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Abstract

The first part of this thesis is devoted to the study of an Affine Term Structure Model
(ATSM) where we use Wishart-like processes to model the stochastic variance-covariance of
interest rates. This work was initially motivated by some thoughts on calibration and model
risk in hedging interest rates derivatives. The ambition of our work is to build a model which
reduces as much as possible the noise coming from daily re-calibration of the model to the
market. It is standard market practice to hedge interest rates derivatives using models with
parameters that are calibrated on a daily basis to fit the market prices of a set of well chosen
instruments (typically the instrument that will be used to hedge the derivative). The model
assumes that the parameters are constant, and the model price is based on this assumption;
however since these parameters are re-calibrated, they become in fact stochastic. Therefore,
calibration introduces some additional terms in the price dynamics (precisely in the drift
term of the dynamics) which can lead to poor P&L explain, and mishedging. The initial
idea of our research work is to replace the parameters by factors, and assume a dynamics
for these factors, and assume that all the parameters involved in the model are constant.
Instead of calibrating the parameters to the market, we fit the value of the factors to the
observed market prices.

A large part of this work has been devoted to the development of an efficient numerical
framework to implement the model. We study second order discretization schemes for Monte
Carlo simulation of the model. We also study efficient methods for pricing vanilla instru-
ments such as swaptions and caplets. In particular, we investigate expansion techniques for
prices and volatility of caplets and swaptions. The arguments that we use to obtain the
expansion rely on an expansion of the infinitesimal generator with respect to a perturbation
factor. Finally we have studied the calibration problem. As mentioned before, the idea of the
model we study in this thesis is to keep the parameters of the model constant, and calibrate
the values of the factors to fit the market. In particular, we need to calibrate the initial
values (or the variations) of the Wishart-like process to fit the market, which introduces
a positive semidefinite constraint in the optimization problem. Semidefinite programming
(SDP) gives a natural framework to handle this constraint.

The second part of this thesis presents some of the work I have done on the hedging of
interest rate risk in ALM. This work was motivated by the business at Crédit Agricole S.A.
and in particular by the Financial Division of the bank. The purpose of this part of the dis-
sertation is twofold. First we want to communicate on a field of Finance which is less known
by the mathematical finance community, and presents some interesting modeling challenges.
Secondly we try to present an original approach to modeling and hedging interest rate risk.

Chapter 6 is an attempt to formalize some of concepts that are used in practice in ALM.
We recall some of the key concepts such as the schedule of an asset or a liability and the
interest rate gap, and introduce a new concept : the notion of envelope. This concept will
look familiar to people used to derivatives pricing, and the hedging of the interest rate risk
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of an asset or a liability (closing the gap using the language of ALM) is very similar to the
hedging of an option. The remaining chapters present the results of the work we have done
in three different projects.
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Introduction

The present document presents some of the research work I have done during my PhD
thesis. This work was mainly done while I was working at the Groupe de Recherche
Opérationnelle in Crédit Agricole. Given the working context in which I have done my
PhD thesis, my research work was mainly inspired and sometime directly motivated by con-
crete demands of the business. The document contains two parts which are independent
one to another, and yet describe two different faces of the same business : the fixed in-
come derivative business. The first part of this document is devoted to the study of an
Affine Term Structure Model where we use Wishart-like processes to model the stochastic
variance-covariance of interest rates. This model aims at providing a robust framework to
manage exotic interest rates derivatives. This work has led to a prepublication [AAP14].
The second of this document presents some of the research work I have done for modeling
interest rates risk in Asset and Liability Management. The objective of this second part is to
try and formalize some of the concepts that are used in practice when managing the interest
rates exposure of large banks.

Motivation

The first part of the document presents the study of an Affine Term Structure Model
(ATSM) where we use Wishart-like processes to model the stochastic variance-covariance of
interest rates. This work was initially motivated by some thoughts on calibration and model
risk in hedging interest rates derivatives. The ambition of our work is to build a model which
reduces as much as possible the noise coming from daily re-calibration of the model to the
market.

It is standard market practice to hedge interest rates derivatives using models with pa-
rameters that are calibrated on a daily basis to fit the market prices of a set of well chosen
instruments (typically the instrument that will be used to hedge the derivative). The model
assumes that the parameters are constant, and the model price is based on this assumption;
however since these parameters are re-calibrated, they become in fact stochastic. Therefore,
calibration introduces some additional terms in the price dynamics (precisely in the drift
term of the dynamics) which can lead to poor P&L explain, and mishedging. The initial
idea of our research work is to replace the parameters by factors, and assume a dynamics
for these factors, and assume that all the parameters involved in the model are constant.
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Instead of calibrating the parameters to the market, we fit the value of the factors to the ob-
served market prices. Considering enough factors to represent the dynamics of the relevant
market quantities, we can use the model to produce a robust hedge against these factors.
The theoretical framework which has been chosen to achieve this goal is the framework of
Affine Term Structure Models [DK96b]. This choice allows us to keep tractability, and also
it is very easy to increase the number of factors in the model as long as the additional factor
also follows an affine diffusion process. Clearly the choice of affine diffusions is restrictive
and limits the ability, and the degrees of freedom of the model to produce a dynamics con-
sistent with the market. We consider this is the lesser of two evils, arguing that even if our
dynamical assumption on the factors is wrong, we can always design a conservative pricing
of derivatives using the model. For example, we could follow El Karoui et al. [EKJPS98]
which, using the monotonicity properties of the price as a function of volatility shows that
we can bound the price of a derivative on an underlying which has an unknown dynamics
as soon as we can bound the volatility of this underlying. In [ALP95], Avellaneda et al.
show that as soon as we can bound the diffusion term of the underlying, we can build a
conservative price for any derivative on this underlying by means of non-linear PDE.

The second part of the document presents some of the work I have done on the hedging
of interest rate risk in ALM. This work was motivated by the business at Crédit Agricole
S.A. and in particular by the Financial Division of the bank. The purpose of this part of
the dissertation is twofold. First we want to communicate on a field of Finance which is
less known by the mathematical finance community, and presents some interesting modeling
challenges. Secondly we try to present an original approach to modeling and hedging interest
rate risk.

State of the art

The model we study in this thesis belongs to the class of ATSM. ATSM are an important
class of models for interest rates that include the classical and pioneering models of Vasicek
[Vas77] and Cox-Ingersoll-Ross [CIR85]. These models have been settled and popularized
by the papers of Duffie and Kan [DK96b], Dai and Singleton [DS00] and Duffie, Filipovic
and Schachermayer [DFS03]. We refer to Filipovic [Fil09] for a textbook on these term
structure models. The Linear Gaussian Model (LGM) is a simple but important subclass
of ATSM that assumes that the underlying factors follow a Gaussian process. It has been
considered by El Karoui and Lacoste [EKL92] and El Karoui et al. [EKLM+91], and still
today widely used in the industry for pricing fixed income derivatives, thanks to its simplicity.

There are several examples of ATSM which allow to reproduce stylized facts such as the
volatility smile. Recently Wishart processes have been used to model stochastic volatility
of interest rates. The first proposals were formulated in [GMS10], [GS03], [GS07], [Gou06]
both in discrete and continuous time, for interest rates and equity underlyings. Applications
to multifactor volatility and stochastic correlation can be found in [DFGT08b], [DFGT08a],
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[DFGI11], [DFGI14], [DFG11], [BPT10], [BL13], [BCT08], both in option pricing and portfo-
lio management. These contributions consider the case of continuous path Wishart processes,
[GT08] and [Cuc11] investigate processes lying in the more general symmetric cones state
space domain, including the interior of the cone S+

d (R). A Wishart ATSM has been defined
by Benabid, Bensusan and El Karoui and studied by Bensusan in his Phd thesis [Ben10].
Their model is inspired by the canonical specification of ATSM given by [DS00], and uses
Wishart processes to define a rich volatility dynamics. In a series of papers by Gnoatto
[Gno13] and Gnoatto and Grasselli, [GG14a], and Gnoatto et al. [BGH13] have consid-
ered affine term structure models, in which the yield curve is driven by a Wishart process.
A mean reverting Wishart model for the log-prices of commodities has been considered in
[CWZ15]. The model we study in this thesis differs in several aspects. The idea of the model
is to build a stochastic variance covariance perturbation of the LGM. We want to keep the
model structure of the LGM, and in particular the interpretation of some of the factors as
the main modes of the yield curve (as explained in 2.4.1) and use the Wishart-like process
to model the stochastic variance-covariance of the factors. We chose to consider a general
affine variance-covariance dynamics which is more general than the Wishart dynamics which
has previously been considered. This allows to account for mean reversion of the variance-
covariance, and gives more flexibility to model the term structure of implied volatility. We
also considered a correlation structure between what we call the yield curve factors, and the
Wishart-like stochastic variance-covariance. The proposed dynamics for the factors of the
model is similar to the dynamics of log-prices in Da Fonseca et al. [DFGT08a].

A large part of our work has been devoted to the development of an efficient numerical frame-
work to implement the model. We study second order discretization schemes for Monte Carlo
simulation of the model. We merely followed the footsteps of Ahdida and Alfonsi [AA13],
who studied the Monte Carlo simulation of Wishart processes and their affine extension.
Using a splitting technique they are able to propose exact and high order discretization
schemes for Wishart-like processes. These schemes apply directly to our model in the case
where there is no correlation between the yield curve factors and the stochastic variance-
covariance. The case of a non-zero correlation required some additional work to apply a
similar splitting technique.

We also study efficient methods for pricing vanilla instruments such as swaptions and caplets.
First, we consider the methods based on the Fourier inversion and the Fast Fourier Trans-
form (FFT) that have been presented by Carr and Madan [CM99] and Lee [Lee04]. These
methods can be applied directly for Caplets by working with the forward Caplet price. In
order to apply these methods for swaptions we need to perform a classic approximation step.
We refer to Schrager and Pelsser [SP06] and Singleton and Umantsev [SU02] for a detailed
description of these methods which directly apply to our model. Second, series expansion
methods of Gram-Charlier type can also be directly applied for both caplets and swaptions.
These methods have previously been applied for pricing swaptions, see for example Collin-
Dufresne and Goldstein [CDG02] and Tanaka et al. [TYW05]. We also investigate expansion
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techniques for prices and volatility of caplets and swaptions. The arguments that we use to
obtain the expansion have been developed in the book of Fouque et al. [FPS00]. They rely on
an expansion of the infinitesimal generator with respect to a perturbation factor. Recently,
this technique was applied by Bergomi and Guyon [BG12] to provide approximation under
a multi factor model for the forward variance. We have adapted this approach to interest
rates, and in particular of factorial term structure models.

Finally we have studied the calibration problem. There are very few examples where the
calibration of interest rates model to the market is discussed formally. See [HKP00] for a
notable example. In particular, the calibration of ATSM has been tackled from a statistical
estimation point of view, rather than describing how to fit the observed market prices. As
mentioned before, the idea of the model we study in this thesis is to keep the parameters of
the model constant, and calibrate the values of the factors to fit the market. In particular,
we need to calibrate the initial values (or the variations) of the Wishart-like process to fit
the market, which introduces a positive semidefinite constraint in the optimization problem.
Semidefinite programming (SDP) gives a natural framework to handle this constraint. See
Roupin [Rou12] and Boyd [BV03] for an introduction to SDP. SDP has previously been
applied to the calibration of the Libor market model by d’Aspremont [d’A03] and Brace et
al. [BW00].

The theory of hedging of interest rates risks in ALM has mainly been developed in France.
The seminal book of Frachot, Roncalli et al. [DFR03] and the book of Adam [Ada08] are
the main references on the subject. These books describe the key notions that are used to
manage interest rate risk in ALM1. There is a structural reason that explains why the theory
of interest rates risk in ALM has mainly been developed in France (and probably also that
explains why this subject has not reached a higher level of popularity in the mathematical
finance community), and this reason is that France is among the very few countries which
has fixed rate retail saving accounts and mortgages. This explains the degree of sophistica-
tion required by Financial divisions of large French retail banks. In [DFR03] and [Ada08]
the key concepts of ALM are formalized and mathematical definitions for the key concepts
are provided. However, the theory of interest rate risk in ALM has not reached the maturity
of the theory of pricing derivatives. The theory of hedging interest rate risk in ALM is
composed of different layers which are addressed independently and look much more like a
practical procedure than a mathematical theory. The concepts of schedule, interest rate gap
are often treated separately.

1The hedging of interest rates risk in ALM and the modeling of schedules has been studied in a number
of internal papers at GRO which provided extensive material for the book [DFR03]. I was lucky to have
access to these papers. Some of these papers are available on Thierry Roncalli’s webpage thierryroncalli.com
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Objective and methodology

As mentioned before the motivation for developing an ATSM using Wishart-like processes
was to build a model which is able to reduce the noise coming from re-calibration of the model.
The idea is to use only factors for calibration. Markovian term structure models used to
price exotic derivative structures are usually calibrated to a suitably chosen set of vanilla
interest rates derivatives by adjusting the parameters of the diffusion and the initial values
of the factors. Typically the initial value of the factors is set to an arbitrary value (often
zero). As the mapping between the underlying factors and the market assets (zero-coupon
bonds, interest rates swaps...) is determined by the parameters of the model, calibrating the
model parameters is equivalent to calibrate the (parametric) functional mapping between the
factors and the market assets. Here, we take the opposite viewpoint. We fix the parameters of
the dynamics of the factors, and precisely the parameters determining the drift and diffusion
of the factors, and we only calibrate the value of the factors to fit the market prices. We
aim to performing a global calibration of the model. The mapping between the value of the
factors and the market assets is assumed to be fixed, based on the desired dynamics of the
market assets. The model should be able to reproduced the relevant market prices of vanilla
interest rates derivatives, and reasonably tractable. In particular the focus has been put on
the ability of the model to produce a volatility dynamics for interest rates. The questions
we tried to answer were:

• What are the degrees of freedom of Wishart-like processes to reproduce the swaption
volatility cube dynamics?

• Is it possible to specify an ATSM using Wishart processes such that we can identify
the model factors to the modes of the movements of the swaption volatility cube?

To this day we feel we have only partially answered these questions. The main contribution
of our work is to provide some theoretical insights of how to specify the model in such a way
that we can indeed identify the factors of the model with the main modes of the yield curve
and swaption volatility dynamics, and to provide a number of numerical tools which allow
to efficiently implement the model.

The starting point of our work has been the specification of the model. Rather than following
the specification proposed by Bensusan et al. [Ben10], we chose to specify the model as a
stochastic variance co-variance version of the LGM model, in which we use the Wishart-like
process as a stochastic variance-covariance. First it appeared natural to use the Wishart-like
processes as a random variance-covariance matrix, secondly we wanted to base our speci-
fication on the LGM model. The main reason being that the LGM is widely used in the
industry, and it is easy to specify the model in such a way that the factors can be identified
with the main modes of the yield curve dynamics. The idea was to keep intact this one
to one correspondence between the yield curve modes and the LGM factors in our model,
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and add a similar identification between the swaptions implied volatilities modes and the
variance-covariance factors. We started from a general version of the model which has then
been progressively reduced. The reduction has been motivated by tractability, but also by
the fact we observed that some of the parameters in the initial model were redundant. The
reduction we have made has not reduced the degrees of freedom of the initial model.

The proposed model is a natural generalization of the LGM model using Wishart processes
in the spirit of the quadratic gaussian model proposed by Piterbarg [Pit09]. The model
allows to generate a volatility smile and a stochastic correlation between rates. The model
generates a multi-dimensional dynamics of the volatility. In terms of degrees of freedom of
the model, the model is very similar to stochastic volatility specifications of the Dai and
Singleton canonical form of ATSM [DS00]. The main difference is that in the model we
propose here, the positive definiteness of the stochastic volatility matrix is insured by the
positive definiteness of the Wishart process. Other recent affine models use in a similar but
different way Wishart processes. We mention here Gnoatto [Gno13] and Gnoatto and Gras-
selli, [GG14a], and Gnoatto et al. [BGH13]. Let us note that most of the stochastic volatility
ATSM presented in the literature and also the most commonly used in the industry consider
a one or two dimensional dynamics of the stochastic volatility. See for example [TS10] and
[Pit09]. The numerical implementation presented in Chapter 5 considers a model with a
volatility driven by a Wishart process of dimension 2 and 4, meaning that the volatility is
driven respectively by 3 and 10 factors. It is important to mention that the implementation
of the model proposed here is not in line with the standards required to use the model in a
production environment. As mentioned before, the underlying motivation for building our
model is to avoid re-calibration noise. Therefore we have intentionally studied a fully homo-
geneous version of the model, as opposed to typical interest rates models used in the industry
which often consider a term structure of the diffusion parameters and fit these parameters
to exactly reproduce the market prices of the calibration instruments. The price to pay is
a less accurate fit. The archetypal example of market model used to manage swaptions is
the SABR model [HKLW02]. In fact, SABR is rather a parametric representation of the
swaption volatility cube and cannot be used to price exotic interest rates products. Market
practice consists in using one SABR model (which means 4 parameters) per swaptions ma-
turity and expiry.

Once the specification of the model was chosen, it was necessary to develop a numerical
framework to implement the model. For intellectual honesty, we should mention that the
time devoted to the development of such a framework has taken far longer than expected.
However, the development of our numerical framework also provided us with a number of
tools that helped us having a better theoretical understanding of the model, and confirmed
some of our intuitions.

Matrix Riccati differential equations (MRDE) appear as a central tool in the model. The
solutions of such equations can blow up in finite time. The study of the MRDE which is
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presented in 3.1.3 allowed us to derive some sufficient conditions for non explosion. These
conditions have been translated in terms of the model parameters so that relevant mar-
ket quantities such as the zero-coupon bonds and the moments of zero-coupon bonds are
well defined. Proposition 14 gives the exact statement for the existence of the general
Fourier/Laplace transform of the model state variables. Also, we were able to derive some
constraints on the model parameters so that the state variables verify some ergodicity prop-
erty. Proposition 15 gives the exact statement. Given the affine structure of the model, and
once established the domain of existence of the MRDE (or at least a subset of this domain) it
was straightforward to apply Fourier inversion and the Fast Fourier Transform (FFT) based
method and series expansion methods of Gram-Charlier type for pricing vanilla instruments.
These methods are efficient in terms of their computational cost, and provide reasonably
accurate results in terms for pricing caplets. We are more reserved in using these methods
for pricing of swaptions. Not completely satisfied by transform based and series expansion
methods, we have investigated an alternative route for pricing vanilla instruments. The pa-
per of Bergomi and Guyon [BG12] gives a very straightforward way to derive an expansion
of the European option prices and of the implied volatility in stochastic volatility models
in the order 2 of the volatility of volatility. This approach seemed natural given that we
view the model as a perturbation of LGM. This expansion methodology cannot be directly
applied to ATSM. One of the key elements to derive the expansion is the fact that the payoff
of option does not depend on the volatility of the underlying. However, this is not true in
ATSM. Even in the simple Vasicek model, the yield curve depends on the volatility of the
spot rate, and therefore the payoff of caplets and swaptions also depend on the volatility
of the spot rate. Using a change of variable we where able to eliminate the dependence of
the payoff on the volatility. With respect to the transform methods and series expansion
methods, getting an expansion on the smile is complementary. On the one hand, it is less
accurate to calculate a single price since we only calculate here the expansion up to order 2
in the volatility of volatility. On the other hand, it is more tractable for a first calibration of
the model and gives a good approximation for key quantities on the smile. Also, it confirms
our intuitions on the main drivers of the smile and on the role of the model parameters and
factors in terms of the volatility statics and dynamics.

Finally, we have focused our efforts into extending the work of Ahdida and Alfonsi [AA13]
to build an efficient Monte Carlo simulation framework for the model. In 3.2.3, we show
that in presence of a non-trivial correlation structure a remarkable splitting property similar
to the one verified by the generator of Wishart processes of the generator still holds for the
generator of the state variables of the model. This allows to apply the splitting technique
already applied in [AA13] to build second order discretization schemes for the model. It
is interesting to note that the remarkable splitting property of the generator of the state
variables appears again in section 4.3 for the price and volatility expansion of caplets, and
shows that the implied volatility structure is similar to the structure of the generator.

Let us note that, except for the price and volatility expansion we develop in section 4.3
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(which would need some adaptation), the numerical framework developed for the model
(and in particular the Monte Carlo simulation framework) applies to a more general spec-
ification which includes the interest rates models of Bensusan et al. [Ben10], and Gnoatto
[Gno13] and [BGH13], and the equity model of Da Fonseca et al. [DFGT08a].

Once we had finished developing an efficient numerical framework for the model imple-
mentation, we have tested the model. In particular, we have tested the ability of the model
to capture the market implied volatility from a static point of view as well as from a dynamic
point of view. Based on the results of our numerical investigation we can conclude that in
the cases where the view of the model as a perturbation of LGM is valid, and the expansion
technique works, the at-the-money smile is very close to the zero order term of the expansion.
Not surprisingly, this term is the implied volatility in the LGM model, and the at-the-money
cumulated variance is a linear function of the Wishart-like process. This suggested a step-
wise calibration of the model. The first step of the calibration being the calibration of the
zero order term of the expansion to the at-the-money surface of swaptions volatilities. We
define two alternative calibration problems, the first consists in calibrating the values of the
volatility factors to fit the implied volatility of swaptions, the second consists in calibrating
the variations of the volatility factors to fit the variations of the implied volatility of swap-
tions. We followed the work of d’Aspremont [d’A03] and Brace et al. [BW00] who have used
a similar approach for the calibration of the libor market model, and proposed a solution
using SDP. In fact, both our calibration problems can be formulated as the optimization of
a linear criteria under a positive semidefinite constraint. SDP provides a natural framework
to solve such problems. The results of our calibration experiments are presented in 5.3.

We have only partially explored the potential of the model, and in particular its ability
to produce a robust hedging of interest rates products. We leave it for future investigation
to put the model into numerical practice and test the hedging strategies produced by the
model. An interesting topic to investigate is to consider a constrained calibration of the
model. Following the interpretation we have given of the model and based on the calibration
results we have obtained, we think that the model provides additional degrees of freedom
which have not been exploited. For example the factors driving the correlation between the
factors. It is fairly easy to add some constraints to the SDP framework, and this would allow
-while being calibrated- to build conservative or aggressive prices for an additional deriva-
tive (for example a CMS spread option). A similar study has been made by d’Aspremont in
[d’A03], where conservative and aggressive bounds for swaptions are obtained in a calibrated
model.

The work on modeling and hedging interest rates risk in ALM was motivated by the de-
mand of the Financial division of Crédit Agricole. Chapter 6 is an attempt to formalize
some of concepts that are used in practice in ALM. We recall some of the key concepts
defined in Frachot et al. [DFR03] and Adam [Ada08], such as the schedule of an asset or
a liability and the interest rate gap, and introduce a new concept : the notion of envelope.
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This concept will look familiar to people used to derivatives pricing, and the hedging of the
interest rate risk of an asset or a liability (closing the gap using the language of ALM) is very
similar to the hedging of an option. The remaining chapters present the results of the work
we have done in three different projects. Chapter 7 presents two projects in which we have
proposed a modeling approach to hedge the interest rate risk associated to specific retail
banking products : the Livret A and the PEL. Both these products include hidden and ex-
plicit optionality, and require -to some extent- that we are able to model the behavior of the
clients. The livret A is an inflation-indexed, state-regulated retail product which includes
optionality, and we have chosen to model the product as a proper hybrid inflation/rates
derivative. We propose different modeling approaches and study the corresponding hedging
strategy. The PEL is a very complex retail product which contains a number of optional
features, and can be converted into a mortgage. A key element for hedging this product
is the estimation of the time at which the client decides to close or convert its account.
Following the initial work of [BDJ+00] we have proposed a model that aims to model the
different behaviors of the clients. The model is based on the (unrealistic) assumption that
the client has a rational behavior and follows a optimal decision process. We found that -to
some extent- the model is able to model different client behaviors and provides an estimation
of the distribution of the time at which the account is closed or converted into a mortgage.
We also backtested the model on historical data. Finally chapter 8 compares two alternative
ways to hedge options. The difference lies in the choice of the instruments used to hedge
the option. These strategies are well known, and can be found in any derivative textbook.
The risk-neutral hedging strategy uses the classic hedging portfolio made of the underlying
asset and of the bank account. The forward-neutral strategy replaces the bank account by
a loan with maturity the expiry of the trade (or equivalently by a zero-coupon of maturity
the expiry of the trade). We discuss the implementation of the strategies in practice to
hedge options in ALM and present the results of the applications of such strategies in a very
simple model. The two approaches give surprisingly different results in terms of the delta
(the quantity of underlying asset in the hedging portfolio) and in terms of the variance of
the ”hedging error” of the strategy.

Document structure

Part I introduces some important notions of the interest rates derivatives market and
introduces the key notions of term structure modeling. In particular, we focus on factorial
term structure models, and ATSM. In chapter 1, we present the interest rates market, we
define the basic products, and we discuss some of the peculiarities and recent evolutions of
this market. The last section of the chapter presents the results of a brief empirical analysis
of the interest rates swap and swaption US data. In chapter 2 we present the key notions
of term structure modeling and present the modeling framework in which we will work in
the following. In Section 2.1, we provide a very brief presentation of the Heath Jarrow and
Morton (HJM) [HJM92] framework. In Section 2.2 we present the idea of modeling using
state variables. Section 2.3 presents the class of ATSM. In Section 2.4, we give notable

19



examples of models which belong to the class of ATSM. In section 2.5, we briefly present the
Markov Functional model of Hunt, Kennedy and Pessler [HKP00]. In section 2.6 we discuss
the nature of volatility in factorial term structure models, and illustrate the notion of model
risk through an example. Finally, Section 2.7 we discuss hedging in factorial term structure
models.

Part II is devoted to the definition and study of an ATSM using Wishart-like process to
model stochastic variance-covariance. In chapter 3 we define and study the dynamics of
the state variables of the model. In Section 3.1, we study the theoretical properties of the
process, providing precise statement on the infinitesimal generator, on the Fourier/Laplace
transform, and on the ergodicity properties of the process. In Section 3.2 we provide second
order discretization schemes for Monte Carlo simulation of the state variables. In chapter
4, we study the stochastic variance-covariance perturbation of the LGM, and provide the
numerical framework for the model. In Section 4.1, we define the model, we derive the bond
reconstruction formula and the change of measure, and discuss the specification of the model.
In Section 4.2, we discuss the application of methods based on Fourier inversion and series
expansions for pricing caplets and swaptions. We presents some numerical results of the
application of these techniques for pricing caplets. In Section 4.3, we present an expansion
method for pricing caplets and swaptions, and present some numerical tests of the method.
Finally, Section 4.4 briefly discusses the hedging in the model. In chapter 5 we propose a
calibration method and present some numerical results. In particular, we test the ability of
the model to fit the volatility of swaptions and to reproduce the dynamics of the implied
volatility of swaptions. In Section 5.1, we present SDP framework, which is the numerical
tool that will be used to solve the calibration problem. In Section 5.2 we discuss how to
chose the model parameters (which are meant to be constant) in such a way that the role
of the factors is clearly identified. In Section 5.3, we present the results of our numerical
experiments.

Part III is devoted to the modeling and hedging of interest rate risk in ALM. In chap-
ter 6 we present the key notions in ALM, such as the schedule of an asset or a liability and
the interest rates gap. In chapter 7 presents two projects in which we have proposed a mod-
eling approach to hedge the interest rate risk associated to specific retail banking products
: the Livret A and the PEL. Finally chapter 8 compares two alternative different ways to
hedge options in ALM.
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Introduction (Version francaise)

Ce mémoire présente une partie du travail de recherche que j’ai effectué dans le cadre
de ma thèse. Ce travail a été principalement effectué durant ma permanence au Groupe de
Recherche Opérationnelle du Crédit Agricole. Etant donné le contexte dans lequel j’ai con-
duit mon travail de thèse, celui-ci a été principalement inspiré, et parfois même directement
motivé par les besoins concrets des équipes opérationnelles. Le document contient deux par-
ties qui sont indépendantes, et néanmoins représentent deux faces de la même activité: la
couverture du risque de taux d’intérêt. Dans la première partie du document on étudie un
modèle affine de la dynamique de la courbe des taux, ou un processus affine dans l’espace des
matrices semidéfinies positives de type Wishart est utilisé pour modéliser la dynamique de la
variance-covariance entre les taux d’intérêt. L’ambition de notre travail est la construction
d’un modèle qui fournisse une couverture globale et robuste des risques d’un book de pro-
duits exotiques de taux. Ce travail a conduit à une pré-publication [AAP14]. La deuxième
partie du document est dédiée à la couverture du risque de taux dans la gestion actif-passif
du bilan d’une banque. L’objectif de cette seconde partie est de formaliser les principaux
concepts qui sont utilisés en pratique dans ce domaine.

Motivation

La première partie du document étudie un modèle affine de la dynamique de la courbe des
taux, ou un processus affine dans l’espace des matrices semidéfinies positives de type Wishart
est utilisé pour modéliser la dynamique de la variance-covariance entre les taux d’intérêt. Ce
travail a été initialement motivé par une réflexion sur la calibration et le risque de modèle
dans la couverture des produits dérivés de taux d’intérêt. L’ambition de notre travail est de
construire un modèle qui réduise, voire élimine les biais induits par la re-calibration.

La pratique de marché consiste à valoriser et couvrir les produits dérivés de taux en util-
isant des modèles dont les paramètres sont régulièrement calibrés pour reproduire les prix de
marché d’un ensemble d’instruments (typiquement les instruments qui seront ensuite utilisés
pour la couverture du produit). Le modèle suppose que les paramètres sont constant, hors
le procédé de calibration rend ces paramètres stochastiques, et induit un biais dans la dy-
namique des prix (plus précisément dans le drift de la dynamique du prix). Ce biais peut
introduire des erreurs de couverture et violer la condition d’autofinancement de la stratégie
de couverture. L’idée du modèle que nous présentons, est de remplacer les paramètres par
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des facteurs, que l’on suppose stochastiques. Nous proposons alors de calibrer les valeurs des
facteurs et de maintenir les paramètres du modèle constants. Si l’on considère suffisament
de facteurs de sorte a reproduire la dynamique des principaux facteurs de risques du produit
que l’on souhaite valoriser et couvrir, le modèle permet alors de produire une stratégie de
couverture autofinancé qui ne comporte pas de biais de re-calibration. Le cadre théorique
que nous avons choisi pour notre modèle est celui des modèles affines de taux d’intérêt défini
par Duffie et Kan [DK96b]. Ce choix nous permet de limiter la compléxité d’implémentation
du modèle. Aussi, il est très simple d’augmenter le nombre de facteurs du modèle tout en
restant dans le même cadre. Il suffit de supposer que le facteur supplémentaire est lui-même
affine. Le choix d’un processus affine est clairement restrictif, et ne permet certainement pas
de produire une dynamique cohérente avec celle observé dans le marché. Nous considérons
que c’est le moindre des deux maux. Notre utilisation du modèle repose davantage sur
l’exploitation de la forme fonctionelle entre les facteurs du modèle et les prix (que l’on sup-
pose stable), que sur la pertinence des hypothèses dynamiques du modèle. Une fois déduite
la forme fonctionelle donnant les prix en fonction des facteurs2 par le modèle, nous oublions
notre hypothèse sur la dynamique des facteurs et implicitons les facteurs des prix de marché.
Alors, il est toujours possible de construire un prix conservateur et une stratégie de couver-
ture correpondante. Par example, à l’aide des propriétés de monotonie des prix d’options en
temps que fonctions de la volatilité, El Karoui et al. [EKJPS98] montrent qu’il est possible
de borner le prix d’une option dès lors que l’on peut borner la volatilité du soujacent. Le
modèle de volatilté incertaine d’Avellaneda [ALP95] est un exemple de construction de prix
conservateurs dans un modèle ou la dynamique de la volatilité du soujacent est inconnue,
mais bornée. De même nous pourrions envisager de construire des prix conservateurs en
supposant que les facteurs sont bornés.

La deuxième partie de ce mémoire présente quelques travaux sur la couverture du risque
de taux pour la gestion actif-passif du bilan de la banque. Ce travail a été motivé par les
besoins de la direction financière de Crédit Agricole S.A. Les principaux objectifs de cette
partie du mémoire sont: d’une part de communiquer sur un domaine qui est peux connu
de la communauté des mathématiques financière, et qui (selon notre opinion) présente des
défis de modèlisation importants; d’autre part nous proposons une approche originale à la
modélisation du risque de taux en ALM.

Etat de l’art

Le modèle que nous étudions dans cette thèse s’inscrit dans le cadre des modèles affines
de taux d’intéret. Les modèles affines de taux sont une classe importante de modèles, en
font partie le modèle de Vasicek [Vas77] et Cox-Ingersoll-Ross [CIR85]. Un cadre formel
a été défini et développé par Duffie and Kan [DK96b], Dai et Singleton [DS00] et Duffie,
Filipovic et Schachermayer [DFS03]. Nous renvoyons à Filipovic [Fil09] pour une référence
sur les modèles affines. Le modèle linéaire Gaussien (LGM) est un exemple important de

2qui certe repose sur des hypothèse de la dynamique des facteurs.
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modèle affine qui suppose que les facteurs sont gaussiens. Il a été initialement considéré par
El Karoui et Lacoste [EKL92] and El Karoui et al. [EKLM+91], et est très répandu dans
l’industrie pour la valorisation des dérivés de taux d’intérêt.

Il y a de nombreux modèles affines qui permettent de reproduire le smile de volatilité observé
dans le marché. Récemment les processus de type Wishart ont été utilisés pour modéliser la
volatilité des taux d’intérêt. Un modèle affine Wishart a été défini par Benabid, Bensusan
et El Karoui et a été étudié par Bensusan dans sa thèse [Ben10]. Le modèle est inspiré de
la specification canonique des modèles affines de Dai et Singleton [DS00], et le processus
de Wishart est utilisé pour définir une riche dynamique de la volatilité. Dans une série de
papiers Gnoatto [Gno13] et Gnoatto et Grasselli, [GG14a], et Gnoatto et al. [BGH13] ont
étudié un modèle affine, dans lequel le taux court est une fonction du processus de Wishart
uniquement. Le modèle que nous étudions dans cette thèse diffère pour plusieurs aspects.
L’idée du modèle est celui d’une perturbation à variance-covariance stochastique du LGM.
Nous souhaitons maintenir la structure du LGM, et en particulier l’interpretation de certains
des facteurs comme des vecteurs propres de la dynamique de la courbe de taux (voire 2.4.1)
et utilisé le processus de type Wishart pour modéliser la variance-covariance de ces facteurs.
Aussi, nous considérons un processus affine dans l’espace des matrices semidefinies qui est
plus général qu’un processus de Wishart. Ceci nous permet de prendre en compte des effets
de type retour à la moyenne pour la volatilité et permet de modéliser la term structure de la
volatilité implicite. Enfin nous avons considéré une structure de corrélation entre les facteurs
de taux et les facteurs de volatilités. La dynamique des facteurs du modèle est proche de la
dynamique des log-prix proposé par Da Fonseca et al. [DFGT08a].

Une grande partie de notre travail a été dévoué à l’étude de méthodes numériques permet-
tant une implémentation efficace du modèle. Nous proposons des schémas de discrétisation
d’ordre deux pour la simulation Monte Carlo. Nous avons suivi Ahdida et Alfonsi [AA13]
qui ont proposé des schémas exact et d’ordre supérieur pour les processus de Wishart et
leurs extensions affines. Dans le cas d’une corrélation nulle entre les facteurs de volatilité et
les facteurs de courbe, ces schémas s’appliquent directement à notre modèle et permettent
de construire un schéma d’ordre 2. Le cas général a necessité une extension du résultat de
décomposition du générateur infinitésimal valable pour le Wishart.

On a également étudié des méthodes efficaces pour valoriser les options vanilles, tels que
swaptions et caplets. Les méthodes basés sur l’inversion de Fourier présentées par Carr et
Madan [CM99] et Lee [Lee04] sont particulièrement adaptées au cadre des modèles affines,
du fait de l’existence de formules analytiques ou semi-analytiques pour la transformé de
Laplace/Fourier. Ces méthodes s’appliquent directement à notre modèle pour la valorisa-
tion des caplets. L’application de ces méthodes pour la valorisation des swaptions nécessite
d’une approximation classique. Nous renvoyons à Schrager et Pelsser [SP06] et Singleton and
Umantsev [SU02] pour une description détaillé de ces méthodes qui s’applique directement
à notre modèle. Une alternative aux méthodes par inversion de Fourier est donné par les
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méthodes d’expansion en série de la distribution de type Gram-Charlier ou Edgeworth. Ces
méthodes s’appliquent directement à notre modèle pour la valorisation de caplets et swap-
tions. Ces méthodes ont été appliqué à la valorisation de swaptions dans les modèles affines,
nous renvoyons à Collin-Dufresne et Goldstein [CDG02] et Tanaka et al. [TYW05]. Nous
avons ensuite étudié des techniques d’expansion pour les prix et la volatilité des caplets et
des swaptions. On utilise une expansion du générateur infinitésimal par rapport à un facteur
de perturbation. Ces techniques sont développées dans le livre de Fouque et al. [FPS00].
Récemment , cette technique a été appliquée par Bergomi et Guyon [BG12] pour déduire
une expansion de la volatilité implicite dans un modèle multi-facteur de la variance forward.
Nous avons adapté cette approche au contexte des taux d’intérêt, et en particulier au cadre
des modèles factoriels de taux.

Nous avons étudié le problème de la calibration du modèle. Il y a très peux d’exemples
dans la littérature ou les techniques de calibration du modèle sont décrites et analysées
de facon formelle. Une exception remarquable est le modle Markov functional de Hunt et
al. [HKP00]. En particulier, la calibration des modèles affine a été davantage étudié d’un
point de vue de l’estimation statistique des paramètres du modèle, que de la résolution d’un
problème inverse pour reproduire les prix observés dans le marché. La philosophie du modèle
étant de calibré les facteurs du modèle, nous devons en particulier calibré les facteurs de type
Wishart, ce qui introduit une contrainte semidefinie positive dans le problème de calibra-
tion. La programmation semidéfinie (SDP) fourni un cadre formel naturel pour gérer une
telle contrainte. Nous renvoyons à Roupin [Rou12] et Boyd [BV03] pour une introduction
sur la SDP. L’application de la SDP au problème inverse de calibration d’un Libor market
model à été étudié par d’Aspremont [d’A03] et par Brace et al. [BW00].

La théorie de la gestion du risque de taux en ALM a principalement été développée en
France. L’oeuvre seminale de Frachot, Roncalli et al. [DFR03] et le livre d’Adam [Ada08]
sont les principales références dans le domaine. Ces livres décrivent les notions fondamen-
tales qui sont utilisées pour calculer et gérer le risque de taux dans la gestion actif-passif
du bilan d’une banque. Il y a une raison structurelle qui explique pourquoi la théorie du
risque de taux en ALM a principalement été développé en France, ainsi que le niveau de
sophistication nécessaire dans les direction financières des grandes banques en France. La
France est parmi les seuls pays qui propose des livrets d’épargne et des prêts à taux fixe.

Objectif et méthodologie

Nous insistons sur la principale motivation du modèle que nous développons dans cette
thèse. Nous souhaitons construire un modèle qui reduise le bruit du à la re-calibration.
Le point de vue que nous adoptons consiste à remplacer les paramètres du modèle par des
facteurs, et à calibrer les valeures des facteurs ou de leurs variations aux prix de marché.
Les contraintes que nous imposons sur notre modèle est qu’il soit capable de reproduire
les prix des quantités de marché pertinentes, soit les produits optionnels de taux d’intérêt.
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En particulier nous concentrons notre attention sur la capacité du modèle à reproduire une
dynamique de la volatilité des taux d’intérêt. Nous essayons de répondre aux questions
suivantes:

• Quels sont les degrés de liberté du modèle pour reproduire la dynamique du cube de
volailité des swaptions?

• Est-t-il possible de spécifier le modèle de sorte à identifier les facteurs du modèle avec
les vecteurs propres du cube de volatilité des swaptions?

Les résultats de nos travaux ne répondent que très partiellement à ces questions. La princi-
pale contribution de notre travail est de fournir une étude théorique sur la spécification du
modèle. En particulier, nous fournissons des résultats qui permettent de justifier théoriquement
les intuitions sur le modèle, et donnent des arguments solides pour spécifier le modèle de
telle sorte à identifier les facteurs avec les mouvements principaux de la courbe de taux et
du cube de volatilité implicite des swaptions. Aussi, nous fournissons un cadre numérique
robuste qui permet une implémentation efficace du modèle.

Le point de départ de notre recherche a été le choix de la spécification du modèle. Comme
indiqué précédemment, le modèle que nous proposons diffère des examples de modèle affines
Wishart existants dans la littérature. Nous avons choisi de spécifier le modèle comme une
perturbation à variance-covariance stochastique de LGM. Il nous parait avant tout na-
turel d’utiliser les processus de type Wishart pour modéliser la dynamique de la matrice
de variance-covariance des facteurs de la courbe de taux. Ensuite, nous souhaitions baser
notre specification sur le LGM. La raison principale étant que celui-ci permet une identifi-
cation claire de ses facteurs avec les mouvements principaux de la courbe de taux (niveau,
pente, courbure...). L’idée de notre modèle est de maintenir intacte cette identification et
d’obtenir une identification similaire entre les facteurs de volatilité et le cube de volatilité
implicite des swaptions.

Une fois choisie la spécification du modèle, il a été nécessaire développer un cadre numérique
permettant une implementation efficace du modèle. Par honnêteté intellectuelle nous devons
admettre que le développement de techniques numériques pour l’implémentation du modèle
a pris plus de temps que prévu. Néanmoins, le développement de ces techniques a enrichi
notre rflexion sur le modèle et a parfois fourni des outils théoriques permettant de confirmer
nos intuitions sur le modèle.

Les equations différentielles de Riccati matricielles ont un role essentiel dans le développement
du modèles. Elles apparaissent dans la formule de reconstruction des zéro-coupon, ainsi que
pour les transformés de Fourier/Laplace des facteurs. Les solutions de telles equations peu-
vent exploser en temps fini. L’étude de l’équation différentielle de Riccati matricielle présenté
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en 3.1.3 nous a permis de déduire des conditions suffisantes pour que la solution n’explose
pas. Nous avons traduit ces conditions en terme des paramètres de modèle, de sorte à ce que
les quantités de marché telles que les zéros-coupon et leurs moments soient finis. La proposi-
tion 14 donne une formulation précise du résultat. Aussi, nous déduisons de cette étude des
conditions sur les paramètre de diffusion des facteurs pour que ceux-ci vérifient une propriété
d’ergodicité. La proposition 15 donne une formulation précise du résultat. Etant donnée la
structure affine du modèle, et étant établi le domaine d’existance des solutions de l’equation
différentielle de Riccati matricielle il était naturel d’appliquer des methods par inversion de
Fourier et de méthodes par expansion de la densité (ou de la fonction de répartition) de type
Gram-Charlier/Edgewoth pour la valorisation des produits dérivés vanille. Ces méthodes
sont efficaces en terme d’implémentation et donne des résultats satisfaisants pour la valori-
sation des caplets. Nous avons d’avantage de réserves quant à l’application de ces méthodes
pour la valorisation des swaptions. Non satisfait par ces méthodes, nous avons exploré une
approche alternative pour valoriser les instruments vanille. Le papier de Bergomi et Guyon
[BG12] donne une approche directe permettant de développer une expansion des prix et de
la volatilité implicite pour les options européennes à l’ordre 2 en la volatilité de volatilité.
Etant donné la spécification du modèle comme perturbation de LGM, il nous a paru naturel
d’appliquer cette approche. Néanmoins, l’expansion ne peux s’appliquer telle quelle aux
contexte des modèles affines. Un des éléments clé pour déduire l’expansion est le fait que le
payoff de l’option ne dépend pas de la volatilité du soujacent. Hors ceci n’est pas le cas dans
le cadre des modèles affines de taux d’intérêt. Même dans le modèle de Vasicek, la courbe
de taux dépend de la volatilité du taux court, et donc le payoff des caplets et swaptions,
dépendent aussi de la volatilité. En utilisant un changement de variable nous éliminons cette
dépendance. L’expansion que nous développons fourni d’une part une méthode numérique
pour valoriser les options vanilles, complémentaire aux méthodes par inversion de Fourier et
par expansion de la densité en série; et d’autre part donne un outils théorique permettant
d’analyser l’impact des facteurs sur la forme et la dynamique du cube de volatilité.

Enfin nous avons étendu l’excellent travail de Ahdida et Alfonsi [AA13] pour fournir un
cadre numérique permettant de simuler le modèle de facon efficace. Dans 3.2.3 nous mon-
trons que en présence d’une structure de corrélation non triviale, le générateur des facteurs
vérifie une propriété de décomposition similaire à celle utilisé dans [AA13]. Il est intéressant
de remarquer que la propriété de décomposition du générateur des facteurs se retrouve dans
l’expansion des prix et de la volatilité des caplets et swaptions 4.3.

A l’expection de l’expansion des caplets et swaptions dévelopés en 4.3, les méthodes numériques
proposées dans cette thèse, et en particulier les schémas de discrétisation pour la simulation
Monte Carlo s’appliquent à une spécification bien plus générale que celle que vous forunissons
ici, et qui inclu les modèles de Bensusan et al. [Ben10], de Gnoatto [Gno13] et [BGH13], et
le modèle actions Da Fonseca et al. [DFGT08a].

Une fois pourvu des outils numériques permettant d’implémenter le modèle, nous avons
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testé le modèle. En particulier, nous avons testé la capacité du modèle à reproduire la
volatilité implicite observée dans le marché, d’un point de vue statique et dynamique. Nos
expériences numériques montrent que lorsque le point de vue du modèle comme perturbation
de LGM est valide, et l’expansion donne des résultat satisfaisants, la volatilité à la monnaie
des swaptions et caplets est proche du terme d’ordre zero de l’expansion. Sans surprise,
ce terme correspond exactement à la volatilité implicite que donnerait le LGM avec une
volatilité deterministe. Aussi, la variance cumulée à la monnaie est une fonction linéaire
du processus de type Wishart. Ce résultat suggère une méthode de calibration séquentielle,
dont la première étape consiste à calibrer le terme d’ordre zero de l’expansion sur la volatilité
à la monnaie des caplets et swaptions. Nous définissons deux problèmes de calibration alter-
natifs : le premier consite à calibrer la valeur des facteurs de volatilité pour reproduire les
prix des swaptions; le second consiste à calibrer les variations des facteurs de volatilités pour
reproduire les variations des prix des swaptions. Nous avons suivi le travail de d’Aspremont
[d’A03] et Brace et al. [BW00] qui ont formulé le problème de calibration d’un modèle de
type BGM de facon similaire, et ont proposé une solution en utilisant la SDP. Nos deux
problèmes de calibration peuvent être formulés dans un cadre de programmation SDP. La
SDP fourni un cadre théorique naturel permettant de résoudre de telles problèmes. Les
résultats numériques sont présentés en 5.3.

Nous n’avons que partiellemnt exploré le potentiel du modèle, et en particulier sa capacité à
produire une couverture robuste pour les dérivés de taux d’intérê. Nous laissons à des travaux
futurs l’analyse numérique des stratégies de couverture produites par le modèle. Un thème
de recherche qui nous parait porteur est d’ajouter des contraintes au problème de calibration.
Les résultats de nos expériences de calibration et l’interprétation du modèle suggèrent que le
modèle comporte des degrés de liberté que nous n’avons pas encore exploré. Par exemple, les
facteurs qui gouverne la corrélation. Il est relativement simple d’ajouter des contraintes dans
un problème SDP, et ceci permettrai, tout en étant calibré au prix de marché, de construire
un prix conservateur ou aggressif pour un produit dérivé supplémentaire (par example un
CMS spread). Une étude similaire a été faite par d’Aspremont dans [d’A03], ou sont obtenus
des bornes aggressives et conservatrices pour les swaptions dans un modèle calibré.

Le travail de recherche pour la modélisation du risque de taux dans la gestion actif-passif a
été motivé par les demandes de la direction financière de Crédit Agricole. Le chapitre 6 est
une tentative de formalisation de certains des concepts qui sont utilisés dans la pratique de
marché. Nous rapellons les concepts essentiels définis par Frachot et al. [DFR03] et Adam
[Ada08], tels que l’écoulement d’un poste du bilan et le gap de taux, et introduisons un nou-
veau concept: le concept d’enveloppe. Ce concept permet d’assimiler la couverture d’un poste
du bilan, à la couverture d’un produit dérivé optionnel. Le chapitre 7 présente les travaux
que nous avons menés dans le cadre de deux études, dans lesquelles nous avons proposé
une modélisation permettant de couvrir l’exposition de la banque à des produits d’épargne
spécifiques: le livret A et le PEL. Ces produits contienne une dimension optionnelle implicite
et explicite, and nécessite une modélisation du comportement des clients. Le livret A est un
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produit indéxé sur l’inflation régulé par l’Etat qui comporte de l’optionnalité. Nous avons
choisi de le modéliser comme un produit hybride taux/inflation. Nous étudions différentes
modélisations, et analysons les stratégies de couverture qui en résultent. Le PEL est un pro-
duit d’épargne très complexe qui contient un certain nombre de clauses optionnelles et peut
être converti en crédit. Un élément clé pour la couverture d’un tel produit est l’estimation
du temps de sortie (défini comme le moment ou le client décide soit de convertir, soit de
clôturer sont contrat). Nous avons suivi les travaux de [BDJ+00], et proposons un modèle
qui décrit différent comportements possibles du client. Se modèle se base sur l’hypothèse
discutable que le client agit suivant un comportement rationel et suis une stratégie de sortie
optimale. Nous montrons que le modèle permet (en une certaine mesure) de modéliser le
comportement des différents clients et fourni une estimation de la distribution des temps
de sortie pour ceux-ci. Nous avons aussi backtesté le modèle sur des données historiques.
Enfin le chapitre 8 compare deux stratégies de couverture alternatives pour les options. La
différence réside dans le choix des instruments utilisés pour la couverture. Ces stratégies sont
classiques et elles sont dcrites dans n’importe quel livre sur les dérivés de taux. La stratégie
que nous appellons risque-neutre utilise le portefeuille de couverture classique constitué de
l’actif risqué et du compte cash. La stratégie que nous appelons forward-neutre remplace le
compte cash par un zéro-coupon ou de facon équivalente par un pret de maturité la maturité
de l’option. Nous discutons l’implémentation de ces stratégies en pratiquepour couvrir les
options dans le cadre de la gestion actif-passif. Les deux approches sont très différentes en
termes du delta qu’elles produisent et en termes de la variance de l’erreur de couverture de
la stratégie.
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Models for managing interest rates
derivatives
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Chapter 1

The interest rates market

In this chapter we provide a brief description of the interest rates market. We will mainly
focus on the over the counter (OTC) interest rates derivatives market and on the products
for which we will develop pricing models in the following. We describe the products and
the main market practices. We also mention the latest evolutions in the market and in
particular the different adjustments of the price that are necessary in order to take into
account of funding, liquidity and credit risks. The main contribution of this thesis is to
propose an innovative TS model to manage IR derivatives. It is important to describe the
modeling challenges of today’s market.

1.1 Reference rates and products

Interest rates products trade OTC and typically via inter-dealer brokers. These act as
intermediaries, they facilitate price discovery and transparency by communicating dealer
interests and transactions, enhance liquidity, and allow financial institutions anonymity in
terms of their trading activities. A clear distinction is to be made between the vanilla interest
rates market and the exotic interest rates market. Sometime the line separating the two is
quite thin, and this is particularly true considering the latest developments in the market.
Vanilla products are supposed to be liquidly traded in the market and though they are not
traded on an organized market there is enough market consensus to assume that their price
results from the equilibrium of offer and demand. The management of an individual vanilla
trade doesn’t really require a model, of course this is not true if we consider a portfolio of
vanilla trades. Exotic products are highly non liquid and their prices is highly dependent on
the model one chooses for pricing. Their management requires an accurate analysis of the
underlying risks and an accurate design of an hedging strategy.

1.1.1 Reference rates

IBOR and overnight rates are the main reference rates that underly the most liquid in-
terest rates derivative products. IBOR stands for interbank offered rate and is the average
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interest rate estimated by leading banks in the main market places (the main example is
LIBOR which is the rate in the London market) that they would be charged if borrowing
from other banks, standard maturities for IBOR rates are 1, 3 and 6 months. This rate
is purely declarative and it has recently been exposed to manipulations, and it should (in
theory at least) be as close as possible to the rate at which banks effectively borrow. IBOR
rates are used as the reference for the floating legs of interest rates swaps (IRS), and they
are also often used as an underlying of structured coupon for more sophisticated products.

The overnight rate OIS is the day to day rate that is charged for ongoing liquidity needs of
banks. This rate plays a key role in presence of collateral agreements between two counter-
parts. It is often used as the rate to which collateral is remunerated.

1.1.2 Linear products

The main examples of linear interest rates derivatives are IRS and forward rates agree-
ments (FRA). The flows of these products are linear functions of the reference rates and
”theoretically” their price is determined by arbitrage arguments and is model independent.
In the following we will discuss how the latest developments in the market have broken this
reality.

A FRA is a contract involving three time instants: The current time t, the expiry time
T > t, and the maturity time S > T . The contract gives its holder an interest-rate payment
for the period between T and S. At the maturity S, a fixed payment based on a fixed rate
K is exchanged against a floating payment based on the spot rate LT (S − T ) resetting in
T for the duration S − T . Basically, this contract allows one to lock-in the interest rate
between times T and S at a desired value K, with the rates in the contract that are simply
compounded. Formally, at time S one receives (S − T )KN units of currency and pays the
amount (S − T )LT (S − T )N , where N is the contract nominal value. The value of the
contract at date S is therefore

N(S − T )(K − LT (S − T )), (1.1)

where we have assumed that both legs have the same daycount convention. At date t the
forward rate of maturity T and tenor τ , which we denote by Lt(T, τ), is the rate K that
makes the FRA contract expiring at T and maturing at T + τ have value 0 at the contract
initiation. We denote by FRAt(T, τ,K) the time t value of a FRA contract of nominal 1,
expiry T and maturity T + τ . FRA contracts are typically issued at value 0 at initiation and
prices are quoted through forward rates.

An IRS is a contract involving a set of prespecified dates T0, T1, ..., Tn that exchanges pay-
ments between two differently indexed legs. For a payer swap, at every instant Ti, i = 1...n
the fixed leg pays out the amount
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N(Ti − Ti−1)K (1.2)

corresponding to a fixed interest rate K, a nominal value N , whereas the floating leg pays
the amount

N(Ti − Ti−1)LTi−1
(Ti − Ti−1), (1.3)

corresponding to the interest rate LTi−1
(Ti − Ti−1) resetting at the previous instant Ti−1 for

the maturity given by the current payment instant Ti, with T0 a given date. Again we have
assumed here that both legs have the same daycount convention and pay on the same set of
dates. We denote by IRSt((Ti)

n
i=0, K) the time t price of the IRS of payment dates (Ti)

n
i=0

and fixed rate K. At date T0, the swap rate for the set of dates (Ti)
n
i=0, which we denote

by ST0((Ti)
n
i=0) is the fixed rate K that makes the IRS contract have value 0 at contract

initiation. Standard IRS contracts are initiated at date T0, but one can also chose to initiate
the contract at a date t < T0 in which case the contract is called a forward swap contract
(FS) and we denote by St((Ti)

n
i=0) the date t forward swap rate for the set of dates (Ti)

n
i=0.

Typical IRS and FS payment dates are separated by a fixed tenor τ = Ti− Ti−1, i = 1, ..., n,
usually 6 months for the Euro IRS market and 3 months for the USD IRS market, we will
denote by St(T0, n, τ) the associated forward swap rate.

1.1.3 Non linearity episode 1: optionality

Non linearity arises when ever the the payoff of a product is a non-linear function of the
reference rates. The most common examples of non-linear products are optional products
such as swaptions and caplets.

The caplets and cap market

A caplet is an option to enter into a FRA of fixed expiry, maturity and rate. The option
can be exercised at expiry of the FRA, precisely the payoff of a caplet at expiry is given by

N (FRAT (T, τ,K))+ , (1.4)

corresponding to a fixed rate K and a nominal N . The fixed rate K is called the strike
price of the caplet. We denote by Ct(T, τ,K) the time t value of the caplet price of maturity
T , tenor τ and strike K. Caplets are typically quoted for different strike prices. When the
strike price equals the value of the forward rate Lt(T, τ) we say the caplet is at-the-money.
Brokers typically give market quotes for caplets of different maturities, tenors and strike
prices. Typically quotes will be available for maturities ranging from 1 to 30 years, and
tenors from 3 months to 1 year and a set of strike prices around the forward rate. The closer
the strike price to the forward rate, and the more the product will be liquid.

A cap is a collection of caplets of same tenor and strike price of different maturities. Precisely
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at the maturity dates of the cap T1, ..., TM we have the option to exercise a caplet of tenor
τ and strike K, and thus receive the payoff

N (FRATi(Ti, τ,K))+ . (1.5)

The swaption market

A standard European swaption is an option to enter into a fixed versus floating forward
starting interest rate swap at a predetermined rate on the fixed leg. A receiver swaption
gives the right to enter a swap, receiving the fixed leg and paying the floating leg, while a
payer swaption gives the right to enter a swap, paying the fixed leg and receiving the floating
leg1.

At maturity the payoff of the swaption giving the right to enter in the IRS of payment
dates (Ti)

n
i=0 at the fixed rate K is given by

N(IRST ((Ti)
n
i=0, K))+. (1.6)

corresponding to a nominal N . We will denote its price by SPt(T, (Ti)
n
i=0, K). Typical in-

terest rate swaptions give the right to enter in a swap with payment dates separated by a
fixed tenor τ = Ti − Ti−1, i = 1, ..., n, we will denote by SPt(T, T0, n, τ,K) the time t value
of the swaption. The contract can also allow to enter into a forward start swap, in which
case we speak of forward starting swaption. The difference Tn − T0 is called the tenor of
the swaption. The maturity T is usually equal to the IRS starting date T0, in which case
we will simply denote the swaption value by SPt(T0, n, τ,K) or SPt((Ti)

n
i=0, K). When the

strike price is equal to the forward swap rate St((Ti)
n
i=0) or St(T0, n, τ) the swaption is said

to be at-the-money. Brokers typically give market quotes for swaptions of different ma-
turities, tenors and strike prices. Typically quotes will be available for maturities ranging
from 1 to 30 years, tenors from 2 to 30 years and a set of strike prices around the froward rate.

The swaption contract we have just defined gives the right to enter in a swap at expiry.
The contract is similar to call and put options in the equity markets, which give the right
to buy or sell the underlying asset. This type of contract is called a physical settlement
contract, because, at maturity, it gives the right to enter into a (physical) contract (an IRS
or a number of shares). In today’s markets options are often used for speculation purposes
and the buyers are not necessarily interested in the physical underlying, but rather in the
payoff of the option. For this reason, in the equity market, options are often cash settled,
meaning that, if the option is exercised at maturity the holder receives an amount of cash
which corresponds to the gain of the option. In the interest rates market the situation is

1USD swaps exchange a fixed rate for a floating 3-month LIBOR rate, with fixed-leg payments made semi-
annually and floating-leg payments made quarterly. EUR swaps exchange a fixed rate for a floating 6-month
EURIBOR rate, with fixed-leg payments made annually and floating-leg payments made semi-annually. In
both currencies, the daycount convention is 30/360 on the fixed leg and Actual/360 on the floating leg.
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similar, and very often swaptions are not physically settled. In the US market, the physical
settlement is the market standard. In the EU market, the cash yield settlement is the market
standard. We will introduce the different types of settlement later in the following.

1.2 Recent developments

The interbank market has known recent developments since the credit crunch. The
treasury desk acquired a crucial role in the business. Credit and counterparty risks have
arisen as the major risks in the interbank market. Funding costs which had previously been
neglected in the pricing and management of derivatives are now essential.

1.2.1 The IBOR-OIS and other basis

One of the main facts of the liquidity crisis that succeeded the credit crunch of 2008 is
the significant basis between the IBOR rate and OIS rate. The number of papers trying to
provide an explanation for such a basis in recent years is impressive, see [Mor09], [Mor11]
to cite just a few. Two are the main reasons for such a basis: on one hand the IBOR rate
is now pricing a credit risk of the counterparts belonging to the IBOR panel, on the other
hand it incorporates a liquidity risk component coming from the funding needs of banks.
Most of the papers have been focusing on the credit risk component of the basis arguing it
is its main component. Recently [DC13] has argued the exact opposite, claiming that the
liquidity risk is today the predominant component of this spread. The basis would mainly
be explained by the funding constraints that banks have been facing since the credit crunch
of 2008. The underlying idea is that it is easier to fund an overnight flow than to fund an
in fine flow. Let us note that a basis between these two rates has always existed, but it was
negligible in the pre-crisis period.

Simultaneously we have observed the widening of another basis between the FRA and its
static replication strategy. For a detailed discussion on the occurrence of these two basis we
refer to [Mor09]. The most widely accepted explanation for such a basis is that the FRA is
a collateralized while the static replication is not. As a consequence the FRA price is lower
since the existence of a collateral agreement allows on one hand to mitigate the credit risk
on the counterparty of a deal, on the other hand to deal with an overnight funding of the deal.

In fact the IBOR-OIS basis is only one example of basis which is varying much more than
it used to do before the 2008 credit crunch. The after crisis dynamics of the 3M-6M IBOR
basis, the different cross-currency basis, has forced banks to take all these basis into account
when pricing derivative contracts. The first step consists in using different discount curves
for different contracts, the second step consists in building a stochastic model for these ba-
sis. A derivative that could be priced with a simple one factor model before the crisis would
require today a multiple factor model to account for all the different basis involved in the
pricing of the trade.
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1.2.2 The impact of collateralization in the derivative pricing

Since the credit crunch, collateral agreements (Credit Support Annexes, CSA hereafter)
are regarded with much more interest by the quantitative finance community. The impact
of collateralization is now taken into account when pricing derivatives. CSA are used to
mitigate the credit risk of a derivative contract. Roughly speaking, collateral posting occurs
whenever the movements in mark-to-market are higher than predetermined triggers (usually
this will occur at a high frequency: daily or weekly). The collateral is remunerated with a
predetermined collateral rate which depends on the counterparty and on the quality of the
collaterlal. For cash-like collaterals this rate is often very close to the OIS rate. The main
consequence of this is that the hedging strategy of a collateralized derivative contract is in
fact funded by the collateral rate (which is the OIS rate) and thus the discounting of the
payoff is to be made with the collateral rate rather than with the IBOR rate. Things get
much more complicated when the CSA allows to post collateral in different currencies, in
this case the collateral posting has a time dependent optional behavior which depends on
the trajectory of the cheaper currency to deliver as collateral. Investment banks have now
dedicated desks that optimize the collateral posting for deals, and the pricing of collateralized
derivatives incorporates the impact of collateral and funding. Through a simplistic example,
we will try to give a flavor of how the mechanics of collateralization impact the pricing of
derivatives, we refer to [Pit10], [FT11] and [Mor11] for a detailed description on the subject.
Let us consider a generic derivative contract written on a generic underlying St, and denote
by Vt the premium of the derivative contract at time t, let us denote by ct the instantaneous
interest rate at which the collateral is remunerated, ft the instantaneous interest rate at
which the treasury desk has agreed to fund this trade and mt instantaneous interest rate of
a repo contract on St. Let us take the perspective of the derivative seller. Assuming that the
contract is fully collateralized in cash with a bilateral collateral agreement, the cash flows at
time of the transaction are:

1. We receive the derivative premium Vt.

2. We post the amount Vt in cash to the counterparty.

3. We borrow ∆tSt from our treasury desk.

4. We buy a quantity ∆t of the underlying asset St.

5. We enter a repo contract, where we lend the asset to a third counterparty.

The flows 3 to 5 could be replaced by opposite flows assuming we enter in a reverse repo
contract, where we would receive the underlying asset and pay the interests for this. At time
t+ dt, the flows of the contract are:
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1. We receive the interests on the posted collateral Vtctdt.

2. We pay the interests on the delta position ∆tStftdt.

3. We receive interests on the repo contract ∆tStmtdt.

Assuming the market is complete and the hedging strategy is self financed, the modified
self-financing equation reads

Vt+dt − Vt = ctVtdt−∆tSt (ft −mt) dt+∆t (St+dt − St) . (1.7)

This equation should be compared with the classic self-financing equation below

Vt+dt − Vt = rt (Vt −∆tSt) dt+∆t (St+dt − St) , (1.8)

where rt denotes the instantaneous ”risk-free” rate at which we can borrow and lend money.
Equation (1.8) is crucial to be able to represent prices as expectation of discounted cash
flows, with an instantaneous discount rate equal to rt. One of the problem when including
the different costs of collateral remuneration and funding is that we break the assumption
that the same rate applies for borrowing and lending money, and the cash part of the portfolio
evolves at different rates. If we assume that ct = ft −mt, then the self-financing equation
including collateral costs (1.7) is equivalent to the classic self-financing equation (1.8) with
rt = ct, which leads to represent the derivatives prices as follows:

Vt = E
[
e−

∫ T
t dscsVT |Ft

]
, (1.9)

if the option is European, the payoff at maturity M is known and we have VM = f(SM).
Things get much more complicated if we incorporate triggers on the variation of the derivative
premium which determine wether or not collateral is posted, partially collateralized trades,
unilateral collateral agreement, or the possibility of posting collateral in a different currency.
All these features of the CSA create non-linearity in the differential pricing operator and are
hard to include in the pricing of a derivative contract. See for example [BP14] and [PB13].

1.2.3 Which discounting curve?

There are two ways to compute (1.9). The first is to build a model for both the underlying
asset St and the instantaneous collateral rate c. These models should be calibrated in such
a way that they reproduce the prices of the relevant vanilla instruments, and in particular
the instruments which have the same CSA. The second is to decompose the expectation by
making a change of measure,

Vt = P c
t,MEc,M [f(SM)|Ft] , (1.10)
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where P c
t,M is the discount factor set at time t for maturityM associated to the instantaneous

collateral rate c, and Ec,M is the measure associated with the numeraire (P c
t,M)t. The main

question is then the following: ”How do we build the discount curve (P c
t,T , t ≤ T )?”. As

mentioned before, the collateral rate to apply in the pricing of a derivative contract will de-
pend on the CSA. In practice it is necessary to have multiple curves which will be applied to
discount derivatives with different CSA agreements. Also, let us note that the choice of the
curve is not solely driven by the CSA of the derivative, another element which must be taken
into account is the frequency of the cash flows of the derivative2. The construction of the
different discount curves would be straightforward if there was a market of liquidly traded
IRS for every CSA agreement and every payment frequency. Strictly speaking discount
curves used for contracts with a CSA that allows to post collateral in different currencies
contain optionality and should be deduced from an optimal collateral posting strategy. Un-
fortunately, this information is not available in the market, and the instruments which have
sufficient liquidity and observability to be used for curve construction are standard IRS3,
which are collateralized, and basis swaps between the different references: OIS-IBOR basis,
3M-6M IBOR basis, Cross-Currency basis...Typically the construction of the curve consists
in choosing a reference discount curve (for example the OIS discount curve or the 3 month
IBOR curve) and then sequentially build all the curves based on the information available
on the standard IRS and on the basis swaps. Even using the (simplistic) formulas (1.9) and
(1.10), the price of a future discounted cash flow indexed on a IBOR reference rate would
require some convexity and in particular depends on the volatility. In fact the building of the
curves cannot be considered as model independent anymore, and is based on some hidden
assumptions (typically some assumption on the form of the convexity adjustment).

Typical interest rates derivatives have a payoff indexed on a IBOR rate of maturity δ,
and are fully collateralized with cash equivalent collateral. As a consequence the price of
collateralized trades depends on two variables, the OIS rate and the δ-IBOR rate. Precisely
we need to model the dynamics of two different yield curves, the δ-IBOR curve used to
determine the forward rates and the forwards of the payoffs, and the OIS curve to discount
the payoff. The simplest approach consists in assuming that the IBOR curve and the basis
are independent, in this case one can compute the price easily. Let us consider the price of a
European option with payoff f(yIBORT,τ , τ ≥ 0) at maturity, where (yIBORt,τ , τ ≥ 0) is the IBOR
yield curve at date t. We have

Pt = E
[
e−

∫ T
t dsrOIS

s f
(
yIBORT,τ , τ ≥ 0

)]
= E

[
e−

∫ T
t dsrOIS

s −rIBORs
e−

∫ T
t dsrIBOR

s f(yIBORT,τ , τ ≥ 0)
]

= E
[
e−

∫ T
t dsrOIS

s −rIBORs
]
E
[
e−

∫ T
t dsrIBOR

s f
(
yIBORT,τ , τ ≥ 0

)]
. (1.11)

2This is because the basis between the multiple discount curves are mainly driven by credit and liquidity
risk.

3The characteristics of standard IRS depend on the market currency.
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The term E
[
e−

∫ T
t dsrIBOR

s f(yIBORT,τ , τ ≥ 0)
]
is the standard price of the option in a mono-curve

framework. The term E
[
e−

∫ T
t dsrOIS

s −rIBORs
]
is an adjustment that accounts for the spread

between the IBOR and OIS rate, in practice this quantity is represented by a spread curve
(st,τ , τ ≥ 0) defined by

e−τst,τ = E
[
e−

∫ t+τ
t dsrOIS

s −rIBORs
]
.

To the best of our knowledge there is not a market consensus on the way the multi-curve
setting is handled. Exploiting the orthogonality in the expression of the price (1.11), some
banks have structured their trading desks in such a way that one desk continues to hedge

in a mono-curve setting (only focusing on the expression E
[
e−

∫ T
t dsrIBOR

s f(yIBORT,τ , τ ≥ 0)
]
),

and one desk manages the collateral posting and the funding basis. Of course the activities
of these two desks are interconnected. Our external and very personal viewpoint on the
subject is that the separation of the price (1.11) is not fully justified. A unified view on
the price is recommended even if we have a separated desk managing collateral and funding.
The difference between the price in a mono-curve framework and the price in a bi-curve
framework is called the funding value adjustment (FVA).

1.2.4 Price adjustments

Under the impulse of recent market evolutions and regulation, the pricing of derivatives
requires a series of adjustments. As explained before the FVA is the adjustment of the price
one has make to take into account the actual funding cost of the hedging strategy of the
derivative. Other major adjustments are the credit value adjustment (CVA) and the liquid-
ity value adjustment (LVA). Basel 3 regulation requires that banks are able to compute and
exhibit these 3 adjustments for their derivatives contracts.

CVA is the adjustment of the derivative’s price to take into account the market cost of
hedging the credit risk of the counterparty of this derivatives. The computation of CVA
requires the computation of the expected positive exposure of the derivative and the mar-
ket quote of the default probability of the counterparty. Common market practice consists
in making the simplifying assumption that the default of the probability and the mark-to-
market (MtM) of the derivative are independent which allows to compute the CVA in a

separated form of type
∫ T
t
dsEPEs×PDs, where EPEs is the expected positive exposure at

date s and PDs is the default probability of the counterparty at date s. The computation of
CVA is made on an aggregate level for each counterparty. The adjustment for an individual
derivative contract thus depends on the whole portfolio of transactions with the counterparty
of the contract.

LVA is the adjustment of the derivative’s price to take into account the liquidity costs of the
derivative.
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As for FVA, the practices change from banks to banks for CVA and LVA. A common trend
is however to have separated desks managing CVA, FVA and LVA on an aggregate basis.
Working on an aggregate basis has the obvious virtu of optimizing the costs that would be
generated by managing the adjustments individually. However this requires that we are able
to go from an aggregate measure (at a counterparty level for instance) of the adjustments
to an individual (at a transaction level for instance) measure of the adjustment and the
other way around. Of course the difficulties come from the fact the adjustments are highly
nonlinear and aggregation is not immediate. The pricing of an individual deal cannot be
made separately as it used to be in the past, one needs to measure its impact on the whole
portfolio of the counterparty and eventually compute the marginal cost of capital of this
particular deal for the bank to determine wether it is interesting or not.

1.3 Valuation principles and quotation conventions: pre

and post 2008 crisis

Let us now discuss the valuation of vanilla interest rates vanilla products. The milestone
for the valuation of vanilla product is the notion of zero-coupon bond. The time t value of
a zero-coupon bond of maturity T denoted by Pt,T is the value of a payoff of 1 at maturity
T . Zero-coupon bonds are the primary assets of the interest rates market. In a (pre-crisis)
mono-curve setting there was no ambiguity, one could read a zero-coupon bond price on the
unique discount curve available. In a multi-curve setting, one must choose the curve to use,
depending on the CSA of the derivative and on the reference IBOR rate in the derivative
payoff.

In a mono-curve setting, the prices of linear products can be entirely expressed in terms
of zero-coupon bonds of a unique curve

FRAt(T, τ,K) = NτPt,T+τ (K − Lt(T, τ)) (1.12)

IRSt((Ti)
n
i=0, K) = N

(
Pt,T0 − Pt,Tn −K

n∑
i=1

(Ti − Ti−1)Pt,Ti

)
. (1.13)

This allows us to express the forward libor and swap rate

Lt(T, τ) =
1

τ

(
Pt,T
Pt,T+τ

− 1

)
(1.14)

St((Ti)
n
i=0) =

Pt,T0 − Pt,Tn∑n
i=1(Ti − Ti−1)Pt,Ti

. (1.15)

In a multi-curve setting, the price of linear products is given by
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FRAt(T, τ,K) = NτP c
t,T+τ

(
K − Ec,T+τt [LT (T, τ)]

)
(1.16)

IRSt((Ti)
n
i=0, K) = N

(
n∑
i=1

(Ti − Ti−1)P
c
t,Ti

(
Ec,Tit

[
LTi−1

(Ti−1, Ti − Ti−1)
]
−K

))
.(1.17)

where Ec,Mt denotes the expectation under the numeraire (P c
t,M)t. The forward libor rate is

then defined by

Lt(T, τ) = Ec,T+τt [LT (T, τ)] . (1.18)

Let us note that by definition the forward libor rate is a martingale. By construction, the
curve associated with the IBOR rate of maturity τ will be such that the forward libor rate
can be expressed as a function of the zero-coupon bonds of that curve:

Lt(T, τ) =
1

τ

(
P
IBOR(τ)
t,T

P
IBOR(τ)
t,T+τ

− 1

)
. (1.19)

An alternative way to represent forward libor rate is to define the curve of forward libor
spreads between the reference curve and the curve associated with the IBOR of maturity τ .
Let us assume that P c

t,T is the reference curve, then the forward libor rate is defined as the
classic forward libor rate (1.16) plus a spread.

Lt(T, τ) =
1

τ

(
P c
t,T

P c
t,T+τ

− 1

)
+ spt(T, τ). (1.20)

where the curve (St(T, τ), t ≤ T ) is the curve of forward spreads between the reference
collateral curve and the τ -libor rate curve. Similarly, we can derive the expression of the
swap rate. Assuming that the swap has fixed payment frequency Ti − Ti−1 = τ , we have

St((Ti)
n
i=0) =

P
IBOR(τ)
t,T0

− P
IBOR(τ)
t,Tn

τ
∑n

i=1 P
c
t,Ti

. (1.21)

Again, this could be expressed as the classic swap rate plus a spread. The crucial point
is whether or not the spread between the reference curve and the base curve is modeled
as a stochastic variable. While the market evidence suggests that the different basis are
stochastic and their variations in the after crisis environment are sizeable, it is very rare
among practitioners to include a stochastic dynamics for these different basis. One of the
great difficulties of modeling the spreads as stochastic variables is the lack of instruments to
which we can calibrate. In particular, there are no liquidly traded options on the different
basis.

The fundamental idea of arbitrage free pricing is that there exists a martingale measure,
which is equivalent to the objective or historical measure under which the discounted (by
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whichever collateral rate) asset prices are martingales. This gives a tool to compute the
prices of european contigent claims as expectation of the discounted payoff at maturity. The
second fundamental concept is the concept of numeraire [GREK95], which is extensively
used in the interest rates market. For a specific detailed description of the valuation of con-
tingent claims in the interest rates market we refer to [BM06], [PA10]. The mathematical
consequences of the fundamental results of financial contingent claims valuation theory will
be developed in 2.1.

The way interest rates vanilla options prices are quoted is inherited from the conventions
of the equity market. In particular caplets and swaptions are often viewed as call options
respectively on the forward libor rate and on the forward swap rate. From the arbitrage
pricing theory we have

Ct(T, τ,K) = E
[
e−

∫ T
t dscs (FRAT (T, τ,K))+ |Ft

]
SPt(T, (Ti)

n
i=0, K) = E

[
e−

∫ T0
t dscs (IRST ((Ti)

n
i=0, K))+ |Ft

]
.

The market convention is to apply a standard change of numeraire technique [GREK95] and
rewrite the above expressions as

Ct(T, τ,K) = P c
t,T+τET+τ

[
(LT (T, τ)−K)+ |Ft

]
(1.22)

SPt(T, (Ti)
n
i=0, K) =

n∑
i=1

(Ti − Ti−1)P
c
t,Ti

EA((Ti)ni=0)
[
(ST0((Ti)

n
i=0)−K)+ |Ft

]
. (1.23)

where ET+δ and EA((Ti)ni=0) denote respectively the expectation taken w.r.t. the measure
associated with the numeraire P c

t,T+τ and
∑n

i=1(Ti − Ti−1)P
c
t,Ti

. The quantity
∑n

i=1(Ti −
Ti−1)P

c
t,Ti

is called the annuity associated to the IRSt((Ti)
n
i=0, K), and will be denoted by

At((Ti)
n
i=0) in the following. Brokers typically quote the prices of caplets and swaptions in

terms of the implied volatility respectively of the forward libor and swap rate. In practice
we observe a volatility cube of implied volatilities of caplets and swaptions for different
maturities, tenors and strikes.

1.3.1 Non-linearity episode 2: hidden optionality

Sometimes non-linearity is hidden in an apparently linear product, this is the case of
libor in arrears and constant maturity swap (CMS in the following). A libor-in-arrears
swap is a contract similar to a standard swap rate involving the exchange of a fixed rate
against a floating rate, but the rate is payed at the same date of its fixing, precisely for a
set of prespecified dates T0, T1, ..., Tn, at every instant Ti, i = 1...n the fixed leg pays out the
amount

N(Ti − Ti−1)K (1.24)
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corresponding to a fixed interest rate K, a nominal value N , whereas the floating leg pays
the amount

N(Ti − Ti−1)LTi(Ti+1 − Ti), (1.25)

corresponding to the interest rate LTi(Ti+1 − Ti) resetting at the instant Ti for the maturity
given by the next payment instant Ti+1, with T0 a given date. While this seems a linear
product it in fact hides optionality. The time t value of the floating leg is given by

N(Ti − Ti−1)E
[
e−

∫ Ti
t dscsLTi(Ti+1 − Ti)|Ft

]
.

By standard change of measure arguments we have

N(Ti − Ti−1)P
c
t,Ti+1

ETi+1

[
1

P c
Ti,Ti+1

LTi(Ti+1 − Ti)|Ft

]
,

where ETi+1 denotes the expectation under the martingale measure associated to the nu-
meraire Pt,Ti+1

. Using the expression of the forward rate we get

ETi+1

[
1

P c
Ti,Ti+1

LTi(Ti+1 − Ti)|Ft

]
=

= ETi+1 [(1 + (Ti+1 − Ti)(LTi(Ti+1 − Ti)− spTi(Ti, Ti+1 − Ti)))LTi(Ti+1 − Ti)|Ft]

= Lt(Ti, Ti+1 − Ti) + (Ti+1 − Ti)ETi+1 [LTi(Ti+1 − Ti)((LTi(Ti+1 − Ti)− spTi(Ti, Ti+1 − Ti)))|Ft] .

The last term involves a payoff which is a quadratic function of the libor rate, and a cross
term between the libor and the basis spread, and thus is clearly a non linear product. By
application of the static replication formula [CW02], the value of the libor-in-arrears swap
can be obtained as a linear combination of caplets prices of different strikes.

1.3.2 Viewing swaption as basket options

It is standard market practice to view swaptions as basket options either on a set of
forward libor rates, either on a set of ZC bonds. We present these two approaches since
these will be key in building some of our pricing methods.

Swaptions as options on coupon bonds

We can rewrite the payoff of a swaption (1.6) as follows:

N(IRST ((Ti)
n
i=0, K))+ = N

(
1− P IBOR

T,Tn −K

n∑
i=1

(Ti − Ti−1)P
c
T,Ti

)+

,

deducing that the price of a swaption can be represented by
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SPt(T, (Ti)
n
i=0, K) = E

[
e−

∫ T0
t dscs

(
1− P IBOR

T0,Tn
−K

n∑
i=1

(Ti − Ti−1)P
c
T0,Ti

)+

|Ft

]
(1.26)

= P c
t,T0

ET0
[(

1− P IBOR
T0,Tn

−K
n∑
i=1

(Ti − Ti−1)P
c
T0,Ti

)+

|Ft

]
(1.27)

which can be viewed as a put option of strike 1 on the coupon bond
∑n

i=1CiP
c
T,Ti

+ P IBOR
T0,Tn

,
defined by Ci = (Ti − Ti−1)K, i = 1..., n. The swaption price is thus equivalent to the price
of a basket option on the basket of ZC bonds (P c

t,T1
, ..., P c

t,Tn
, P IBOR

t,Tn
). Let us note that this

vision of the option is probably more relevant for someone who is used to the equity option
market since it links the price of the option with the actual market underlyings, which are
ZC bonds. As opposed the price vision given by (1.23) is artificial since the forward swap
rate is not a proper underlying.

We will discuss in details in section 4.2 how this particular view of the swaption price can
be used to derive efficient pricing methods in the context of affine term structure models.

Swaptions as basket options on forward IBOR rates

Let us note that the forward swap rate (1.15) can be written as a basket of forward IBOR
rates:

St((Ti)
n
i=0) =

n∑
i=1

ωitLt(Ti−1, Ti − Ti−1) (1.28)

ωit =
(Ti − Ti−1)P

c
t,Ti∑n

k=1(Tk − Tk−1)P c
t,Tk

. (1.29)

It is important to note that the weights (4.31) are stochastic and admit a complicated
dynamics. It is standard practice among practitioners and academics to consider that the
contribution of these weights to the diffusion term of the forward swap rate can be neglected4.
The weights are assumed to be constant and set to their value at the pricing date (see
[d’A03], [Pit09] for some examples). This procedure is often referred to in the literature as
drift freezing and we shall do the same in this document. Starting from the swaption price
expression (1.23) and assuming that the wights ωi are constant and equal to their value at
date t, we can rewrite the swaption price as

4To the best of our knowledge there have been very few attempts to quantify either theoretically or
numerically this statement. In [d’A03] the author investigates the accuracy of the approximation for pricing
swaptions in the log-normal BGM model, he shows that the approximation is less efficient for long maturities
and long tenors.
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SPt(T, (Ti)
n
i=0, K) = At((Ti)

n
i=0)EA((Ti)

n
i=0)

[(
n∑
i=1

ωitLT0(Ti−1, Ti − Ti−1)−K

)+

|Ft

]
.

(1.30)
Which is a basket option on the basket of forward libor rates Lt(Ti−1, Ti− Ti−1). We will do
an extensive use of the drift freezing method to derive efficient approximations of the price
and the volatility of swaptions in the context of affine term structure models.

1.3.3 Different settlements

As mentioned before the market standard for swaptions is not necessarily the physical set-
tlement. In particular, in the EU swaptions market, the standard is a cash yield settlement.
A settlement type different from physical translates into a so called convexity adjustment.

The payoff of a cash yield swaption is given by

AM((Ti)
n
i=0, St((Ti)

n
i=0)) (St((Ti)

n
i=0)−K)+ , (1.31)

where

AM((Ti)
n
i=0, s) =

n∑
i=1

(Ti − Ti−1)
1∏i

k=0(1 + (Tk − Tk−1)s)
.

The time t price is thus given by

SPCY
t (T, (Ti)

n
i=0, K) = E

[
e−

∫ T
t dscsAM((Ti)

n
i=0, ST ((Ti)

n
i=0)) (ST ((Ti)

n
i=0)−K)+ |Ft

]
.

(1.32)
The forward swap rate is not a martingale under the risk-neutral measure, and, in common
term structure models, the distribution of the forward swap rate is not known under the
risk-neutral measure. The forward swap rate is a martingale under the annuity measure, i.e.
the measure associated to the numeraire A((Ti)

n
i=0), and usually its distribution is known

under this measure. Typically the pricing of cash yield swaption is made under this measure,
and the change of measure expressed as a function of the forward swap rate. Precisely we
have,

SPCY
t (T, (Ti)

n
i=0, K) = At((Ti)

n
i=0)EA

[
α(T, ST ((Ti)

n
i=0)) (ST ((Ti)

n
i=0)−K)+ |Ft

]
, (1.33)

where α is defined by

α(t, s) = EA
[

1

At((Ti)ni=0)
∏i

k=0(1 + (Tk − Tk−1)St((Ti)ni=0))
|St((Ti)ni=0) = s

]
.

45



In order to compute the above conditional expectation, we need a modeling assumption on
the joint distribution of the annuity and the forward swap rate. Typically, this will be the
case in a term structure model. Let us furthermore note that, in several term structure
models, the above expectation cannot be computed explicitly. See [PA10] for an exhaustive
discussion on how to approximate the function α.

The computation of the different convexity adjustment coming from either CMS related
features or different settlement types is outside the scope of this work. However, it is worth
noting that in order to value and (more importantly) risk manage non-physical settlement
swaptions it is not sufficient to assume a dynamics of the underlying forward swap rate,
and we need a full term structure model, or alternatively, an assumption on the form of the
function α.

1.4 Peculiarities

Compared to the equity market, the fixed income market has some important peculiari-
ties. The market underlying is (at least in theory) infinite dimensional, it is the whole yield
curve. In practice, we build the yield curve from the market quotes of FRA and IRS, which
are available for a finite but rather large set of maturities and tenors. Naturally the market
underlying is high dimensional.

1.4.1 Market representation of option prices

As mentioned before the way the market quotes and views the prices of vanilla options
such as swaptions and caplets is inherited from the equity market. In particular options
prices are quoted in terms of the implied volatility of forward libor and swap rates, these
volatilities are determined by inverting the pricing formulas (1.22) and (1.23) w.r.t. either
the Black-Scholes, either the Bachelier formula. Let us note that given that the forward rates
are assimilated to bond returns it seems more consistent to invert the pricing formulas w.r.t.
the Normal model than w.r.t. the log-normal model. Typical values for the implied Normal
volatility are between 0.5 and 2 per cent, while the log-normal volatility varies between 20
and 200 per cent.

It follows directly from the pricing formulas (1.22) and (1.23) that each implied volatil-
ity is quoted w.r.t. a given different martingale measure, which is different for each couple
of maturities and tenors. As a consequence one must pay attention when speaking about
the maturity and tenor term structure of the swaption volatility cube, since these volatilities
are not computed under the same martingale measure.
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1.4.2 Sliding underlyings

Another fundamental difference with equities is that observed smiles cannot be directly
translated into the actual hedging instruments that will be used to hedge the options. Neither
the forward swap rate or the forward libor rate are traded assets and the smile must be
reinterpreted in terms of the assets that are actually traded. The natural instruments to
hedge a caplet (resp. a swaption) is a FRA (resp. a forward IRS) with the fixed leg paying
the strike of the option. It is immediate to translate the behavior of the smile w.r.t. this
contract. However, in practice such a contract can be non liquid and involve high liquidity
margins, it is standard market practice to hedge options with standard IRS and FRA at
par. In practice hedging is performed at an aggregate level on a book of derivatives5, the
hedging instruments change continuously and it is not immediate to translate the behavior
of the smile in terms of the products contained in the hedging portfolio. The notion of
backbone, which is key to understand dynamic hedging of an equity option, is not so clear
in the interest rates option market. We will discuss hedging in details in section 2.7, and try
to formalize the hedging market practice.

1.5 Some empirical facts about the interest rates mar-

ket

Before we describe the theory of interest rates term structure modeling we give some
empirical results describing the phenomenology of the interest rates market. For a compre-
hensive and accurate description of the phenomenology of the interest rates curve we refer to
[BSC+99]. In this work, we focus on the interest rates derivatives market and in particular
on the IRS and swaption market. In [TS10] the authors conduct a detailed analysis of the
swaption volatility cube and propose a two factors model to capture the dynamics of the
volatility cube. The objective of our work is to propose an affine term structure model which
is able to capture both the IRS and swaption volatility dynamics.

As mentioned before IRS and swaption are among the most liquidly traded instruments
in the fixed income market. Nonetheless one should never forget that these products are
traded in an OTC market and not all the prices are completely transparent. For instance,
non par IRS and deep out of the money swaptions are not liquidly traded and their price
incorporate high liquidity premiums. There is sufficient market consensus to rely on the
market quotes of at par IRS and ATM swaptions.

Some of the most commonly used modeling frameworks for interest rates will be described
in chapter 2. Theoretically, the underlying of the interest rates market is the whole yield
curve (which is infinite dimensional). In practice, the market is perceived as discrete both
in the expiry and in the maturity dimension. It is common to reason in terms of pillars of

5This is clearly the most cost efficient choice in order to reduce transaction cost and liquidity margins.
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both the yield curve and the volatility. This chapter is dedicated to the empirical analysis
of both the IRS and swaption market.

An interest rates model is judged for its ability to reproduce statically and dynamically
what is observed in the market. On one hand, it is important that the model recovers (to a
degree which is considered satisfactory) the market prices of liquidly traded instruments. On
the other hand it is important that the model reproduces the dynamics of the interest prices
as observed in the market. The present section focuses on the latter, i.e. the description of
the dynamical properties of IRS and swaption prices.

1.5.1 PCA of the swaption volatility cube

In the interest rates market, the most liquidly traded instruments are IRS and swaptions.
As mentioned before interest rates derivatives trade OTC and their prices are not always
transparent. For IRS swaps, it is common market practice to trade systematically at par.
For swaptions, out of the money options can be highly illiquid. For these reasons, we only
focus on ATM swaptions and ATM IRS, since these are the only instruments for which there
is sufficient market consensus to analyze their price dynamics.

The data set

We analyze a set of data in the period going from January 2006 to December 2012. We
are grateful to the Fixed Income Quantitative Research team of C.A. CIB who kindly pro-
vided us with the data set. The data set comprises the implied normal ATM volatility and
ATM forward swap rate of USD swaptions for expiries ranging from 1 month to 30 years
and maturities ranging from 1 year to 30 years.

In theory the swaptions’ ATM forward swaps should be entirely determined by the yield
curve extracted from swap and IBOR rates. In practice, this is not the case due to a number
of factors such as the interpolation/extrapolation of the curve, the basis between collateral
discount curves and forward IBOR curves... As mentioned before the number of factors
impacting the pricing of (even simple) derivative contracts has exponentially increased after
the credit crunch, and therefore, the swaption’s ATM swap rate can be significantly different
from the value one would imply from the forward IBOR yield curve. Assuming that the
market quotes for ATM swaptions are reliable, and represent a transparent market, our data
set contains the most relevant information to analyze the dynamics of the USD vanilla inter-
est rates market. As mentioned before the market conventions of the EU swaptions market
make it more difficult to analyze the prices of swaptions directly. The convexity adjustments
introduced in 1.3.3 are model dependent, and therefore the implied volatilities of swaptions
cannot be extracted in a model-free way.
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Figure 1.1: First four eigenmodes of the swaption ATM forward swap rates surface.

Results of the PCA

It is common to use PCA to analyze the dynamics of the yield curve. See [LS91]. Empir-
ical results indicate that three factors lead to explain around 98% of the variance of the yield
curve. We have performed a PCA on the weekly variations6 of the swaptions’ ATM forward
swap rate surface. Figure 1.1 shows the first four factors of the PCA of the swaptions’ ATM
forward swap rates. The first factor explains 85 % of the variance, the first four factors
explain more than 98% of the variance. The results are consistent with the literature. The
first factor is similar to a parallel shift of the forward swap curve, the second factor to a
change in the slope of the forward swap curve and the third to a change in the convexity of
the curve. Let us note that we clearly observe different behaviors between long and short
expiries and maturities. Figure 1.2 shows the factors of the PCA for a given expiry. The
factors for short expiries are very similar to the one observed when performing a PCA on
the yield curve itself. The factors for long expiries show different patterns. These seems to
indicate that the IRS and swaptions’ market is divided into sub-markets which have very
different dynamics. This is consistent with the results of sparse PCA [dBEG07] to the IRS

6From wednesday to wednesday to avoid effects coming from the Friday close or the Monday opening.
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Figure 1.2: First three eigenmodes of the swaption’s ATM forward swap maturity term
structure.

market.

We have performed a PCA on the weekly variations7 of the swaptions’ ATM normal
implied volatility surface. Figure 1.1 shows the first four factors of the PCA. The first factor
explains 70% of the variance, the first two factors explain 82%, and the first four factors ex-
plain more than 93% of the variance. In [TS10] a PCA of the surface of swaptions’ extracted
conditional variances is performed, the data set ranges from 2001 to 2010, and the first factor
explains more than 85% of the variations of the surface. The authors then suggest that the
swaption cube can be modeled by a 2-factors stochastic volatility model. Let us mention
that the concept of conditional variance in [TS10] is different from the ATM implied normal
volatility and incorporates the information of the whole swaption smile.

The first and second factors of the PCA (see Figure 1.1) show symmetrical patterns. The
shape of the factors indicate that the movements on the short expiries implied volatilities are

7From wednesday to wednesday to avoid effects coming from the Friday close or the Monday opening.
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Figure 1.3: First three eigenmodes of the swaption’s ATM normal volatility surface.

much more significant than the movements on the long term volatilities. The third factor is
similar to a change in the slope of the maturity term structure of volatility for short expiry
swaptions. Again, the dynamics of the long term expiry swaptions is very different from
the dynamics of the short term expiry swaptions. The results of the PCA indicate that
the volatility of swaptions of expiry longer than 10Y seem to have a simple dynamics, and
move mainly by parallel shifts. This is confirmed when observing the time series of implied
volatilities of different expiries, see Figure 1.4.
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Chapter 2

Term structure models

In this chapter we proceed to a brief survey of interest rates models used to manage
Interest Rates derivatives. We focus on markovian term structure models and in particular
on the class of affine term structure models (ATSM). Rather than be exhaustive we focus
on the results and properties of the models that will be useful in the following to build our
modeling framework, for a much more complete survey of the term structure models used
in the interest rates market we refer to [PA10], [BM06] and [DK96a]. We will present the
models in a mono-curve setting. The class of ATSM allows to increase the number of factors
easily, as soon as the dynamics of the additional factor is also affine. We conduce an anal-
ysis of the yield curve and implied volatility dynamics in markovian models through some
examples. This allows us to highlight some of the concepts that will be developed in the
following. First we show how the models can be specified in such a way that the role of the
underlying state variables is clearly identified in terms of yield curve and implied volatility
dynamics. Secondly we introduce the notion of ”stochastic volatility” perturbation of the
linear gaussian model. Finally, through a concrete example we discuss the performance of
markovian models in terms of hedging.

Heath-Jarrow-Morton [HJM92] (denoted HJM hereafter) have developed a general frame-
work that allows to build arbitrage-free models of the term structure of interests rates. The
appeal of this framework lies in the fact it gives a very straightforward way of specifying
an arbitrage-free term structure model and that the resulting model automatically fits the
initial yield curve. Two are the main drawbacks of the general version of the model: first
HJM model the dynamics of instantaneous forward rates which are not directly observable in
the market, second the yield curve is not markovian in a finite number of state variables. As
a consequence, in its most general version the HJM modeling framework lacks of tractability.
Many of the modeling approaches proposed in the years 90’s try to overcome these limits.
Two are the main alternative modeling approaches: markovian TS models and market mod-
els.

Markovian TS models assume that the whole yield curve is driven by a finite (usually small)
number of state variables, the dynamics of which is assumed to be a Markov process. This
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approach was pioneered by [EKLM+91], [EKL92] and [Che92]. Duffie and Kan [DK96b]
defined a broad class of factorial TS models, [DS00] studied admissible specifications of the
model. In all these models the functional mapping between the underlying variables and
the yield curve is derived by combining the dynamical assumptions with the arbitrage free
constraints. While this modeling approach overcomes the tractability problems of the HJM
framework by explaining the dynamics of the curve by a finite set of variables, these variables
are not directly observable in the market and hard to identify in general.

Market models radically differ from factorial models. Instead of using convenient but un-
observable underlying variables, the approach pioneered by Brace, Gatarek and Musiela
[BGM97] and extended by Jamshidian [Jam97], consists in taking rates that are actually
traded (and thus quoted) in the market such as IBOR or Swap rates as underlying variables.
While this approach solves the observability issues by modeling variables that are directly
observable in the market, it conserves the tractability issues because the yield curve is not
markovian in a finite number of state variables.

Let us note that the difference between these two approaches can be explained by the dif-
ference between the markets the authors wanted to model. On one hand Vasicek, Hull and
White, Duffie, El Karoui et al. referred to markets which were characterized by a very liquid
government bond market (such as the European and U.S. market). The government yield
curve or equivalently the forward curve has been identified as the variable to be modeled. On
the other hand BGM referred to markets which were characterized by the fact the govern-
ment debt was of very ”bad quality” and illiquid (such as the Australian market), while the
swaps and IBOR market was liquid, and thus in this case the relevant market information
was made of swap and IBOR rates.

Ahead of these models is the Markov-functional model [HKP00] proposed by Hunt and
Kennedy (HK hereafter), which tries to solve the two main limits of the HJM framework
simultaneously. The model can be viewed as the analogue of Dupire’s local volatility model
[Dup94] for interest rates. The curve is assumed to be markovian in a finite number of state
variables and the mapping between the variables and the curve is directly inferred by the
market quotes of vanilla instruments.

The chapter is organized as follows, section 2.1 recalls the general arbitrage-free framework
for interest rates defined by Heath, Jarrow and Morton in [HJM92]. Section 2.2 presents
factorial interest rates models. Section 2.3 presents the class of ATSM. Section 2.4 presents
some examples of popular ATSM, for each model we discuss the yield curve dynamics and
implied volatility cube. Section 2.5 presents MF models and formalizes the calibration pro-
cedure of Hunt and Kennedy [HKP00]. Finally section 2.6 discusses the nature of volatility
in markovian TS models. Through a detailed pricing example using MF model we show
the consequence in terms of hedging forward volatility products and introduce the notion of
model risk.
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2.1 Arbitrage free framework

We introduce the definitions and notations that will be used through this chapter. In
all the following we consider a continuous trading economy with a trading interval [0, T ∗]
for a fixed T ∗ > 0. The uncertainty in the economy is characterized by a probability space
(Ω,F , P ). Information evolves according to the augmented filtration {Ft}t∈[0,T ∗] generated by
a d-dimensional standard Brownian motion Z. We assume that a continuum of market zero-
coupon bonds (ZCB) trade with different maturities, one for each trading date T ∈ [0, T ∗],
and denote by Pt,T the time t price of the T maturity bond for all T ∈ [t, T ∗] and t ∈ [0, T ∗].
We assume that Pt,T > 0 and that ∂T logPt,T exists for all t ∈ [0, T ∗] and T ∈ [t, T ∗]. The
instantaneous forward rate at time t for date T , ft,T is defined by

ft,T = −∂T logPt,T , for t ∈ [0, T ∗], T ∈ [t, T ∗].

The spot rate or short rate rt is defined as the limit

lim
T→t

ft,T = rt.

The key results of Harrison and Kreps [HK79] and Harrison and Pliska [HP81] are the
established connection between the absence of arbitrage opportunities and the existence of
an equivalent martingale measure under which the discounted asset prices are martingales.
Let us introduce the money market account by

S0
t = exp

(∫ t

0

dsrs

)
.

Assume a general dynamics under the objective probability measure for the instantaneous
forward rates

ft,T = f(0, T ) +

∫ t

0

dsαs,T +

∫ t

0

σTs,TdZs, (2.1)

where αt,s and σt,T are jointly measurable and adapted and verify

∫ T

0

ds|αs,T | < ∞ P − a.e.∫ T

0

ds|σs,T |2 < ∞ P − a.e.

2.1.1 Arbitrage-free constraints

The following well known result defines the HJM arbitrage free framework [HJM92].
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Proposition 1 —(HJM) Uniqueness of the martingale measure across all bonds
- Under some regularity conditions (see [HJM92] for the details) there exists a unique equiv-
alent martingale measure Q, called the risk-neutral measure under which the discounted ZCB
Pt,T/S

0
t is a martingale for all T ∈ [0, T ∗] and t ∈ [0, T ] if and only if

αt,T = −σTt,T
(
ϕt −

∫ T

t

dsσt,s

)
, for all T ∈ [0, T ∗], t ∈ [0, T ]. (2.2)

In particular, for any vector of ZCB maturities T1 < · · · < Td the unique martingale measure
QT1,...,Td under which the discounted bond prices Pt,Ti/S

0
t are QT1,...,Td-martingales is Q.

Among the regularity conditions necessary for the above proposition to be verified is that
for a set of maturities T1 < · · · < Td we have σTt,T1

·
σTt,Td

 is nonsingular Q× λ(dt)− a.e.. (2.3)

Remark 2 — The uniqueness of the equivalent martingale measure implies that the market
is complete. Thus for any FT1-measurable random variable π there exists a self-financing
strategy H of the ZCBs Pt,T1 , ..., Pt,Td such that

H0
T1
S0
T1

+
d∑
i=1

H i
T1
PT1,Ti = π.

Hedging of derivatives instruments and completeness of the market will be studied in details
in section 2.7.

2.1.2 Change of probabilities and forward neutral measures

As mentioned before the interest rates market quotes vanilla instruments such as swap-
tions (resp. caplets) in terms of the normal or log-normal implied volatility of the underlying
forward swap rate (resp. forward libor rate). In order to do so the pricing is made under
a suitably chosen probability measure under which the the forward swap rate (resp. the
forward libor rate) is a martingale.

Definition 3 — Consider a complete market. Let N denote the price process of a generic
numeraire i.e. an asset with strictly positive value. The martingale measure QN associated
to the numeraire N is defined as the martingale measure under which the asset prices ex-
pressed in the numeraire unit St/Nt are martingales. From [GREK95] for any FT -measurable
random variable X by

EQN

[X] =
S0
t

Nt

EQ
[
X
NT

S0
T

|Ft

]
. (2.4)
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Definition 4 — The U-forward measure QU is defined as the measure associated to the
numeraire Pt,U . The annuity measure QA is the measure associated to the numeraire At =∑n

i=1(Ti − Ti−1)Pt,Ti with T0 < T1 < ... < Tn.

We define the forward libor rate Lt(T, U) and the forward swap rate St((Ti)
n
i=0) by

Lt(T, U) =
1

U − T

(
Pt,T
Pt,U

− 1

)
(2.5)

St((Ti)
n
i=0) =

Pt,T0 − Pt,Tn∑n
i=1(Ti − Ti−1)Pt,Ti

. (2.6)

By definition, the forward libor rate Lt(T, U) is a martingale under QU and the forward
swap rate St((Ti)

n
i=0) is a martingale under QA. We will denote respectively by St(T, n, τ)

and At(T, n, τ) the forward swap rate associated to the IRS with fixed payment lag of τ ,
namely St((T + kτ)nk=1) and the associated annuity. Following the results of [GREK95] we
can characterize the dynamics of the bonds under the forward and annuity measures. LetW
be a Brownian motion under the risk-neutral measure (defined by proposition 1), defining

WU
t = Wt +

∫ t

0

dsσs,U (2.7)

WA
t = Wt +

n∑
i=1

∫ t

0

dsωitσs,U , (2.8)

where ωit = δi
Pt,Ti

At
. We have that WU and WA are Brownian motions respectively under QU

and QA.

Let us stress that the change of measure (2.8) implies that under the annuity measure
QA the drift term will involve the stochastic weights ωi. In the context of markovian TS
models (which we present in the following) this often results in complicated dynamics of the
underlying risk factors under the measure QA.

2.2 Modeling with state variables

The arbitrage-free modeling framework defined by proposition 1 is general and includes
a very broad class of models. However its general version lacks of tractability. In particular,
a markovian structure is desirable to allow an efficient implementation of the model. We
follow [HKP00] and give the definition of the class of markovian TS model. Note that at an
abstract level the class of models defined in [HKP00] includes a very broad range of models.
The main contribution of HK lies in their innovative calibration procedure which will be
described later in the chapter.
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Definition 5 — An IR model is said to be markovian or Markov functional if

1. There exist a martingale measure Q associated with a numeraire N

2. There exist an Rd valued stochastic process F that is a Markov process under Q

3. N is a function of F i.e. Nt = N(t, Ft)

4. The ZCBs are functions of F i.e. Pt,T = P (t, T, Ft) for 0 ≤ t ≤ T ≤ T ∗.

The components of the process F are often called the state variables.

In a markovian TS model, the spot rate can be defined by continuity as a functional of the
underlying state variables F . We will assume that F solves a SDE under Q

Ft = F0 +

∫ t

0

dsµ(s, Fs) +

∫ t

0

σ(s, Fs)dZs. (2.9)

Where µ and σ verify the usual regularity conditions for the above SDE to admit a unique
strong solution. From the change of measure formula (2.4) we deduce the expression of the
change of measure between Q and QN ,

dQN

dQ
|Ft = e−

∫ T
t dsrs

N(T, FT )

N(t, Ft)
.

By application of Girsanov theorem (assuming the functions N and σ are smooth enough),
we deduce the change of measure. Let WN be a standard Brownian motion under the
measure QN , then we have that W defined by

WQ
t = WN

t −
∫ t

0

ds
∂FN(s, Fs)

N(s, Fs)
σ(s, Fs),

is a Brownian motion under the risk neutral measure. Then it is immediate that F solves
an SDE under the risk-neutral measure (with a modified drift function), precisely

Ft = F0 +

∫ t

0

dsµ(s, Fs)−
∂FN(s, Fs)

N(s, Fs)
σ(s, Fs) +

∫ t

0

σ(s, Fs)dW
Q
s .

Conversely if the spot rate is a function of a stochastic process F , and F is Markov under the
risk-neutral measure, then any U -forward measure -the measure associated with the ZCB
numeraire Pt,U - fulfills the conditions of definition 5. The following proposition provides an
alternative characterization of markovian TS models.

Proposition 6 — An IR model is markovian or Markov functional or a short rate model
if and only if there exist a stochastic process F such that

1. F is a diffusion process solution of (2.9) under the risk-neutral measure

2. the spot rate r is a function of F i.e. rt = r(t, Ft)
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2.3 Affine term structure models

Affine term structure models (ATSM) are a very broad class of markovian models. Most
markovian models used by market practitioners belong to this class. Affine processes are
appreciated for their tractability, in particular Laplace and Fourier transforms of the process
admit analytical or semi-analytical expressions. In the IR context the affine structure of the
model allows for a explicit or semi-explicit representation of market underlying assets such
as bonds, swaps and FRAs.

The fundamental result of Duffie and Kan [DK96b] is the following theorem

Theorem 7 — In a factorial IR model σ(t, ·)σ(t, ·)T , µ(t, ·) and r(t, ·) are affine functions
where we have defined

µ(t, f) = aµ(t) + bµ(t)f

(σ(t, f)σ(t, f)T )ij = aσij(t) + (bσij(t))
Tf

r(t, f) = ar(t) + (br(t))Tf.

if and only if the ZCBs are exponential affine functions of the state variables i.e.

Pt,T = exp(A(t, T ) +B(t, T )TFt). (2.10)

Furthermore the functions A and B are solutions (if a solution exists) of the following system
of o.d.e.

∂B
∂t
(t, T ) = −(bµ(t))TB(t, T )−

∑d
i,j=1Bi(t, T )Bj(t, T )b

σ
ij(t) + br(t)

∂A
∂t
(t, T ) = −B(t, T )Taµ(t)−B(t, T )Taσ(t)B(t, T ) + ar(t)

A(T, T ) = 0, B(T, T ) = 0.

(2.11)

A consequence of the above theorem is that in order to specify an ATSM one only needs
to define an affine diffusion under the risk-neutral probability and an affine expression for
the spot rate. [DK96b] shows that under some mild non-degeneracy conditions the diffusion
term of any affine diffusion process can be written as

σ(t, f) = Σ
√

diag(αi + βTi f, 1 ≤ i ≤ d), (2.12)

where Σ ∈ Md(R), αi ∈ R and βi ∈ Rd. Clearly, the process defined by the SDE

Ft = F0 +

∫ t

0

ds(aµ + bµFs) +

∫ t

0

Σ
√
diag(αi + βTi Fs, 1 ≤ i ≤ d)dZs, (2.13)

is not well defined for any choice of the parameters αi, βi, a
µ and bµ. In particular one needs

to impose that the matrix diag(αi + βTi Fs, 1 ≤ i ≤ d) is positive defined. Dai and Singleton
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[DS00] have studied the admissible conditions for the solutions in the canonical state space
Rp

+ ×Rd−p. They show that by means of a linear transformation we can always assume that
an admissible process F in the canonical state space is solution of the SDE

Ft = F0 +

∫ t

0

ds(a(t) + b(t)Fs) +

∫ t

0

Σ

(
diag(

√
F 1
s , ...,

√
F p
s , 0, ..., 0) 0

0 σJJ(t, FI)

)
dZs,

(2.14)
where I = {1...p}, J = {p + 1...d}, F T

I = (F1, ..., Fp) and σJJ(t, f) is in Md−p(R). This
proves that by means of a linear transformation any process F in the canonical state space
Rp × Rd−p can be decomposed in p CIR processes and p − d stochastic volatility processes,
the volatility of which is given by a convex combination of the p CIR processes.

The choice of the state space Rp
+ ×Rd−p is probably the most natural, but certainly not the

more general. It is in fact sufficient to impose the positivity of the instantaneous variance-
covariance matrix diag(αi + βTi Fs, 1 ≤ i ≤ d). Cuchiero et al. [CFMT11] have studied
admissible constraints for affine diffusion in the space of positive semidefinite matrixes.

2.4 Examples of affine term structure models

In this section we provide examples of ATSM commonly used for IR management. For
each model, we write the ZCBs dynamics and discuss the implied volatility cube generated
by the model.

2.4.1 The multi-dimensional linear Gaussian model

The linear Gaussian model (LGM hereafter) pioneered by El Karoui et al. [EKLM+91]
and [EKL92] is a reference for managing IR derivatives. The model is appreciated for its
simplicity, and generates an intuitive yield curve dynamics. Without loss of generality we
give the following definition of the model. The underlying state variables Y are assumed to
be an vectorial Ornstein-Uhlenbeck process under the risk-neutral measure

dY = K(θ − Y )dt+ σdZ (2.15)

where Z is a d-dimensional Brownian motion, K ∈ Mp(R), θ ∈ Rp and σ ∈ Mp,d(R). We
assume that the spot rate is given by

rt = δ +

p∑
i=1

Y i
t . (2.16)

The model is a natural generalization of the Vasicek model. It also has similar properties,
first the model generates negative interest rates. While this is regarded as a limitation of
the model, it does not prevents practitioners from using the model. In particular, in a low
interest rates environment, the Gaussian model allows to keep a ”high” variance, while in
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alternative standard models such as the log-normal model or the CIR model the variance
of rates depends on their level. Another property is the ergodicity property of rates. If
the matrix K is similar to a positive matrix, then the model is ergodic, in the sense that
the OU process Y converges to its stationary distribution,and similarly the yield curve also
converges to a limit distribution. It is generally assumed distinct speed of mean-reversion
for each factors. This leads to assume that

K = diag(k1, . . . , kp) with 0 < k1 < · · · < kp,

and we work under this assumption in the sequel.

Yield curve dynamics

The yield curve admits an explicit expression

Pt,t+τ = exp
(
A(τ) +B(τ)TYt

)
, (2.17)

where

B(τ) = −(KT )−1
(
Ip − e−K

T τ
)
1Rp

A(τ) = −δτ +
∫ τ

0

dsB(s)TKθ +
B(s)TσσTB(s)

2
.

In the homogeneous version of the model the yield curve movements are entirely generated
by the movements of the underlying state variables Y , in particular between two dates t and
t+∆t, the yield curve variations are given by the support functions 1−e−kτ

kτ
and the variations

of the underlying state variables ∆Y = Yt+∆t − Yt. As illustrated by Figure 2.1 the mean
reversion parameters K play the role of scale factors for the yield curve movements through
the support functions. The factors Y i associated with the larger parameters ki impact the
whole yield curve term structure and play the role of a homothety of the curve. The factors
Y i associated with the smaller parameters ki will drive more the long term curve than the
short term curve. As illustrate by Figure 2.2, setting different scales for the parameters K it
is possible to identify the factors to different movements of the yield curve such as the level
and the slope. The methodology used to extract the factors will be detailed in section 5.3.

Implied volatility

Since ZC bonds are exponential affine functions of the underlying state variables (2.17)

and the volatility of the state variables is constant, the forward ZC bond
Pt,T

Pt,U
is log-normal

under the U -forward measure. Also, as a consequence of the change of measure (2.7) the
state variables are Gaussian under any U -forward measure. Forward IBOR and swap rates
are not exactly Gaussian under the corresponding pricing measure, however they happen to
be ”quasi” Gaussian, implying that the model does not exhibits a pronounced smile. Let us
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Figure 2.1: Plot of the support function 1−e−kτ
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Figure 2.2: Plot of the factors extracted from the weekly variations of the euro yield curve
extracted from swaps between 2002 and 2011 against the movements of the curve. The
extraction procedure will be detailed in a dedicated chapter.

denote by Σ(τ, δ) the implied volatility of an option on the forward zero-coupon bond
Pt,T

Pt,T+δ

with expiry τ . We observe that this volatility is close to the volatility of a caplet of expiry
τ and maturity δ, and it admits an explicit expression
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Σ(τ, δ)2τ =

∫ τ

0

ds∆B(s, δ)TV∆B(s, δ), (2.18)

where ∆B(s, δ) = B(s+ δ)−B(s) and V = σσT .

As illustrated by Figure 2.3 the parameters ki also play the role of time scales for the
maturity and expiry term structure of volatility. For a diagonal volatility matrix σ the be-
havior is similar to the one we have described for the yield curve and entirely determined by
the support functions (1−e

−kiδ

ki
)2 1−e

−2kiτ

2kiτ
. The effect of off-diagonal elements of the variance-

covariance matrix σσT are determined by the support functions 1−e−kiδ

ki

1−e−kjδ

kj

1−e−(ki+kj)τ

(ki+kj)τ
.

Let us note that for a positive defined matrix K the implied volatility decreases exponen-
tially with expiry. This is not consistent with what we observe in the market, where the
implied volatility expiry term structure has a humped shape for maturities up to 2 years.

Like forward libor rates, forward swap rates are not linear functions of the underlying state
variables Y . We have described the drift feezing procedure in paragraph 1.3.2. Since for-
ward libor rates are ”quasi-linear” functions of the factors Y , the forward swap rate is also
a ”quasi-linear” function of the factors Y , and thus ”quasi-normally” distributed. In prac-
tice we observe that the model does not exhibits a swaption volatility smile. A reasonable
approximation of the implied normal volatility of swaptions can be obtained combining the
drift freezing technique approximation on one hand and approaching the swap by an affine
function of the underlying state variables Y .

The classic approximation (see [PA10], [BM06]) consists in freezing the weights ωkt to their
value at 0, this leads to an approximated SDE of the forward swap rate under the annuity
measure, the solution of which is a Gaussian process. The forward swap rate is a martingale
under the annuity measure QA, therefore we must have

dSt((Ti)
m
i=0) =

(
ω0
tB(T − t)− ωmt B(Tm − t)− St((Ti)

m
i=0)δ

m∑
k=1

ωktB(Tk − t)

)T √
V dBA.

(2.19)

We freeze the weights ωkt and the value of the swap rate St((Ti)
m
i=0) in the diffusion to their

value at the pricing date. After this approximation, the swap rate is Gaussian under the
annuity measure with a time-dependent normal volatility σS(u) given by

σS(u) =
√
BS(u)TV BS(u),

where we have defined

BS(u) = ω0
tB(T − u)− ωmt B(Tm − u)− St((Ti)

m
i=0)δ

m∑
k=1

ωktB(Tk − u).
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Figure 2.3: Support functions for the volatility term structure. K = diag(0.01, 1). Maturity
3m up, expiry 2y down.

Let ΣS
t ((Ti)

m
i=0), K) denote the time t implied normal volatility of a swaption with payment

dates (Ti)
m
i=0) and strike K, we have the following approximation in the LGM model

ΣS((Ti)
m
i=0), K)2(T0 − t) = Tr

(
MS

t ((Ti)
m
i=0)V

)
, (2.20)

where we have defined

MS
t ((Ti)

m
i=0) =

∫ T0

t

duBS(u)TV BS(u).

Let us stress one major difference between the expression of the implied volatilities (2.18)
and (2.20). The first is completely time-homogeneous, when the time-to-expiry is constant
the volatility of caplets will not change. As opposed to this, the swaption implied volatility
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(or more precisely its approximation) is not time-homogeneous, since the coefficients of the
matrix MS will depend on the actual values of the weights and forward swap rate on the
pricing date. The important fact here is that while the model is time-homogeneous (as it
appears clearly from the yield curve dynamics (2.17)), the swaption volatility cube generated
by the model is not.

2.4.2 The quadratic Gaussian model

The Quadratic Gaussian Model (QGM hereafter) has been defined by El Karoui et al. in
[EKD98]. Piterbarg [Pit09] specified the model as a perturbation of the multi-dimensional
linear Gaussian model. While keeping tractability, the model overcomes some of the limits
of the LGM generating a smile.

Again we assume that the state variables follow an OU process defined by the SDE (2.15)
under the risk neutral measure. The spot rate is given by

rt = δ +
n∑
i=1

Y i
t + Y T

t γYt, (2.21)

where n ≤ p. This class of models belongs to the general class of ATSM, to see this it is
sufficient to define a vector of state variables of dimension p+ p(p+ 1)/2 by

F = (Y 1, ..., Y p, (Y 1)2, Y 1Y 2, ..., Y 1Y p, ...., (Y p)2),

and observe that F is an affine diffusion and the spot rate is an affine function of F .

Yield curve dynamics

The yield curve curve admits a semi analytical expression

Pt,t+τ = exp
(
A(τ) +B(τ)TYt + Y T

t G(τ)Yt
)
, (2.22)

where G,B and A solves the following system of o.d.e.

∂τG(τ) = 2GσσTG−GK −KTG− γ, G(0) = 0

∂τB(τ) =
(
−KT + 2GσσT

)
B + 2GKθ −

(
1Rn

0

)
, B(0) = 0

∂τA(τ) = BTKθ +
1

2
BσσT − δ, A(0) = 0.

It is possible to impose constraints on the model parameters to prevent the model to gener-
ate negative interest rates (see [EKD98]). Similarly we can impose constraints on the model
parameters so that the model is ergodic.
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The support function G admits a semi-analytical expression by solving a matrix Riccati
differential equation (MRDE) (we will discuss the resolution of MRDE in details in 3.1.2).
Let us mention that the solution of a Riccati o.d.e. may explode in finite time. We refer to
[Sha86] for a detailed analysis of the explosion of Riccati o.d.e.. A sufficient condition for
non explosion of G is that γ is positive semidefinite, in which case the matrix function G is
negative defined and converges. The support function B admits an explicit expression

B(τ) =

∫ τ

0

du exp

(
−K(τ − u) + 2

∫ τ

u

dsG(s)σσT
)
(2G(u)Kθ − 1Rp) .

When G(τ)σσT and G(τ)Kθ are small the support function B is a perturbation of the
support function of the LGM model. This is the case in the specification of the QGM of
Piterbarg [Pit09]. This is illustrated by Figure 2.5 which represents the coefficients of the
vector function B obtained in a 4 factors QGM assuming that K = diag(0.01, 0.1, 0.2, 1),
σ = 0.01Id, θ = 0, n = p and γ = 5Id. The higher the mean-reversion, the lower the impact
of the quadratic perturbation on the support function. The behavior of the support function
G is illustrated by Figure 2.4. The graphics are obtained with the specification of the model
of [Pit09], we have considered the toy 2-factors model defined by K = diag(0.1, 0), θ = 0,

σ = diag(0.01, 0.005), n = 1 and γ = ϵ

(
ρ ρ̄/2
ρ̄/2 0

)
.
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Figure 2.4: QGM: plot of the coefficients of the matrix G for different values of the parameter
ρ in a 2-dimensional QGM. The blue, green and red curve are respectively the coefficients
G11, G12 and G22.
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Figure 2.5: QGM: plot of the coefficients of the support function −B against the support
functions of the LGM model 1−e−kτ

kτ
for different values of k.

This specification is specially designed to limit the dependence of the spot rate in the second
factor of the model, which plays the role of a pseudo stochastic volatility. One can get an
intuition of this by analyzing the expression of the spot rate

rt = δ + Y 1
t + ϵ(ρ(Y 1

t )
2 + ρ̄Y 1

t Y
2
t ). (2.23)

As illustrated by Figure 2.4, the coefficient G22(τ) is negligible compared to the other coeffi-
cient of the matrix, as a consequence the second factor Y2 will only appear in the expression
of the zero-coupon bonds through the term G12(τ)Y

1Y 2.

Implied volatility

The distribution of the yield curve is defined by a Gaussian variable (the linear term)
plus a ”chi-square” like variable (the quadratic term). Let us note that the volatility of ZCBs
is stochastic,

dPt,T = Pt,T
(
rtdt+ (B(T − t) + 2G(T − t)Yt)

TσdW
)
,

it is a linear function of the factors Y , and thus the prices of swaptions and caplets generated
by the QGM exhibit a volatility smile. We will discuss the characteristics of the volatility
generated by Markovian models later in the section, for now let us just stress that both the
volatility and the yield curve are linear functions of the factors Y . The model parameters,
and in particular ϵ and ρ determine the shape of the smile. The parameter ϵ determines
the level of the coefficients of the matrix G and thus the magnitude of the quadratic term
Y TG(τ)Y which determines the departure from normality of the rates. It thus determines
the convexity of the volatility smile. The parameter ρ determines the sign of the coefficient
G11. As mentioned before the coefficient G22 is small w.r.t. to the coefficients G11 and G12,
so that the zero-coupon bond is approximatively
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logPt,T = A(T − t) +B1(T − t)Y 1
t +G11(T − t)(Y 1

t )
2 + 2G12Y

1
t Y

2
t .

We can separate the above expression into a linear term B1(T − t)Y 1
t which is the main

driver of the yield curve and a quadratic term G11(T − t)(Y 1
t )

2 + 2G12(T − t)Y 1
t Y

2
t which

drives the stochastic volatility. As illustrated by Figure 2.4, the parameter ρ determines the
magnitude and sign of G11, the higher the absolute value of the parameter ρ, the more the
factor Y 1 will drive the quadratic term in (2.22), the more the model will be a local volatility
model. For ease of notations we will drop the time dependence and note B1, G11 and G12.
The correlation between these two terms gives an indication on the skew generated by the
model, we have

cov(G11(Y
1
t )

2 + 2G12Y
1
t Y

2
t , B1Y

1
t ) = B1G11cov(Y

1
t , (Y

1
t )

2) + 2G12B1cov(Y
1
t Y

2
t , Y

1
t ). (2.24)
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Figure 2.6: QGM: Plot of the implied volatility smile of the 2Y expiry 1Y maturity caplet.
The price is obtained by Monte Carlo simulation with 107 samples. The ATM rate is around
3.7%. The graphics are obtained with ϵ = 1.

Let us now analyze the expression (2.24). Assuming that the parameter K are set following
the reasoning we have presented for the LGM, the drivers of the value (and in particular of
the sign) of the correlation are B1G11, G12 and cov(Y 1Y 2, Y 1). From Figure 2.4 we know
that the sign of G12 doesn’t changes with ρ, so that sign of the second term of the right hand
side of (2.24) only depends on the correlation between Y 1 and Y 2. The sign of G11 depends
on the sign of ρ. The parameters ρ and cov(Y 1, Y 2) are thus the determinants of both the
magnitude and the sign of the covariance (2.24). Figures 2.6 shows how these parameters
can be used to generate different shapes of the smile. In this particular example positive
values of the parameter ρ tend to generate a flat smile.
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Let us now discuss the volatility smile dynamics. In the homogeneous version of the model
the parameters are assumed to be constant over time. The dynamics of the yield curve and
of the volatility smile is assumed to be entirely captured by the underlying state variables
Y . In the previous paragraph we have illustrated how in the LGM the underlying state
variables capture the main movements of the yield curve. The specification of the QGM
analyzed here is designed to keep a LGM-like dynamics of the yield curve and add a factor
for the volatility dynamics. In the two factors model we expect the first factor to drive the
yield curve and the second factor to drive the smile. Figure 2.7 shows that the movements
of the factor Y 2 imply a change in the convexity of the smile (the higher the value of Y 2, the
higher the convexity of the smile). The ATM smile is fairly unsensitive to the changes of this
factor. The movements of the smile generated by the movements of the factor Y 1 depend
on the choice of the parameter ρ. As mentioned before, the parameter ρ is a slider which
determines the characteristic of the volatility of the model, ρ = 0 corresponds to a ”stochas-
tic volatility” version of the model and ρ = 1 corresponds to ”local volatility” version of the
model. By construction the movements of Y 1 are assimilated to the movements of the yield
curve, and in particular of the ATM forward rate. The movements of the smile generated
by a movement of Y depend upon the value of the parameter ρ. For ρ = −0.6 (Figure 2.8)
we observe the well known undesirable behavior of local volatility models, the smile moves
in the same direction of the ATM forward rate (meaning it moves in the opposite direction
of the forward ZCB, which is the underlying asset) and that the ATM value of volatility
is sensitive to the movements of the underlying forward rate. For ρ = 0 we observe that a
similar behavior of the smile but the ATM volatility value is less sensitive to the movements
of the ATM forward rate, the smile slides as the ATM forward rate slides, which is close to
be the behavior of stochastic volatility models.
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Figure 2.7: QGM: Plot of the implied volatility smile of the 2Y expiry 1Y maturity caplet
for different initial value v of the factor Y 2. The price is obtained by Monte Carlo simulation
with 107 samples. The graphics are obtained with ϵ = 1.
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Figure 2.8: QGM: Plot of the implied volatility smile of the 2Y expiry 1Y maturity caplet for
different initial value y of the factor of Y 1. The price is obtained by Monte Carlo simulation
with 107 samples. The graphics are obtained with ϵ = 1., ρ = 0.6 and v = 0.005.
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Figure 2.9: QGM: Plot of the implied volatility smile of the 2Y expiry 1Y maturity caplet for
different initial value y of the factor of Y 1. The price is obtained by Monte Carlo simulation
with 107 samples. The graphics are obtained with ϵ = 0.5, ρ = −0.6 and v = 0.05.

2.5 Markov functional models

Ahead of the class of ATSM is the MF model defined in [HKP00]. Up to now we have
not tackled the calibration problem. The Markov functional models of HK are particularly
interesting for their calibration procedure. In this section we briefly describe the main charac-
teristics of the model, and formalize the calibration procedure. Let us note that the practical
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implementation of the calibration procedure poses some serious technical challenges1, those
aspects are not treated here since it is not the purpose of our work. Instead we take a formal
approach to the model and presents some crucial theoretical facts on it. At an abstract level
the class of MF models as defined by definition 5 includes a very broad range of models. The
main contribution of HK lies in their innovative calibration procedure. When we refer to MF
models, we will refer to the models calibrated following the HK algorithm. MF models can
be viewed as the analogue of Dupire’s implied diffusion for interest rates. In order to handle
the supplementary dimension of the fixed income market (i.e. the tenor of the underlying)
HK have designed a calibration procedure which is backward and discrete as opposed to
Dupire’s calibration which is global and continuous.

2.5.1 Calibration procedure

In this paragraph we give a qualitative description of the calibration procedure, a detailed
description is given in appendix A. Market quotes of vanilla products (caplets, digital caplets
and swaptions) give the knowledge of the implied distributions of swap and IBOR rates under
the pricing probability. The calibration can be seen as the choice of the model parameters so
that the distributions (of swap and IBOR rates) generated by the model matches the implied
distributions. In MF models the distributions of the rates generated by the model depend
on the distribution of the underlying markov process F and on the functional. The model
philosophy is to (arbitrarily) choose the distribution of F , and to adjust the functional2.

In the IR world the pricing is made under the forward-neutral probabilities, therefore the
market quotes give an information on the implied distribution of swap and IBOR rates under
the forward-neutral probabilities. The power of HK’s calibration is that it allows a stepwise
reconstruction of the distributions of zero-coupon bonds or equivalently of instantaneous
forward rates under the corresponding forward-neutral probabilities. This is done through
a discrete backward algorithm: we first extrapolate the market information given by quotes
with long maturities and then proceed backward using the arbitrage-free martingale prop-
erty. Suppose we want to price an exotic product which depends on the value of a generic
underlying S (we think to S as a swap rate or a CMS rate) at dates T1, ..., Tn. In a MF
model the process S is a function of the underlying Markov process F , precisely there exist
a function S(t, f) such that

St = S(t, Ft), ∀t.

In order to price such a product we need to determine the functions S(Ti, ·) and N(Ti, ·) for
i = 1, ..., n. We assume we know the functional N(Tn, ·) (in practice this is usually done
by taking the terminal zero-coupon bond Pt,Tn as numeraire). Given the knowledge of a

1those familiar with the implementation of Dupire’s local volatility model know how hard it is to go from
theory to practice

2This has the obvious virtu that the resulting model is extremely efficient in terms of implementation. In
particular the model is easy to simulate.
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continuum of market prices (C(Ti, K))K of vanillas (we usually take digital caplets) with
maturity T1, ...., Tn on the underlying S, we first use the prices (C(Tn, K)) to extrapolate
the functional S(Tn, ·). We then proceed by induction using the relationships

P (Ti, Ti+1, f)

N(Ti, f)
= EQ

[
1

N(Ti+1, FTi+1
)
|FTi = f

]
, i = 1, ..., n− 1

which are a direct consequence of the martingale property.

Let us insist on the characteristics of this calibration procedure. For obvious reasons we
refer to it as a backward algorithm. On the other hand we can observe that we only use the
martingale property between the dates Ti+1 and Ti. This explains why we refer to it as a
discrete algorithm. Finally we emphasize that the algorithm strongly relies on the following
assumptions.

Hypothesis 1 — We assume that the forward IBOR and swap rates are increasing mono-
tonic function of the markov process X.

Hypothesis 2 — We assume we know the distribution of the Markov process F under the
martingale measure Q.

2.5.2 Yield curve dynamics and implied volatility

By construction the model fits the initial yield curve and the whole implied volatility
smile of a column or a co-terminal ant-diagonal of the swaption volatility cube. The func-
tional mapping between the underlying state variables and the yield curve is defined for a
finite set of tenors and for a finite set of dates only. In fact, the model fails to produce a
continuous dynamics for the yield curve. Similarly there is no notion of the volatility outside
the set of dates that have been used to calibrate the model. The model gives a static repre-
sentation of the market and the dynamical features of the model are entirely determined by
the distributional assumptions made on the underlying driving process (which is completely
arbitrary). In the next section we provide some evidence of the limits of MF models.

2.6 Volatility and hedging in factorial models

In the preceding we have given some examples of the factorial models, some of which
exhibit a volatility smile. In this section we discuss the nature of the volatility in these
models. A clear distinction has to be made between local volatility models and stochastic
volatility models. Strictly speaking in both cases the volatility of the underlying asset is a
stochastic process, however in local volatility models the instantaneous volatility process is
a function of the underlying asset. The nature of the volatility has some strong implications
on the dynamics of the volatility smile generated by the model. Through a detailed pricing
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example using MF model we show the consequence in terms of hedging forward volatility
products.

2.6.1 The nature of volatility

This subsection presents some views on the nature of volatility in factorial models and
tries to introduce the notion of model risk. The results presented here are the synthesis of
a more general work on the consequences of calibration of interest rates models which was
jointly conducted with Nourreddine El Hadj Braiek and has benefited of the supervision of
Nicole El Karoui.

A Markovian model cannot be considered as a ”pure” stochastic volatility model. The
yields are functions of the underlying state variables F . Given a set of rates R1

t , ..., R
p
t

(the rates Ri can be viewed either as yields, IBOR rates or swap rates), the vector RT =
(R1, ..., Rp) is a function of the underlying state variables, R = ψ(F ). If the functional
relationship is invertible then we can write the diffusion process of R

dR = (· · ·)dt+ σ(t, R)dZ,

for some function σ(t, r). Strictly speaking, the model is thus a local volatility model (as
any Markovian TS model) as long as functional relationship between R and F is invertible.
Sufficient conditions for a Markovian model to exhibit an unspanned volatility are discussed
in [CD02]. We have seen that the specification of the QGM given in [Pit09] is specifically
designed to limit the dependence of the yield curve on a chosen factor which is therefore
difficult to express in terms of the yield curve and acts as a ”pseudo” stochastic volatility.
We will follow this path in building a multi-dimensional stochastic variance-covariance LGM.

The nature of the volatility has major implications in terms of hedging. In the equity market
local volatility model assume that any option can be hedged by trading the underlying asset
only, whereas in stochastic volatility model even the simple call option cannot be perfectly
hedged/replicated by trading in the underlying asset only. Similarly in interest rates mar-
ket Markovian model will allow to hedge by trading in a finite (usually small depending on
the dimension of the underlying state variables) set of assets (such as IRS or FRAs). The
capability or not to hedge a derivative by trading in the underlying asset only is linked to
the notion on complete market which will be developed later.

2.6.2 The implications of local volatility: an introduction to hedg-
ing and model risk

It is well known that local volatility has some undesirable features in terms of dynamics
of the volatility smile, we refer to [HKLW02] and [Gat06] for a detailed discussion on the
subject. As mentioned before MF models are the archetype of local volatility model for
interest rates, the diffusion is directly inferred by market prices of vanilla options. While
the calibration procedure insures that the model fits a continuum of market prices for a
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chosen set of tenors and maturities, the model performs poorly for hedging forward volatil-
ity products. The MF model gives us the occasion to give an introductory example of the
consequences of the structure of the model and the calibration procedure in terms of hedging.

Let us analyze a ”pure” forward volatility product, and show that the forward volatility
vision in a MF model is not satisfactory. In particular the resulting hedging strategy con-
tradicts the natural hedging strategy obtained by static replication. Also the product we
analyze here is not actually traded in the market, there are very similar derivatives in the
interest rates exotic market such as vol bondlets, volatility swaps (see [PA10] p. 221 for the
payoff description), and the analysis we conduce here extends to these products. The choice
has been made because the smoothness of the payoff allows to apply a static replication
formula suggesting a natural hedging strategy which is model independent.

Product description

The product we call a forward start variance swap (FSV hereafter) pays at every instant
T2, T2 + δ, ..., T2 + nδ the fixed amount

δ (ST2 (T2, n, τ)− ST1 (T2, n, τ))
2 .

Then the payoff is given by

AT2 (T2, n, δ) (ST2 (T2, n, τ)− ST1 (T2, n, τ))
2 .

Which allows us to compute the price as follows

FSV (0) = A (0, T2, n, τ)EA(T2,n,τ)
[
(ST2 (T2, n, τ)− ST1 (T2, n, τ))

2]
An easy computation leads to

FSV (0) = A (0, T2, n, δ)EA(T2,n,τ)
[
ST2 (T2, n, τ)

2]− A (0, T2, n, τ)EA(T2,n,τ)
[
ST1 (T2, n, τ)

2] .
Static replication strategy

It comes directly from the static replication formula [CW02] that

FSV (0) = 2

(∫ S(0,T2,n,τ)

0

SP (0, T2, n, τ,K) dK +

∫ +∞

S(0,T2,n,τ)

SR (0, T2, n, τ,K) dK

)

−2A (0, T2, n, τ)

(∫ S(0,T2,n,τ)

0

EA
[
(K − ST1 (T2, n, τ))

+] dK +

∫ +∞

S(0,T2,n,τ)

EA
[
(ST1 (T2, n, τ)−K)+

]
dK

)
.

(2.25)
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The above formula suggests a natural hedging strategy for the FSV, which is made of a
long position in a portfolio of swaptions of maturity T2 and a short position in a portfolio of
forward start swaptions of maturity T1. Forward start swaptions, also called mid-curves are
exotic products actively traded in the market. We can write the forward swap rate as

ST1 (T2, n, τ) = w1
T1
ST1

(
T1,

[
T2 − T1

τ

]
+ n, τ

)
− w2

T1
ST1

(
T1,

[
T2 − T1

τ

]
, τ

)
,

where

w1
t =

∑[T2−T1
τ ]+n

k=1 Pt,T1+kτ∑n
k=1 Pt,T2+kτ

w2
t =

∑[T2−T1
τ ]

k=1 Pt,T1+kτ∑n
k=1 Pt,T2+kτ

.

It is common market practice to freeze the value of the weights w1 and w2 at zero and price the
forward start swaption as an options on the weighted spread w1 (0)ST1

(
T1,
[
T2−T1
τ

]
+ n, τ

)
−

w2 (0)ST1
(
T1,
[
T2−T1
τ

]
, τ
)
. The pricing is then performed by using a model which exploits

the distribution of ST1
(
T1,
[
T2−T1
τ

]
+ n, τ

)
embedded by the market prices of swaptions of

maturity T1 and tenor T2+nδ−T1, the distribution of ST1
(
T1,
[
T2−T1
τ

]
, τ
)
embedded by the

market prices of swaptions of maturity T1 and tenor T2−T1 and by adding some correlation
assumptions between these two swap rates3. The important fact here is that the price of
the forward starting swaption strongly depends on the market prices of vanilla swaptions of
maturity T1. Let us note that when the ratio T2−T1

nδ
is close to zero (meaning the tenor of

the IRS is much larger then the difference between the maturity and the fixing date), the
forward start swaptions prices are close to the corresponding swaptions prices of maturity T1,
and the short position can be approximated by a short position in a portfolio of swaptions
of maturity T1.

Model price

We can write

A (0, T2, n, τ)EA(T2,n,τ)[ST1 (T2, n, τ)
2] = EN[

1

NT1

AT1 (T2, n, τ)ST1 (T2, n, τ)
2]

= EN[
NT1

AT1 (T2, n, τ)

(
PT1,T2 − PT1,T2+nτ

NT1

)2

]

In a MF model At (T, n, τ), Nt and Pt,T are functions of the underlying Markov process F ,
respectively A (t, T, n, τ, Ft), N (t, Ft) and P (t, T, Ft), thus we have:

3One common technique consists in using a copula to model the joint distribution
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A (T1, T2, n, τ, FT1)

N (T1, FT1)
= EN

[
A (T2, T2, n, τ, FT2)

N (T2, FT2)
|FT1

]
= KT2,T1

A (T2, T2, n, τ, ·)
N (T2, ·)

(FT1)

P (T1, T2, FT1)

N (T1, FT1)
= EN

[
1

N (T2, XT2)
|FT1

]
= KT2,T1

1

N (T2, ·)
(FT1)

P (T1, T2 + nτ, FT1)

N (T1, FT1)
= EN

[
P (T2, T2 + nτ, FT2)

N (T2, FT2)
|FT1

]
= KT2,T1

P (T2, T2 + nτ, ·)
N (T2, ·)

(FT1) .

Using the above expressions we can give the model price of the preceding product

FSVmodel (0) = A (0, T2, D)EA(T2,D)
[
S (T2, T2, n, τ, FT2)

2]

−N (0, f0)EN

[
1

KT2,T1
A(T2,T2,n,τ,·)

N(T2,·) (FT1)

(
KT2,T1

1

N (T2, ·)
(FT1)−KT2,T1

P (T2, T2 + nτ, ·)
N (T2, ·)

(FT1)

)2
]
.

(2.26)
Now we can observe that the model price (2.26) only depends on the distribution of the
process F , and on the functionals of swap rates, zero coupon bonds and numraire at date T2.
It follows directly from the calibration procedure described in section A that the functionals
S(T2, T2, n, τ, ·), N(T2, ·), P (T2, T2 + nτ, ·) only depend upon the market prices of vanillas of
maturities larger then T2. Therefore if we build our hedging portfolio using a MF model (by
computing the sensitivities of the product price w.r.t. the calibration set for instance) we
will obtain an hedging portfolio which only contains vanilla products with maturities larger
then T2. Another way to say this is that if we compute the Vegas of the product with a MF
model, we will only have Vegas on the swaptions and/or digital caplets with maturities higher
then T2, whereas intuitively we should also have a Vegas sensitivity to the products with
maturity T1. We call this feature of MF models ”the forward variance paradox” because this
result clearly contradicts the natural hedging portfolio suggested by the static replication
given in the preceding paragraph. This feature shows how the distribution of the process
F plays an important role in terms of forward volatility risk vision and management. As
shown by (2.26), the only way for the model price of a FSV to depend on the market prices
of maturity T1 (and therefore to hope a certain consistency with (2.25)) is that the transition
kernel between T1 and T2 KT2,T1 depends on the market prices of maturity T1. This is not
possible in the traditional vision of the MF model, in which the distribution ofX is arbitrarily
chosen.

2.7 Hedging Interest rates derivatives: theory

The present section is devoted to the hedging of IR options. We define the notion of
completeness of the market and try to build natural hedging portfolios for hedging sim-
ple derivatives. We describe how the modeling assumptions -and in particular a factorial
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framework- impacts the hedging portfolios computation. While the market seems to be
naturally incomplete (when considering the bond prices curve as an infinite-dimensional
underlying), assuming that the dynamics is driven by a finite dimensional underlying driv-
ing process usually results in multiple ”equivalent” strategies for hedging. The choice of
the best hedging strategy then often results of practical considerations such as the cost of
implementation of a strategy.

2.7.1 Hedging in a general AOA framework

Let us consider a general arbitrage-free framework defined in the section 2.1. We assume
that in the economy p assets are traded continuously from time 0 until T ∗. Their prices are
modeled as semimartingale Si, i = 1...p. In this chapter we will assume that the the spot
rate cannot be negative i.e. rs ≥ 0, s ≥ 04. Let us denote by S0 the money market account
defined by

S0
t = e

∫ t
0 dsrs .

Definition 8 — A trading strategy is a p+ 1-dimensional predictable process

H = (H0
t , H

1
t , ..., H

p
t , t ≤ T ),

its value is given by

V (H)t = H0
t S

0
t +

p∑
i=1

H i
tS

i
t .

We say the portfolio is self-financed if

dV (H)t = H0
t dS

0
t +

p∑
i=1

H i
tdS

i
t .

The notion of complete market is relative to a set of chosen hedging instruments.

Definition 9 — A financial market is complete w.r.t. the securities S1, ..., Sp if any con-
tingent claim is attainable i.e. if for any FT -measurable random variable π there exists a
self-financing strategy H such that

V (H)T = π P − a.e.

A fundamental result of Harrison and Pliska states that if there exists an unique equivalent
martingale measure such that the discounted asset prices S̃i, i = 1...p are martingales, then
the market is complete w.r.t. S1, ..., Sp.

4Let us note that this assumption is not verified in most of the models we have presented in 2.4, nor in
the model we will define in 4. We make this assumption to avoid technical difficulties which can occur when
defining the prices as expectations of discounted payoffs.

77



2.7.2 Hedging in factorial models

In factorial models the market is driven by an underlying Markov process of finite dimen-
sion F . Let us assume that F follows an homogeneous diffusion process on (Ω,F , {Ft}t, P )

Ft = F0 +

∫ t

0

dsµ(s, Fs) +

∫ t

0

σ(s, Fs)dZs,

where σ : Rd → Md(R) is smooth and a.e. non singular5. In particular the market prices
are functions of this process. Let us denote by P (t, T, Ft) (resp. f(t, T, Ft)) the function
giving the price of ZCB Pt,T (resp. the value of the instantaneous forward rate ft,T ). Given
that σ is a.e. non singular, condition (2.3) translates into the following condition ∂fP (t, T1, f)

T

·
∂fP (t, Td, f)

T

 is nonsingular λd(df)× λ(dt)− a.e.. (2.27)

Continuous factorial models we have presented in sections 2.3 and 2.4 structurally verify
(2.2), and are therefore arbitrage-free and complete in the sense of proposition 1. The
uniqueness of the equivalent martingale measure implies that the market is complete. Thus
for any FT1-measurable random variable π there exists a self-financing strategy H of the
ZCBs Pt,T1 , ..., Pt,Td such that

H0
T1
S0
T1

+
d∑
i=1

H i
T1
PT1,Ti = π.

2.7.3 Hedging with market securities

In practice there exist no such security as a default free ZCB, the hedging of contingent
claims is thus made through market traded contracts such as Interest Rates Swaps (IRS),
Forward Rates Agreements (FRA), Swaptions, Caps and Floors. The existence of a self-
financing replicating portfolio made of ZCBs is not relevant for practical purposes. As
mentioned before the notion of complete market depends on the securities we use to hedge
contingent claims. In the following we investigate the theoretical results on hedging with
securities different from ZCBs.

General HJM framework

Consider now an European option with payoff given by an Ft-measurable variable h such
that E [|h|2] <∞ and denote by V its price at time t. The price is given by

Vt = EQ
[
e−

∫ T
t dsrsh|Ft

]
,

5Note that this is the minimal assumption to incorporate the models of practical interest. In particular
we want this assumption to be verified for the CIR model, in which the volatility is given by

√
F .
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The discounted price Ṽt = Vt/S
0
t is a martingale under Q, by the martingale representation

theorem there exists an adapted vector process K such that

Ṽt = V0 +

∫ t

0

KT
s dZs.

Given a set of hedging securities S1, ..., Sp, the martingale representation theorem also implies
that

S̃it = Si0 +

∫ t

0

(Ki
s)
TdZs. (2.28)

An hedging portfolio ϕt = (H0, H1, ..., Hp), where H0 denotes the cash and H i denotes the
quantity of asset Si in the portfolio. Then any self-financing portfolio solving the linear
equation

p∑
i=1

H i
tK

i
t = Kt (2.29)

is a replicating portfolio for the derivative V . Suppose H1, ..., Hp solves the above equation
then defining

H0
t = Ṽt −

p∑
i=1

H i
t S̃

i
t ,

the portfolio H replicates the option V and it is easy to prove that it is self-financed. There
is no existence result for such a portfolio in the general setting, meaning that the model is
not complete in general.

Hedging in factorial models

The market asset prices are functionals of the state variables X, we have

Vt = V (t, Ft)

Sit = Si(t, Ft)

The martingale representation (2.28) of the prices are explicitly given by these functionals:

Kt = e−
∫ t
0 dsrsσ(t, Ft)

T∂XV (t, Ft)

Ki
t = e−

∫ t
0 dsrsσ(t, Ft)

T∂XS
i(t, Ft).

We can rewrite the hedging equation (2.29)
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σ(t, Ft)
T

p∑
i=1

∂XS
i(t, Ft)K

i
t = σ(t, Ft)

T∂XV (t, Ft) (2.30)

Since σ(t, f) is assumed to be non singular for any t ≥ 0, f ∈ Rd, the self-financing hedging
portfolio is entirely defined by the vector H1:p ∈ Rp solution of the following linear equation

J(t, F )H1:p = ∂XV. (2.31)

where

J(X) =
(
∂XS

1 · · · ∂XS
p
)

If a solution of the above linear equation exists the Hedging portfolio defined by

ϕt = (Ṽt −H1:p · S̃it , H1:p)

is self financed and replicates V . Let us denote by r the rank of the matrix J(t, F ) and rv
the rank of (J(t, F )∂XV ). One of the following assertions holds:

• if rv = r < p the set of solutions of the linear system is an infinite set and has the
form {u0, u1, ..., up−r : ki ∈ R, 1 ≤ i ≤ p − r}, where u0, u1, ..., un−r are vectors of Rp

satisfying J(t, F )u0 = ∂XV , J(t, F )ui = 0 for 1 ≤ i ≤ p− r.

• if rv = r = p, the solution is unique

• if r < rv the system has no solutions

2.7.4 Being consistent with market practice

In the preceding, we have build hedging portfolio assuming the set of hedging instruments
is fixed during the life of the product. Market constraints such as liquidity imply that
common market practice differs from the theory. IR derivatives books are hedged globally.
A set of hedging instruments is chosen daily in order to optimize the execution cost. The
assets S in the hedging portfolio are thus changing daily, and the assets in the portfolio are
not necessarily liquidated. In particular, for liquidity reasons we always trade at par IRS.
The fixed leg rate of standard IRS is settled every day by the market. In this section we
build theory of hedging which takes into account these practical considerations.

Changing the hedging instruments

We start by analyzing the problem in the one-dimensional factorial IR setup. Let us con-
sider a derivative contract maturing at T . Assume that we change the hedging instruments
at dates 0 = t1 < · · · < tn = T , meaning that in the interval [ti, ti+1) we can only trade the
asset S(i).
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One asset portfolio Let us initially assume that in the interval [ti, ti+1) the hedging
portfolio is made of a quantity H of asset Si and H0 of cash. Meaning that the other assets
are liquidated prior to date ti. In the interval [t1, t2), we build our portfolio as follows

Ht =
∂XV (t,Xt)

∂XS(1)(t,Xt)

H0
t = Ṽt −HtS̃

(1)
t ,

this portfolio is self-financed and replicates the price of the option in the interval [t1, t2). At
t−2 we sell the portfolio which by continuity of the price process is worth Vt2 and we build
the portfolio for the next interval [t2, t3)

Ht =
∂XV (t,Xt)

∂XS(2)(t,Xt)

H0
t = Ṽt −HtS̃

(2)
t .

We follow this procedure up to the maturity of the contract. The hedging portfolio is then
written as follows

Ht =
n−1∑
i=1

1[ti,ti+1)
∂XV (t,Xt)

∂XS(i)(t,Xt)
(2.32)

H0
t = Ṽt −

n−1∑
i=1

1[ti,ti+1)HtS̃
(i)
t . (2.33)

This strategy is naturally self financed and replicates the option. The weights of the portfolio
are discontinuous, with discontinuity at the times at which the hedging instruments change
t1, ..., tn−1.

Multiple assets portfolio We assume that in the interval [ti, ti+1) we add a quantity H
of asset Si to the hedging portfolio and H0 of cash. We assume that the other assets are
liquidated prior to date ti. In the interval [t1, t2), we build our portfolio as follows

Ht =
∂XV (t,Xt)

∂XS(1)(t,Xt)

H0
t = Ṽt −HtS̃

(1)
t ,

this portfolio is self-financed and replicates the price of the option in the interval [t1, t2). At
t−2 by continuity of the price process the portfolio is worth Vt2 and we build the portfolio for
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the next interval [t2, t3), as mentioned before we cannot sell the hedging portfolio, we thus

want to hedge the net position in the portfolio which is given by Vt2 −
∂XV (t2,Xt2)

∂XS(1)(t2,Xt2 )
S
(1)
t2

Ht =
∂XV (t,Xt)−Ht−2

∂XS
(1)(t,Xt)

∂XS(2)(t,Xt)

H0
t = Ṽt −Ht−2

S̃
(1)
t −HtS̃

(2)
t .

We follow this procedure up to the maturity of the contract. The hedging portfolio is then
written as follows

Ht =
∂XV (t,Xt)−

∑γ(t)
i=2 Ht−i

∂XS
(i−1)(t,Xt)

∂XS(i−1)((t,Xt)

H0
t = Ṽt −

γ(t)∑
i=2

Ht−i
S̃
(i−1)
t −HtS̃

(γ(t))
t

where γ(t) = max{i : ti ≤ t}. This strategy is naturally self financed and replicates the
option.

2.7.5 Continuous framework

Rebalancing of the hedging portfolios occurs regularly in practice, and the hedging instru-
ments are changed with the same frequency. It is thus relevant to write a theory of hedging
in continuous time, assuming that the hedging instrument changes continuously (the at par
swap contract). Miming the discrete framework we have described above, we will analyze
two different situations. First we assume that we instantaneously resell the hedging portfo-
lio, so that the portfolio at instant t is only made of the asset S(t). Secondly we assume that
the portfolio is build by successively adding a quantity of the asset S(t) with no liquidation
of the asset part of the portfolio.

To find the continuous analogue of the discrete strategies presented above, we follow the
general framework of [PT11]. Since we will continuously change the hedging instrument, we
need to consider a continuum of hedging instruments. At date t, we consider a continuum
of asset prices (S

(y)
t )k (typically the set of IRS with fixed leg of rate y).

General framework Let
(
S
(·)
t

)
t
be a continuous adapted price process taking values in

the space of real valued functions from R to R (this allows to have negative rates). For any

y ∈ R,
(
S̃
(y)
t

)
t
is the discounted price of an asset parameterized by y. It is a martingale

under the risk-neutral measure Q and:

dS̃
(y)
t = K

(y)
t dZt,
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which in the factorial framework gives

dS̃
(y)
t = ∂XS

(y)(t,Xt)b(Xt)dZt.

Definition 10 — A self-financing portfolio is defined by a finite random adapted measure
on R ϕ, and an adapted process η such that the dynamics of the value of the portfolio V (ϕt) =∫
R ϕt(dy)S

(y)
t + ηtS

0
t is given by

dV (ϕt) =

∫
R
ϕt(dy)dS

(y)
t + ηtdS

0
t . (2.34)

Reselling the portfolio If we assume that the portfolio is continuously liquidated, and
that at date t the portfolio is only made of one asset. Then it is immediate to build a
self-financing replicating portfolio by taking

ϕt(dy) =
Kt

K
(Yt)
t

δYt(dy),

where δu(dy) denotes the Dirac mass at the point u ∈ R and Yt is an adapted process. The
cash holding process is given by

ηt = Ṽt −
Kt

K
(Yt)
t

S̃
(Yt)
t .

In the factorial framework we would have

ϕt(dy) =
∂XV (t,Xt)

∂XS(Yt)(t,Xt)
δYt(dy).

Let us illustrate through an example, consider we want to hedge a derivative with maturity
T . Take S

(y)
t to be the time t value of the forward interest rate swap starting at T and of

tenor D (the tenor will most likely be chosen w.r.t. the tenor of the swap rate involved in
the payoff) with fixed rate y. Then a natural choice for the process (Yt)t is the forward swap
rate of maturity T and tenor D, St(T,D). In this case we will have

ϕt(dy) =
Kt

K(St(T,D))
δSt(T,D)(dy)

ηt = Ṽt.

Note that the above strategy corresponds to the limit when the time discretization step
goes to zero of the discrete strategy defined by (2.32). Let us note that as in [PT11] the
hedging portfolios provided above are given by discrete finite measures on R. Following this
procedure the set of hedging instruments in a Book of derivatives will also be finite and
discrete.
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Adding to the portfolio We assume now that we are not able to liquidate the hedging
portfolio, and that we instantaneously add a new asset S(yt) to the portfolio, without liq-
uidating the assets already in the portfolio. In this case we cannot find a discrete measure
as the solution of the hedging problem anymore. The hedging measure ϕt(dy) is necessarily
continuous. A self-financing hedging portfolio must satisfy the following equations

dV (ϕt) =

∫
R
ϕt(dy)dS

(y)
t + ηtS

0
t

Vt =

∫
R
ϕt(dy)S

(y)
t + ηtS

0
t .

We thus must have

Ṽt =

∫
R
ϕt(dy)S̃

(y)
t + ηt

Kt =

∫
R
ϕt(dy)K

(y)
t .

First let us note that we can transcript the strategy (2.34) in the continuous asset space
framework. The discrete hedging portfolio for t ∈ [tn, tn+1] is defined by

ϕt(dy) = δYtn

Ktn −Ktn−1

K
(Ytn−1 )

tn

K
(Ytn−1 )

tn−1

− · · · −Kt0

K
(Yt0 )
t1

K
(Yt0 )
t0

× · · · ×
K

(Ytn−1 )

tn

K
(Ytn−1 )

tn−1

 /K
(Ytn )
tn +···+δYt0Kt0/K

(Yt0 )
t0

84



Part II

An affine stochastic
variance-covariance model
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Chapter 3

Modeling dependence through affine
process: theory and Monte Carlo
framework

This chapter is devoted to the definition of the theoretical and numerical framework
for the underlying state variables dynamics. Our state variables dynamics is a stochastic
variance-covariance version of the state variables dynamics (2.15). We give a clear interpre-
tation of the underlying state variables of the model, separating them in yield curve factors
and volatility factors. The yield curve factors are assumed to follow a multi-dimensional
Ornstein-Uhlenbeck (OU) dynamics with stochastic variance-covariance matrix. To keep the
model tractable we chose an affine (Wishart-like) process in the space of positive semidefinite
variance-covariance. Affine processes in the space of positive semidefinite matrixes have been
studied in details by a number of papers ([Bru91], [CFMT11], [AA13]). These processes have
naturally been coupled with a vectorial process to model different markets such as the equity
market [DFGT08a] and the interest rate market ([Ben10], [GS07]). Our own contribution
to the study of the coupled process is that we are able to develop an efficient Monte Carlo
simulation framework for the coupled dynamics even in presence of a correlation structure
between the process driving the variance-covariance and the process driving the vector. Re-
lying on the extensive work of [AA13] on the simulation of Wishart processes and their affine
extension we are able to provide similar discretization schemes for Monte Carlo simulation.

We present some important properties concerning the Laplace transform of the factors and
the ergodicity of the state variable process. We are able to fully characterize the distribu-
tion of the process using the infinitesimal generator and the Laplace/Fourier transform of
the marginal laws. The affine structure of the process (X,Y ) allows us to give formulas
for the Laplace transform of the marginal laws by the mean of a Matrix Riccati Differential
Equations (MRDE). By studying such equations we are able to provide analytical conditions
on the model parameters under which the Laplace transform is well defined and the state
variable process verifies ergodicity property.
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The chapter is organized as follows, section 3.1 defines the underlying state variables dy-
namics and provides some theoretical results that characterize its distribution, section 3.2
describes the construction of efficient discretization schemes for Monte Carlo simulation.

3.1 A stochastic variance-covariance Ornstein-Uhlenbeck

process

This section is devoted to the definition of a general affine SDE that will be used to model
the underlying state variables dynamics. We chose to model a stochastic covariation depen-
dence between state variables through an affine diffusion on the space of positive semidefinite
symmetrical matrixes. Wishart-like processes thus appear as a natural candidate. Our state
variable dynamics is close to log prices dynamics of model proposed in [DFGT08a].

The underlying state variables are assumed to be solution of the following SDE system:

Y x,y
t = y +

∫ ⊤

0

K (θ − Y x,y
s ) +

∫ ⊤

0

c
√
Xx
s [ρ̄dZs + dWsρ] (3.1)

Xx
t = x+

∫ ⊤

0

(
Ω + (d− 1)a⊤a+ bXx

s +Xx
s b

⊤) ds+ ∫ ⊤

0

√
Xx
s dWsa+ a⊤dW⊤

s

√
Xx
s .

Here, and throughout the paper, (Wt, t ≥ 0) denotes a d-by-d square matrix made of inde-
pendent standard Brownian motions, and Z a p-vector of independent Brownian motions
independent of W ,

x,Ω ∈ S+
d (R), a ∈ Md(R), b ∈ Md(R)

y, θ ∈ Rp, K ∈ Mp(R), c ∈ Mp×d(R), ρ ∈ Rd, |ρ|2 ≤ 1 and ρ̄ =
√

1− |ρ|2 (3.2)

We will consider the particular case of a Wishart process for X which corresponds to the
case where

∃ α ≥ 0 : Ω = αaTa. (3.3)

The dependence structure between Y and X through the driving Brownian motions is the
same as the one proposed by Da Fonseca, Grasselli and Tebaldi [DFGT08a]. As explained
in [DFGT08a], this is the most general way to get a non trivial instantaneous correlation
between Y and Z while keeping the affine structure. We have added a drift term that allows
to account for properties such as the mean reversion which is important in the interest rates
market. From (3.1), we easily get

eKtYt = y +

∫ t

0

eKsKθds+

∫ t

0

eKsc
√
Xs [ρ̄dZs + dWsρ] .
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Therefore, the process Y is uniquely determined once the processes Z, W and X are given.
We know by Cuchiero et al. [CFMT11] that the SDE on X has a unique weak solution when
x ∈ S+

d (R) and Ω ∈ S+
d (R), and a unique strong solution if we assume besides that x is

invertible and Ω− 2aTa ∈ S+
d (R). This leads to the following result.

Proposition 11 — If x ∈ S+
d (R), Ω ∈ S+

d (R) there exists a unique weak solution of the
SDE (3.1). If we assume moreover that Ω − 2aTa ∈ S+

d (R) and x ∈ S+,∗
d (R) is positive

definite, there is a unique strong solution to the SDE (3.1). We denote by

AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ)

the law of (Xx, Y x,y), and by

AFF [(p, y,K, θ, c), (d, x,Ω, b, a), ρ); t]

the marginal law of (Xx
t , Y

x,y
t ).

Throughout the document , when we use the notation AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) or
AFF [(p, y,K, θ, c), (d, x,Ω, b, a), ρ); t] we implicitly assume that Ω ∈ S+

d (R) (resp. α ≥ 0).

3.1.1 The infinitesimal generator on Rp × S+
d (R)

The infinitesimal generator for the affine process (3.1) is defined by:

Let y ∈ Rp, x ∈ S+
d (R),

LMf(x, y) = lim
t→0+

E [f(Xx
t , Y

x,y
t )]− f(x, y)

t
, f ∈ C2(Md(R)×Rp) with bounded derivatives.

Proposition 12 — Infinitesimal generator on Md(R)× Rp.
Let (Xx, Y x,y) ∼ AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) be an affine process. Its infinitesimal
generator on Rp ×Md(R) is given by:

LM = Tr
([
Ω + (d− 1)aTa+ bx+ xb⊤

]
DM)+K(θ − y)DV +

1

2
Tr
(
cxcTDV (DV)T)

+
1

2

{
2Tr(xDMaTaDM) + Tr(xDMaTa(DM)T ) + Tr(x(DM)TaTaDM)

}
+
1

2

{
Tr
(
xcTDVρTaDM)+ Tr

(
xcTDVρTa

(
DM)T)} (3.4)

where

DM = (∂xij)ij

DV = (∂yk)k
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Proof : Since the drift and diffusion functions of the process (3.1) are linear they are also
lipschitz. Then lemma 46 given in appendix B allows to compute directly the infinitesimal
generator LM. 2

Here, we have given the infinitesimal generator on Md(R), while we know that the affine
process (Xx

t )t≥0 takes values in S+
d (R) ⊂ Sd(R). Thus, we can also look at the infinitesimal

generator of the diffusion (3.1) on Rp × Sd(R), which is defined by:

Let y ∈ Rp, x ∈ S+
d (R),

LSf(x, y) = lim
t→0+

E [f(Xx
t , Y

x,y
t )]− f(x, y)

t
for f ∈ C2(Sd(R)×Rp) with bounded derivatives.

For x ∈ S+
d (R), we denote by x{i,j} = xij = xji the value of the coordinates (i, j) and

(j, i) of x, so that x =
∑d

i,j=1 x{ij}(e
i,j
d + 1i̸=je

j,i
d ) (where ei,j is a matrix with the element

column j and row i equal to 1 and all the other elements of the matrix equal to zero). For
f ∈ C2(S+

d (R)×Rp), we then denote by ∂x{i,j}f its derivative with respect to the coordinates
x{i,j}. We introduce

π : Md(R) → Sd(R)
x→x+xT

2

that is such that π(x) = x for x ∈ Sd(R). Obviously, f ◦ (Ip, π) ∈ C2(Md(R) × Rp,R) and
we have

LSf(x, y) = LMf(π(x), y).

By the chain rule, we have for x ∈ S+
d (R), ∂xijf(π(x), y) = (1i=j +

1
2
1i̸=j)∂x{i,j}f and get the

following result.

Corollary 13 — Infinitesimal Generator on Rp × Sd(R). The infinitesimal generator on
Rp × Sd(R) associated to AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) is given by:

LS = Tr
([
Ω + (d− 1)a⊤a+ bx+ xb⊤

]
DS)+K(θ − y)DV + 2Tr(xDSaTaDS)

+
1

2
Tr
(
cxcTDV (DV)T)+ Tr

(
xcTDVρTaDS) (3.5)

where

DS = (1i=j +
1

2
1i̸=j)∂x{i,j}

DV = (∂yk)k.
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The proofs and results of Proposition 12, and Corollary 13 are closely related to [DFGT08a].
Of course, the generators LM and LS are equivalent: one can be deduced from the other.
However, LS already embeds the fact that the process X lies in Sd(R), which reduces the
dimension from p + d × d to p + d(d + 1)/2 and gives in practice shorter formulas. This is
why we will mostly work in the sequel with infinitesimal generators on Sd(R). Unless it is
necessary to make the distinction with LM, we will simply denote L = LS .

3.1.2 The Laplace transform of affine processes

The affine structure of the process (Xx, Y x,y) allows us to give formulas for the Laplace
transform of the marginal laws by the mean of a Matrix Riccati Differential Equations
(MRDE). Similar calculations have been made in equity modelling by Da Fonseca et al. [DFGT08a]
or Benabid et al. [BBEK08]. The following proposition states the precise result, which is
useful for the pricing of Zero-Coupon bonds. By a slight abuse of notations we will drop
the dependence of the process (Xx, Y x,y) on his initial condition (x, y) and simply denote by
(X, Y ) the process.

Proposition 14 — Let Λ, λ ∈ Rp, −Γ, Γ̄ ∈ Sd(R) and K ∈ Gd(R) such that

−Γ ∈ S+
d (R), (3.6)

−Γ̄− 1

2
c⊤λ(t)λ⊤(t)c ∈ S+

d (R), t ≥ 0 (3.7)

where

λ⊤(t) = e−K
⊤tΛ + (K⊤)−1

(
Ip − e−K

⊤t
)
Λ̄. (3.8)

Then, the following system of differential equations
ġ = 2gaTag + g(b+ 1

2
aρλ⊤c) + (b+ 1

2
aρλ⊤c)⊤g + 1

2
c⊤λλ⊤c+ Γ̄, g(0) = Γ,

η̇ = λ⊤Kθ + Tr (gᾱ) , η(0) = 0,
(3.9)

has a unique solution, which is defined on R+. It satisfies −g(t) ∈ S+
d (R) for any t ≥ 0.

Besides, we have for any 0 ≤ t ≤ T :

E
[
exp

(
Tr(ΓXT ) + Λ⊤YT +

∫ T

t

Tr
(
Γ̄Xs

)
+ Λ̄⊤Ysds

)
|Ft

]
= exp(η(T−t)+Tr(g(T−t)Xt)+λ(T−t)⊤Yt).

(3.10)

Proof : The proof is quite standard for affine diffusion. First, we notice that if (3.10) holds,

we necessarily have that Mt = exp
(∫ t

0
Tr
(
Γ̄Xs

)
+ Λ̄⊤Ysds

)
exp(η(T − t)+Tr(g(T − t)Xt)+
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λ(T − t)⊤Yt) is a martingale. By (3.5), this yields to

Γ̄Xt + Λ̄⊤Yt − η̇(T − t)− Tr(ġ(T − t)Xt)− λ̇(T − t)⊤Yt + Tr(g(T − t)[ᾱ+ bXs +Xsb
⊤])

+ λ(T − t)⊤K(θ − Yt) + 2Tr(Xg(T − t)a⊤ag(T − t)) +
1

2
Tr(Xc⊤λ(T − t)λ⊤(T − t)c)

+
1

2
Tr(X[c⊤λ(T − t)ρ⊤a⊤g(T − t) + g(T − t)aρλ⊤(T − t)c]) = 0.

By identifying the constant term and the linear terms with respect to Yt and Xt, we get (3.9)
and λ̇ = Kλ+ Λ̄, λ(0) = Λ, which leads to (3.8). By applying Lemma 17 to −g, the solu-
tion of (3.9) exists and is well defined for t ≥ 0. Besides, −g stays in S+

d (R) by using (3.6)
and (3.7).

Then, it remains to check that we have indeed (3.10), and it is sufficient to check it for
t = 0. To do so, we apply Itô’s formula to M and get

dMs =Ms

[
Tr(g(T − s)[

√
XsdWsa+ a⊤dW⊤

s

√
Xs]) + λ(T − s)⊤c

√
Xs [ρ̄dZs + dWsρ]

]
.

Thus,M is a positive local martingale and thus a supermartingale, which givesM0 ≥ E[MT ].
To prove that M0 = E[MT ], we use the argument presented by Rydberg [Ryd97]. We
define Nt = Mt/M0 in order to work with probability measures. We define for K > 0,
τK = inf{t ≥ 0,Tr(Xt) ≥ K}, πK(x) = 1Tr(x)≤Kx + 1Tr(x)≥K

K
Tr(x)

x for x ∈ S+
d (R) and

consider N
(K)
t the solution of

dN (K)
s =N (K)

s

[
Tr(g(T − s)[

√
πK(Xs)dWsa+ a⊤dW⊤

s

√
πK(Xs)])

+ λ(T − s)⊤c
√
πK(Xs) [ρ̄dZs + dWsρ]

]
,

N
(K)
0 =1.

Clearly, E[N (K)
T ] = 1, and under dP(K)

dP = N
(K)
T ,

dW
(K)
t = dWt − 2

√
πK(Xt)g(T − t)a−

√
πK(Xt)c

⊤λ(T − t)ρ⊤dt

is a matrix Brownian motion under P(K).
We now write E[NT ] = E[NT1τK≥T ] + E[NT1τK<T ]. By the dominated convergence

theorem, we have E[NT1τK≥T ] →
K→+∞

0. Besides, E[NT1τK<T ] = E[N (K)
T 1τK<T ] = P(K)(τK <

T ), and we have to prove that this probability goes to 1. To do so, we focus on the following
SDE

dX̃t =(ᾱ+ (b+ 2ag(T − t) + aρλ⊤(T − t)c)X̃t + X̃t(b
⊤ + 2g(T − t)a⊤ + c⊤λ(T − t)ρ⊤a⊤))dt

+

(√
X̃tdWta+ a⊤dW⊤

t

√
X̃t

)
starting from X̃0 = X0. We check that X solves before τK and under P(K) the same SDE as
X̃ under P. This yields to P(K)(τK < T ) = P(inf{t ≥ 0,Tr(X̃t) ≥ K} < T ). Since the SDE
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satisfied by X̃ is the one of an affine diffusion on S+
d (R), it is well defined for any t ≥ 0. In

particular maxt∈[0,T ] Tr(X̃t) < ∞ a.s., which gives P(inf{t ≥ 0,Tr(X̃t) ≥ K} < T ) →
K→+∞

1.

2

To the best of our knowledge there is no explicit characterization of the set of convergence
of the Laplace transform. The above proposition only allows us to explicitly characterize a
subset of Dt,T for the class of state variables we will consider in our modeling framework.

With the Laplace transform (3.10), we have a mathematical tool to check if the process
(X, Y ) is stationary. This is important for our modeling perspective: unless for some transi-
tory period, one may expect that the factors are stable around some equilibrium. The next
proposition give a simple sufficient condition that ensures stationarity.

We recall the following useful result

∀x, y ∈ S+
d (R), Tr(xy) ≥ 0, (3.11)

which comes easily from Tr(xy) = Tr(
√
xy

√
x) and

√
xy

√
x ∈ S+

d (R).

Proposition 15 — If −(b+ b⊤) ∈ S+
d (R) is positive definite, the process (X, Y ) is station-

ary.

Proof : It is sufficient to prove the proposition for a = ϵInd , as we will see later that
-without loss of generality- we can reduce the general SDE (3.1) to this particular case. For
x, y ∈ Sd(R), we use the notation x ≤ y if y − x ∈ S+

d (R). By assumption, there is µ > 0
such that 2µId ≤ −(b + b⊤). We now apply Proposition 14 with Λ̄ = 0 and Γ̄ = 0. Since
∥λ(t)∥ ≤ ∥Λ∥, there is a constant h > 0 small enough such that for any Λ ∈ Rd satisfying
∥Λ∥ < h we have

∀t ≥ 0, µId ≤ −[b+
ϵ

2
Ind ρλ

⊤c+ (b+
ϵ

2
Ind ρλ

⊤c)⊤] and
1

2
c⊤λλ⊤c ≤ µ2

8ϵ2
Id

By choosing Υ = µ
4ϵ2
Id, we see that the condition (3.7) is satisfied since µ2

4ϵ2
Id − µ2

8ϵ2
Ind −

1
2
c⊤λλ⊤c ∈ S+

d (R) for all t ≥ 0. Thus, the conclusions of Proposition 14 hold for any Λ ∈ Rd

and Γ ∈ Sd(R) such that ∥Λ∥ < h and Γ ≤ µ
4ϵ2
Id, and we have g(t) ≤ µ

4ϵ2
Id for any t ≥ 0. We

now want to prove that λ(t) →
t→+∞

0, g(t) →
t→+∞

0 and η(t) converges when t → +∞. This

will prove the convergence to the stationary law by Lévy’s theorem.
From (3.9), we have

1

2

d

dt
Tr(g2) = 2ϵ2Tr(gInd g

2) + Tr(g2[b+
ϵ

2
Ind ρλ

⊤c+ (b+
ϵ

2
Ind ρλ

⊤c)⊤]) + Tr(g
1

2
c⊤λλ⊤c).

By (3.11), we get

1

2

d

dt
Tr(g2) ≤ µ

2
Tr(gInd g)− µTr(g2) +

µ

4ϵ2
Tr(

1

2
c⊤λλ⊤c).
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Since Tr(gInd g) ≤ Tr(g2), we get by Gronwall’s lemma

1

2
Tr(g(t)2) ≤ 1

2
Tr(Γ2)e−µt +

µ

4ϵ2

∫ t

0

Tr

([
1

2
c⊤λ(s)λ⊤(s)c

]2)
e−µ(t−s)ds.

We now use that the entries of λ decay exponentially. Since
∫ t
0
e−µ

′se−µ(t−s)ds =
t→+∞

O(e−
min(µ,µ′)

2
t)

for µ, µ′ > 0, we get that there exists C, ν > 0 such that 1
2
Tr(g(t)2) ≤ Ce−νt. This gives that

g(t) →
t→+∞

0 and that η(t) =
∫ t
0
λ⊤(s)κθ + Tr (g(s)(Ω + ϵ2(d− 1)Ind )) ds converges. 2

Remark 16 — The Laplace transform of Wishart processes has been studied in details in
[GG14b]. The authors are able to derive an explicit semi-analytic expression for the Laplace
transform of the couple (X̄t,

∫ t
0
X̄sds, t ≥ 0), where X̄ is a Wishart process. The analytical

form allows to derive an explicit expression for the definition domain. Unfortunately the
formula cannot be applied to our state variable process (Y,X) for a number of reasons : the
first is that we are considering an affine extension of Wishart processes, the second is the
mean reverting drift of the process Y .

3.1.3 A detailed study of the matrix Riccati differential equation

The MRDE (3.9) plays a key role in our modeling framework. Not only it characterizes
the distribution of the underlying state variables but, as we will see later, it determines the
functional mapping between the factors and fundamental market quantities such as ZCBs.
Therefore it is important to be able to characterize the behavior of the solution as much as
possible. The solution of (3.9) may explode in finite time, and this is a behavior we want to
avoid since it would produce a degenerated yield curve dynamics.

A linearization solution for MRDE

We follow Levin [Lev59] and solve (3.9) by a well known linearization method. We
introduce the so-called hamiltonian matrix H(t) defined by

H(t) =

(
(b+ 1

2
aρλ⊤c)⊤ Γ̄− 1

2

a⊤a −(b+ 1
2
aρλ⊤c)

)
. (3.12)

It is equivalent to solve the MRDE (3.9) and to solve the linear differential system (Ḟ Ġ) = (F G)H

(F (0) G(0)) = (In Γ).
(3.13)
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Where F and G are in Md(R). It is possible to show that there exists a unique solution1 of
(3.9) if and only if there exists a unique solution of (3.13) and F (t) is non-singular for t ≥ 0.
See [Rei70]. The blow-up time, or equivalently the interval in which the solution of (3.9) is
well defined is entirely characterized by singularity of the matrix F (t). Let us denote by te
the blow-up time of g i.e.

te = inf

{
t : lim

s→t
max

1≤i,j≤d
|gij(s)| = ∞

}
. (3.14)

Then te is characterized as follows:

te = inf {t : det (F (t)) ≤ 0} . (3.15)

Unfortunately this expression of the blow-up time does not leads to an analytical character-
ization of the convergence set Dt in the general case. An analytical characterization of the
blow-up time can be obtained when the hamiltonian matrix is constant. In this case, the
blow-up time depends on the hyperbolic sinus of the eigenvalues of the hamiltonian matrix.
We refer to [Sha86] for a detailed study of the blow up phenomena of MRDE.

A sufficient condition for non explosion

We now derive an explicit and easy to verify sufficient condition for non explosion of the
solution of (3.9). Let us first note that the explosion behavior of g comes from the quadratic
term of the Riccati differential equation 2ga⊤ag. This term is a positive semidefinite matrix,
so the explosion phenomena can only occur in the cone of positive semidefinite matrixes.
One way to avoid explosion is to keep the solution outside this cone.

The following lemma allows to build a solution which stays negative.

Lemma 17 — Let b : R → Md(R) and a, c : R → S+
d (R) be continuous functions. We

consider the following matrix Riccati differential equation:

Ẋ +Xa(t)X = b(t)X +Xb(t)⊤ + c(t), X(0) ∈ S+
d (R). (3.16)

Then, the solution X does not explode and is well defined for t ∈ R+. Besides, we have
X(t) ∈ S+

d (R) for any t ≥ 0.

Proof : A proof of this lemma is given in [DE94], here we propose an alternative
proof. We follow Levin [Lev59], and consider the following time-dependent linear differential
equation on M2d(R)

d

dt

[
M1(t) M2(t)
M3(t) M4(t)

]
=

[
b(t) c(t)
a(t) −b(t)⊤

] [
M1(t) M2(t)
M3(t) M4(t)

]
, t ≥ 0,

1There exists a solution means that the solution exists and doesn’t blow-up in finite time.
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with M1(0) = M4(0) = Id and M2(0) = M3(0) = 0. This linear differential equation has a
unique solution that is well defined for t ≥ 0, and we define

y(t) =M1(t)X(0) +M2(t), x(t) =M3(t)X(0) +M4(t).

We observe that

ẋ(t) = [a(t)M1(t)− b(t)⊤M3(t)]X(0) + a(t)M2(t)− b(t)⊤M4(t) = a(t)y(t)− b(t)⊤x(t),

ẏ(t) = [b(t)M1(t) + c(t)M3(t)]X(0) + b(t)M2(t) + c(t)M4(t) = b(t)y(t) + c(t)x(t),

Let τ = inf{t ≥ 0, det(x(t)) = 0}, with inf ∅ = +∞. For t ∈ [0, τ), we define

X(t) = y(t)x(t)−1.

We have Ẋ(t) = ẏ(t)x(t)−1 − X(t)ẋ(t)x(t)−1 = b(t)X(t) + c(t) − X(t)[a(t)X(t) − b(t)⊤],
and therefore X is the solution of (3.16) by the Cauchy-Lipschitz theorem. Also, X(t) is
symmetric since X(t)⊤ solves the same ODE (3.16).

We now use an argument proposed by Knobloch in [Kno95], and consider v(t) = x⊤(t)X(t)x(t) =
x⊤(t)y(t). We have ẋ(t) = [a(t)X(t)− b(t)⊤]x(t) and thus

v̇(t) = x(t)⊤
[
(X(t)a(t)− b(t))X(t) + Ẋ(t) +X(t)(2X(t)− b(t)⊤)

]
x(t)

= x(t)⊤c(t)x(t).

From v(0) = X(0) ∈ S+
d (R) and c(t) ∈ S+

d (R), we get that v(t) ∈ S+
d (R) for any t ∈ [0, τ).

Since x(t) is invertible, this gives X(t) ∈ S+
d (R) for t ∈ [0, τ). It remains to prove that the

solution X cannot explode. We have x(0) = Id and
d
dt
det(x(t)) = det(x(t))Tr[x(t)−1ẋ(t)] =

det(x(t))Tr[a(t)X(t)− b(t)]. This yields to

t ∈ [0, τ), det(x(t)) = exp

(∫ t

0

Tr[a(s)X(s)− b(s)]ds

)
≥ exp

(
−
∫ t

0

Tr[b(s)]ds

)
,

since a(s) ∈ S+
d (R) and thus Tr[a(s)X(s)] = Tr[

√
a(s)X(s)

√
a(s)] ≥ 0 for s ∈ [0, τ). This

inequality necessarily implies τ = +∞. 2

It is sufficient to apply this lemma with X = −g and it follows that the condition:

−Γ ∈ S+
d (R) and Γ̄− 1

2
cλλT cT ∈ S+

d (R), t ≥ 0, (3.17)

is sufficient for g(t) to exists t ≥ 0 and −γ(t) ∈ S+
d (R), t ≥ 0. Note that λ(t) admits an

analytical expression and thus condition (3.17) can be easily verified.
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3.1.4 Numerical resolution of the MRDE with time dependent
coefficients.

In this subsection we discuss the numerical resolution of the MRDE (3.9), and present
the numerical scheme which has been used in our implementation of the model. MRDE with
constant coefficients can be solved explicitly by solving the matrix linear equation (3.13) us-
ing matrix exponentials2. The linearization method cannot be applied when the coefficients
of the MRDE are time dependent. We refer to [DE94] for some results on the properties
of the numerical solutions of the MRDE of type (3.9). One of the aspects discussed in the
paper is the question of wether the scheme preserves the positiveness of the solution. The
paper shows that the only direct schemes that preserve the positiveness of the solution are
of order one, and propose an higher order (indirect) scheme which preserves the positiveness
of the solution.

The scheme we propose is a simple direct scheme which consists in approximating the time
dependent coefficients by piecewise constant functions and solving the MRDE analytically
in the intervals where the coefficients are constants. Let t0 = 0 < t1 < · · · < tn = T be a
discretization of the interval [0, T ], we define the piecewise constant approximation of λ̃ of
the vector function λ(t) by

λ̃(t) = λ

(
ti−1 + ti

2

)
, t ∈ [ti−1, ti), i = 1, ..., n. (3.18)

In the interval [ti−1, ti), we solve analytically the (3.9) replacing λ by λ̃ using the linearization
method. As mentioned before the method is direct and under the assumptions of proposition
14, the approximated solution is positive defined. On our numerical experiments, a step size
between 0.01 and 0.05 is sufficient to achieve a satisfactory convergence of the scheme.

3.1.5 Some identities in law for affine processes

In this section we give some identities in law for affine processes that will be useful to
build discretization schemes for the general process. Let us first note that the infinitesi-
mal generator (3.5) only depends on the the parameter a through the matrix aTa, which
immediately implies the following identity in law

AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) =
Law

AFF ((p, y,K, θ, c), (d, x,Ω, b,
√
aTa), ρ) (3.19)

Linear transformations preserve the affine structure of the diffusion process. Let q in Gd(R)
and r in Gp(R) and define Kr = rKr−1, aq = aq⊤, θr = rθ, crqrc(q

⊤)−1, Ωq = q⊤Ωq,

2Let us also mention that in the case of constant coefficients it is also possible to explicitly characterize
the definition domain and the explosion time of the solution of the MRDE using sinh and cosh functions,
and the eigenvalues of the Hamiltonian matrix.
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bq = q⊤b(q⊤)−1 and aq = aq⊤. Let (Xx, Y x,y) =
Law

AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ), we

have

(q⊤Xxq, rY x,y) =
Law

AFF ((p, ry,Kr, θr, crq), (d, q
⊤xq,Ωq, bq, aq), ρ).

Since the two processes solve the same martingale problem. An interesting consequence
of this linear transformation is given in the following corollary. It states that any affine
process can be obtained as a linear transformation of an affine process for which we have
a = Ind . This has two major implications: in terms of Monte Carlo simulation it implies that
the sampling of the general process reduces to this special case, in terms of term structure
modeling it implies that without loss of generality we can restrict ourselves to this particular
case of state variables dynamics.

Corollary 18 — Let (Xx, Y x,y) ∼ AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) and n = Rk(a) be
the rank of aTa. Then, there exist a non singular matrix u ∈ Gd(R) such that aTa = uT Ind u.
Defining

(X̄x
t , Ȳ

x,y
t )t≥0 =

Law
AFF ((p, y,K, θ, c), (d, (u−1)⊤xu−1, (u−1)⊤Ωu−1, (u−1)⊤bu⊤, Ind ), ρ),

we have

(Xx
t , Y

x,y
t )t≥0 =

Law
(u⊤X̄x

t u, Ȳ
x,y
t )t≥0. (3.20)

The proof of this corollary is a direct consequence of the identities in law of affine diffusions
in the space S+

d (R) presented in [AA13].

3.2 Second order discretization schemes for Monte Carlo

simulation

This section is devoted to the construction of high order discretization schemes to sim-
ulate the underlying state variables of the model. In a high dimensional framework Monte
Carlo schemes are necessary for efficient pricing of path dependent products. Note also that
while we are able to provide time efficient deterministic methods for pricing vanilla options,
these lack of precise error estimates, and their accuracy strongly depends on the set of models
parameters. A numerical benchmark is therefore necessary for validation of these methods.

We use the splitting technique that is already used by Ahdida and Alfonsi [AA13] for Wishart
processes. We explain here briefly the main line of this method and refer to Alfonsi [Alf10] for
precise statements in a framework that embeds affine diffusions. The simulation of Wishart
processes and their affine extensions has been studied in details in [AA13]. The key idea is to
exploit on one hand the fact any Wishart diffusion is a linear transformation of a canonical
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Wishart process of the form WISd(x, α, 0, I
n
d ), on the other hand some remarkable splitting

properties of this canonical process. When the correlation parameter ρ = 0, these schemes
directly apply to the general process AFF ((p, y,K, θ, c), (d, x,Ω, b, a), 0). It is not immedi-
ate that such splitting property still holds for the generator of the general diffusion process
AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ) because of the correlation structure between the vector
process Y and the Wishart process X.

3.2.1 Some preliminary results on discretization schemes for SDEs

Let us consider a domain D ⊂ Rζ , ζ ∈ N∗. Let us consider a general Rζ valued SDE:

Vt = v +

∫ t

0

dsb(V v
s ) +

∫ t

0

σ(V v
s )dWs. (3.21)

In the context of our work the domain of interest will usually be D = Rp×S+
d (R) viewed as

a subspace of Rp+d(d+1)/2. For a multi-index γ = (γ1, ..., γζ) ∈ Nζ , we define ∂γ = ∂γ11 , ..., ∂
γζ
ζ

and |γ|1 =
∑ζ

i=1 γi. We define the set of functions

C∞
pol(D) = {f ∈ C∞(D,R), ∀γ ∈ Nζ , ∃Cγ > 0, eγ ∈ N∗, ∀v ∈ D, |∂γf(v)|1 ≤ Cγ(1 + |v|eγ}

where | · | is a norm on Rζ . We will say that (Cγ, eγ)γ∈Nζ is a good sequence for f ∈ C∞
pol(D)

if ∂γf(v) ≤ Cγ(1 + |x|eγ ).

Definition 19 — Let b : D → Rζ , σ : D → Mζ(R). The operator L defined for f ∈
C2(D,R) by:

Lf(x) =

ζ∑
i=1

bi(v)∂if(v) +
1

2

ζ∑
i,j=1

(σσT )ij(v)∂
2
ijf(v) (3.22)

is said to satisfy the required assumptions on D if the following conditions hold:

• ∀i, j ∈ {1, ..., ζ}, bi(v), (σσT )ij(v) ∈ C∞
pol(D),

• for any v ∈ D, the SDE V v
t = v+

∫ t
0
dsb(V v

s )+
∫ t
0
σ(V v

s )dWs has a unique weak solution
defined for t ≥ 0, and thus P (∀t ≥ 0, V v

t ∈ D) = 1.

In the case of affine diffusions, bi(v) and (σσT )ij(v) are affine functions of x and the operator
satisfies the required assumption on the appropriated domain. Let us note that if L statisfies
the required assumptions on D and f ∈ C∞

pol(D), all the iterated functions Lkf(v) are well
defined on D and belong to C∞

pol(D) for any k ∈ N.

We now turn to discretization schemes for the SDEs. Let us fix a time horizon T > 0. We will
consider the whole interval [0, T ] and the regular time discretization tNi = iT/N, i = 0, 1, ...n.
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Definition 20 — A family of transition probabilities (p̂v(t)(dz), t > 0, v ∈ D) on D is such
that p̂v(t) is a probability law on D for t > 0 and v ∈ D.

A discretization scheme with transition probabilities (p̂v(t)(dz), t > 0, x ∈ D) is a sequence
(V̂ N

tNi
, 0 ≤ i ≤ N) of D-valued random variables such that:

• for 0 ≤ i ≤ N , V̂ N
tNi

is a FtNi
-measurable random variable on D

• the law of V̂ N
tNi+1

given the information FtNi
is given by E

[
f(V N

tNi+1
)|FtNi

]
=
∫
D
f(z)p̂V̂ N

tN
i

(T/N)(dz)

and thus only depends on V̂ N
tNi

and T/N .

For ease of notations, for t > 0 and v ∈ D we will denote by V̂ v
t a r.v. distributed according

to the probability p̂v(t)(dz). Since the law of a discretization scheme is entirely determined
by its initial value and by the transition probabilities. We will always take the initial value
to be equal to the initial value of the SDE, by a slight abuse of language we will identify the
scheme V̂ N

tNi
with its transition probabilities (p̂v(t)(dz) or V̂

v
t ).

Definition 21 — Assume that the operator L associated to the SDE (3.21) verifies the
required assumptions. Let us denote C∞

K (D,R) the set of the C∞ real valued functions with
a compact support in D. Let v ∈ D. A discretization scheme (V̂ N

tNi
, 0 ≤ i ≤ N) is a weak

νth-order scheme for the SDE (3.21) if:

∀f ∈ C∞
K (D,R),∃K > 0 :

∣∣∣E (f(V v
T ))− E

(
f(V N

tNN
)
)∣∣∣ ≤ K/Nν .

The quantity E (f(V v
T ))− E

(
f(V N

tNN
)
)
is called the weak error associated to f .

It is hard to prove that a scheme is a weak νth-order scheme directly, the useful notion in
practice is the notion of potential weak νth-order scheme.

Definition 22 — Assume that the operator L associated to the SDE (3.21) verifies the
required assumptions. A scheme (p̂v(t)(dz), t > 0, v ∈ D) is a potential weak νth-order
scheme for the operator L if for any function f ∈ C∞

pol(D) with a good sequence (Cγ, eγ)γ∈Nγ ,
there exist positive constants C,E, and η depending on (Cγ, eγ) only such that

∀t ∈ (0, η),

∣∣∣∣∣E [f(V̂ v
t )
]
−

[
f(v) +

ν∑
k=1

1

k!
tkLkf(v)

]∣∣∣∣∣ ≤ Ctν+1(1 + |v|E). (3.23)

The following theorem of [Alf10], which is a consequence of the results of [TT90], links the
notion of potential weak νth-order scheme and the weak error of the scheme. It provides the
technical conditions under which a potential weak νth order scheme is sufficient to control
the weak error.
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Theorem 23 — Let us consider an operator L that satisfies the required assumptions on
D and a discretization scheme (V̂ N

tNi
, 0 ≤ i ≤ N) with transition probabilities p̂v(t)(dz) on D

that starts from V N
tN0

= v0 ∈ D. We assume that

1. p̂v(t)(dz) is a potential weak νth order scheme for the operator L

2. the scheme has bounded moments, i.e.

∀q ∈ N∗,∃N(q) ∈ N : sup
N≥N(q),0≤i≤N

E
[∣∣∣V N

tNi

∣∣∣] <∞ (3.24)

3. f : D → R is a function such that u(t, v) = E
[
f(V v

T−t)
]
is defined on [0, T ]×D, C∞,

solves ∀t ∈ [0, T ], ∀v ∈ D, ∂tu(t, v) = −Lu(t, v), and satisfies :

∀l ∈ N, γ ∈ Nζ ,∃Cl,γ, el,γ > 0 : ∀v ∈ D, t ∈ [0, T ], |∂lt∂γu(t, v)| ≤ Cl,γ(1 + |v|el,γ ).
(3.25)

Then, there is K > 0 and N0 ∈ N, such that
∣∣∣E [f(V N

tNN
)
]
− E [f(V v

T )]
∣∣∣ ≤ K/Nν for N ≥ N0.

In the following we will propose some potential second order schemes for the state variables
(3.1). In order to prove that these schemes allow to control the weak error one would need
to verify the technical conditions (3.24) and (3.25) of the above theorem. In [AA13] these
conditions have been verified for Wishart processes. We will not verify these conditions for
the schemes we propose. The verification of the conditions (3.24) and (3.25) for the process
(X, Y ) would require some tedious calculations, and we don’t value it as a crucial point of our
work. Instead we privilege an empirical approach and investigate the question numerically.
This provides extensive numerical proof of the control of the weak error.

The last important result for our purpose is the fact the property of being a potential
νth order scheme is preserved by composition of the schemes. Let us consider two schemes
p̂1v(t)(dz) and p̂

2
v(t)(dz), the composition of the second scheme with the first p̂2(t2)◦p̂1v(t1)(dz)

is defined by

p̂2(t2) ◦ p̂1v(t1)(dz) =
∫
D

p̂2y(t2)(dz)p̂
1
v(t1)(dy). (3.26)

More generally we can define the composition of m discretization schemes p̂1v, ..., p̂
m
v on D by

p̂m(tm) ◦ · · · ◦ p̂1v(t1)(dz) = p̂m(tm) ◦
(
p̂m−1(tm−1) ◦ · · · ◦ p̂1v(t1)(dz)

)
.

Proposition 24 — Let L1, L2 be two operators satisfying the required assumptions on D.
Let p̂1v and p̂2v be respectively two potential weak νth order schemes on D for L1 and L2.

• If L1L2 = L2L1 then p̂2(t)◦ p̂1v(t)(dz) is a potential weak νth order scheme for L1+L2.
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• If ν ≥ 2, p̂2(t/2) ◦ p̂1(t) ◦ p̂2v(t/2)(dz) and 1
2
(p̂1(t) ◦ p̂2v(t)(dz) + p̂2(t) ◦ p̂1v(t)(dz)) are

potential weak second order schemes for L1 + L2.

The above proposition gives a straightforward way to build second order schemes for an
operator L as soon as we can split it in simple operators for which we have a potential weak
order scheme of order higher then two. Let us assume that ξ̂i,xt is a second order scheme
for Li. Let B be an independent Bernoulli variable with parameter 1/2. Then, the following
schemes

ξ̂
1,ξ̂

2,ξ̂
1,x
t/2

t

t/2 and Bξ̂
2,ξ̂1,xt
t + (1−B)ξ̂

1,ξ̂2,xt
t (3.27)

satisfy

E[f(ξ̂xt )] = f(x) + tLf(x) +
t2

2
L2f(x) +O(t3) (3.28)

and are thus second order schemes for L. Therefore, a strategy to construct a second order
scheme is to split the infinitesimal generator into elementary pieces for which second order
schemes or even exact schemes are known. The underlying idea of the discretization schemes
we propose is to find some splitting property of the operator of the diffusion (3.1) and then
build the scheme using the composition rule (3.27).

3.2.2 High order discretization schemes for L

Let us first note that the identity in law (3.20) implies that the sampling of the general
process

AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ)

reduces to the sampling of the process

AFF ((p, y,K, θ, c), (d, x,Ω, b, Ind ), 0) .

In all the following let (X, Y ) follow AFF ((p, y,K, θ, c), (d, x,Ω, b, Ind ), ρ).

To use this splitting technique, we first have to calculate the infinitesimal generator of (X, Y ).
From (3.5), we easily get

L =

p∑
m=1

(K(θ − y))m∂ym +
∑

1≤i,j≤d

(Ω + (d− 1)Ind + bx+ xb⊤)i,j∂xi,j

+
1

2

p∑
m,m′=1

(cxc⊤)m,m′∂ym∂ym′ +
1

2

p∑
m=1

∑
1≤i,j≤d

[(cx)m,i(I
n
d ρ)j + (cx)m,j(I

n
d ρ)i]∂xi,j∂ym

+
1

2

∑
1≤i,j,k,l≤d

[xi,k(I
n
d )j,l + xi,l(I

n
d )j,k + xj,k(I

n
d )i,l + xj,l(I

n
d )i,k]∂xi,j∂xk,l .
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When ρ = 0, this operator is simply the sum of the infinitesimal generators for X and the
generator for Y when X is frozen. We know from [AA13] a second order scheme for X.
When X is frozen, Y follows an Ornstein-Uhlenbeck process and the law of Yt is a Gaussian
vector that can be sampled exactly. By using the composition rule (3.27), we get a second
order scheme for (X, Y ).

Thus, the difficulty here comes from the correlation between X and Y that has to be handled
with care. We first make some simplifications. The first term

∑p
m=1(K(θ−y))m∂ym is the gen-

erator of the linear Ordinary Differential Equation y′(t) = K(θ− y(t)) that is solved exactly
by y(t) = e−Kty(0) + (Ip − e−Kt)θ. Therefore, it is sufficient to have a second order scheme
for L−

∑p
m=1(K(θ−y))m∂ym , which is the generator of AFF ((p, y, 0, 0, c), (d, x,Ω, b, Ind ), ρ).

In which case, we have Yt = y + c(Ỹt − Ỹ0) with

Ỹt = Ỹ0 +

∫ t

0

√
Xs [ρ̄dZs + dWsρ]

We can then focus on getting a second order scheme for (X, Ỹ ), which amounts to work with
p = d and c = Id. It is therefore sufficient to find a second order scheme for the SDE

Yt = y +

∫ t

0

√
Xs [ρ̄dZs + dWsρ] ,

Xt = x+

∫ t

0

(
Ω + (d− 1)Ind + bXs +Xsb

⊤)
)
ds+

∫ t

0

√
XsdWsI

n
d + Ind dW

⊤
s

√
Xs,

with the infinitesimal generator

L =
∑

1≤i,j≤d

(Ω + (d− 1)Ind + bx+ xb⊤)i,j∂xi,j +
1

2

d∑
m=1

∑
1≤i,j≤d

[xm,i(I
n
d ρ)j + xm,j(I

n
d ρ)i]∂xi,j∂ym

(3.29)

+
1

2

d∑
m,m′=1

xm,m′∂ym∂ym′ +
1

2

∑
1≤i,j,k,l≤d

[xi,k(I
n
d )j,l + xi,l(I

n
d )j,k + xj,k(I

n
d )i,l + xj,l(I

n
d )i,k]∂xi,j∂xk,l .

3.2.3 A second order scheme

For 1 ≤ q ≤ d, we define eqd ∈ S+
d (R) by (eqd)k,l = 1k=l=q and g

q
d ∈ Rd by (gqd)k = 1q=k so

that Ind =
∑n

q=1 e
q
d and I

n
d ρ =

∑n
q=1 ρqg

q
d. We define

Lcq =(d− 1)∂xq,q +
1

2

d∑
m=1

∑
1≤i,j≤d

ρq[xm,i(g
q
d)j + xm,j(g

q
d)i]∂xi,j∂ym +

ρ2q
2

d∑
m,m′=1

xm,m′∂ym∂ym′

(3.30)

+
1

2

∑
1≤i,j,k,l≤d

[xi,k(e
q
d)j,l + xi,l(e

q
d)j,k + xj,k(e

q
d)i,l + xj,l(e

q
d)i,k]∂xi,j∂xk,l .
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We consider the splitting L = L′ + L′′ +
∑n

q=1 L
c
q of the operator (3.29), with

L′ =
∑

1≤i,j≤d

(Ω + bx+ xb⊤)i,j∂xi,j ,

L′′ =

(
1−

n∑
q=1

ρ2q

)
1

2

d∑
m,m′=1

xm,m′∂ym∂ym′ .

The operator L′ is the one of the linear ODE x′(t) = Ω + (d− 1)Ind + bx + xb⊤ that can be
solved exactly and stays in the set of semidefinite positive matrices, see Lemma 27 in [AA13].

The operator L′′ is the one of Y ′′
t = y′′ +

√
1−

∑n
q=1 ρ

2
q

√
xZt, which can be sampled exactly

since it is a Gaussian vector with mean y′′ and covariance matrix (1− |ρ|2)tx. The operator
Lcq is the infinitesimal generator of the following SDE{

Yt = y + ρq
∫ t
0

√
XsdWsg

q
d,

Xt = x+
∫ t
0
(d− 1)eqdds+

∫ t
0

√
XsdWse

q
d + eqddW

⊤
s

√
Xs.

(3.31)

Thus, X follows an elementary Wishart process and stays in S+
d (R). Using the notation

of [AA13], Xt follows the law WISd(x, d − 1, 0, eqd, t). Theorems 9 and 16 in [AA13] gives
respectively an exact and a second (or higher) discretization scheme for this process. We
now explain how to calculate Yt once that Xt has been sampled. From (3.31), we have for
1 ≤ i ≤ d,

d(Yt)i =ρq

d∑
j=1

(
√
Xt)i,j(dWt)j,q,

d(Xt)q,i =
d∑
j=1

(
√
Xt)i,j(dWt)j,q + 1i=q

[
(d− 1)dt+

d∑
j=1

(
√
Xt)q,j(dWt)j,q

]
.

This yields to

(Yt)i = yi + ρq((Xt)q,i − xq,i), if i ̸= q,

(Yt)q = yi +
ρq
2
[(Xt)q,q − xq,q − (d− 1)t].

Using these formula together with the exact (resp. second order) scheme for Xt, we get an
exact (resp. second order) scheme for (3.31). By using the composition rules (3.27), we get
a second order scheme for (3.29).
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3.2.4 A faster second order scheme when Ω− Ind ∈ S+
d (R)

As explained in [AA13], the sampling of each elementary Wishart process in Lq requires a
Cholesky decomposition that has a time complexity of O(d3). Since the second order scheme
proposed above calls n ≤ d times this routine, the whole scheme requires at most O(d4)
operations. However, by adapting an idea that has been already used in [AA13] for Wishart
processes, it is possible to get a faster scheme if we assume in addition that Ω − Ind . This
alternative scheme only requires O(d3) operations and is also easier to implement.

We consider the splitting L = L̃′ + L̃′′ + L̂ of the operator (3.29), with

L̃′ =
∑

1≤i,j≤d

(Ω− Ind + bx+ xb⊤)i,j∂xi,j

L̂ =
∑

1≤i≤n

d∂xi,i +
1

2

d∑
m=1

∑
1≤i,j≤d

[xm,i(I
n
d ρ)j + xm,j(I

n
d ρ)i]∂xi,j∂ym +

∑n
q=1 ρ

2
q

2

d∑
m,m′=1

xm,m′∂ym∂ym′

+
1

2

∑
1≤i,j,k,l≤d

[xi,k(I
n
d )j,l + xi,l(I

n
d )j,k + xj,k(I

n
d )i,l + xj,l(I

n
d )i,k]∂xi,j∂xk,l .

Again, L̃′ is the operator of the linear ODE x′(t) = Ω− Ind +(d−1)Ind + bx+xb
⊤ that can be

solved exactly and stays in the set of semidefinite positive matrices by Lemma 27 in [AA13]
since Ω − Ind ∈ S+

d (R). We have already seen above that the generator L′′ can be sampled

exactly, and we focus now on the sampling of L̂. It relies on the following result.

Lemma 25 — For x ∈ S+
d (R) we consider c ∈ Md(R) such that c⊤c = x. We define

Ut = c +WtI
n
d , Xt = U⊤

t Ut and Yt = y +
∫ t
0
M⊤

s dWsI
n
d ρ. Then, the process (X,Y ) has the

infinitesimal generator L̂.

Proof : For 1 ≤ i, j,m ≤ d, we have d(Xt)i,j =
∑d

k=1 ((Ut)k,i(dWt)k,j1j≤n + (Ut)k,j(dWt)k,i1i≤n)+

1i=j≤nddt and d(Yt)m =
∑d

k,l=1(Ut)k,m(dWt)k,l(I
n
d ρ)l. This leads to

⟨d(Yt)m, d(Yt)m′⟩ =
d∑

k,l=1

(Ut)k,m(Ut)k,m′(Ind ρ)
2
l dt =

(
n∑
l=1

ρ2l

)
(Xt)m,m′dt,

⟨d(Yt)m, d(Xt)i,j⟩ =[(Ind ρ)j(Xt)m,i + (Ind ρ)i(Xt)m,j]dt,

⟨d(Xt)i,j, d(Xt)k,l⟩ =[(Xt)i,k(I
n
d )j,l + (Xt)i,l(I

n
d )j,k + (Xt)j,k(I

n
d )i,l + (Xt)j,l(I

n
d )i,k]dt,

which precisely gives the generator L̂. 2

Thanks to Lemma 25, it is sufficient to construct a second order scheme for (U, Y ). Since
⟨d(Yt)m, d(Ut)i,j⟩ = ϵ(Ut)i,m(I

n
d ρ)jdt, the infinitesimal generator L̄ of (U, Y ) is given by

L̄ =
1

2

d∑
i=1

n∑
j=1

∂2ui,j +
1

2

d∑
i,m=1

n∑
j=1

ρjui,m∂ui,j∂ym +

∑n
q=1 ρ

2
q

2

d∑
m,m′=1

(u⊤u)m,m′∂ym∂y′m .
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We use now the splitting L̄ =
∑n

q=1 L̄q with

L̄q =
1

2

d∑
i=1

∂2ui,q +
1

2

d∑
i,m=1

ρqui,m∂ui,q∂ym +
ρ2q
2

d∑
m,m′=1

(u⊤u)m,m′∂ym∂y′m .

By straightforward calculus, we find that L̄q is the generator of the following SDE

dYt = ρqU
⊤
t dWtg

q
d, dUt = dWte

q
d.

We note that only the qth row of U is modified. For 1 ≤ i ≤ d we have d(Ut)i,q = (dWt)i,q
and d(Yt)m = ρq

∑d
j=1(Ut)j,m(dWt)j,q. This yields to

(Yt)m = (Y0)m + ρq

d∑
j=1

(U0)j,m(Wt)j,q for m ̸= q,

(Yt)q = (Y0)q + ρq

d∑
j=1

(U0)j,q(Wt)j,q +
ρq
2

d∑
j=1

{(Wt)
2
j,q − t}.

By using these formulas, we can then sample exactly (Ut, Yt) and then get a second order
scheme for L̂. We note that the simulation cost of L̄q requires O(d) operations and then the
one of L̄ requires O(d2) operations. Since a matrix multiplication requires O(d3) operations,
this second order schemes for L̄ and then for L requires O(d3) operations instead of O(d4)
for the scheme described in Subsection 3.2.3.

Remark 26 — As already mentioned, the dependence between the processes X and Y is
the same as the one proposed by Da Fonseca, Grasselli and Tebaldi [DFGT08a] for a model
on asset returns. Therefore, we can use the same splittings as the one proposed in Subsec-
tions 3.2.3 and 3.2.4 to get a second order scheme for their model.

3.2.5 Numerical results

We now turn to the empirical analysis of the convergence of the discretization schemes
we have proposed. Unlike the case of the Wishart process we were not able to provide an
exact scheme for our state variables dynamics (3.1). Also we cannot achieve schemes of order
higher then 2 since we are composing operators that don’t commute. In this paragraph we
adopt the following terminology,

• Scheme 1 is the second order scheme given in Subsection 3.2.3, where we use the exact
sample of the Wishart part and the exact simulation the Gaussian variables.

• Scheme 2 is the second order scheme given in Subsection 3.2.3, where we use the
second order scheme for the Wishart part and replacing the simulation of Gaussian
variables by random variables that matches the five firs moments, see Theorem 16 and
equation (36) in [AA13].
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• Scheme 3 is the second order scheme given in Subsection 3.2.4.

In order to assess that the potential second order schemes we have proposed for L are indeed
second order schemes we start by analyzing the weak error for quantities we can compute
analytically such as the Fourier transform E

[
exp

(
−i
(
Tr(ΓXT ) + ΛTYT

))]
. We compare the

values obtained by Monte Carlo simulation and the values obtained by solving the system
of o.d.e (3.9). In the next chapter the computation of option prices will give us the occasion
to further investigate the convergence of the schemes for more complicated functions of the
underlying state variables.

As shown by Figures 3.1, 3.2 and 3.3 the weak error of the Fourier transform for the 3
schemes we have considered is converges in O(1/N2). In terms of performance, scheme 1
seems to converge much faster then the others, this is due to the fact we use the exact sim-
ulation of the Wishart part of the generator L in this scheme and this certainly increases its
accuracy. The scheme 3, which is extremely cost-efficient compared to the other schemes,
has a performance which is comparable to scheme 2. Let us note that as illustrated by
Figure 3.3 the convergence of the schemes is much slower when we introduce consider the
full process with a mean reverting drift.

Unfortunately we were not able to investigate the convergence of the schemes for path-
wise expectations. Very few theoretical results exist on this topic and since we don’t have an
exact scheme for the simulation of L, we are not able to conduce a numerical investigation
on the subject.
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Figure 3.1: Convergence of the discretization schemes. p = d = 3, 107 Monte Carlo samples,
T = 5. The real value of E

[
exp

(
−i
(
Tr(ΓXT ) + ΛTYT

))]
, as a function the time step T/N .

Γ = 0.05Id,Λ = 0.021Rd and the diffusion parameters x = 0.4Id, y = 0.21p, α = 4.5, a =
Id, ρ = 0, b = 0, K = 0, c = Id, A = 0. The value obtained by solving the o.d.e is -0.445787.
For each scheme the two curves represent the upper and lower bound of the 95% confidence
interval.
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Figure 3.2: Convergence of the discretization schemes. p = d = 3, 107 Monte Carlo samples,
T = 5. The imaginary value of E

[
exp

(
−i
(
Tr(ΓXT ) + ΛTYT

))]
, as a function the time

step T/N . Γ = 0.05Id,Λ = 0.021p and the diffusion parameters x = 0.4Id, y = 0.21Rd , α =
2.5, a = Id, ρ = −0.31p, b = 0, K = 0, c = Id, A = 0. The value obtained by solving the o.d.e
is -0.643222. For each scheme the two curves represent the upper and lower bound of the
95% confidence interval.
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Figure 3.3: Convergence of the discretization schemes. p = d = 3, 107 Monte Carlo samples,
T = 1. The real value of E

[
exp

(
−i
(
Tr(ΓXT ) + ΛTYT

))]
, as a function the time step T/N .

Γ = 0.2Id + 0.04q,Λ = 0.2 and the diffusion parameters x = 0.4Id + 0.2 ∗ q, y = 0.21p, α =
2.5, a = Id, ρ = −0.31p, b = −0.5Id, K = 0.1Ip, c = Id, A = 0. The value obtained by solving
the o.d.e is 0.357901. For each scheme the two curves represent the upper and lower bound
of the 95% confidence interval.
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Chapter 4

A stochastic variance-covariance affine
term structure model

In this chapter we present the model that we study in this thesis. The model is pre-
sented in a mono-curve setting. This model is a stochastic variance-covariance perturbation
of the LGM (see section 2.4.1). We chose a quite general specification that keeps the model
affine and gives a stochastic instantaneous covariance for the factors, which will generate
a smile for the Caplets and Swaptions, as well as a stochastic correlation between rates.
The resulting model belongs to the general class of ATSM defined by [DK96b]. The affine
structure of the model makes it reasonably tractable. We derive semi-analytical bond recon-
struction formulas for zero-coupon bonds and for Fourier/Laplace transforms of asset prices
under the equivalent martingale measures. Recently Wishart processes have been used to
model stochastic volatility of interest rates. The first proposals were formulated in [GMS10],
[GS03], [GS07], [Gou06] both in discrete and continuous time, for interest rates and equity
underlyings. Applications to multifactor volatility and stochastic correlation can be found
in [DFGT08b], [DFGT08a], [DFGI11], [DFGI14], [DFG11], [BPT10], [BL13], [BCT08], both
in option pricing and portfolio management. These contributions consider the case of con-
tinuous path Wishart processes, [GT08] and [Cuc11] investigate processes lying in the more
general symmetric cones state space domain, including the interior of the cone S+

d (R). A
Wishart ATSM has been defined by Benabid, Bensusan and El Karoui and studied by Ben-
susan in his Phd thesis [Ben10]. Their model is inspired by the canonical specification of
ATSM given by [DS00], and uses Wishart processes to define a rich volatility dynamics.
The model we study here differs in that: first we use the Wishart-like process to model
stochastic variance-covariance, and secondly we consider a correlation between the factors
and the drivers of the volatility. In a series of papers by Gnoatto [Gno13] and Gnoatto
and Grasselli, [GG14a], and Gnoatto et al. [BGH13] have considered affine term structure
models, in which the yield curve is driven by a Wishart process. A mean reverting Wishart
model for the log-prices of commodities has been considered in [CWZ15].

Section 3.2 provides an efficient Monte Carlo simulation framework for the model. We also
investigate less time consuming numerical methods for pricing vanilla interest rates options.
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Transform methods, and asymptotic expansion of the density through Gram-Charlier and
Edgeworth series prove to be very efficient due to the affine structure of the model. The
semi-analytical expressions of the Laplace/Fourier transforms allow an efficient computation
of the moments of asset prices. Unfortunately these methods lack of precise error estimates.
We apply perturbation techniques to derive the volatility smile at order two in the volatility-
of-volatility. This allows for an explicit representation of the volatility smile, allowing for full
understanding of the model parameters and factors role. The arguments we use to obtain
the expansion have been developed in the book of Fouque et al. [FPS00]. They rely on an
expansion of the infinitesimal generator. Recently, this technique was applied by Bergomi
and Guyon [BG12] to provide approximation under a multi factor model for the forward
variance. Here, we have to take into account some specific features of the fixed income and
work under the appropriate probability measure to apply these arguments.

The chapter is organized as follows: section 4.1 defines the model, discusses the specifi-
cation, provides the bond reconstruction formulas and characterizes the distribution of the
state variables under the forward measures. Section 4.2 presents two fast numerical meth-
ods for pricing caplets and swaptions. Namely the Fourier inversion and the Fast Fourier
Transform (FFT) methods, and the series expansion methods of Gram-Charlier and Edge-
worth type. Section 4.3 presents the expansion for caplets and swaptions. Finally section
4.4 discusses the hedging in the model.

4.1 Model definition

Since [DK96b] it is well known that to define an ATSM one only needs to consider a set
of state variables following an affine diffusion process under the risk neutral measure and
assume that the short rate is an affine function of these variables. We define the stochas-
tic variance covariance ATSM (SCVATSM) as a short rate model driven by state variables
with distribution AFF ((p, y,K, θ, c), (d, x,Ω, b, ϵInd ), ρ) under the risk-neutral measure. The
specification of the model is designed to allow for an interpretation of the model factors.
While keeping the the interpretation of the yield curve factors as described in the LGM
model, we also identify the volatility factors that drive the implied volatility of swaptions
and caplets. The model exhibits a volatility smile allowing for market option prices cali-
bration and stochastic correlation between rates. These features make the model suitable
for exotic options pricing and option books management. We tried to reduce the number
of parameters of the model as much as possible. Note that the numerical framework that
will be developed can be applied to any asset pricing model driven by a general dynamics of
the type AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ). However, we will show in subsection 4.1.1 that
considering a more general specification would not make the model richer.

Definition 27 — We assume that (Xt, Yt)t≥0 follows AFF ((p, y,K, θ, c), (d, x,Ω, b, ϵInd ), ρ)
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under a risk-neutral measure. Then, we define the short interest rate by

rt = φ+

p∑
i=1

Y i
t + Tr (γXt) , (4.1)

with φ ∈ R and γ ∈ Sd(R).
In the following we denote by M {φ, γ, (p, y,K, θ, c), (d,Ω, b, n, ϵ), ρ} the stochastic variance-
covariance affine term structure model (SCVATSM) defined by (4.1).

In the LGM model, it is generally assumed distinct speed of mean-reversion for each factors.
This leads to assume that

K = diag(k1, . . . , kp) with 0 < k1 < · · · < kp,

and we work under this assumption in the sequel. It can be easily checked (see for example
Andersen and Piterbarg [PA10]) that any linear Gaussian model such that K has distinct
positive eigenvalues can be rewritten, up to a linear transformation of the factors, within
the present parametrization. From Proposition 14, we easily get the following result on the
Zero-Coupon bonds.

Corollary 28 Bond reconstruction formula. Let 0 ≤ t ≤ T and Pt,T = E[exp(−
∫ T
t
rsds)|Ft]

denote the price at time t of a zero-coupon bond with maturity T . Let us assume that

γ − 1

2

(
p∑
i=1

1

k2i

)
c⊤c ∈ S+

d (R). (4.2)

Then, Pt,T is given by

Pt,T = exp(A(T − t) + Tr(D(T − t)Xt) +B(T − t)⊤Yt), (4.3)

with A(t) = η(t) − φt, D(t) = g(t) and B(t) = λ(t), where (η, g, λ) is the solution of (3.9)
with Λ = 0, Γ = 0, Γ̄ = −γ and Λ̄ = −1p (i.e. Λ̄i = −1 for 1 ≤ i ≤ p). In particular, we
have −D(T − t) ∈ S+

d (R).

Let us make now some comments on the model.

• In order to keep the same factors as in the LGM, one would like to take γ = 0.
However, this choice is possible only if the perturbation around the LGM is small
enough provided that −(b + b⊤) is positive definite, see Remark 29. Besides, even if
Pt,T may be well defined for T − t small enough, it would be then given by the same
formula, and therefore the yield curve dynamics depends anyway on the factor X.

• In order to have a clear interpretation of the volatility factor X on the factor Y , a
possible choice is to consider d = q × p with q ∈ N∗ and ci,j = 1(i−1)×p<j≤i×p. Thus,
from (B.2), the principal matrix (Xk,l)(i−1)×p<k,l≤i×p rules the instantaneous quadratic
variation of the factor Yi while the submatrix (Xk,l)(i−1)×p<k≤i×p,(j−1)×p<l≤j×p rules the
instantaneous covariation between the factors Y i and Y j.
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• The model does not prevent from having a negative short rate or from having E[|Pt,T |k] =
∞ for any k > 0, unless we consider the degenerated case (p = 0) where the yield curve
is driven by the volatility factors X and the factors Y are null. This particular model
has been studied by Gnoatto in [Gno13].

Remark 29 — The condition (4.2) is sufficient to get that Pt,T is well-defined. However,
this condition does not depend on ϵ while we know that for ϵ = 0, Pt,T is well-defined since
X is deterministic and Y is a Gaussian process. We can get a complementary sufficient
condition when −(b + b⊤) is positive definite, which is a reasonable assumption since it
leads to a stationary process by Proposition 15. In this case, there exists µ > 0 such that
−(b + b⊤) − µId ∈ S+

d (R). By using Proposition 14 with Υ = µ
4ϵ2
Id, we get that (3.7) is

satisfied if we have

∀t ≥ 0,
µ2

8ϵ2
Id −

µ

8ϵ
(Ind ρλ

⊤c+ Ind ρλ
⊤c)− 1

2
c⊤λλ⊤c+ γ ∈ S+

d (R).

Since for t ≥ 0, λ(t) takes values in a compact subset of Rp, there is ϵ0 > 0 such that this
condition is satisfied for any ϵ ∈ (0, ϵ0).

Stationarity is considered a desirable property for a term structure model. The function
mapping the factors (X,Y ) into the yield curve (which is defined by the functions D, B
and A) is stationary. Choosing between a stationary model and a non stationary model
often results of a tradeoff between the flexibility needed for market prices calibration and
the extent to which we want our model to exhibit a robust dynamical behavior. Too often
excessive importance is accorded to the reproduction of the static stylized facts observed in
the market (volatility smile, skew, output correlations...) neglecting the dynamical proper-
ties of the model. Non stationarity often results in poor dynamical properties of the model
and can lead to serious mishedging issues (see paragraph 2.6 for an example). It is possible
to allow for some non-stationarity of the model for the initial yield curve calibration while
keeping a stationarity in the way the yield curve and volatility cube move. In practice this
means we can consider a time dependent function φ(t).

We give a clear interpretation of the underlying state variables of the model, separating
them between yield curve factors Y and volatility factors X. Similarly to what we have done
in the multi-factors gaussian model (see section 2.4.1), we want to identify the factors as
drivers of the market prices, for example the first diagonal factor can be associated to the
main driver of the short expiry volatility of long maturity swaptions. In a stationary model
we can hedge against the factors movements. Assuming these factors have been identified
with some market prices drivers the model would allow us to hedge the risks associated to
the market movements. Furthermore, the model also contains additional degrees of freedom,
such as a stochastic correlation between rates. This makes the model a good candidate to
price and risk manage exotic products which depend on the correlation between rates such
as CMS spread options.

114



In all the following we denote by M {φ, γ, (p, y,K, θ, c), (d,Ω, b, n, ϵ), ρ} the model defined
above.

4.1.1 Model reduction

Relying on the identities in law of affine processes given in paragraph 3.1.5 we show that
considering a more general dynamics for the state variables would not increase the number
of degrees of freedom of the model.

Let a ∈ Md(R), and consider the model rt = φ+
∑p

i=1 Y
i
t + Tr

(
γ̃X̃t

)
with

Yt = y +

∫ t

0

K(θ − Ys)ds+

∫ t

0

c̃

√
X̃s

[√
1− |ρ̃|2dZs + dWsρ̃

]
X̃t = x̃+

∫ t

0

(
Ω̃ + (d− 1)ϵ2a⊤a+ b̃X̃s + X̃sb̃

⊤)
)
ds+ ϵ

∫ t

0

√
X̃sdWsa+ a⊤dW⊤

s

√
X̃s,

and γ̃ ∈ Sd(R), x̃, Ω̃ ∈ S+
d (R), c̃, b̃ ∈ Md(R), ρ̃ ∈ Rd such that |ρ̃| ≤ 1. This model may seem

a priori more general, but this is not the case. In fact, let n be the rank of a and u ∈ Md(R)
be an invertible matrix such that a⊤a = (u−1)⊤Ind (u

−1). Then, Xt = u⊤X̃tu solves

dXt = [Ω + (d− 1)ϵ2Ind + bXt +Xtb
⊤]dt+ u⊤

√
X̃tdWtau+ u⊤a⊤dW⊤

t

√
X̃tu,

with b = u⊤b̃(u−1)⊤, Ω = u⊤Ω̃u ∈ S+
d (R) and starting from x = u⊤x̃u ∈ S+

d (R). After some
calculations, we obtain ⟨d(Yt)m, d(Yt)m′⟩ = (c̃X̃tc̃

⊤)m,m′dt = (cXtc
⊤)m,m′dt with c = c̃(u−1)⊤;

⟨d(Xt)i,j, d(Xt)k,l⟩ = ϵ2 [(Xt)i,k1j=l≤n + (Xt)i,l1j=k≤n + (Xt)j,k1i=l≤n + (Xt)j,l1i=k≤n] dt and

⟨d(Yt)m, d(Xt)i,j⟩ = ϵ
[
(u⊤X̃tc̃

⊤)m,i(u
⊤a⊤ρ̃)j + (u⊤X̃tc̃

⊤)m,j(u
⊤a⊤ρ̃)i

]
dt

= ϵ
[
(Xtc

⊤)m,i(u
⊤a⊤ρ̃)j + (Xtc

⊤)m,j(u
⊤a⊤ρ̃)i

]
dt.

Since the law of (X, Y ) is characterized by its infinitesimal generator, we can assume without
loss of generality that ρ̃ ∈ ker(u⊤a⊤)⊥ = Im(au). Therefore, there is ρ′ ∈ Rd such that
ρ̃ = auρ′, and we set ρi = ρ′i for i ≤ n and ρi = 0 for n < i ≤ d. We have |ρ|2 = (ρ′)⊤Ind ρ

′ =
|ρ̃|2 ≤ 1, and therefore (X, Y ) follows the law AFF ((p, y,K, θ, c), (d, x,Ω, b, a), ρ), and we
have rt = φ+

∑p
i=1 Y

i
t + Tr(γXt) with γ = u−1γ̃(u−1)⊤.

Therefore, the (reduced) specification of the model we have given maintains all the degrees
of freedom of Wishart-like diffusions. The reduced form of the model simplifies most of the
calculations, and in particular allows for a remarkable application of the splitting property
of affine process highlighted in [AA13] to the model both for Monte Carlo simulation and
implied volatility expansions.
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4.1.2 Change of measure and Laplace transform

In the fixed income market, the pricing of vanilla products is often (if not always) made
under a suitably chosen equivalent martingale measure different from the risk-neutral mea-
sure. It is thus important to characterize the distribution of the underlying market prices
under these measure. The forward-neutral measures are probably the most important ex-
ample of such pricing measures. The ATSM framework implies that the diffusion of the
underlying state variables is of the form (3.1) (but with time-dependent coefficients) under
all equivalent martingale measures. Furthermore, given the expression of zero-coupon bonds

Pt,T = exp(A(T − t) +B(T − t)TYt + Tr(D(T − t)Xt))

we can provide semi-analytical expressions of the moments of zero-coupon bonds, by means
of the Laplace transform of the couple (X, Y ) under the corresponding measure.

Diffusion under the forward neutral probabilities

We assume that the condition (4.2) holds. Let QU denote the U -forward neutral proba-
bility, which is defined on FU by

dQU

dP
=
e−

∫ U
0 rsds

P0,U

.

This is the measure associated with the numeraire Pt,U . It comes from the martingale
property of discounted asset prices that for t ∈ (0, U),

d
(
e−

∫ t
0 rsdsPt,U

)
e−

∫ t
0 rsdsPt,U

= 2ϵTr(D(U − t)
√
XtdWtI

n
d ) +B(U − t)⊤c

√
XtdWtρ+ ρ̄B(U − t)⊤c

√
XtdZt

= Tr([2ϵIndD(U − t)
√
Xt + ρB(U − t)⊤c

√
Xt]dWt) + ρ̄B(U − t)⊤c

√
XtdZt.

From Girsanov’s theorem, the processes

dWU
t = dWt −

√
Xt(2ϵD(U − t)Ind + c⊤B(U − t)ρ⊤)dt

dZU
t = dZt − ρ̄

√
Xtc

⊤B(U − t)dt

are respectively matrix and vector valued Brownian motions under QU and are independent.
This yields to the following dynamics for Y and X under QU :

dXt = (Ω + (d− 1)ϵ2Ind + bU(t)Xt +Xt(b
U(t))⊤)dt+ ϵ

(√
XtdW

U
t I

n
d + Ind (dW

U
t )

⊤
√
Xt

)
(4.4)

dYt = K(θ − Yt)dt+ cXtc
⊤B(U − t)dt+ 2ϵcXtD(U − t)Ind ρdt+ c

√
Xt(dW

U
t ρ+ ρ̄dZU

t ),(4.5)

with bU(t) = b+ 2ϵ2IndD(U − t) + ϵInd ρB(U − t)⊤c.
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Fourier/Laplace transform

One of the most appealing properties of affine processes is that their Fourier and Laplace
transforms admit semi-analytical expression (see [DK96a]). The diffusion of the state vari-
ables is affine under the forward neutral measures, implying that the Fourier and Laplace
transforms of the state variables under these measures admit a semi-analytic expression.
Furthermore, the ZC bonds prices are exponential affine functions of the state variables, and
thus the Fourier transforms of log ZC prices can be viewed as Fourier transforms of the state
variables.

We are now interested in calculating the law of (XT , YT ) under the U -forward measure

for T ≤ U . More precisely, we calculate EQU
[
exp(Tr(ΓXT ) + Λ⊤YT )|Ft

]
for t ∈ [0, T ] by

using again Proposition (14). We assume that condition (4.2) holds and have

EQU
[
exp(Tr(ΓXT ) + Λ⊤YT )|Ft

]
=

1

Pt,U
E
[
exp(Tr(ΓXT ) + Λ⊤YT − φ(U − t)−

∫ U

t

1⊤
p Ysds−

∫ U

t

Tr(γXs)ds)|Ft

]
=
eTr(Γ+D(U−T )XT )+(Λ+B(U−T ))⊤YT+A(U−T )−φ(T−t)−

∫ T
t 1⊤

p Ysds−
∫ T
t Tr(γXs)ds

exp(A(U − t) + Tr(D(U − t)Xt) +B(U − t)⊤Yt)
.

We consider Γ ∈ Sd(R) and Λ ∈ Rp such that

−Γ ∈ S+
d (R) and |Λi| ≤ e−ki(U−T )/ki, for 1 ≤ i ≤ p,

in order to have |Λi+Bi(U−T ) ≤ 1/ki and −(Γ+D(U−T )) ∈ S+
d (R). By Proposition (14),

we get that the expectation is finite and that

EQU
[
exp(Tr(ΓXT ) + Λ⊤YT )|Ft

]
= exp(AU(t, T ) + Tr(DU(t, T )Xt) +BU(t, T )⊤Yt), (4.6)

with FU(t, T ) = F̃ (T − t) +F (U − T )−F (U − t) for F ∈ {A,D,B}, where (B̃, D̃, Ã) is the
solution of (3.9) with B̃(0) = Λ + B(U − T ), ˜D(0) = Γ +D(U − T ), Ã(0) = 0, Λ̄ = 1p and
Γ̄ = −γ.

Corollary 30 Let (4.2) hold. For Γ ∈ Sd(R) and Λ ∈ Rp such that −Γ ∈ S+
d (R) and

|Λi| ≤ e−ki(U−T )/ki for 1 ≤ i ≤ p, EQU
[
exp(Tr(ΓXT ) + Λ⊤YT )|Ft

]
< ∞ a.s. for any

t ∈ [0, T ] and is given by (4.6).

Let us mention that in practice, the formula above for AU(t, T ), DU(t, T ) and BU(t, T )
requires to solve two different ODEs. It may be more convenient to use the following one
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that can be easily deduced from dynamics of (X, Y ) under the U -forward measure.

∂BU

∂t
(t, T ) = K⊤BU(t, T ), BU(T, T ) = Λ,

−∂DU

∂t
(t, T ) = 2ϵ2DUIndD

U +DU(bU(t) + ϵ
2
Ind ρ(B

U)⊤c) + (bU(t) + ϵ
2
Ind ρ(B

U)⊤c)⊤DU

+1
2
c⊤BU(BU)⊤c+ c⊤BUB(U − t)⊤c+ ϵD(U − t)Ind ρ(B

U)⊤c+ ϵc⊤BUρ⊤IndD(U − t),
DU(T, T ) = Γ,

−∂AU

∂t
(t, T ) = BU(t, T )⊤Kθ + Tr

(
DU(t, T )(Ω + ϵ2(d− 1)Ind )

)
, AU(T, T ) = 0.

(4.7)

4.2 Numerical framework

In this section we investigate fast numerical methods for vanilla options pricing, intended
to be used for model calibration. As already mentioned, one of the main appeals of SC-
VATSM is that Laplace and Fourier transform of the underlying market assets log prices can
be computed by means of analytical or semi-analytical formulas. Transform based methods
and moments methods are thus very efficient in term of computational time.

4.2.1 Series expansion of distribution

In this paragraph we present pricing methods based on the expansion of the distribution
of the underlying asset prices. These methods have previously been applied for pricing
swaptions in [CDG02] and [TYW05], both papers do not provide theoretical arguments for
the convergence of the expansion series, nor for the bounds of the error. Numerical tests are
provided for classic ATSM, in particular for the multi-factors gaussian and CIR model. The
interest rates vanilla options market is made of caps, floors and swaptions. As discussed in
paragraph 1.3.2, it is standard to write swaptions prices as call or put options on coupon
bonds. Suppose we want to compute

C(K) = EQ
[
e−

∫ T
t dsrs(YT −K)+|Ft

]
,

where Q is the risk-neutral probability and Yt =
∑n

i=1CiPT,Ti . We have the following
decomposition of the price

C(K) =
n∑
i=1

CiE
[
e−

∫ T
t dsrsPT,Ti1YT>K |Ft

]
−KEQ

[
e−

∫ T
t dsrs1YT>K |Ft

]
.

By standard change of numeraire arguments [GREK95], we can write the following change

of measure Pt,Ti
dQTi

dQ
|Ft= e−

∫ T
t dsrsPT,Ti . Which leads to the following expression
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Figure 4.1: Quality of the approximation of QT (PT,T+δ > a) by the Gram-Charlier series
at different orders, with T = 4 and δ = 3m. The model parameters are x = 10−4Id, y =
(−0.02, 0.01), α = 2.5, b = diag(−0.11,−1.1), K = diag(1, 0.1), c = Id. The higher
order moments of the ZCB are computed using the numerical resolution of the MRDE
described in 3.1.4, with a time discretization step of 0.01.

C(K) =
n∑
i=1

CiPt,TiQ
Ti (YT > K|Ft)−KQT (YT > K|Ft) .

Moments expansion pricing methods are based on the idea of building an approximation
of the probabilities QTi (YT > K|Ft) through Gram-Charlier or Edgeworth series. The im-
plementation requires efficient methods for computing the moments of YT , which are easily
given by linear combinations of the moments of the zero-coupon bonds PT,Ti .

In the following we present two different ways to approximate the density function of Y
by series, the cumulative distribution function can then easily be approximated as the inte-
gral of such series. Without loss of generality we assume that Y is centered i.e. E [Y ] = 0
and denote by σ2 its variance.

Gram-Charlier expansions

Gram-Charlier series are widely used in various domains of applied mathematics and
physics for cumulative distribution functions estimation. For a function in L2(R), this series
can be viewed as the canonical representation in the Hilbert basis

e−x
2/2Hj(x), j ≥ 1,
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Figure 4.2: Quality of the approximation of QT (PT,T+δ > a) by the Edgeworth series at
different orders, with T = 4 and δ = 3m. The model parameters are x = 10−4Id, y =
(−0.02, 0.01), α = 2.5, b = diag(−0.11,−1.1), K = diag(1, 0.1), c = Id. The higher
order moments of the ZCB are computed using the numerical resolution of the MRDE
described in 3.1.4, with a time discretization step of 0.01.

where Hj denotes the Hermite polynomial of degree j, which is defined by

dj

(dx)j

(
e−x

2/2

√
2π

)
= (−1)jHj(x)

e−x
2/2

√
2π

.

The polynomials Hj admit the following explicit expression

Hj(x) = n!

[n/2]∑
k=0

(−1)kxn−2k

k!(n− 2k)!2k
.

The following theorem gives sufficient conditions under which the convergence of the Gram
Charlier series hold.

Theorem 31 —(Cramer [Cra57]) Let f be a density function such that∫
R
dxe

x2

4 f(x) <∞, (4.8)

and f is of bounded variations, then the Gram-Charlier series converges in every continuity
point of f

f(x) =
∑
k≥0

ck
k!
ϕ(k)(x),
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where ϕ(k) is the k-th derivative of the normal density and ck is defined by

ck =

∫
R
dxf(x)Hk(x).

For practical purposes it is important to measure the quality of the approximation given by
the truncated series. Unfortunately there exist very few results on the error of approximation
of the truncated series. The following theorems give (under some very restrictive conditions)
the rate of convergence of Gram-Charlier series.

Theorem 32 — Let f be a density function such that, f has k-th continuous derivative of
bounded variation, and

xe
x2

4 f (k)(x), x2e
x2

4 f (k−1)(x), ..., xk+1e
x2

4 f(x)

are of bounded variations on R, then∣∣∣∣∣f(x)−
N∑
n=0

cn
n!
ϕ(n)(x)

∣∣∣∣∣ < MN−k/2(1 + x2)1/6e−x
2/4,

where M is a constant independent of N .

Note that the sufficient convergence conditions (4.8) is not verified for zero-coupon bonds in
our model. Let E ∈ R, B ∈ Rp, and D ∈ Sd(R), we have

EQU

[
exp

(
eE+Tr(DXT )+BTYT

4

)]
= EQU

[
EQU

[
exp

(
eE+Tr(DXT )+BTY

4

)
|Xs, s ≤ t

]]

= EQU

[
E
[
exp

(
1

4
ea(xs,s≤t)+b(xs,s≤t)

TG

)]
|xs=Xs,s≤t

]
where G is a gaussian variable. The last equality comes form the fact that conditionally
to the path of the process X, the process Y is gaussian under the U -forward measure.
Precisely, conditionally to the path of the process X, Y is an Ornstein-Uhlenbeck process.
Since E [exp(η exp(µG)] = ∞ for any η > 0 and µ ∈ R∗, it is clear that we must have

EQU

[
exp

(
eE+Tr(DXT )+BTYT

4

)]
= ∞,

which implies that the sufficient conditions for the convergence of the Gram-Charlier series
are not verified. In fact the series diverge in many situations of practical interest (see Figure
4.1).
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Edgeworth expansion

In the limit Edgeworth and Gram-Charlier series are the same, but Edgeworth series
overcome some of the problems of Gram-Charlier by assembling the terms of the same order
together. Let us denote by f the density of a generic random variable Y and by G(k) its
characteristic function

G(k) = E
[
eikY

]
=

∫
R
dyeikyf(y).

Provided that the function G admits a Taylor expansion when k goes to zero, the cumulants
κi are defined by

logG(k) =
∑
j≥1

κj
(ik)j

j!
.

Cumulants can be computed from the moments µn of Y , we have

κn = n!
∑
{km}

(−1)r−1(r − 1)!
n∏

m=1

1

km!

(µm
m!

)km
,

here the summation extends over all non-negative integers {km} satisfying

k1 + 2k2 + · · ·+ nkn = n, (4.9)

and r = k1 + k2 + · · · + kn. Let us denote by g the characteristic function of Y/σ,where
σ =

√
V ar(Y ), then g(k) = G(k/σ), and thus we have

g(k) = e−
k2

2 exp

(∑
n≥3

Snσ
n−2

n!
(ik)n

)
,

where Sn = κn/σ
2n−2. Developing the exponential function as a formal series in powers of σ

we get

exp

(∑
n≥3

Snσ
n−2

n!
(ik)n

)
= 1 +

∑
s≥1

Ps(ik)σ
s (4.10)

where

Ps(ik) =
∑
{km}

s∏
m=1

1

km!

(
Sm+2(ik)

m+2

(m+ 2)!

)km
,

where again the summation extends over all non-negative integers {km} satisfying (4.9).
If the characteristic function G is integrable, injecting the expression of g in the Fourier
inversion formula, we get the following expression for the density p of Y/σ
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p(y) =
1

2π

∫
R
dke−ikyg(k)

=
1

2π

∫
R
dke−ikye−

k2

2

1 +
∑
s≥1

∑
{km}

s∏
m=1

1

km!

(
Sm+2(ik)

m+2

(m+ 2)!

)km
= ϕ(y) +

∑
s≥1

σs

∑
{km}

s∏
m=1

1

km!

(
Sm+2(−1)m+2

(m+ 2)!

dm+2

dxm+2

)km
ϕ(x)


= ϕ(y)

1 +
∑
s≥1

σs
∑
{km}

Hs+2r(y)
s∏

m=1

1

km!

(
Sm+2(−1)m+2

(m+ 2)!

)km
ϕ(x)


Likewise Gram-Charlier series, Edgeworth series also diverge in several cases of practical
interest (see Figure 4.2).

Remark 33 — The truncated series are polynomial functions which are not necessarily
proper densities. In particular the truncated series are not necessarily positive or unimodal.
Boundary regions for the moments of the distribution exist to impose that the Gram-Charlier
or Edgeworth series define proper densities, we refer to [BZ88] for further details. To the best
of our knowledge no tractable explicit boundary conditions exist for a generic order series.

4.2.2 Transform pricing

We follow [CM99] and [Lee04] and recall some results for transform pricing methods.
Consider a general framework with an asset S which is a martingale under a generic mar-
tingale measure Q. Suppose we want to price a Call on S of maturity T

C(SK) = EQ
[
(ST − SK)+|Ft

]
.

In the following we will drop the Q in the expectation, if not specified, the expectations are
always meant to be taken under the martingale measure Q. We introduce the notations

st = log(St)

k = log(SK)

ϕT (u) = EQ [exp(iusT )]

With a slight abuse of notations, we will note either C(SK) or C(k) the call price as a
function of respectively the strike or the log strike. For a given random variable X, we
define AX as the interior of {v ∈ R : E

[
evX
]
<∞}.
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Existence theorem and Fourier inversion

The following theorem gives an existence result for the modified Fourier transform of sT .

Theorem 34 —(Roger Lee [Lee04]) Assume 1 ∈ AsT . Then there exists α > 0 such that
1 + α ∈ AsT and for any such α, ĉα exists and

ĉα(u) =
ϕT (u− (1 + α)i)

α2 + α− u2 + i(2α+ 1)u
,

where ĉα denotes the Fourier transform of cα(k) = eαkC(k).

Let us note that 1 ∈ AsT means that E[ST ] < ∞ and that there exists ϵ > 0 such that
E[S1+r

T ] < ∞ for r < ϵ. The following theorem gives the expression of the Call price
obtained by Fourier transform

Theorem 35 —(Carr-Madan [CM99]) Assume 1 ∈ AsT . Then there exists α > 0 such that

C(SK) =
e−αk

2π

∫
R
due−iukĉα(u)

=
e−αk

π

∫
R+

due−iukRe (ĉα(u))

Transform pricing methods are based on a discrete approximation of the above integral.

Approximation error bounds

In [Lee04], the author provides bounds for both sampling and truncation errors, which
gives bounds for the approximation error of the call price. Let us introduce the following
notations:

ΣN(k) = e−αk
∆

π
Re

[
N−1∑
n=0

e−i(n+1/2)k∆ĉα((n+ 1/2)∆)

]
Σ∞(k) = lim

N→∞
ΣN(k).

We have provided here the price approximation given by the Riemann sum of the integral,
more generally, we can use the following approximation of the price

C(SK) =
exp(−αk)

π

N−1∑
n=0

exp(−iu(n)k)ĉα(u(n))ωn(∆),

where u(n), ω(∆) are respectively the sampling points and the weights depending on the
choice of numerical integration method, and ∆ is the step of the integration method. For
example, the Simpson’s rule points and weights are given by
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u(n) = n∆

ωn(∆) =
∆

3
(3 + (−1)n−1 − δn).

The following theorems provide bound estimates for the sampling error and the truncation
error. Error bounds estimates depend respectively on the finite moments of the underlying,
and on the asymptotic (decreasing) properties of the modified Fourier transform.

Theorem 36 —(Roger Lee [Lee04]) Assume E [exp(sT )] <∞.

If ϕT is such that ĉα decays as a power |ĉα(u)| ≤ ψ(u)
u1+γ for u > u0 large enough, where

γ > 0 and ψ is a decreasing function, then the truncation error

|ΣN(k)− Σ∞(k)| ≤ ψ(N∆)

πeαkγ(N∆)γ
, for N∆ > u0.

If ϕT is such that ĉα decays exponentially |ĉα(u)| ≤ ψ(u)e−γu for u > u0 large enough,
where γ > 0 and ψ is a decreasing function, then the truncation error

|ΣN(k)− Σ∞(k)| ≤ ∆ψ((N + 1/2)∆)

2πeαk+γN∆ sinh(γ∆/2)
, for N∆ > u0.

In order to exploit the above theorem we should be able to characterize the asymptotic
properties of the modified fourier transform of the log-price. Again, this means we should
be able to characterize the asymptotic properties of the solutions of MRDE, which is not
always easy. Yet, we can always find a rough upper bound for |ĉα(u)|, we have

|ĉα(u)| ≤
E
[
S1+α
T

]
|α2 + α− u2 + i(2α+ 1)u|

=
E
[
S1+α
T

]
u4 + u2(2α(α+ 1) + 1) + α2(α+ 1)2

.

Then there exists a constant C and a u0 such that for u > u0

|ĉα(u)| ≤
CE

[
S1+α
T

]
u2

.

While rough this bound is useful if we don’t have explicit expressions of ĉα, and cannot work
out the limit behavior of its semi-analytical expression. As expected the truncation error is
bounded by a quantity depending on U = N∆ which is the upper bound of Fourier inversion
integral to which we chose to truncate. Applying the above theorem with our rough upper
bound, we know that the truncation error is O(1/U) when U is large enough. Numerical
tests proved that the norm of the modified Fourier transform |ĉα(u)| decreases faster then
O(1/u1+γ) in several cases of practical interest. Figure 4.5 shows the convergence ΣN(k)
for different values of the model parameters to the price of 1Yx1Y caplet price. Clearly the
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norm of the modified Fourier transform |ĉα(u)| decreases as an en exponential function of u,
which ensures a convergence faster then O(1/U).

The following theorem provides an upper bound for the sampling error.

Theorem 37 —(Roger Lee [Lee04]) Assume 1 ∈ AsT and (1 + α) ∈ AsT .

|C(SK)− Σ∞(k)| ≤ inf
p>α:p+1∈AsT

[
e−2πα/∆ϕT (−i)
1− e−4π α

∆

+
e2π(α−p)/∆ϕT (−i(p+ 1))

(1− e−4π α
∆ )(p+ 1)epk

(
p

p+ 1

)p]
.

The error depends on the moments of the underlying asset price. Again we do not have an
explicit expression for the moments of the underlying asset prices in our model, and it is
difficult to exploit the above bound.

FFT algorithm setup

FFT is an efficient algorithm to compute the sum

ym =
N−1∑
n=0

e−i
2π
N
nmxn for m = 0, ..., N − 1.

In order to be able to apply the above algorithm to compute the sum ΣN(k), we rearrange
the expression. We chose a strike discretization km = k + λm, then we have the following
approximation

ΣN(km) =
exp(−αkm)∆

π

N−1∑
n=0

exp(−inmλ∆)e−ink∆ĉα((n+ 1/2)∆).

As soon as we impose that

∆λ =
2π

N
, (4.11)

the above expression fits into the FFT framework with the vectors

xn = e−ink∆ĉα((n+ 1/2)∆)

ym = ΣN(km).

Application to Caplets pricing in the SCVATSM

Caplets can be written as call or puts respectively on forward ZC bond and on ZC bond.
We have

Caplet(t, T, δ,K) = Pt,T
1 + δK

δ
EQT

[(
1

1 + δK
− PT,T+δ

)+
]
,
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By Call-Put parity, the pricing problem reduces to the pricing of the following quantities

V T
t (SK) = ET

[
(PT,T+δ − SK)+

]
.

We can thus apply the FFT framework to the above quantity. We introduce the notations

St = Pt,T+δ

st = log(St)

k = log(SK).

and ψT is the modified Fourier transform of sT

v̂Tα (v) =
ϕT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v

ϕT (u) = EQT

[exp(iusT )|Ft]

= EQT [
exp(iu(E(δ) + Tr(D(δ)XT ) +B(δ)TYT ))|Ft

]
,

which can be easily computed using (3.10).

Let us note that the above method Fourier transform based methods are not directly appli-
cable for the pricing of swaptions. The reason for this is that neither the Fourier transform of
the forward swap rate, nor the Fourier transform of coupon bonds are admit semi-analytical
expressions. In order to apply Fourier methods for pricing swaptions, one needs to use the
drift freezing approximations introduced in 1.3.2. We refer to Schrager and Pelsser [SP06]
and Singleton and Umantsev [SU02] for a detailed description of these methods which di-
rectly apply to our model.

4.2.3 Numerical results

We test the accuracy of the methods for pricing caplets and swaptions. Our benchmark
is given by the Monte Carlo price. We will test the accuracy of the methods for different
values of the model parameters.

Let us now present the models that will be tested. In the following we will denote by
model 1 the model defined by the following set of parameters:

K = diag(0.1, 1.), c =

(
1 0
−1 1

)
, b = diag(−0.41,−0.011),Ω = −bx∞ − x∞b

T

x =

(
1.2% −4.32 · 10−5

−4.32 · 10−5 1.8%

)
, x∞ =

(
0.6% −3 · 10−6

−3 · 10−6 1%

)
, ϵ = 2 · 10−3.
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The parameters values have been chosen in such a way that the yield curve and volatility
levels generated by the model are in line with todays US and EUR interest rates market
levels. In particular, θT = (0.02,−0.01), yT = (0.02,−0.03), the parameter φ is set in such a
way that the spot rate is equal to 0.5%, and the parameter γ is set as follows:

γ =
1

2
c⊤(K⊤)−11p1

⊤
p (K)−1c+ 0.0001Id. (4.12)

Let us recall that under the condition γ − 1
2
c⊤B(τ)B(τ)⊤c ∈ S+

d (R) for all τ ≥ 0 we have
that D is well defined on R+ and −D ∈ S+

d (R). Since B(0) = 0, the condition is verified at
τ = 0 as soon as γ ∈ S+

d (R). By defining γ as above, we have imposed that the positiveness
condition is verified when τ goes to infinity.

Series expansion

Due to the divergence of the Gram-Charlier series, increasing the number of terms in
the expansion does not necessarily leads to more accurate approximations of the cumulative
distribution function of the coupon bond Y . See Figures 4.2 and 4.1.

Figures 4.3 and 4.4 show that the Edgeworth expansion approximation of the caplet price is
accurate across different expiries and maturities. The approximated price is inside the confi-
dence interval obtained with 105 simulation paths and 30 discretization steps in a reasonably
wide range around the ATM price.

Transform methods

We have investigated the pricing of caplets using FFT. As mentioned before we are not
able to describe the asymptotic behavior of the modified fourier transform of the log-price
ĉα defined in theorem . Numerical evidence indicate that |ĉα| decreases exponentially with
u. See Figure 4.5.

4.3 Volatility expansions for caplets and swaptions

The goal of this section is to provide the asymptotic behavior of the Caplet and Swap-
tion prices when the volatility parameter ϵ is close to zero. The practical interest of these
formulas is to give a proxy for these prices. Thus, they give a tool to calibrate the model
parameters to the smile. Getting an expansion on the smile is complementary with respect
to the transform based and density expansion methods we have presented in the previous
section. On the one hand, it is less accurate to calculate a single price since we only calculate
here the expansion up to ϵ2. On the other hand, it is more tractable for a first calibration
of the model and gives a good approximation for key quantities on the smile.

The arguments that we use in this section to obtain the expansion have been developed
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in the book of Fouque et al. [FPS00]. They rely on an expansion of the infinitesimal genera-
tor with respect to ϵ. Recently, this technique was applied by Bergomi and Guyon [BG12] to
provide approximation under a multi factor model for the forward variance. Here, we have to
take into account some specific features of the fixed income and work under the appropriate
probability measure to apply these arguments. Not surprisingly the zero order term in the
expansion is exactly the volatility of the LGM with a time-dependent variance-covariance
matrix. More interestingly the higher order terms allow to confirm the intuitions on the role
of the parameters and factors that determine the shape and dynamics of the volatility. An
alternative expansion for an equity Wishart model similar to the one we model has been
derived in [BBEK08], and studied in [DFG11].

Last, we have to mention that the calculations presented in this section are rather formal.
In particular, we implicitly assume that the caplet and swaption prices are smooth enough
and admits expansions with respect to ϵ. A rigorous proof of these expansions is beyond the
scope of this paper.

4.3.1 Price and volatility expansion for Caplets

It is standard market practice to view Caplets Caplet(t, T, δ) as Call options on the
forward libor rate Lt(T, δ), and analyze the prices in terms of implied Normal volatility of
the forward libor rate under the T + δ-forward neutral measure QT+δ. It is fairly equivalent
to look at caplets as Call options on the forward ZC bond

Pt,T

Pt,T+δ
and analyze the prices

in terms of log-normal implied volatility of the forward ZC bond under the QT+δ. In fact
these two volatilities are close one to the other. The only quantity of interest in order to
understand the Caplets volatility cube is what we call the forward Caplet price

FCaplet(t, T, δ) = ET+δ
[
(LT (T, δ)−K)+ |Ft

]
,

which can be rewritten as a call option on the forward zero coupon bond
Pt,T

Pt,T+δ

FCaplet(t, T, δ) =
1

δ
ET+δ

[(
PT,T
PT,T+δ

− (1 + δK)

)+ ∣∣∣∣Ft

]
.

Since (X, Y ) is a Markov process, FCaplet(t, T, δ) is a function of (Xt, Yt) and therefore we
can define the forward price function

P (t, x, y) = ET+δ
[(

PT,T
PT,T+δ

− (1 + δK)

)+ ∣∣∣∣Xt = x, Yt = y

]
. (4.13)

The goal of Subsection 4.3.1 is to obtain the second order expansion (4.15) of P with respect
to ϵ.
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A convenient change of variable

We want to get an expansion of the caplet price with respect to ϵ. To do so, we first
need to get an expansion to ϵ of the infinitesimal generator of the process (X, Y ) under the
probability QT+δ. However, we can make before a change of variable that simplifies this
approach. Thus, we define

Ht = ∆A(t, T, δ) + Tr(∆D(t, T, δ)Xt) + ∆B(t, T, δ)⊤Yt,

with

∆A(t, T, δ) = A(t, T )− A(t, T + δ)

(∆B,∆D)(t, T, δ) = (B,D)(T − t)− (B,D)(T + δ − t)

Thus, we have
Pt,T

Pt,T+δ
= eHt . It is well known that

Pt,T

Pt,T+δ
is a martingale under QT+δ, see e.g.

Proposition 2.5.1 in Brigo and Mercurio [BM06]. Thus, we get by Itô calculus from (4.4)
and (4.5) that (X,H) solve the following SDE

dXt = (Ω + ϵ2(d− 1)Ind + bT+δ(t)Xt +Xt(b
T+δ(t))⊤)dt+ ϵ

√
XtdW

T+δ
t Ind + ϵInd (dW

T+δ
t )⊤

√
Xt,

dHt = −1

2

(
∆B⊤cXtc

⊤∆B + 4ϵ2Tr(∆DInd∆DXt) + 2ϵ(∆B⊤cXt∆DI
n
d ρ)
)
dt

+∆B⊤c
√
X t(dW

T+δ
t ρ+ ρ̄dZT+δ

t ) + 2ϵTr(∆D
√
X tdW

T+δ
t Ind ). (4.14)

Therefore, P (t, x, y) = ET+δ
[(
eHT − (1 + δK)

)+ |Xt = x, Yt = y
]
only depends on (x, y)

through (x, h) where h = ∆B(t, T, δ)⊤y+Tr (∆D(t, T, δ)x)+∆A(t, T, δ), and we still denote
by a slight abuse of notations

P (t, x, h) = ET+δ
[(
eHT − (1 + δK)

)+ |Xt = x,Ht = h
]
.

Let us emphasize that this change of variable is crucial in order to apply an expansion proce-
dure similar to the one of Bergomi and Guyon [BG12]. It allows to reduce the dimensionality
of the underlying state variable. The variable H is one-dimensional and it is the only variable
that appears in the payoff of the caplet. Though this is obvious from the definition of the
model, we insist on the fact the implied volatility of caplets is a function of the factors X
only. This appears clearly in the SDE (4.14), Ht can be viewed as continuous version of the
forward Libor rate and its volatility depends on the factors X only.

Expansion of the price

From the SDE (4.14) and 12, we get the following PDE representation of P :

∂tP + L(t)P = 0

P (T, x, h) = (eh − (1 + δK))+
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where L(t) is given by

L(t) =
1

2

(
∆B⊤cxc⊤∆B + 4ϵ2Tr(∆DInd∆Dx) + 2ϵ(∆B⊤cx∆DInd ρ)

)
(∂2h − ∂h)

+
∑

1≤i,j≤d

(Ω + (d− 1)ϵ2Ind + bT+δx+ x(bT+δ)⊤)i,j∂xi,j

+
1

2

∑
1≤i,j,k,l≤d

ϵ2[xi,k(I
n
d )j,l + xi,l(I

n
d )j,k + xj,k(I

n
d )i,l + xj,l(I

n
d )i,k]∂xi,j∂xk,l

+
∑

1≤k,l≤d

{
ϵ2
∑

1≤i,j≤d

∆Di,j[xi,k(I
n
d )j,l + xi,l(I

n
d )j,k + xj,k(I

n
d )i,l + xj,l(I

n
d )i,k]

+

p∑
m=1

ϵ∆Bm[(cx)m,k(I
n
d ρ)l + (cx)m,l(I

n
d ρ)k]

}
∂xk,l∂h.

Some simplifications occur when we apply this operator to P since it is a function of a
symmetric matrix, and therefore satisfies ∂xi,jP = ∂xj,iP . Thus, we have

∀x ∈ Sd(R), h ∈ R, L(t)P (t, x, h) = L̃(t)P (t, x, h),

where

L̃(t) =
1

2

(
∆B⊤cxc⊤∆B + 4ϵ2Tr(∆DInd∆Dx) + 2ϵ(∆B⊤cx∆DInd ρ)

)
(∂2h − ∂h)

+
∑

1≤i,j≤d

(Ω + (d− 1)ϵ2Ind + 2x(bT+δ)⊤)i,j∂xi,j + 2
∑

1≤i,j,k,l≤d

ϵ2xi,k(I
n
d )j,l∂xi,j∂xk,l

+
∑

1≤k,l≤d

{
4ϵ2

∑
1≤i,j≤d

∆Di,jxi,k(I
n
d )j,l +

p∑
m=1

2ϵ∆Bm[(cx)m,k(I
n
d ρ)l]

}
∂xk,l∂h.

We assume that P admits a second order expansion

P = P0 + ϵP1 + ϵ2P2 + o(ϵ2). (4.15)

Our goal is to explain how to calculate in a quite explicit way the value of P0, P1 and
P2, in order to show the tractability of the model. We assume in our derivations that
these functions P0, P1 and P2 are smooth enough. To determine the value of P0, P1 and
P2, we proceed as Bergomi and Guyon [BG12] and make an expansion of the generator
L̃(t) = L̃0(t) + ϵL̃1(t) + ϵ2L̃2(t) + . . . in order to obtain the PDEs satisfied by P0, P1 and P2.
We first note that B does not depend on ϵ and that

bT+δ(t) = b+ ϵInd ρB(T + δ − t)⊤c+ 2ϵ2IndD(T + δ − t).

We only need an expansion up to order 1 for D, and we get from (3.9) that D(t) = D0(t) +
ϵD1(t) + O(ϵ2) with Ḋ0 = D0b + bD0 +

1
2
c⊤BB⊤c − γ, D0(0) = 0 and Ḋ1 = D1b + bD1 +
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1
2
D0I

n
d ρB

⊤c+ 1
2
c⊤Bρ⊤IndD0, D1(0) = 0. We then obtain

D0(t) = eb
⊤t

(∫ t

0

e−b
⊤s

(
1

2
c⊤B(s)B(s)⊤c− γ

)
e−bsds

)
ebt (4.16)

D1(t) =
1

2
eb

⊤t

(∫ t

0

e−b
⊤s
(
c⊤B(s)ρ⊤IndD0(s) +D0(s)I

n
d ρB(s)⊤c

)
e−bsds

)
ebt. (4.17)

The order 0 term is easily determined:

L̃0(t) =
(
∆B⊤cxc⊤∆B

) 1
2
(∂2h − ∂h) +

∑
1≤i,j≤d

(Ω + bx+ xb)⊤)i,j∂xi,j .

This is the operator associated to the following diffusion

dX0
t = (Ω + bX0

t +X0
t b

⊤)dt,

dH0
t = −1

2

(
∆B⊤cX0

t c
⊤∆B

)
dt+∆B⊤c

√
X0
t dZt.

The first and second order terms in the expansion of the generator are given by

L̃1(t) = (∆B⊤cx∆D0I
n
d ρ)(∂

2
h − ∂h) + 2

∑
1≤i,j≤d

(xc⊤Bρ⊤Ind )i,j∂xi,j (4.18)

+ 2
∑

1≤k,l≤d

p∑
m=1

∆Bm[(cx)m,k(I
n
d ρ)l]∂xk,l∂h (4.19)

L̃2(t) =
(
2Tr(∆D0I

n
d∆D0x) + (∆B⊤cx∆D1I

n
d ρ)
)
(∂2h − ∂h) +

∑
1≤i,j≤d

((d− 1)Ind + 4xD0I
n
d )i,j∂xi,j

+ 2
∑

1≤i,j,k,l≤d

xi,k(I
n
d )j,l∂xi,j∂xk,l +

∑
1≤k,l≤d

{
4
∑

1≤i,j≤d

(∆D0)i,jxi,k(I
n
d )j,l

}
∂xk,l∂h. (4.20)

By plugging the expansions of the generator and the price in the pricing PDE and identifying
each order in ϵ, we get the sequence of PDEs that are satisfied by P0, P1 and P2:

∂tP0 + L̃0(t)P0 = 0, P0(T, x, h) = (eh − (1 + δK))+,

∂tP1 + L̃0(t)P1 + L̃1(t)P0 = 0, P1(T, x, h) = 0,

∂tP2 + L̃0(t)P2 + L̃2(t)P0 + L̃1(t)P1 = 0, P2(T, x, h) = 0.

Let BS(h, v) = E
[(
exp

(
h− 1

2
v +

√
vG
)
− (1 + δK)

)+]
with G ∼ N(0, 1) denote the Black-

Scholes price with realized volatility v. It satisfies the following PDE

∂vBS(h, v) =
1

2

(
∂2h − ∂h

)
BS(h, v), (4.21)

that links the gamma, the delta and the vega. It will be used intensively in our calculations.
We get that

P0(t, x, h) = BS(h, v(t, T, δ, x)),
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where

v(t, T, δ, x) =

∫ T

t

∆B(u, T, δ)⊤ceb(u−t)
(
x+

∫ u

t

dze−b(z−t)Ωe−b
⊤(z−t)

)
eb

⊤(u−t)c⊤∆B(u, T, δ)du.

(4.22)

In fact, X0
u = eb(u−t)

(
x+

∫ u
t
dze−b(z−t)Ωe−b

⊤(z−t)
)
eb

⊤(u−t) when X0
t = x. The higher order

terms are given by

P1(t, x, h) = E
[∫ T

t

L̃1(s)P0(s,X
0
s , H

0
s )ds

∣∣∣∣H0
t = h,X0

t = x

]
(4.23)

P2(t, x, h) = E
[∫ T

t

(L̃1(s)P1(s,X
0
s , H

0
s ) + L̃2(s)P0(s,X

0
s , H

0
s ))ds

∣∣∣∣H0
t = h,X0

t = x

]
.(4.24)

We can calculate explicitly these quantities by using on the one hand the Gamma-Vega
relationship (4.21) and on the other hand the fact that ∂khP0(s,X

0
s , H

0
s ) is a martingale. The

details of the calculations are provided in Appendix E.1, and we obtain that

P1(t, x, h) =
(
c1(t, T, δ, x)(∂

3
h − ∂2h) + c2(t, T, δ, x)(∂

2
h − ∂h)

)
P0(t, x, h) (4.25)

and

P2(t, x, h) =

[ (
d1(t, T, δ, x)(∂

2
h − ∂h)

2 + d2(t, T, δ, x)(∂
2
h − ∂h)∂h + d3(t, T, δ, x)(∂

2
h − ∂h)

)
+

(
e1(t, T, δ, x)(∂

2
h − ∂h)

2∂2h + e2(t, T, δ, x)(∂
2
h − ∂h)

2∂h + e3(t, T, δ, x)(∂
2
h − ∂h)

2

(4.26)

+ e4(t, T, δ, x)(∂
2
h − ∂h)∂

2
h + e5(t, T, δ, x)(∂

2
h − ∂h)∂h + e6(t, T, δ, x)(∂

2
h − ∂h)

)]
P0(t, x, h).

The formulas for the di’s and the ei’s are given in Appendix E.1.

Expansion of the volatility

From the price expansion we can derive an expansion for the implied volatility. We denote
by vImp the implied volatility of the Caplet and have by definition

δFCaplet(t, T, δ) = BS(h, vImp).

We assume that the implied volatility satisfies an expansion with respect to ϵ up to order 2,
i.e.

vImp = v0 + ϵv1 + ϵ2v2 + o(ϵ2).
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By expanding the Black-Scholes price we get the following second order expansion for the
caplet price:

δFCaplet(t, T, δ) = BS(h, v0) + ϵv1∂vBS(h, v0) + ϵ2
(
v2∂vBS(h, v0) +

v21
2
∂2vBS(h, v0)

)
+ o(ϵ2).

(4.27)
This has to be equal to P0(t, x, h) + ϵP1(t, x, h) + ϵ2P2(t, x, h) + o(ϵ2), and we obtain by
identification of each order in ϵ that

P0(t, x, h) = BS(h, v0), v1 =
P1(t, x, h)

∂vBS(h, v0)
and v2 =

P2(t, x, h)− v21
2
∂2vBS(h, v0)

∂vBS(h, v0)
.

The first equality gives
v0 = v(t, T, δ, x). (4.28)

From (4.25), (4.21) and the formulas given in Appendix C, we obtain

v1
2

= c2(t, T, δ, x) + c1(t, T, δ, x)

(
1

2
− h− log(1 + δK)

v0

)
. (4.29)

With the same arguments, we can also obtain an explicit but cumbersome formula for v2.
It is worth to underline at this stage that neither c1 nor c2 depend on the strike, see

formulas (E.3) and (E.4). Therefore, the skew is at the first order in ϵ proportional to c1,
that is at its turn a linear function of ρ. We have in particular a flat smile at the first
order when ρ = 0, as one may expect. However, we can also check that the second order
term is different from zero when ρ = 0 and therefore the smile is not flat, at the second
order. Besides ρ, it is interesting to notice that the coefficient c1 depends on the factor x and
on all the parameters involved in the (mean-reverting) drift, namely κ, θ, b and Ω. These
coefficients determine the short and long term behaviour of the implied volatility surface.

4.3.2 Price and volatility expansion for Swaptions

From (1.23), the only quantity of interest in order to understand the swaptions volatility
cube is what we call the annuity-forward swaption price

AFSwaption(t, T,m, δ) = EA
[
(St(T,m, δ)−K)+ |Ft

]
.

It is standard to view swaptions as a basket option of forward Libor rates with stochastic
weights, we have

St(T,m, δ) =
m∑
i=1

ωitLt(T + (i− 1)δ, T + iδ) (4.30)

ωit =
Pt,T+iδ∑m
i=1 Pt,T+iδ

. (4.31)
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The difficulty here comes from the fact that forward Libor rates, and the stochastic weights
are complicated functions of the state variables (X, Y ). The first implication is that the
change of measure between P and QA is also complicated and the dynamics of the state
variables under this new measure is quite unpleasant to work with. The second implication
is that we cannot directly operate a convenient change of variable as we did for caplets.
In order to derive an expansion for swaptions we thus proceed stepwise. First, we use a
standard approximation that freezes the weights at their initial value (see for example Brigo
and Mercurio [BM06] p. 239, d’Aspremont [d’A03] and Piterbarg [Pit09]). This is justified by
the fact the variation of the weights is less important than the variation of the forward Libor
rates1. Second, we use a similar approximation for the swap rate. Thus, the approximated
swap rate is an affine function of the underlying state variables, which enables us to take
advantage of the affine structure of the model. Let us mention that this technique is similar
to the quadratic approximation of the swap rate proposed by Piterbarg in [Pit09]. Finally we
perform our expansion on the affine approximation of the swap rates and obtain the second
order expansion (4.38), which is the main result of Subsection 4.3.2.

Dynamics of the factors under the annuity measure

The annuity measure knowing the information up to date t, QA|Ft is defined by

dQA

dP

∣∣∣∣
Ft

= e−
∫ T
t rsds

AT (T,m, δ)

At(T,m, δ)
.

It comes from the martingale property of discounted asset prices under the risk neutral
measure that

d
(
e−

∫ t
0 rsdsAt(T,m, δ)

)
e−

∫ t
0 rsdsAt(T,m, δ)

=

m∑
i=1

ωit

(
B(T + iδ − t)⊤c

√
Xt(dWtρ+ ρ̄dZt) + 2ϵTr

(
D(T + iδ − t)

√
XtdWtI

n
d

))
. (4.32)

From Girsanov theorem, the change of measure is given by

dWA
t = dWt −

√
Xt

(
2ϵ

m∑
i=1

ωitD(T + iδ − t)Ind + c⊤B(T + iδ − t)ρ⊤

)
dt,

dZA
t = dZt − ρ̄

√
Xtc

⊤
m∑
i=1

ωitB(T + iδ − t)dt.

1To the best of our knowledge there have been very few attempts to quantify either theoretically or
numerically this statement. In [d’A03] d’Aspremont investigates the accuracy of the approximation for
pricing swaptions in the log-normal BGM model, he shows that the approximation is less efficient for long
maturities and long tenors.
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This allows us to calculate from (3.1) the dynamics of the state variables under the annuity
measure QA:

dYt =

(
κ(θ − Yt) + cXtc

⊤
m∑
k=1

ωktB(T + kδ − t) + 2ϵcXt

m∑
k=1

ωktD(T + kδ − t)Ind ρ

)
dt(4.33)

+c
√
Xt(ρ̄dZ

A
t + dWA

t ρ),

dXt = (Ω + ϵ2(d− 1)Ind + bA(t)Xt +Xt(b
A(t))⊤)dt+ ϵ

(√
XtdW

A
t I

n
d + Ind (dW

A
t )

⊤
√
Xt

)
,(4.34)

where bA(t) = b+ϵInd ρ
∑m

k=1 ω
k
tB(T +kδ−t)⊤c+2ϵ2Ind

∑m
k=1 ω

k
tD(T +kδ−t). The stochastic

weights ωkt are complicated functions of the state variables and the solution of the above SDE
is not easily characterized, in particular its infinitesimal generator is not a priori affine in
the state variables. It is a rather classic approach to freeze the weights ωkt to their value at
0, this leads to an approximated SDE for the state variables under the measure QA which is
affine.

An affine approximation of the forward swap rate

The forward swap rate is a martingale under the annuity measure QA. Therefore, we can
only focus on the martingale terms when applying Itô’s formula to

Pt,T−Pt,T+mδ∑m
i=1 Pt,T+iδ

, and we get

from (4.3) that

dSt(T,m, δ) = ω0
t

(
B(T − t)⊤c

√
Xt(dW

A
t ρ+ ρ̄dZA

t ) + 2ϵTr
(
D(T − t)

√
XtdW

A
t I

n
d

))
(4.35)

− ωmt

(
B(T +mδ − t)⊤c

√
Xt(dW

A
t ρ+ ρ̄dZA

t ) + 2ϵTr
(
D(T +mδ − t)

√
XtdW

A
t I

n
d

))
− St(T,m, δ)

m∑
k=1

ωkt

(
B(T + kδ − t)⊤c

√
Xt(dW

A
t ρ+ ρ̄dZA

t ) + 2ϵTr
(
D(T + kδ − t)

√
XtdW

A
t I

n
d

))
=

[
ω0
tB(T − t)⊤ − ωmt B(T +mδ − t)⊤ − St(T,m, δ)

m∑
k=1

ωktB(T + kδ − t)⊤

]
c
√
Xt(dW

A
t ρ+ ρ̄dZA

t )

+ 2ϵTr

([
ω0
tD(T − t)− ωmt D(T +mδ − t)− St(T,m, δ)

m∑
k=1

ωktD(T + kδ − t)

]√
XtdW

A
t I

n
d

)

By a slight abuse of notations, we will now drop the (T,m, δ) dependence of the swap rate
and simply denote by St its time t value. We now use the standard approximation that
consists in freezing the weights ωkt and the value of the swap rate St in the right-hand side
to their value at zero. We then have

dSt = BS(t)⊤c
√
Xt(dW

A
t ρ+ ρ̄dZA

t ) + 2ϵTr
(
DS(t)

√
XtdW

A
t I

n
d

)
, (4.36)

where
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(B,D)S(t) = ω0
0(B,D)(T − t)− ωm0 (B,D)(T +mδ − t)− S0(T,m, δ)

m∑
k=1

ωk0(B,D)(T + kδ − t).

These coefficient are time-dependent and deterministic. We do the same approximation onX
and get

dXt = (Ω + ϵ2(d− 1)Ind + bA0 (t)Xt +Xt(b
A
0 (t))

⊤)dt+ ϵ
(√

XtdW
A
t I

n
d + Ind (dW

A
t )

⊤
√
Xt

)
,

where

bA0 (t) = b+ ϵInd ρ

m∑
k=1

ωk0B(T + kδ − t)⊤c+ 2ϵ2Ind

m∑
k=1

ωk0D(T + kδ − t). (4.37)

Thanks to this approximation, we remark that the process, that we still denote by (St, Xt)
for simplicity, is now affine. This enables us to use again the same argument as for the Caplet
prices to get an expansion of the price. The only difference lies in the fact the expansion is
around the Gaussian model rather then around the log-normal model.

The swaption price expansion

Let P S(t, x, s) = EA
[
(St −K)+ |St = s,Xt = x

]
denote the price of the Swaption at

time t ∈ [0, T ]. This is a function of the symmetric matrix x, and we assume that it is
smooth enough for all the following derivations. Then, it solve the following pricing PDE

∂tP
S + L̃(t)P S = 0, t ∈ (0, T ), P S(T, x, s) = (s−K)+,

with

L̃S(t) =
1

2

(
(BS(t))⊤cxc⊤BS(t) + 4ϵ2Tr(DS(t)IndD

S(t)x) + 2ϵ((BS(t))⊤cxDS(t)Ind ρ)
)
∂2s

+
∑

1≤i,j≤d

(Ω + (d− 1)ϵ2Ind + 2x(bA0 (t))
⊤)i,j∂xi,j + 2

∑
1≤i,j,k,l≤d

ϵ2xi,k(I
n
d )j,l∂xi,j∂xk,l

+
∑

1≤k,l≤d

{
4ϵ2

∑
1≤i,j≤d

DS
i,j(t)xi,k(I

n
d )j,l +

p∑
m=1

2ϵBS
m(t)[(cx)m,k(I

n
d ρ)l]

}
∂xk,l∂s.

Again, we assume that P S admits a second order expansion

P S = P S
0 + ϵP S

1 + ϵ2P S
2 + o(ϵ2) (4.38)

and that the functions P S
0 , P

S
1 and P S

2 are smooth enough for what follows. To determine
the value of P S

0 , P
S
1 and P S

2 , we have to make as for the caplets an expansion of the generator
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L̃S(t) = L̃S0 (t) + ϵL̃S1 (t) + ϵ2L̃S2 (t) + . . . . We observe that BS do not depend on ϵ, while we
have

DS = DS
0 + ϵDS

1 + o(ϵ),

with

DS
i (t) = ω0

0Di(T − t)− ωm0 Di(T +mδ − t)− S0(T,m, δ)
m∑
k=1

ωk0Di(T + kδ − t), i = 0, 1,

where the functions D0 and D1 are given by (4.16) and (4.17). For convenience, we also
introduce the notation

(B,Di)
A(t) =

m∑
k=1

ωk0(B,Di)
A(T + kδ − t).

From (4.37), we get

L̃S0 (t) =
1

2
(BS(t))⊤cxc⊤BS(t)∂2s +

∑
1≤i,j≤d

(Ω + (d− 1)ϵ2Ind + 2xb⊤)i,j∂xi,j ,

L̃S1 (t) =((BS(t))⊤cxDS
0 (t)I

n
d ρ)∂

2
s +

∑
1≤i,j≤d

(2xc⊤BA(t)ρ⊤Ind )i,j∂xi,j

+
∑

1≤k,l≤d

p∑
m=1

2BS
m(t)[(cx)m,k(I

n
d ρ)l]∂xk,l∂s, (4.39)

L̃S2 (t) =[2Tr(DS
0 (t)I

n
dD

S
0 (t)x) + (BS(t))⊤cxDS

1 (t)I
n
d ρ]∂

2
s +

∑
1≤i,j≤d

(4xDA
0 (t)I

n
d )i,j∂xi,j + (d− 1)

∑
1≤i≤n

∂xi,i

+ 2
∑

1≤i,j,k,l≤d

xi,k(I
n
d )j,l∂xi,j∂xk,l +

∑
1≤k,l≤d

{
4
∑

1≤i,j≤d

(DS
0 (t))i,jxi,k(I

n
d )j,l

}
∂xk,l∂s.

(4.40)

We note that L̃S0 (t) is the operator associated to the following diffusion

dX0
t = (Ω + bX0

t +X0
t b

⊤)dt,

dS0
t = −1

2

[
(BS(t))⊤cX0

t c
⊤BS(t)

]
dt+ (BS(t))⊤c

√
X0
t dZt.

Let BH(s, v) = E
[
(s+

√
vG−K)

+
]
with G ∼ N(0, 1) denote the European call price

with strike K in the Bachelier model with realized volatility v > 0 and spot price s ∈ R. It
satisfies the heat equation

∂vBH(s, v) =
1

2
∂2sBH(s, v), (4.41)

that links the gamma and the vega. The order zero term is the price one would obtain by
assuming that the forward swap rate is a Normal process with time dependent volatility
given, and we have
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P S
0 (t, x, s) = BH(s, vS(t, T, x)), (4.42)

where

vS(t, T, x) =

∫ T

t

BS(r)⊤c

(
eb(r−t)

(
x+

∫ r

t

e−b(u−t)Ωe−b
⊤(u−t)

)
eb

⊤(r−t)du

)
c⊤BS(r)dr.

(4.43)
Besides, we have

P S
1 (t, x, s) =E

[∫ T

t

L̃S1 (u)P
S
0 (u,X

0
u, S

0
u)du

∣∣∣∣S0
t = s,X0

t = x

]
,

P S
2 (t, x, s) =E

[∫ T

t

(L̃S1 (u)P
S
1 (u,X

0
u, S

0
u) + L̃S2 (u)P

S
0 (u,X

0
u, S

0
u))du

∣∣∣∣S0
t = s,X0

t = x

]
,

exactly like (4.23) and (4.24) for the caplets.

We finally obtain

P S
1 (t, x, s) =

(
cS1 (t, T, x)∂

3
s + cS2 (t, T, x)∂

2
s

)
BH(s, vS(t, T, x)), (4.44)

P S
2 (t, x, s) =

[
dS1 (t, T, x)∂

4
s + dS2 (t, T, x)∂

3
s + dS3 (t, T, x)∂

2
s (4.45)

+eS1 (t, T, x)∂
6
s + eS2 (t, T, x)∂

5
s + eS3 (t, T, x)∂

4
s

+eS4 (t, T, x)∂
4
s + eS5 (t, T, x)∂

3
s + eS6 (t, T, x)∂

2
s

]
BH(s, vS(t, T, x)),

where the coefficients cSi , d
S
i and eSi are calculated explicitly in Appendix E.2.

Once we have the price expansion, we can easily represent it in terms of implied volatility.
Let vSImp denote the Normal implied volatility, so that P S(t, x, s) = BH(s, vSImp). We assume
that the implied volatility satisfies the expansion vSImp = vS0 + ϵv

S
1 + ϵ

2vS2 + o(ϵ
2) and get that

BH(s, vS0 ) = P S
0 (t, x, s), v

S
1 =

P S
1 (t, x, s)

∂vBH(s, vS0 )
and vS2 =

P S
2 (t, x, s)−

(vS1 )
2

2
∂2vBH(s, v

S
0 )

∂vBH(s, vS0 )
.

This yields to vS0 = vS(t, T, x),
vS1
2

= cS2 (t, T, x) − cS1 (t, T, x)
s−K
vS0

by using the formulas in

Appendix C. An explicit but cumbersome formula can also be obtained for vS2 . As for the
caplets, the skew is at the first order in ϵ proportional to c1, which is at its turn a linear
function of ρ. Thus, we have a flat smile at the first order when ρ = 0, but we can also check
that vS2 does not vanish when ρ = 0 and the smile is not flat at the second order.
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4.3.3 Numerical results

We now assess on some examples the accuracy of the expansions we have developed. In
practice we are interested in knowing up to what level of parameters and for what set of
maturities and tenors the accuracy of the expansion is satisfactory. Let us recall that our
expansion for caplets results from the combination of two expansions, the first on the support
matrix function D up to the order 1 in ϵ is given by (4.16) and (4.17), the second on the
infinitesimal generator of the Markov process (X,H) defined by (4.14). By construction the
approximation of D(τ) will be more accurate for a small τ . As a consequence, for a given set
of parameters, the full expansion will likely to be more accurate for short maturities, short
tenors caplets. The expansion for swaptions results from a supplementary approximation
step, which consists in freezing the weights ωi in the diffusion of the Markov process (X,S)
defined by (4.34) and (4.35). This approximation can be inaccurate for long maturities and
long tenors swaptions. Therefore, we expect the full expansion to be more accurate for short
maturities, short tenors swaptions. Figure 4.6 shows the contribution of the terms Pi in the
expansion of the price of the caplet. The zero order expansion is the implied volatility in the
LGM model, and gives a flat caplet N smile. The first order expansion captures the skew
of the smile and gives the slope of the smile. Note that the first order expansion does not
change the level of the at-the-money implied Normal volatility. The second order expansion
gives the convexity of the smile, and changes the level of the at-the-money volatility. The
higher the value of ϵ the more the at-the-money volatility will depart from the level given
by the zero order term, and the higher the convexity of the smile. However this is only true
for small values of ϵ, which will be discussed at the end of the section.

We assess the quality of the price expansion for caplets and swaptions. We compare the
expanded price with the price computed using Monte Carlo simulation and the discretization
scheme 1 described in Section 3.2.2 on a regular time grid. The expanded prices and the
Monte Carlo prices are compared in terms of the Normal implied volatility of the forward
Libor rate for caplets and of the forward swap rate for swaptions. The implied volatility is
given in basis points (10−4). In abscissa is indicated the difference between the strike and
the at-the-money value, and the unit is one percent. A 6M × 2Y caplet will denote a caplet
with maturity T = 2 years and tenor δ = 0.5 years, while a 5Y × 2Y swaption will denote a
swaption with maturity T = 2 years and tenor mδ = 5 years.

We have tested different set of model parameters. The parameters values have been chosen
in such a way that the yield curve and volatility levels generated by the model are in line
with today’s US and EUR interest rates market levels.

Parameters set 1 is a p = 2, d = 2 model with the following set of model parameters:

κ = diag(0.1, 1), c = Id, b = −diag(0.41, 0.011), Ω = −(bx∞ + x∞b
⊤) + 0.4Id, γ = 0.001Id

x = 10−4

(
2.25 −1.2
−1.2 1.

)
, x∞ = 10−4

(
1. −0.125

−0.125 0.25

)
.
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Parameters set 2 is a p = 4, d = 4 model with the following set of model parameters:

κ = diag(0.1, 0.2, 0.4, 1), c = Id, b = −diag(0.41, 0.21, 0.11, 0.011), γ = 0.1Id,

diag(σ1, σ2, σ3, σ4) = (1.5, 1.2, 1, 0.8) , diag(σ̄1, σ̄2, σ̄3, σ̄4) = (1, 0.8, 0.6, 0.4)

C̃i,j = 1i=j − 0.41|i−j|=1 − 0.21|i−j|>1, C̄i,j = 1i=j − 0.21|i−j|=1 − 0.11|i−j|>1

xi,j = σiσjC̃i,j, (x∞)i,j = σ̄iσ̄jC̄i,j, Ω = −(bx∞ + x∞b
⊤) + 0.4Id.

In both parameter sets, −(b+ b⊤) = −2b is positive definite. We know from Remark 29 that
the condition of non-explosion will be verified in general for these set of parameters when ϵ
is small enough, and we have checked that the yield curve given by these parameters sets is
well defined up to 50 years.

In all the graphics the dotted line gives the Monte Carlo smile obtained with 100000 sim-
ulation paths, the solid line with small arrows is the expanded smile, the two continuous
solid lines are the upper and lower bounds of the 95% confidence interval of the Monte Carlo
price. Figures 4.7 and 4.8 show the accuracy of the expansion for the valuation of caplets.
The approximation is accurate for expiries up to 2 years and less accurate with the same
parameters for longer expiries. For maturities up to 2 years, the at-the-money volatility of
the expanded smile is almost identical to the Monte Carlo smile and the whole expanded
smile stays within the 95% confidence interval. Figures 4.9 show the accuracy of the ex-
pansion for the valuation of swaptions. We observe that the expansion is more accurate for
negative values of the correlation parameters ρ (a similar behaviour is observed for Caplets).
This can be intuitively understood from the Riccati equation (3.9): a negative ρ pushes D
to zero while a positive one pushes D away from zero, and the expansion that we use on D
(see (4.16) and (4.17)) is then less accurate. Overall the expansion is accurate at-the-money
and is much less accurate out-of-the-money. For example, the graphic on the right hand
side of Figure 4.8 shows that the expanded smile of the 6 months maturity 5 years expiry
smile is quite inaccurate and the expanded smile fails to fit the skew of the Monte Carlo
smile. However, the difference in the at-the-money volatility between the expanded price and
Monte Carlo is around 1 bp. Figure 4.10 shows the accuracy of the expansion for caplets and
swaptions in a d = 4, p = 4 model. The accuracy of the expansion shows similar patterns
than in a p = 2, d = 2 model, but the expansion may be less accurate when the dimension
of the model increases. In fact, we have taken in Figure 4.10 a smaller value of ϵ for the
Swaption case in order to have a good approximation of the expansion.

In both parameter sets 1 and 2, the value of γ is relatively small. In fact, there can be
some side effects of choosing a high value for γ. The specification of our model is designed
to be a perturbation of the LGM model. The parameter ϵ controls the size of the perturba-
tion. At first glance we would expect the convexity of the volatility smile to increase as the
parameter increases. However, the effect of ϵ on the smile shape is not so straightforward,
and depends on the value of γ. This is illustrated in details in the following paragraph.
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4.3.4 On the impact of the parameter ϵ

The specification of our model is designed to be a perturbation of the LGM model. The
parameter ϵ controls the size of the perturbation. Let us recall that the yield curve is driven
by both the factors Y and X. When ϵ is small, the main driver of the curve are the factors
Y , and the factors X acts as the volatility of the curve. As ϵ increases, we have two different
effects. On the one hand the volatility of volatility of the factors Y increases, which leads
to an increase in the volatility of volatility of the curve, and implies a larger convexity of
the smile. On the other hand the contribution of the factors X to the yield curve dynam-
ics becomes more important. This second effect implies that both the yield curve and its
volatility are driven by the factors X, which eventually means that the model is close to a
local volatility model. As a consequence, an increase in the parameter ϵ will not necessarily
lead to an increase in the convexity of the smile. Let us mention also that the accuracy of
the expansion will also decay when γ takes relatively large values with respect to ϵ. The
heuristic reason is the same as the one for positive values of the entries of ρ: large values of γ
will push D away from zero (see the Riccati equation (3.9) with Γ̄ = −γ), and the expansion
that we use on D is then less accurate.

Let us illustrate this through an example. Consider a one-dimensional model i.e. p =
1, d = 1. The volatility of the forward ZCB Pt,T/P,T+δ under the T + δ-forward measure is
given by

d
Pt,T
Pt,T+δ

=
Pt,T
Pt,T+δ

m(t)
√
Xt (ρ(t)dWt + ρ̄(t)dZt)

m(t)2 = (∆B(t, T, δ) + 2ϵ∆D(t, T, δ))2 + ρ̄2∆B(t, T, δ)2

ρ(t) = (∆B(t, T, δ) + 2ϵ∆D(t, T, δ)) /m(t).

The functions m and ρ determine the shape of the smile. Under the non-explosion condition
4.2. The function m is decreasing as a function of t, the higher the value of ϵ, the higher
the value of m(0) and the higher the slope of the function m. The function ρ increases to 1
and conversely the function ρ̄ decreases to 0. The higher the value of ϵ, the higher the lower
the initial value of ρ(0). This means that as time goes, the forward ZCB is mainly driven
by the factor X, and the model becomes a local volatility model. See Figure 4.11. When
the condition 4.2 is not verified, and we can observe explosion of the solution of the Riccati
o.d.e. giving the bond reconstruction formula 4.3, the behavior of m and ρ is different. The
function m is decreasing and then increasing (in fact it explodes in finite time). As the
value of ϵ increases, the function m initially decreases faster and then also increases faster
to explode at a earlier time. The function ρ decreases to negative values and the function ρ̄
slowly decreases. This behavior is magnified for higher values of the parameter ϵ.
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4.3.5 Analysis of the implied volatility

Now that we have asserted the quality of the implied volatility expansion, we can analyze
the main drivers of the smile. The order zero term in the expansion (4.43) only depends
on the parameters K, b and Ω and on the initial value of the factors X. This term sets the
overall level of the smile and numerical experiments have proven that it is very close to the
level of the at-the-money volatility which is given by

σSATM = σS0 + ϵ
cS1√

vS(T − t)
+ ϵ2

(
dS1 + eS1√
vS(T − t)

− dS3 + eS4 + eS3√
vS(T − t)

+
3eS6

(vS)2
√
vS(T − t)

)
.

(4.46)

As mentioned before the zero order term of the volatility σS0 is the implied volatility one would
obtain in the LGM model with a deterministic variance-covariance of the factors given by
(X0

s )s. The model parameters b and Ω play respectively the role of a ”mean reversion” and
”long term mean” for the volatility factors X. The expansion also allows to express the
at-the-money skew as follows

∂Kσ
S
ATM = ϵ

cS2√
vS(T − t)

+ ϵ2

(
dS2 + eS2√
vS(T − t)

− dS3 + eS4 + eS3

(vS)2
√
vS(T − t)

+
3eS5

(vS)2
√
vS(T − t)

)
.

(4.47)

To the first order the at-the-money skew is given by cS1 , which is a correlation term between
the part in Y of the forward swap rate BS(t)⊤Y and the volatility of the forward swap rate
Tr
(
∂xv

S(t, T, x)x
)
. The second order term of the skew is given by

dS2 + eS5√
vS(T − t)

− dS1 + eS3 + eS4

(vS)2
√
vS(T − t)

+
3eS2

(vS)2
√
vS(T − t)

.

The term dS2 is a correlation term between the part inX of the forward swap rate Tr
(
DS(t)X

)
and the volatility of the forward swap rate Tr

(
∂xv

S(t, T, x)x
)
. Let us note that due to this

term (as well as the term in dS1 ) the model exhibits a non zero at-the-money skew even
when the parameter ρ is zero. This comes from the fact the yield curve and in particular
the forward swap rate depend on the volatility factors X, implying a ”natural” correlation
between the forward swap rate and the volatility even when the correlation parameter ρ is
zero. The other terms involved in the expansion are correlation terms of higher order.

4.4 Hedging in the SCVATSM

This section is devoted to the hedging of IR derivatives in the model. The model naturally
belongs to the class of HJM AOA models [HJM92] and satisfies the conditions for the model
to have a uniquely determined equivalent martingale measure under which the discounted
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prices of ZCBs are martingales2. From classic results [HP81] and [HK79] we thus have that
the model is complete and thus any derivative can be replicated with a set of p + d(d +
1)/2 ZCBs (Pt,T1 , ..., Pt,Tp+d(d+1)/2

) with distinct maturities. Strictly speaking the model is
rather a local-volatility model than a stochastic volatility model, however our specification
is specifically designed for the model to exhibits some traits of a stochastic volatility model.
This is done by limiting the dependence of the yield curve on the volatility factors X. Let
us note that the notion of completeness does not depend on the chosen market numeraire.
Thorough we hedge with strategies in the T -forward neutral measure, where T stands for
the maturity of the derivative we want to hedge, i.e. we chose the Pt,T as a numeraire. This
choice is classic in the interest rates market.

4.4.1 Traits of stochastic volatility

From an hedging point of view stochastic volatility introduces a stochastic dimension in
the market which is not captured by the underlying market asset, or more precisely which
cannot be replicated by only trading on the underlying asset. Stochastic volatility leads to
incomplete markets in the sense that options cannot be replicated by portfolios which only
include the numeraire and the underlying asset. Though our model is -strictly speaking-
not a stochastic volatility model, the model exhibits some traits of stochastic volatility. In
particular incompleteness -to a certain extent- is partly verified in the model.

An incomplete caplets and swaptions market

The IR market vanilla instruments are IRS, FRA, Caplets and Swaptions. From standard
change of numeraire arguments the prices admit the following expressions.

FRAt(T, δ,K) = Pt,T+δ(LT (T, δ)−K) (4.48)

IRSt(T, δ, n,K) = Pt,T − Pt,T+nδ − δ
n∑
i=1

Pt,T+iδ (4.49)

Ct(T, δ,K) = Pt,TEQ
T

[PT,T+δ(LT (T, δ)−K)|Ft] (4.50)

St(T, n, δ,K) = Pt,TEQ
T

[(
PT,T − PT,T+δ − δK

n∑
i=1

PT,T+iδ

)+

|Ft

]
(4.51)

We then define lt(T, δ) by

Pt,T+δ
Pt,T

= exp (lt(T, δ)) . (4.52)

Under QT , exp (lt(T, δ)) is a martingale, implying the following dynamics for lt(T, δ):

2In our model this conditions mainly translate in the assumption that the functional relationship between
the factors and the ZCBs or forward swap rates is invertible.
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dlt(T, δ) = −1

2

(
∆b⊤cXc⊤∆b+ 4ϵ2Tr(∆dInd∆dX) + 2ϵ(∆b⊤cX∆dInd ρ)

)
dt (4.53)

+∆b(t, T, δ)T c
√
X (dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, δ)

√
XdWInd

)
where we have defined

∆(b, d) = (B,D)(T + δ − t)− (B,D)(T − t).

We thus deduce that (lt(T1, δ), ..., lt(Tp, δ), Xt) is a Markov process under QT . Then we have

Ct(T, δ,K) = Pt,TV FC (t, T, δ, lt(T, δ), K) (4.54)

St(T, n, δ,K) = Pt,TV FS (t, T, δ, lt(T, δ), ..., lt(T, nδ), K) . (4.55)

For ease of notations we will drop the notation (T, δ,K) and (T, n, δ,K) when there is no
ambiguity, and denote simply FRAt, IRSt, Ct and St respectively the FRA, Caplet and
Swaption price. The prices dynamics under QT is given by

d
FRAt
Pt,T

= −1 + δK

δ

Pt,T+δ
Pt,T

(
∆b(t, T, δ)c

√
X(dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, δ)

√
XdWInd

))
(4.56)

d
IRSt
Pt,T

= −Pt,T+nδ
Pt,T

(
∆b(t, T, nδ)c

√
X(dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, nδ)

√
XdWInd

))
− δK

n∑
i=1

Pt,T+iδ
Pt,T

(
∆b(t, T, iδ)c

√
X(dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, iδ)

√
XdWInd

))
(4.57)

d
Ct
Pt,T

= ∂lV FC
(
∆b(t, T, δ)c

√
X(dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, δ)

√
XdWInd

))
+ 2Tr

(
∂xV FC

√
XdWInd

)
(4.58)

d
St
Pt,T

=
n∑
i=1

∂liV FS
(
∆b(t, T, iδ)c

√
X(dWρ+ ρ̄dZ) + 2Tr

(
∆d(t, T, iδ)

√
XdWInd

))
+ 2Tr

(
∂xV FS

√
XdWInd

)
(4.59)

Proposition 38 — Caplets cannot be hedged by a portfolio made of only FRAs of same
tenor and maturity.

Proof : Let Ct denote the price of a caplet of maturity T , strike K and tenor δ. Suppose
there exists a set of FRAs FRA1, ..., FRAr with fixed rate K1, ..., Kr and a self-financed
portfolio ϕ = (ϕ1, ..., ϕr) that replicates C. Then we would have
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d

(
Ct
Pt,T

)
= d

(
r∑
i=1

ϕit
FRAit
Pt,T

)
.

From self-financing we then have

d

(
Ct
Pt,T

)
=

r∑
i=1

ϕitd

(
FRAit
Pt,T

)
In particular this equality hods under the T -forward measure, using (4.56) and (4.58) this
implies

−

(
r∑
i=1

ϕit
1 + δKi

δ

)
Pt,T+δ
Pt,T

= ∂lV FC

−

(
r∑
i=1

ϕit
1 + δKi

δ

)
Pt,T+δ
Pt,T

∆d(t, T, δ) = ∂lV FC∆d(t, T, δ) + ∂xV FC,

which leads to a contradiction since it would imply ∂xV FC = 0. 2

Proposition 39 — Swaptions cannot be hedged by a portfolio made of only IRSs of same
tenor and maturity.

The proof of this proposition is identical to the proof of the preceding one.

Remark 40 — Let us note that, in the model, both caplets and swaptions could be perfectly
replicated by choosing a set of FRA and IRS of different maturities. This is the price to pay
to have Markovian term structure model.

Stated that swaptions cannot be hedged by trading the underlying IRS only, an interesting
question is to know wether it is possible to hedge swaptions by trading in the underlying
IRS and in a portfolio of caplets of the same expiry. As mentioned before the model exhibits
a stochastic correlation between rates, therefore, since the swaptions prices depend on the
correlation between the forward libor rates, it is not immediate to give a positive answer to
this question. However, by looking at the equations (4.58) and (4.59), we see that, in theory,
we can replicate the diffusion term of the dynamics of St with a well chosen set of caplets.
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Figure 4.3: Normal implied volatility smile of a 3M × 5Y caplet using Edgeworth series
expansion of the cumulative distribution function of the ZCB PT,T+δ with T = 5Y and
δ = 3M . We have used the 3th order expansion. The origin represent the ATM forward libor
rate Lt(T, δ). The Monte Carlo price is obtained with 105 simulation paths and a N = 30
discretization steps. The figures represent different values of the correlation parameter ρ,
starting from the left ρ = −0.212, ρ = 0 and ρ = 0.212. The higher order moments of the
ZCB are computed using the numerical resolution of the MRDE described in 3.1.4, with a
time discretization step of 0.01.
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Figure 4.4: Normal implied volatility smile of a 2Y × 5Y caplet using Edgeworth series
expansion of the cumulative distribution function of the ZCB PT,T+δ with T = 5Y and
δ = 2Y . We have used the 3th order expansion. The origin represent the ATM forward libor
rate Lt(T, δ). The Monte Carlo price is obtained with 105 simulation paths and a N = 30
discretization steps. The figures represent different values of the correlation parameter ρ,
starting from the left ρ = −0.212, ρ = 0 and ρ = 0.212. The higher order moments of the
ZCB are computed using the numerical resolution of the MRDE described in 3.1.4, with a
time discretization step of 0.01.
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Figure 4.6: Parameter set 1 and setting ρ⊤ = (0.4, 0.2). Contribution of the expansion terms
Vi on the expansion of the smile of the 1 year expiry 6 month maturity caplet for different
values of the parameter ϵ, respectively ϵ = 0.002 and ϵ = 0.0015.
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Figure 4.7: Parameter set 1 and ρ⊤ = (−0.4,−0.2). Plot of the expanded smile of a 1Y ×1Y
caplet against the Monte Carlo smile obtained with 100000 paths and a discretization grid
of 4 points for different values of the parameter ϵ, respectively from left to right ϵ = 0.002
and ϵ = 0.0015. The forward Libor rate value is L(0, 1Y, 1Y ) = 1.02%.
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Figure 4.8: Parameter set 1 and setting the model parameters ρ⊤ = (−0.4,−0.2) and ϵ =
0.0015. Left: plot of the expanded smile of a 6M×2Y caplet against the Monte Carlo smile.
Right: plot of the expanded smile of a 6M × 5Y caplet against the Monte Carlo smile. The
Monte Carlo smile is obtained with 100000 paths and a discretization grid of 8 points. The
forward Libor rates values are L(0, 6M, 2Y ) = 1.14% and L(0, 6M, 5Y ) = 1.35%.
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Figure 4.9: Parameter set 1 and setting ϵ = 0.0015. Plot of the expanded smile of a 5Y ×2Y
swaption with coupon payment frequency of 6 months against the Monte Carlo smile obtained
with 100000 paths and a discretization grid of 8 points for different values of the parameter
ρ, from left to right ρ⊤ = (−0.4,−0.2) and ρ⊤ = (0.4, 0.2). The forward swap rate value is
S(0, 5Y, 2Y ) = 1.3%.
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Figure 4.10: Parameter set 2 and setting ρ⊤ = −0.214. Left: ϵ = 0.00125, plot of the
expanded smile of a 6M × 2Y Caplet against the Monte Carlo smile obtained with 100000
paths and a discretization grid of 8 points. The forward Libor rate value is L(0, 6M, 2Y ) =
1.64%. Right: ϵ = 0.0005, plot of the expanded smile of a 5Y × 2Y swaption with coupon
payment frequency of 6 months against the Monte Carlo smile obtained with 100000 paths
and a discretization grid of grid of 8 points. The forward swap rate value is S(0, 5Y, 2Y ) =
2.04559%
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Chapter 5

Some applications

In the preceding chapter we have developed a theoretical and numerical framework to
model multi-dimensional stochastic volatility in the interest rates market. In the present
chapter we present some applications of the model. We further specify the model in order
to fulfill our primary objective i.e. to keep the interpretation of the yield curve factors Y as
in the LGM and to have a similar interpretation of the volatility factors X in terms of the
implied volatility term structure.

Our approach to calibration is stepwise. We insist on the fact we want to fix the model
parameters Ψ = (K, θ, c, b,Ω, ϵ, ρ) globally and calibrate the initial values of the underlying
state variables (x, y) to fit observed market data. In particular we aim to calibrate the val-
ues of the matrix x to fit the swaption volatility cube (i.e. the cube formed by the implied
volatilities of swaptions in the three dimensions: maturity, expiry and strike). Ideally, the
dynamics of the interest rates options market should be explained by the dynamics of the
factors X. The main idea of our calibration procedure is to exploit the expansion of the
volatility obtained in section 4.3 to calibrate the value of x. We formulate the calibration
problem as a positive semidefinite programming optimization problem (SDP hereafter) which
allows to handle the positive semidefinite constraint very easily. This has previously been
done in [d’A03] and [BW00] to calibrate the BGM model. We conduce a calibration exercise
over US ATM volatilities between 2006 and 2011. The numerical results indicate that while
the model fit of market prices is not always satisfactory compared to the standards used in
the industry for pricing purposes, the model is able to globally capture the dynamics of the
ATM volatility surface with a limited number of factors1. This makes it a good candidate
as a benchmark for global hedging of a book of interest rates options.

The chapter is organized as follows, section 5.1 describes the numerical framework used
to solve the calibration problem. We show how optimizing the sum of squared differences
between the observed swaptions cumulated variances and the expansion to the order 1 is

1Baring in mind that the dynamics of the volatility cube in the model is homogeneous, and that the
number of factors is quite limited, the calibration results prove to be quite satisfactory and robust across
the changes in the market.
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equivalent to solving a linear criteria under a positive semidefinite constraint, and which can
be solved using SDP. Section 5.2 discusses the design of the specification of the model used
for calibration. In particular we describe how the parameters b and c are specified in such a
way that the role of the volatility factorsX is well identified in terms of the swaptions implied
volatilities dynamics. Finally section 5.3 discusses the numerical results of the calibration.

5.1 A semidefinite programming approach for model

calibration

We present here the main optimization tool we have used in our calibration procedure.
We merely followed the footsteps of [d’A03] and [BW00], and reformulated the calibration
problem as a positive SDP problem which can be easily solved. SDP has many applications
in different fields of applied mathematics and physics. The SDP programming is a mature
research field and there are today very stable and efficient numerical methods to solve SDP
problems. See [BV03] for a reference on SDP. Whilst optimization problems under positive
semidefinite constraints arise naturally in financial mathematics, there are very few examples
of applications of SDP. To the best of our knowledge [d’A03] and [BW00] are the only example
of application for interest rates modeling.

5.1.1 The calibration problem

We aim to calibrate the values of the matrix x to fit the swaption volatility cube (i.e.
the cube formed by the implied volatilities of swaptions in the three dimensions: maturity,
expiry and strike). Typically the calibration problem will take the form

xt = argminx∈S+
d (R)ft(x),

where the function ft is the criteria that describes the fitting error of the volatility cube at
date t. Alternatively the calibration problem takes the form

∆xt = argminxt−1+δx∈S+
d (R)gt(δx),

where the function gt is the criteria that describes the fitting error of the variations of the
volatility cube at date t. The constraints x ∈ S+

d (R) and xt−1 + δx ∈ S+
d (R) are convex

constraints. In order to derive an SDP formulation of the calibration problem (or more
precisely of a step of the calibration problem) it is important that the function ft and gt
are linear or quadratic functions of the factors x and δx. Clearly this severely restricts the
range of objective functions for our calibration procedure. In particular, to have a linear
or quadratic criteria in x, we cannot include out-of-the-money options in the optimization,
since these naturally introduce non-linearity. We thus restrict the first step of the calibration
problem to the ATM swaptions. We notice that up to the first order the expansions of the
ATM implied volatility we have obtained is a linear functions of x. Also, figure 4.6 shows
that the contribution of the first order term to the ATM volatility is negligible. The idea of
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our calibration procedure is to define a criteria using the expansion of the implied volatility.
This leads to the forms (5.7) and (5.9) respectively for ft and gt.

5.1.2 The SDP formulation

Both our calibration problems fit into the general optimization problem

min
N∑
i=1

(Tr (Miξ)− Vi)
2 (5.1)

ξ + ξ0 ∈ S+
d (R) .

Where Mi are positive semidefinite matrices, and Vi are positive scalars. We will show that
this problem can be formulated as an SDP problem. Let us introduce new auxiliary variables
t1, ..., tN , the problem (5.1) is equivalent to the optimization problem

min
N∑
i=1

ti

ti ≥ (Tr (Miξ)− Vi)
2

ξ + ξ0 ∈ S+
d (R) ,

which can also be written as

min
N∑
i=1

ti(
ti (Tr (Miξ)− Vi)

(Tr (Miξ)− Vi) 1

)
∈ S+

d (R)

ξ + ξ0 ∈ S+
d (R) .

Let us define z = (t1, ..., tN , ξ11, ..., ξ1d, ..., ξdd). This problem fit in the general SDP formula-
tion

min
z∈Rp

cT z

F0 +

p∑
i=1

ziFi ∈ S+
d (R) ,

where F1, ..., Fp are symmetrical matrixes. As mentioned before there are several methods to
solve the above SDP problem, and some stable and efficient numerical codes available such
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as CPLEX, MOSEK, SEDUMI...

The SDP framework is flexible and allows to insert more complex constraints. In partic-
ular we might be interested in block-diagonal solutions of the matrix ξ. It is straightforward
to adapt the problem formulation in order to account for this constraint, we just need to
define a vector z which only includes the elements of the matrix ξ which we want to be
non-zero.

5.2 Choice of the constant parameters for model cali-

bration

We have insisted on the fact we want to fix the model parameters Ψ = (K, θ, c, b,Ω, ϵ, ρ)
globally and calibrate the initial values of the underlying state variables (x, y) to fit observed
market data. In particular we aim to calibrate the values of the matrix x to fit the swaption
volatility cube (i.e. the cube formed by the implied volatilities of swaptions in the three
dimensions: maturity, expiry and strike). The parameters K and b determine respectively
the term structure of the yield curve and of the at-the-money volatility surface and are
fixed arbitrarily. This is a fairly common practice (see [Pit09]), and is justified by the fact
these parameters are time scales that allow to identify the factors role in terms of yield
curve and volatility surface dynamics. Once these parameters are fixed we exploit the price
expansion we have developed in subsection 4.3.2. For a suitably chosen level of the parameter
ϵ, the results of our numerical experiments showed that the expansion provides a good
approximation of the at-the-money smile. Furthermore the ATM smile is fairly unsensitive
to the choice of the parameter ρ and the instantaneous variance is a linear function of the
matrix x. We thus approach the first step of the calibration problem by the problem of
choosing x so that the formula (4.43) (which only depends upon the parameters K, b and
c) fits the observed at-the-money volatilities. We suggest that the remaining degrees of
freedom, namely ϵ and ρ can be set by optimizing a global criteria on the whole volatility
cube (adding some relevant strikes).

The mean reversion parameters K and b can be fixed in order to identify the role of the
model factors. Our choice of the parameters K is based on the yield curve dynamics in the
LGM model as described in section 2.4. Once the parameters ki are set, and the role of
the associated factors is clearly identified, the role of the volatility factors x just follows.
The instantaneous variance-covariance of the process Y is given by covt(Yt) = cXtc

⊤. The
interpretation of the factors X then follows from the interpretation we have given of the
factors Y . The instantaneous variance of the factor Yi is given by

∑d
k,l=1 cikcilXkl and the

instantaneous covariance between the factors Yi and Yj is given by
∑d

k,l=1 cikcjlXkl. Let us
note that the model thus exhibits a stochastic correlation between the main movements of
the curve and thus between rates. Neglecting the diffusion part of the process X and solving
the o.d.e. of the drift term we have
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Figure 5.1: Plot of the support function of the order 0 implied cumulated variance (4.43) for
the factors X11 and X22 in a model with 2 curve factors Y and a 2× 2 volatility matrix X,
with k1 = 0.1, k2 = 1, b = diag(−0.41,−0.01) and the parameter c given by 5.3.
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Figure 5.2: Plot of the support function of the order 0 implied cumulated variance (4.43) for
the factors X11 and X22 in a model with 2 curve factors Y and a 4× 4 volatility matrix X,
with k1 = 0.1, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and the parameter c given by
5.3.

X(s) = eb(s−t)
(
x+

∫ s

t

due−b(u−t)Ωe−b
⊤(u−t)

)
eb

⊤(s−t). (5.2)

The first order term in the expansion of the volatility (4.43) is the implied volatility in the
LGM with a deterministic covariance matrix given by (5.2). The parameter b appears as
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a time scale for the volatility and covariance of rates. Following our interpretation of the
factors Y , a given tenor of the yield curve is identified with a particular factor Yi, either with
a linear combination of these factors. We want to have a term structure of implied volatility
for the tenors of the curve, and possibly a clear interpretation of the factors Xij in terms of
the volatility cube movements. The dimension of X will typically be equal or higher than
the dimension of Y , i.e. d ≥ p. We will typically consider d = mp, where m depends on
the degree of flexibility we need to model the volatility term structure. Let us illustrate how
the parameter c can be chosen to achieve this: consider the simple model with d = p = 2.
Setting the mean reversion parameters K to be diagonal and with values k1 = 1% and k2 = 1
we know that in the LGM the factor Y1 drives the long term rates of the yield curve and the
factor Y2 drives the slope of the yield curve. Choosing c as follow:

c =

(
1 0
−1 1

)
, (5.3)

we have

d < Y 1 >= X11 and d < Y 1 + Y 2 >= X22.

Then following the identification of the factors Y , we can also identify the factors X as the
main drivers of the volatility curve. Precisely, the factor X11 will drive the volatility of long
maturities swap rates and the factorX22 will drive the volatility of short maturity swap rates.
The graphics in Figure 5.1 represent the support function of the ATM volatility in a model
with 2 curve factors Y and a 4 × 4 volatility matrix X. The figures confirm the intuition,
the support function of the factor X22 is almost zero on long for long maturities swaps and
has a high value for short maturity swaps. As a consequence, the factor X22 will drive the
short maturity swaptions. Furthermore the correlation between Y1 and Y1 + Y2 is given by
X12. As a consequence, the model exhibits a stochastic correlation between rates, and the
non-diagonal factor Xij will drive the prices of products which depend on this correlation
such as CMS spread options.

When d = mp we will typically choose c to be a block-diagonal matrix. For example for
d = 4 and p = 2, we might consider the matrix c given by

c =

(
1 1 0 0
−1 −1 1 1

)
. (5.4)

The matrix b is set to be a diagonal matrix. The diagonal elements are set to different time
scales so that the factors (Xim+k,im+k)i=1...p,k=1...m are associated to different maturities of the
volatility. In particular, for a given swap maturity, we expect to have a factor which drives
the long expiries implied volatility and a factor which drives the short expiry volatility. The
graphics in Figure 5.2 represent the support function of the ATM volatility in a model with
2 curve factors Y and a 4×4 volatility matrix X. The graphics confirm that the parameter b
can be used as a time scale on the expiry dimension of swaptions. The factors associated to
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the parameters b(i, i) with higher value drive the short expiries volatilities, while the factors
associated to parameters b(i, i) with smaller value drive the long term expiries volatilities.

5.3 Calibration results

As a first step of the calibration procedure we will calibrate the initial value of the
volatility factors x to the at-the-money volatility surface. We have shown that for ϵ small
enough, the at-the-money volatility smile is very close to the order 0 term of the expansion
(4.22) and (4.43). Let us note that these expressions are linear forms of the volatility factors
x. We denote by V C

t (T, δ) the date t market quote of the at-the-money implied cumulated
variance of the Caplet of maturity T and tenor δ, and by V S

t (T,m) the date t market quote
of the at-the-money implied cumulated variance of the swaption of expiry T and maturity
m. We rewrite (4.22) and (4.43) as follows

v(t, T, δ) = Tr
(
MC

t (T, δ)xt
)
+ Tr

(
M̄C

t (T, δ)Ω
)

(5.5)

v̄(t, T,m) = Tr
(
MS

t (T,m)xt
)
+ Tr

(
M̄S

t (T,m)Ω
)
. (5.6)

The calibration problem is formulated as a minimization problem of a quadratic criteria.
Given a set of maturities and tenors (T1, δ1), ..., (TN1 , δN1), (T1,m1), ..., (TN2 ,mN2) to which
we want to fit our model at date t. Once again let us repeat that our model aims to capture
the dynamics of both the yield curve and the volatility cube through the underlying state
variable (X, Y ). In particular the implied volatility cube dynamics is meant to be captured
by the factors X. One of the main messages of Black-Scholes is that the only thing that
matters when hedging a derivative contract is to be able to dynamically adjust our portfolio
in response to the movements of the underlying asset. As a consequence it is important that
the model is able to capture both the level of the volatility cube and its variations.

Though the analogy with the one-dimensional setting is not completely accurate, let us
note that the parameter Ω can be interpreted as a parameter accounting for the long term
mean of the stochastic variance-covariance process X. This parameter is meant to be char-
acteristic of the option market and should not vary on a daily basis. The idea is to calibrate
the values of x and Ω at a given date and then calibrate the variations of x in order to fit
the variations of the implied volatility cube.

5.3.1 Calibrating x and Ω

Let us now describe the optimization problem we will solve in order to determine the
values of x and Ω that fit the ATM volatility surface at a given date. Define ft by

ft(x,Ω) =

N1∑
i=1

(
Tr
(
MC

t (Ti, δi)x+ M̄C
t (T, δ)Ω

)
− V C

t (Ti, δi)
)2
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+

N2∑
j=1

(
Tr
(
MS

t (Tj,mjτj)x+ M̄S
t (Tj,mjτj)Ω

)
− V S

t (Tj,mjδj)
)2
. (5.7)

The calibrated values (xt,Ωt) are defined as the solutions of the following optimization
problem

(xt,Ωt) = argmin
x∈S+

d (R),Ω∈S+
d (R)

ft(x,Ω). (5.8)
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Figure 5.3: Plot of the swaptions’ ATM normal volatility surface fitted model vs market at
date 100 and absolute difference. We have used a model with 2 curve factors Y and a 4× 4
volatility matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and the
parameter c is given by (5.4). Volatility and difference are in bp.

We have performed several calibration experiences for different dates. Overall, the model
produces a good fit of the ATM volatility surface. We do not expect our model to fit the
market prices perfectly, our calibration is global and we shall always keep in mind that the
parameters b, c and K which determine the matrix functions MC(T, δ) and MS(T,mτ) are
fixed and are not meant to change for different dates. Typically we will try to fit as much
as 36 at-the-money volatilities (corresponding to the maturities 1 2 5 10 20 30 years and the
expiries 3 months, 1 2 5 10 and 20 years) of the surface with 20 volatility factors, i.e. 4× 4
matrix xt and Ω. Note that once Ω is calibrated we consider it should be kept as fixed until
we observe some major shifts in the market that impose to recalibrate this parameter.

The figures 5.3, 5.4 and 5.5 show the calibration results for three different dates. The
absolute difference in the ATM normal volatility between the fitted and the observed im-
plied normal volatility is lower than 5 bp on average except for very short and very long
expiries for which the difference can be as much as 20 bp. Let us recall that as showed by
the PCA analysis of section 1.5.1 the very short expiry swaption market tends to behave
independently of the rest of the swaption market. In factorial term structure models the
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Figure 5.4: Plot of the swaptions’ ATM normal volatility surface fitted model vs market at
date 200 and absolute difference. We have used a model with 2 curve factors Y and a 4× 4
volatility matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and the
parameter c is given by (5.4). Volatility and difference are in bp.
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Figure 5.5: Plot of the swaptions’ ATM normal volatility surface fitted model vs market at
date 300 and absolute difference. We have used a model with 2 curve factors Y and a 4× 4
volatility matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and the
parameter c is given by (5.4). Volatility and difference are in bp.

yield curve and the volatility structure are constrained by no arbitrage conditions and this
constraints the forms of the volatility surface that can be attained by the model. The shape
of the swaptions ATM normal volatility surface has significantly changed in the period going
from 2006 to 2011. In the first period of our dataset i.e. from 2006 to 2007 (see Figure 5.3)
the market exhibits a very smooth volatility surface, the model fit to the market is good,
with a difference smaller than 10bp across all expiries and maturities. The model is able to
accurately fit the expiry term structure of volatility. The model fails to fit the maturity term
structure of volatility, it tends to overestimate the short expiry volatility. In the mid period
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of our dataset i.e. 2008 to 2009 (see Figure 5.3) , which is the period of the credit crunch, the
slope of the expiry term structure has increased and the shape of the short expiry volatilities
has changed. The model fails to fit both the long and short expiries volatilities. In the last
period 2010 and 2011 (see Figure 5.5), the form of the volatility surface has significantly
changed: the short expiry volatility has a very pronounced humped shape as a function of
the underlying swap maturity. The model is able to accurately reproduce the short expiries
volatilities, and tends to overestimate the long term expiry volatilities.

5.3.2 Calibrating ∆x

We now describe the optimization problem we solve to calibrate the values of the factors x
that better fit the variations of the ATM volatility cube. Assuming that we have calibrated
the model and in particular the values of xt up to the date tk−1, we calibrate the variation
∆xk = xtk − xtk−1

that better fit he variations of the ATM volatility surface between the
dates tk−1 and tk. We define the objective function between the dates t and s as follows

gt,s(∆x) =

N1∑
i=1

(
Tr
(
MC

s (Ti, δi)(xt +∆x)−MC
t (Ti, δi)xt + (M̄C

s (T, δ)− M̄C
t (T, δ))Ω

)
−∆V C(Ti, δi)

)2

+

N2∑
j=1

(
Tr
(
MS

s (Tj,mj)(xt +∆x)−MS
t (Tj,mj)xt + (M̄S

s (T,m)− M̄S
t (T,m))Ω

)
−∆V S(Tj,mj)

)2
.

(5.9)
The calibrated value ∆xk is defined as the solution of the following optimization problem

∆xk = argmin
∆x+xtk∈S

+
d (R)

gtk−1,tk(∆x). (5.10)

Figure 5.6 shows the quality of the fit of the weekly variations of the ATM implied volatility
surface. Clearly the fit is less satisfactory than the fit of the level of the ATM volatility
surface obtained when calibrating the factors x and the parameter Ω. While the observed
shapes of the ATM swaption volatility surface seem attainable by the model, its observed
variations are not regular and they don’t seem to be attainable by the model. As expected
by iterating the calibration of the variations we accumulate the errors and the fit of the level
of the implied volatility surface is not comparable to the one we obtain by calibrating both
the factor x and the parameter Ω. Figure 5.7 shows the fit of the ATM volatility surface of
swaptions at date 210 where we have calibrated the factor x and the parameter Ω by solving
the optimization problem (5.8) at date 200 and the solving the optimization problem (5.10)
for 10 successive weeks.

Figure 5.8 shows the market volatilities against the model volatilities when calibrating the
weekly variations of the swaptions ATM volatility surfaces. As the calibration focuses on
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Figure 5.6: Plot of the weekly variations of the ATM volatility surface fitted model vs
market between 209 and 210 and of the absolute difference. We have used a model
with 2 curve factors Y and a 4x4 volatility matrix X, with k1 = 0.01, k2 = 1, b =
diag(−0.41,−0.01,−0.41,−0.01) and the parameter c is given by (5.4).
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Figure 5.7: Plot of the ATM volatility surface fitted model vs market at date 210 and of the
absolute difference. We have calibrated x and Ω at date 200 and calibrated the variations
for 10 steps (i.e. 10 successive weeks). We have used a model with 2 curve factors Y and
a 4x4 volatility matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and
the parameter c is given by (5.4).

the weekly variations of the instantaneous cumulated variance, it fails to calibrate the level
of the swaption volatility. The calibration problem (5.10), focuses on optimizing the fit of
the weekly variations of the ATM volatility surface rather than the level of the volatility
itself. In terms of hedging the ability of the model to capture the market variations of the
underlyings is as important as its ability to fit the observed market prices at a given date.
Figure 5.9 shows the weekly variations of the volatilities, market against model. Whilst the
model fails to calibrate the level of the volatilities, it correctly captures the weekly variations
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Figure 5.8: Plot of the historic swaption ATM normal volatility fitted model vs market. We
have calibrated x and Ω at date 200 and calibrated the weekly variations of the volatility
surface on successive weeks. We have used a model with 2 curve factors Y and a 4x4 volatility
matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and the parameter c
is given by (5.4).

of the volatility surface. The table below gives the residuals of the R squared of the linear
regression of the weekly variations of the volatilities against the volatility estimated by the
model.

Swaption 2Y2Y 5Y5Y 10Y10Y 5Y2Y
R2 0.488 0.901 0.914 0.79

To measure the contribution of the factors in explaining the variations of the volatility cube,
we have regressed the weekly variations of the volatility directly on the calibrated factors,
rather than the volatility estimated by the model. The regression of the weekly variations
of the 10Y10Y swaption implied variance on the 3 factors which compose the 2x2 upper
left submatrix of x gives an adjusted R squared of 0.92. Conversely the regression on the
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Figure 5.9: Plot of the historic variation of the swaption ATM normal volatility fitted model
vs market. We have calibrated x and Ω at date 200 and calibrated the weekly variations of
the volatility surface on successive weeks. We have used a model with 2 curve factors Y and
a 4x4 volatility matrix X, with k1 = 0.01, k2 = 1, b = diag(−0.41,−0.01,−0.41,−0.01) and
the parameter c is given by (5.4).

3 factors which compose the 2x2 down right submatrix of x gives an adjusted R squared of
0.24. This is consistent with the interpretation of the factors x which are supposed to drive
the long and short expiry of the long and short maturity swaps. Of course this mapping is
not perfect, however it allows us to think in terms of principal component movements of the
swaption volatility cube. In terms of hedging, this suggest how to map the ”deltas” (i.e. the
derivatives) w.r.t. x into the deltas of the products to swaptions.

Apart for short expiries, for which we have seen thorough the model fails to calibrate the
market, the regression results show a high level of explanation of the weekly variations of the
volatility surface by the calibrated model. Figure 5.10 gives the plot of the residuals against
the normal distribution. The straight line represents the perfect adequacy of the distribu-
tion of the residuals to a centered normal distribution. The body of the distribution is in
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Figure 5.10: Plot of the residuals of the regression of the weekly variations of the swaption
ATM normal volatility market vs fitted model.

line with the normal distribution, while the tail of the distribution of the residuals departs
from the normal distribution. This indicates that the linear representation of the volatility
we have tested in our first calibration step is not sufficient to explain the dynamics of the
ATM volatility surface. An interesting question, which we leave to future investigation, is
wether we can improve the explanatory power of the model by a better choice of the constant
parameters b and c2, or by adding the higher order terms of the expansion (and in particular
the second order term) in the calibration problem3.

Let us insist on the fact that, whilst the fit of the market data can be consider insufficient
(when compared to parametric representation of the volatility such as SABR, which is the
market standard to manage interest rates swaptions books), our model is a fully-homogeneous
global model, which is able to capture the whole ATM volatility surface through a very lim-
ited number of factors. Most importantly, by choosing an adequate specification of the
model, we managed to clearly identify the role of the factors. The role of the factors Y has
been discussed in section 2.4 and is summarized by Figure 2.2. The main contribution of our
model is to achieve a similar identification for the factors X in terms of implied volatility
dynamics.

Remark 41 — Constrained calibration and robust hedging of exotic products:

2However this approach will mine our attempt to have a clear interpretation of the model factors.
3In which case we cannot formulate the calibration problem as an SDP optimization problem.
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We have described a robust numerical framework for model calibration. In particular we
have showed how the model can be specified in such a way that the volatility factors X are
clearly identified as main drivers of the ATM swaptions’ volatility surface. As mentioned
in section 5.1, the semidefinite programming optimization framework is flexible, and allows
to introduce complementary constraints to the calibration problem. In particular, we could
impose the constraint that X is a block diagonal matrix. Given a calibrated block-diagonal
matrix X, we have additional degrees of freedom: the correlations between the factors that
drive the off-diagonal terms outside the blocks. These parameters are the main drivers of
exotic products depending on the correlation between rates. As a consequence the model
allows to build boundary prices for these trades, inside which the models produces a robust
hedging strategy for these products.

167



168



Part III

A quantitative view on ALM
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This part of the dissertation is meant to be introductory to a field of finance on which I
came across in my working experience at Crédit Agricole S.A.. On several occasions I have
worked for the Financial division of the bank on quantitative subjects related to interest rate
and inflation risk in asset and liability management (ALM).

The theory of hedging of interest rates risks in ALM has mainly been developed in France.
The seminal book of Frachot, Roncalli et al. [DFR03] and the book of Adam [Ada08] describe
the key notions to manage interest rate risk in ALM. These theories have been development
to solve the concrete problems which are faced by the financial division of French retail banks:
hedging fixed rate saving accounts. In most countries the retail banking saving accounts pay
a floating interest which is indexed either on market rates, either on some bond or equity
underlying. In France, some of the saving accounts pay a fixed interest. This creates an
interest rate risk for the bank which needs to finance its activity at market rates, and is thus
exposed to the fluctuations of such rates. This exposure is called the interest rate risk and
one of the roles of the Financial division of the bank is to manage such risk.

The purpose of this part of the dissertation is twofold. On one hand we want to show
how derivative contracts such as IRS, and IR options appear naturally in a business which
is very close to the primary economic needs of society (retail banking). On the other hand
we want to communicate on a field which is little known from the mathematical finance
community and in our modest opinion presents some interesting quantitative challenges. It
is worth noting that this activity represents huge amounts of capital, trading books linked
to the ALM activity are usually much larger than a normal trading book of an average in-
vestment bank.

This second part of the dissertation is organized as follows. In chapter 6 we briefly in-
troduced the key notions used in ALM. We recall the definitions of schedule and interest
rate gap. We refer to [DFR03] and [Ada08] for an exhaustive and detailed description of
these concepts. We also introduce a new concept, the concept of envelope which generalizes
the notion of schedule. To the best of our knowledge this concept has not been introduced
in the literature so far, or at least not in such an explicit way. This concept is very useful
in practice to account for the uncertainty on the future evolution of assets and liabilities.
Also, it is a natural way to introduce optionality in the assets and liabilities.In chapter 7,
we present some two concrete examples of French state regulated saving accounts. For each
example we propose a model to hedge the interest rate risk related to this particular prod-
uct. Section 7.1 describes the hedging problems linked to the Livret A saving account. This
account is indexed on inflation and on nominal interest rates. We propose three different
modeling approaches to hedge the interest rate risk related to this product. We show that
depending on the assumptions on the behavior of the clients, and on the hedging strategy,
the perception of the risk is significantly different. In section 7.2 we study a model for
hedging the interest rate risk linked to Plan d’Epargne Logement (PEL) saving accounts.
The idea of the model was initially proposed in Roncalli, Demey at al. in [BDJ+00]. We
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have extended their model by introducing a behavioral dimension in the model which allows
to consider different behavior of the clients. Finally in chapter 8 we study the hedging of
interest rates options in ALM. We discuss the peculiarities of the activity, and in particular
the differences with the derivatives business. We propose two alternative hedging strategies,
which correspond to different choices of numeraire. We discuss the pros and cons of both
strategies for hedging options in ALM, and compare them in terms of hedging performance
in a toy model.
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Chapter 6

Notions of ALM

We will focus exclusively on the notion of interest rate risk in ALM. In particular we
will cover the quantitative modeling techniques that can be used to manage such risks. This
chapter gives some introductory notions to ALM. Liabilities, as well as assets are not nec-
essarily known in advance, their evolution depends on several factors such as the behavior
of creditors or savers, the evolution of market rates. The objective of the Financial division
is to lock the future margin no matter the evolution of both assets and liabilities of the bank.

The key concept in ALM is what is commonly known as the interest rate gap. Interest
rate risk comes from a mismatching between the rate to which the bank is able to fund its
liabilities and the rate at which this liabilities are effectively remunerated. The philosophy
of ALM consists in transforming any fixed rate (either on the liability side, or on the assets
side) to a floating rate which is meant to be as close as possible to the rate at which the
bank is able to fund its activity. This is called the transformation business.

6.1 Assets and liabilities

For a retail bank the liabilities are mainly the bank saving accounts and bond issues.
The assets are mainly the credits. It is worth mentioning that France has some of the
more complex saving accounts contracts and these are state regulated. Some of them are
true exotic derivative contract, as the Livret A and the Plan d’Epargne Logement (PEL).
Unfortunately for the bank, neither the notional of the liabilities, neither the notional of the
assets are known in advance. The first duty of the financial division is to build a model that
enables to anticipate the future notional of assets and liabilities. Once a model has been
build, the second fundamental duty of the financial division is to hedge the positions of the
bank.
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6.1.1 Some fundamental differences with a Mark to market ap-
proach

It is important to understand that there are some fundamental differences between the
activity of a trading desk of an investment banking division and the Financial division desks
that manage the exposure of a large retail bank.

The role of a classic investment banking trading desk is to sell derivative contracts, re-
ceive the premium of the contracts up front and build an hedging strategy to globally hedge
the exposure of the desk. The performance of the desk, i.e. the P&L, is measured on a daily
basis by marking to market the instruments in the desk’s book1. The future (real) outcomes
of the derivatives, and more precisely of the netted position (derivative minus hedges, i.e.
the so called tracking error) of the desk, are represented by the mark-to-market of the book.

Conversely, the performance of the Financial department is measured in accrual, i.e. it
is the result of the actual cash flows of the assets and liabilities of the bank. For example, a
credit paying an interest K to the bank is, from an ALM perspective, not valued as the net
present value (NPV) of the future cash flows of the contract, but it is valued as an interest
rate of K on the notional of the credit for the period of the credit. The performance of such
a contract will be determined as the difference between the rate K and the rate at which
the bank is able to fund this credit. It is important to note that, in representing assets
and liabilities through the NPV or mark to market (MtM), the information on the actual
underlying notional is lost. Conversely, in the ALM view the relevant information is made
of the couple notional and rate we pay or receive on that notional.

6.2 Modeling schedules

We introduce the notion of schedule which is extensively used in [DFR03] and [Ada08].

Definition 42 — The schedule of an asset or a liability is a model that gives the future
evolution of its notional in the future as a function of time as if the bank stopped its activity
today. A schedule is associated to a interest rate received or payed depending if it is an asset
or a liability.

While the notion of schedule is a market standard in ALM management, we consider it is
incomplete in describing the evolution of assets and liabilities. It is extremely ambitious to
think that we are able to model the future evolution of the notional of assets and liabilities
of a bank in a deterministic way, since it depends on a number of factors such as the behav-
ior of clients (savers and creditors), the evolution of economic factors (rates, inflation, equity).

1In practice this is not exactly the case, since for some products we cannot always observe the price in
the market. We thus price these products with a model, we say that these products are marked to model.
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Modeling the future evolution of the notional as if the bank stopped its activity today is a
questionable assumption. In theory, assuming that the model is correct, the model enables
the bank to hedge the stratums of assets and liabilities successively. However, in practice, it
is very important to consider that the bank has an ongoing activity, and to pay attention at
the actual evolution of the the total notional of its assets and liabilities.

It is possible to extend the notion of schedule introducing the notion of envelope. As men-
tioned before, the future evolution of assets and liabilities depends on several factors, in
particular, it is reasonable to assume that it depends on a number of market factors such as
interest rates, inflation... An envelope is a function of time and of a set of underlying state
variables.

Definition 43 — The envelope of an asset or a liability is a model that gives the future
evolution of its notional as a function of time and of a set of state variables as if the bank
stopped its activity today.

If the function is linear, the envelope can be decomposed in a series of schedules associated
to each rate involved in the expression of the envelope.

Let us illustrate the notion of schedule and envelope via an example. Let us consider a
simple example of asset, a pool of mortgages with fixed interest rate K. As simple as this
example can look, depending on the assumptions, the schedule and envelope can be very
different. For simplicity, let us assume that all these mortgages have the same maturity T .
Let us denote by N the total notional of these mortgages issued by the bank for a given
month.

• If we assume that the clients only pay interests during the life of the mortgage and
refund the total notional of the credit at maturity, and assuming furthermore that the
mortgages do not allow any prepayment, the schedule is simply a constant from the
inception date t until the date of maturity T . In this case the envelope is identical to
the schedule.

• If we assume that the clients pay a constant annuity up to the maturity of the mortgage
and assuming furthermore that the mortgages do not allow any prepayment. The
schedule is a concave function starting at N at date t and finishing at 0 at maturity
T . In this case the envelope is identical to the schedule.

• If we assume that the clients pay a constant annuity up to the maturity of the mortgage.
If we furthermore assume that the clients can make prepayments of their mortgage at
any time before maturity. Then the future evolution of the notional of the mortgage
is not deterministic anymore and will depend on a model for the clients prepayments.
The simplest possible model would be to consider that the clients will massively prepay
their mortgage if they are able to renegotiate their credit at a better rate. We can thus
assume that a portion pt of the notional is refunded if the rate K is higher than the
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3 months euribor rate2 plus a spread s at date t. The envelope is thus given by this
function f(t, rt) = N(1− t/T )−pt1rt+s<K , where rt denotes the 3 months euribor rate.
In figure 6.1 the envelope is the region between the red curve and the green curve.

t

N (t)

refund at maturity

minimum envelope

N

t = 0 T1 T2

D1

P1

T2T2T2T2

D2

T3

D2

P2

T3

Figure 6.1: Example of schedule for a pool of mortgages. The constant black line is the
schedule assuming constant interest, without prepayment and refunding of the full notional
at maturity. The concave red curve is the schedule assuming constant annuities and without
prepayment. The green straight line represents the minimum of the envelope, i.e. the
estimated minimum notional that will remain in the mortgage pool. The envelope is the
region between the red and the green curves and it can be approximated by a series of
swaptions or caplets. In the figure we have represented two consecutive swaptions/caplets
of expiry T1 and T2, maturity D1 and D2, and of notional N1 and N2. The dashed line
represents the realized schedule.

The concept of schedule is the market standard in ALM (at least in France), and the
concept of envelope is widely used by practitioners. Using these concepts we can represent
the asset or the liability into an observable quantity which can be viewed as a proper deriva-
tive contract and thus hedged using the tools we have developed in the first part of this
thesis. It precisely quantifies the amount of notional that is due or owned at a given future
date. Modeling the future evolution of assets and liabilities using schedules is equivalent
to assume that the notional evolves as linear functions of the reference rates, so that the
schedule tells exactly the amount that should be invested in each one of these rates to hedge
the position. The notion of envelope allows to include non-linear functions of the rates. In

2Where we have assumed that the 3 months euribor is the reference rate on which banks determine their
mortgage rate.
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the language of derivatives, the natural way to represent non-linearity is through options.
Assets and liabilities naturally include optionality. The option can be either embedded (as it
is the case for prepayments), or explicit (as it is the case for saving accounts such as Livret
A, PEL and for callable bonds). In the previous example the envelope can be approximated
as the combination of schedule 2 and of a set of Floorlets of strike K − s. Each Floorlet has
notional pt. In theory one would need a continuum of Floorlet options in order to replicate
exactly the envelope. In practice, we consider a discrete set of options.

If the realized evolution of the asset or the liability stays inside the envelope, then the
strategy given by the model will hedge the interest rate risk. Conversely, if the realized
evolution of the notional of the asset or the liability is outside of the envelope , then the
interest rate risk is not fully hedged.

6.3 Interest rate gap

Given a model for the schedule of a given liability or asset it is necessary to implement
the hedging strategy for this asset or liability. The notion of interest gap is the key notion to
represent risk in ALM. Consider the activity of a large retail bank, the bank faces a number
of liabilities on which it pays different interest rates and has a number of assets which yield
different interest rates. The margin of the bank is the difference between the interest rates
payed on the liabilities and the interest rates received on the assets. Neglecting the pure
commercial margin, the rest of the margin is the result of the work of the ALM division.
The margin is realized by optimizing the difference between the interest rates payed on the
liabilities and the interest rates received on the assets.

Definition 44 — The interest rate gap is the amount of outstanding notional of either an
asset or a liability which is not hedged and either yields or costs a fixed or floating rate
different from the rate of funding of the bank for the same maturity.

Whenever the bank has to pay or receives a fixed rate or a rate which is different from
the rate at which it is able to fund, it is exposed to the evolution of the spread between
these two rates. For this reason the standard practice consists in swapping the assets and
the liabilities to the market interest rate swap rate. Doing so, the first part of the margin
of an asset or a liability is immediately identified as the spread between the rate payed or
received by the clients and the swap rate. Entering in an IRS which mirrors the cash flows
of either an asset or a liability, implies that the interest payed or received are now indexed
on the reference rate of the floating leg of the swap, which is the 3 or 6 months euribor rate.
The IBOR is itself different from the actual funding rate of the bank and the second part of
the margin is determined as the difference between the IBOR and the actual funding rate of
the bank. Typically this rate is close to the OIS, simply put it is fair to say that the interest
rate gap of a bank increases as the spread between the IBOR and the OIS rate.

Let us consider the example of the loan to illustrate how the interest gap is hedged. Assume
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Figure 6.2: Illustration of the mechanism of hedging of the interest rate gap.

that the chosen schedule is 1. Assume that we can enter into a payer IRS of same notional,
same payment dates and same maturity. Let us denote by S the par rate for this swap.
Then at each coupon payment date Ti, the cash flows are the following:

• The bank receives KNδ(Ti − Ti−1) from the creditors.

• The bank pays SNδ(Ti − Ti−1) to the counterparty of the swap.

• The bank receives LTi−1
(Ti − Ti−1)Nδ(Ti − Ti−1) from the counterparty of the swap.

Where δ(Ti−Ti−1) denotes the daycount fraction between two successive coupon payment
dates. The netted flow at date Ti is given by

(K − S)Nδ(Ti − Ti−1)− LTi−1
(Ti − Ti−1)Nδ(Ti − Ti−1). (6.1)

Let us recall that by definition a bank should be able to fund itself in the market at a cost
which is exactly equal to the IBOR rate. From an ALM perspective, the position has been
perfectly hedged by entering in the above payer swap. There is no uncertainty on the future
outcome of the netted position, and the total margin is given by K − S. In practice, the
funding is not done at the IBOR rate, the treasury desk uses a mix of different funding
techniques to acheive the cheapest possible funding rate. For example, it can lend its assets
(such as bonds or even ABS in some cases) using repo contracts, or it can swap again once
the libor rate has fixed using OIS swaps. In the latter case, the OIS swap will have the
length of the coupon payment period Ti − Ti−1 and the netted flow at date Ti is given by

(K−S)Nδ(Ti−Ti−1)−(LTi−1
(Ti−Ti−1)−OISTi−1

(Ti−Ti−1))Nδ(Ti−Ti−1)−N
∫ Ti

Ti−1

dsOISs.

(6.2)
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Where OISTi−1
(Ti − Ti−1) denotes the par rate of the OIS swap between dates Ti−1 and

Ti and OISs denotes the overnight rate. While it is not realistic, especially in the current
market environment, to assume that the bank is able to fund itself at the IBOR rate, it is
fair to say that the very short term funding cost of banks is close to the OIS rate. Then, if
the Financial division desk has implemented the above strategy, entering in two successive
payer interest swaps, the first paying IBOR, and the second paying OIS, it has secured a
margin which depends on the spread between the client rate and the at par swap rate for
the same period and on the spread between IBOR and OIS.

Any asset or liability which is not hedged following the procedure we have described above
represents a risk for the bank and is a directional position on the future evolution of interest
rates, this is called an open gap, meaning that the asset or the liabilities is not matched by
another asset or liability. As mentioned before, the amount of notional involved is enormous
and usually Financial division are allowed to keep a part of the gap open.

6.4 Modeling and data

As mentioned before, the primary role of the ALM division of a retail bank is building a
model to estimate the future evolution of assets and liabilities. For some of these the future
evolution is straightforward, this is the case of bond issues for example. However, as we have
seen, even for very simple liabilities such as mortgages, the modeling of schedules requires
non trivial assumptions on the behavior of clients. The archetypal example of liability are
the French regulated saving accounts such as the Livret A and the PEL, which we will de-
scribe in details later.

Let us follow up with our example on mortgages. We have defined a very simple model
of prepayments based on a rational behavior of clients and on the fact that the 3 months
IBOR rate plus a constant spread represents a good proxy for the mortgage rate. This
modeling is full of unrealistic assumptions. Clearly the behavior of clients is not rational,
secondly the mortgage rate depends on various factors such as the perception of credit risk
and the overall funding capabilities of the bank, which are factors that cannot be reduced
to a constant spread. Finally it is reasonable to think that the number of prepayments
depends on other economic and market factors such as the GDP and inflation. Given that
it is crucial for the bank to estimate the number of prepayments of mortgages, the ALM
divisions of retail banks put a lot of effort to understand the behavior of clients and estimate
the prepayment amounts. The main mathematical tool used for this purpose is statistical
analysis of historical time series of observed prepayments. Classic models try to identify sig-
nificant correlation relationships between the amount of prepayments and market observable
quantities. Typically the quantities that are used are the ones the bank is able to hedge
using interest rates options.

Let briefly discuss the data available to analyze the behavior of assets and liabilities and
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to built the schedule model. The banking industry is probably the industry which has the
higher number of information on its own clients. Unfortunately the information system is
not designed to allow to exploit this information. It is often very difficult to get granular in-
formation on the clients. The situation is similar to the situation in the Investment Banking
business, the information is often available only on an aggregate basis. For example, for a
given saving account we will have the time series of the total notional of the saving accounts
but we will not necessarily have the information on the notional amount of the new saving
accounts that have been opened at a given date, nor the information on the notional amount
of the saving accounts that have been closed. A crucial part of the modeling teams of the
ALM division consists in building a set of data that can be exploited to extract relevant
information on the assets and liabilities.
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Chapter 7

Hedging Interest rate risk in ALM:
some examples

7.1 Hedging the Livret A saving accounts

This section briefly presents part of the work I have done on the Livret A saving accounts
at Crédit Agricole S.A. in collaboration with Mzoughi Karim and Krzyzaniak Stephan.

The Livret A is a state regulated tax free saving account in France. The minimum no-
tional to open a Livret A is 1.5 euros and the maximum notional is 23000 euros, above
that notional amount the account pays the interest on the total notional but no instalment
can be made. The total notional of the livret A saving accounts was 268,7 billion euros in
April 2014. Around half (the rules to determine exact portion of the total notional are fairly
complex) of the total notional is centralized and managed by the CDC (Caisse des dpots et
consignations), and used to finance public housing in France. There are other state regulated
saving accounts which yield the same rate and are used to finance different public works such
as sustainable development works. The total notional amount of these saving accounts was
371,1 billion euros in April 2014.

One of the main characteristics of the Livret A saving account is that its coupons are in-
dexed on inflation. The interest rate of the product is fixed every 6 month and holds for the
6 months following the fixing. The rate is given by the formula:

Lt = max

(
1

2

[
EONIAt−2m + EURIBOR3Mt−2m

2
+

(
CPIt−2m

CPIt−14m

− 1

)]
,

(
CPIt−2m

CPIt−14m

− 1

)
+ 25bp

)
.

(7.1)

where EONIAt and EURIBOR3Mt are respectively the mean of the EONIA rate and the
3M EURIBOR rate over the month t. In the following we use the notations
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It =
CPIt

CPIt−1y

− 1

nt =
EONIAt + EURIBOR3Mt

2
We will ignore two further options which are used to determine the interest rate. The first
is that the difference between two consecutive fixings is capped and floored, the second is
that the state can decide not to apply the formula (this is often the case when we observe a
significant variation between two consecutive fixings).

It is worth noting that, being state regulated, the Livret A contract has changed dramati-
cally in the last years. For example, the maximum instalment has recently been raised from
15000 to 23000 euros. For this reason, the explanatory power of time series of the total no-
tional amount in the Livret A saving accounts is not necessarily very high. We will analyze
the livret A saving accounts from an investment banking perspective. In the following we
propose three different exotic structures which can be used to hedge the product.

7.1.1 Different views of the Livret A

Depending on both, the assumptions we make and the management choices, the livret A
can be modeled in different ways. For example, the product is (at least in theory) perpetual.
In practice it is necessary to assume that the product as a fixed expiry. The choice of the
expiry will be driven by two considerations. The first that it is important that this expiry
is consistent we the observed behavior of client (this will be supported by an analysis of
the historical data available, and the assumptions on the behavior of clients). The second
that the expiry we chose determines the expiry of the hedging instrument we will use, and
therefore will be driven by liquidity and cost considerations. In all the following we will
assume that the livret A saving accounts have a maximum expiry of 15 years. Another
important assumptions is on the ability of the clients to close the account before expiry.
Taking this right into account will introduce path dependent optionality in the product. In
practice the livret A saving accounts will be hedged by stratums. The interest of the livret
A are capitalized in the saving account and they are then compounded for future interests.
Two alternative choices are available, either to add the interests to the new stratums, or
to add them to the notional amount of the saving accounts. Depending on the choice the
corresponding exotic derivative structure will show different sensitivities.

We now describe three different derivative structures which model the livret A saving ac-
counts.

Livret A swap

The first approach to hedge the Livret A is to guarantee the coupons w.r.t. a fixed
notional amount N (which corresponds to the stock at a certain date). The structure of the
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product is then similar to an inflation swap plus a cap on the real rate.

The swap payment frequency is six months. At every payment date ti+1 the product pays
the amount

0.5NLti

where the rate Lti is the Livret A rate fixed at date ti, which can be written as

Lti = Iti−2m +max

(
nti−2m − Iti−2m

2
, 25bp

)
= Iti−2m + 25bp +

(
nti−2m − Iti−2m

2
− 25bp

)+

.

The main drawback of this approach is that this product does not truly hedges the Livret
A saving accounts. In practice interests are not actually perceived as a coupon by the client
but capitalized in the saving account until the client decides to close its account(i.e. until
maturity). In the latter we present an exotic structure that exactly replicates the livret A
saving account.

The Livret A product: capitalizing on interest

Instead of modeling the product as a swap which pays the interest on the notional in
the form of coupons. We define a product with a unique terminal cash flow where we have
capitalized all the coupons. At maturity T the product pays

N
∑
i:ti<T

Πn
k=iLti

where by convention tn = T .

Cancellable Livret A product

In practice the owner of the livret A has the right to close the contract at any time. The
owner of the contract is thus long an American option which is not modeled in the previous
structures. We thus introduce this option in the livret A product. Though the client can
exercise at any date, we will assume that the client has the right to exercise every 6 month,
receiving the capitalized interests on the notional. At the exercise date T ex the product pays

N
∑

i:ti<T ex

Πne
k=iLti

where by convention tne = T ex.
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7.1.2 Risk analysis of Livret A product

In this section we perform a Risk analysis of the three derivative structures: the Livret
A swap (LAS), the Livret A product (ELA) and the cancellable livret A product (ALA). In
particular we focus on the sensitivities of the product to vanilla market instruments. All tests
are performed with a standard three factors Jarrow-Yildirim model, see [JY03] calibrated to
the term structure volatilities of 3 months tenor caplets and 1y CPI ratio options. Market
data of 31-03-2011 is used. The delta sensitivities are computed by finite difference when
bumping the market prices of the linear products which are used to calibrate the model.
The nominal deltas are defined as the sensitivity of the price to a change in the market value
of the nominal interest rate swap. The nominal delta of maturity kY corresponds to the
sensitivity of the price to a change in the kY maturity interest rates swap. The inflation
deltas are defined as the sensitivity of the price to a change in the market value of the zero-
coupon inflation swap. See [BM06] for a definition of zero-coupon inflation swaps products.
The inflation delta of maturity kY corresponds to the sensitivity of the price to a change in
the kY maturity zero-coupon inflation swap. The vegas of the product are also computed
by finite difference when bumping the market prices of optional products which are used
to calibrate the model. The nominal vegas are defined as the sensitivities of the price to a
change in the market value of the 3 month tenor caplets. The nominal vega of maturity kY
corresponds to the sensitivity of the price to a change in the market value of the 3 month
tenor caplet of expiry kY . The inflation vegas are defined as the sensitivities of the price to
a change in the market value of the 1 year CPI ratio options. See [BM06] for a definition of
CPI ratio options. The inflation vega of maturity kY corresponds to the sensitivity of the
price to a change in the market value of the 1 year CPI ratio option of expiry kY .

Sensitivity analysis of the Livret A swap

Nominal Deltas of  Livret A swap
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Figure 7.1: Deltas of Livret A swap.

Figure 7.1 shows the delta sensitivities of the LAS. The sensitivity is naturally concentrated
around maturity (here 15 Y) for both the Nominal swap and Inflation swaps sensitivities.
Note that the sensitivity to the breakeven Inflation curve movements is more important then
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the sensitivity to the nominal yield curve. In order to properly hedge the product we should
take an important part of Inflation swaps.
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Figure 7.2: Vegas of Livret A swap.

Both Inflation and Nominal Vegas are negligible and don’t seem to have a large impact on
the product.

Sensitivity analysis of Livret A product
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Figure 7.3: Deltas of European Livret A .

As for the LAS, figure 7.3 shows that the sensitivity is naturally concentrated around ma-
turity (here 15 Y) for both the Nominal swap and Inflation swaps sensitivities. Again the
sensitivity to the breakeven Inflation curve movements is more important then the sensitivity
to the nominal yield curve.
The Nominal Vegas remain negligible and don’t seem to have a large impact on the product.
However the Inflation Vegas are much more important then in the case of the LAS, and in
order to properly hedge we should take this volatility risk into account.

Sensitivity analysis The Delta sensitivities of the ALA (Figure 7.5) are identical to the
Delta sensitivities of the ELA. The Nominal Vegas remain negligible and don’t seem to have
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Nominal Vegas of European Livret A 
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Inflation Vegas of European Livret A 
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Figure 7.4: Vegas of European Livret A swap.

Nominal Deltas of American Livret A 
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Inflation Deltas of American Livret A 
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Figure 7.5: Deltas of American Livret A.
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Inflation Vegas of American Livret A 
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Figure 7.6: Vegas of American Livret A.

a large impact on the product. Inflation Vegas are almost ten times larger then in the case
of the ELA. The Inflation volatility risk thus becomes an important one for the American
structure. This volatility risk mainly comes from the exercise/cancel option (see figures 7.8
and 7.7).

186



Inflation Deltas of Exercise Option
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Figure 7.7: Vegas of the Option.
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Figure 7.8: Vegas of the Option.

7.1.3 Hedging of Livret A in practice

Of the three exotic structures we have presented, the ALA is the product which is actually
sold by the Bank to its clients. Thus in order to perfectly hedge the product one should take
into account all the risks we have mentioned in the sensitivity analysis we have conduced for
this product. The standard approach however consists in viewing the livret A saving accounts
as livret A swaps. The notional is split between a nominal interest rates notional, which
is swapped using the procedure described in section 6.3, and an inflation notional which is
swapped with the same procedure, but using either year on year inflation swaps or zero-
coupon inflation swaps1 instead of standard IRS. These notional amounts are determined
by the delta sensitivities of the livret A swap product. The option held by the clients of
the product is supposed to be modeled by the deterministic schedule which incorporate all
the option risks. A more accurate hedging could be achieved by defining an envelope which
depends on the nominal interest rates (say the 3 months libor for example), and on the

1The choice between one or the other depends on the liquidity of these products in the market.
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year-on-year inflation. The envelope could be determined by transforming the deltas and
vegas of the ALA.

7.2 A model for PEL saving accounts

This section briefly presents part of the work I have done on the PEL saving accounts at
Crédit Agricole S.A. in collaboration with Abdelmoula Omar. The Plan Épargne Logement

(PEL) is a state regulated saving account which has two separate phases, a saving phase,
which can last between 4 and 10 years and includes regular instalments from the client, and
a borrowing phase which allows the owner of the account to have a mortgage from the bank
at a predetermined interest rate. If the owner decides to convert his saving account into
a mortgage it will receive a bonus premium from the State. The amount of this premium
depends on the notional of the saving account. The total notional of PEL saving accounts
was estimated at 159 billions in 2009.

7.2.1 Product description

The PEL is a State regulated saving account of maximum duration 15 years. After a
saving phase of minimum 4 years, the saving account can be converted into a mortgage, in
this case the owner has the receives a bonus premium from the state which depends on the
total notional amount of the saving account. The rules of the PEL contract have recently
changed, the products we describe here are the PEL saving accounts that have been sold to
clients in the period 01/08/2003 to 28/02/2011.

Below is the description of the instalement rules of the PEL saving account:

• The minimum initial instalment is 225 euro.

• The instalment frequency is either monthly, quarterly or semi-annual.

• The minimum instalment amount is 540 euros per year, 45 euros per month, 135 euros
per quarter or 270 euros per semester.

• The total instalment amount cannot be higher than 61 200 euros.

The PEL contract pays a fixed interest rate on the total notional amount, we will denote
this rate by γPEL in the following. For the generation of PEL contracts between 2003 and
2011, the rate was 2.5%. The minimum duration of the PEL contract is supposed to be 4
years. However, the subscriber has the right to cancel his contract at anytime before the 4th

anniversary of its contract. Below are the conditions to cancel the contract:

• If the subscriber closes the account before the 2nd year of the contract, the interest are
recalculated with a different rate, called the rate CEL (denoted γCEL hereafter) which
is lower than the PEL rate.
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• If the subscriber decides to close the contract between the 2nd and 3rd year, then the
interests are calculated with γPEL but the owner loses the bonus premium and doesn’t
have the right to convert the contract into a mortgage.

• If the owner of the contract decides to close the contract between the 3rd and 4th year,
the owner has the right to convert the contract into a mortgage, the notional of the
mortgage is determined based on the amount the owner has saved before the 3rd year.
In this case the owner receives half of the bonus premium.

• If the owner of the contract decides to close the contract between the 4th and 10th

year, the owner has the right to convert the contract into a mortgage, the notional of
the mortgage is determined based on the amount the owner has saved before the last
anniversary date prior the closing date. In this case the owner receives the full bonus
premium.

7.2.2 Notations

Let f ∈ {2, 4, 12} be the annual instalment frequency.

• The PEL annualized interest rates
We denote by γPEL the annualized interest rate of the PEL contract. Let γf be the
annualized interest rate for instalments occurring every n = 12

f
months, we have

γf = (1 + γPEL)
1
f − 1 (7.2)

Similarly, we define the annualized interest rate for an instalment frequency f equiva-
lent to the CEL interest rate γCEL:

γ−f = (1 + γCEL)
1
f − 1 (7.3)

• Instalments
We denote by v0 the initial instalment, and Mt the total instalment amount at date t.
Let us denote by (tk, k = 0, ..., NI) the dates of the instalments.

• The total notional amount of the PEL
For tk ≤ t < tk+1) the total notional amount of the PEL contract at date t is given by:

N(t) =


v0(1 + γCEL)

t +
∑k

i=1Mti(1 + γCEL)
t−ti if t ≤ 2

v0(1 + γPEL)
t +
∑k

i=1Mti(1 + γPEL)
t−ti if 2 < t ≤ 10

(1 + γPEL)
t−10N(10) if t > 10

• The notional of the mortgage
The owner of the PEL contract can convert the contract into a mortgage. The notional
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amount of the mortgage depends on the interests perceived during the ”saving phase”.
Let I(tk) denote the total amount of the interest perceived up to date tk, we have:

I(tk) = N(tk)− v0 −
k∑
i=1

Mti (7.4)

The maximum notional of the mortgage is a function of I(tk)

• Bonus premium
If the owner of the PEL contract converts its contract into a mortgage, he receives a
bonus premium. The bonus premium cannot be higher than 1525 euros, and is pro-
portional to the maximum notional of the mortgage. The bonus premium pe(t) at date
t (t ≥ 3), is given by:

pe(t) =



0 ifsi t < 3
1
2
min

(
2
5
I(⌊t⌋), 1525

)
if 3 ≤ t < 4

min
(

2
5
I
(
⌊t⌋
)
, 1525

)
if 4 ≤ t ≤ tmax

min
(

2
5
I(tmax), 1525

)
if t ≥ tmax

At date tmax the bonus premium is fixed. For the generation of PEL contracts issued
between 2003 and 2011, tmax = 10.

• Taxes
The bonus premium and the interests are not tax free. The taxes on are payed when
the contract is closed or after the 10th year. Let Rf be the tax rate (12.1% for the
generation of PEL contract we have studied), the tax amount to be payed assuming
we close the contract at date t is given by:

F (t) = Rf × I(t) (7.5)

7.2.3 The mortgage

After year 3, the PEL contract can be converted into a mortgage. The maximum notional
amount of the mortgage Nmax at date τ is given by:

Nmax = min

(
2.5× I

(
⌊τ⌋
) (1 + γf )

T − 1

1 + (1 + γf )T (γfT − 1)
, 92K

)
(7.6)

where T is the total number of monthly instalments of the mortgage. Assuming that the
owner of the contract converts into a mortgage of notional Nmin ≤ N ≤ N∗, the value of the
monthly instalments is given by:

M =
ρPEL

1− 1
(1+ρPEL)T

N, (7.7)

where ρPEL is the prefixed interest rate of the mortgage.
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7.2.4 A model for the evolution of the PEL contracts

Let us now build a model for the behavior of the clients of the PEL contract. Our goal
is to build a model that describes the behavior of the clients of the PEL contract. We have
merely followed the footsteps of [BDJ+00].

The owner of a PEL saving account holds two options which are embedded in the contract:

• The client can convert the contract into a mortgage.

• The client can close the PEL saving account.

The population of the owners of the PEL saving accounts is heterogeneous and it would
be unrealistic to assume that all the clients share the same behavior. For example, some
clients consider the PEL saving account as a pure saving account and are not interested in
converting the contract into a mortgage2. A realistic model should be able to model all the
different behaviors of the client population. We will introduce a utility function which will
allow us to differentiate between the different client behaviors. Also, historical data shows
that the clients do not follow a rational behavior, we will also introduce an uncontrolled
source of randomness which models irrational behavior of the clients.

Let (Ω,F , {Ft} , P ) be a filtered probability space. Let θ be the first jump of a Poisson
point process with a deterministic intensity λ, we have

P (θ > t) = exp

(
−
∫ t

0

dsλ(s)

)
. (7.8)

We assume that the intensity λ is given by

λ(t) =


C2 if 3 < t ≤ 4
C3 if t ≥ 4
C1 otherwise

where C1, C2 et C3 ∈ R∗
+. The random process θ models the time when the owner decides to

close the PEL saving account for no particular reasons. We use θ to model the ”irrational”
behavior of the clients.

We now model the ”rational” behavior of the clients by a random utility function. Let
X be a random variable taking values in the interval [0, 1], for example X can be taken to
be uniformly distributed. We define the utility function of the client if he decides to exit at
date tau by

f(τ, pe(τ), τ, T,K) = (pe(τ) +XNmin + (1−X)N∗ − δK)+ , (7.9)

2For the PEL contracts issued between 2003 and 2011 this still gives the owner to right to benefit to the
(minimum) of the state bonus premium.
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where Nmin is the minimal notional amount the client can borrow, and N∗ is the maximum
notional amount the client can borrow, δ represents the credit spread of the clients, and K
is the net present value of the monthly payments of the mortgage, at date τ the net present
value of the cost of a mortgage with T constant monthly payments is given by

K(τ, T ) = M
T∑
i=1

Pτ,τ+ i
12
. (7.10)

The random variable X can be viewed as a cursor between the behavior of a client who is
willing to use the PEL as a pure saving account, and a client who is willing to convert the
PEL saving account into a mortgage. Given a model for the yield curve dynamics the client
faces an optimal stopping problem. The value of the option at date t is given by

Vt = −
[f×t]∑
i=0

Mtie
∫ t
ti
rsds+

sup
τ∈Tt,tmax

E

[
e−

∫ τ∧θ
t rsds

(
N(τ ∧ θ)− F (τ ∧ θ) + 1{θ>τ}f

(
pe, τ, T,K(τ, T )

)
+ 1{θ≤τ}pe(θ)

)
|Ft

]
.

(7.11)
where Tt,tmax is the set of stopping times which take values in the interval [t, tmax].

In order to derive a tractable resolution of the optimal stopping problem, we will make
some assumptions. We assume that ”irrational closing time” θ is independent of the yield
curve dynamics. We also assume that the distribution of the clients between savers and
mortgage borrowers X is independent of the yield curve dynamics. This allows us to study
the problem as if both the variables θ and X where deterministic, and then compute the
result of the problem as the expectation under the law of X and θ of the solution. We will
also assume that the instalments of the client are deterministic as if the owner of the PEL
saving accounts decided its saving strategy at inception of the contract.

7.2.5 A PDE resolution in the Vasicek model

We solve the optimal stopping problem (7.11) in the Vasicek model [Vas77]. The spot
rate is assumed to be solution of the SDE,

drt = k(b− rt)dt+ σdWt. (7.12)

We assume that X and θ are deterministic, therefore the utility function for x ∈ [0, 1] is
given by

fu(pe, τ, T,K(·, ·)) =
(
pe(τ) + xNmin + (1− x)N∗ − δK(τ, T )

)
+

.
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In the Vasicek model the yield curve is a function of the spot rate only, therefore K is
also a function of the spot rate only, the utility function f is also a function of the spot rate
only and of the characteristics of the contract. We define

f(t, rt) := fu(pe, τ, T,K(t, T ))

The value of the optimal stopping problem (7.11) can be viewed as the price of an American
option held by the client. Ignoring the cost of the instalments up to date t, we define the
value function as

V (t, rt) := sup
τ∈Tt,tmax

EQ

e− ∫ τ∧θ
t rsds

(
N(τ)− F (τ) + f(t, rτ )

)
−

[f×τ ]∑
i=[f×t]+1

Mtie
−

∫ ti
t rsds|Ft

 .
(7.13)

The underlyings (the total notional amount of the PEL saving account, the bonus premium
and the cost of the mortgage) are stepwise constant functions. It is simpler to resolve a
continuous version of the problem rather the original one. Let us define

V c(t, rt) = sup
τ∈Tt,tmax

EQ

[
e−

∫ τ∧θ
t rsds

(
E(τ)− F (τ) + f(t, rτ )

)
−
∫ τ

t

M(s)e−
∫ s
t rξdξ|Ft

]
.

The price is solution of the following parabolic partial differential inequality


∂V
∂t

+ (b(t)− r)∂V
∂r

+ σ2

2
∂2V
r2

− rV −M(s) ≤ 0, V (t, r) ≥ f(t, r) dans [0, tmax]× R
(∂V
∂t

+ (b(t)− r)∂V
∂r

+ σ2

2
∂2V
r2

− rV −M(s))(f(t, r)− V (t, r)) = 0 dans [0, tmax]× R
V (tmax, r) = f(tmax, r)

There are no explicit solutions to the above differential inequality, but we can easily solve it
with numerical schemes such as the implicit Euler finite difference scheme. The numerical
solution of the above partial differential inequality provides a grid of prices in the time and
space dimensions. It is then straightforward to approach the exercise boundary of the option.
The continuation region is given by

C = {(t, r) ∈ [t, tmax]× R : V (t, r) > f(t, r)}.

Defining τ ∗

τ ∗ = inf{t : (t, r) ∈ C},

we know that τ ∗ is the smallest stopping time which realizes the maximum of the value
function 7.13. Using Monte Carlo simulation we can easily estimate the distribution of τ ∗

by simulating different trajectories of the spot rate in the Vasicek model.
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Figure 7.9: Behavior of the saver, i.e. x = 1. Plot of the distribution of the optimal stopping
time. κ = 0.5, θ = 1%, σ = 1%, r0 = 1%. The figure is obtained with 105 Monte Carlo
simulations.
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Figure 7.10: Behavior of the saver, i.e. x = 1. Plot of the distribution of the optimal
stopping time. κ = 0.5, b = 2.7%, σ = 1%, r0 = 1%. The figure is obtained with 105 Monte
Carlo simulations.
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Figure 7.11: Behavior of the saver, i.e. x = 1. Plot of the distribution of the optimal
stopping time. κ = 0.5, b = 4%, σ = 1%, r0 = 1%. The figure is obtained with 105 Monte
Carlo simulations.

7.2.6 Numerical results

We have studied the distribution of the optimal stopping time, i.e. the time when the
client decides either to close its account or to convert the contract into a mortgage. We
observe that the behavior of the client is significantly different depending on the utility func-
tion, i.e. on the value of the parameter x.

Figures 7.9, 7.10 and 7.11 represent the distribution of the optimal stopping time of the
saver, i.e. the time when the client decides to close its PEL saving account. The three
figures represent three different interest rates scenarios, respectively a scenario where rates
remain low (Figure 7.9), a scenario where rates increase to a level which is close to the inter-
est rate of the PEL saving account γPEL, which is 2.5% for the considered PEL generation
(Figure 7.10), and a scenario where rates will rapidly increase to a level around 4%. The
different scenarios are determined by the value of the parameter b, which is the long term
mean of interest rates. Depending on the scenario, the ”saver” will close its PEL saving
account at a different time. We observe that the saver tends to close its account at the dates
of anniversary of the contract in order to optimize the state bonus premium (which is fixed
at these dates). Also, even in an increasing interest rates scenario the saver tends to wait
until the second anniversary before closing the account, because closing the account before
that date would mean receiving the interests at the CEL interest rate which is significantly
lower than the PEL interest rate.
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Figure 7.12: Behavior of the mortgage borrower, i.e. x = 0. κ = 0.5, b = 4%, σ = 1%, r0 =
1%. The figure is obtained with 105 Monte Carlo simulations.

The behavior of the mortgage borrower is significantly different. Figure 7.12 represents
the distribution of the optimal stopping time of the mortgage borrower in an increasing
interest rates scenario. For a mortgage borrower an increasing interest rates scenario will
not necessarily be an incitation to convert the contract into a mortgage earlier. There are
two major drivers of the mortgage borrower decision, first he wants to accumulate enough
interest to maximize the notional amount he can borrow, secondly he wants to optimize
the spread between the fixed rate of its mortgage and the market rate for borrowing (which
in our modest framework is only dependent on the evolution of interest rates). Figure 7.12
shows that the highest number of conversion occurs between the 8th, 9th and 10th anniversary
of the contract, which is the moment when the notional amount of the mortgage becomes
maximum.

Let us note that the results we have presented are based on an assumption of constant
instalment. We have tested different amount for the instalment amounts during the saving
phase, and we have noticed that this amount doesn’t change the behavior of clients, it only
anticipates (if the instalments are higher) or postpones (if the instalments are lower) the op-
timal stopping time of the client, since depending on the instalment amount the maximum
mortgage notional, and the maximum state bonus premium will be reached sooner or later.

We have also performed a pseudo backtesting of the model checking what would have been
the clients behaviors if they had followed the model. We have tested two different situation:

• We assume that the client calibrates the model at inception of the contract and then
makes its decision based on the comparison between the spot rate and the barrier given
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Figure 7.13: Backtesting of the model, calibration at inception. Plot of the barrier for
different clients behaviors against the evolution of the extrapolated spot rate and the OIS
rate.
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Figure 7.14: Backtesting of the model, calibration every day. Plot of the barrier for different
clients behaviors against the evolution of the extrapolated spot rate and the OIS rate.

by the model at every future date. See Figure 7.13.

• We assume that the client calibrates the model every day and based on the calibrated
model compares the spot rate with the barrier given by the model. See Figure 7.14.

The results of the backtesting indicate that in the period going from January 2004 to
January 2011, the exercise barrier for different types of clients is higher than the observed
spot rate. The barrier is significantly high for the mortgage borrowers and these clients
should not have converted their contract if they had followed the model. On the other
hand, the savers might have closed their account in the period going from January 2008
and January 2009. For the analyzed period, we have observed a behavior of clients which is
significantly different to the one suggested by the model.
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7.3 Conclusion of the chapter

In this chapter we have presented two archetypal examples of saving accounts. These
saving accounts include embedded and explicit optionality, and require non-trivial modeling
to be represent correctly. As we have seen, the modeling is very sensitive to the assumptions
made on the behavior of the clients. For example, we have proposed three different exotic
derivative structures on Inflation and on rates which are meant to hedge/mirror the livret A
saving account exposure of the bank. The first order risks, namely the inflation and nominal
delta are similar across the three structures (the difference comes from the hedging choice,
i.e. swap as opposed to in-fine). The second order risks, namely the vegas, which come from
the optionality of the product are very different across the three different structures. These
three structures will imply significantly different hedging strategies.

Embedded and explicit options appear naturally in saving accounts and credit hedging and
these must be included in the hedging strategy. Ignoring these options can imply a very im-
portant interest rate risk. For example most of the PEL saving accounts issued before 2003
were yielding an interest rate which is around 4-5%. While the mortgage borrowers have
probably converted their account into a mortgage since then, the savers are clearly holding
tide their account which yields a rate which is much higher than the rates available in the
market. Clearly the owner of PEL contracts issued before 2003 are keeping their contract
much longer than the previous generations, and this behavior could be hardly predicted from
historical data. Hedging with an envelope and including an optimal exercise modeling could
help to predict such a behavior.
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Chapter 8

Hedging of options in ALM

This chapter presents part of the work I have done on the hedging of options in the interest
rate gap at Crédit Agricole S.A.. The project was motivated by the needs of the Financial
department and has been conduced with the supervision of the ALM methodology team. I am
thankful to Yves Glaser (Head of the ALM methodology team at Crédit Agricole S.A.) and
Stephan Krzyzaniak (Deputy head of the methodology team at the time of the study) for their
comments.

8.1 Some questions about Delta hedging in ALM

In the previous chapters, we have seen how optionality plays a crucial role in representing
assets and liabilities of a bank. Assumed that we have defined a model to determine the
envelope of an asset or a liability, and that this envelope can be replicated by options, the
question of how to hedge such optionality remains open. The most natural idea would be
to buy options in the market, however this is not straightforward. As we have mentioned
before, the economic result of the ALM activity is measured in accrual, while interest rates
derivative options are traded in OTC markets and valued MtM, therefore options should be
put in a trading book. As a result including options to hedge the assets and liabilities expo-
sure often requires the creation of mirroring books (one on the trading side and the other on
the accounting accrual side). Due to different rules of valuation and different capital charge
treatments between the banking and the trading book, this leads to complex accounting
treatments. In practice options are hedged by including the delta hedges of the options in
the gap. Instead of buying the option itself, the total notional of the asset or the liability
to be swapped to a floating rate is augmented by a notional amount which is equal to the
delta of the option.

Ignoring the bias coming from the fact markets are naturally incomplete and continuous
hedging strategies cannot be implemented, it is in theory possible to perfectly replicate any
option by implementing a delta hedging strategy. However things are not so easy in practice,
and there are differences coming from the accounting rules used in ALM. We have already
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pointed out a number of fundamental differences between the MtM approach and the ac-
crual approach. In theory the hedging portfolio is made of a quantity of asset (the delta)
and a quantity of cash (lent or borrowed). In the interest rates derivatives market the assets
used for delta hedging are typically IRS, FRA and Futures, and these contracts are typically
traded at par. Investment banks tend to separate their activity into very specialized desks.
It is rare that the traders who perform the delta hedging of optional products directly man-
age the funding of their position. Furthermore the position is globally hedged so that it is
very difficult to track the actual hedging portfolios of the individual trades. Simply put, we
could say that the mechanics of hedging works in such a way that the trader sells its hedging
portfolio every night (at its MtM value) and starts from zero the day after. Of course, the
trader is charged or payed for the funding of its position, but he doesn’t manage directly the
problems coming from the fixings of the swaps he trades, his vision is a pure cash settlement
vision, and all the contracts will usually be offset before they settle. Things are significantly
different in the accrual world. The swaps cannot be offset before they settle, or continuously
valued on a MtM basis. These swaps will be valued for the actual cash flow they produce.
The management of the fixings is a crucial part of the ALM management (especially consid-
ered the notional amounts involved). For example, while from a MtM perspective there is no
difference between trading a FRA and trading the static replicating portfolio made of IRS
(assumed that both instruments are liquidly traded), from an ALM (in accrual) perspective
the two contracts will generate completely different cash flows (the FRA will only generate a
cash flow at one date, while the two swaps will generate cash flows at the payment dates of
the swaps), and thus lead to different economic results. Last but not least, it is important to
keep in mind that the option premium is not directly payed by the client. Options are often
held by the clients, and the interest rates payed (resp. received) by the bank to (resp. from)
the clients are adjusted to incorporate the price of the option premiums. In other words the
bank option premium is spread over the cash flows of the asset or the liability.

8.2 Delta hedging in theory: chosing the numeraire

Let us first recall some fundamental results on the delta hedging interest rates option.
For simplicity, we will assume a one dimensional Markovian interest rates dynamics. Let us
denote by X the underlying state variable, the zero-coupon function is denoted by Pt,T =
P (t, T,Xt), the forward libor rate Lt(T, δ) = L(t, T, δ,Xt), and the forward swap St(T, n, δ) =
S(t, T, n, δ,Xt).

8.2.1 The classic risk-neutral delta hedging portfolio

Let H = f(XT ) the payoff of the option at expiry T . The time t price of the option
paying H at expiry T is given by

M(t,Xt) = EQ
[
e−

∫ T
t dsrsf(XT )|Ft

]
,
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where Q denotes the risk-neutral measure. The risk-neutral dynamics of the price is given
by

dM(t,Xt) = rtM(t,Xt)dt+ ∂xM(t,Xt)σ(Xt)dWt,

where we have assume that the underlying state variable X follows the following dynamics
under the risk-neutral measure

dXt = b(Xt)dt+ σ(Xt)dWt.

Let St = S(t,Xt) be an hedging instrument (in the following S will be an interest rate swap).
The portfolio ϕrt = (∆r

t , C
r
t ), containing a quantity ∆r

t of the asset S, and Cr
t cash, defined

by

(∆r
t , Ct) =

(
∂xM(t,Xt)

∂xS(t,Xt)
, M̃(t,Xt)−∆r

t S̃(t,Xt)

)
,

where M̃ and S̃ are respectively the discounted value of the option M and the hedging in-
strument S, is self-finance and replicates the price of the option M .

Hedging of a caplet

Let us analyze the construction of the hedging portfolio of a caplet. Let Caplet(t, T, δ,K,Xt)
be the time t price of a caplet of expiry T , maturity δ and strike K. It is natural to hedge
this option with FRA expiring at T and maturing at T + δ of fixed rate K. The payoff of
the FRA is given by

(K − LT (T, δ))δ at date T + δ.

The time t price is given by

P (t, T + δ,Xt)(K − L(t, T, δ,Xt)δ.

The hedging portfolio of time t is given by a quantity ∆r
t of FRA:

∆r
t =

∂xCaplet(t, T, δ,K,Xt)

δ (∂xP (t, T + δ,Xt) (K − L(t, T, δ,Xt))− P (t, T + δ,Xt)∂xL(t, T, δ,Xt))
. (8.1)

This is the classic delta hedging strategy of the option with a portfolio consisting in the
underlying asset and a cash amount held in the money market account.
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8.2.2 Alternative hedging: hedging under the forward measure

We now consider an alternative hedging strategy which is proposed in [Ada08]. In the
interest rates space, it is standard to perform a change of measure in order to derive an
easier dynamics of the underlying of the option under this measure. These change of measures
correspond to a choice of a different numeraire. For a given numeraire, we can always build a
delta hedging portfolio consisting in the underlying asset and the numeraire which perfectly
replicates the option. In the following, instead of hedging using the bank account/cash
numeraire, we will hedge using the terminal zero-coupon numeraire. This is equivalent to
hedge the forward value of the option. We define the T -forward value by

V (t,Xt) = EQT

[f(XT )|Ft] ,

where QT denotes the forward neutral measure. The dynamics of the forward value under
the measure QT is given by

dV (t,Xt) = ∂xV (t,Xt)σ(Xt)dWt.

Let S be an hedging instrument, denote STt = ST (t,Xt) its T -forward value, defined by

ST (t,Xt) = EQT

[ST |Ft] .

The portfolio ϕft = (∆f
t , E

f
t ), containing ∆f

t of the asset S and a loan of maturity T of a
notional Ef

t , i.e. containing a quantity Ef
t of the zero-coupon Pt,T

(∆f
t , E

f
t ) =

(
∂xV (t,Xt)

∂xST (t,Xt)
, V (t,Xt)−∆f

t S
T (t,Xt)

)
,

is self-financed and replicates the option value.
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Forward hedging of a caplet

Let us analyze the construction of the forward neutral hedging portfolio of a caplet.
Let VCaplet(t, T, δ,K,Xt) be the time t T + δ-forward value of a caplet of expiry
T , maturity δ and K, i.e.

VCaplet(t, T, δ,K,Xt) = EQT+δ [
(LT (T, δ)−K)+|Xt

]
.

It is natural to hedge this option with FRA expiring at T and maturing at T + δ
of fixed rate K. The payoff of the FRA is given by

(K − LT (T, δ))δ at date T + δ.

Its T + δ-forward value at time t is given by

(K − L(t, T, δ,Xt)δ.

The hedging portfolio of the T + δ-forward value of the option contains a quantity
∆t of the FRA given by:

∆f
t =

∂xVCaplet(t, T, δ,K,Xt)

−δ∂xL(t, T, δ,Xt)
. (8.2)

8.2.3 Comparison of the risk neutral and forward neutral measure

The two hedging strategies we have presented above are equivalent in the sense these
both perfectly replicate the option value.

A first striking difference between the two strategies is the expression of the delta. Compar-
ing the expression of the risk-neutral delta (8.2) with the expression of the forward-neutral
delta (8.2) we can see that the denominator of the forward-neutral delta does not depends
on the strike. This implies that, in a one-dimensional Markovian term structure model, the
forward-neutral delta is independent of the fixed rate of the FRA used to hedge the caplet.

In the risk-neutral hedging strategy, the cost of funding of the delta position (which is
given by the interest payed on the money market account) will directly impact the value of
the portfolio. The interest payed or received on the netted position Mt−∆tSt will generate
cash flows in the gap. On the other side, the forward-neutral strategy replaces the money
market account (i.e. the funding costs) by a zero-coupon (or equivalently a loan). Instead
of continuously paying the costs of funding of the adjustments of the delta position, we fund
these adjustment with a loan of maturity the expiry of the trade.

Let ut analyze the cash flows generated by the two hedging strategies. At date t = 0,
the values of the risk-neutral and forward-neutral hedging portfolios are given by
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V0(ϕ) = ∆0S0 + (M0 −∆0S0)

V0(ϕ
f ) = ∆f

0S0 +
M0 −∆f

0S0

P0,T

P0.T .

Suppose we hedge only at discrete dates t0 = 0 < t1 < · · · < tn < T . At date t1 we have
to adjust the delta position in the underlying asset. In the risk-neutral strategy we fund the
adjustment at the money market account rate, in the forward-neutral strategy, we fund the
adjustment with a loan at maturity. The value of the self financed portfolios at date t1 is
given by

Vt1(ϕ) = ∆1St1 + (M0 −∆0S0)e
∫ t1
0 dsrs + (∆0 −∆1)St1

Vt1(ϕ
f ) = ∆f

1St1 +
M0 −∆f

0S0

P0,T

Pt1,T +
(∆f

0 −∆f
1)St1

Pt1,T
Pt1,T .

While the interest rates payed on the adjustment of the risk-neutral position depends on the
evolution of interest rates between t1 and the expiry T , the cost of the of the adjustment of

the forward-neutral position is known and date t1, and is equal to
(∆f

0−∆f
1 )St1

Pt1,T
. At maturity,

the P&L of the hedged position, i.e. the tracking error is given by

P&LT (ϕ) = f(ST )−

(
∆nST + (M0 −∆0S0)e

∫ T
0 dsrs +

n∑
i=1

(∆i−1 −∆i)Stie
∫ T
ti
dsrs

)

P&LT (ϕ
f ) = f(ST )−

(
∆f
nST + V0 −∆f

0S
T
0 +

n∑
i=1

(∆f
ti−1

−∆f
ti)S

T
ti

)
.

The interests payed on the successive adjustments of the delta positions of the risk-neutral
hedging strategy depend on the evolution of the interest rates, and the actual cash flows are
determined at maturity. On the other hand, the cost of the delta adjustments to adjust the
delta position of the forward-neutral strategy is determined at the time of the adjustment
and will be payed at the expiry of the option. To some extent, we can argue that the forward-
neutral hedging strategy is more consistent with the philosophy of hedging in ALM, since it
allows to predict the future cash flows.

8.2.4 Hedging in practice

Let us now recall that the hedging is performed with at par IRS and FRAs. Which means
that, in practice the hedging instrument St slides. Let us assume that at date ti we hedge
with the underlying Si, such that Siti = 0. Let us define ∆̃f

i as follows:
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∆̃f
0 =

∂xV (t0, X0)

∂xST0 (t0, X0)

∆̃f
i =

∂xV (ti, Xti)

∂xSTi (t0, X0)
−

i−1∑
k=0

∆̃f
k

∂xS
T
k (ti, Xti)

∂xSTi (ti, Xti)
, i = 1...n.

Let us note that in the case of the caplet we have ∂xS
T
k (ti, Xti) = ∂xS

T
l (ti, Xti), ∀k, l, i.

Then the expression of ∆̃f
i simplified, and becomes

∆̃f
0 = ∆f

0

∆̃f
i = ∆f

i −∆f
i−1, i = 1...n.

From an ALM perspective the additive property of the forward-neutral deltas when rolling
the underlying is very convenient. The quantity ∆f

t gives the total notional invested in the
hedging instruments, and the quantity ∆f

i −∆f
i−1 gives the notional amount that has to be

invested in the hedging at date ti. This additive property is not verified by the risk-neutral
hedges of caplets, this is because the derivative ∂xS

T
k (ti, Xti) depends on the fixed rate of

the FRA, which is Ltk(T, δ).

Assuming that the dates of rebalancing of the portfolio are close enough, the portfolio with
a quantity ∆̃f

i of asset Si hedges the option. Under the T -forward measure QT we have

∆̃f
0dS

T
0 (t,Xt) =

∂xV (t0, X0)

∂xST0 (t0, X0)
∂xS

T
0 (t,Xt)σ(Xt)dWt ∼ dVt, t ∈ (t0, t1)

i∑
k=0

∆̃f
kdS

T
k (t,Xt) =

∂xV (ti, Xti)

∂xSTi (t0, X0)
∂xS

T
i (t,Xt)σ(Xt)dWt ∼ dVt t ∈ (ti, ti+1).

At maturity the P&L of the hedged position is given by

P&LT (ϕ̃
f ) = f(XT )−

(
n∑
k=0

∆̃f
kS

T
k (T,XT ) + V0

)
. (8.3)

In this case the successive adjustment of the delta position are ”free”, since the underlying
asset is ”rolled” so that we always trade at par. The P&L at expiry of the hedging strategy
ϕ̃f should be compared with the cash flows of the risk-neutral hedging strategy ϕ̃ with a
rolling underlying, which is given by

P&LT (ϕ̃) = f(XT )−

(
n∑
k=0

∆̃kSk(T,XT ) +M0e
∫ T
0 dsrs

)
. (8.4)
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The term M0e
∫ T
0 dsrs in the P&L of the risk-neutral strategy, which comes from the cash

position, depends on the evolution of interest rates until the expiry of the option. Conversely
the term V0 in the P&L of the forward-neutral strategy, which comes from the zero-coupon
position, is determined at inception of the trade. To some extent this is more consistent with
the philosophy of ALM. For example it is possible to increase or decrease the interest rate
received from or payed to the client exactly of this amount, and the margin is locked even if
we don’t take any cash or zero-coupon position.

8.3 Numerical implementation in the Hull-White model

We now perform a numerical analysis of the hedging strategies we have presented in the
previous section. We consider a dramatically simplified problem setting: the hedging of a
caplet using FRAs in the Hull-White model [HW94].

8.3.1 The derivations of the option and hedges values in the model

We assume that the spot rate follows an Ornstein-Uhlenbeck dynamics under the risk-
neutral probability. Precisely, we define a state variable X solution of the following SDE
under the risk-neutral measure

dXt = −aXtdt+ σdWt.

We assume that the spot rate is given by

rt = α(t) + xt,

where α is a deterministic function used to fit the initial yield curve. The time t price of a
Caplet of expiry T , maturity δ and strike K is given by

Caplett(T, δ,K) =
Pt,T+δ
δ

EQT+δ

[(
PT,T
PT,T+δ

− (1 + δK)

)+

|Ft

]

=
Pt,T+δ
δ

BS

(
1 + δLt(T, δ), 1 + δK, σ

1− e−aδ

a

√
1− e−2a(T−t)

2a

)
,

where

BS(S,K,Σ) = Sϕ(d+)−Kϕ(d−)

d± =
log(S/K)± Σ2/2

Σ
.

The T + δ-forward value of the caplet is given by
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FCaplett,T+δ(T, δ,K) = BS

(
1 + δLt(T, δ), 1 + δK, σ

1− e−aδ

a

√
1− e−2a(T−t)

2a

)
/δ.

Remark 45 — Let us note that the payoff of the caplet is known at the expiry date T . It is
standard to cash-settle the option at this date. However in a pure physical settlement logic
(which is the prevailing logic in ALM), the actual cash flow of the option occurs at date T+δ.
Therefore in all the following we consider the T + δ-forward values of the caplet and of the
FRA used to hedge the option.

The forward libor rate function L(t, T, δ, x) and its partial derivative with respect to x is
given by

L(t, T, δ, x) =
1

δ

(
A(t, T )

A(t, T + δ)
exp(−(B(t, T )−B(t, T + δ))(α(t) + x))− 1

)
∂xL(t, T, δ, x) =

1

δ

A(t, T )

A(t, T + δ)
exp(−(B(t, T )−B(t, T + δ))(α(t) + x))(B(t, T + δ)−B(t, T ))

=
(B(t, T + δ)−B(t, T ))

δ
(1 + δLt(T, δ))

We deduce the expressions of the risk-neutral and forward neutral hedging portfolios when
using the at par FRA as an hedging instrument:

∆f,ATM
t (x) = −ϕ(d+) forward neutral ATM

∆r,ATM
t (x) = −ϕ(d+) +

1− e−a(T−t)

e−a(T−t) − e−a(T+δ−t)
BS

1 + δLt,T,T+δ
risk neutral ATM

where we have used the abuse of notations

BS = BS

(
1 + δLt(T, δ), 1 + δK, σ

1− e−aδ

a

√
1− e−2a(T−t)

2a

)
.

We also give the expression of the delta when hedging with the FRA of fixed rate K:

∆r,K
t (xt) =

ϕ(d+)∂xL−B(t, T + δ)BS/δ

∂xL−B(t, T + δ)(K − Lt(T, δ))
.

As mentioned before the forward-neutral delta is independent of the fixed rate of the FRA
used to hedge the option, i.e. we have ∆f,K

t (xt) = ∆f,ATM
t (x), ∀K.
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Figure 8.1: Variation of the delta w.r.t. the underlying state variable. Forward-neutral at-
the-money in black, risk-neutral at-the-money in blu and risk-neutral hedging with a FRA
of fixed rate K in red. The values of the model parameters are a = 1%, K = 1.5%, T =
5, δ = 1. The graphic in the left has been obtained with a volatility of 1%. The graphic
in the right has been obtained with a volatility of 3%.
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Figure 8.2: Variation of the delta w.r.t. the volatility. Forward-neutral at-the-money in
black, risk-neutral at-the-money in blu and risk-neutral hedging with a FRA of fixed rate
K in red. The values of the model parameters are a = 1%, K = 1.5%, T = 5, δ = 1.
The graphic in the left has been obtained with a spot rate of 1%. The graphic in the left
has been obtained with a spot rate of 2%.

8.3.2 Numerical comparison of the alternative delta strategies

The delta of the hedging strategies behave differently w.r.t. the movements of the yield
curve and the volatility. Figure 8.1 shows the variation of the delta w.r.t. the movements of
the underlying state variable of the model X. The values are negative because we defined
the FRA as payer of the floating rate and receiver of the fixed rate. In our modeling frame-
work X is the only driver of the movements of the curve. It can be viewed as a parallel
shift/long term rates movement of the yield curve. See the discussion in section 2.4. The
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variation of the delta w.r.t. X is close to be the gamma of the option. We observe that the
at-the-money risk-neutral and forward-neutral deltas are significantly different. When rates
become very high, the risk-neutral delta tends to decrease. This is because the impact of
rates on the risk-neutral delta come from two sources, which have opposite sensitivity to the
yield curve. The value of the option is given by the discount factor times the forward value.
The forward value of the option is an increasing function of rates, while the discounting
factor is a decreasing function of rates. When rates are very high, the discounting factor
sensitivity prevails. As a consequence, the risk-neutral hedges will be gamma negative when
the option is very deep in the money. Conversely, the variation of the forward-neutral delta
has the typical delta profile of a call option on rates, and the gamma is always positive. It
is interesting to observe that the risk-neutral delta when hedging with a FRA of fixed rate
K (i.e. the fixed rate of the FRA equal to the strike of the Caplet, which is the ”natural”
hedging instrument of the option) is very similar to the forward-neutral delta.

Figure 8.2 shows the variation of the delta with respect to the volatility. We observe that
the forward-neutral and the risk-neutral deltas exhibit a very similar behavior.

The results of this numerical analysis show that the risk-neutral and forward-neutral deltas
will be significantly different for deep in the money options.

8.3.3 Hedging performance and cash flows generation

As we have seen there is a significant difference between the forward-neutral delta and the
risk-neutral delta. We now compare the hedging strategies in terms of hedging performance.
We consider the following indicators:

• The mean and the variance of the ”tracking error”, i.e. the difference between the
payoff of the option and the value of the delta position of the portfolio at expiry.

• The evolution of the MtM of the delta positions in different interest rates scenarios.

We assume that the current market is given by a Vasicek model [Vas77], with long term mean
θ = α′(t)/k + α(t) = 3% under the risk-neutral measure. We assume that the market risk
premium is constant i.e. the change of measure between the objective measure P and the
risk-neutral Q is given by dW P + λdt = dWQ, so that the dynamics of the spot rate under
the objective measure is given by the same Ornstein-Uhlenbeck dynamics with a different
long term mean θ̃. The rising scenario is defined as the yield curve dynamics with long term
mean θ̃ = 5%. The decreasing scenario is defined as the yield curve dynamics with long term
mean θ̃ = 1%.
Since the premium of the option is not received up-front by the bank, the hedging portfolio
will not include the the cash or zero-coupon position in practice. For this reason, we only
consider the delta part of the portfolio and analyze the MtM and the tracking error as if the
hedging portfolio was only made of the delta position (which is the case in practice when we
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Figure 8.3: Expectation (in bp) of the tracking error i.e. payoff minus delta position as a
function of the strike under the historical probability a = 10%, T = 2, δ = 1., r0 = 2%.
The graphic in the left corresponds to a scenario with rising interest rates, the graphic in
the right corresponds to a scenario with decreasing interest rates. The hedging frequency is
1 month. The red curve represents the forward value of the option.

hedge an interest rate gap).

Figure 8.3 shows the expectation of the tracking error of the different hedging strategies
under different interest rates scenarios. The difference between the two hedging strategies
in terms of expectation of the tracking error is very small. The difference is slightly larger
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Figure 8.4: Variance (in bp) of the tracking error i.e. payoff minus delta position as a function
of the strike under the historical probability a = 10%, T = 2, δ = 1., r0 = 2%. The
graphic in the left corresponds to a scenario with rising interest rates, the graphic in the
right corresponds to a scenario with decreasing interest rates. The hedging frequency is 1
month.

for out-of-the-money options, but it remains small across all strikes. In the rising interest
rates scenario, the expectation of the tracking error of the risk-neutral strategy is smaller
than the tracking error of the forward neutral strategy. For both strategies the expectation
of the tracking error is significantly higher than the forward premium. In the decreasing
scenario, the expectation of the tracking error of the forward neutral strategy is smaller than
the expectation of the tracking error of the risk-neutral strategy. For both strategies the
expectation of the tracking error is significantly smaller than the forward premium. Looking
at the expressions of the P&L of the strategy (8.4) we can see that these differences would

be compensated by the term M0e
∫ T
0 dsrs which will be higher than the term V0 in (8.3) in the

rising interest rates scenario, and smaller in the decreasing interest rates scenario.

Figure 8.4 shows the variance of the tracking error of the different hedging strategies under
different interest rates scenarios. We observe that the variance of the tracking error of the
forward-neutral strategy is always significantly higher than the variance of the risk-neutral
strategy. This is because the zero-coupon position is more volatile than the cash position.

8.4 Conclusion of the chapter

In this chapter we have analyzed the hedging of options in ALM. This allowed us to put
in practice the concepts we have introduced in section 2.7. As we have seen the practice of
hedging is very different from its theory. In particular is the reality of self-financing port-
folios. Hedging is usually performed by only implementing the delta part of the hedging
portfolio. The peculiarities of ALM create even more differences from the theory. First the
option premium is not perceived at inception of the option, but spread across the cash flows
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of the corresponding asset or liability. Secondly the only relevant measure in ALM is the
actual cash flows generated by the option and its hedges.

We have compared two alternative hedging strategies. The first is the classic risk-neutral
hedging strategy, the second is very common in the interest rates market, and consists in
replacing the cash position in the risk-neutral strategy by a loan of maturity the expiry of the
option (or equivalently a zero-coupon position). We call this the forward-neutral strategy.
When we only implement the delta part of the strategy, the forward-neutral strategy allows,
in theory, to anticipate the actual cash flows of the hedged position at expiry. This is a
desirable property from an ALM perspective, since it allows to exactly predict the future
margin generated by the hedged position. The results of theoretical and numerical analysis
show that this advantages of the forward-neutral strategy come at the cost of a significantly
higher variance of the tracking error of the delta adjusted position.
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[Rou12] F. Roupin. Programmation semidéfinie: introduction et applications en opti-
misation combinatoire. Support de cours, 2012.

[Ryd97] T. H. Rydberg. A note on the existence of unique equivalent martingale mea-
sures in a markovian setting. Finance and Stochastics, 1(3):251–257, 1997.

[Sha86] M. A. Shayman. Phase portrait of the matrix riccati equation. SIAM J. Control
Optim., 24(1):1–65, January 1986.

[SP06] D. F. Schrager and A. A. J. Pelsser. Pricing swaptions and coupon bond options
in affine term structure models. Math. Finance, 16(4):673–694, 2006.

[SU02] K. J. Singleton and L. Umantsev. Pricing coupon-bond options and swaptions
in affine term structure models. Math. Finance, 12(4):427–446, 2002.

[TS10] A. B. Trolle and E. Schwartz. An empirical analysis of the swaption cube.
Working Paper 16549, National Bureau of Economic Research, November 2010.

218



[TT90] D. Talay and L. Tubaro. Expansion of the global error for numerical schemes
solving stochastic differential equations. Stochastic Analysis and Applications,
8(4):483–509, 1990.

[TYW05] K. Tanaka, T. Yamada, and T. Watanabe. Approximation of interest rate
derivatives prices by gram-charlier expansion and bond moments. IMES dis-
cussion paper, 2005.

[Vas77] O. Vasicek. An equilibrium characterization of the term structure. Journal of
Financial Economics, 5(2):177 – 188, 1977.

219



220



Appendix A

MF Calibration Algorithm

We describe the calibration algorithm proposed in [HKP00] in the one-dimensional case
and taking the terminal ZCB bond as a numéraire. The algorithm strongly lies on hypothe-
ses 1 and 2.

Let us assume we have a product (consider for instance a Bermudan swaption) with set-
tlement dates T0, T1, ..., Tm−1 associated with a swap with fixed leg τ and M0,M1, ...,Mm−1

payment dates. Furthermore, let us assume that all the swaps have the same terminal date
Tm = Tm−1 + τ . We chose the Tm ZCB as the numraire i.e. Nt = Pt,Tm . Let us denote by Q
the martingale measure associated with the numraire N .

We chose to calibrate our model so that it is consistent with market prices of the swap-
tions corresponding to the swap involved in our product. We thus assume that for i =
0, 1, ...,m − 1 we know a continuum of digital swaption prices V mkt

0,i (K) associated to the
swap S(t, Ti,Mi, τ).

A.1 ”Anti-diagonal” Calibration

step 0: determining P (Tm−1, Tm, ·)
We assumed we know a continuum of prices V mkt

0,m−1(K) of caplets on the forward libor
rate Lt(Tm−1, Tm − Tm−1).

The arbitrage pricing theory gives

V mkt
0,m−1(K) = P (0, Tm)EQ

[
1LTm−1

(Tm−1,Tm−Tm−1)>K

]
Since we assumed that the IBOR rates are increasing monotonic functions of the factors
there exists an unique f(K) such that

LTm−1(Tm−1, Tm − Tm−1) > K ⇔ FTm−1 > f(K),
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were in fact f(K) = L(Tm−1, Tm−1, Tm, ·)−1(K), so that

EQ
[
1LTm−1

(Tm−1,Tm−Tm−1)>K

]
= EQ [1FTm−1>f(K)

]
.

Given that we know the distribution of FTm−1 under Q we can compute the right and side of
the above equation as a function of f(K). Let us denote by K(s, t) the transition operator
of F under Q, i.e. K(s, t) ◦ g(y) = EQ[g(Ft)|Fs = y]. We can then write

EQ [1FTm−1>f(K)

]
= K(0, Tm−1) ◦ 1·>f(K)(f0) = h(f(K)),

were f0 is the initial value of the Markov process F .

We deduce an expression for f(K),

f(K) = h−1 ◦

(
V mkt
0,m−1(K)

P (0, Tm)

)
.

Knowing f(K) for eachK is equivalent of knowing L(Tm−1, Tm−1, Tm, ·), and since PTm−1,Tm =
1

1+τLTm−1
(Tm−1,Tm−Tm−1)

it is equivalent of knowing P (Tm−1, Tm, ·), precisely we have,

P (Tm−1, Tm, ·) =
1

1 + τ
(
Vmkt
0,m−1(·)
P (0,Tm)

)−1

◦ h
.

step 1: m− 1 −→ m− 2

Straightforward from the martingale property of the discounted asset prices we have,

PTm−2,Tm−1

PTm−2,Tm

= EQ
[

1

PTm−1,Tm

|FTm−2

]
,

so that we can define

PTm−2,Tm−1

PTm−2,Tm

= K(Tm−2, Tm−1) ◦
(

1

P (Tm−1, Tm, ·)

)
(FTm−2).

Let us now use the information given by the knowledge of the market prices of swaptions.
We have

V mkt
0,m−2(K) = P (0, Tm)EQ

[
A(Tm−2, Tm−2,Mm−2, τ)

PTm−2,Tm

1S(Tm−2,Tm−2,Mm−2,τ)>K

]
= P (0, Tm)τEQ

[(
1 +

PTm−2,Tm−1

PTm−2,Tm

)
1S(Tm−2,Tm−2,Mm−2,τ)>K

]
Since we assumed that the swap rates are increasing monotonic functions of the factors there
exists an unique f(K) such that
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S(Tm−2, Tm−2,Mm−2, τ) > K ⇔ FTm−2 > f(K),

were f(K) = S(Tm−2, Tm−2,Mm−2, τ, ·)−1(K), so that

EQ
[(

1 +
PTm−2,Tm−1

PTm−2,Tm

)
1S(Tm−2,Tm−2,Mm−2,τ)>K

]
= EQ

[(
1 +

PTm−2,Tm−1

PTm−2,Tm

)
1FTm−2>f(K)

]

= EQ
[(

1 +K(Tm−2, Tm−1) ◦
(

1

P (Tm−1, Tm, ·)

)
(FTm−2)

)
1FTm−2>f(K)

]
= K(0, Tm−2) ◦

(
1 +K(Tm−2, Tm−1) ◦

(
1

P (Tm−1, Tm, ·)

)
(·)
)
1·>f(K)(f0)

= h(f(K)).

We then have

h−1 ◦

(
V mkt
0,m−2(K)

P (0, Tm)τ

)
= f(K),

we deduce

S(Tm−2, Tm−2,Mm−2, τ, ·) =

(
V mkt
0,m−2(·)

P (0, Tm)τ

)−1

◦ h

and finally

P (Tm−2, Tm, ·) =
1

1 +
(
Vmkt
0,m−2(·)
P (0,Tm)τ

)−1

◦ h ∗ A(Tm−2,Tm−2,Mm−2,τ)
PTm−2,Tm

=
1

1 +
(
Vmkt
0,m−2(·)
P (0,Tm)τ

)−1

◦ h ∗ τ ∗
(
1 +K(Tm−2, Tm−1) ◦

(
1

P (Tm−1,Tm,·)

))
step 2: m− i −→ m− (i+ 1)

Straightforward from the martingale property of the discounted asset prices we have,

PTm−(i+1),Tm−i

PTm−(i+1),Tm

= EQ
[

1

PTm−i,Tm

|FTm−(i+1)

]
,

PTm−(i+1),Tm−i+1

PTm−(i+1),Tm

= EQ
[

1

PTm−i+1,Tm

|FTm−(i+1)

]
,
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...

PTm−(i+1),Tm−1

PTm−(i+1),Tm

= EQ
[

1

PTm−1,Tm

|FTm−(i+1)

]
.

so that we can define

PTm−(i+1),Tm−i

PTm−(i+1),Tm

= K(Tm−(i+1), Tm−i) ◦
(

1

P (Tm−i, Tm, ·)

)
(FTm−(i+1)

),

PTm−(i+1),Tm−i+1

PTm−(i+1),Tm

= K(Tm−(i+1), Tm−i+1) ◦
(

1

P (Tm−i+1, Tm, ·)

)
(FTm−(i+1)

),

...

PTm−(i+1),Tm−1

PTm−(i+1),Tm

= K(Tm−(i+1), Tm−1) ◦
(

1

P (Tm−1, Tm, ·)

)
(FTm−(i+1)

).

Let us now use the information given by the knowledge of the market prices of swaptions.
We have

V mkt
0,m−(i+1)(K)

P (0, Tm)
=

= EQ

[
A(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ)

PTm−(i+1),Tm

1S(Tm−(i+1),Tm−(i+1),Mm−(i+1),τ)>K

]

= EQ

[
τ

(
1 +

PTm−(i+1),Tm−i
+ · · ·+ PTm−(i+1),Tm−1

PTm−(i+1),Tm

)
1S(Tm−(i+1),Tm−(i+1),Mm−(i+1),τ)>K

]

Since we assumed that the swap rates are increasing monotonic functions of the factors there
exists an unique f(K) such that

S(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ) > K ⇔ FTm−(i+1) > f(K),

were f(K) = S(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ, ·)−1(K), so that

EQ

[
τ

(
1 +

PTm−(i+1),Tm−i
+ · · ·+ PTm−(i+1),Tm−1

PTm−(i+1),Tm

)
1S(Tm−(i+1),Tm−(i+1),Mm−2,τ)>K

]
=
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= EQ

[
τ

(
1 +

PTm−(i+1),Tm−i
+ · · ·+ PTm−(i+1),Tm−1

PTm−(i+1),Tm

)
1FTm−(i+1)>f(K)

]
= EQ

[
Ã(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ,XTm−(i+1)

)1FTm−(i+1)>f(K)

]
= K(0, Tm−2) ◦

(
Ã(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ, ·)1·>f(K)

)
(f0)

= h(f(K)),

Where we have defined

Ã(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ, ·)

= τ

(
1 +K(Tm−(i+1), Tm−i) ◦

(
1

P (Tm−i, Tm, ·)

)
+ · · ·+K(Tm−(i+1), Tm−1) ◦

(
1

P (Tm−1, Tm, ·)

))
.

We then have

h−1 ◦

(
V mkt
0,m−(i+1)(K)

P (0, Tm)

)
= f(K),

we deduce

S(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ, ·) =

(
V mkt
0,m−(i+1)(·)
P (0, Tm)

)−1

◦ h

and finally

P (Tm−(i+1), Tm, ·) =
1

1 +

((
Vmkt
0,m−(i+1)

(·)
P (0,Tm)

)−1

◦ h ∗ Ã(Tm−(i+1), Tm−(i+1),Mm−(i+1), τ, ·)

) .
(A.1)

A.2 ”Column” Calibration

In this section we show that, following a procedure similar to the one presented in the
above section, the model can be calibrated to a column of caplets.

We take assumptions 1 and 2, we furthermore assume that we know a continuum of digital
caplets prices Cmkt

0,i (K) for i = 0, ...,m− 1, associated to the period τ and of maturity Ti.
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The algorithm

We determine the functional form P (Tm−1, Tm, ·) following the exact procedure presented
in the step 0 of the above section and replacing V mkt

0,m−1 by Cmkt
0,m−1.

We then have

P (Tm−1, Tm, ·) =
1

1 + τ
(
Cmkt

0,m−1(·)
P (0,Tm)

)−1

◦ h
.

Let us now assume that we have determined the functional forms P (Tk, Tm, ·) for k = m −
1, ..., i let us determine P (Tm−(i+1), Tm, ·).

step: m− i −→ m− (i+ 1)

Straightforward from the martingale property of the discounted asset prices we have,

PTm−(i+1),Tm−i

PTm−(i+1),Tm

= EQ
[

1

PTm−i,Tm

|FTm−(i+1)

]
,

so that we can define

PTm−(i+1),Tm−i

PTm−(i+1),Tm

= K(Tm−(i+1), Tm−i) ◦
(

1

P (Tm−i, Tm, ·)

)
(FTm−(i+1)

).

We furthermore use the information on market prices,

Cmkt
m−(i+1),0(K)

P (0, Tm)
=

= EQ

[
PTm−(i+1),Tm−i

PTm−(i+1),Tm

1LTm−(i+1)
(Tm−(i+1),Tm−i−Tm−(i+1))>K

]
,

= EQ
[
K(Tm−(i+1), Tm−i) ◦

(
1

P (Tm−i, Tm, ·)

)
(FTm−(i+1)

)1LTm−(i+1)
(Tm−(i+1),Tm−i−Tm−(i+1))>K

]
Since we assumed that IBOR rates are increasing monotonic functions of the factors there
exists an unique y(K) such that

L(Tm−(i+1), Tm−(i+1), Tm−i, XTm−(i+1)) > K ⇔ FTm−(i+1) > y(K),

were y(K) = L(Tm−(i+1), Tm−(i+1), Tm−i, ·)−1(K), so that

EQ
[
K(Tm−(i+1), Tm−i) ◦

(
1

P (Tm−i, Tm, ·)

)
(FTm−(i+1)

)1LTm−(i+1)
(Tm−(i+1),Tm−i−Tm−(i+1))>K

]
=
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= EQ
[
K(Tm−(i+1), Tm−i) ◦

(
1

P (Tm−i, Tm, ·)

)
(FTm−(i+1)

)1FTm−(i+1)>y(K)

]
= h(y(K))

We then have

h−1 ◦

(
Cmkt
m−(i+1),0(K)

P (0, Tm)

)
= y(K),

we deduce

L(Tm−(i+1), Tm−(i+1), Tm−i, ·) =

(
Cmkt
m−(i+1),0(·)
P (0, Tm)

)−1

◦ h,

and finally we have

P (Tm−(i+1), Tm, ·) =
1

K(Tm−(i+1), Tm−i) ◦
(

1
P (Tm−i,Tm,·)

)
(·)

(
1 + τ ∗

(
Cmkt

m−(i+1),0
(·)

P (0,Tm)

)−1

◦ h

) .
(A.2)
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Appendix B

Proof of lemma 46

Lemma 46 — Let (Ft)t≥0 denote the filtration generated by ((Wt, Zt), t ≥ 0). We consider
a process (Yt, Xt)t≥0 valued in Rp ×S+

d (R), and we assume that there exist continuous (Ft)-
adapted processes (At)t≥0, (Bt)t≥0, (Ct)t≥0, (Dt)t≥0 and (Et)t≥0 that are respectively valued in
Rp, Mp×d(R), S+

d (R),Md(R) and Md(R) so that (Yt, Xt) admits the following semimartin-
gale decomposition:

dYt = Atdt+Bt (dWtρ+ ρ̄dZt)

dXt = Ctdt+DtdWtEt + ET
t dW

T
t D

T
t . (B.1)

Then, for k, l ∈ {1, ..., p}, i, j, r, s ∈ {1, ..., d}, the quadratic covariation of (Yt)k, (Yt)l, (Xt)ij
and (Xt)rs is given by:

d < Yk, Yl >t = (BtB
T
t )kl (B.2)

d < Xij, Xrs >t = (DtD
T
t )is(EtE

T
t )jr + (DtD

T
t )ir(EtE

T
t )js

+ (DtD
T
t )js(EtE

T
t )ir + (DtD

T
t )jr(EtE

T
t )is (B.3)

d < Yk, Xrs >t = (DBT )rk(E
Tρ)s + (DBT )sk(E

Tρ)r. (B.4)

Proof : The proof is a simple application of the results of Da Fonseca, Grasselli and
Tebaldi [DFGT08a]. Since Wtρ+ ρ̄Zt is a standard Brownian motion, we easily get that

d < Yk, Yl >t= (BBT )kl.

On the other hand, we have

dYk =
d∑

l,m=1

BkldWlmρm + ρ̄
d∑
l=1

BkldZl

dXij =
d∑

l,m=1

DildWlmEmj + ElidWmlDjm
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we thus get the following quadratic variation

d < Yk, Xij > = <

d∑
l,m=1

BkldWlmρm,

d∑
l,m=1

DildWlmEmj + ElidWmlDjm >

=
d∑

l,m=1

Bklρm < dWlm,
d∑

l,m=1

DildWlmEmj + ElidWmlDjm >

=
d∑

l,m=1

Bklρm(DilEmj + EmiDjl)

=

(
d∑
l=1

BklDil

d∑
m=1

Emjρm

)
+

(
d∑
l=1

BklDjl

d∑
m=1

Emiρm

)
= (DBT )ik(E

Tρ)j + (DBT )jk(E
Tρ)i

2
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Appendix C

Black-Scholes and Bachelier prices
and greeks

In this section we provide the formulas for the prices of call options when assuming that
the underlying asset follows a log-normal and a Normal dynamics. We also provide the
expression of the derivatives of the price (greeks) w.r.t. the log price in the log-normal case
and the price in the Normal case.

C.1 Log-normal model

We provide here the expression of the Black-Scholes call price as a function of the under-
lying log-price and of the cumulative variance between the pricing and the maturity dates.
We consider a fixed strike K and want to calculate ∂kl BS(h, v), where

BS(h, v) = E

[(
exp

(
h− 1

2
v +

√
vG

)
−K

)+
]
, G ∼ N(0, 1)

= ehΦ(d+)−KΦ(d−).

Here, Φ denotes the cumulative distribution function of the normal distribution and d± =
h−log(K)±v/2√

v
. We also denote φ(x) = 1√

2π
e−x

2/2 and have φ′(x) = −xφ(x). Thus, we have

k ∈ N∗, ∂khBS(h, v,K) = eh (Φ(d+) + Pk(d+)φ(d+)) ,

with P1(x) = 0 and Pk+1(d+) = Pk(d+)+
1√
v
+ 1√

v
P ′
k(d+)−

d+√
v
Pk(d+). In particular, we have

P2(d+) =
1√
v
, P3(d+) =

1√
v

(
2− d+√

v

)
, P4(d+) =

3√
v
− 3d+

v
− 1−d2+

v
√
v
.

C.2 Normal model

We provide here the expression of the Normal or Bachelier call price as a function of the
underlying asset price and of the cumulative variance between the pricing and the maturity
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dates.

BH(s, v) = E
[(
s+

√
vG−K

)+]
, G ∼ N(0, 1) (C.1)

= (s−K)Φ(d) + vφ(d),

where Φ and φ are respectively the cumulative distribution function and density of the
Normal distribution and d = s−K√

v
.We provide the derivatives up to the order which appear

in the expression of the price expansion:

∂sBH(s, v) = Φ(d), ∂2sBH(s, v) = φ(d)/
√
v,

∂3sBH(s, v) = −dφ(d)/v, ∂4sBH(s, v) = −(1− d2)φ(d)/v
√
v,

∂5sBH(s, v) = d(3− d2)φ(d)/v2, ∂6sBH(s, v) = (3− 6d2 + d4)φ(d)/v2
√
v.
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Appendix D

Gamma-Vega relationships

In this section we provide some useful relationships between the gamma and the vega
of standard european options when assuming that the underlying asset price follows a log-
normal process or a normal process. This relationship plays a key role in the derivation of
the asymptotic expansions for caplets and swaptions provided in paragraphs 4.3.1 and 4.3.2.
In the following we consider an abstract market with an asset S. We assume for simplicity
that interest rates are 0.

D.1 Log-normal model

Let us assume that the asset S follows a Black-Scholes dynamics, under the risk-neutral
measure we have

dS

S
= σdW. (D.1)

Consider an european option with payoff f(ST ) at maturity T . The price of the option
P (t, Lt, σ

2), as a function of the log price Lt = log(St) is solution of the following PDE

∂tP (t, l, σ
2) + σ2(∂2l − ∂l)P (t, l, σ

2) = 0, P (T, l, σ2) = f(el). (D.2)

By the time-homogeneity property of the Black-Scholes dynamics, we notice that the price de-
pends on t only through the time to maturity τ = T−t. By a slight abuse of notations we will
thus denote equivalently P (t, l, σ2) or P (τ, l, σ2). From this equation, we see that the price
verifies a certain scale invariance property, we have that P (τ/α, l, σ2α) = P (τ, l, σ2), α > 0.
By deriving the expression P (τ/α, l, σ2α) as a function of α we must have:

−τ
α2
∂τP + σ2∂σ2P = 0. (D.3)

Now noticing that ∂tP = −∂τP and plugging (D.2) into (D.7) we obtain the gamma-vega
relationship:
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∂σ2P =
τ

2

(
∂2l − ∂l

)
P. (D.4)

D.2 Normal model

We now follow the same path as in the previous paragraph. We assume here that the
underlying asset follows a normal dynamics, under the risk-neutral measure we have

dS = σdW (D.5)

Consider an european option with payoff f(ST ) at maturity T . The price of the option
P (t, St, σ

2) is solution of the following PDE

∂tP (t, S, σ
2) + σ2∂2SP (t, s, σ

2) = 0, P (T, s, σ2) = f(s). (D.6)

By the time-homogeneity property of the normal dynamics, we notice that the price depends
on t only through the time to maturity τ = T − t. By a slight abuse of notations we will
thus denote equivalently P (t, s, σ2) or P (τ, s, σ2). From this equation, we see that the price
verifies a certain scale invariance property, we have that P (τ/α, s, σ2α) = P (τ, s, σ2), α > 0.
By deriving the expression P (τ/α, s, σ2α) as a function of α we must have:

−τ
α2
∂τP + σ2∂σ2P = 0. (D.7)

Now noticing that ∂tP = −∂τP and plugging (D.6) into (D.7) we obtain the gamma-vega
relationship:

∂σ2P =
τ

2
∂2sP. (D.8)

234



Appendix E

Expansion of the price and volatility:
details of calculations

E.1 Caplets price expansion

Let us calculate L̃1(s)P0(s, x, h). We denote by ∂xP0 the symmetric matrix (∂xP0)i,j =
∂xi,jP0. From (4.19), we get

L̃1(s)P0 = 2(∆B⊤cx∆D0I
n
d ρ)(∂

2
h − ∂h)P0 + 2B⊤cx∂xP0I

n
d ρ+ 2∆B⊤cx∂h∂xP0I

n
d ρ.

We now observe from (4.21) that

∂xi,jP0(s, x, h) =
1

2
∂xi,jv(s, T, δ, x)(∂

2
h − ∂h)P0(s, x, h). (E.1)

We denote by ∂xv the symmetric matrix (∂xv)i,j = ∂xi,jv. Since v is linear with respect to x,
∂xv doesnot depend on x and we have

(∂xv(s, T, δ))i,j =

∫ T

s

∆B⊤(u, T, δ)ceb(u−s)ei,je
b⊤(u−s)c⊤∆B(u, T, δ)du

=

∫ T

s

[eb
⊤(u−s)c⊤∆B(u, T, δ)]i[e

b⊤(u−s)c⊤∆B(u, T, δ)]jdu,

where ei,j is the matrix defined by (ei,j)k,l = 1i=k,j=l. We now use that ∂h and L̃0(t) commute,
which gives that for any k ∈ N, ∂t∂khP0+ L̃0(t)∂

k
hP0 = 0. Thus, P0(s,X

0
s , H

0
t ) is a martingale

and we have

E
[
∂khP0(s,X

0
s , H

0
s )|Ht = h,X0

t = x
]

= ∂khP0(t, x, h). (E.2)

From (4.23), we obtain (4.25) with

c1(t, T, δ, x) =

∫ T

t

∆B⊤(s, T, δ)cX0
s−t(x)∂xv(s, T, δ)I

n
d ρds, (E.3)

c2(t, T, δ, x) =

∫ T

t

∆B⊤(s, T, δ)cX0
s−t(x)∆D0(s, T, δ)I

n
d ρ+B⊤(T + δ − s)cX0

s−t(x)∂xv(s, T, δ)I
n
d ρds,

(E.4)
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where

X0
s (x) = ebs

(
x+

∫ s

0

e−buΩe−b
⊤udu

)
eb

⊤s (E.5)

is the solution of dXt = (Ω + bXt +Xtb
⊤)dt starting from x.

We now calculate similarly L̃1(s)P1(s, x, h). To do so, we first calculate from (4.25)

∂xi,jP1(s, x, h) =
[
∂xi,jc1(s, T, δ, x)(∂

3
h − ∂2h) + ∂xi,jc2(s, T, δ, x)(∂

2
h − ∂h)

+
1

2
∂xi,jv(s, T, δ)c1(s, T, δ, x)(∂

3
h − ∂2h)(∂

2
h − ∂h)

+
1

2
∂xi,jv(s, T, δ)c2(s, T, δ, x)(∂

2
h − ∂h)

2
]
P0(s, x, h).

We then have

L̃1(s)P1 = (∆B⊤cx∆D0I
n
d ρ)(∂

2
h − ∂h)P1 + 2B⊤cx∂xP1I

n
d ρ+ 2∆B⊤cx∂h∂xP1I

n
d ρ

=

[
(∆B⊤cx∆D0I

n
d ρ)[c1(∂

2
h − ∂h)

2∂h + c2(∂
2
h − ∂h)

2] + 2B⊤cx∂xc1I
n
d ρ(∂

2
h − ∂h)∂h

+ 2B⊤cx∂xc2I
n
d ρ(∂

2
h − ∂h) + c1B

⊤cx∂xvI
n
d ρ(∂

2
h − ∂h)

2∂h + c2B
⊤cx∂xvI

n
d ρ(∂

2
h − ∂h)

2

+ 2∆B⊤cx∂xc1I
n
d ρ(∂

2
h − ∂h)∂

2
h + 2∆B⊤cx∂xc2I

n
d ρ(∂

2
h − ∂h)∂h

+ c1∆B
⊤cx∂xvI

n
d ρ(∂

2
h − ∂h)

2∂2h + c2∆B
⊤cx∂xvI

n
d ρ(∂

2
h − ∂h)

2∂h

]
P0(s, x, h).

Let us observe that c1 and c2 are again linear with respect to x, and their derivatives with
respect to x do not depend on x. More precisely, we have:

∂xi,jc1(t, T, δ, x) =

∫ T

t

∆B⊤(s, T, δ)ce−b(s−t)ei,je
−b⊤(s−t)∂xv(s, T, δ)I

n
d ρds,

∂xi,jc2(t, T, δ, x) =

∫ T

t

∆B⊤(s, T, δ)ce−b(s−t)ei,je
−b⊤(s−t)∆D0(s, T, δ)I

n
d ρ

+B⊤(T + δ − s)ce−b(s−t)ei,je
−b⊤(s−t)∂xv(s, T, δ)I

n
d ρds,

Then, by using again (E.2), we obtain

E
[∫ T

t

L̃1(s)P1(s,X
0
s , H

0
s )ds|Ht = h,X0

t = x

]
=

[
e1(t, T, δ, x)(∂

2
h − ∂h)

2∂2h + e2(t, T, δ, x)(∂
2
h − ∂h)

2∂h

+ e3(t, T, δ, x)(∂
2
h − ∂h)

2 + e4(t, T, δ, x)(∂
2
h − ∂h)∂

2
h + e5(t, T, δ, x)(∂

2
h − ∂h)∂h

+ e6(t, T, δ, x)(∂
2
h − ∂h)

]
P0(t, x, h),
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with

e1(t, T, δ, x) =

∫ T

t

c1(s, T, δ, x)∆B
⊤(s, T, δ)cX0

s−t(x)∂xv(s, T, δ)I
n
d ρds,

e2(t, T, δ, x) =

∫ T

t

c1(s, T, δ, x)[(∆B
⊤(s, T, δ)cX0

s−t(x)∆D0(s, T, δ)I
n
d ρ)

+B⊤(T + δ − s)cX0
s−t(x)∂xv(s, T, δ)I

n
d ρ]

+ c2(s, T, δ, x)∆B
⊤(s, T, δ)cX0

s−t(x)∂xv(s, T, δ)I
n
d ρds,

e3(t, T, δ, x) =

∫ T

t

c2(s, T, δ, x)[(∆B
⊤(s, T, δ)cX0

s−t(x)∆D0(s, T, δ)I
n
d ρ)

+B⊤(T + δ − s)cX0
s−t(x)∂xv(s, T, δ)I

n
d ρ]ds,

e4(t, T, δ, x) =

∫ T

t

2∆B⊤(s, T, δ)cX0
s−t(x)∂xc1(s, T, δ)I

n
d ρds,

e5(t, T, δ, x) =

∫ T

t

2B⊤(T + δ − s)cX0
s−t(x)∂xc1(s, T, δ)I

n
d ρ+ 2∆B⊤(s, T, δ)cX0

s−t(x)∂xc2(s, T, δ)I
n
d ρds,

e6(t, T, δ, x) =

∫ T

t

2B⊤(T + δ − s)cX0
s−t(x)∂xc2(s, T, δ)I

n
d ρds.

Last, we calculate L̃2(s)P0(s, x, h) and get

L̃2(s)P0 =

[ (
2Tr(∆D0I

n
d∆D0x) + (∆B⊤cx∆D1I

n
d ρ)
)
(∂2h − ∂h)

+
1

2
Tr [((d− 1)Ind + 4xD0I

n
d )∂xv] (∂

2
h − ∂h)

+
1

2
Tr [Ind ∂xvx∂xv] (∂

2
h − ∂h)

2 + 2Tr [∆D0x∂xvI
n
d ] (∂

2
h − ∂h)∂h

]
P0.

We obtain by using (E.2)

E
[∫ T

t

L̃2(s)P0(s,X
0
s , H

0
s )ds|Ht = h,X0

t = x

]
=

[
d1(t, T, δ, x)(∂

2
h − ∂h)

2

+ d2(t, T, δ, x)(∂
2
h − ∂h)∂h

+ d3(t, T, δ, x)(∂
2
h − ∂h)

]
P0(t, x, h),
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with

d1(t, T, δ, x) =

∫ T

t

1

2
Tr
[
Ind ∂xv(s, T, δ)X

0
s−t(x)∂xv(s, T, δ)

]
ds

d2(t, T, δ, x) =

∫ T

t

2Tr
[
∆D0(s, T, δ)X

0
s−t(x)∂xv(s, T, δ)I

n
d

]
ds

d3(t, T, δ, x) =

∫ T

t

(
2Tr(∆D0(s, T, δ)I

n
d∆D0(s, T, δ)X

0
s−t(x)) + (∆B⊤(s, T, δ)cX0

s−t(x)∆D1(s, T, δ)I
n
d ρ)
)

+
1

2
Tr
[
((d− 1)Ind + 4X0

s−t(x)D0(T + δ − s)Ind )∂xv(s, T, δ)
]
ds.

E.2 Swaption price expansion

Let us first calculate L̃S1 (u)P
S
0 (u, x, s). We denote by ∂xP

S
0 the symmetric matrix (∂xP

S
0 )i,j =

∂xi,jP
S
0 , and we get from (4.39):

L̃S1 (u)P
S
0 = BS(u)⊤cxDS

0 (u)I
n
d ρ∂

2
sP

S
0 + 2BA(u)⊤cx∂xP

S
0 I

n
d ρ+ 2BS(u)⊤cx∂x∂sP

S
0 I

n
d ρ.

From (D.8), we have

∂xi,jP
S
0 (u, x, s) =

1

2
∂xi,jv

S(u, T, x)∂2sP
S
0 (u, x, s).

Similarly, we denote by ∂xv
S the symmetric matrix made with the partial derivatives of vS.

Since vS(s, T, x) is linear with respect to x, ∂xv
S does not depend on x and we have

∂xv
S(u, T ) =

∫ T

u

BS(r)⊤ceb(r−u)ei,je
b⊤(r−u)c⊤BS(r)dr.

Since L̃S0 and ∂s commute, we have for any k ∈ N, ∂t∂ksP S
0 + L̃S0 (u)∂

k
sP

S
0 = 0 for u ∈ (0, T )

and thus
t ≤ u ≤ T, E[∂ksP S

0 (u,X
0
u, S

0
u)|S0

t = s,X0
t = x] = ∂ksP

S
0 (u, x, x).

We therefore obtain (4.44) with

cS1 (t, T, x) =

∫ T

t

BS(u)⊤cX0
u−t(x)∂xv

S(u, T )Ind ρdu,

cS2 (t, T, x) =

∫ T

t

BS(u)⊤cX0
u−t(x)D

S
0 (u)I

n
d ρ+BA(u)⊤cX0

u−t(x)∂xv
S(u, T )Ind ρdu,

and X0
u−t(x) defined by (E.5).

Similarly, we calculate L̃S1 (u)P
S
1 (u, x, s). We have

∂xi,jP
S
1 (u, x, s) =

[
∂xi,jc

S
1 (u, T, x)∂

3
s + ∂xi,jc

S
2 (u, T, x)∂

2
s

+
1

2
∂xi,jv

S(u, T )cS1 (u, T, x)∂
5
s +

1

2
∂xi,jv

S(u, T )cS2 (u, T, x)∂
4
s

]
P S
0 (u, x, s).
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We note that the derivatives

∂xi,jc
S
1 (t, T, x) =

∫ T

t

BS(u)⊤ceb(u−t)ei,je
b⊤(u−t)∂xv

S(u, T )Ind ρdu,

∂xi,jc
S
2 (t, T, x) =

∫ T

t

BS(u)⊤ceb(u−t)ei,je
b⊤(u−t)DS

0 (u)I
n
d ρ+BA(u)⊤ceb(u−t)ei,je

b⊤(u−t)∂xv
S(u, T )Ind ρdu

do not depend on x. We now obtain

L̃S1 (u)P
S
1 (u, x, s) =

[
(BS(u)⊤cxDS

0 (u)I
n
d ρ)[c

S
1 (u, T, x)∂

5
s + cS2 (u, T, x)∂

4
s ] + 2BA(u)⊤cx∂xc

S
1 (u, T )I

n
d ρ∂

3
s

+ 2BA(u)⊤cx∂xc
S
2 (u, T )I

n
d ρ∂

2
s + cS1 (u, T, x)B

A(u)⊤cx∂xv
S(u, T )Ind ρ∂

5
s

+ cS2 (u, T, x)B
A(u)⊤cx∂xv

S(u, T )Ind ρ∂
4
s + 2BS(u)⊤cx∂xc

S
1 (u, T )I

n
d ρ∂

4
s

+ 2BS(u)⊤cx∂xc
S
2 (u, T )I

n
d ρ∂

3
s + cS1 (u, T, x)B

S(u)⊤cx∂xv
S(u, T )Ind ρ∂

6
s

+ cS2 (u, T, x)B
S(u)⊤cx∂xv

S(u, T )Ind ρ∂
5
s

]
P S
0 (u, x, s),

and thus

E
[∫ T

t

L̃S1 (u)P
S
1 (u,X

0
u, S

0
u)du

∣∣∣∣S0
t = s,X0

t = x

]
=

[
eS1 (t, T, x)∂

6
h + eS2 (t, T, x)∂

5
h + eS3 (t, T, x)∂

4
h

+ eS4 (t, T, x)∂
3
h + eS5 (t, T, x)∂

2
h

]
P S
0 (t, x, s),

with

eS1 (t, T, x) =

∫ T

t

cS1 (u, T, x)(B
S(u))⊤cX0

u−t(x)∂xv
S(u, T )Ind ρdu,

eS2 (t, T, x) =

∫ T

t

cS1 (u, T, x)
[
BS(u)⊤cX0

u−t(x)D
S
0 (u)I

n
d ρ+BA(u)⊤cX0

u−t(x)∂xv
S(u, T )Ind ρ

]
+ cS2 (u, T, x)B

S(u)⊤cX0
u−t(x)∂xv

S(u, T )Ind ρdu,

eS3 (t, T, x) =

∫ T

t

cS2 (u, T, x)
[
BS(u)⊤cX0

u−t(x)D
S
0 (u)I

n
d ρ+BA(u)⊤cX0

u−t(x)∂xv
S(u, T )Ind ρ

]
+ 2BS(u)⊤cX0

u−t(x)∂xc
S
1 (u, T )I

n
d ρdu,

eS4 (t, T, x) =

∫ T

t

2BA(u)⊤cX0
u−t(x)∂xc

S
1 (u, T )I

n
d ρ+ 2BS(u)⊤cX0

u−t(x)∂xc
S
2 (u, T )I

n
d ρdu,

eS5 (t, T, x) =

∫ T

t

2BA(u)⊤cX0
u−t(x)∂xc

S
2 (u, T )I

n
d ρdu.
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We finally calculate from (4.40)

L̃S2 (u)P
S
0 (u, x, s) =

[
[2Tr(DS

0 (u)I
n
dD

S
0 (u)x) + (BS(u))⊤cxDS

1 (u)I
n
d ρ]∂

2
s

+ Tr

(
[2xDA

0 (u)I
n
d +

1

2
(d− 1)Ind ]∂xv

S(u, T )

)
∂2s

+
1

2
Tr(Ind ∂xv

S(u, T )x∂xv
S(u, T ))∂4s + 2Tr(DS

0 (u)x∂xv
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and get

E
[∫ T

t

L̃S2 (u)P
S
0 (u,X

0
u, S

0
u)du

∣∣∣∣S0
t = s,X0

t = x

]
=

[
dS1 (t, T, x)∂

4
h + dS2 (t, T, x)∂

3
h

+ dS3 (t, T, x)∂
2
h

]
P S
0 (t, x, s),

with

dS1 (t, T, x) =

∫ T

t

1

2
Tr(Ind ∂xv

S(u, T )X0
u−t(x)∂xv

S(u, T ))du,

dS2 (t, T, x) =

∫ T

t

2Tr(DS
0 (u)X

0
u−t(x)∂xv

S(u, T )Ins )du,

dS3 (t, T, x) =

∫ T

t

[2Tr(DS
0 (u)I

n
dD

S
0 (u)X

0
u−t(x)) + (BS(u))⊤cX0

u−t(x)D
S
1 (u)I

n
d ρ]

+ Tr

(
[2X0

u−t(x)D
A
0 (u)I

n
d +

1

2
(d− 1)Ind ]∂xv

S(u, T )

)
du.

240


