Suppose that, for any0 � t < s � T, for any states x t 2 Xt and
xs 2 Xs, Gxs

s TU-commutes with � x t
t .

Then, for any policy � 2 � , any 0 � r < t � T , any states x t 2 Xt and xr 2 Xr ,� x t ;�
�

t � s� T
Gs

�
and

D
� x r

r

E
TU-commute, that is,

� x t ;�

�
t � s� T

Gs

� hD
� x r

r

E�
c; A

	 i
=

D
� x r

r

E�
c;

� x t ;�

�
t � s� T

Gs

�
�
A

�
�

; (2.140)

for any extended scalarc 2 �R and any function A 2 F
�
W[0:T ]; �R

�
.

UT-Commutation of Markov Aggregators

The following Proposition 2.68 extends Proposition 2.42 to one-step Markov aggrega-
tors.

Proposition 2.68. Suppose that, for any0 � t < s � T, for any states x t 2 Xt and
xs 2 Xs, � xs

s TU-commutes with Gx t
t .

Then, for any policy � 2 � , for any 0 � r < t � T , any states xr 2 Xr and x t 2 Xt ,�
x t ;�
�

t � s� T � 1
� s

�
TU-commutes with hGx r

r i , that is,

� x t ;�
�

t � s� T � 1
� s

� � n
hGx r

r i
�
As

� oT

t

�
= hGx r

r i
� � x t ;�

�
t � s� T � 1

� s

� n �
As

	 T
t

o�
; (2.141)

for any
�

As
	 T

s= t , where As 2 F
�
W[0:T ]; �R

�
.
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2.4.5 Time-Consistency for Non Nested Dynamic Uncertainty Criteria

TU Dynamic Markov Uncertainty Criterion

De�nition 2.69. Let a policy � 2 � be given. We de�ne the TU-Markov dynamic

uncertainty criterion
n�

%x t ;�; TU
t;T

	
x t 2 Xt

oT

t=0
by28

%x t ;�; TU
t;T =

� x t ;�

�
t � s� T

Gs

�
�

� x t ;�
�

t � s� T � 1
� s

�
; 8t 2 [[0; T]]; 8x t 2 Xt : (2.142)

We de�ne the Markov optimization problem

(P MTU
t )(x) min

� 2 � ad
t

%MTU
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.143)

where the functions J x;�
t;s are de�ned by (2.27).

The following Theorem 2.70 is our main result on time-consistency in the TU Markov
case.

Theorem 2.70. Assume that
� for any 0 � s < t � T , for any states x t 2 Xt and xs 2 Xs, Gx t

t TU-commutes with
� xs

s ,
� for all t 2 [[0; T � 1]], for all x t 2 Xt , � x t

t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Then

1. the TU-Markov dynamic uncertainty criterion
�

%x t ;�; TU
t;T

	 T
t=0 de�ned by (2.142) is

time-consistent;

2. the Markov optimization problem
��

(P x t ;�; MTU
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.143)

is time-consistent, as soon as there exists an admissible policy� ] 2 � ad such
that (2.133) holds true, where the value functions are the

�
V NTU

t

	 T
t=0 in De�ni-

tion 2.60.

UT Dynamic Markov Uncertainty Criterion

For UT-Markov dynamic uncertainty criteria, we have to restrict the de�nition to

the case where the sequence
n�

� x t
t

	
x t 2 Xt

oT � 1

t=0
of one-step Markov time-aggregators is a

sequence
�

� t
	 T � 1

t=0 of one-step time-aggregators (see Remark 2.56).

De�nition 2.71. Let a policy � 2 � be given. We de�ne the UT-Markov dynamic

uncertainty criterion
n�

%x t ;�; UT
t;T

	
x t 2 Xt

oT

t=0
by29

%x t ;�; UT
t;T =

�
T � 1
�
s= t

� s

�
�

D x t ;�

�
t � s� T

Gs

E
; 8t 2 [[0; T]]; 8x t 2 Xt : (2.144)

We de�ne the Markov optimization problem

(P MUT
t )(x) min

� 2 � ad
t

%MUT
t;T

� �
J x;�

t;s

	 T
s= t

�
; 8t 2 [[0; T]]; 8x 2 Xt ; (2.145)

where the functions J x;�
t;s are de�ned by (2.27).

The following Theorem 2.72 is our main result on time-consistency in the UT Markov
case.

28. See Footnote 18
29. See Footnote 18
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Theorem 2.72. Assume that
� for any 0 � s < t � T , for any states x t 2 Xt , Gx t

t UT-commutes with � s,
� for all t 2 [[0; T � 1]], � t is non-decreasing,
� for all t 2 [[0; T]], for all x t 2 Xt , Gx t

t is non-decreasing.
Then

1. the UT-Markov dynamic uncertainty criterion
�

%x t ;�; UT
t;T

	 T
t=0 de�ned by (2.144) is

time-consistent;

2. the Markov optimization problem
��

(P x t ;�; MUT
t )(x)

	
x2 Xt

	 T
t=0 de�ned in (2.145)

is time-consistent, as soon as there exists an admissible policy� ] 2 � ad such
that (2.138) holds true, where the value functions are the

�
V NUT

t

	 T
t=0 in De�ni-

tion 2.64. (where � t does not depend onx t ).

2.4.6 Applications

Now, we present applications of Theorem 2.70, that is, the TU Markov case (see the
discussion introducingx2.3.5).

Coherent Markov Risk Measures

We introduce a class of TU Markov dynamic uncertainty criteria, that are related to co-
herent risk measures (see De�nition 2.9), and we show that they display time-consistency.

For all t 2 [[0; T]] and all x t 2 Xt , let be given Pt (x t ) � P (Wt ). Let ( � t )t2 [[0;T � 1]] and
(� t )t2 [[0;T � 1]] be sequences of functions, each mappingXt � �R into R, with the additional
property that � t � 0, for all t 2 [[0; T � 1]]. Notice that, to the di�erence with the setting
in x2.3.5, � t and � t can be functions of the statex.

For a policy � 2 �, for t 2 [[0; T]] and for a state x t 2 Xt , we set

%x t ;�; co
t;T (

�
As

	 T
s= t ) = sup

Pt 2P t (x t )
EPt

�
� � � sup

PT 2P T (X x t ;�
t;T )

EPT

�

TX

s= t

�
� s

�
X x t ;�

t;s ; As
� s� 1Y

r = t

� r
�
X x t ;�

t;r ; A r
� � �

� � �
�
;

(2.146)

for any adapted uncertain process
�

A t
	 T

0 , with the convention that � T (xT ; cT ) = cT .

Proposition 2.73. Time-consistency holds true for
� the Markov dynamic uncertainty criterion ff %x t ;�; co

t;T gx t 2 Xt g
T
t=0 given by (2.146),

� the Markov optimization problem

min
� 2 � ad

%x;�; co
t;T (

�
J x;�

t;s

	 T
s= t ); 8t 2 [[0; T]]; 8x 2 Xt ; (2.147)

whereJ x;�
t;s (w) is de�ned by (2.27), as soon as there exists an admissible policy� ] 2

� ad such that, for all t 2 [[0; T � 1]], for all x 2 Xt ,

� ]
t (x) 2 arg min

u2 Ut (x)
sup

Pt 2P t (x)

n
EPt

h
� t

�
x; J t (x; u; w t )

�

+ � t
�
x; J t (x; u; w t )

�
Vt+1 � f t (x; u; w t )

io
;
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where the value functions are given by the following DPE

VT (x) = sup
PT 2P T (x)

EPT

�
JT (x; �)

�
; (2.148a)

Vt (x) = min
u2 Ut (x)

sup
Pt 2P t (x)

n
EPt

h
� t

�
x; J t (x; u; �)

�
(2.148b)

+ � t
�
x; J t (x; u; �)

�
Vt+1 � f t (x; u; �)

io
:

With the one-step Markov uncertainty-aggregator

Gx
t

�
�
�

= sup
Pt 2P t (x)

EPt

�
�
�

; (2.149)

the expression
�

G
X 0;t � 1
t

�
(see De�nition 2.25) de�nes a coherent Markov risk measure

(De�nition 2.13). The associated function 	 t in (2.37) is given by

	 t
�
v; x; u

�
= sup

Pt 2P t (x)
EPt

h
v � f t

�
x; u; �

� i
: (2.150)

We see by (2.34) that, for any statex 2 Xt , and any control u 2 Ut , the function v 7!
	 t

�
v; x; u

�
; is a coherent risk measure (see De�nition 2.13).

Convex Markov Risk Measures

We introduce a class of TU-dynamic uncertainty criteria, that are related to convex
risk measures (see De�nition 2.9), and we show that they display time-consistency. We
consider the same setting as for coherent risk measures, with the restriction that� t � 1
and an additional data (� t )t2 [[0;T ]].

For all t 2 [[0; T]] and all x t 2 Xt , let be given Pt (x t ) � P (Wt ). Let (� t )t2 [[0;T ]] be
a sequence of functions �t mapping Xt � P (Wt ) into �R. Let ( � t )t2 [[0;T ]] be a sequence
of functions � t mapping Xt � �R into R. Notice that, to the di�erence with the setting
in x2.3.5, � t and � t can be functions of the statex.

For a policy � 2 �, a time t 2 [[0; T]] and a state x t 2 Xt , we set

%x t ;�; cx
t;T (

�
As

	 T
s= t ) = sup

Pt 2P t (x t )
EPt

�
� � � sup

PT 2P T (xT )
EPT

�

TX

s= t

�
� s

�
xs; As

�
� � s(xs; Ps)

� �
� � �

�
;

(2.151)

for any adapted uncertain process
�

A t
	 T

0 , with the convention that � T (cT ) = cT .

Proposition 2.74. Time-consistency holds true for
� the dynamic uncertainty criterion ff %x t ;�; cx

t;T gx t 2 Xt g
T
t=0 given by (2.151),

� the Markov optimization problem

min
� 2 � ad

%x;�; cx
t;T (

�
J x;�

t;s

	 T
s= t ); 8t 2 [[0; T]]; 8x 2 Xt ; (2.152)

whereJ x;�
t;s (w) is de�ned by (2.27), as soon as there exists an admissible policy� ] 2

� ad such that, for all t 2 [[0; T � 1]], for all x 2 Xt ,

� ]
t (x) 2 arg min

u2 Ut (x)
sup

Pt 2P t (x)

n
EPt

h
� t

�
x; J t (x; u; �)

�
+ Vt+1 � f t (x; u; �)

i
� � t (x; Pt )

o
;
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where the value functions are given by the following DPE

VT (x) = sup
PT 2P T (x)

n
EPT

�
� T

�
x; J T (x; �)

�
�

� � T (x; PT )
o

; (2.153a)

Vt (x) = min
u2 Ut (x)

sup
Pt 2P t (x)

n
EPt

h
� t

�
x; J t (x; u; �)

�

+ Vt+1 � f t (x; u; �)
i

� � t (x; Pt )
o

: (2.153b)

With the one-step Markov uncertainty-aggregator

Gx
t

�
�
�

= sup
Pt 2P t (x)

n
EPt

�
�
�

� � t (x; Pt )
o

; (2.154)

the expression
�

G
X 0;t � 1
t

�
(see De�nition 2.25) de�nes a convex Markov risk measure

(De�nition 2.13). The associated function 	 t in (2.37) is given by

	 t
�
v; x; u

�
= sup

Pt 2P t (x)

n
EPt

h
v � f t

�
x; u; W t

� i
� � t (x; Pt )

o
: (2.155)

We see by (2.34) that, for any statex 2 Xt , and any control u 2 Ut , the function v 7!
	 t

�
v; x; u

�
; is a convex risk measure (see De�nition 2.13).

2.5 Discussion

We discuss how our assumptions and results inx2.3 relate to other results in the
literature on time-consistency for dynamic risk measures

First, we examine the connections between time-consistency for Markov dynamic un-
certainty criteria and the existence of a DPE. When we analyze the literature on time-
consistency for risk measures with our tools (aggregators), we observe that

� most, if not all results, are obtained for the speci�c case of linear one-step time-
aggregators � t

�
ct ; ct+1

	
= ct + ct+1 ,

� a key ingredient to obtain time-consistency is an equation like (2.156a), which corre-
sponds to the commutation of one-step uncertainty-aggregators with the sum (that
is, with the linear one-step time-aggregators actually used).

Therefore, Theorems 2.31, 2.36, 2.44, 2.46 inx2.3 provide an umbrella for most of the
results establishing time-consistency for dynamic risk measures, and yields extensions
to more general time-aggregators than the sum. In [23], time-consistency for dynamic
risk measures is not de�ned by a monotonicity property like in [105] but in line with the
existence of a DPE. In [56], the time-consistency property is comparable to De�nition 2.16,
though being restricted to the multiplicative time-aggregator.

We discuss to some extent [105] where time-consistency for dynamic risk measures plus
an additional assumption like (2.156a) lead to the existence of a DPE, within the original
framework of Markov risk measuressketched above. Here is the statement of Theorem 1
in [105], with the notations of x2.2.2.

Theorem 2.75 ( [105]). Suppose that a dynamic risk measure
�

� t;T
	 T

t=0 satis�es, for all
t 2 [[0; T]], and all A t 2 L t the conditions

� t;T

� �
A s

	 T
s= t

�
= A t + � t;T

� �
0; A t+1 ; � � � ; A T

	 �
; (2.156a)

� t;T

� �
0
	 T

s= t

�
= 0 : (2.156b)
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Then � is time-consistent i�, for all 0 � s � t � T and all f A sgT
0 2 L 0;T , the following

identity is true:

� s;T

� �
A r

	 T
r = s

�
= � s;t

� �
A r

	 t
r = s; � t;T

��
A r

	 T
r = t

� �
: (2.157)

In [105, Section 5], the �nite horizon problem corresponds to Problem (2.95), starting
at t = 0, where the one-step uncertainty aggregatorGt in (2.95) corresponds to the one-
step conditional risk measure� t , the one-step time-aggregator �t in (2.95) corresponds to
the sum, and the costJt in (2.95) is denoted ct in [105]. Commutation of the one-step
time-aggregators � t and the one-step uncertainty-aggregatorsGs is ensured through the
equivariance translation property (2.156a) of a coherent measure of risk. Monotonicity of
the uncertainty aggregator Gs corresponds to the monotonicity property of a coherent risk
measure, and monotonicity of the time aggregator is obvious. Thus, Theorem 2.44 leads
to the same DPE as [105, Theorem 2].

Let us now focus on the di�erences between [105] and our results. In [105], arguments
are given to show that there exists an optimal Markovian policy among the set of adapted
policies (that is, having a policy taking as argument the whole past uncertainties would
not give a better cost than a policy taking as argument the current value of the state).
We do not tackle this issue since we directly deal with policies as functions of the state.
Where we suppose that there exists an admissible policy� ] 2 � ad such that (2.62) holds
true, [105] gives conditions ensuring this property. Finally, where [105] restricts to the sum
to aggregate instantaneous costs, we consider more general one-step time-aggregators �t .
Moreover where we give a su�cient condition for a Markovian policy to be optimal, [105]
gives a set of assumptions such that this su�cient condition is also necessary (typically
assumption ensuring that minimums are attained).

Second, we discuss the possibility to modify a Markov optimization problem or a
dynamic risk measure, in order to make it time-consistent (if it were not originally). When
sequences of optimization problems are not time-consistent with the original \state", they
can be made time-consistent by extending the state. In [26], this is done for a sequence of
optimization problem under a chance constraint. In [107, Example 1], the sum of AV@R
of costs is considered (given by the dynamic risk measure de�ned in 2.1.2 and labeled
(TU)). This formulation is not time consistent. However, exploiting the formulation (2.19)
of AV@R, we suggest to extend the state and add the variablesf r sgT

0 so that, after
transformation, we obtain a problem with expectation as uncertainty aggregator, and sum
as time aggregator, thus yielding time-consistency. In [78], it is shown how a large class
of possibly time-inconsistent dynamic risk measures, called spectral risk measures and
constructed as a convex combination of AV@R, can be made time-consistent by what we
interpret as an extension of the state.
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Chapter 3

Stochastic Dual Dynamic
Programming Algorithm

It is really true what philosophy tells us, that life must
be understood backwards. But with this, one forgets the
second proposition, that it must be lived forwards.

S�ren Kierkegaard
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In Chapter 2 we presented a general framework for Dynamic Programming without
any numerical considerations. Here, we are interested with approaches that circumvent
the curse of dimensionality. Indeed, we study algorithms that exploits analytical proper-
ties of the value functions (mainly convexity) to construct approximations of those value
functions.

By contrast with the rest of the manuscript, the formalism of this chapter is the
formalism of the Stochastic Programming community, where the uncertainties are encoded
on a tree. We have seen inx1.1.2 that this framework can be translated to the stochastic
optimal control framework.

The contents of this chapter has been accepted (up to minor modi�cations) by the
Mathematics of Operations Researchjournal, under the name \On the convergence of
decomposition methods for multistage stochastic convex programs". It is a common work
with A. Philpott and P. Girardeau. The abstract is the following.

This chapter prove the almost-sure convergence of a class of sampling-based nested
decomposition algorithms for multistage stochastic convex programs in which the stage
costs are general convex functions of the decisions, and uncertainty is modelled by a
scenario tree. As special cases, our results imply the almost-sure convergence of SDDP,
CUPPS and DOASA when applied to problems with general convex cost functions.
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Introduction

Multistage stochastic programs with recourse are well known in the stochastic pro-
gramming community, and are becoming more common in applications. We are motivated
in this paper by applications in which the stage costs are nonlinear convex functions of
the decisions. Production functions are often modelled as nonlinear concave functions of
allocated resources. For example Finardi and da Silva [47] use this approach to model
hydro electricity production as a concave function of water 
ow. Smooth nonlinear value
functions also arise when one maximizes pro�t with linear demand functions (see e.g. [81])
giving a concave quadratic objective or when coherent risk measures are de�ned by con-
tinuous distributions in multistage problems [108].

Having general convex stage costs does not preclude the use of cutting plane algorithms
for attacking these problems. Kelley's cutting plane method [57] was originally devised for
general convex objective functions, and can be shown to converge to an optimal solution
(see e.g. Ruszczynski [102, Theorem 7.7]), although on some instances this convergence
might be very slow [69]. Our goal in this paper is to extend the convergence result of [102]
to the setting of multi-stage stage stochastic convex programming.

The most well-known application of cutting planes in multi-stage stochastic program-
ming is the stochastic dual dynamic programming (SDDP) algorithm of Pereira and
Pinto [77]. This algorithm constructs feasible dynamic programming policies using an
outer approximation of a (convex) future cost function that is computed using Benders
cuts. The policies de�ned by these cuts can be evaluated using simulation, and their
performance measured against a lower bound on their expected cost. This provides a con-
vergence criterion that may be applied to terminate the algorithm when the estimated cost
of the candidate policy is close enough to its lower bound. The SDDP algorithm has led
to a number of related methods [27,38,39,55,80] that are based on the same essential idea,
but seek to improve the method by exploiting the structure of particular applications. We
call these methods DOASA for Dynamic Outer-Approximation Sampling Algorithms but
they are now generically named SDDP methods.

SDDP methods are known to converge almost surely on a �nite scenario tree when the
stage problems are linear programs. The �rst formal proof of such a result was published
by Chen and Powell [27] who derived this for their CUPPS algorithm. This proof was ex-
tended by Linowsky and Philpott [64] to cover other SDDP algorithms. The convergence
proofs in [27] and [64] make use of an unstated assumption regarding the independence
of sampled random variables and convergent subsequences of algorithm iterates. This as-
sumption was identi�ed by Philpott and Guan [80], who gave a simpler proof of almost
sure convergence of SDDP methods based on the �nite convergence of the nested decom-
position algorithm (see [38]). This does not require the unstated assumption, but exploits
the fact that the collection of subproblems to be solved has a �nite number of dual extreme
points. This begs the question of whether SDDP methods will converge almost surely for
general convex stage problems, where the value functions may admit an in�nite number
of subgradients.

In this paper we propose a di�erent approach from the one in [27] and [64] and show
how a proof of convergence for sampling-based nested decomposition algorithms on �nite
scenario trees can be established for models with convex subproblems (which may not have
polyhedral value functions). Our result is proved for a general class of methods including
all the variations discussed in the literature ( [27,38,39,55,77,80]). The proof establishes
convergence with probability 1 as long as the sampling in the forward pass is independent
of previous realizations. Our proof relies heavily on the independence assumption and
makes use of the Strong Law of Large Numbers. In contrast to [80] we have not shown
that convergence is guaranteed in all procedures for constructing a forward pass that visit



3.1. DETERMINISTIC CASE 99

every node of the scenario tree an in�nite number of times.
The result we prove works in the space of state variables expressed as random variables

adapted to the �ltration de�ned by the scenario tree. Because this tree has a �nite number
of nodes, this space is compact, and so we may extract convergent subsequences for any
in�nite sequence of states. Unlike the arguments in [27] and [64], these subsequences are
not explicitly constructed, and so we can escape the need to assume properties of them
that we wish to be inherited from independent sampling. More precisely Lemma 3.12 gives
us the required independence.

Although the value functions we construct admit an in�nite number of subgradients,
our results do require an assumption that serves to bound the norms of the subgradients
used. This assumption is an extension of relatively complete recourse that ensures that
some infeasible candidate solutions to any stage problem can be forced to be feasible by
a suitable control. Since we are working in the realm of nonlinear programming, some
constraint quali�cation of this form will be needed to ensure that we can extract subgradi-
ents. In practice, SDDP models use penalties on constraint violations to ensure feasibility,
which implicitly bounds the subgradients of the Bellman functions. Our recourse assump-
tions are arguably weaker, since we do not have a result that shows that they enable an
equivalent formulation with an exact penalization of infeasibility.

The paper is laid out as follows. We �rst consider a deterministic multistage problem,
in which the proof is easily understandable. This is then extended inx3.2 to a stochastic
problem formulated in a scenario tree. We close with some remarks about the convergence
of sampling algorithms.

3.1 Deterministic Case

Our convergence proofs are based around showing that a sequence of outer approxima-
tions formed by cutting planes converges to the true Bellman function in the neighborhood
of the optimal state trajectories. We begin by providing a proof that Kelley's cutting plane
method [57] converges when applied to the optimization problem:

W � := min
u2U

W (u) ;

whereU is a nonempty convex subset ofRm , and W is a convex �nite function on Rm . The
result we prove is not directly used in the more complex results that follow, but the main
ideas on which the proofs rely are the same. We believe the reader will �nd it convenient
to already have the scheme of the proof in mind when studying the more important results
later on.

Kelley's method generates a sequence of iterates
�
uj

�
j 2 N by solving, at each iteration,

a piecewise linear model of the original problem. The model is then enhanced by adding
a cutting plane based on the valueW

�
uj

�
and subgradient gj of W at uj . The model at

iteration k is denoted by

W k (u) := max
1� j � k

�
W

�
uj �

+


gj ; u � uj �	

;

and � k := min u2U W k (u) = W k
�
uk+1

�
. We have the following result.

Lemma 3.1. If W is convex with uniformly bounded subgradients onU and U is compact
then

lim
k! + 1

W
�

uk
�

= W � :

Proof. This proof is taken from Ruszczynski [102, Theorem 7.7] (see also [101]). LetK "

be the set of indexesk such that W � + " < W
�
uk

�
< + 1 . The proof consists in showing

that K " is �nite.
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Supposek1; k2 2 K " and k1 is strictly smaller than k2. We have that W
�
uk1

�
> W � + "

and that W � � � k1 . Since a new cut is generated atuk1 , we have

W
�

uk1

�
+

D
gk1 ; u � uk1

E
� W k1 (u) � W k2 � 1 (u) ; 8u 2 U;

where gk1 is an element of@W
�
uk1

�
. In particular, choosing u = uk2 gives

W
�

uk1

�
+

D
gk1 ; uk2 � uk1

E
� W k1

�
uk2

�
� W k2 � 1

�
uk2

�
= � k2 � 1 � W � :

But " < W
�
uk2

�
� W � , so

" < W
�

uk2

�
� W

�
uk1

�
�

D
gk1 ; uk2 � uk1

E
;

and asgk2 2 @W(uk2 ), the subgradient inequality for u = uk1 yields

W
�

uk2

�
� W

�
uk1

�
�

D
gk2 ; uk2 � uk1

E
:

Therefore, sinceW has uniformly bounded subgradients, there exists� > 0 such that

" < 2�





 uk2 � uk1






 ; 8k1; k2 2 K " ; k1 6= k2:

BecauseU is compact, K " has to be �nite. Otherwise there would exist a convergent
subsequence of

�
uk

	
k2 K "

and this last inequality could not hold for su�ciently large
indexes within K " . This proves the lemma.

Note that Lemma 3.1 does not imply that the sequence of iterates
�
uk

�
k2 N converges1.

For instance, if the minimum of W is attained on a \
at" part (if W is not strictly convex),
then the sequence of iterates may not converge. However, the lemma shows that the
sequence ofW values at these iterates will converge.

3.1.1 Multistage Setting

We now consider the multistage case. LetT be a positive integer. We �rst consider
the following deterministic optimal control problem.

min
x;u

T � 1X

t=0

Ct (x t ; ut ) + VT (xT ) (3.1a)

s.t. x t+1 = f t (x t ; ut ) ; 8t 2 [[0; T � 1]]; (3.1b)

x0 is given; (3.1c)

x t 2 X t ; 8t 2 [[0; T]]; (3.1d)

ut 2 Ut (x t ); 8t 2 [[0; T � 1]]: (3.1e)

In what follows we let A�( X ) denote the a�ne hull of X , and de�ne

B t (� ) = f y 2 A�( Xt ) j k y k< � g:

We make the following assumptions (H1):

1. for t = 0 ; : : : ; T , ; � X t � Rn ;

1. even though becauseU is compact, there exists a convergent subsequence.
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2. for t = 0 ; : : : ; T � 1, multifunctions Ut : Rn � Rm are assumed to be convex2 and
nonempty convex compact valued,

3. the �nal cost function VT and functions Ct , t = 0 ; : : : ; T are assumed to be convex
lower semicontinuous proper functions,

4. for t = 0 ; : : : ; T � 1, functions f t are a�ne,

5. the �nal cost function VT is �nite-valued and Lipschitz-continuous on XT ,

6. for t = 0 ; : : : ; T � 1, there exists� t > 0, de�ning X 0
t := Xt + B t (� t ), such that :

(a) 8x 2 X 0
t ; 8u 2 Ut (x); Ct (x; u) < 1 ,

(b) for every x 2 X 0
t ,

f t (x; Ut (x)) \ X t+1 6= ; .

Assumptions (H1(1) � (5)) are made to guarantee that problem (3.1) is a convex opti-
mization problem. Since this problem is in general nonlinear, it also requires a constraint
quali�cation to ensure the existence of subgradients. This is the purpose of Assumption
(H1(6)). This assumption means that we can always move fromXt a distance of � t

2 in any
direction and stay in X 0

t , which is a form of recourse assumption that we callextended
relatively complete recourse(ERCR). We note that this is less stringent than imposing
complete recourse, which would requireX 0

t = Rn . Finally we note that we never need
to evaluate Ct (x; u) with x 2 X 0

t nXt , so we may only assume that there exists a convex
function, �nite on X 0

t , that coincides with Ct on Xt . Of course not all convex cost func-
tions satisfy such a property e.g. x 7! x log(x) cannot be extended belowx = 0 while
maintaining convexity.

We are now in a position to describe an algorithm for the deterministic control problem
(3.1). The Dynamic Programming (DP) equation associated with (3.1) is as follows. For
all t 2 [[0; T � 1]], let

Vt (x t ) =

8
<

:

minut 2U t (x t ) f Ct (x t ; ut ) + Vt+1 (f t (x t ; ut ))g
| {z }

:= Wt (x t ;u t )

; x t 2 X t

+ 1 ; otherwise.
(3.2)

Here the quantity Wt (x t ; ut ) is the future optimal cost starting at time t from state x and
choosing decisionut , so that Vt (x) = min u2U t (x t ) Wt (x; u).

The cutting plane method works as follows. At iteration 0, de�ne functions V 0
t , t 2

[[0; T � 1]], to be identically equal to �1 . At time T, since we know exactly the end value
function, we imposeV k

T = VT for all iterations k 2 N. At each iteration k, the process is
the following.

Starting with xk
0 = x0, at any time stage t, solve

� k
t = min

ut 2 Rm

x2 A�
�

X t

�
Ct (x; u t ) + V k� 1

t+1 � f t (x; u t ) ; (3.3a)

s.t. x = xk
t [� k

t ] (3.3b)

f t (x; u t ) 2 X t+1 (3.3c)

ut 2 Ut (x) (3.3d)

Here � k
t 2A�( Xt ) is a vector of Lagrange multipliers for the constraint x = xk

t . We denote
a minimizer of (3.3) by uk

t . Its existence is guaranteed by ERCR. Note that constraint

2. Recall that a multifunction U on convex setX is called convex if (1 � � )U(x)+ � U(y) � U ((1� � )x+ �y )
for every x; y 2 X and � 2 (0; 1).
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(3.3c) can be seen as an induced constraint onut . Thus we can de�ne the multifunctions
~Ut : Rn � Rm by, for all x 2 Rn ;

~Ut (x) := f u 2 Ut (x) j f t (x; u t ) 2 X t+1 g: (3.4)

We can easily check that ~Ut is convex (by linearity of f t and convexity of Ut ) and convex
compact valued (as the intersection of a compact convex set and a closed convex set).
Moreover ERCR guarantee that ~Ut (x) 6= ; for any x 2 X t . Thus (3.3) can be written as

� k
t = min

ut 2 ~Ut (x)

x2 A�
�

X t

�
Ct (x; u t ) + V k� 1

t+1 � f t (x; u t ) ; (3.5a)

s.t. x = xk
t . [� k

t ] (3.5b)

Now de�ne, for any x 2 Rn :

V k
t (x) := max

n
V k� 1

t (x) ; � k
t +

D
� k

t ; x � xk
t

Eo
; (3.6)

and move on to the next time staget + 1 by de�ning xk
t+1 = f t

�
xk

t ; uk
t

�
.

Remark 3.2. The assumption that � k
t is in A� (Xt ) is made for technical reasons, and

loses little generality. Indeed if � k
t 2 Rn is an optimal Lagrange multiplier, then so is its

projection on A� (Xt ). In practice we would expect A�(Xt ) to be the same dimension for
every t. If this dimension happened to bed strictly less than n, then we might change the
formulation (by a transformation of variables) so that A� (Xt ) = Rd.

Remark 3.3. Observe that our algorithm usesV k� 1
t+1 when solving the two-stage prob-

lem (3.3) at staget, although most implementations of SDDP and related algorithms pro-
ceed backwards and are thus able to use the freshly updatedV k

t+1 (although see e.g. [27] for
a similar approach to the one proposed here). In the stochastic case we present a general
framework that encompasses backward passes.

Note that only the last future cost function VT is known exactly at any iteration. All
the other ones are lower approximations consisting of the maximum ofk a�ne functions
at iteration k. We naturally have the same lower approximation for function Wt . Thus
we de�ne for any (x; u) in Rn+ m

W k
t (x; u) := Ct (x; u) + V k

t+1 � f t (x; u) ; (3.7)

and recall
Wt (x; u) := Ct (x; u) + Vt+1 � f t (x; u) : (3.8)

Using this notation we have

� k
t = min

u2 ~Ut (xk
t )

W k� 1
t

�
xk

t ; u
�

= W k� 1
t

�
xk

t ; uk
t

�
(3.9)

Since by (3.6)

V k
t

�
xk

t

�
= max

k0� k

n
� k0

t +
D

� k0

t ; xk
t � xk0

t

Eo

it follows that
V k

t

�
xk

t

�
� W k� 1

t (xk
t ; uk

t ): (3.10)

Figure 3.1 gives a view of the relations between all these values at a given iteration.
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Figure 3.1: Relation between the values at a given iteration

3.1.2 Proof of Convergence in the Deterministic Case.

We begin by showing some regularity and monotonicity results for the value functions
and their approximations.

Under assumptions (H1), we de�ne for t 2 [[0; T � 1]], and for all x 2 Rn , the extended
value function

~Vt (x) = inf
u2U t (x)

f Ct (x; u) + Vt+1 � f t (x; u)g: (3.11)

Note that the in�mum could be taken on ~Ut (x) � U t (x) as Vt+1 = 1 when f t (x; u) =2
Xt+1 . It is convenient to extend the de�nition to t = T by de�ning ~VT = VT . We also
observe that ~Vt � Vt as these are identical on the domain ofVt .

Lemma 3.4. For t 2 [[0; T � 1]],

(i) the value function Vt is convex and Lipschitz continuous onXt ;

(ii) V k
t � ~Vt � Vt , and � k

t is de�ned;

(iii) the sequences(� k
t )k2 N are bounded.

Proof. (i) We �rst show the convexity and Lipschitz continuity of Vt on Xt . We proceed
by induction backward in time. By assumption VT is convex and Lipschitz continuous on
XT . Assume the result is true for Vt+1 . The function ~Vt (x) is convex by lemma 3.9. Now
by ERCR, for any x 2 X 0

t ; ~Ut (x) 6= ; . This implies that, for x 2 X 0
t , for u 2 ~Ut (x),

~Vt (x) � Ct (x; u) + Vt+1 � f t (x; u) < + 1 :

By (H1(3)) and the induction hypothesis, for any x 2 X 0
t ,

u 7! Ct (x; u) + Vt+1 � f t (x; u)

is lower semi-continuous, and so the compactness ofUt (x) ensures that the in�mum in the
de�nition of ~Vt (x) is attained, and therefore ~Vt (x) > �1 . ~Vt is Lipschitz continuous on
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Xt as Xt is a compact subset of the relative interior of its domain. Finally remarking that
Vt (x) = ~Vt (x) if x 2 X t gives the conclusion.

(ii) As observed above the inequality ~Vt � Vt is immediate as the two functions are
identical on the domain of Vt .

To show V k
t � ~Vt let us proceed by induction forward in k. Assume that for all

t 2 [[0; T � 1]], � k� 1
t is de�ned and V k� 1

t � ~Vt . Note that

�1 = V 0
t � ~Vt ;

so this is true for k = 1 ( � 0
t is never used). We now de�ne, for all t 2 [[0; T � 1]] and all

x 2 Rn ,

V̂ k
t (x) = min

u2 ~Ut (x)

n
Ct (x; u) + V k� 1

t+1 � f t (x; u)
o

:

By hypothesis on ~Ut , V̂ k
t is convex and �nite on X 0

t which strictly contains Xt . Thus V̂ k
t

restricted to A�( Xt ) is subdi�erentiable at any point of Xt . Moreover by de�nition of � k
t

in (3.3)

� k
t 2 @

�
V̂ k

t jA�( X t )

�
: (3.12)

Thus � k
t is de�ned. By the induction hypothesis and inequality ~Vt+1 � Vt+1 we have that

V k� 1
t+1 � f t � Vt+1 � f t :

Thus the de�nitions of V̂ k
t and ~Vt yield

V̂ k
t � ~Vt : (3.13)

we have by (3.12) that

� k
t +

D
� k

t ; x � xk
t

E
� V̂ k

t (x) � ~Vt (x) (3.14)

by (3.13). The de�nition of V k
t in (3.6) gives

V k
t (x) = max

n
V k� 1

t (x) ; � k
t +

D
� k

t ; x � xk
t

Eo

which showsV k
t (x) � ~Vt (x) by (3.14) and the induction hypothesis. Thus (ii) follows for

all k by induction.
(iii) Finally we show the boundedness of (� k

t )k2 N. By de�nition of � k
t we have for all

y 2 Rn ,

V k (y) � V k (xk
t ) +

D
� k

t ; y � xk
t

E
: (3.15)

Recall that X 0
t = Xt + B t (� t ), so substituting y = xk

t + � t � k
t

2k� k
t k

in (3.15) whenever � k
t 6= 0

yields





 � k

t






 �

2
� t

�
V k

t

�
xk

t +
� t

2
� k

t

k� k
t k

�
� V k

t

�
xk

t

� �
:

We de�ne the compact subsetX 00
t of dom ~Vt as X 00

t := Xt + B t
� � t

2

�
. Now as xk

t 2 X t we

have that xk
t + � t

2
� k

t
k� k

t k
2 X 00

t . Consequently, by (ii),

V k
t

�
xk

t +
� t

2
� k

t

k� k
t k

�
� max

x2X 00
t

~Vt (x) < + 1 :
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Moreover by construction the sequence of functions (V k
t )k2 N is increasing, thus

V k
t (xk

t ) � V 1
t (xk

t ) � min
x2X t

V 1
t (x) > �1 :

Thus we have that, for all k 2 N� and t 2 [[0; T � 1]],






 � k

t






 �

2
� t

�
max
x2X 00

t

~Vt (x) � min
x2X t

V 1
t (x)

�
: (3.16)

This completes the proof.

Corollary 3.5. Under assumptions (H1), the functions V k
t , t 2 [[0; T � 1]], are � �

Lipschtiz for some constant� for all k 2 N� .

Proof. By (3.6) and (3.16) the subgradients ofV k
t are bounded by

� = max
t2 [[0;T � 1]]

2
� t

�
max
x2X 00

t

~Vt � min
x2X t

V 1
t (x)

�
:

We now prove that both the upper and lower estimates ofVt converge to the exact
value function under assumptions (H1).

Theorem 3.6. Consider the sequence of decisions
�
uk

�
k2 N generated by (3.3) and (3.6),

where eachuk is itself a sequence of decisions in timeuk = uk
0; : : : ; uk

T � 1, and consider
the corresponding sequence of state values

�
xk

�
k2 N. Under assumptions(H1), for any t 2

[[0; T � 1]] we have that:

lim
k! + 1

Wt

�
xk

t ; uk
t

�
� Vt

�
xk

t

�
= 0 and lim

k! + 1
Vt

�
xk

t

�
� V k

t

�
xk

t

�
= 0 :

Proof. The demonstration proceeds by induction backwards in time. At time t + 1, the
induction hypothesis is the second statement of the theorem. That is,

lim
k! + 1

Vt+1

�
xk

t+1

�
� V k

t+1

�
xk

t+1

�
= 0.

In other words the cuts for the future cost function tend to be exact at xk
t+1 as k tends

to 1 . The induction hypothesis is clearly true at the last time stageT for which we de�ned
the approximate value function V k

T to be equal to the (known) end value function VT .
We have to show the induction hypothesis, namely

lim
k! + 1

Vt

�
xk

t

�
� V k

t

�
xk

t

�
= 0

for time t. Recall (3.10) gives

V k
t

�
xk

t

�
� W k� 1

t

�
xk

t ; uk
t

�
= Ct

�
xk

t ; uk
t

�
+ V k� 1

t+1

�
xk

t+1

�
:

Using the de�nition (3.8) of Wt , we can replaceCt
�
xk

t ; uk
t

�
to get

V k
t

�
xk

t

�
� Wt

�
xk

t ; uk
t

�
+

�
V k� 1

t+1

�
xk

t+1

�
� Vt+1

�
xk

t+1

��
:

Subtracting Vt
�
xk

t

�
we obtain

V k
t

�
xk

t

�
� Vt

�
xk

t

�
� Wt

�
xk

t ; uk
t

�
� Vt

�
xk

t

�
+

�
V k� 1

t+1

�
xk

t+1

�
� Vt+1

�
xk

t+1

��
:
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Now as V k
t is a lower approximation of Vt we have

V k
t

�
xk

t

�
� Vt

�
xk

t

�
� 0;

and by Dynamic Programming equation (3.2)

Wt

�
xk

t ; uk
t

�
� Vt

�
xk

t

�
� 0:

Moreover the induction hypothesis at time t + 1 gives

V k
t+1

�
xk

t+1

�
� Vt+1

�
xk

t+1

�
k!1���! 0;

which by virtue of Lemma 3.10 (with Vt+1 replacing f ) implies 3

lim
k! + 1

Vt+1

�
xk

t+1

�
� V k� 1

t+1

�
xk

t+1

�
= 0

so

V k
t

�
xk

t

�
� Vt

�
xk

t

�
k!1���! 0;

and

Wt

�
xk

t ; uk
t

�
� Vt

�
xk

t

�
k!1���! 0;

which gives the result.

Theorem 3.6 indicates that the lower approximation at each iteration tends to be exact
on the sequence of state trajectories generated throughout the algorithm. This does not
mean that the future cost function will be approximated well everywhere in the state
space. It only means that the approximation gets better and better in the neighborhood
of an optimal state trajectory.

3.2 Stochastic Case with a Finite Distribution

3.2.1 Stochastic Multistage Problem Formulation.

We now consider that the cost function and dynamics at each timet are in
uenced
by a random outcome that has a discrete and �nite distribution. We write the problem
on the complete tree induced by this distribution. The set of all nodes is denoted byN
and f 0g is the root node. We denote nodes bym and n. (We trust that the context will
dispel any confusion from the use ofm and n as dimensions of variablesu and x.) A
noden here represents a time interval and a state of the world (which has probability � n )
that pertains over this time interval. We say that a node n is an ascendant ofm if it
is on the path from the root node to node m (including m). We will denote a(m) the
set of all ascendants ofm, and the depth of node n is one less than the number of its
ascendants. For simplicity we identify this with a time index t, although the results hold
true for scenario trees for which this is not the case. For every nodem 2 N nf 0g, p(m)
represents its parent, andr (m) its set of children nodes. Finally L is the set of leaf nodes
of the tree (i.e. those that have degree 1).

3. Corollary 3.5 ensures the � � Lipschitz assumption on V k
t +1 , and the other assumptions are obviously

veri�ed.
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This gives the following stochastic program:

min
x;u

X

n2N nfLg

X

m2 r (n)

� m Cm (xn ; um ) +
X

m2L

� m Vm (xm ) (3.17a)

s.t. xm = f m
�
xp(m) ; um

�
; 8m 2 N nf 0g; (3.17b)

x0 is given; (3.17c)

xm 2 X m ; 8m 2 N ; (3.17d)

um 2 Um (xp(m) ); 8m 2 N nf 0g: (3.17e)

The reader should note that randomness (that appears in the cost and in the dynamics)
is realized before the decision is taken in this model. Hence the control a�ecting the
stock4 xn is actually indexed by m, a child node ofn. Put di�erently, the control adapts
to randomness: there are as many controls as there are children nodes ofn. Observe that
we also now admit the possibility that Xt and Ut (x) might vary with scenario-tree node,
so we denote them byXm and Um (xp(m) ).

We make the following assumptions (H2):

1. for all n 2 N , Xn is nonempty convex compact;

2. for all m 2 N nf 0g; the multifunction Um is nonempty convex and convex compact
valued;

3. all functions Cn , n 2 N nL , Vm ; m 2 L , are convex lower semicontinuous proper
functions;

4. for all m 2 N nf 0g, the functions f m are a�ne;

5. for all m 2 L , Vm is Lipschitz-continuous on Xm ;

6. There exists� > 0 such that for all nodesn 2 N nL ,

(a) 8x 2 X n + B (� ); 8m 2 r (n); f m (x; Um (x)) \ X m 6= ; ;

(b) 8x 2 X n + B (� ); 8u 2 Um (x); Cn (x; u) < 1 .

The convex functions Vm de�ne the future cost of having xm remaining in stock at the
end of the stage represented by leaf nodem 2 L . Given an optimal control, we can de�ne
(applying the Dynamic Programming principle to Problem (3.17) ) a future cost function
Vn recursively for the other nodesn 2 N nL by

Vn (xn ) =
X

m2 r (n)

� m

� n
min

um 2Um (xn )
f Cm (xn ; um ) + Vm (f m (xn ; um ))g
| {z }

Wm (xn ;um )

: (3.18)

In general the future cost function at each node can be di�erent from those at other
nodes at the same stage. In the special case where the stochastic process de�ned by the
scenario tree is stage-wise independent, the future cost function is identical at every node
at stage t. Some form of stage-wise independence is typically assumed in applications as
it enables cuts to be shared across nodes at the same stage, however we do not require
this for our proof.

The algorithm that we consider is an extension of the deterministic algorithm of the
previous section applied, at each iteration, to a set of nodes chosen randomly in the tree
at which we update estimates of the future cost function. We assume that all other nodes
have null updates, in the sense that they just inherit the future cost function from the
previous iteration.

4. We do not make any stage-wise independence assumptions on the random variables that a�ect the
system. Hence there is no reason why variablexn should be called a state variable and we prefer calling
it a stock.
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We now describe the algorithm formally. We start the process with�̂ 0
n = �1 , �̂ 0

n = 0,
for each n 2 N , and imposeV k

n = Vn for all nodes n 2 L and all k 2 N. We then carry
out a sequence of simulations and updates of the future cost functions as follows.

Simulation Starting at the root node, generate stocks and decisions for all possible suc-
cessors (in other words, visit the whole tree forward) by solving (3.18) withV k� 1

instead of V . Denote the obtained stock variables by (xk
n )n2N and the control

variables by (uk
n )n2N nf 0g. Also, for each noden 2 N , impose � k

n = V k� 1
n (xk

n )
and � k

n 2 @Vk� 1
n (xk

n ).

Update Select non-leaf nodesn1; n2; : : : ; nI in the tree. For each i , xk
n i

is a random
variable which is equal to one of thexk

n . For each selected nodeni , and for every
child node m of nodeni , solve:

�̂ k
m = min

um 2 Rm

x2 A�
�

Xn i

�
Cm (x; um ) + V k� 1

m � f m (x; um ) ; (3.19a)

s.t. x = xk
n i

[�̂ k
m ] (3.19b)

um 2 Um (x) (3.19c)

f m (x; um ) 2 X m (3.19d)

As before �̂ k
m is a Lagrange multiplier at optimality. We also de�ne the multifunc-

tions

~Um : x 7! f u 2 Um (x) j f m (x; um ) 2 X m g:

For each selected nodeni , replace the values� k
n i

and � k
n i

obtained during the simu-
lation with

� k
n i

=
X

m2 r (n i )

� m

� n i

�̂ k
m

and

� k
n i

=
X

m2 r (n i )

� m

� n i

�̂ m :

Finally, we update all future cost functions. For every noden, and any x 2 X t ,

V k
n (x) := max

n
V k� 1

n (x) ; � k
n +

D
� k

n ; x � xk
n

Eo
= max

k0� k

n
� k

n +
D

� k
n ; x � xk

n

Eo
:

(3.20)

We will make use of the following de�nitions, where m 2 r (n):

Wm (xn ; um ) := Cm (xn ; um ) + Vm (f m (xn ; um )) (3.21)

W k
m (xn ; um ) := Cm (xn ; um ) + V k

m (f m (xn ; um )) (3.22)

In the case where noden 2 N is selected at iteration k, in other words n = ni , these
de�nitions then give

�̂ k
m = min

u2 ~Um (xk
n )

W k� 1
m

�
xk

n ; u
�

= W k� 1
m

�
xk

n ; uk
m

�
:

This leads to

V k
n

�
xk

n

�
�

X

m2 r (n)

� m

� n
W k� 1

m

�
xk

n ; uk
m

�
: (3.23)
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Note that we actually only update future cost functions on the selected nodes. Since
the cuts we add at all other nodes are binding on the current model (by construction in
the simulation), there is no point in storing them. Therefore, in practice, one does not
need to sample the whole scenario tree but just enough to attain all selected nodes. In
our proof, we need to look at what happens even on the nodes that are not selected.

The way we select nodes at which to compute cuts varies with the particular algorithm
implementation. For example DOASA uses a single forward pass to select nodes, and then
computes cuts in a backward pass. We represent these selections of nodes using aselection
random variable yk = ( yk

n )n2N that is equal to 1 if node n is selected at iteration k and 0
otherwise. This gives aselection stochastic process(yk )k2 N, taking values in f 0; 1gjN nLj ,
that describes a set of nodes in the tree at which we will compute new cuts in iterationk.
We let (Fk )k2 N denote the �ltration generated by ( yk )k2 N.

To encompass algorithms such as DOASA and SDDP the selection stochastic process
can be viewed as consisting of in�nitely many �nite subsequences, each consisting of� > 0
selections (consisting for example of a sequence of selections of nodes in a backward pass).
This cannot be done arbitrarily, and the way that ( yk )k2 N is constructed must satisfy some
independence conditions from one iteration to the next.

De�nition 1. Let � be a positive integer. The process(yk )k2 N is called a � -admissible
selection processif

(i) 8m 2 N nL ; 8k 2 N; 8� 2 f 0; : : : ; � � 1g;

yk� + �
m = 1 = ) 8 n 2 a(m); yk�

n = yk� +1
n = � � � = yk� + � � 1

n = 0;

and the process de�ned by

~yk
n := max f yk�

n ; yk� +1
n ; yk� +2

n ; : : : ; yk� + � � 1
n g (3.24)

satis�es

(ii) for all m 2 N nL ; (~yk
m )k2 N is i.i.d. and for all k 2 N, and all m 2 N nL , ~yk

m is
independent ofFk� � 1;

(iii) 8n 2 N nL ; P(~yk
n = 1) > 0.

Property (i) guarantees that when � > 1, the updating of cutting planes is done
backwards between stepsk� and (k + 1) � . This means that if the linear approximation of
the value function Vn is updated at step k� + � then neither it or any approximation at
any ascendant node has been updated since stepk� � 1. This implies, as shown in lemma
3.11, that xk� + � has not changed since the stepk� , i.e., if yk� + �

n = 1 then xk� + � = xk� . We
explain in section 3.3. how the selection processes of CUPPS (with� = 1) and SDDP(with
� = T � 1) are � -admissible.

Property (ii) provides the independence of the selections that we will use to prove
convergence and property (iii) guarantees that all nodes are selected with positive proba-
bility. Without any independence assumption it would be easy to create a case in which
the future cost function at a given node is updated only when the current stock variable
on this node is in a given region, for instance. In such a case the future cost function
could not gather any information about the other parts of the space that the stock vari-
able might visit. In other words, this independence assumption ensures that the values
that are optimal can be attained an in�nite number of times. We remark that there is
no independence assumption over the nodesn for (yk

n )n2N nL at k �xed. Thus the se-
lection process could be forced to select whole branches of the tree for example, as it
would for the CUPPS algorithm. More generally, we have independence when for �xed
� , (yk� )k2 N is i.i.d and the next � � 1 selection values are determined deterministically
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from yk� , more precisely if for all � 2 f 0; : : : ; � � 1g, there is a deterministic function � �

such that yk� + � = � � (yk� ). On the other hand we have independence when the selection
subsequence (yk� ; yk� +1 ; : : : ; yk� + � � 1)k2 N is i.i.d.

In Section 3.3 we shows that usual algorithm can be represented with a� � admissible
selection process.

3.2.2 Proof of Convergence in the Stochastic Case.

For every n 2 N nL we can de�ne under assumptions (H2) the extended value function

~Vn (x) =
X

m2 r (n)

� m

� n
inf

u2 ~Um (x)
f Cm (x; u) + Vm � f m (x; u)g;

and we note that ~Vn is �nite on X 0
n . We now state a lemma analogous to lemma 3.4.

Lemma 3.7. For every n 2 N ,

(i) the value function Vn is convex and Lipschitz-continuous onXt ;

(ii) V k
n � ~Vn � Vn ; and � k

n is de�ned;

(iii) the sequences(� k
n )k2 N are bounded, thus there is� n such that V k

n is � n � Lipschitz.

Proof. We give only a sketch of the proof as it follows exactly the proof of its deterministic
counterpart lemma 3.4.

(i) By induction backward on the tree ~Vn , is convex and �nite valued on X 0
n as the

positive sum of convex �nite valued functions, and thus Lipschitz continuous onXn

leading to the result as ~Vn = Vn on Xn .

(ii) Assume that for all n 2 N nL we haveV k� 1
n � ~Vn . We de�ne, for a node n 2 N nL

x 2 Rn ,

V̂ k
n (x) =

X

m2 r (n)

� m

� n
min

u2 ~Un (x)
Cm (x; u) + V k� 1

m � f m (x; u):

By hypothesis on ~Um ; V̂ k
n is convex and �nite on X 0

t thus its restriction on A�( Xt )
is subdi�erentiable on Xt . By de�nition �̂ k

m 2 @̂V k
n (xk

m ), and thus �̂ k
m is de�ned. By

the induction hypothesis and inequality ~Vm � Vm we have that

8m 2 r (n); V̂ k� 1
m � f m � Vm � f m :

Thus de�nitions of V̂ k
n and ~Vn yield V̂ k

n � ~Vn . By de�nition of � k
n and construction

of V k
n we have that V k

n � ~Vn . Induction leads to inequality (ii).

(iii) Finally we show the boundedness of (� k
n )k2 N. As � k

n is an element of@Vk (xk
n ), we

have
V k (y) � V k (xk

n ) +
D

� k
n ; y � xk

n

E
: (3.25)

so substituting, if � k
n 6= 0, y = xk

n + �� k
n

2k� k
n k in (3.25) yields






 � k

n






 �

2
�

�
V k

n

�
xk

n +
�
2

� k
n

k� k
nk

�
� V k

n

�
xk

n

� �
:

Thus we have that, for all k 2 N and n 2 N ,






 � k

n






 �

2
�

�
max

x2X n + B (�= 2)
~Vn (x) � min

x2X n
V 1

n (x)
�

: (3.26)

Which ends the proof.
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Theorem 3.8. Consider the sequence of decisions
�
uk

�
k2 N generated by the above de-

scribed procedure under assumptions(H2), where eachuk is itself a set of decisions on the
complete tree, and consider the corresponding sequence of state values

�
xk

�
k2 N. Assume

that the selection process is� -admissible for some integer� > 0.
Then we have that,P-almost surely:

lim
k! + 1

X

m2 r (n)

� m

� n
Wm

�
xk�

n ; uk�
m

�
� Vn

�
xk�

n

�
= 0 :

and

lim
k! + 1

Vn

�
xk�

n

�
� V k�

n

�
xk�

n

�
= 0 :

Proof. Because the selection process for nodes in the update step is stochastic, decision
variables as well as approximate future cost functions are stochastic throughout the course
of the algorithm. Thus, during the whole proof, all equalities or inequalities are takenP-
almost surely.

The demonstration follows the same approach as the proof of Theorem 3.6. LetT be
the maximum depth of the tree. We proceed by backward induction on nodes of �xed
depth. The induction hypothesis is

lim
k! + 1

Vm

�
xk�

m

�
� V k�

m

�
xk�

m

�
= 0

for each nodem of depth t + 1. Since for every leaf of the tree those two quantities are
equal, by de�nition, the induction hypothesis is true for every node n 2 L .

We start by proving the result for iterations k� such that n is selected in the next� � 1
steps, i.e. such that ~yk

n = 1. De�ne � k 2 f 0; : : : ; � � 1g such that yk� + � k = 1. Recall that
by lemma 3.11 we havexk� + � k

n = xk�
n .

We have by (3.23)

V k� + � k
n

�
xk�

n

�
= V k� + � k

n

�
xk� + � k

n

�

�
X

m2 r (n)

� m

� n
min

um 2 ~Um (xk�
n )

n
W k� + � k � 1

m

�
xk�

n ; um

�o

�
X

m2 r (n)

� m

� n
min

um 2 ~Um (xk�
n )

n
W k� � 1

m

�
xk�

n ; um

�o

=
X

m2 r (n)

� m

� n
W k� � 1

m

�
xk�

n ; uk�
m

�

which implies

V k� + � k
n

�
xk�

n

�
�

X

m2 r (n)

� m

� n

h
Cm

�
xk�

n ; uk�
m

�
+ V k� � 1

m

�
xk�

m

�i
;

=
X

m2 r (n)

� m

� n

h
Wm

�
xk�

n ; uk�
m

�
+

�
V k� � 1

m

�
xk�

m

�
� Vm

�
xk�

m

��i
:
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Thus,

V k� + � k
n

�
xk�

n

�
� Vn

�
xk�

n

�
�

X

m2 r (n)

�
� m

� n
Wm

�
xk�

n ; uk�
m

� �
� Vn

�
xk�

n

�

+
X

m2 r (n)

� m

� n

�
V k� � 1

m

�
xk�

m

�
� Vm

�
xk�

m

��
:

Note that, as V k� + � k
n is a lower approximation of Vn we know that

V k� + � k
n

�
xk�

n

�
� Vn

�
xk�

n

�
� 0;

and, by Dynamic Programming Equation (3.18), that

X

m2 r (n)

�
� m

� n
Wm

�
xk�

n ; uk�
m

� �
� Vn

�
xk�

n

�
� 0:

The induction hypothesis

lim
k! + 1

Vm

�
xk�

m

�
� V k�

m

�
xk�

m

�
= 0

and Lemma 3.10 (with Vm replacing f ) 5 implies

lim
k! + 1

Vm

�
xk�

m

�
� V k� � 1

m

�
xk�

m

�
= 0 :

Thus
Vn

�
xk�

n

�
� V k� + � k

n

�
xk�

n

�
k!1���!
~yk

n =1
0;

and
X

m2 r (n)

�
� m

� n
Wm

�
xk�

n ; uk�
m

� �
� Vn

�
xk�

n

�
k!1���!
~yk

n =1
0:

Thus lemma 3.10 applied with � = � gives

Vn

�
xk�

n

�
� V k� + � k � �

n

�
xk�

n

�
k!1���!
~yk

n =1
0;

and by monotonicity we have V k� + � k � �
n � V k�

n � Vn , which �nally yields

Vn

�
xk�

n

�
� V k�

n

�
xk�

n

�
k!1���!
~yk

n =1
0: (3.27)

Now we prove that the values also converge for the iterationsk such that ~yk
n = 0, i.e.

the iterations for which node n is not selected between stepk� and step (k + 1) � � 1.
By contradiction, suppose the values do not converge. Then by lemma 3.10 we have that
Vn (xk�

n ) � V k� � 1
n (xk�

n ) does not converge to 0. It follows that there is some" > 0 such that
K " is in�nite where

K � := f k 2 N j Vn

�
xk�

n

�
� V k� � 1

n

�
xk�

n

�
� "g: (3.28)

Let zj denote thej -th element of the setf yk�
n jk 2 K " g. Note that the random variables

V k� � 1 and xk�
n are measurable with respect toFk� � 1 := �

�
(yk0

)k0<k�
�
, and thus so is 1k2K "

5. Lemma 3.7 (iii) provides a Lipschitz condition on V k
m .
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from which ~yk
n is independent. Moreover the� � algebra generated by the past realizations

of ~yk
n is included in Fk� � 1. This implies by lemma 3.12 that random variables (zj ) j 2 N are

i.i.d. and share the same probability law as ~y0
n .

According to the Strong Law of Large Numbers [52, page 294] applied to the random
sequence (zj ) j 2 N, we should then have

1
N

NX

j =1

zj N ! + 1�����! E[z1] = E[~y0
n ] = P

�
~y0

n = 1
�

> 0:

However, K " \ f ~yk
n = 1g is �nite because of (3.27) thus we know that there is only a �nite

number of indexesj such that zj = 1, the rest being equal to 0. So

1
N

NX

j =1

zj N ! + 1�����! 0;

which is a contradiction. This shows that

Vn

�
xk�

n

�
� V k� � 1

n

�
xk�

n

�
k!1���!
~yk

n =0
0:

and monotonicity shows that,

Vn

�
xk�

n

�
� V k�

n

�
xk�

n

�
k!1���!
~yk

n =0
0:

which completes the induction.

3.2.3 Application to Known Algorithms.

In order to illustrate on our result we will apply it to two well known algorithms. For
simplicity we will assume that the tree represents aT-step stochastic decision problem in
which every leaf of the tree is of depthT.

We �rst de�ne the CUPPS algorithm [27] in this setting. Here at each major iteration
we choose aT � 1-step scenario and compute the optimal trajectory while at the same
time updating the value function for each node of the branch. In our setting, this uses a
1-admissible selection process (yk )k2 N de�ned by an i.i.d. sequence of random variables,
with y0 selecting a single branch of the tree. Theorem 3.8 shows that for every noden the
upper and lower bound converges, that is

lim
k! + 1

X

m2 r (n)

�
� m

� n
Wm

�
xk

n ; uk
m

� �
� Vn

�
xk

n

�
= 0

and
lim

k! + 1
Vn

�
xk

n

�
� V k

n

�
xk

n

�
= 0 :

We now place the SDDP algorithm [77] and DOASA algorithm [80] in our framework.
There are two phases in each major iteration of the SDDP algorithm, namely a forward
pass, and a backward pass ofT � 1 steps. Given a current polyhedral outer approximation
of the Bellman function (V ~k� 1

n )n2N nL , a major iteration ~k of the SDDP algorithm consists
in:

� selecting uniformly a number N of scenarios (N = 1 for DOASA);
� simulating the optimal strategy for the problem, that is solving problem (3.19) to

determine a trajectory (for each scenario) (x~k
n t

)t2f 0;:::;T � 1g where (nt )t2f 0;:::;T � 1g de-
�nes one of the selected scenarios;
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� For t = T � 1 down to t = 0
for each scenario solving problem (3.19) withV ~k

m instead of V ~k� 1
m ,

and de�ning

V
~k

n t
(x) = max f V

~k� 1
n t

(x); �
~k
n t

+ h�
~k
n t

; x � x
~k
n t

ig :

SDDP �ts into our framework as follows. Given N , we de�ne the T � 1-admissible
selection process, (y(T � 1)k )k2 N by an i.i.d. sequence of random variables withy0 selecting
uniformly a set of N pre-leaves (i.e. nodes whose children are leaves) of the tree. Then
for � 2 f 1; : : : ; T � 2g, k 2 N, n 2 N nL , we de�ne

yk(T � 1)+ �
n :=

(
1 if there exist m 2 r (n) such that yk(T � 1)+ � � 1

m = 1
0 otherwise.

This algorithm is the same as SDDP with N randomly sampled forward passes per stage,
but without the cut sharing feature used when random variables are stage-wise indepen-
dent. Since for every noden of the tree (excepting the leaves) there is a� such that
P(yk(T � 1)+ �

n = 1) > 0, theorem 3.8 guarantees the convergence of the lower bound for
every node. This remains true when cuts are shared since the proof of almost-sure con-
vergence is una�ected by the addition of extra valid cutting planes at any point during
the course of the algorithm. The proof of theorem 3.8 gives

Vn

�
xk�

n

�
� V k�

n

�
xk�

n

�
k!1���!
~yk

n =0
0;

and with shared cuts we obtain an improved value function �V k�
n satisfying

V k�
n

�
xk�

n

�
� �V k�

n

�
xk�

n

�
� Vn

�
xk�

n

�

that must satisfy

Vn

�
xk�

n

�
� �V k�

n

�
xk�

n

�
k!1���!
~yk

n =0
0:

3.3 Discussion

The convergence result we have proved assumes that we compute new cuts at scenario-
tree nodes that are selected independently from the history of the algorithm. This enables
us to use the Strong Law of Large Numbers in the proof. Previous results for multistage
stochastic linear programming [80] require a selection process that visits each node in the
tree in�nitely often, which is a weaker condition than independence, since it follows by the
Borel-Cantelli Lemma [52, page 288]. An example would be the deterministic round-robin
selection mentioned in [80]. We do not have a proof of convergence for such a process in
the nonlinear case. It is important to observe that the polyhedral form of Vt that was
exploited in the proof of [80] is absent in our problem, and this di�erence could prove to
be critical.

The convergence result is proved for a general scenario tree. In SDDP algorithms, the
random variables are usually assumed to be stage-wise independent (or made so by adding
state variables). This means that the future cost functions Vm (x) are the same at each
node m at depth t. This allows cutting planes in the approximations to be shared across
these nodes. As we have shown above, the convergence result we have shown here applies
to this situation as a special case. It is worth noting that the class of algorithms covered
by our result is larger than the examples presented in the literature. For example an
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algorithm where we select randomly a node on the whole tree, and then update backwards
from there is proven to converge. One could also think of combining SDDP and CUPPS
algorithms.

In the case where one would want to add cuts at di�erent nodes in the tree in the
update step of our procedure, the solving of the subproblems can be done in parallel. This
is the case in CUPPS, where a whole branch of the tree is selected at each iteration. It also
allows us to consider di�erent selection strategies, where nodes at a given iteration could
be selected throughout the tree depending on some criteria de�ned by the user. In the
�rst few iterations, this could highly increase e�ciency of the approximation and, because
the solving of the subproblems can be parallelized, would not be very time-consuming.
One should bear in mind however that, at some point, the algorithm has to come back to
an appropriate selection procedure, i.e. one that satis�es the independence assumption,
in order to ensure convergence of the algorithm.

Appendix: Technical lemmas

Lemma 3.9. If J : Rm ! R [ f1g is convex, U : Rn � Rm is convex then� (x) :=
minu2U (x) J (u) is convex. Moreover if J is lower-semicontinuous, andU compact non-
empty valued, then the in�mum exists and is attained.

Proof. We de�ne

I (u; x) :=
�

0 if u 2 U(x)
+ 1 otherwise

Then � (x) = min u2 Rm J (u) + I (u; x). Fix u1 2 U(x1) and u2 2 U(x2), then for every
� 2 [0; 1] �u 1 + (1 � � )u2 2 U(�x 1 + (1 � � )x2) by convexity of U. This shows that I (u; x)
is convex, whereby � is convex as the marginal function of a jointly convex function.
The second part of the lemma follows immediately from the compactnessU and lower-
semicontinuity of J .

Lemma 3.10. Supposef is convex andX is compact, and suppose for any integer� , the
sequence of� -Lipschitz convex functionsf k ; k 2 N satis�es

f k� � (x) � f k (x) � f (x) , for all x 2 X .

Then for any in�nite sequence xk 2 X

lim
k! + 1

f
�

xk
�

� f k
�

xk
�

= 0 () lim
k! + 1

f
�

xk
�

� f k� �
�

xk
�

= 0 :

Proof. If lim k! + 1 f
�
xk

�
� f k� �

�
xk

�
= 0 then pointwise monotonicity of f k shows that

lim k! + 1 f
�
xk

�
� f k

�
xk

�
= 0. For the converse, suppose that the result is not true. Then

there is some subsequence
�
f k(l )

�
l2 N and xk(l ) 2 X with

lim
k! + 1

f
�

xk(l )
�

� f k(l )
�

xk(l )
�

= 0 (3.29)

and " > 0; L 2 N with
f

�
xk(l )

�
� f k(l )� �

�
xk(l )

�
> "

for every l > L . Since X is compact, we may assume (by taking a further subsequence)
that

�
xk(l )

�
l2 N converges tox � 2 X . For su�ciently large l, the Lipschitz continuity of

f k(l ) and f k(l )� � gives
�
�
�f k(l ) (x � ) � f k(l )

�
xk(l )

� �
�
� � � kxk(l ) � x � k <

"
4

;
�
�
� f k(l )� �

�
xk(l )

�
� f k(l )� � (x � )

�
�
� � � kxk(l ) � x � k <

"
4

;
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and (3.29) implies that for su�ciently large l

f
�

xk(l )
�

� f k(l )
�

xk(l )
�

<
"
4

:

It follows that

f k(l ) (x � ) � f k(l )� � (x � ) = f k(l ) (x � ) � f k(l )
�

xk(l )
�

+ f k(l )
�

xk(l )
�

� f
�

xk(l )
�

+ f
�

xk(l )
�

� f k(l )� �
�

xk(l )
�

+ f k(l )� �
�

xk(l )
�

� f k(l )� � (x � )

>
"
4

;

since f
�
xk(l )

�
� f k(l )� �

�
xk(l )

�
is greater than " , and the other three terms each have an

absolute value smaller than"=4. Consequentlyf k(l ) (x � ) > f k(l )� � (x � ) + "
4 , for in�nitely

many l which contradicts the fact that f k (x � ) is bounded above byf (x � ).

Lemma 3.11. If (yk )k2 N is a � -admissible selection process then for allk 2 N, � 2
f 0; : : : ; � � 1g, and all n 2 N nL we have

yk� + �
n = 1 = )

�
xk� + �

n = xk�
n ;

V k� + � � 1
n = V k� � 1

n if k � 1:

Proof. Let n, k and � be such that yk� + �
n = 1. Let a(n) := ( n0; n1; : : : ; nt ) be the sequence

of ascendants ofnt := n, i.e. n0 is the root node, and for all t0 < t , nt0 = p(nt0+1 ). De�ne
the hypothesis H (t; � ) :

(a) xk� + �
n t

= xk�
n t

,

(b) V k� + � � 1
n t

= V k� � 1
n t

, if t � 1.

Let � 0 < � and assume that for � 0 and all t0 � t , H (t0; � 0) holds true. This is satis�ed
for � 0 = 0. Let t0 < t and assumeH (t0; � 0+ 1) is true. Since x0 is �xed, this is satis�ed
for t0 = 0. By de�nition of uk� + � 0+1

n t +1
we have

uk� + � 0+1
n t 0+1

2 arg min
u2 ~U

�
xk� + � 0+1

n t 0

�

n
Cn t 0+1

�
xk� + � 0+1

n t 0 ; u
�

+ V k� + � 0

n t 0+1
� f n t 0+1

�
xk� + � 0+1

n t 0 ; u
� o

thus by H (t0; � 0+ 1) (a) we have

uk� + � 0+1
n t 0+1

2 arg min
u2 ~U

�
xk�

n t 0

�

n
Cn t +1

�
xk�

n t 0; u
�

+ V k� + � 0

n t 0+1
� f n t +1

�
xk�

n t 0; u
� o

:

Now asnt0+1 is an ascendant ofn and � 0 < � by property (i) of de�nition 1, we have that
the representation of Vn t 0+1

is not updated at iteration � 0, i.e.

V k� + � 0

n t 0+1
= V k� + � 0� 1

n t 0+1
:

And thus H (t0+ 1 ; � 0) (b) gives H (t0+ 1 ; � 0+ 1) (b), i.e.

V k� + � 0

n t 0+1
= V k� � 1

n t 0+1
;
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therefore

uk� + � 0+1
n t 0+1

2 arg min
u2 ~U

�
xk�

n t 0

�

n
Cn t +1

�
xk�

n t 0; u
�

+ V k� � 1
n t 0+1

� f n t +1

�
xk�

n t 0; u
� o

;

and consequently6

uk� + � 0+1
n t 0+1

= uk�
n t 0+1

;

which gives by de�nition H (t0+ 1 ; � 0+ 1) (a). Induction on t0 gives H (t0; � 0+ 1) for all
t0 � t , and induction on � 0 establishesH (t; � ) for all � 2 [[0; � ]].

Lemma 3.12. Let (wk )k2 N be a stochastic process with value inf 0; 1g adapted to a �l-
tration (Fk )k2 N, such that the number of terms that are non-zero is almost surely in�-
nite. Let (yk )k2 N be a sequence of i.i.d discrete random variables. De�ne the �ltration
Bk := �

�
Fk [ � (y1; : : : ; yk� 1)

�
and assume that for allk 2 N, yk is independent ofBk . Let

k(j ) denote thej th integer such thatwk = 1 , i.e. k(0) = 0 and for all j > 0,

k(j ) := min f l > k (j � 1)jwl = 1g:

Finally we de�ne for all j > 0, the j th value of (yk ) such that wk = 1 , i.e.

zj := yk(j ) :

Then (zk )k2 N is a sequence of i.i.d. random variables equal in law toy0.

Proof. Let Y denote the support of y0. We start with z1. For i 2 Y ,

P(z1 = i ) =
1X

l=1

P
�
f8 l0 < l; w l0 = 0g \ f wl = 1g \ f yl = ig

�
by f 0,1gde�nition

=
1X

l=1

P
�
f yl = ig

�
P

�
f8 l0 < l; w l0 = 0g \ f wl = 1g

�
by independence

= P
�
f y0 = ig

� 1X

l=1

P
�
f8 l0 < l; w l0 = 0g \ f wl = 1g

�
as (yl ) is i.i.d.

= P
�
f y0 = ig

�

as the sequence (wk )k2 N must contain a 1 almost surely. Thusz1 is equal in law to y0.
Now suppose that z = ( z1; : : : ; zm ) is a sequence of i.i.d. random variables. Let

k1; � � � ; km be m ordered integers, and �x b 2 f 0; 1gn and i 2 Y . We have

P
�

f z = bg \ f zm+1 = ig \ f k(1) = k1; : : : ; k(m) = km g
�

=
1X

� =0

P
�

f z = bg \ f k(1) = k1; : : : ; k(m) = km g \ f y� = ig \ f � = k(m + 1) g
�

=
1X

� =0

P
�
y� = i

�
P

�
f z = bg \ f k(1) = k1; : : : ; k(m) = km g \ f � = k(m + 1) g

�

= P
�
y0 = i

�
P

�
f z = bg \ f k(1) = k1; : : : ; k(m) = km g

�
:

For the last equality we have used the fact that (yk ) is i.i.d. and the fact that k(m + 1) is
almost surely �nite and thus

�
f � = k(m + 1) g

�
� 2 N is a partition of the set of events.

6. This requires that the choice of optimal control among the set of minimizers is deterministic (say
that with minimum norm).
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Chapter 4

Constraint Quali�cation in
Stochastic Optimization

Learn from yesterday, live for today, hope for
tomorrow. The important thing is to not stop
questioning.

Albert Einstein
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With this Chapter 4, we open the part of the manuscript devoted to constraints in
stochastic optimization, and we lay out ways to tackle constraints through duality meth-
ods.

We �rst recall basic materials in the abstract theory of duality, and then discuss,
through simple examples, the adequation of the usual su�cient conditions of constraint
quali�cation to stochastic optimization problems under almost sure constraints.

Introduction

In the stochastic optimization Problem,

min
U 2U ad 2U

E
�
J

�
U

��

s:t: �( U ) 2 � C

an admissible control has to satisfy the following constraint

�( U ) 2 � C P-a.s.

If the probability space
�

 ; F ; P

�
is not �nite, the above constraint can be seen as an in�nite

number of constraints. In most cases, the Karush-Kuhn-Tucker conditions of optimality
for a constrained problem are given for a �nite number of constraints. Dealing with an
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in�nite number of constraints raises functional analysis questions over which functional
spaces, endowed with which topology, are chosen for the controls and the multipliers.

In a few words, the abstract duality point of view consists in embedding an optimization
problem (P0) into a family of optimization problems ( Pp) indexed by a perturbation p 2 Y .
We denote by ' (p) the value of the perturbed problem (Pp). The dual problem (D0)
consists in computing the value of the biconjugate' ??(0).

We recall that properties and links between the primal problem (P0) and its dual (D0)
are strongly related to the regularity of the value function ' at p = 0. More precisely an
optimal solution � ] of the dual (D0) is an element of the subdi�erential of ' at p = 0.
This is the well-known marginal interpretation of the multiplier: � ] is the marginal value
of a perturbation p of the problem (e.g. a modi�cation of the constraints of the problem).

In x4.1, we present basics in the theory of abstract duality, detailing the links between
regularity of ' and existence of optimal multipliers (that is solutions to the dual prob-
lem). We also expose the special case of the Lagrangian duality and a su�cient condition
of quali�cation. In x4.2, we work out two examples underlying the di�culties of using the
duality theory in a stochastic optimization framework. Indeed simple almost sure con-
straint are shown to be non-quali�ed or quali�ed but not satisfying the generic su�cient
condition of quali�cation.

4.1 Abstract Duality Theory

We recall here the abstract theory of duality that can be found in [24,45,89].

4.1.1 Introducing the Framework

A family of perturbed optimization problem

We consider paired spaces1
�
U; U?

�
, for example a Banach space and its topological

dual (seexA.1.4 for more informations). The spaceU is called the space ofcontrols. In
order to study the following optimization problem:

(P0) inf
u2U

J(u) ; (4.1)

where J : U ! R, we introduce a spaceY of perturbations paired with Y?. Elements of Y
are denotedp for \perturbation", and elements of its paired space Y? are denoted� and
called multipliers . We introduce a perturbed cost function G : U � Y ! R that satis�es
the following equation.

G(�; 0) � J(�) : (4.2)

We consider the family
�

(Pp)
	

p2Y of perturbed optimization problem induced by G:

(Pp) inf
u2U

G(u; p) ; (4.3)

and denote ' (p) its value, i.e.

' (p) := inf
u2U

G(u; p) : (4.4)

By (4.2), we know that ' (0) is the value of the original optimization problem (4.1).

1. All topological assumptions are done with respect to the topologies compatible with the paired
spaces.
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Introducing the Lagrangian

We introduce the Lagrangian function associated with the family of perturbed prob-
lems

�
(Pp)

	
p2Y .

De�nition 4.1. The Lagrangian L : U � Y ? ! R associated to
�

(Pp)
	

p2Y is given by

L(u; � ) := inf
p2Y

�
G(u; p) +



� ; p

�	
: (4.5)

Fact 4.2. If for any control u 2 U the function Gu : p 7! G(u; p) is convex and l.s.c.(for the
topology attached to the pairing

�
Y; Y?

�
), then the primal problem (P0) (de�ned in (4.1))

can be written
(P0) inf

u2U
sup

� 2Y ?
L(u; � ) : (4.6)

Proof. By de�nition of the Fenchel conjugate of Gu (see De�nition A.37) we have

G?
u(� ) = sup

p2Y

n

� ; p

�
� Gu(p)

o
:

Thus by De�nition 4.1 we have

8u 2 U; 8� 2 Y ?; L
�
u; �

�
= � G?

u

�
� �

�
:

Consequently the biconjugate ofGu reads

G??
u (p) = sup

� 2Y ?

n

� ; p

�
+ L

�
u; � �

� o
:

Changing � into � � and taking p = 0 in the previous expression we obtain

G??
u (0) = sup

� 2Y ?
L

�
u; �

�
:

As Gu is assumed to be convex and l.s.c, we have by Theorem A.38 thatG??
u = Gu . Then

Equation (4.2) yields
J(u) = sup

� 2Y ?
L

�
u; �

�
;

and minimization over u 2 U yields (4.6)

Introducing the dual problem

With Equation (4.6) in mind, we de�ne the dual problem ( D0) of problem (P0) as

(D0) sup
� 2Y ?

inf
u2U

L(u; � ) : (4.7)

Fact 4.3. The dual problem(D0) has value' ??(0), where function ' is given by (4.4).

Proof. For any multiplier � 2 Y ?, we have, by De�nition 4.1

inf
u2U

L(u; � ) = inf
u2U

inf
p2Y

�

� ; p

�
+ G(u; p)

	

= inf
p2Y

�

� ; p

�
+ ' (p)

	
by (4.4)

= � ' ?(� � ) : by De�nition A:37

Then, we deduce that the value of (D0) is given by

sup
� 2Y ?

inf
u2U

L(u; � ) = sup
� 2Y ?

� ' ?(� � ) = ' ??(0) ;

which end the proof.

Note that Fact 4.3 allows to introduce the dual problem directly as the problem of
computing ' ??(0).
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Relations between the primal and dual problems

Fact 4.4. The weak duality relation states that the value of the primal problem(P0) is
higher than the value of the dual problem(D0). We call duality gap the (non-negative)
di�erence between the value of the primal and dual problems.

Proof. Indeed by Theorem A.38 we know that ' ?? � ' . De�nition of ' (0) and Fact 4.3
ends the proof.

Furthermore we give in the next proposition some links between the regularity of the
value function ' at 0 (given by (4.4)) and the relation between the primal problem (P0)
(in (4.1)) and the dual problem (D0) (in (4.7)). Those results, and more, can be found
in [24,89].

Proposition 4.5. If the value function ' is convex (which is the case if the perturbed cost
G is jointly convex in (u; p)), and �nite 2 at 0 we have:

� ' (0) = inf( P0)
� ' ??(0) = sup( D0) and arg max(D0) = @'??(0) (that can be empty);
� ' is l.s.c.at 0 i� there is no duality gap, i.e inf(P0) = sup( D0);
� ' is subdi�erentiable at 0 if there is no duality gap and there is a solution to the

dual problem i.e inf(P0) = max( D0) and arg maxD0 6= ; .

De�nition 4.6. Problem
�
Pp

�
is said to be calm if ' (p) < 1 and @'(p) 6= ; .

4.1.2 A Speci�c Type of Perturbation

We now show how the classical theory of dualization is inscribed in this abstract duality
theory. The main point is to formulate Problem ( P0) as a problem under constraints, and
to perturb it by perturbing additively the constraint.

Constructing the Lagrangian Duality

Recall Problem (1.1),

(P0) inf
u2U ad

J (u)

s:t: �( u) 2 � C

where J : U ! R is a proper l.s.c.convex function,Uad a non empty closed convex set,
C � Y a closed convex cone and � : U ! Y a continuous C� convex function (see
De�nition A.48). Note that the link with x4.1.1 is given by

J = J + � Uad + � �( �)2� C

Let us de�ne the following perturbed cost function

G(u; p) = J (u) + � Uad (u) + � �
(u;p)2U�Y j �( u)� p 2� C

	 (u; p) ; (4.8)

and we have, as required,
G(�; 0) = J(�) :

Then, Problem (1.1) can be embedded in the following family of perturbed problems

(Pp) inf
u2U ad

J (u) + � f �( u)� p 2� Cg
�
u; p

�
: (4.9)

2. The convexity and �niteness assumptions are su�cient but not always necessary.
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which is equivalent to

inf
u2U ad

J (u)

s:t: �( u) � p 2 � C

Equivalently, through Proposition A.39, we can write problem (Pp)

(Pp) inf
u2U ad

sup
� 2 C?

J (u) +


�; �( u) � p

�
:

The Lagrangian introduced in x4.1.1, associated to the family of problemsfP pgp2Y ,
reads

L(u; � ) = J (u) +


�; �( u)

�
+ � Uad � � C? (� ) : (4.10)

Thus Problem (P0) reads

(P0) inf
u2U ad

sup
� 2 C?

L(u; � ) ; (4.11)

and Problem (D0) reads

(D0) sup
� 2 C?

inf
u2U ad

L(u; � ) : (4.12)

Conditions of Quali�cation

We give now conditions under which problems (P0) (in (4.11)) and ( D0) (in (4.12))
are equivalent in the sense that the set of solutions of Problem (4.11) is the same as the
set of solution of Problem (4.12), and their values are equals.

De�nition 4.7. Recall that Problem (P0) admits at least one solution, and is convex.
Then the constraint

�( u) 2 � C (4.13)

is said to be quali�ed if the problem
�
P0

�
is calm, that is if one of the two following

equivalent statements holds.
i) @'(0) 6= ; , where ' is de�ned as in (4.4).
ii) There is no duality gap and the dual problem(D0) has an optimal solution.

If Problem (P0) admits an optimal solution, these assertions are equivalent to
iii) The Lagrangian L , de�ned in (4.10), admits a saddle point onUad � C?, i.e. there

exists (u] ; � ] ) 2 Uad � C? (C? is de�ned in SA.4) such that

8u 2 Uad; 8� 2 C?; L (u] ; � ) � L (u] ; � ] ) � L (u; � ] ) :

Note that it is quite di�cult to check these conditions. Thus, we need su�cient
conditions of quali�cation. We are going to reformulate classical conditions of quali�cation
in our framework.

We begin by a lemma on the regularity of the perturbed cost functionG.

Lemma 4.8. The function G de�ned in Equation (4.8) is jointly convex and l.s.c.

Proof. As J is convex by assumption, in order to show the joint convexity ofG it is enough
to show that the set �

(u; p) 2 Uad � Y j �( u) � p 2 � C
	

(4.14)

is convex.
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For this purpose, consider two pairs (u1; p1) and (u2; p2) such that,

8i 2 f 1; 2g; �( ui ) � pi 2 � C ;

and t 2 [0; 1]. As Uad is convex, andY is a vector space,Uad � Y is convex and we have

t(u1; p1) + (1 � t)(u2; p2) 2 Uad � Y :

Moreover convexity of C gives

t�( u1) + (1 � t)�( u2) �
�
tp1 + (1 � t)p2

�
2 � C :

Now, by C-convexity of �, we have

�
�
tu1 + (1 � t)u2

�
�

�
t �( u1) + (1 � t)�( u2)

�
2 � C :

Moreover asC is a closed convex cone, we haveC + C = C (see Lemma A.47), thus,

�
�
tu1 + (1 � t)u2

�
�

�
tp1 + (1 � t)p2

�
2 � C :

and we have shown the convexity of the set (4.14) and thus the convexity ofG.
Continuity of �, closedness of C and closedness ofUad give the closedness of the set

�
(u; p) 2 U � Y j u 2 Uad; �( u) � p 2 � C

	
;

hence the lower semicontinuity of the function

� �
(u;p)2U�Y j u2U ad ; �( u)� p 2� C

	 :

Finally, lower semicontinuity of function J gives the lower semicontinuity of functionG.

As G de�ned in (4.8) is jointly convex, the value function ' de�ned in (4.4) is also
convex (see Proposition A.45). Consequently a su�cient condition for the constraint (4.13)
to be quali�ed is for ' to be continuous at 0. Indeed continuity of a convex function implies
its subdi�erentiability (see [9, Proposition 2.36]). Moreover recall that:

� a convex function, de�ned on a topological linear space, is continuous at a point
in the interior of its domain if and only if it is locally bounded above at this point
(see [9, Proposition 2.14]);

� a proper l.s.c.convex function, de�ned on a Banach space, is continuous on the
interior of its domain (see [9, Proposition 2.16]).

However, there is no general reason for' to be l.s.c.. Nonetheless we have the following
proposition (see [24, Proposition 2.153])

Proposition 4.9. Assume thatU and Y are Banach spaces, that the perturbed cost func-
tion G is proper, convex and l.s.c., and' (0) < + 1 (where the value function' is given
by (4.4)). Then 0 2 ri

�
dom(' )

�
implies that @'(0) 6= ; , hence

We now give the usual constraint quali�cation condition.

Proposition 4.10. Assume thatU and Y are Banach spaces, and that the perturbed cost
function G is proper, convex and l.s.c.. Then, under the following assumption

(CQC) 0 2 ri
�

�
�
Uad \ dom(J )

�
+ C

�
; (4.15)

Constraint (4.13) is quali�ed.
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Proof. (Pp) de�ned in (4.9) is feasible i�

9u 2 Uad \ dom(J ); �( u) � p 2 � C ;

which can be written
p 2 �

�
Uad \ dom(J )

�
+ C ;

thus,
dom(' ) = �

�
Uad \ dom(J )

�
+ C :

Proposition 4.9 ends the proof.

Proposition 4.10 is sometimes stated withoutUad or dom(J ). Indeed the cost function
can always be replaced byJ + � Uad and in this case the minimization in u is done on the
whole spaceU. In other words we could easily chooseUad to be a subset of dom(J ).

Remark 4.11. The condition (CQC) (in (4.15)) is equivalent to

0 2 ri
�

dom(' )
�

: (4.16)

This su�cient condition is quite strong (as it will be illustrated in the next section). Indeed
in most cases a convex function is subdi�erentiable also on the border of its domain. For
example if f : E ! R is a �nite convex function, and C a closed convex set, then the
l.s.c.function f + � C is subdi�erentiable at any point of its domain (i.e C).

An example of function that is not subdi�erentiable on the border of its domain would
be

' (x) =

8
><

>:

+ 1 if x < 0

0 if x = 0

x log(x) if x > 0

:

At x = 0 this function admits a tangent (toward the interior of the domain) with in�nite
slope, thus, is not subdi�erentiable. If the function admitted a �nite sloped tangent it would
be subdi�erentiable.

Almost Sure Constraint in L p
�

 ; F ; P; Rn

�
Display Empty Interior

We claim that the su�cient condition of quali�cation (4.15) is scarcely satis�ed in a
stochastic optimization setting if we chooseY = L p

�

 ; F ; P

�
with p < 1 . By contrast, if

Y = L 1
�

 ; F ; P

�
, this condition is more often satis�ed.

Proposition 4.12. Consider a probability space
�

 ; F ; P

�
, where F is not �nite modulo

P. 3 Consider p 2 [1; 1 ), and a setUad ( R n that is not an a�ne subspace of Rn . Then,
the set

Uad =
n

U 2 Lp�

 ; F ; P; Rn � �

� U 2 Uad P-a.s.
o

;

has an empty relative interior in Lp.

Proof. Consider U 2 Uad, p 2 [1; + 1 ) and x 2 A�( Uad)nUad. We are going to exhibit a
sequence

�
Un

	
n2 N such that for all n 2 N, we haveUn =2 Uad and Un ! Lp U .

Since F is not �nite modulo P, we can consider a sequence ofF -measurable events
f Angn2 N with P(An ) > 0 and such that limn P(An ) = 0. Then, we de�ne

Un =

(
x on An ;

U elsewhere:

We have



 Un � U






p =



 �

U � x
�
1A n




 . Thus, dominated convergence theorem ensures

that Un ! L p U . However, by construction, for any n, we have that Un =2 Uad.

3. See De�nition 5.1.
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The space L1 , endowed with the norm topology, is better suited for almost sure
constraint as shown in the next proposition.

Proposition 4.13. Consider a setUad � Rn such that int( Uad) 6= ; . Then the set

Uad =
n

U 2 L1 �

 ; F ; P; Rn �

j U 2 Uad P-a.s.
o

;

has a non-empty interior.

Proof. Consider u 2 int( Uad), and " > 0 such that BRn (u; " ) � Uad. Then the (constant)
random variable U � u is such that, for all random variable V 2 BL1 (U ; " ), i.e. such
that kU � V kL1 < � , we haveV 2 BRn (u; " ) � Uad P-a.s. Thus V 2 Uad.

The following practical corollary is a direct application of Proposition 4.13 and Propo-
sition 4.10.

Corollary 4.14. Consider a closed convex setUad � Rn . Consider the a�ne constraint
function � : L 1

�

 ; F ; P; Rn

�
! L1

�

 ; F ; P; Rp

�
such that there is a matrix A 2 M p;n (R)

and a vector b 2 Rp with

8U 2 L1 �

 ; F ; P; Rn �

; �( U ) = AU + b; P-a.s.

Assume that J is convex, proper, and continuous onU. If 0 2 ri
�
AU ad + b

�
then the

constraint
�( U ) = 0 ;

in the following problem,

min
U 2 L1

J (U )

s:t: �( U ) = 0

U 2 Uad P-a.s.

is quali�ed.

4.2 Working Out Two Examples on Constraint Quali�ca-
tion

In this section, we develop two examples that reveal delicate issues related to duality in
stochastic optimization. In a �rst example we show that, even on a seemingly innocuous
problem (inspired by R. Wets) there might not exist a dual multiplier in L 2. In a second
example we show that a multiplier might exist even if the su�cient quali�cation condition
(CQC) (4.15) is not satis�ed.

4.2.1 An Example with a Non-Quali�ed Constraint

We elaborate on an example from R. Wets4. Where R. Wets focused on a discretiza-
tion of the probability space approach to show that when re�ning the discretization the
multiplier would converges toward a singular measure. On the other hand we, cast the
problem in a strongly convex setting and derive directly the conditions of quali�cation.

Let
�

 ; F ; P

�
be a probability space. Let � be a random variable uniform on [1; 2],

� > 0 a positive real number. We consider the optimization problem

4. CEA-EDF-INRIA 2013 summer school.
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inf
x;Y

x2

2
+ E

(Y + � )2

2
(4.17a)

x � a (4.17b)

(x � Y ) � � (4.17c)

Y � 0 (4.17d)

where x is a deterministic real variable and Y is a random variable. For technical issues
we assume that 2� � < a .

We can easily �nd the optimal solution. Noting that � � 0, a careful look on the
constraints shows that, Y being positive, x has to be greater than� almost surely, thus,
x is greater than essupp(� ) = 2. Consequently, from � � 0, we see that

�
x ] = max f 2; ag
Y ] � 0

is an optimal solution of Problem (4.17) and yields a value of

maxf a; 2g2

2
+

� 2

2
:

Now using the notations of abstract duality (x4.1), we set the set of perturbation

Y = R � L2�

 ; F ; P; R

�
� L2�


 ; F ; P; R
�
:

Consider the family of perturbed problem, in L2 spaces,

inf
x;Y

x2

2
+ E

h(Y + � )2

2

i

| {z }
:= J (x;Y )

x � a + p1

(x � Y ) � � + P2 P-a.s.

Y � 0 + P3 P-a.s.

(4.18)

with P = ( p1; P2; P3) 2 Y , and denote by '
�
P

�
its value. Note that the perturbation P

has a deterministic part (p1) and a stochastic part (P2 and P3).
Problem (4.18) is cast in the general framework ofx4.1.2 with the constraint function

�( x; Y ) =
�

a � x; � � x + Y ; � Y
�

;

and the cone of constraints

C =
�

(v1; V2; V3) 2 Y j v1 � 0; V2 � 0 P-a.s.; V3 � 0 P-a.s.
	

:

Lower semicontinuity of the value function ' at 0

As J is convex and � is C-convex, we obtain by Lemma 4.8 that' is convex. Moreover,
the value function ' related to Problem (4.18) can be made explicit, and its regularity at
0 studied (in order to �nd properties of the dual and primal problems).
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Fact 4.15. Then, in an L2-neighborhood of 0, the value function ' related to Prob-
lem (4.18) is given by

' (P ) =

 

max
�

a + p1; essupp
�

� + P2 + max
�

� �; P3

	 �
; 0

� ! 2

+ E

" � �
P3 + �

� +
� 2

2

#

+ � f essupp(P3+ P2+ � )< 1g :

(4.19)

with optimal solution
(

x ] = max
�

a + p1; essupp
�

max
�

� �; P3

	
+ � + P2

�
; 0

	

Y ] = max
�

P3; � �
	 (4.20)

Proof. Note that Problem (4.18) admits a solution if

essupp
�
P3 + P2 + �

�
< 1 : (4.21)

Indeed, in this case, the solution (x ] ; Y ] ) de�ned in (4.20) is admissible. On the other
hand if (4.21) does not hold, then the two last constraints of Problem (4.18) cannot be
satis�ed almost surely with a �nite x.

Now, if conditions (4.21) hold true, then, for a given admissibleY , the solution of

min
x

x2

2
+ E

h(Y + � )2

2

i

x � a + p1

x � Y + � + P2 P-a.s.

is given by
x ] = max

�
a + p1; essupp

�
Y + � + P2

�
; 0

	
; (4.22)

with value
�

max
�

a + p1; essupp
�
Y + � + P2

�
; 0

	 � 2

2
+

E
�
(Y + � )2

�

2
:

Thus, we consider the minimization in Y of

min
Y

�
max

�
a + p1; essupp

�
Y + � + P2

�
; 0

	 � 2

2
+

E
�
(Y + � )2

�

2

s:t: P3 � Y

The �rst term of the sum is non decreasing with respect to Y . Moreover, for kP kL2

small enough, as 2� � < a , a + p1 > 2 � � and essupp
�
Y + � + P2

�
< essuppY + 2 � � .

Hence, if Y � 0,
�

a + p1; essupp
�
Y + � + P2

�
; 0

	
= a + p1. As � � 0 the second term is

also non decreasing with respect toY from � � . Thus,

Y ] = max
�

P3; � �
	

;

is optimal for any x 2 R.
Now from (4.22) we obtain

X ] = max
�

a+ p1; essupp
�
Y ] + � + P2

�
; 0

	
= max

�
a+ p1; essupp

�
maxP3; � � + � + P2

�
; 0

	
:

Evaluating the cost function J at (X ] ; Y ] ) coupled with the condition of admissibility
(4.21) yields the expression of' .
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Fact 4.16. The value function ' is l.s.c.at 0.

Proof. We now show that ' is l.s.c.(for the strong and weak L2 topologies) at 0.
� As the mapping x 7! (x + � )+ is a contraction, if

�
Pn

�
n2 N converges in L2 towards

P , then
�
(Pn + � )+

�
n2 N converges in L2 towards (P + � )+ . Thus the function

h1 : P 7! E
((P3 + � )+ )2

2

is continuous.
� The mapping

P 7! � + P2 � maxf P3; � � g

is continuous. So, by Lemma A.56, the mapping

P 7! essupp
�
� + P2 + max

�
� �; P3

	�

is l.s.c, and as the mappingP 7! a + p1 is continuous we have (Lemma A.54) that
the mapping

h2 : P 7! max
�

a + p1; essupp
�

� + P2 + max
�

� �; P3

	 �
; 0

�

is l.s.c.As the function h2 is non-negative, we haveh2
2 = ( h+

2 )2. Moreover the
mapping x 7! (x+ )2 is non-decreasing, thus we obtain by Lemma A.53 the lower
semicontinuity of h.

� By Lemma A.56 we know that the function P 7! essupp
�
� + P2 + P3

�
is l.s.c., thus

its level sets are closed and the set

D =
�

P 2 L2 j essupp(P3 + P2 + � ) < M
	

;

is closed.
Finally, h1 being continuous, andh2 l.s.c.h1+ h2 is l.s.c., and by Lemma A.55, the function

' = h1 + h2 + � D

is l.s.c..

From the lower semicontinuity of the value function at the origin, Problem (4.17) and
its dual in the sense ofx4.1.2 have the same value. By Proposition 4.5, there is no duality
gap.

Non-Subdi�erentiability of ' at 0

Fact 4.17. If a < 2, the value function ' (de�ned by (4.4) and given by (4.19) ) is not
subdi�erentiable at 0.

Proof. The proof is by contradiction. Suppose that there exists� ] 2 @'(0) � L2. Then
we have, for all P 2 L2,

' (P ) � ' (0) � h � ] ; P i : (4.23)

We now display a family of perturbations that implies that the L 2 norm of � ] is not �nite,
hence a contradiction.

Consider the perturbation "2P" , where

P" =
�

0; � 1="1� 2 [2� "; 2]
| {z }

P2;"

; 0
�

:
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As we have
� + "2P2;" = � 1f � 2 [0;2� " )g + ( � � " )1f � 2 [2� "; 2]g ;

we obtain
essupp

�
� + "2P2;"

�
= 2 � " :

Moreover, for 0 < " � 2 � a, (" exists asa < 2),

�
max

n
a + p1;"|{z}

=0

; essupp
�
� + "2P2;"

�
; 0

o� 2
=

�
2 � "

� 2 ;

which in turn yields

' ("2P" ) � ' (0) = (2 � " )2 � 22 = � 2" + "2 :

Consequently, from the subgradient inequality (4.23) we obtain

' ("2P" ) � ' (0)
"2 = �

2
"

+ 1 � h � ] ; P" i :

Consequently, for " < 1=2, we haveh� ] ; P" i < 0, and thus,

�
� �

2
"

+ 1
�
� � jh � ] ; P" ij :

However the Cauchy-Schwartz inequality yields

�
� �

2
"

+ 1
�
� � jh � ] ; P" ij � jj � ] jj2 � jj P" jj2 = jj � ] jj2 :

Taking the limits " ! 0 leads to a contradiction. Therefore� ] does not exist, which means
that @'(0) = ; : ' is not subdi�erentiable at 0.

From this fact we conclude that the dual problem (de�ned by L 2 perturbations) has
no solution for a < 2.

Working out the Dual Problem

We now write the dual problem (for L 2 perturbations) of Problem (4.17), and derive
a maximizing sequence that does not converge in L2, but converges toward an element of�
L1

� ?.
Following x4.1.2 the dual of Problem (4.17) is given by

sup
� � 0

inf
x;Y

x2

2
+ E

h(Y + � )2

2

i
+ � 1(a � x) + E

�
� 2(� � x + Y ) � � 3Y

�
; (4.24)

where � =
�
� 1; � 2; � 3

�
is an element ofR � L2

�

 ; F ; P; R

�
� L2

�

 ; F ; P; R

�
.

Fact 4.18. The optimal value of the dual problem is given by

� 2

2
+ max f a; 2g2=2

which is equal to ' (0) (by (4.19)). Thus, as already obtained in Fact 4.16, there is no
duality gap.

If a < 2, then we can construct a maximizing sequence of Problem(4.24) that does not
converges inL2. If a > 2, then we have an optimal solution to Problem(4.24) that lies in
L2, thus ' is subdi�erentiable at 0.
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Proof. For a given multiplier � = ( � 1; � 2; � 3), the minimization part of Problem (4.24)
can be written as

min
x

n x2

2
� (� 1 + E[� 2])x + a� 1 + E

�
� 2�

� o

| {z }
(A )

+ min
Y

n
E

h(Y + � )2

2
+ ( � 2 � � 3)Y

io

| {z }
(B )

:

Part ( A) is easily minimized as it is a second order polynom inx, with value

�
(� 1 + E[� 2])2

2
+ a� 1 + E

�
� 2�

�
:

Part ( B ) is also easily solved as we can interchange the inf and the expectation (becauseY
is measurable with respect to� , see [96, Theorem 14.60] ). Thus the minimum is attained
for

Y ] = � � + � 3 � � 2 ;

with value

E
h(� 3 � � 2)2

2
+ ( � 2 � � 3)( � � + � 3 � � 2)

i
:

Thus Problem (4.24) now becomes

sup
� 1 ;� 2;� 3� 0

�
�

� 2
1

2
+

�
a� E[� 2]

�
� 1 �

�
E[� 2]

� 2

2
+ E

�
� 2�

�
+ E

h
�

(� 3 � � 2)2

2
+ � (� 3 � � 2)

i �
:

For given � 2 and � 3, the maximization in � 1 is quadratic (in R). The unconstrained
optimum being � 1 = a� E[� 2], thus the optimum is � ]

1 = ( a� E[� 2])+ . Maximization in � 3
can be done under the expectation and thus, the optimum is achieved for� 3

] = ( � 2 + � )+ .
As � and � 2 are non-negative we have� 3

] = � 2 + � . Hence the remaining maximization
problem in � 2 reads

sup
� 2� 0

�
((a � E[� 2])+ )2

2
�

(E[� 2])2

2
+ E

�
� 2�

�
+

� 2

2

�
: (4.25)

First we solve Problem (4.25) over the set of� 2 such that E
�
� 2

�
� a. In this case, we

have to solve
� 2

2
+ sup

� 2� 0
E[� 2]� a

n
�

(E[� 2])2

2
+ E

�
� 2�

� o
:

This problem can be written

� 2

2
+ sup

M � a
sup

� 2� 0
E[� 2]= M

n
�

M 2

2
+ E

�
� 2�

� o
;

and the supremum in � 2 is obtained by concentrating the mass on the highest value of
� . A maximizing sequence is given byMk 1f (2� 1=k)� � � 2g 2 L2, which converges (up to

the canonical injection) in
�
L1

� ? towards � ]
2 = M� f � =2 g. Moreover sup

M � a

�
2M � M 2=2

	

is attained at M ] = max f 2; ag and has the following value

2 maxf a; 2g �
maxf a; 2g2

2
:
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Now consider the set of multipliers such thatE[� 2] � a. Then, Problem (4.25) reads

� 2

2
+ sup

� 2� 0
E[� 2]� a

n a2

2
� aE[� 2] + E

�
� 2�

� o
:

Thus, we need to solve

sup
0� M � a

sup
� 2� 0

E[� 2]= M

� 2

2
+

n a2

2
� aM + E

�
� 2�

� o

and, as previously, we concentrate the mass of� 2 over the highest values of� , leading to

� 2

2
+ sup

0� M � a

n a2

2
+ (2 � a)M

o
:

which is maximized for M = a if a < 2, and maximized for M = 0 if a � 2. Note that in
this case the optimal multiplier is no longer a singular measure.

Collecting results we consider separately the case wherea < 2 and wherea � 2.
� Assume that a < 2. Then, maximization over the set of multipliers such that

E[� 2] � a, yields a value of� 2=2+2 whereas maximization over the set of multipliers
such that E[� 2] < a yields a value of� 2=2+2a� a2=2 which is smaller. Consequently
the optimal value of Problem (4.25) is

� 2=2 + 2 ;

and a maximizing sequence is

� (k)
2 = 2k1f (2� 1=k)� � � 2g :

� Assume that a � 2. Then, maximization over the set of multipliers such that
E[� 2] � a, yields a value of � 2=2 + 2a � a2=2 whereas maximization over the set
of multipliers such that E[� 2] < a yields a value of � 2=2 + a2=2 which is bigger.
Consequently the optimal value of Problem (4.25) is

� 2=2 + a2=2 ;

and the supremum is attained in
� ]

2 = 0 :

This ends the proof.

We have thus seen on this example that:
� The value function ' is l.s.c. at 0 (in the L2 topology), and thus there is no duality

gap. This is checked through explicit computation of the dual problem.
� If a < 2 the function ' is not subdi�erentiable at 0, thus the constraints are not

quali�ed. We can however construct an optimal solution in
�
L1

� ?.
� If a � 2, there exists an optimal multiplier in L 2, and thus the constraints are

quali�ed.

Remark 4.19. Note that if a < 2 then the constraints on the random variableY imply
constraints on the variablex. Indeed, according to Constraint (4.17c) we havex � Y + � ,
and by Constraint (4.17d) we obtain x � � (P-a.s.), and as x is deterministic this is
equivalent tox � essupp(� ) = 2 . This last constraint is stronger than Constraint (4.17b).
This is an induced constraints.

On the other hand, whena � 2, we are in the so-calledrelatively complete recourse
case as for everyx � a, there is an admissibleY . In other words there is no induced
constraints. Hence, results by R.T.Rockafellar and R. Wets (see [93]) imply the existence
of a L1 multiplier in this case.
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4.2.2 Second Example: Su�cient Condition is not Necessary

Let
�

 ; F ; P

�
be a probability space. We consider the following minimization problem,

inf
U � 1

1
2

E
�
U 2�

(4.26a)

s:t: U = 0 P-a.s. (4.26b)

where the solutions are looked after in the space L2
�

 ; F ; P; R

�
.

The unique admissible solution isU ] = 0, and the optimal value is 0.

Fact 4.20. In Problem (4.26) the P-almost sure constraint U = 0 is quali�ed (for the Ba-
nach L2) but does not satisfy the su�cient constraint quali�cation (CQC) given in (4.15).
However it satis�es (CQC) for the Banach L1 .

Proof. We embed Problem (4.26) in the following family of problems indexed by a L2

perturbation P ,

inf
U � 1

1
2

E
�
U 2�

s:t: U = P P-a.s.

with value ' (P ). We easily obtain that

' (P ) =
kP k2

2

2
+ � f P � 1g :

As for all P 2 L2 we have' (P ) � ' (0), it comes by de�nition that ' is l.s.c.at 0 and that
0 2 @'(0).

Moreover the dual problem is given by

sup
� 2 L2

inf
U � 1

E
hU 2

2
+ �U

i
= sup

� 2 L2
� E

h� 2

2

i
= 0 :

Consequently there is no duality gap, and an optimal multiplier is � ] = 0.
However, in the framework of x4.1.2, we have chosen

Uad = f U 2 L2�

 ; F ; P; R

�
j U � 1 P-a.s.g

and � = Id, C = f 0g. Thus �( Uad \ dom(J )) + C = Uad which is of empty interior (by
Proposition 4.12). Consequently this example does not satisfy the su�cient quali�cation
condition (CQC) (see (4.15)).

If we considerU = L 1
�

 ; F ; P; R

�
we have

Uad = f U 2 L1 �

 ; F ; P; R

�
j U � 1 P-a.s.g

and
�( Uad \ dom(J )) + C = Uad :

Finally we have that, through Proposition 4.13,

0 2 int Uad ;

which ends the proof.
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4.3 Discussion

We have presented the classical abstract framework for duality in convex optimization,
and applied it to almost sure constraints in stochastic optimization.

Working with L p spaces, withp < + 1 , we have shown on simple, seemingly innocuous
examples, that:

� the constraint might not be quali�ed,
� even when the constraint is quali�ed, the usual su�cient condition of quali�cation

may fail.
We conclude with the observation that Lp spaces, withp < + 1 , might not be the proper
setting to treat almost sure constraint by duality.

By contrast, the L 1 topology might be better suited for almost sure constraint. Unfor-
tunately, the topological dual of L1 is well-known to be a rich space, di�cult to handle. In
the next chapter, we provide conditions that lead to constraint quali�cation in stochastic
optimization problems, using the

�
L1 ; L1

�
duality.



Chapter 5

Constraint Quali�cation
in

�
L1 ; L1

�

Mathematics consists in proving the most obvious
things in the least obvious way.

G. P�olya

Obvious is the most dangerous word in mathematics.

E. Bell
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In Chapter 4, we recalled the abstract theory of duality, with a focus on constraint
quali�cation. We underlined that constraint quali�cation of almost sure constraints in
stochastic optimization raises speci�c issues. In particular, we have shown on generic
examples that the topologies on Lp, for p < + 1 , may often fail to yield quali�ed almost
sure constraints. We have also seen that in L1 , paired with its dual, the su�cient condition
of quali�cation applies. In this Chapter 5, we provide conditions under which almost sure
constraints are quali�ed in the duality

�
L1 ; L1

�
.

In x5.1, we present several topologies on L1
�

 ; F ; P; Rd

�
, each topology inducing a

di�erent duality pairing, hence di�erent results about constraint quali�cation. In x5.2, we
provide our main result, mainly extending the work of R. Wets in [116]. Finally, in x5.3,
we showcase an application to a multistage stochastic optimization problem.
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5.1 Topologies on L1
�

 ; F ; P; Rd

�

In this section, we recall results of functional analysis. More precisely we present some
topologies on the set L1

�

 ; F ; P; Rd

�
of essentially bounded functions1.

Moreover, we have restrained ourselves to random variables taking values inRd. Indeed
a control process of aT-stage problem, each stage having �nite dimensional controls and
state, is a stochastic process taking values in a �nite dimensional space. If we were
interested in problem with continuous controls we could consider random variables taking
values into [0; T] (e.g. L1

�

 ; F ; P; R[0;T ]

�
). Some results are available for more general

image spaces.
Almost all the following results can be found, in a more general setting, in functional

analysis books. For an easy but insightful introduction (for the Lebesgue measure) see [25],
for general results in in�nite dimension see [3, 22]. A brief selection of general results is
given in xA.1.

5.1.1 The space L1
�

 ; F ; P; Rd

�

Let
�

 ; F ; P

�
be a probability space. The set of essentially boundedF -measurable

functions L 1
�

 ; F ; P; Rd

�
can be equipped with an equivalence relation� stating that

X � Y i� X = Y P � a:s:. The set of equivalence classes is denoted by

L1 �

 ; F ; P; Rd�

= L 1 �

 ; F ; P; Rd�

= � :

For notational simplicity, we will sometimes write L 1 instead of L1
�

 ; F ; P; Rd

�
.

The set L0
�

 ; F ; P; Rd

�
is the space of (equivalence class of)F -measurable functions

taking values in Rd. The set L1
�

 ; F ; P; Rd

�
is the subspace of L0

�

 ; F ; P; Rd

�
of integrable

functions, i.e. such that

8X 2 L1�

 ; F ; P; Rd�

; E
�
kX kRd

�
:=

Z



kX (! )kRd dP(! ) < + 1 :

The usual norm of L1 is, for every X 2 L1
�

 ; F ; P; Rd

�
,




 X






L1 = E
� 



 X





Rd

�
.

De�nition 5.1. A � -algebraF is said to be not �nite modulo P if one of following equiv-
alent assertions holds true:

i)

inf
n

P
�
A

� �
� A 2 F ; P

�
A

�
> 0

o
= 0 ; (5.1)

ii) The number of F -measurable eventsA 2 
 of positive probability is not �nite,
iii) there exists a F -measurable, real valued, random variableX such that,

8n 2 N; P
�
X = n

�
> 0 :

Proof. Consider the following equivalence relation on the� -algebra F

A � B () P
�
A� B

�
= 0 ;

where
A� B :=

�
A n B

�
[

�
B n A

�
:

We work in the class of equivalenceF = � .

1. Those topologies can be de�ned on any Banach space (or even for some cases on topological spaces)
and most results recalled here remain true.
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i) ) ii) Let
�

An
	

n2 N be a minimizing sequence of (5.1), such that

8n 2 N; 0 < P
�
An

�
�

1
2n :

De�ne, for all n 2 N, the sets

Bn := [ k� nAk ;

and
Cn := AnnBn+1 :

Thus
�

Bn
	

n2 N and
�

Cn
	

n2 N are also minimizing sequences of (5.1), indeedP
�
Bn

�
�

1=2n� 1, and P
�
Cn

�
� 1=2n .

Moreover there is a subsequence
�

Cnk

	
k2 N such that each term is of positive prob-

ability. Otherwise, we would have N 2 N such that

8n � N; P
�
Cn

�
= 0 ;

hence,
8n > N; A N � Bn :

As P
�
AN

�
> 0 it contradicts the fact that

�
Bn

	
n2 N is a minimizing subsequence.

Thus
�

Cnk

	
k2 N is a non-�nite sequence ofF -measurable, disjoint, events of positive

probability.
i) ) iii) We choose X =

P 1
k=1 k1Cn k

.
ii) ) i) If the in�mum in (5.1) is " > 0 the number of disjoint event of positive

probability is �nite (at most 1 ="). Thus the number of events in F = � of positive
probability is �nite.

iii) ) ii) Each events
� �

X = n
	 �

n2 N
is of positive probability.

Remark 5.2. If the � -algebra F is �nite modulo P then L1
�

 ; F ; P; Rd

�
is a �nite di-

mensional space. As it is an Hilbert space, the weak and weak? topologies (and hence the
Mackey topology), presented hereafter, are equivalent.

For any X 2 L1
�

 ; F ; P; Rd

�
we denote by




 X






1 the essential supremum ofX , i.e.




 X






1 := inf
n

M 2 R [ f + 1g
�
� P

� 


 X






Rd � M
�

= 0
o

: (5.2)

The topology � kk induced by k�kL1 is called the norm topology. The convergence of a
sequence

�
X n

	
n2 N of random variables towardX in the norm topology is simply denoted

by X n ! X .
Moreover, we de�ne by

�
L1

� ? the set of continuous (for the norm topology) linear
forms on L1 . The natural norm on

�
L1

� ? is de�ned by, for any v 2
�
L1

� ?,

kvk�
L1

� ? = sup
�

jv(X )j
�
� X 2 L1 ;




 X






1 � 1
	

:

We have the following results.

Fact 5.3. We gather here some useful results onL1 and its topological dual
�

L1
� ?

.

Consider a probability space
�

 ; F ; P

�
.

� If F is not �nite modulo P,
�
L1 ; � kk

�
is a non re
exive Banach space.

� The Banach spaceL1
�

 ; F ; P; Rd

�
is separable i� the � -algebraF is �nite modulo P.
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� The Banach spaceL1 is dense (for the norm topology) in Lp, for any p 2 [1; 1 ]
(recall that a probability measure is �nite and see [3, Theorem 13.8] orxB.2).

� The topological dual of the Banach spaceL1 , denoted by
�
L1

� ?, is isometrically
isomorphic to the setba

�

 ; F ; P

�
of all �nitely additive, �nite, signed measures de-

�ned on 
 , which are absolutely continuous with respect toP, equipped with the total
variation norm (see [42, Theorem IV.8.16]).

� There is a canonical injection i of L1 into
�
L1

� ?, where for all Y 2 L1,

i (Y ) : X 7! E
�
Y � X

�
:

We give a short proof of the second point, whend = 1,

Proof. If F is not �nite, there exists a random variable X such that for every n 2 N,

P(X = n) > 0. For any sequenceu 2
�

0; 1
	 N, where u = ( un )n2 N, we de�ne the bounded

random variable
X u =

X

n2 N

un1�
X = n

	 :

Note that for every sequenceu and v in
�

0; 1
	 N such that u 6= v, we have




 X u � X v






1 = sup
n2 N

jun � vn j = 1 :

Thus we have an enumerable number of points in L1 equally distant to each other, thus
no countable sequence in L1 can be dense, and thus L1 is not separable.

On the other hand if F is �nite it is generated by a �nite partition (say of cardinal
N ), and L1

�

 ; F ; P; Rd

�
is isomorphic to RN �n .

5.1.2 Weak and Weak ? Topology of L1

Weak Topology �
�
L1 ;

�
L1

� ?�

Recall that
�
L1

� ? is the set of continuous (for the norm topology) linear forms on L1 .
The weak topology�

�
L1 ;

�
L1

� ?�
is, by de�nition, the coarsest topology such that every

element in
�
L1

� ? is still continuous.

Fact 5.4. The weak topology is separated. We denote byX n * X the fact that a sequence�
X n

�
n2 N weakly converges towardX . We have

X n * X () 8 Y 2
�
L1 � ?; hY ; X n i ! h Y ; X i : (5.3)

Fact 5.5. The weak topology is coarser than the strong topology:

�
�
L1 ;

�
L1 � ?�

� � kk :

We have the following additional properties linking the weak and strong topologies.
� If X n ! X , then X n * X .
� If X n * X , then




 X n






1 is bounded and



 X






1 � limn




 X n






1 .

� If X n * X and Yn

�
L1

� ?

����! Y , then hYn ; X n i ! h Y ; X i .
� A convex set is closed in the norm topology i� it is closed in the weak-topology.
� Consequently a convex function is l.s.c for the norm topology i� it is l.s.c for the

weak topology.

Note that this fact is not restrained to L 1

Fact 5.6 (Eberlein{Smulian) . A set is weakly compact i� it is weakly sequentially compact
(see [3, 6.35]).
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Weak ? Topology �
�
L1 ; L1

�

We go on by coarsening the topology2 �
�
L1 ;

�
L1

� ?�
.

We de�ne by �
�
L1 ; L1

�
the coarsest topology on L1 such that every L1-linear form

on L1
�

 ; F ; P; Rd

�
is continuous, i.e. such that for everyY 2 L1

�

 ; F ; P; Rd

�
, the linear

form X 7! E
�
X � Y

�
is continuous. As L1

�

 ; F ; P; Rd

�
is the topological dual (for the

norm topology of L1) of L1
�

 ; F ; P; Rd

�
, �

�
L1 ; L1

�
is the so-calledweak? topology of L1 .

We denote byX n
��* X the fact that sequence

�
X n

�
n2 N weakly? converges towardX ,

and we have

X n
��* X () 8 Y 2 L1; E

�
Y � X n

�
! E

�
Y � X

�
: (5.4)

The main interest of the weak? topology is given by the Banach-Alaoglu-Bourbaki
Theorem (see [3, Theorem 5.105]), recalled in the following fact.

Fact 5.7. The norm-closed unit ball is weak? compact, hence any bounded and weak?-
closed set is weak?-compact.

Notice that, if F is not �nite modulo P, the unit ball is not compact in the weak
topology. Indeed, if it were the case Kakutani's theorem would imply that L1 is re
exive.

Fact 5.8. We have the following inclusion of topologies:

�
�
L1 ; L1�

� �
�
L1 ; (L 1 )?�

� � kk :

We have the following additional properties on the weak? topology, wheref X ngn2 N is a
sequence ofL1 , and f Yngn2 N is a sequence ofL1.

� The weak? topology is separated.
� If X n * X , then X n

��* X .

� If X n
��* X , then




 X n






1 is bounded and



 X






1 � lim



 X n






1 .

� If X n
��* X and i (Yn )

�
L1

� ?

����! i (Y ), then hYn ; X n i ! h Y ; X i .

5.1.3 Mackey topology �
�
L1 ; L1

�

The weak? topology �
�
L1 ; L1

�
is de�ned as the coarsest topology such that the L1

linear forms are continuous. The Mackey topology�
�
L1 ; L1

�
is de�ned as the �nest

topology such that the only continuous linear forms are the L1 linear form.
Thus the Mackey topology is �ner than the weak? topology. Hence, it is easier for a

functional J : L1 ! R to be Mackey continuous, than to be weak? continuous.

Fact 5.9. We have the following inclusion of topologies:

�
�
L1 ; L1�

� �
�
L1 ; L1�

� �
�
L1 ; (L 1 )?�

� � kk :

We have the following additional properties.

� X n * X =) X n

�
�

L1 ;L1
�

������! X =) X n
��* X .

� The Mackey topology�
�
L1 ; L1

�
is separated.

� A convex set is closed in�
�
L1 ; L1

�
i� it is closed in �

�
L1 ; L1

�
.

� X n

�
�

L1 ;L1
�

������! X =) 8 Y 2 L1
�

 ; F ; P; R

�
; E

�
Y




 X n � X






Rd

�
! 0 :

2. As noted by H.Brezis, one could be surprised that we thrive to obtain coarser topologies. The reason
is that a coarser topology implies more compact sets, which are useful for existence results.
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There is a practical characterization of the convergence of a sequence in the Mackey
topology by M.Nowak [71, Theorem 2.3]

Proposition 5.10. The sequence
�

X n

	
n2 N �

�
L1 ; L1

�
-converges towardX i�

(
9p 2 [1; + 1 ); X n

Lp

�! X

supn




 X n






1 < + 1

Remark 5.11. We have presented di�erent topologies onL1 as they induce di�erent
pairings. For example we can consider:

� the natural pairing
�

L1 ;
�
L1

� ?
�

of a Banach space with its topological dual, where
L1 is either endowed with the strong or weak topology;

� the pairing
�

L1 ; L1
�

that coincide with the previous one (up to canonical injection),
where L1 is either endowed with the weak? or Mackey topology.

In the following section we present a duality result using the pairing
�

L1 ; L1
�

, where L1

is endowed with the Mackey topology�
�
L1 ; L1

�
.

5.2 A Duality Result Through Mackey-Continuity

In [116] R.Wets exhibited conditions such that the non-anticipativity constraints are
quali�ed in the pairing

�
L1 ; L1

�
. Here we extend the results to more general a�ne con-

straint.
In x5.2.1 we present the optimization problem. Inx5.2.2 we gives some results of weak?

closedness of an a�ne subspace of L1 . Those results are used inx5.2.3 which follow closely
the proof given in [116]. In x5.2.4 we discuss one important continuity assumption made
in the proof.

5.2.1 Problem Statement

Let U be L1
�

 ; F ; P; Rd

�
, and Uad be an a�ne subspace ofU.

We consider a cost functionj : Rd � 
 ! R [
�

+ 1
	

, assumed to be a convex normal
integrand (see [96] for de�nitions and properties), with the following assumption, known
as strict feasibility condition ,

9 " > 0; 9 U0 2 Uad; 8u 2 Rd; kukRd � " =) j (U0 + u; �) < + 1 P-a.s. (5.5)

This strict feasibility condition is essential for the results. We de�ne the objective function
J : U ! R by

J : U 7! E
�
j
�
U

��
:=

Z



j
�
U (! ); !

�
dP(! ) : (5.6)

Finally, we consider the problem

min
U 2U ad �U

E
�
j
�
U

��
: (5.7)

We consider the pairing


Y ; X

�
, where Y 2 L1, X 2 L1 given by



Y ; X

�
:= E

�
Y � X

�
:
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5.2.2 Weak ? Closedness of A�ne Subspaces of L1
�

 ; F ; P; Rd

�

We show conditions for a�ne subspaces of L1
�

 ; F ; P; Rd

�
to be weak? closed, and

give some examples. This closedness assumption is required to prove the duality result in
x5.2.3. Simultaneously we obtain weak? continuity 3 results for linear operators useful in
Chapter 6.

Proposition 5.12. Consider a linear operator

� : L 1 �

 ; F ; P; Rn �

! L1 �

 ; F ; P; Rm �

;

and a vector b 2 L1
�

 ; F ; P; Rm

�
. Assume that there exist a linear operator

� y : L1�

 ; F ; P; Rm �

! L1�

 ; F ; P; Rn �

;

such that:

8X 2 L1 �

 ; F ; P; Rn �

; 8Y 2 L1�

 ; F ; P; Rm �

;
D

Y ; �
�
X

� E
=

D
� y� Y

�
; X

E
:

(5.8)
Then the linear operator � is weak? continuous and the a�ne set

Uad =
n

X 2 L1 �

 ; F ; P; Rn � �

� �
�
X

�
= B

o
; (5.9)

is weak? closed.

Proof. Consider a net
�
X i

�
i 2I in Uad � L1

�

 ; F ; P; Rn

�
converging weakly? towards X ,

and a random variable Y 2 L1
�

 ; F ; P; Rm

�
.

We have, for any i 2 I , by de�nition of � y,

E
�
hY ; �

�
X i

�
i
�

= E
�
h� y� Y

�
; X i i

�
:

As � y
�
Y

�
2 L1

�

 ; F ; P; Rn

�
, the linear form

X 7! E
�
� y� Y

�
� X

�
;

is weak? continuous (by de�nition of the weak ? topology). Hence,

lim
X i ! X

E
�
� y� Y

�
� X i

�
= E

�
� y� Y

�
� X

�
= E

�
Y � �

�
X

��
:

In other words the net
n

�
�
X i

� o

i 2I
converges weakly? toward �

�
X

�
. Hence, the function

� : L 1 �

 ; F ; P; Rn �

! L1 �

 ; F ; P; Rm �

is continuous if both spaces are endowed with their weak? topology.
As f B g is a weak?-closed set, we have thatUad = � � 1

�
f B g

�
is weak?-closed.

Corollary 5.13. Consider a matrix A 2 M m;n (R), and a random variable B 2
L1

�

 ; F ; P; Rm

�
. Then the linear operator � : L 1

�

 ; F ; P; Rn

�
! L1

�

 ; F ; P; Rm

�
,

de�ned by
8X 2 L1 �


 ; F ; P; Rn �
; �

�
X

�
= AX ; (5.10)

is weak? continuous, hence the a�ne space

Ua.s. :=
�

U 2 L1 �

 ; F ; P; Rn � �

� AU = B P � a:s:
	

; (5.11)

is weakly? closed.

3. By weak? continuity we means the continuity of the function from L 1 to L 1 both endowed with
the weak? topology.
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Proof. The operator � y : L1
�

 ; F ; P; Rm

�
! L1

�

 ; F ; P; Rn

�
, de�ned by

8Y 2 L1�

 ; F ; P; Rm �

; � y� Y
�

= AT Y ;

is linear and such that

8X 2 L1 �

 ; F ; P; Rn �

; 8Y 2 L1�

 ; F ; P; Rm �

;


Y ; �

�
X

��
=



� y� Y

�
; X

�
:

Thus, � is weak ? continuous by Proposition 5.12, andUa.s. in (5.11) is weak? closed.

Corollary 5.14. Consider a �ltration F = fF 0gT � 1
1 on

�

 ; F ; P

�
. Then, for t 2 [[0; T � 1]],

the linear operator � t : L1
�

 ; F ; P; Rd

�
! L1

�

 ; F ; P; Rd

�
, de�ned by

8X 2 L1 �

 ; F ; P; Rd�

; � t
�
X

�
= E

�
X

�
� F t

�
� X ;

is weak? continuous.
Hence, the linear space

N :=
�

U 2 L1 �

 ; F ; P; RdT � �

� 8t 2 [[0; T � 1]]; E
�
U t

�
� F t

�
= U t

	
; (5.12)

is weakly? closed.

Proof. We construct the right operator to apply Proposition 5.12.
For t 2 [[1; n]], linear operator � y

t : L1
�

 ; F ; P; Rd

�
! L1

�

 ; F ; P; Rd

�
, de�ned by

8Y 2 L1�

 ; F ; P; Rd�

; � y
t

�
Y

�
= E

�
Y

�
� F t

�
� Y ;

coincide with � on L 1
�

 ; F ; P; Rd

�
and, is such that

8X 2 L1 �

 ; F ; P; Rd�

; 8Y 2 L1�

 ; F ; P; Rd�

;


Y ; � t

�
X

��
=



� y

t

�
Y

�
; X

�
:

Indeed,

E
h
Y � � t

�
X

� i
= E

h
Y � E

�
X

�
� F t

� i
� E

�
Y � X

�

= E
h
E

�
Y

�
� F t

�
� X

i
� E

�
Y � X

�
by Lemma B.3

= E
h
� y

t

�
Y

�
� X

i
:

Hence, Proposition 5.12 gives the weak? continuity of � t .
We have

N =
T � 1\

t=1

� � 1
t

�
f 0g

�
;

thus, N is weak? closed.

5.2.3 A duality theorem

In this section we show the following �rst order optimality conditions.

Theorem 5.15. Assume that j is a convex normal integrand, thatUad is a weak? closed
a�ne subspace of L1

�

 ; F ; P; Rd

�
and that J given by (5.6) is continuous in the Mackey

topology �
�
L1 ; L1

�
at some point U0 2 Uad \ dom(J ). Then the control U ] 2 Uad is an

optimal solution to
inf

U 2U ad
E

�
j
�
U

��

if and only if there exist � ] 2 L1
�

 ; F ; P; Rd

�
such that
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� U ] minimizes on U the following Lagrangian4

L
�
U ; � ] � = E

h
j
�
U

�
+ U � � ]

i
;

� and � ] 2
�

Uad
� ?

.

In order to show this Theorem, we need a few preliminary results. We follow the work
of R.Wets in [116] for non-anticipativity constraints.

Consider the problem
inf

U 2U
J

�
U

�
+ � Uad

�
U

�
: (5.13)

In Lemma 5.16 we show that J is weak?-l.s.c, and hence�
�
L1 ; L1

�
-l.s.c. However

Theorem 5.17 requires a stronger assumption: the continuity ofJ at a point U0. This
assumption is discussed inx5.2.4.

Lemma 5.16. If j is a normal convex integrand satisfying (5.5), then the Fenchel conju-
gate (de�ned in De�nition A.37) of J in the pairing

�
L1 ; L1

�
, is given by

J ?�
�

�
= E

�
j ?�

�
��

=
Z



j ?(� (! ); ! )dP(! ) ;

and
j ?(�; ! ) = sup

u2 Rd

�
u � � � j (u; ! )

	
:

Moreover, we have
J ?? = J :

Thus, J is weak?-l.s.c.

Proof. It is a direct application of [88, Theorem 3].

Theorem 5.17. Assume that Uad is an a�ne space. Assume that j is a convex normal
integrand, and that J given by (5.6) is continuous in the Mackey topology�

�
L1 ; L1

�
at

some point U0 2 Uad \ dom(J ). Then, we have

inf
U 2U ad

J
�
U

�
= max

� 2
�

Uad
� ?

� J ?�
�

�
:

Proof. Notice that as the set Uad is weak? closed convex, the function� Uad is also convex
and weak? l.s.c., and hence�

�
L1 ; L1

�
-l.s.c.

By using an extension of Fenchel's duality theorem as given in [87, Theorem 1] we have

inf
U 2U

n
J

�
U

�
+ � Uad

�
U

� o
= max

� 2 L1

n
� J ?�

�
�

� � ?
Uad

�
�

� o
: (5.14)

Indeed both functions are convex, andJ is continuous in the Mackey topology�
�
L1 ; L1

�

at U0 2 Uad, where � Uad is �nite.
Moreover,

� ?
Uad

�
�

�
= max

U 2U ad
h� ; U i = � �

Uad
� ?

�
�

�
: (5.15)

We conclude by combining (5.14) and (5.15).

A by product of this proof is given, as Uad is an a�ne space, in Equation (5.15).

4. Recall that Uad is an a�ne space, hence we do not need to specify the point at which the dual cone,
given in De�nition A.40, is evaluated.
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Corollary 5.18. Suppose that the assumptions of Theorem 5.17 hold true. Then, a control
U ] minimizes J if and only if there exists � ] 2

�
Uad

� ? such that

� � ] 2 @J
�
U ] � :

Moreover, those� ] are the points whereJ ? achieves its minimum over
�
Uad

� ? .

Proof. Throughout the proof we consider the Mackey topology �
�
L1 ; L1

�
on

L1
�

 ; F ; P; Rd

�
. Thus, the topological dual of L1 is L1, and any subgradients are el-

ements of L1.
Consider a control U ] 2 Uad. Note that U ] minimizes J on Uad i� 0 2 @

�
J +

� Uad

��
U ] � . By [88, Theorem 3], this is equivalent to 02 @

�
J

��
U ] � + @

�
� Uad

��
U ] � , and

thus to the existence of � ] 2 L1 such that � ] 2 @
�
� Uad

��
U ] � and � � ] 2 @

�
J

��
U ] � .

Finally, we have
@

�
� Uad

��
U ] � =

�
Uad� ? :

Indeed � 2 @
�
� Uad

��
U ] � i�

8U 2 Uad;


� ; U � U ] � � 0 ;

and, asUad is a vector space, it is equivalent to

8U 2 Uad;


� ; U � U ] � = 0 :

Thus the existence ofU ] minimizing J over Uad, implies that � ] 2
�
Uad

� ? and � � ] 2
@J

�
U ] � .
On the other hand assume that there is such a� ] .
As � � ] 2 @J

�
U ] � , we have

8U 2 U; J
�
U

�
� J

�
U ] � +



� � ] ; U � U ] � ;

which can be written as

J
�
U ] � �



� � ] ; U ] � � sup

U 2U

n

� � ] ; U

�
� J

�
U

� o

| {z }
J ?

�
� � ]

�

;

and leads to (the other inequality being always satis�ed)

J
�
U ] � + J ?�

� � ] � = � E
�
� ] � U ] � :

Similarly, as � ] 2 @�Uad

�
U ] � we have

� Uad

�
U ] � + � ?

Uad

�
� ] � = E

�
� ] � U ] � ;

and, as � ?
Uad = � �

Uad
� ? , (see Equation (5.15)) we obtain

� Uad

�
U ] � + � �

Uad
� ?

�
� ] � = E

�
� ] � U ] � :

Thus,
� Uad

�
U ] � + � �

Uad
� ?

�
� ] � = � J

�
U ] � � J ?�

� � ] � ;

or, equivalently,

� Uad

�
U ] � + J

�
U ] � = � J ?�

� � ] � � � �
Uad

� ?

�
� ] � = � J ?�

� � ] � � � �
Uad

� ?

�
� � ] � ;

as
�
Uad

� ? is a vector space. Hence, Theorem 5.17 achieves the proof.
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As we said at the beginning we now end the section by the proof of Theorem 5.15.

Proof. By Corollary 5.18, the control U ] is a minimizer of J over Uad i� there is � � ] 2

@J
�
U ] � \

�
Uad

� ? . Moreover U ] minimizes the LagrangianL(U ; � ] ) on U i�

0 2 @
�

J + h� ] ; �i
� �

U ] � ;

and, by the continuity assumption and [88, Theorem 3], this condition can be written as

0 2 @
�
J

��
U ] � + @U

�
h� ] ; �i

� �
U ] � :

As the subdi�erential of h� ] ; �i is
�

� ] 	 , this is equivalent to � � ] 2 @J
�
U ] � .

5.2.4 Discussing the Local �
�
L1 ; L1

�
-Continuity of J

It is worthwhile to elaborate on the Mackey continuity assumption of J at point U0
in Theorem 5.17. Indeed Lemma 5.16 show thatJ is weak? l.s.c everywhere, which is
equivalent to be Mackey l.s.c everywhere asJ is convex. However assuming thatJ is
Mackey upper-semicontinuous at pointU0 is a weaker assumption than assuming weak?

upper-semicontinuity at point U0.
First we show that if J is �nite then J is Mackey continuous. Then, we give conditions

on j for J to be �nite. Finally we show that, unfortunately, if the optimization problem
include almost sure bounds, then the functionJ cannot be Mackey continuous at a point
U0.

Conditions for Mackey Continuity

We show Mackey continuity if J (de�ned in (5.6)) is �nite. First we need a de�nition
and a lemma.

De�nition 5.19. We say that J : U ! R has the Lebesgue propertyif for any sequence�
Un

	
n2 N such that

� supn2 N




 Un






1 < + 1 ,

� Un
a.s.��! U ,

we haveJ (Un ) ! J
�
U

�
.

Lemma 5.20. Suppose thatj is a convex integrand and thatJ (de�ned in (5.6)) is �nite
everywhere onL1

�

 ; F ; P; Rd

�
. Then, J has the Lebesgue property.

Proof. Consider a sequence
�
Un

�
n2 N converging almost surely towardU , and such that

sup
n2 N




 Un






1 � M < + 1 :

As, for almost all ! , u 7! j (u; ! ) is convex and �nite, it is also continuous. As j is
measurable in! , it is a Caratheodory integrand, and thus a normal integrand.

By a measurable selection argument [96, Theorem 14.37], there existsV 2 L0 satisfying


 V






1 � M and
jj (V )j = max

kukRd � M
jj (u; ! )j < 1 ;

almost surely. In particular we have, for all n 2 N, jj (Un )j � j j (V )j.
Moreover, by continuity in u of j we have, for almost all ! ,

j (Un (! ); ! ) ! n j (U (! ); ! ) :

Now asJ (V ) < + 1 , Lebesgue dominated convergence theorem ensure thatJ (Un ) !
J

�
U

�
.
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Proposition 5.21. Assume that j is a convex integrand and thatJ is �nite everywhere
on L1

�

 ; F ; P; Rd

�
. Then, J is �

�
L1 ; L1

�
-sequentially continuous.

Proof. Recall that, for a sequence
�
xn

�
n2 N in a topological space, the sequence

�
xn

�
n2 N

converges towardx if from any subsequence we can extract a further subsequence con-
verging toward x.

Assume that
�
Un

�
n2 N �

�
L1 ; L1

�
-converges towardU . Then, by Property 5.10, we

have that there is ap � 1 such that
�
Un

�
n2 N converges in Lp toward U , and, in particular,

that
�
Un

�
n2 N converges in probability.

Consider the sequence
�
J (Un )

�
n2 N. For any subsequence

�
J

�
U � (n)

� �

n2 N
, we are going

to construct a sub-subsequence converging towardsJ
�
U

�
.

As
�
U � (n)

�
n2 N converges in probability (as a subsequence of a sequence converging

in probability) toward U , we have a further subsequence
�
U  (n)

�
n2 N converging almost

surely towards U . Moreover Property 5.10 ensures that supn2 N




 Un






1 < + 1 . Thus,
Lemma 5.20 guarantees convergence of

�
J (U  (n) )

�
n2 N toward J

�
U

�
, hence the conver-

gence of
�
J (Un )

�
n2 N toward J

�
U

�
.

Corollary 5.22. Assume that j is a convex integrand and thatJ is �nite everywhere on
L1

�

 ; F ; P; Rd

�
. Then, J is �

�
L1 ; L1

�
-continuous5.

Proof. In the proof of [88, Theorem 3], it is shown that, under strict feasibility assumption
(satis�ed by �niteness of J ), we have

9Y0 2 L1 such that j ?(Y0; �)+ 2 L1 :

Using Lemma 5.20, the result is a direct application of [72, Theorem 3.4].

Condition on j that Ensures Finiteness of J

As the �niteness of J is an assumption on the integral cost, we gives some set of
assumptions on the integrandj that implies that J is �nite everywhere on L1

�

 ; F ; P; Rd

�
.

Proposition 5.23. If there exists a U0 2 L1
�

 ; F ; P; Rd

�
such that E

�
jj (U0; �)j

�
< 1

and if the family of functions
�

x 7! j (x; ! ) j ! 2 

	

is P-almost surely equi-Lipschitz6 on
any bounded set, thenJ is �nite.

Proof. Let U0 2 L1
�

 ; F ; P; Rd

�
be such that E

�
jj (U0; �)j

�
< + 1 . Consider U 2

L1
�

 ; F ; P

�
. Let � be an almost sure Lipschitz constant ofx 7! j (x; ! ) on the ball

of center 0 and radius max
� 



 U





1 ;



 U0






1

	
. Then we have, almost surely,

jj
�
U ; !

�
j � j j

�
U0; !

�
j + � jU � U0j � j j

�
U0; !

�
j + �

� 


 U






1 +



 U0






1

�
;

therefore J
�
U

�
< + 1 .

5. This result is stronger than Proposition 5.21. However it relies on a result found in a pre-print, with
an involved proof that I have not been able to grasp, whereas the proof of Proposition 5.21 is a personal
contribution.

6. In fact we only require that the Lipschitz coe�cient is integrable. Moreover we can replace Lipschitz
continuity assumption by H•older continuity assumptions.
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Mackey Discontinuity Caused by Almost Sure Bounds

We show that almost sure constraints represented in the objective functionJ implies
that at any point of its domain J is not Mackey-continuous.

Proposition 5.24. Consider a convex normal integrandj : Rd � 
 ! R, Consider a set
Uad ( R d and de�ne the set of random variable

Ua.s. :=
n

U 2 L1 �

 ; F ; P; Rd� �

� U 2 Uad P � a.s.
o

:

Then, at any point U0 2 dom
�
J

�
\ U a.s., where J is given by (5.6), the function

eJ : U 7! J (U ) + � U 2U a.s. ;

is not Mackey continuous.

Proof. Consider a point x 2 Rd n Uad, and a random variable U0 2 dom
�
J

�
\ U a.s.. Let

X be random variable uniform on [0; 1]. De�ne the sequence of random variables

Un := U0 +
�
x � U0

�
1X � 1

n
:

We have 


 Un






1 �



 U01X � 1

n






1 +



 x






Rd �



 U0






1 +



 x






Rd :

Moreover,




 Un � U0






L1 =



 �

x � U0

�
1X � 1

n






L1 �




 x � U0






L1

n
�




 x






L1 +



 U0






L1

n
:

Hence, Proposition 5.10 ensure thatUn

�
�

L1 ;L1
�

������! U . However, as, for any n 2 N,
Un =2 Uad when X � 1

n , we have that Un =2 Ua.s., hence eJ
�
Un

�
= + 1 . And, by

assumption eJ
�
U0

�
< 1 , thus eJ

�
Un

�
9 eJ

�
U0

�
. Therefore, eJ is not Mackey continuous

at U0.

To sum up, we are able to dualize some a�ne constraints if there is no non-dualized con-
straints. In [116] the only type of constraint considered is the so-called non-anticipativity
constraints (we show in the following section that they fall in the class of a�ne constraint
that can be dualized). We add to those constraints some a�ne almost sure constraints.
However, we are not able to show the existence of optimal multiplier in presence of almost
sure bounds on the control.

5.3 Application to a Multistage Problem

In this section, we present a multistage problem with a�ne almost sure constraint and
show the existence of a multiplier in L1.

We consider a sequence of noises
�

W t

	 T � 1
t=0 , with W t 2 L1

�

 ; F ; P; Rnw

�
, for any

t 2 [[0; T � 1]]. We denote byF t the � -algebra generated by the past noises:

F t := �
�
W 0; � � � ; W t

�
;

and by F the induced �ltration F =
�

F t
	 T � 1

t=0 .
given by

8t 2 [[0; T � 1]]; X t+1 = f t
�
X t ; D t ; W t

�
; (5.16)
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where the control processf D t g
T � 1
t=0 is a stochastic process adapted toF, and for each time

t 2 [[0; T � 1]], D t 2 L1
�

 ; F t ; P; Rnd

�
.

For each time t 2 [[0; T � 1]], we consider a local costL t : Rnx + nd + nw ! R, and a �nal
cost K : Rnx ! R. We also consider linear constraint functions� t : Rnx + nd ! Rnc , and a
sequence ofF-adapted stochastic process

�
B t

	
t2 [[0;T � 1]].

Finally the problem reads,

min
X ;D

E
hT � 1X

t=0

L t
�
X t ; D t ; W t

�
+ K (X T )

i
(5.17a)

s:t: X 0 = x0 (5.17b)

X t+1 = f t
�
X t ; D t ; W t

�
; (5.17c)

D t � F t ; (5.17d)

� t (X t ; D t ) = B t P � a:s: (5.17e)

Lemma 5.25. Assume that,
� the random noisesW t are essentially bounded;
� the local cost functionsL t are �nite and convex in (x t ; dt ), continuous in wt ;
� the evolution functions f t are a�ne in (x t ; dt ), continuous in wt ;
� the constraint functions � t are a�ne.
Then Problem (5.17) can be written

min
U 2U ad

J
�
U

�
;

where
J (U ) = E

�
j (U )

�
;

with j a convex normal integrand. MoreoverJ is �nite on L1 and hence is a�
�
L1 ; L1

�
-

continuous function, and Uad is a �
�
L1 ; L1

�
-closed a�ne space.

Proof. We �rst rewrite Problem 5.17 in the framework of x5.2, and then shows the required
continuity and closedness properties.

1. We reformulate Problem (5.17). We de�ne the control U =
�

D s

	 T � 1
s=0 2

L1
�

 ; F ; P; RT nd

�
. Then, x0 being given and constant, we de�ne recursively the

functions

x t : Rt (nd + nw ) �! Rnx

�
D � ; W�

	 t � 1
� =0 7�! f t � 1

�
x t � 1

� �
D � ; W�

	 t � 2
� =0

�
; D t � 1; Wt � 1

�

The functions x t give the value ofX t in function of the past decisionsf D sgt � 1
s=0 , and

noisesf W sgt � 1
s=0 , and are a�ne in U .

We de�ne (up to P-almost sure equality), the cost

j (U ; �) :=
T � 1X

t=0

L t

�
x t

� �
D � ; W �

	 t � 1
� =0

�
; D t ; W t

�
+ K

�
xT

� �
D � ; W �

	 T � 1
� =0

� �
: (5.18)

Then J (U ) = E[j (U )] is the objective function of Problem (5.17), taking into ac-
count the initial state constraint (5.17b) and the dynamic constraint (5.17c).
The control U satis�es constraint (5.17d) and is said to be non-anticipative if it is
an element of the spaceN � L1

�

 ; F ; P; RT nd

�
, where

N :=
n�

D s

	 T
s=0 2 L1 �


 ; F ; P; RT nd
� �

� 8s 2 [[0; T � 1]]; E
�
D s

�
� Fs

�
= D s

o
:

(5.19)
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The control U satis�es constraint (5.17e) if it is an element of the subspaceUa.s.

given by

Ua.s. :=
�

�
D s

	 T � 1
s=0

�
� 8s 2 [[0; T � 1]]; � t

�
x t

� �
D � ; W �

	 t � 1
� =0

�
; D t

�
= B t

�
:

(5.20)
With these notations, Problem (5.17) can be written

min
U 2N \U a.s.

J
�
U

�
:

2. We show the�
�
L1 ; L1

�
-continuity of J .

As, for any t 2 [[0; T � 1]], the function L t is convex, and the function x t is a�ne
we obtain the convexity in U of function j . Measurability and continuity of j are
obvious.
Moreover, for all t 2 [[0; T � 1]], the decision variableD t is bounded as an element of
L1 , and the random noiseW is bounded by assumption. Thus the state processX
given by (5.16) is also bounded. Furthermore there are constants� � 0 and � � 0
such that




 X






1 � � + �



 U






1 . Consequently j is a Caratheodory function, and
J (as de�ned in (5.6) ) is �nite on L 1 .
Thus, by Corollary 5.22, the function J is �

�
L1 ; L1

�
-continuous.

3. We show the�
�
L1 ; L1

�
-closedness ofUad.

Corollary 5.13 and 5.14 ensure thatN and Ua.s. are weak?-closed a�ne space, hence
Uad = N \ U a.s. is a weak?-closed a�ne space, thus a�

�
L1 ; L1

�
-closed a�ne space.

The proof is complete.

Lemma 5.25, cast the dynamic problem into the static setting ofx5.2, and thus ensure
the existence of a multiplier for the non-anticipativity constraint coupled with the almost-
sure a�ne constraint. We now discuss, how the multiplier can be decomposed into one
for the almost sure constraint, and one for the non-anticipativity constraint.

Proposition 5.26. We denote byN the set of non-anticipative controls de�ned in Equa-
tion (5.19), and by Ua.s. the set of controls satisfying(5.17e) given in Equation (5.20).

If, for all U 2 Ua.s., the F-adapted part of U is also in Ua.s., i.e.

n
E

�
U t

�
� F t

� oT � 1

t=0
2 Ua.s. ; (5.21)

then
(Ua.s. \ N )? =

�
Ua.s.� ? + N ? : (5.22)

Proof. Consider the linear operator � : L 1
�

 ; F ; P; RT d

�
! L1

�

 ; F ; P; RT d

�
, that gives

for each stochastic process itsF-adapted part, i.e.

�
�
U

�
=

n
E

�
U t

�
� F t

� oT � 1

t=0
:

� is a linear operator, admitting an adjoint, with �
�
U

�
= N , and � jN = Id. Moreover,

by assumption �
�
Ua.s.

�
� U a.s.. Hence, Theorem A.43, states that, for anyU 2 N \ U a.s.,

(Ua.s. \ N )?
U =

�
Ua.s.� ?

U + N ?
0 :

Finally, noting that Ua.s. and N are a�ne spaces gives the result.
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Corollary 5.27. Under assumptions of Lemma 5.25, Problem(5.17) admits a L1 mul-
tiplier for the non anticipativity constraint (5.17d) coupled with the almost sure con-
straints (5.17e).

Moreover, if the constraint functions � t in Problem (5.17) does not depends onX t ,
then the multiplier can be decomposed into one multiplier for the almost sure constraints,
and one for the non-anticipativity constraints.

Proof. From Lemma 5.25 we have the assumptions required to apply Theorem 5.15. More-
over, if the constraint functions � t in Problem (5.17) does not depends onX t , then as-
sumption (5.21) is satis�ed, and Proposition 5.26 gives the result.

Conclusion

In this chapter, we have shown that, if the cost function J is �nite on L 1 , then almost
sure a�ne equality constraints and non-anticipativity constraints admit a L 1-multiplier.
Notice that, when we assume that the cost functionJ is �nite on L 1 , we exclude the
possibility of having almost sure constraints that are not dualized.

If we want to incorporate bound constraints on control variables in the optimization
problem, we should turn to a series of works by T. Rockafellar and R. Wets. In a �rst series
[86,91,93,97], they work out the theory of duality on a two-stage stochastic optimization
problem. In [97], they show a result of non-duality gap. In [91] the Kuhn-Tucker conditions
are detailed, whereas in [86] the existence of a multiplier in

�
L1

� ? is shown. Finally, in [93]
they introduce a condition, slightly weaker than the well-known assumption of relatively
complete recourse, that ensures the existence of a multiplier in L1. In [92, 94, 95], they
adapt these results to a multistage optimization problem.

It appears that, in these papers, two types of assumptions are of the upmost impor-
tance: (essential) relatively complete recourse; strict feasibility assumption. We comment
one after the other.

� Relatively complete recourse ensures that there is no induced constraint, that is,
that the constraints at later stages do not imply constraints at earlier stages. From
a multistage application point of view, bound constraints on the state would still be
di�cult to treat; but bound constraints on the control would be available.

� The strict feasibility assumption is mainly used to show the existence of a multiplier
in

�
L1

� ?. This assumption forbids the direct use of the results of T. Rockafellar
and R. Wets to problems with equality constraints. However, if we look at the proof
of [93, Theorem 3], the strict feasibility assumption is used to ensure the existence
of a multiplier for the �rst stage problem (with a linear cost). Hence, the existence
of a multiplier in

�
L1

� ? and relatively complete recourse-like assumptions might be
enough to show the existence of a multiplier in L1. Work remains to be done on this
subject.



Chapter 6

Uzawa Algorithm
in L1 �


 ; F ; P;Rn�

One should always generalize.

Carl Jacobi

Contents
6.1 Optimization Results and Classical Uzawa Algorithm . . . . . 154

6.1.1 Optimization in a Banach Space . . . . . . . . . . . . . . . . . . 155

6.1.2 Recall of the Convergence Proof of Uzawa Algorithm in a Hilbert
Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.2 Uzawa Algorithm in L1
�

 ; F ; P; Rn

�
Spaces . . . . . . . . . . . . 157

6.2.1 Discussing Di�erences Between Hilbert and Banach Spaces . . . 158

6.2.2 Making Sense of Uzawa Algorithm in L1
�

 ; F ; P; Rn

�
for Equal-

ity Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.2.3 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2.4 Di�culty to Obtain the Convergence of the Whole Sequence . . 162

6.3 Application to a Multistage Problem . . . . . . . . . . . . . . . 164

We remind the reader that this second part of the manuscript deals with the treatment
of constraints through duality, in stochastic optimization. This Chapter 6 is devoted to the
extension of the Uzawa algorithm, as formulated in an Hilbert space (e.g. L2

�

 ; F ; P

�
), to

the Banach space L1
�

 ; F ; P

�
. The issue is the following. The convergence of the Uzawa

algorithm relies upon a key assumption of constraint quali�cation. But, we have seen in
Chapter 4 that almost sure constraints generally fail to be quali�ed for the Lp duality,
when p < + 1 . In Chapter 5 we derived conditions to obtain an optimal multiplier in
the

�
L1 ; L1

�
duality. This chapter is devoted to the extension of the Uzawa algorithm, as

formulated in an Hilbert space (e.g. L2
�

 ; F ; P

�
), to the Banach space L1

�

 ; F ; P

�
.

The chapter is organized as follows. Inx6.1, we recall optimization results (inequalities
and �rst order optimality conditions), that are well-known in Hilbert spaces, and that
remain valid in Banach spaces; we also recall the proof of convergence of Uzawa algorithm
in the usual Hilbert spaces case. Inx6.2, this proof is used as a canvas for the proof
of convergence of Uzawa algorithm in the non re
exive Banach space L1

�

 ; F ; P; Rn

�
.

Finally, in x6.3 we present an application to a multistage example.
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Introduction

To address a constraint in an optimization problem, we can dualize it, thus making
it disappears as a constraint and appears as a cost. Consequently, the \min" operator
is replaced by a \min max" operator. Numerical algorithms address such problems; the
Uzawa algorithm is one of them.

For an objective function J : U ! R, a constraint function � : U ! V , constraint set
Uad � U and a constraint coneC � V , we consider the following problem

min
u2U ad

J (u) ; (6.1a)

s:t: �( u) 2 � C ; (6.1b)

where U (resp. V) is a topological space paired withU? (resp. V?). We associate with
this problem the Lagrangian L : U � V ? ! R, introduced in Chapter 4, given by

L(u; � ) := J (u) +


� ; �( u)

�
V? ;V : (6.2)

Thus, Problem (6.1) reads

min
u2U ad

max
� 2 C?

J (u) +


� ; �( u)

�
V? ;V ; (6.3)

where C? � V ? is the dual cone given by

C? =
�

� 2 V ? j 8x 2 C;


� ; x

�
V? ;V � 0

	
:

The dual problem of Problem (6.3) reads

max
� 2 C?

min
u2U ad

J (u) +


� ; �( u)

�
V? ;V ; (6.4)

and the inner minimization problem for a given multiplier � is

min
u2U ad

J (u) +


� ; �( u)

�
V? ;V : (6.5)

An iteration of the Uzawa algorithm consists in �xing the multiplier � of the constraint,
then solving the inner minimization problem (6.5), and �nally updating the multiplier.
The update step can be seen, under the right assumptions, as a gradient step over the
multiplier. It is described in Algorithm 6.1, where proj A (z) is the projection of z on the
convex setA.

Data : Initial multiplier � (0) , step � > 0 ;
Result : Optimal solution U ] and multiplier � ] ;
repeat

u(k+1) 2 arg min
u2U ad

n
J (u) +



� (k) ; �( u)

� o
; (6.6a)

� (k+1) = proj C?

�
� (k) + � �

�
u(k+1) � �

: (6.6b)

until �( u(k) ) 2 � C;

Algorithm 6.1: Uzawa Algorithm

6.1 Optimization Results and Classical Uzawa Algorithm

In x6.1.1 we show that some inequalities and �rst order optimality conditions usually
presented in an Hilbert setting remain true in a Banach setting. In x6.1.2 we recall the
Uzawa algorithm in an Hilbert setting and its proof that is used as a canvas for the proof
given in x6.2.



6.1. OPTIMIZATION RESULTS AND CLASSICAL UZAWA ALGORITHM 155

6.1.1 Optimization in a Banach Space

In this synthetic section we underline some relevant di�erences between Hilbert and
Banach spaces, and go on to give some inequalities and optimality conditions that are
used in x6.1.2 andx6.2.

Lemma 6.1. Let U be a Banach space andJ : U ! R a convex and Gâteaux di�erentiable
function J . We have 


J 0(u) ; v � u
�

� J (v) � J (u) :

Moreover, if J is strongly convex1 of modulus a, we have

a ku � vk2 �


J 0(u) � J 0(v) ; u � v

�
:

Proof. The usual proof in a Hilbert space remains valid in a Banach space.

Proposition 6.2. Let U be a Banach space. We consider the following problem:

min
u2U ad

J (u) + J � (u) : (6.7)

We make the following assumptions:

1. Uad is a non empty, closed convex subset ofU,

2. the function J : U ! R is convex and Gâteaux-di�erentiable,

3. the function J � : U ! R is convex.

Then, the point �u 2 Uad is a solution of Problem (6.7) if and only if

8u 2 Uad;


J 0� �u

�
; u � �u

�
+ J � (u) � J � �

�u
�

� 0 : (6.8)

Proof. Assume that �u is an optimal solution of Problem (6.7). Uad being convex, we have

8t 2 (0; 1]; 8u 2 Uad; J
�
�u + t(u � �u)

�
+ J � �

�u + t(u � �u)
�

� J
�
�u
�

+ J � �
�u
�

;

so that, for any t 2 (0; 1],

J
�
�u + t(u � �u)

�
� J

�
�u
�

t
+

J �
�
�u + t(u � �u)

�
� J �

�
�u
�

t
� 0 :

By convexity of J � we have

8t 2 (0; 1];
J �

�
�u + t(u � �u)

�
� J �

�
�u
�

t
� J � (u) � J � �

�u
�

;

and by Gâteaux-di�erentiability of J we have

lim
t ! 0+

J
�
�u + t(u � �u)

�
� J

�
�u
�

t
=



J 0� �u

�
; u � �u

�
;

hence the variational inequality (6.8) holds true.

Now, suppose that (6.8) is satis�ed. Then, by convexity of J , we have that

8u 2 Uad;


J 0� �u

�
; u � �u

�
� J (u) � J

�
�u
�

;

thus, the optimality of �u.

We apply Inequality (6.8) to Problem (6.5), where J is the objective cost, andJ � is
the dual term, and obtain

8u 2 Uad;


J 0� �u

�
; u � �u

�
+



� ; �( u) � �

�
�u
��

� 0 : (6.9)

1. See [70, Section 2.1.3] for equivalent de�nitions of strongly convex functions
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6.1.2 Recall of the Convergence Proof of Uzawa Algorithm in a Hilbert
Space

Following [45, Ch.VII], we recall the proof of the Uzawa algorithm. This proof will
be used as a canvas for the proof an extension of the Uzawa algorithm in the L1 case
developed inx6.2.

From now on the di�erential form J 0(u) 2 U? is associated with the gradientr J (u) 2
U.

We make the following assumptions about Problem (6.1).

Hypothesis 1.

1. The function J : U ! R is strongly convex of modulusa, and Gâteaux-di�erentiable.

2. The function � : U ! V is C-convex (see De�nition A.48), and � -Lipschitz.

3. Uad is a non empty, closed convex subset of the Hilbert spaceU.

4. C is a non empty, closed convex cone of the Hilbert spaceV.

5. The Lagrangian L (de�ned in (6.2)) admits a saddle-point(u] ; � ] ) on Uad � C?, that
is,

8u 2 Uad; 8� 2 C?; L
�
u] ; �

�
� L

�
u] ; � ] � � L

�
u; � ] � : (6.10)

6. The step � is small enough (0 < � < 2a=� 2).

Let us comment these assumptions.
(a) In general, we do not require condition 5, but obtain it from other assumptions,

e.g. through quali�cation conditions.
(b) The strong convexity of J ensures the uniqueness ofu] , �rst component of the

saddle point, in (6.10).
(c) We do not assume that J is l.s.c., as this property is implied by convexity and

di�erentiability:

J (v) � J (u) +


r J (u) ; v � u

�
) lim inf

v! u
J (v) � J (u) :

(d) The right-hand side inequality of (6.10) can be written

u] 2 arg min
u2U ad

L
�
u; � ] � ;

with the following optimality condition (see (6.9)),

8u 2 Uad;


r J

�
u] � ; u � u] � +



� ] ; �( u) � �

�
u] �� � 0 :

(e) The left-hand side inequality of (6.10) can be written

8� 2 C?;


� � � ] ; �

�
u] �� � 0 ;

which is equivalent to, asC? is convex,

� ] = proj C?

�
� ] + � �

�
u] �

�
;

for any � > 0.

Theorem 6.3. Under Hypothesis 1, the Uzawa Algorithm 6.1 is such that the se-
quencef u(k)gk2 N converges towardu] in norm.

Proof. Let (u] ; � ] ) be a saddle point of the LagrangianL given by (6.2). We denote
r (k) = � (k) � � ] .
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1. We have that, as the projection on a convex set is a non-expansive function,




 r (k+1)




 2 =




 projC?

�
� (k) + � �

�
u(k+1) � �

� projC?

�
� ] + � �

�
u] �

� 


 2 ;

�



 r (k) + �

�
�

�
u(k+1) �

� �
�
u] �� 



 2 :

Developing this expression, and exploiting the� -Lipschitz continuity of �, we obtain




 r (k+1)




 2 �




 r (k)




 2 + 2 �



r (k) ; �

�
u(k+1) �

� �
�
u] �� + � 2� 2




 u(k+1) � u]




 2 : (6.11)

2. We apply the optimality condition (6.9), on the one hand for � = � (k) with u = u]

and �u = u(k+1) and, on the other hand, for � = � ] with u = u(k+1) and �u = u] . This
gives



r J

�
u(k+1) �

; u] � u(k+1) �
+



� (k) ; �

�
u] � � �

�
u(k+1) ��

� 0 ;


r J

�
u] � ; u(k+1) � u] � +



� ] ; �

�
u(k+1) �

� �
�
u] �� � 0 :

Summing both conditions and using the strong convexity ofJ , we obtain



� (k) � � ] ; �

�
u(k+1) �

� �
�
u] �� � �



r J

�
u(k+1) �

� r J
�
u] � ; u(k+1) � u] � ;

� � a



 u(k+1) � u]




 2 :

3. Using the last inequality Equation (6.11) yields




 r (k+1)




 2 �




 r (k)




 2 �

�
2a� � � 2� 2� 



 u(k+1) � u]



 2 :

The assumption 0 < � < 2a=� 2 on the step � ensures that 2a� � � 2� 2 > 0, the se-
quence

�
r (k)

	
k2 N is decreasing and non-negative, thus convergent. Consequently, the

sequence
�

ku(k) � u] k
	

k2 N converges toward 0.

Notice that this proof relies on i) estimations deduced from optimality conditions that
hold in Banach space ii) existence of a saddle-point (which can be obtained with other
assumptions) iii) developing a square norm (in (6.11)). This last point might fail in a
Banach space.

6.2 Uzawa Algorithm in L1
�

 ; F ; P; Rn

�
Spaces

In Problem (6.1), we considered the case where spacesU and V were Hilbert spaces.
Now, in the sequel of this chapter, we assume thatU and V are the following L1 spaces:

U = L 1 (
 ; F ; P; Rn ); V = L 1 (
 ; F ; P; Rp) : (6.12)

We assume that
�

 ; F ; P

�
is a probability space, where the � -algebra F is not �nite

(modulo P, see De�nition 5.1). Indeed, when F is �nite, the space L1
�

 ; F ; P; Rn

�
is

a �nite dimensional vector space, hence a Hilbert space; thus, the convergence result of
x6.1.2 holds true.

Moreover, from now on, we assume that we have only equality constraints:
� the cone of constraints in Problem (6.1) isC =

�
0
	

;
� C-convexity of the constraint function � implies that � is an a�ne function;
� projC? is the identity function.
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Thus, Problem (6.1) reads

min
u2U ad � L1

J (u) ; (6.13a)

s:t: �( u) = 0 ; (6.13b)

and the algorithm de�ned in 6.1 reads

U (k+1) = arg min
U 2U ad

n
J

�
U

�
+



� (k) ; �

�
U

�� o
; (6.14a)

� (k+1) = � (k) + � �( U (k+1) ) ; (6.14b)

where we choose to take� (0) in L 1
�

 ; F ; P; Rp

�
.

We underline the di�erences between Hilbert spaces and Banach spaces inx6.2.1, and
then explain in x6.2.2 why the Uzawa update (6.14b) is well de�ned. We give a result of
convergence of a subsequence the algorithm inx6.2.3, although using strong assumptions
and discuss why we do not obtain the convergence of the whole sequence inx6.2.4.

6.2.1 Discussing Di�erences Between Hilbert and Banach Spaces

The spacesU = L 1
�

 ; F ; P; Rn

�
and V = L 1

�

 ; F ; P; Rp

�
given in (6.12) are non-

re
exive, non-separable, Banach spaces. Hence they do not have the properties displayed
by Hilbert spaces, and useful for optimization.

Perks of an Hilbert Space

In an Hilbert space H we know that

i) the weak and weak? topologies are identical,

ii) the space H and its topological dual can be identi�ed.

Point i) allows to formulate existence of minimizer results. Indeed, the weak?-closed
bounded subsets ofH are weak? compact, (Banach-Alaoglu Theorem A.24). Hence, weakly
closed bounded subsets are weakly compact. A convex set is closed i� it is weakly closed,
and a convex function is l.s.c. i� it is weakly l.s.c.. Thus, a convex (strongly) l.s.c. function
f : H ! R, coercive on the closed convex subsetUad � H , admits a minimum on Uad.
Indeed, coercivity implies that we can consider a bounded subset ofUad; its closed convex
hull is weakly compact and, asf is weakly l.s.c., Bolzano Weierstrass theorem ensures the
existence of a minimum.

Point ii) allows to write gradient-like algorithms. Indeed, it allows to represent the
di�erential of a (di�erentiable) function f : H ! R as the inner product with a vector
g 2 H called gradient. Wit this, we can propose gradient-like minimization algorithms as
follows: at any iteration k, we have a pointu(k) 2 H , and the gradient g(k) = r f

�
u(k)

�
2

H ; the new point u(k+1) is a linear combination of the former point u(k) and of the gradient
g(k) , e.g. (6.14b).

Di�culties Appearing in a Banach Space

In a re
exive Banach spaceE, i ) still holds true, and thus the existence of a minimizer
remains easy to show. Howeverii ) does not hold any longer. Indeed, the di�erential of
a di�erentiable function f : E ! R at point x 2 E can be represented through a duality
product df (x) : h 7!



g ; x

�
, but g belongs to the topological dual ofE , which cannot be

identi�ed to E (if E is not an Hilbert space). Thus, a gradient algorithm whereu(k+1) is
a linear combination of u(k) 2 E and g(k) 2 E 0 does not have any sense.
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In a non-re
exive Banach spaceE, neither i ) nor ii ) hold true. However, if E is the
topological dual of a Banach space, then the Banach-Alaoglu theorem (Theorem A.24)
holds, and weakly? closed bounded subset, ofE are weak? compact. In this case, weak?

lower semicontinuity of a function f , coupled with its coercivity, leads to the existence of
a minimizer of f (this point is developed in Theorem 6.4).

Here, we warn the reader that we are not sure of the existence of strongly convex
functions in a non-re
exive Banach space. As an illustration of the di�culty, it is shown
in [24, Remark 3.67] that if f is twice di�erentiable and strongly convex on a spaceH ,
then H is Hilbertizable.

6.2.2 Making Sense of Uzawa Algorithm in L1
�

 ; F ; P; Rn

�
for Equality

Constraint

We have seen that a gradient-like formula, for instance the Uzawa update step (6.14b),
does not make sense in a generic Banach space. However, we will now show that it is well
de�ned in L 1

�

 ; F ; P; Rn

�
.

Speci�cities of L1
�

 ; F ; P; Rn

�

The Banach space L1
�

 ; F ; P; Rn

�
is non-re
exive, non-separable because the� -

algebra F is not �nite (Proposition 5.3).
However, as L1

�

 ; F ; P; Rn

�
is the topological dual of the Banach space

L1
�

 ; F ; P; Rn

�
, the Banach-Alaoglu theorem holds, paving the way for a proof of existence

of a minimizer (see below). Moreover, L1
�

 ; F ; P; Rn

�
can be identi�ed with a subset of

its topological dual
�

L1
�

 ; F ; P; Rn

� � ?
. Thus, the update step (6.14b) make sense: it

is a linear combination of elements of
�

L1
�

 ; F ; P; Rn

� � ?
. Consequently,

�
� (k)

	
k2 N is

a sequence of elements of
�
L1

� ?. Nevertheless, if � (0) is represented by an element of
L1 , then

�
� (k)

	
k2 N is represented by a sequence of elements of L1 . As we make the

assumption that � (0) can be represented by an element of L1 , we consider from now on
that

�
� (k)

	
k2 N is a sequence of elements of L1 .

Existence of Solutions

The following theorem shows that there exists a solution to Problem (6.13), and that
the minimization problem in the primal step (6.14a) has also a solution.

Theorem 6.4. Assume that:

1. the constraint set Uad is weakly? closed,

2. the constraint a�ne function � : U ! V is weakly? continuous,

3. the objective function J : U ! R is weak? l.s.c. and coercive onUad,

4. there exists an admissible control, i.e.

dom(J ) \ U ad \ � � 1�
f 0g

�
6= ; :

Then, Problem (6.13) admits at least one solution.
Moreover, for any � 2 L1

�

 ; F ; P; Rp

�
, the following argmin is not empty:

arg min
U 2U ad

n
J

�
U

�
+



� ; �

�
U

�� o
6= ; :

Finally, if J is strictly convex, then the above argmin is reduced to a single point.
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Note that coercivity of J is ensured either whenJ is strongly convex, or whenUad is
bounded. We can also replace the coercivity ofJ by a slightly weaker assumption: we
assume thatJ has a non empty, bounded, level set.

Proof. By weak? continuity of the constraint function �, and by weak ? closedness of the
set f 0g, we have the weak? closedness of the set

� � 1�
f 0g

�
=

�
U 2 U j �

�
U

�
= 0

	
:

By weak? closedness of the setUad we have the weak? closedness of the set �� 1
�
f 0g

�
\U ad.

As J is weak? l.s.c., we then have the weak? lower semicontinuity of the function

~J : U 7! J
�
U

�
+ � �

� � 1
�

f 0g
�

\U ad
	 �

U
�

:

By coercivity of J on Uad (see De�nition A.51), we have the coercivity of ~J . Thus,
there exist " > 0 and r > 0 such that

8u 2 Uad;



 u




 � r =) J

�
U

�
� inf

V 2U
~J
�
V

�
+ " :

We obtain
inf

U 2U
~J
�
U

�
= inf

kU k� r
~J
�
U

�
:

Moreover, Banach-Alaoglu theorem (Theorem A.24) ensures that the set
�

U 2 U j kU k � r
	

is weak? compact. Thus, weak? lower semicontinuity of ~J ensures the existence of a
minimum of ~J , which is �nite, hence the existence of a solution to Problem (6.13).

Furthermore, continuity of the function � implies continuity of

U 7!


� ; �

�
U

��
;

and thus weak? lower semicontinuity of

U 7! J
�
U

�
+



� ; �

�
U

��
:

With the same ideas as those developed earlier, we obtain the existence of a minimum.
Strict convexity of J implies strict convexity of

U 7�! J
�
U

�
+



� ; �

�
U

��
;

and thus the announced uniqueness of its minimum.

6.2.3 Convergence Results

We have thus shown that, under assumptions of Theorem 6.4, the Uzawa algo-
rithm (6.14) is well de�ned, and that the sequence of controls

�
U (k)

	
k2 N (resp. of multi-

pliers
�

� (k)
	

k2 N) are elements of L1
�

 ; F ; P

�
.

We now present a convergence result for algorithm (6.14).

Theorem 6.5. Assume that

1. J : U ! R is a proper, weak? l.s.c., Gâteaux-di�erentiable, strongly 2 a-convex func-
tion,

2. The existence of a strongly convex function on L1 is not clear.
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2. � : U ! V is a�ne, weak ? continuous and � -Lipschitz for the norm L1 ,

3. there exists an admissible control, i.e.

dom(J ) \ U ad \ � � 1�
f 0g

�
6= ; ;

4. Uad is weak? closed,

5. there exists an optimal multiplier (denoted � ] ) to the constraint �
�
U

�
= 0

in L1(
 ; F ; P; Rp),

6. the step� is such that � < 2a
� .

Then, there exists a subsequence
�
U (nk )

�
k2 N of the sequence given by Algorithm(6.14)

converging in L1 toward the optimal control U ] of Problem (6.13).

Proof. By x6.2.2 and Theorem 6.4, the sequencesf U (k)gk2 N and f � (k)gk2 N given by (6.14)
are well de�ned.

We �rst provide upper bounds and �x notations before giving the convergence result.

Upper bounds. We exploit the fact that an optimal multiplier � ] is in L1(Rp), and
that L 1 (Rp) is dense in this space. By density of L1 in L 1, we have

8" > 0; 9� " 2 L1 ; k� ] � � " kL1 � " ; (6.15)

from which we deduce

8k 2 N; k� (k) � � ] kL1 � k � (k) � � " kL1 + " :

For all � 2 L1 (Rp) � L2(Rp) � L1(Rp), we have (Jensen's inequality)

k� k2
L1 � k � k2

L2 � k � k2
L1 :

As (� (k+1) � � " ) 2 L1 (Rp) � L2(Rp), by (6.14b) we have

k� (k+1) � � " k2
L2 = k� (k) � � " k2

L2 + 2 �


� (k) � � " ; �( U (k+1) )

�
+ � 2




 �( U (k+1) )




 2

L2 :

� As � is � -Lipschitz and �( U ] ) = 0, we obtain



 �( U (k+1) )




 2

L2 �



 �( U (k+1) ) � �( U ] )




 2

L1 � � 2kU (k+1) � U ] k2
L1 :

� From optimality conditions and strong convexity of J (see point 2 in the proof of
Theorem 6.3), and using �

�
U ] � = 0, we obtain



� (k) � � " ; �( U (k+1) )

�
� � akU (k+1) � U ] k2

L1 +


� ] � � " ; �( U (k+1) )

�
:

Moreover, we have, by� -Lipschitz continuity of �, and by (6.15)


� ] � � " ; �( U (k+1) )

�
� �" kU (k+1) � U ] kL1 :

Finally, we get

k� (k+1) � � " k2
L2 � k � (k) � � " k2

L2 � (2a� � � 2� 2)kU (k+1) � U ] k2
L1

+ 2 ��" kU (k+1) � U ] kL1 :
(6.16)

� := 2a� � � 2� 2 > 0 � := ��=� > 0

q"
k := k� (k) � � " k2

L2 � 0 vk := kU (k+1) � U ] kL1 � 0
(6.17)

With these notations, inequality (6.16) becomes

q"
k+1 � q"

k � �v 2
k + 2 ��"v k : (6.18)
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Convergence of a subsequence. Inequality (6.18) can be written as

q"
k+1 � q"

k � � (vk � �" )2 + �� 2"2 :

We show that jvk � �" j �
q

1+ �� 2

� " holds true for an in�nite number of k.
Indeed, if it were not the case, there would existsK 2 N, such that for all k � K , the

inequality
(vk � �" )2 > (1 + �� 2)"2=� ;

would hold true. Thus, we would have

q"
k+1 � q"

k � � (1 + �� 2)"2=� + �� 2"2 = q"
k � "2 ;

leading to q"
k ! k �1 , which is not possible asq"

k � 0.
Consequently, there is a subsequencef vs" (k)gk2 N that remains in a ball of center zero

and radius of order " . Thus, we can construct a subsequencef vs(k)gk2 N converging to-
ward 0. Now, recalling that, by de�nition, vk = kU (k+1) � U ] kL1 , we obtain the conver-
gence of

�
Us(k)

�
k2 N toward U ] in L 1 .

6.2.4 Di�culty to Obtain the Convergence of the Whole Sequence

The result of convergence obtained in Theorem 6.5 is not fully satisfactory, because
we made quite strong assumptions (Lipschitz continuity of �, strong convexity of J , etc.)
but only obtained the convergence of a subsequence toward an optimal solution. We now
point out a di�culty if we want to improve this result.

Proposition 6.6. Assume that sup"> 0 q"
0 < 1 . Then the sequencef Ukgk2 N, given

by (6.14), converges towardU ] in the spaceL1 (
 ; F ; P; U).

Proof. Inequality (6.18) can be written

q"
k+1 � q"

k � �v k (vk � 2�" ) : (6.19)

Summing up these inequalities from index 0 up to indexk leads, asq"
k+1 � 0 by de�nition,

to

0 � q"
k+1 � q"

0 � �
kX

l=0

vl (vl � 2�" ) :

Since sup"> 0 q"
0 < 1 , we deduce that

9M > 0; 8" > 0; 8k > 0;
kX

l=0

vl (vl � 2�" ) � M : (6.20)

Letting " going to 0, we �nd that

8k > 0;
kX

l=0

v2
l � M :

The series of general termv2
k is converging, and thus the sequencef vkgk2 N con-

verges toward zero. Thus, the sequencef Ukgk2 N converges toward U ] in the
space L1 (
 ; F ; P; U).

Proposition 6.6 requires an assumption di�cult to check. However if there exist an
optimal multiplier � ] in L 2 we can take, for all " > 0, � " = � ] , hence," 7! q"

0 is constant.
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Corollary 6.7. Assume that

1. J : U ! R is a proper, weak? l.s.c., Gâteaux-di�erentiable, a-convex function,

2. � : U ! V is a�ne, weak ? continuous and � -Lipschitz for the norm L1 ,

3. there exists an admissible control, i.e.

dom(J ) \ U ad \ � � 1�
f 0g

�
6= ; ;

4. Uad is weak? closed,

5. there exists an optimal multiplier (denoted � ] ) to the constraint �
�
U

�
= 0

in L2(
 ; F ; P; Rp),

6. the step� is such that � < 2a
� .

Then, the sequence
�
U (k)

�
k2 N by Algorithm (6.14) converges inL1 toward the optimal

control U ] of Problem (6.13).

Proof. For all " > 0, we set � " = � ] , hence, " 7! q"
0 is constant, and Proposition 6.6

achieve the proof.

Note that we obtain a convergence result stronger than the one obtained by Theo-
rem 6.3 if the problem was set in L2. Indeed, the convergence of the sequence

�
U (n)

�
n2 N

is given in L1 instead of L2.

Remark 6.8. The assumptionsup"> 0 q"
0 < 1 in Proposition 6.6 is quite strong. Without

this assumption, Assertion (6.20) does not hold true, and we have only

8" > 0; 9M " ; 8k 2 N;
kX

l=0

vk (vk � " ) � M " : (6.21)

The question is: is it enough to show the convergence off vl gl2 N toward 0. The answer,
negative, is given by Fact 6.9.

Fact 6.9. There exists a sequence
�

un
	

n2 N of non-negative reals such that(6.21) holds
true, but that does not converges toward0.

Proof. Consider the sequence de�ned as

un =
�

1=k if n 2 [[nk + 1 ; nk + k2]]
1 if n = nk

(6.22)

where (nk )k2 N is de�ned by
�

n0 = 1 ;
nk+1 = nk + k2 + 1 ; 8k 2 N :

(6.23)

In other words, the sequencef ukgk2 N takes the value 1, then 1=2 four times, then 1, then
1=3 nine times, and so on. In particular, the sequence does not converge toward 0.

We now show that this sequence satis�es (6.21). For a given" > 0, �x k0 � 2=", and
N 2 N. We have

NX

n=1

un (un � " ) =

nk 0X

n=1

un (un � " ) +
NX

n= nk 0 +1

un (un � " ) :

Let M " =
P nk 0

k=1 un (un � " ). We show that
P N

k= nk 0 +1 un (un � " ) � 0.
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Indeed for k � k0, and l 2 [[1; k2]], we have

unk + l (unk + l � " ) =
1
k

� 1
k

� "
�

� �
"

2k
:

This inequality leads to, for k � k0,
nk +1X

n= nk

un (un � " ) � 1 �
k"
2

� 0 :

Summing up, if we denote byK the largest integer such that nK � N , we have

NX

n=1

un (un � " ) =

nk 0X

k=1

un (un � " )

| {z }
M "

+
KX

k= k0

k2+1X

l=1

unk + l (unk + l � " )

| {z }
� 0

+
NX

n= nK +1

un (un � " )
| {z }

� 0

� M " :

This ends the proof.

6.3 Application to a Multistage Problem

We consider a multistage problem, comparable to the one presented inx5.3, but with
some more constraint on the control. We suppose that the noise takes a �nite number of
values, so that the space L1 is �nite dimensional 3.

We consider a sequence
�

W t

	 T � 1
t=0 of noises, with W t 2 L1

�

 ; F ; P; Rnw

�
, for any

t 2 [[0; T � 1]]. We denote byF t the � -algebra generated by the past noises

F t = �
�
W 0; � � � ; W t

�
;

and by F the induced �ltration F =
�

F t
	 T � 1

t=0 .
We consider the dynamical system

8t 2 [[0; T � 1]]; X t+1 = f t
�
X t ; D t ; W t

�
; (6.24)

where the control processf D t g
T � 1
t=0 is a stochastic process adapted toF, and for each time

t 2 [[0; T � 1]], D t 2 L1
�

 ; F t ; P; Rnd

�
. The evolutions functions f t : Rnx + nd + nw ! Rnx

are assumed to be a�ne in (x; d) and continuous in w.
For each time t 2 [[0; T � 1]], we consider a convex (jointly in (x; d)) cost L t :

Rnx + nd + nw ! R, and continuous in w, and a convex �nal cost K : RnX ! R. We
also consider linear constraint functions� t : Rnx + nd ! Rnc , and a F-adapted sequence of
random variables

�
B t

	 T � 1
t=0 (they are stochastic target of the constraint function).

Finally, the problem reads,

min
X ;D

E
hT � 1X

t=0

L t
�
X t ; D t ; W t

�
+ K (X T )

i
(6.25a)

s:t: X 0 = x0 (6.25b)

X t+1 = f t
�
X t ; D t ; W t

�
; (6.25c)

D t � F t ; (6.25d)

D t 2 D ad
t ; (6.25e)

X t 2 X ad
t ; (6.25f)

� t (X t ; D t ) = B t P � a:s: (6.25g)

3. This assumption is required to obtain the strong convexity of the global cost. In a �nite dimensional
setting, most topological consideration are equivalent. However, we choose to still dinstinguish them as
we suppose �nitess of the alea only to obtain the strong convexity of the cost global cost.
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Remark 6.10. Problem (6.25) di�er from Problem (5.17) only through Con-
straints (6.25e) and (6.25f). Hence, with those constraint we do not have results of exis-
tence of an optimal multiplier. However, the existence of an optimal multiplier is an as-
sumption of Proposition 6.11, which allow the existence of Constraints(6.25e)and (6.25f).
Moreover, we believe that results in the literature (see [93{95]) could be adapted to show the
existence ofL1-optimal multiplier even with constraint on the control (Constraint (6.25e)).

Then, the algorithm given by (6.14) , reads4

�
X (k+1) ; D (k+1)

�
2 arg min

D ;X

�
E

hT � 1X

t=0

L t
�
X t ; D t ; W t

�
+ � (k)

t � � t
�
X t ; D t

� i �
; (6.26a)

� (k+1)
t = � (k)

t + � t

�
� t

�
X (k+1)

t ; D (k+1) �
� B t

�
; (6.26b)

where
�
X ; D

�
satis�es constraints (6.25b)-(6.25f), that is, all constraints except the almost

sure constraint dualized, i.e. constraint (6.25g).

Proposition 6.11. Assume that,

1. the cost functionsL t are Gâteaux-di�erentiable (in (x; u)), strongly-convex (in (x; u))
functions and continuous in w;

2. the constraint functions � t : Rnx + nd ! Rnc are a�ne;

3. the evolution functions f t : Rnx + nd + nw ! Rnx are a�ne (in (x; u; w));

4. the constraint setsX ad
t and Uad

t are weak? closed, convex;

5. there exists an admissible control, i.e. a process
�
X ; D

�
satisfying all constraints of

Problem (6.25);

6. there exists an optimal multiplier process (denoted� ] ) to the constraint (6.25g);
in L1(
 ; F ; P; RT nc ) (this is, satis�ed if there is neither constraint (6.25e) nor con-
straint (6.25f)).

Then, there exists a subsequence
�
D (nk )

�
k2 N of the sequence given by Algorithm(6.26)

converging in L1 toward the optimal control of Problem (6.25).

Proof. We apply the results of x6.2.3 to Problem (6.25). We de�ne the cost function J
and constraint function � relative to Problem (6.25), and show the required assumptions.

First, we need to cast Problem (6.25) into the framework of Problem (6.13). We de�ne
the control U =

�
D s

	 T � 1
s=0 2 L1

�

 ; F ; P; RT nd

�
= U.

Then, x0 being given and constant, we de�ne recursively the functions

x t : RT (nd + nw ) �! Rnx

�
U; W

�
7�! f t � 1

�
x t � 1

� �
D � ; W�

	 t � 2
� =0

�
; D t � 1; Wt � 1

�

that maps the sequence of controls and noises toward the state. Note that the functions
x t are a�ne. Hence, the output of the dynamical system (6.24) can be represented by

X = AU + B W + C ;

were A and B , and C are deterministic matrices.
Now we de�ne the cost function

L
�
X ; U ; W

�
= E

hT � 1X

t=0

L t
�
X t ; U t ; W t

� i
;

4. We use the notational convention L T (x; d; w) = K (x).
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�

and the objective function

J
�
U

�
= E

h
L

�
AU + B W + C; U ; W

� i
:

If each L t is strongly-convex, then L is also strongly-convex in (x; u), henceJ is strongly
convex (for the L2-norm, equivalent to the L1 -norm by �niteness of the noise). By assump-
tions on functions L t and f t , the objective function J is proper and Gâteaux-di�erentiable.
Note that J is �nite on L 1 , consequently Lemma 5.16 implies thatJ is weak?-l.s.c..

We de�ne the constraint function

� =
�

� 0; : : : ; � T

�
: L1 �


 ; F ; P; RT nd
�

! L1 �

 ; F ; P; RT nc

�
;

where � t : L1
�

 ; F ; P; RT nd

�
! L1

�

 ; F ; P; Rnc

�
is given by

� t
�
U

�
= � t

�
PX

t

�
AU + B W + C

�
; D t

�
� B t = � t

�
PX

t AU ; D t

�
� ~B t ; (6.27)

where ~B t is a F t -measurable random variable, andPX
t is the projector such that

PX
t X = X t . In particular � is a�ne. Note that the functions x t and � t are a�ne

on a �nite dimensional space, and hence Lipschitz. Consequently, functions �t (and thus
�) are L 1 -Lipschitz. Moreover, Corollary 5.13 gives the weak? continuity of the constraint
function �.

We now construct the setUad of admissible controls. LetX ad be the Cartesian product
X ad

0 � � � � �X ad
T , and Dad be the Cartesian productDad

0 � � � � �D ad
T � 1. The linear mappings

U 7! AU , U 7! PU
t U (where PU

t U = D t ) and the constraint functions � t are weak dual
continuous (see Corollary 5.13).

Note that the linear mappings X 7! PX
t

�
AU + B W + C

�
are weakly? continuous (see

Corollary 5.13). Hence, fort 2 [[1; T]], the set
n

U 2 U
�
� PX

t

�
AU + B W + C

�
2 X t

o
;

is weak? closed convex as the the inverse image of a weak? closed convex set by a weak?

continuous a�ne function. Consequently, the set

Uad
X =

n
U 2 U

�
� PX

t

�
AU + B W + C

�
2 X t ; 8t 2 [[1; T]]

o
;

is weak? closed convex as an intersection of such sets.
We denote Nd the set of essentially bounded,F-adapted processes with value inRnd .

It is the set N nd , where N is de�ned in (5.12). By Corollary 5.14, the set Nd is weak?

closed convex. In a nutshell, a controlU satis�es:
� constraint (6.25e) if it is an element of Dad;
� constraint (6.25f) if it is an element of Uad

X ;
� constraint (6.25d) if it is an element of Nd.

Hence, the constraint setUad given by

Uad = Dad \ U ad
X \ N d ;

is a weak? closed convex set.
Finally, by Corollary 5.27, if Uad = Nd, we have optimal multipliers in L 1 for con-

straints (6.25g).
With those notations, Problem (6.25) reads

min
U 2U ad

J
�
U

�
:

s:t: �
�
U

�
= 0
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Moreover Algorithm (6.14) correspond to Algorithm (6.26).
Hence, for � small enough, all the assumptions in Theorem 6.5 are satis�ed; this ends

the proof.

Remark 6.12. Note that, by Lemma B.3, it is easy to see that, if � ] is an optimal
multiplier for constraints (6.25g), then so is its F-adapted part, that is, the process� ]

where
8t 2 [[0; T]]; � ]

t = E
�
� ]

t

�
� F t

�
:

Interestingly, the multiplier in � (k) in Algorithm (6.26) is an essentially bounded,F-
adapted stochastic process.

However, we cannot write a Dynamic Programming equation for Problem(6.26a) with
the state X . Indeed, the multiplier � (k) should be seen as a correlated,F-adapted noise.
Hence, the natural state is the past noisesf W sgt

s=0 , and Dynamic Programming methods
are numerically untractable to solve Problem(6.26a).

In Chapter 8, we will present a method where the multiplier is approximated by its
conditional expectation with respect to a given information processY , following a dynamic
Yt+1 = ~f t

�
Yt ; W t

�
. This allows to use Dynamic Programming with an extended state�

X t ; Yt

�
to solve the minimization part (equation (6.26a)) of Uzawa algorithm.

Conclusion

We have provided conditions ensuring convergence of a subsequence of
�

u(k)
	

k2 N, for
the Uzawa algorithm in L1

�

 ; F ; P

�
. Our key assumption is the existence of a sad-

dle point for the Lagrangian in the
�
L1 ; L1

�
pairing. Work remains to be done on the

subject. Indeed, the strong convexity assumption on the objective function usually en-
sures the convergence of the whole primal sequence

�
u(k)

	
k2 N toward the optimal value.

With the bounds that we have derived, we were only able to obtain the convergence of
a subsequence of

�
u(k)

	
k2 N. Tighter bounds might give better convergence results, and

alternative schemes of proof should be investigated.
Moreover, we have made an abstract weak? continuity (or lower-semicontinuity) as-

sumption; we should study its potential of applicability.
Finally, we have restricted ourselves to the case of equality constraints; more generic

constraint require a careful look at the projection step in the Uzawa algorithm.
In x6.3, we have applied the Uzawa algorithm to a multistage process. However, we

have seen that the minimization part of the Uzawa algorithm is not straightforward in this
case. In the �nal part of this manuscript, we will develop and adapt this idea, in order
to apply the Uzawa algorithm for the spatial decomposition of stochastic optimization
problems.
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Chapter 7

Epiconvergence of Relaxed
Stochastic Problems

Truth is much too complicated to allow anything but
approximations.

John von Neumann
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At the end of Chapter 6 we saw that a price decomposition scheme over the coupling
spatial constraints does not leads to tractable subproblems. In Chapter 8, we propose a
tractable price decomposition scheme over an approximation of the original problem.

In this Chapter, we study the approximation required. Roughly, this approximation
relax an almost sure constraint into a conditional expectation constraint. Were the condi-
tioning is done with respect to a � -algebra Fn . We study the convergence of a sequence
of approximated problem when the� -algebra converges.

Introduction

Stochastic optimization problems often consist in minimizing a cost over a set of ran-
dom variables. If the set of events is in�nite, the minimization is done over an in�nite
dimensional space. Consequently there is a need for approximation. We are interested
in the approximation of almost sure constraints, say� (U ) = 0 almost surely (a.s.), by a
conditional expectation constraint like E

�
� (U )

�
� Fn

�
� 0 a.s.

Consider the following problem,

min
U 2U

J (U ) ; (7.1a)

s:t: � (U ) = 0 a.s. ; (7.1b)
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where the set of controlsU is a set of random variables over a probability space
�

 ; F ; P

�
.

If 
 is not �nite, U may be of in�nite dimension. Moreover the constraint (7.1b) is a func-
tional constraint that can roughly be seen as an in�nity of constraints. For tractability
purposes we consider approximations of this problem. In order to give theoretical results
for the approximations of Problem (7.1) the right notion of convergence is epi-convergence.
Indeed, under some additional technical conditions, the epi-convergence ensures the con-
vergence of both the optimal value and the optimal solutions.

One way of approximating Problem (7.1) consists in approximating the probability
P. Roughly speaking the Sample Average Approximation procedure consist in simulating
a set of scenarios under the real probabilityP. Then we solve Problem (7.1) under the
empirical probability on the set of simulated scenarios. In this literature (see [43], [59]) the
authors are interested in problems where the controls are deterministic. However other
epi-convergence results have been shown for more general spaces of controls, including
spaces of random variables or random processes (see [120] and references therein, as well
as [74], [76], [75]). More generally, the idea of discretizing or quantizing the set 
, for
example by use of �nite scenario trees has been largely studied in the �eld of Stochastic
Programming (see [110] for a thorough presentation).

Instead of approximating the probability space we propose a way to approximate con-
straints, especially almost sure constraints. The main idea is to replace a constraint by its
conditional expectation with respect to (w.r.t.) a � -algebra B. This is in some sense an
aggregation of constraints. This approximation appears when considering duality schemes
for dynamic stochastic optimization problem.

More precisely, we relax the almost sure constraint (7.1b) by replacing it by its condi-
tional expectation, i.e.

E
�
� (U )

�
� B

�
= 0 : (7.2)

If � is an integrable optimal multiplier for Constraint (7.1b), then � B = E
�
�

�
� B

�
is

an optimal multiplier for Constraint (7.2). This leads to look for B-measurable multiplier,
which may authorize decomposition-coordination methods where the sub-problems are
easily solvable. This is presented in Chapter 8.

The chapter is organized as follows. x7.1 presents the general form of the problem
considered and its approximation. x7.2 shows, after a few recalls on convergence notions
of random variables, functions and� -algebras, conditions on the sequence of approximate
problems guaranteeing its convergence toward the initial problem. The main assump-
tions are the Kudo's convergence of� -algebra, and the continuity - as operators - of the
constraint function � and objective function J . Finally x7.3 gives some examples of con-
tinuous objective and constraint functions that represent usual stochastic optimization
problems. Finally x7.4 presents a decomposition-coordination algorithm using this type
of relaxation and developed in the Chapter 8.

7.1 Problem Statement

We consider a probability space
�

 ; F ; P

�
and a topological spaces of controlsU. Let

V be the spaces of random variables with value in a BanachV with �nite moment of order
p 2 [1; 1 ), denoted V = L p(
 ; F ; P; V).

We consider now a stochastic optimization problem

min
U 2U

J (U ) ; (7.3a)

s:t: �( U ) 2 � C ; (7.3b)

with J mapping U into R [ f + 1g , and � mapping U into V. We assume thatC � V is a
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closed convex cone ofV, and that V is a separable Banach space with separable dual (the
fact that C is a cone is not essential for our results).

To give an example of cost operator, assume thatU � L 1
�

 ; F ; P; U

�
, where U is a

Banach. The usual choice for the criterion is the expected costJ (U ) := E
�
j (U )

�
, for

a suitable cost function j : U ! R. Other choices could be risk measures (see [6] for
example) like Conditional-Value-at-Risk (see [90] for a de�nition), worst-case or robust
approaches. The constraint operator � cover various cases, for example

� almost sure constraint: �
�
U

�
(! ) := �

�
U (! )

�
, where � maps U into V and �

�
U

�
2

� C is realized almost surely;
� measurability constraint: �

�
U

�
:= E

�
U

�
� B

�
� U , with C = f 0g, expresses thatU

is measurable with respect to the� -algebra B, that is, E
�
U

�
� B

�
= U ;

� risk constraint: �
�
U

�
:= � (U ) � a, where � is a conditional risk measure, andC is

the cone of positive random variables.
We introduce a stability assumption of the set C that will be made throughout this

paper.

De�nition 7.1. We consider a sequencefF ngn2 N of sub-�elds of F . The closed convex
cone C is said to be stable w.r.t.

�
Fn

�
n2 N, if for all n 2 N we have

8 V 2 C; E[V j F n ] 2 C :

A �rst widely used example would be C = f 0g, or more generally any deterministic
closed convex cone, another example would be the set of almost surely positive random
variables.

We now consider the following relaxation of Problem (7.3)

min
U 2U

J (U ) ; (7.4a)

s:t: E
�
�( U )

�
� Fn

�
2 � C ; (7.4b)

where C is assumed to be stable w.r.t the sequence
�
Fn

�
n2 N.

We denote the set of admissible controls of Problem (7.3)

Uad :=
�

U 2 U
�
� �( U ) 2 � C

	
; (7.5)

and the corresponding set of admissible controls of Problem (7.4)

Uad
n :=

�
U 2 U

�
� E

�
�( U )

�
� Fn

�
2 � C

	
: (7.6)

Problems (7.3) and (7.4) can also be written1 as

min
U 2U

J (U ) + �
U ad (U )

| {z }
:= ~J (U )

; (7.7)

and
min
U 2U

J (U ) + �
U ad

n
(U )

| {z }
:= ~Jn (U )

: (7.8)

Note that we have Fn � F , and that C is stable w.r.t fF ngn2 N, thus Uad � U ad
n :

Problem (7.4) is a relaxation of the original Problem (7.3) as it has the same objective
function but a wider set of admissible controls.

1. We use the notation � A for the characteristic function of A, that is the function such that � A (x) = 0
if x 2 A, and � A (x) = + 1 elsewhere.
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Replacing an almost sure constraint by a conditional expectation constraint is similar
to an aggregation of constraints. For example consider a �nite set 
 = f ! i gi 2 [[1;N ]]

2, with
a probability P such that, for all i 2 [[1; N ]], we haveP(! i ) = pi > 0. Consider a partition
B = f B l gl2 [[1;jBj ]] of 
, and the � -algebra FB generated by the partition B. Assume that
C = f 0g, then the relaxation presented consists in replacing the constraint

� (U ) = 0 P-a.s.

which is equivalent to N constraints

8i 2 [[1; N ]]; � (U (! i )) = 0 ;

by the collection of jBj � N (where jBj is the number of sets in the partition B) constraints

8l 2 [[1; jBj ]];
X

i 2 B l

pi � (U (! i )) = 0 :

7.2 Epiconvergence Result

In this section we show the epiconvergence of the sequence of approximated cost func-
tions f ~Jngn2 N (de�ned in (7.8)) towards ~J (de�ned in (7.7)). First, we recall some results
on convergence of random variables, epiconvergence of functions and convergence of� -
algebras. Moreover a technical result is required.

7.2.1 Preliminaries

Assume that p 2 [1; + 1 ) and denoteq 2 (1; + 1 ] such that 1=q+ 1=p = 1. Recall that
V is a separable Banach space with separable dualV � .

Convergence of random variables

A sequence (X n )n2 N of Lp(
 ; F ; P; V) is said to converges strongly toward X 2
Lp(
 ; F ; P; V), and denoted X n ! Lp X if

lim
n!1

E
� 



 X n � X



 p

V

�
= 0 :

A sequence (X n )n2 N of Lp(
 ; F ; P; V) is said to weakly converges toward X 2
Lp(
 ; F ; P; V), and denoted X n * Lp X if

8X 0 2 Lq(
 ; F ; P; V � ); lim
n!1

E
�
hX n � X ; X 0i V;V�

�
= 0 :

For more details we refer the reader to [99].

Epiconvergence of functions

We �rst recall the de�nition of the Painlev�e-Kuratowski convergence of sets. Let E be
a topological space and consider a sequencef Angn2 N of subsets ofE . Then the inner limit
of f Angn2 N is the set of accumulation points of any sequence (xn )n2 N such that xn 2 An ,
i.e,

limnAn = f x 2 E j 8n 2 N; xn 2 An ; lim
k!1

xn = xg ; (7.9)

2. We denote by [[a; b]] the set of all integers between a and b.
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and the outer limit of f Angn2 N is the set of accumulation points of any sub-sequence
(xnk )k2 N of a sequencef xngn2 N such that xn 2 An , i.e,

limnAn = f x 2 E j 9f nkgk2 N; 8k 2 N; xnk 2 Ank ; lim
k!1

xnk = xg : (7.10)

We say that f Angn2 N converges towardA in the Painlev�e-Kuratowski sense if

A = limnAn = lim nAn :

A sequencef Jngn2 N of functions taking value into R [ f + 1g is said to epi-converge
toward a function J if the sequence of epigraphs ofJn converges toward the epigraph of
J , in the Painlev�e-Kuratowski sense. For more details and properties of epi-convergence,
see Rockafellar-Wets [96] in �nite dimension, and Attouch [8] for in�nite dimension.

Convergences of � -algebras

Let F be a � -algebra and fF ngn2 N a sequence of sub-�elds ofF . It is said that the
sequencefF ngn2 N Kudo-converges toward the� -algebra F1 , and denoted Fn ! F 1 , if

for each setF 2 F ,
�

E
�
1F

�
� Fn

� �

n2 N
converges in probability toward E

�
1F

�
� F1

�
.

In [62], Kudo shows that Fn ! F 1 if and only if for each integrable random variable
X , E

�
X

�
� Fn

�
converges inL 1 toward E

�
X

�
� F1

�
. In [82], Piccinini extends this result

to the convergence inL p in the strong or weak sense with the following lemma.

Lemma 7.2. Let
�

 ; F ; P

�
be a probability space and

�
Fn

�
n2 N be a sequence of sub-� -

algebras ofF . The following statements are equivalent:

1. Fn ! F 1 ,

2. 8X 2 Lp(
 ; F ; P; V); E
�
X

�
� Fn

�
! Lp E

�
X

�
� F1

�
,

3. 8X 2 Lp(
 ; F ; P; V); E
�
X

�
� Fn

�
* Lp E

�
X

�
� F1

�
.

We have the following useful proposition where both the random variable and the
� -algebra are parametrized byn.

Proposition 7.3. Assume that Fn ! F 1 , and X n ! Lp X (resp. X n * Lp X ) then
E

�
X n

�
� Fn

�
! Lp E

�
X

�
� F1

�
(resp. E

�
X n

�
� Fn

�
* Lp E

�
X

�
� F1

�
).

Proof. The weak-limit case is detailed in [82]. We show the strong convergence case. If
X n ! Lp X , then

jjE
�
X n

�
� Fn

�
� E

�
X

�
� F

�
jjLp � jj E

�
X n

�
� Fn

�
� E

�
X

�
� Fn

�
jjLp

+ jjE
�
X

�
� Fn

�
� E

�
X

�
� F

�
jjLp

As the conditional expectation is a contraction operator, we have

jjE
�
X n

�
� Fn

�
� E

�
X

�
� Fn

�
jjLp � jj X n � X jjLp ! 0 :

Moreover we have
jjE

�
X

�
� Fn

�
� E

�
X

�
� F

�
jjLp ! 0

by Lemma 7.2, hence the result.

We �nish by a few properties on the Kudo-convergence of� -algebras (for more details
we refer to [62] and [31]):

1. the topology associated with the Kudo-convergence is metrizable;

2. the set of� -�elds generated by the partitions of 
 is dense in the set of all � -algebras;

3. if a sequence of random variables (X n )n2 N converges in probability toward X and
for all n 2 N we have � (X n ) � � (X ), then we have the Kudo-convergence of�
� (X n )

�
n2 N toward � (X ).
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7.2.2 Main result

Recall that U is endowed with a topology � , and that V = L p
�

 ; F ; P; V

�
, with p 2

[1; 1 ).

Theorem 7.4. Let V be endowed with the strong or weak topology. Assume thatC is
stable w.r.t fF ngn2 N. If the two mappings� and J are continuous, and if (Fn )n2 N Kudo-
converges towardF , then f ~Jngn2 N (de�ned in (7.7)) epi-converges toward ~J (de�ned in
(7.8)).

Note that fF ngn2 N is not assumed to be a �ltration, and that Fn is not assumed to
be �nite.

Proof. To prove the epi-convergence off ~Jngn2 N toward ~J it is su�cient to show that Uad
n

(de�ned in (7.6)) converges toward Uad (de�ned in (7.5)) in the Painlev�e-Kuratowski sense.
Indeed it implies the epiconvergence of (�

U ad
n

)n2 N toward �
U ad , and adding a continuous

function preserves the epi-convergence (Attouch [8, Th 2.15] ).
By stability of C w.r.t. fF ngn2 N we have that, for all n 2 N, Uad � U ad

n and thus
Uad � lim inf n Uad

n (for any x 2 Uad take the constant sequence equal tox).
We now show that Uad � lim supn Uad

n . Let U be an element of lim supn Uad
n . By

De�nition (7.10), there is a sequence
�

Unk

	
k2 N that � -converges toU , such that for all

k 2 N, E
�
�( Unk

)jF nk

�
2 � C. As � is continuous, we have �( Unk

) ! �( U ) strongly
(resp. weakly) in Lp. Moreover we have that Fnk ! F , and consequently by Lemma 7.3,

E
�
�( Unk

)
�
� Fnk

�
! L p E

�
�( U )jF

�
= �( U) :

Thus �( U ) is the limit of a sequence in� C. By closedness ofC (weak and strong asC
is convex3), we have that �( U ) 2 � C and thus U 2 Uad.

The practical consequences for the convergence of the approximation (7.4) toward the
original Problem 7.3 is given in the following Corollary.

Corollary 7.5. Assume that Fn ! F , and that J and � are continuous. Then the
sequence of Problems(7.4) approximates Problem(7.3) in the following sense. Iff Ungn2 N

is a sequence of control such that for alln 2 N,

~Jn (Un ) < inf
U 2U

~Jn (U ) + "n ; where lim
n

"n = 0 ;

then, for every converging sub-sequence(Unk
)k2 N, we have

~J
�

lim
k

Unk

�
= min

U 2U
~J (U ) = lim

k
~Jnk

�
Unk

�
:

Moreover if
�

Fn
	

n2 N is a �ltration, then the convergences are monotonous in the sense
that the optimal value is non-decreasing inn.

Proof. The convergence result is a direct application of Attouch [8, Th. 1.10, p. 27].
Monotonicity is given by the fact that, if fF ngn2 N is a �ltration, then for n > m then
Uad

n � U ad
m .

3. if C is non-convex we need it to be sequentially closed.
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7.2.3 Dynamic Problem

We extend Problem (7.3) into the following dynamic problem

min
U 2U

J (U ) ;

s:t: � t (U t ) 2 � Ct 8t 2 [[1; T]] ;

U t � F t ;

(7.11)

whereU t � F t stands for \U t is F t -measurable". HereU is a stochastic process of control
(U t )t2 [[1;T ]] de�ned on

�

 ; F ; P

�
with value in U. We have T constraints operators � t

taking values in Lp(
 ; F t ; P; Vt ), where (F t )t2 [[1;T ]] is a sequence of� -algebra. Note that
(F t )t2 [[1;T ]] is not necessarily a �ltration. Then, for each t 2 [[1; T]] we de�ne a sequence
of approximating � -algebra (Fn;t )n2 N. For all t 2 [[1; T]], Ct is a closed convex cone stable
w.r.t

�
Fn;t

�
n2 N.

Finally we consider the sequence of approximated problem

min J (U ) ;

s:t: E
�
� t (U t )

�
� Fn;t

�
2 � Ct 8t 2 [[1; T]] :

(7.12)

Furthermore we denote

Uad
t :=

�
U t 2 Ut

�
� � t (U t ) 2 � Ct

	
;

and
Uad

n;t :=
�

U t 2 Ut
�
� E

�
�( U t )

�
� Fn;t

�
2 � Ct

	
:

We de�ne the set of admissible controls for the original problem

Uad = Uad
0 � � � � � U ad

T ;

and accordingly for the relaxed problem

Uad
n = Uad

n;0 � � � � � U ad
n;T :

In order to show the convergence of the approximation proposed here, we consider the
functions

~J (U ) = J
�
U

�
+ � Uad (U ) ;

and
~Jn (U ) = J

�
U

�
+ � Uad

n
(U ) ;

and show the epi-convergence of~Jn to ~J . The interaction between the di�erent time-step
are integrated in the objective function J .

Theorem 7.6. If � and J are continuous, and if for all t 2 [[1; T]], (F t;n )n2 N Kudo-
converges toF t , then

� ~Jn
�

n2 N epi-converges to ~J .

Proof. The proof is deduced from the one of Theorem 7.4. By following the same steps
we obtain the Painlev�e-Kuratowski convergence ofUad

n;t to Uad
t , and thus the convergence

of their Cartesian products.
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7.3 Examples of Continuous Operators

The continuity of J and � as operators required in Theorem 7.4 is an abstract assump-
tion. This section presents conditions for some classical constraint and objective functions
to be representable by continuous operators. Before presenting those results we show a
technical lemma that allows us to prove convergence for the topology of convergence in
probability by considering sequences of random variables converging almost surely.

7.3.1 A technical Lemma

Lemma 7.7. Let � : E ! F , where (E; � P) is a space of random variables endowed with
the topology of convergence in probability, and(F; � ) is a topological space. Assume that�
is such that if f Ungn2 N converges almost surely towardU , then �( Un ) ! � �( U ). Then
� is a continuous operator from (E; � P) into (F; � ).

Proof. We recall �rst a well known property (see for example [44, Th 2.3.3]). Letf xngn2 N

be a sequence in a topological space. If from any sub-sequence
�

xnk

	
k2 N we can extract

a sub-sub-sequence
�

x � (nk )
	

k2 N converging to x � , then f xngn2 N converges tox � . Indeed
suppose that f xngn2 N does not converges towardx � . Then there exist an open setO
containing x � and a sub-sequence

�
xnk

	
k2 N such that for all k 2 N, xnk =2 O , and no

sub-sub-sequence can converges tox � , hence a contradiction.
Let f Ungn2 N be a sequence converging in probability toU . We consider the sequence�

�( Un )
	

n2 N in F . We choose a sub-sequence
�

�
�
Unk

�	
k2 N. By assumption

�
Un

	
n2 N

converges in probability toward U , thus we haveUnk
! P U . Consequently there exist a

sub-sub-sequenceU � (nk ) converging almost surely toU , and consequently �
�
U � (nk )

�
!

�
�
U

�
. Therefore � is sequentially continuous, and as the topology of convergence in

probability is metrizable, � is continuous.

Remark 7.8. This Lemma does not imply the equivalence between convergence almost
sure and convergence in probability as you cannot endowU with the \topology of almost
sure convergence" as almost sure convergence is not generally induced by a topology.

However note that f Ungn2 N converges in probability toward U i� from any sub-
sequence off Ungn2 N we can extract a further sub-sequence converging almost surely to
U (see [44, Th 2.3.2]).

7.3.2 Objective function

Let U be a space of random variables on
�

 ; F ; P

�
, with value in a Banach U.

The most classical objective function is given asJ
�
U

�
:= E

�
j (U )

�
, where j : U ! R

is a measurable, bounded cost function. This objective function expresses a risk-neutral
attitude; indeed a random cost with high variance or a deterministic cost with the same
expectation are considered equivalent. Recently in order to capture risk-averse attitudes,
coherent risk measures (as de�ned in [6]), or more generally convex risk measures (as
de�ned in [48]), have been prominent in the literature.

Following [104], we callconvex risk measurean operator � : X ! R [ f + 1g verifying
� Convexity: for all � 2 [0; 1] and all X; Y 2 X ; we have

�
�
�X + (1 � � )Y

�
� ��

�
X

�
+ (1 � � )�

�
Y

�
;

� Monotonicity: for all X; Y 2 X such that X � Y we have� (X ) � � (Y );
� Translation equivariance: for all constant c 2 R and all X 2 X , we have� (X + c) =

� (X ) + c ;
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where X is a linear space of measurable functions. We focus on the case whereX =
L 1 (
 ; F ; P; R), and assume that � (0) = 0.

Proposition 7.9. Let U be a set of random variables endowed with the topology of conver-
gence in probability, andJ

�
U

�
:= �

�
j (U )

�
, where j : U ! R is continuous and bounded,

and � a lower semicontinuous convex risk measure. Then,J : U ! R is continuous.

Proof. Note that as j is bounded, j (U ) 2 X for any U 2 U. Then we know that ( [104])
there is a convex set of probabilitiesP such that

� (X ) = sup
Q2P

EQ
�
X

�
� g(Q) ;

where g is convex and weak*-lowersemicontinuous on the space of �nite signed measures
on (
 ; F ). Moreover any probability in P is absolutely continuous w.r.t P.

Consider a sequencef Ungn2 N of elements ofU converging in probability toward U 2 U.
Let M be a majorant of j , we have�

�
j (U )

�
� � (M ) = M < + 1 . By de�nition of � , for

all " > 0 there is a probability P" 2 P such that

EP"

�
j (U )

�
� g(P" ) � �

�
j (U )

�
� " :

As P" is absolutely continuous w.r.t P, the convergence in probability underP of f Ungn2 N

implies the convergence of probability underP" and in turn the convergence in law under
P" . By de�nition of convergence in law we have that

lim
n

EP"

�
j (Un )

�
� g(P" ) = EP"

�
j (U )

�
� g(P" ) :

Let � be a positive real, and set" = �= 2, and N 2 N such that for all n � N ,

jEP"

�
j (Un )

�
� EP"

�
j (U )

�
j �

�
2

: (7.13)

Then, recalling that

�
�

j
�
U

� �
� EP �

2

�
j (U )

�
� g(P �

2
) � �

�
j
�
U

��
�

�
2

; (7.14)

we have that for all n � N ,

�
�
j (Un )

�
= sup

Q2P
EQ

�
j (Un )

�
� g(Q)

� EP �
2

�
j (Un )

�
� g

�
P �

2

�

� EP �
2

�
j (U )

�
� g

�
P �

2

�
�

�
2

by (7.13);

� �
�

j (U )
�

� � by (7.14);

and thus

�
�

j
�
U

� �
+

�
2

� �
�

j
�
Un

� �
� �

�
j
�
U

� �
� � :

Thus limn �
�
j (Un )

�
= �

�
j (U )

�
. Hence the continuity of J .
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The assumptions of this Proposition can be relaxed in di�erent ways.
In a �rst place, if the convex risk measure � is simply the expectation then we can

simply endow U with the topology of convergence in law. In this case the continuity
assumption onj can also be relaxed. Indeed if

�
Un

	
n2 N converges in law towardU , and

if the set K of points where j is continuous is such that P(U 2 K ) = 1, then E
�
j (Un )

�

converges towardE
�
j (U )

�
.

Otherwise assume thatU is a set of random variables endowed with the topology of
convergence in probability, and that j continuous. Moreover if we can ensure thatj (U ) is
dominated by some integrable (for all probability of P) random variable, then J : U ! R
is continuous. Indeed we consider a sequence

�
Un

�
n2 N almost surely converging toU . We

modify the proof of Proposition 7.9 by using a dominated convergence theorem to show
that lim n EP"

�
j (Un )

�
= EP"

�
j (U )

�
. Lemma 7.7 concludes the proof.

7.3.3 Constraint operator

We present some usual constraints and how they can be represented by an operator �
that is continuous and take values into V.

Almost sure constraint

From Lemma 7.7, we obtain a �rst important example of continuous constraints.

Proposition 7.10. Suppose thatU is the set of random variables on
�

 ; F ; P

�
, with value

in U, endowed with the topology of convergence in probability. Assume that� : U ! V is
continuous and bounded. Then the operator�

�
U

�
(! ) := �

�
U (! )

�
maps U into V and is

continuous.

Proof. The function � being continuous, is also Borel measurable.Thus for allU 2 U, for
all Borel set V � V, we have

�
�( U )

� � 1(V ) = f ! 2 
 j U (! ) 2 � � 1(V )g 2 F ;

thus �( U ) is F -measurable. Boundedness of� insure the existence of moment of all order
of �( U ). Thus � is well de�ned.

Suppose that
�

Un

	
n2 N converges toU almost surely. Then by boundedness of� ,

we have that
� 



 �
�
Un

�
� �

�
U

� 


 p

V

�

n2 N
is bounded, and thus by dominated convergence

theorem we have that

lim
n!1

�
�
Un

�
= �

�
U

�
in L p(
 ; F ; P; V) ;

which is exactly
lim

n!1
�

�
Un

�
= �

�
U

�
:

Consequently by Lemma 7.7 we have the continuity of �.

We note that boundedness of� is only necessary in order to use the dominated conver-
gence theorem. Thus an alternative set of assumptions is given in the following proposition.

Proposition 7.11. Let B be a sub-�eld of F . If U = L p0�

 ; B; P

�
, with the topology of

convergence in probability, and if� is 
 -H•older, with 
 � p0=p then �
�
U

�
(! ) := �

�
U (! )

�

is well de�ned and continuous as an operator mappingU into V.
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Proof. By de�nition a function � mapping U into V is 
 -H•older if there exist a constant
C > 0 such that for all u; u0 in U we have




 � (u) � � (u0)






V � C



 u � u0




 


U ;

in particular the 1-H•older continuity is the Lipschitz continuity.
Following the previous proof we just have to check that the sequence� 



 �
�
Un

�
� �

�
U

� 


 p

V

�

n2 N
is dominated by some integrable variable. Indeed, the H•older

assumption implies





 �

�
Unk

�
� �

�
U

� 






p

V
� Cp






 Unk

� U







p


U
:

And as p
 � p0, and Un and U are elements of Lp
0�


 ; F ; P
�
,






 Unk

� U







p


U
is integrable.

Measurability constraint

When considering a dynamic stochastic optimization problem, measurability con-
straints are used to represent the nonanticipativity constraints. They can be expressed by
stating that a random variable and its conditional expectation are equal.

Proposition 7.12. We set U = L p0�

 ; F ; P; V

�
, with p0 � p. Assume that

� either U is equipped with the strong topology, andV is equipped with the strong or
weak topology,

� or U and V are equipped with the weak topology.
If B is a sub-�eld of F , then �

�
U

�
:= E

�
U

�
� B

�
� U , is well de�ned and continuous.

Proof. In a �rst place note that as p0 � p, U � V ; and if V 2 V then E
�
V

�
� B

�
2 V as

the conditional expectation is a contraction. Thus for all U 2 U, we have �( U ) 2 V .
Consider a sequencef Ungn2 N of U strongly converging in L p0

toward U 2 U. We have

jj �
�
Un

�
� �

�
U

�
jjp � jj Un � U jjp + jjE

�
Un � U

�
� B

�
jjp

� 2jjUn � U jjp

� 2jjUn � U jjp0 ! 0 :

Thus the strong continuity of � is proven.
Now consider f Ungn2 N converging weakly in L p0

toward U 2 U. We have, for all
Y 2 L q,

E
h
E

�
Un

�
� B

�
� Y

i
= E

h
UnE

�
Y

�
� B

� i
;

�!
n

E
h
U E

�
Y

�
� B

� i
;

= E
h
E

�
U

�
� B

�
Y

i
:

Thus we have the weak convergence of the conditional expectation and therefore of �.
Finally as the strong convergence imply the weak convergence we have the continuity
from U-strong into V-weak.

Until now the topology of convergence in probability has been largely used. If we
endow U with the topology of convergence in probability in the previous proposition we
will obtain continuity of � on a subset of U. Indeed if a set of random variablesUad such
that there exist a random variable in Lp0�


 ; F ; P
�

dominating every random variable in
Uad, then a sequence converging almost surely will converge for theL p0

norm and we can
follow the previous proof to show the continuity of � on Uad.
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Risk constraints

Risk attitude can be expressed through the criterion or through constraints. We have
seen that a risk measure can be chosen as objective function, we now show that conditional
risk measure can be used to de�ne some constraints.

Let � be a conditional risk mapping as de�ned in [103], and more precisely� maps U
into V where U = L p

�

 ; F ; P; U

�
and V = L p

�

 ; B; P; V

�
, with B � F , and veri�es the

following properties
� Convexity: for all � 2 U, � 2 [0; 1] and all X; Y 2 V ; we have

�
�
�X + (1 � � )Y

�
� ��

�
X

�
+ (1 � � )�

�
Y

�
;

� Monotonicity: for all X; Y 2 V such that X � Y we have� (X ) � � (Y );
� Translation equivariance: for all c 2 V and all X 2 U, we have� (X + c) = � (X )+ c :

Proposition 7.13. Let U be endowed with the topology of convergence in probability, and
V endowed with the strong topology. If� is a conditional risk mapping, � is a continuous
bounded cost function mappingU into R, and a 2 V , then �

�
U

�
:= �

�
�
�
U

� �
� a is

continuous.

Proof. Consider a sequence of random variables
�

Un

	
n2 N converging in probability toward

U1 . Let � : L p(
 ; B; P; U) ! Lp(
 ; B; P; U) be a selector ofV = L p(
 ; B; P; U), i.e. for
any U 2 L p(
 ; F ; P; U), � (U ) 2 U . For any ! 2 
, any U 2 L p(
 ; F ; P; U) we de�ne

� ! (U ) := � (�
�
U

�
)( ! ) :

Note that for P-almost all ! 2 
, the function � ! (U ) := � !
�
� (U )

�
; satis�es the conditions

of Proposition 7.9. Thus for P-almost all ! 2 
,
�
� ! (Un )

�
n2 N converges toward � ! (U1 ).

Thus we have shown that
�
�( Un )

�
n2 N converges almost surely toward �

�
U1

�
. By bound-

edness of� and monotonicity of � we obtain the boundedness of
�
�( Un )

�
n2 N. Thus almost

sure convergence and dominated convergence theorem ensure that
�
�( Un )

�
n2 N converges

in L p toward �
�
U1

�
, hence the continuity of �.

Another widely used risk measure, even if it has some serious drawbacks, is the Value-
at-Risk. If X is a real random variable its value at risk of level � can be de�ned as
V aR� (X ) := inf f F � 1

X (� )g where FX (x) := P(X � x).

Proposition 7.14. If � : U ! R is continuous, and if U is such that everyU 2 U

have a continuous distribution function, then �( U ) := V aR�

�
�
�
U

� �
is continuous if we

have endowedU with the topology of convergence in law, and a fortiori for the topology of
convergence in probability.

Proof. By de�nition of convergence in law, if Un ! U in law, then
�
�
�
Un

��
n2 N converges

in law toward �
�
U

�
and we have, for allx 2 R, F� (Un ) (x) ! F� (U ) (x). Thus

�
�( Un )

�
n2 N

converges toward �( U ), and as �( U ) is real-valued, � is continuous.

Note that in Proposition 7.14 the constraint function take deterministic values. Thus
considering the conditional expectation of this constraint yields exactly the same con-
straint. However consider a constraint � 1 : U ! R of this form, and another con-
straint � 2 : U ! V . Then if � 1 and � 2 are continuous, then so is the constraint
� = (� 1; � 2) ! R � V . Thus we can apply Theorem 7.4 on the coupled constraint.
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7.4 Application to a Multistage Problem

In this section we say a few words about how the approximation of an almost sure
constraint by a conditional expectation { as presented in section 7.2 { can be used.

We are interested in an electricity production problem with N power stations coupled
by an equality constraint. At time step t, each power station i have an internal state
X i

t , and is a�ected by a random exogenous noiseW i
t . For each power station, and each

time step t, we have a control Q i
t 2 Q ad

t;i that must be measurable with respect to F t

whereF t is the � -algebra generated by all past noises:F t = �
�
W i

s

�
1� i � n;0� s� t . Moreover

there is a coupling constraint expressing that the total production must be equal to the
demand. This constraint is represented as

P N
i =1 � i

t (Q
i
t ) = 0, where � i

t is a continuous
bounded function from Qad

t;i into V, for all i 2 [[1; n]]. The cost to be minimized is a sum
over time and power stations of all current local costL i

t

�
X i

t ; Q i
t ; W i

t

�
.

Finally the problem reads

min
X ;Q

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; Q i
t ; W i

t

�
�

(7.15a)

s:t: X i
t+1 = f i

t (X i
t ; Q i

t ; W i
t ) 8t; 8i; (7.15b)

X i
0 = x i

0 8i; (7.15c)

Q i
t 2 Q ad

t;i 8t; 8i; (7.15d)

Q i
t � F t 8t; 8i; (7.15e)

NX

i =1

� i
t (Q

i
t ) = 0 8t; 8i: (7.15f)

For the sake of brevity, we denote byA the set of random processes (X ; Q) verifying
constraints (7.15b), (7.15c) and (7.15d).

Let assume that all random variables are inL 2 spaces and dualize the coupling con-
straint (7.15f). We do not study here the relation between the primal and the following
dual problem (see [95] and [94] for an alternative formulation involving duality between
L 1 and its dual).

max
� 2 L 2

min
(X ;Q )2A

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; Q i
t ; W i

t

�
+ � t � i

t (Q
i
t )

�

s:t: Q i
t � F t 8t; 8i:

(7.16)

We solve this problem using a gradient-like algorithm on� . Thus for a �xed � (k) we
have to solveN problems of smaller size than Problem (7.16).

min
(X ;U )2A

E
� TX

t=0

L i
t

�
X i

t ; Q i
t ; W i

t

�
+ � (k)

t � i
t (Q

i
t )

�

s:t: Q i
t � F t 8t; 8i:

(7.17)

Note that the process� (k) has no given dynamics but can be chosen to be adapted to
the �ltration ( F t )t=1 ;::;T . Consequently solving Problem (7.17) by Dynamic Programming
is possible but numerically di�cult as we need to keep all the past realizations of the noises
in the state. In fact the so-called curse of dimensionality prevent us to solve numerically
this problem.
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Nevertheless it has recently been proposed in [10] to replace� t by E
�
� t

�
� Yt

�
, whereYt

is a random variable measurable with respect to (Yt � 1; W t ) instead of � t . This is similar
to a decision rule approach for the dual as we are restraining the control to a certain
class, theYt -measurable� in our case. Thus Problem (7.17) can be solved by Dynamic
Programming with the augmented state (X i

t ; Yt ). It has also been shown that, under some
non-trivial conditions, using E

�
� t

�
� Yt

�
instead of � t is equivalent to solving

min
(X ;Q )2A

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; Q i
t ; W i

t

�
�

(7.18a)

s:t: Q i
t � F t 8t; 8i; (7.18b)

E
h NX

i =1

� i
t (Q

i
t )

�
�
� Yt

i
= 0 8t; 8i: (7.18c)

Problem (7.18) is a relaxation of Problem (7.15) where the almost sure constraint
(7.15f) is replaced by the constraint (7.18c). Now consider a sequence of information
processes (Y (n) )n2 N each generating a� -algebra Fn , and their associated relaxation (Pn )
(as speci�ed in Problem 7.18) of Problem (7.15) (denoted (P)). Those problems correspond
to Problems (7.11) and (7.12) with

J (U ) = E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; Q i
t ; W i

t

�
�
;

where U = ( Q (i ) ) i 2 [[1;N ]] and X i
t follow the dynamic equation (7.15b). We also have

� t (U t ) =
NX

i =1

� i
t (Q

i
t )

and Ct = f 0g.
Assume that for all t 2 [[1; T]], and all i 2 [[1; N ]] the cost functions L i

t and constraint
function � i

t are continuous, and that Qad
t;i is a compact subset of an Euclidean space.

Moreover we assume that the noise variablesW i
t are essentially bounded. Finally we

endow the space of control processes with the topology of convergence in probability.
Then by induction we have that the state processes and the control processes are essentially
bounded, thus so is the costL i

t

�
X i

t ; U i
t ; W i

t

�
. Thus the cost function can be e�ectively

replaced by bounded functions. Consequently Proposition 7.9 insures thatJ is continuous
if U is equipped with the topology of convergence in probability. Similarly Proposition
7.10 insures that � is continuous.

Thus Theorem 7.6 implies that our sequence of approximated problems (Pn ) converges
toward the initial problem ( P). More precisely assume thatf Ungn2 N is a sequence of"n -
optimal solution of Pn , i.e. Un verifying constraint (7.18c) and J (Un ) < inf U 2U ad

n
J (U ) +

"n , with ( "n )n2 N a sequence of positive real number converging to 0. Then we can extract
a subsequence (Unk

)k2 N converging almost surely to an optimal solution of (P), and the
limit of the approximated value of ( Pn ) converges to the value of (P).

Conclusion

In this Chapter we have considered a sequence of optimization problem
�
Pn

�
where

each problem is a relaxation of an optimization problem
�
P

�
. This relaxation is given by

replacing an almost sure constraint by a conditional expectation constraint with respect to
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a � -algebra Fn . We have shown that, if the cost and constraint functions are continuous
and if the sequence of� -algebras fF ngn2 N converges toward the global� -algebra, then
the sequence of optimization problems

�
Pn

�
converges toward the original problem

�
P

�
.

In the next chapter, we apply this relaxation to a multistage optimization problem in
order to obtain a tractable price decomposition scheme.
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Chapter 8

Dual Approximate Dynamic
Programming Algorithm

If you can't solve a problem, then there is an easier
problem you can solve: �nd it.

Georg P�olya
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In this �nal chapter, we present a spatial decomposition algorithm that solves an ap-
proximation of a multistage stochastic optimization problem. We illustrate the approach
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on the hydraulic valley example of x1.3.2. This algorithm, called DADP for Dual Ap-
proximate Dynamic Programming, was �rst described in [10], following preliminary works
in [114] and [50]; numerical studies can be found in [1,50].

In x8.1, we provide a bird eye view of the method. Inx8.2, we describe each step of
the DADP algorithm. In x8.3, we use the results of Chapters 4 to 7 to provide theoretical
foundations to the algorithm. In x8.4, we display numerical results for the 3-dam valley
example (seex1.3.2). Finally, in x8.5, we discuss the design of the information process
that appears in the approximation step.

As this Chapter is pretty heavy on notations and indexes, the quanti�er 8 will often
be omitted. In addition, many variables are indexed by the dynamic subsystemi , and
the time t; most of the time, when we omit an index, it means the collection, e.g.X =
�

X i
t

	
t2 [[0;T ]];i 2 [[1;N ]], X i =

�
X i

t

	 T
t=0 , X t =

�
X i

t

	 N
i =1 . We also assume that spacesX =

�
Xt

� T
1 , U =

�
Ut

� T
1 and W =

�
Wt

� T
1 are subsets of �nite dimensional vector spaces. More

precisely, we denote bynX the dimension of A�( Xt ), nU the dimension of A�( Ut ), and
nW the dimension of A�( Wt ); it is for notational sobriety only that these dimensions are
assumed to be the same for every timet. The integer nC denotes the dimension of the
image space of the constraint functions� i

t .

8.1 Overview of the DADP Method

We considerN stochastic dynamic systems coupled by almost sure equality constraints.
The global cost to be minimized is the expectation of a sum over theN systems of the
sum over time of local costs. The problem considered is detailed inx8.1.1. Our objective
here is to obtain feedbacks (strategies), for a large scale stochastic dynamical problem.

The price decomposition scheme consists in dualizing the coupling constraints, �xing a
multiplier, and obtaining N uncoupled subproblems. From the solution of each subproblem
we update the multiplier before iterating. However, we show in x8.1.2 that this price
decomposition scheme leads to subproblems which are too di�cult to solve by Dynamic
Programming (dimension of the state too important). Thus, we propose an approximation
method called Dual Approximate Dynamic Programming (DADP) and based on the main
following ideas1:

� relaxing the almost sure coupling equality constraints into conditional expectation
constraint,

� using a price decomposition scheme to obtain subproblems,
� solving the subproblems through methods like Dynamic Programming.
The approximation idea behind the Dual Approximate Dynamic Programming

(DADP) algorithm is presented in x8.1.3. A presentation of the scheme of DADP method
is given in x8.1.4 (a more detailed presentation is done inx8.2). Its application on the
hydraulic valley example is presented inx8.1.5.

8.1.1 Presentation of the Spatially Coupled Problem

We are interested in a production problem involving N units. Each unit i has an
internal state X i

t at time step t, and is a�ected by a random exogenous noiseW i . The
global exogenous noisef W t g

T � 1
0 is assumed to be time-independent. Time dependence

could be represented by extending the state, and incorporating information of the noise
in it. On the other hand, for a given time t, the sequencef W i

t gN
i =1 is not assumed to

be independent (between units). Moreover we assume a Hazard-Decision setting, that is,
that the control taken at time t is chosen once the uncertaintyW t is known.

1. Di�erent interpretations of the DADP algorithm are given in 8.3.1.
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For each unit i 2 [[1; N ]], and each time stept 2 [[0; T � 1]], we have to make a decision
U i

t 2 Uad
t;i that must be measurable with respect toF t , whereF t is the � -algebra generated

by all past noises:

F t = �
� �

W i
s

�
1� i � N;0� s� t

�
:

We denoteF the �ltration fF t gT
0 .

We consider an almost sure coupling constraint represented as

NX

i =1

� i
t

�
X i

t ; U i
t ; W t

�
= 0 P � a:s: (8.1)

For example, each� i
t can represent the production of unit i at time t and a constraint on

the global production at time t is represented through Equation (8.1). Moreover, as in the
dam example (seex1.3.2), if some controls are shared by two dynamical systems, then it is
formulated by de�ning one control for each dynamical system, and stating their equality
in (8.1).

Finally, the cost to be minimized is the expectation of a sum over time and over unit
of all current local costs L i

t

�
X i

t ; U i
t ; W t

�
.

The overall problem can be formulated

min
X ;U

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
�

(8.2a)

X i
0 = x i

0 (8.2b)

X i
t+1 = f i

t (X i
t ; U i

t ; W t ) (8.2c)

U i
t 2 Uad

t;i (8.2d)

U i
t � F t (8.2e)

NX

i =1

� i
t

�
X i

t ; U i
t ; W t

�
= 0 (8.2f)

where constraint (8.2c)-(8.2f) are to be understood for all timet 2 [[0; T]] (constraint (8.2c)
for t 2 [[0; T � 1]] only) and constraints (8.2b)-(8.2e) for all unit i 2 [[1; N ]].

Note that, if it were not for constraint (8.2f), Problem (8.2) would lead to a sum of
independent subproblems, that could be optimized independently.

8.1.2 First Idea: Price Decomposition Scheme

In x6.3, we presented how Uzawa algorithm can be applied to a multistage problem.
However, in Chapter 6 we did not specify how to solve the minimization problem for a
given multiplier. Here, we use the Uzawa algorithm as the master problem in a price
decomposition approach to Problem (8.2), and show its limits.

Let us assume that all random variables used in Problem (8.2) are in L1 , and that
the problem has a L1 optimal multiplier for the coupling constraint (8.2f). There are
three reasons for choosing the space L1 . First, assuming that the states and control are
essentially bounded is a reasonable modernization for most industrial problems. Second,
there exists - see Chapter 5 - condition for existence of multiplier in the

�
L1 ; L1

�
pairing,

whereas the examples of Chapter 4 show that it is more delicate in Lp with p < 1 . Third,
a convergence in L1 has an easier interpretation than a convergence in L2.



190 CHAPTER 8. DADP ALGORITHM

We dualize (see Chapter 4) the coupling constraints (8.2f) (in the
�
L1 ; L1

�
pairing) to

obtain

min
X ;U

max
� 2 L1

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � t � � i

t

�
X i

t ; U i
t ; W t

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.3)

Note that the multiplier � is a stochastic process� =
�

� t

	 T
t=0 .

We now consider the dual problem (see Chapter 4)

max
� 2 L1

min
X ;U

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � t � � i

t

�
X i

t ; U i
t ; W t

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.4)

Fact 8.1. If there exists an optimal multiplier process � = f � sgT � 1
0 such that � 2

L1
�

 ; F ; P; RnC

�
, then there exists an optimal multiplier process that isF-adapted.

Proof. Indeed, for � t in L 1
�

 ; F ; P

�
, the conditional expectation w.r.t the � -algebra F t is

de�ned, and we have,

E
h
� t � E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� F t

� i
= E

h
E

�
� t

�
� F t

�
� E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� F t

� i
:

Hence, we replace� t by the F t -measurableE
�
� t

�
� F t

�
that yields the same value for

Problem (8.4).

From now on we will consider that the multiplier process � is F-adapted.
We can solve the maximization part of the dual problem using a gradient-like algorithm

on � . Thus, for a �xed multiplier process � (k) , we have to solveN independent problems
of smaller size

min
X i ;U i

E
� TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � (k)

t � � i
t

�
X i

t ; U i
t ; W t

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.5)

Problem (8.2) is a multistage problem with a physical stateX t = f X i
t g

N
i =1 , a�ected by

a time independent noise processf W t g
T
0 . Hence, the stateX t is an information state in

the sense of Dynamic Programming (seex1.2.4 ) and Problem (8.2) can be solved through
Dynamic Programming with a state of dimension N � dim(X i

t ).
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If it were not for the term � (k)
t � � i

t

�
X i

t ; U i
t ; W t

�
in the objective function of Prob-

lem (8.5), we would have a problem with a physical stateX i
t a�ected by the time inde-

pendent noise processf W t g
T
0 . Hence, the Dynamic Programming would be far faster: the

dimension of the state is divided byN .
Unfortunately, with the term � (k)

t � � i
t

�
X i

t ; U i
t ; W t

�
Problem (8.5) is a problem with a

physical state X i
t , and two random noises : W t and � (k)

t . The noise f W t g
T
0 process is

time-independent, but the noise processf � (k)
t gT � 1

t=0 is not time independent. All we know
is that it is a F-adapted information process. Hence,a priori , Problem (8.5) can be solved
by Dynamic Programming, by using f W sgt � 1

s=0 as the information state at time t. However,
this state is not necessarily smaller than the state of the global problem (Problem (8.2)).

If we could show that the multiplier process � (k)
t had a dynamic, say

� (k)
t = ht

�
� (k)

t � 1; � � � ; � (k)
t � s; W t

�
;

then Problem (8.5) could be solved with the information state f X i
t ; � (k)

t � 1; � � � ; � (k)
t � sg. On a

very speci�c example it has been shown in [114] that the multiplier process has a dynamic.
In the following section, we construct an approximation of Problem (8.2) such that its
multiplier process is a function of a stochastic processY with a dynamic. Our goal is
to solve Problem (8.5) by Dynamic Programming with the extended information state�
X i

t ; Yt

�
.

8.1.3 Second Idea: Constraint Relaxation

We have seen in the previous section that, if we apply a price decomposition scheme
to Problem (8.2) the subproblems (8.5) cannot be solved numerically by the Dynamic
Programming approach because of the curse of dimensionality. Thus, we approximate
Problem (8.2) by relaxing the almost sure constraints, in order to obtain subproblems
with a smaller dimension state, and thus numerically solvable by Dynamic Programming.

For this purpose, we consider a stochastic process
�

Yt

	 T � 1
t=0 (uncontrolled), called an

information process, that follows a dynamic

8t 2 [[0; T � 1]]; Yt+1 = ~f t (Yt � 1; W t ) ; (8.6)

where ~f t are known deterministic functions. The choice of the information process is
arbitrary, but determines the quality of the method. It will be discussed in x8.4 and x8.5.

For simplicity, we present the algorithm with only one information process. However,
it can be extended to multiple information processes, a�ected to di�erent constraints. This
will be done in the dam valley example on which we illustrate the method.

We replace, in Problem (8.2), constraint (8.2f) by its conditional expectation w.r.t the
information process (see constraint (8.7f)):

min
X ;U

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
�

(8.7a)

X i
t+1 = f i

t (X i
t ; U i

t ; W t ) (8.7b)

X i
0 = x i

0 (8.7c)

U i
t 2 Uad

t;i (8.7d)

U i
t � F t (8.7e)

E
h NX

i =1

� i
t

�
X i

t ; U i
t ; W t

� �
�
� Yt

i
= 0 : (8.7f)
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This type of relaxation was studied in Chapter 7.
In the

�
L1 ; L1

�
pairing, we de�ne the Lagrangian function

L
�
U ; �

�
= E

� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � t � E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� Yt

�
�

; (8.8)

where the state processX follows the dynamic equation (8.7b).
Thus, we obtain the following dual problem

max
� 2 L1

min
X ;U

E
� NX

i =1

TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � t � E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� Yt

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.9)

Lemma 8.2. Assume that there exists an optimal process� =
�

� t

	 T
t=0 for the maxi-

mization part of Problem (8.9), with � t 2 L1
�

 ; F ; P; Rp

�
. Then, the process� ] de�ned

by

� ]
t = E

�
� t

�
� Yt

�
;

is also an optimal solution to Problem(8.9).

Proof. Indeed if � t 2 L1
�

 ; F ; P

�
, then we have,

E
h
� t � E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� Yt

� i
= E

h
E

�
� t

�
� Yt

�
� E

�
� i

t

�
X i

t ; U i
t ; W t

� �
� Yt

� i
:

Using this equality in (8.8)

L (U ; � ) = L(U ; � ] ) ;

hence the result.

Thus, we can restrict ourselves to multiplier processes� , such that for all time t 2
[[0; T]], � t is measurable w.r.tYt .

Consequently, using once more Lemma B.3, we can write Problem (8.9) as

max
� t � Yt

NX

i =1

min
X i ;U i

E
� TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � t � � i

t

�
X i

t ; U i
t ; W t

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.10)

Problem (8.10) is equivalent to Problem (8.9), but is simpler:
� the multiplier process � of Problem (8.10) lives in a smaller linear space,
� the dual cost in the objective function of Problem (8.10) no longer requires to com-

pute a conditional expectation.
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Note that, for a given multiplier � (k)
t , we have to solve theN following separate inner

minimization subproblems.

min
X i ;U i

E
� TX

t=0

L i
t

�
X i

t ; U i
t ; W t

�
+ � (k)

t � � i
t

�
X i

t ; U i
t ; W t

�
�

X i
t+1 = f i

t (X i
t ; U i

t ; W t )

X i
0 = x i

0

U i
t 2 Uad

t;i

U i
t � F t :

(8.11)

Each inner minimization problem can be solved by Dynamic Programming with the ex-
tended state

�
X i

t ; Yt

�
. Indeed, �x a multiplier � (k)

t measurable w.r.tYt , and represented by

a measurable function� (k)
t such that � (k)

t (Yt ) = � (k)
t . Recalling that the noisesf W t g

T � 1
0

are assumed to be time-independent, we can write the following Dynamic Programming
equation for the inner minimization problem.

V i
t

�
x i

t ; yt
�

= min
U i

t � W t

E
�
L i

t

�
x i

t ; U i
t ; W t

�
+ � t (yt ) � � i

t

�
x i

t ; U i
t ; W t

�
+ V i

t+1

�
X i

t+1 ; Yt+1

�
�

X i
t+1 = f i

t (x i
t ; U i

t ; W t )

Y i
t+1 = ~f i

t

�
yt ; W t

�

U i
t 2 Uad

t;i :

Thus, we can solve the inner minimization problem for a given multiplier, by applying
Dynamic Programming to the N separate problems.

Remark 8.3. For notational simplicity, we relaxed the almost sure constraint (8.2f) in
its conditional expectation with respect to one information process (see Equation(8.7f)).
However, exactly the same approach can be done with several constraints. More precisely,
we consider,

8j 2 [[1; J ]];
nX

i =1

� i;j
t X i

t ; U i
t ; W t = 0 ; P � a.s. ; (8.12)

and their relaxed counterpart

8j 2 [[1; J ]]; E
� nX

i =1

� i;j
t X i

t ; U i
t ; W t

�
� Y j

t

�
= 0 ; (8.13)

where f Y j
t gt2 [[0;T � 1]] is an information process. There is no di�culty in extending the

results to this type of relaxation. This is done in the dam example inx8.1.5 and thereafter.

8.1.4 General Scheme

We now describe more precisely the DADP algorithm in Algorithm 8.1 given an infor-
mation process

�
Yt

	 T � 1
t=0 satisfying (8.6).

Iteration k of Algorithm 8.1 starts with a multiplier process � (k)
t . The N inner mini-

mization problems (8.11) are solved, for example, by Dynamic Programming.
From these resolutions, we obtain aslack process� (k)

t de�ned by

� (k)
t :=

NX

i =1

� i
t

�
X i; (k)

t ; U i; (k)
t ; W t

�
; (8.14)
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where
�

X i; (k)
t ; U i; (k)

t

	 T
t=0 is the solution process of Problem (8.11).

Then, we update the multiplier process by a gradient like step

8t 2 [[0; T]]; � (k+1)
t := � (k)

t + � E
�
� (k)

t

�
� Yt

�
; (8.15)

for a given � > 0. As � (k)
t is measurable w.r.t Yt , and Yt is a �nite dimensional random

variable, a result from Doob (extended in [36, Chapter 1, p.18]) allows us to represent
� (k)

t as a function � (k)
t of Yt . Moreover, if Yt takes a �nite number of values, � (k)

t can be
represented by a �nite dimensional vector. The update (8.15) of the multiplier process
f � (k)

t gt2 [[0;T ]] ends iteration k of the DADP algorithm.

Data : Information process evolution functions ~f t and starting point y0 initial
multipliers � (0)

t ;

Result : optimal multipliers � ]
t , admissible feedback ;

repeat
forall the i 2 [[1; N ]] do

Solve Problem (8.11) ;

forall the t 2 [[0; T � 1]] do
Estimate E

�
� k

t

�
� Yt

�
;

Update the multiplier : � (k)
t (8.15);

until E
�
� k

t

�
� Yt

�
' 0;

Compute admissible feedbacks ;

Algorithm 8.1: General Scheme of DADP

We sum up the information structure and notations:
� W t is the noise happening at the beginning of the time period [t; t + 1[,

� F t = �
� �

W �

	 t
� =0

�
is the � -algebra of all information contained in the noises realized

before time t + 1,
� U t =

�
U i

t

	 N
i =1 is the control applied at the end of the time period [t; t +1[, measurable

w.r.t F t ,
� X t =

�
X i

t

	 N
i =1 is the state of the system at the beginning of [t; t + 1[, is measurable

w.r.t F t � 1 (note that this time the index is t � 1),
� Yt is the information variable measurable w.r.t F t ,
� � t is the multiplier of the almost sure constraint (8.2f), measurable w.r.t F t ,
� � t is the multiplier of the conditional constraint (8.7f) measurable w.r.t �

�
Yt

�
� F t ,

and we have� t = � t
�
Yt

�
, where � t is a deterministic function.

8.1.5 An Hydraulic Valley Example

We illustrate the DADP algorithm on the example of a chain of N dams presented in
x1.3.2, more thoroughly developed in [1].

First of all, to recover the framework of Problem (8.2), with dynamical system coupled
through constraints, we need to duplicate the out
ow of dam i � 1. It means that we
considerZ i

t as a control variable pertaining to the dam i , and submitted to the constraint

8i 2 [[2; N ]]; Z i
t = gi � 1

t

�
X i � 1

t ; U i � 1
t ; Z i � 1

t| {z }
:= H i � 1

t

; W i � 1
t

�
; and Z 1

t � 0 : (8.16)
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Figure 8.1: From a coupled formulation to a decomposed formulation of the dam problem

Intuitively the control Z i
t is the water \bought" by the dam i to the dam i � 1. The price

of this exchange is the multiplier � i
t to constraint (8.16). Note that, if the price is not the

actual optimal multiplier, the physical constraint stating that the out
ow of dam i goes
into dam i + 1 will not be satis�ed. Schematically, this can be seen on Figure 8.1. Note
also that there are N � 1 constraint, henceN � 1 multiplier processes.

In order to �t the framework of Problem (8.2), the coupling constraint is given by

� i
t

�
X i

t ; U i
t ; Z i

t ; W i
t

�
=

�
0; � � � ; 0; � Z i

t| {z }
i th position

; gi
t

�
H i

t ; W i
t

�
; 0; � � � ; 0

�
;

so that constraint (8.2f) coincides with constraint (8.16).
We now explicit the relaxation (8.7). In the rest of the presentation, for notational

simplicity, we consider only one information process
�

Yt

	 T
0 . However, we can choose one

information process per coupling constraint. Hence, for anyi 2 [[2; N ]], we consider an
information process

�
Y i

t

	 T � 1
t=0 , and we relax constraint (8.16) into

8i 2 [[2; N ]]; E
h
gi � 1

t

�
H i � 1

t ; W i � 1
t

�
� Z i

t

�
�
� Y i

t

i
= 0 ; and Z 1

t � 0 : (8.17)

We assume that the information processesf Y i
t gN

i =1 satisfy (8.6); more precisely that
there are known deterministic functions ~f i

t such that

8i 2 [[1; N ]]; 8t 2 [[0; T � 1]]; Y i
t+1 = ~f i

t

�
Y i

t ; W t

�
:

Thus, the relaxed optimization problem (8.7) reads now

max
�

min
H

E
� NX

i =1

TX

t=0

L i
t

�
H i

t ; W t

�
�

X i
0 = x i

0

X i
t+1 = f i

t

�
H i

t ; W i
t

�

Y i
t+1 = ~f i

t

�
Y i

t ; W i
t

�

�
U i

t ; Z i
t

�
2 Uad

t;i
�
U i

t ; Z i
t

�
� F t

E
�
gi � 1

t

�
H i � 1

t ; W i � 1
t

�
� Z i

t

�
� Y i

t

�
= 0 :

(8.18)
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For notational consistency, we introduce a �ctitious � N +1
t � 0, and the dual problem (8.10)

reads

max
� i

t � Y i
t

NX

i =1

min
H i

E
� TX

t=0

L i
t

�
H i

t ; W t

�
+ � i +1

t � gi
t

�
H i

t ; W i
t

�
� � i

t � Z i
t

�

X i
0 = x i

0

X i
t+1 = f i

t

�
H i

t ; W i
t

�

Y i
t+1 = ~f i

t

�
Y i

t ; W i
t

�

�
U i

t ; Z i
t

�
2 Uad

t;i
�
U i

t ; Z i
t

�
� F t :

(8.19)

8.2 DADP Algorithm Step by Step

Here, we present each step of the DADP algorithm and illustrate it with the dam valley
example.

8.2.1 Initialization

The Uzawa algorithm (see Chapter 6) is close to a gradient algorithm for the dual
problem. Consequently, we need a good starting point for this gradient algorithm. In
some cases, if the random variables were deterministic, the problem could be e�ciently
solved exactly, yielding the exact Bellman function. From this Bellman function we can
determine (see below for an example on the dam valley) the optimal multiplier. Thus, a
good idea for an initial � 0 would be the (deterministic) optimal multiplier for the problem
on the mean scenario. More precisely we consider Problem (8.2) where eachW t is replaced
by E

�
W t

�
. This new problem is deterministic and can be solved by speci�c methods.

Example 8.4. Let f wt gT � 1
t=0 be a scenario of noise. We consider the following determin-

istic optimization problem, close to the one presented inx8.1.5

min
(x;u;z )

T � 1X

t=0

NX

i =1

L i
t (x

i
t ; ui

t ; wi
t ; zi

t ) +
NX

i =1

K i (x i
T ) (8.20a)

x i
t+1 � f i

t (x i
t ; ui

t ; wi
t ; zi

t ) = 0 (8.20b)

zi +1
t � gi

t (x
i
t ; ui

t ; wi
t ; zi

t ) = 0 : (8.20c)

We denote by� i
t+1 the multiplier of the dynamic equation (8.20b) and by � i +1

t the
multiplier of (8.20c). We dualize (8.20b) and (8.20c) and write the optimality equation
on zi

t (recall that for all t 2 [[0; T � 1]], we have setz1;t � 0).

8i 2 [[1; N � 1]]; 8t 2 [[0; T � 1]];
@Lit
@z

� � i
t+1 �

@fit
@z

� � i +1
t �

@git
@z

+ � i
t = 0 : (8.21)

We obtain, for all t 2 [[0; T � 1]], the following backward (in i ) equations to determine
� t (recall that � N +1

t � 0):

(
� N

t = � @LNt
@z + � N

t+1 � @fNt
@z

� i
t = � @Lit

@z + � i
t+1 � @fit

@z + � i +1
t � @git

@z 8i 2 [[1; N � 1]]
(8.22)

In order to obtain the multiplier � we write the Dynamic Programming equation for
Problem (8.20).
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8
>>>>>>><

>>>>>>>:

VT
�
xT

�
=

NX

i =1

K i (x i
T )

Vt
�
x t

�
= min

(u;z)

NX

i =1

L i
t (x

i
t ; ui

t ; wi
t ; zi

t )

+ Vt+1

�
f 1

t

�
x1

t ; u1
t ; w1

t ; z1
t

�
; � � � ; f N

t

�
xN

t ; uN
t ; wN

t ; zN
t

� �

; (8.23)

where the minimum is taken under constraint (8.20c).
After dualization, �rst order optimality conditions in zi

t of Problem (8.23) are given by

@Lit
@z

+
@fit
@z

:
@Vt+1

@xi
�

@git
@z

:� i +1
t + � i

t = 0 : (8.24)

By identi�cation of (8.24) with (8.21), we deduce the expression of� i
t :

� i
t = �

@Vt
@xi

�
x t

�
: (8.25)

Thus, equation (8.22) can be written

(
� N

t = � @LNt
@z + @fNt

@z � � N
t+1

� i
t = � @Lit

@z � @Vt +1
@xi � @fit

@z + � i +1
t � @git

@z 8i 2 [[1; N � 1]]
: (8.26)

Hence, we obtain a starting multiplier � (0) by setting � (0)
t � � t given by (8.26).

We have seen on the deterministic hydraulic valley example that, if we know the
Bellman function of a problem, we can obtain the optimal multiplier

�
� t

	 T � 1
t=0 . Note that

the same computation can be done in a non-deterministic setting, and having the exact
Bellman functions would give the exact multiplier process as well.

8.2.2 Solving the Inner Problem

At each step of the DADP algorithm (Algorithm 8.1), we have to solve the N inner
minimization problems (8.11). For the DADP algorithm, the only output needed to up-
date the multipliers, is the stochastic process� (k) de�ned in (8.14). Consequently, the
inner problems can be solved by any methods available (e.g Stochastic Dual Approximate
Dynamic Programming - see Chapter 3).

Without further assumptions, the Dynamic Programming method is available. At iter-
ation k, we initialize the Bellman function V i; (k)

T � K i , and proceed recursively backward

in time to construct V i; (k)
t . For every possible value ofX i

t denoted x i
t and value of Yt

denoted yt , we solve

min
� i

t

E
�
L i

t

�
x i

t ; U i
t ; W t

�
+ � (k)

t

�
Yt

�
� � i

t

�
x i

t ; U i
t ; W t

�
+ V i; (k)

t+1

�
X i

t+1 ; Yt+1

� �

X i
t+1 = f i

t (x i
t ; U i

t ; W t )

Yt+1 = ~f t (yt ; W t )

U i
t = � i

t

�
x i

t ; yt ; W t

�

U i
t 2 Uad

t;i :

(8.27)

where the minimization is done on the policies� i
t that are bounded functions mapping

X i
t � Yt � Wt into Ut . The optimal value of Problem (8.27) is the local Bellman value

V i; (k)
t (x i

t ; yt ).
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