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Abstract

The colorful Carathéodory theorem, proved by Bárány in 1982, states the following.

Given d +1 sets of points S1, . . . ,Sd+1 ⊆ Rd , each of them containing 0 in its convex

hull, there exists a colorful set T containing 0 in its convex hull, i.e. a set T ⊆⋃d+1
i=1 Si

such that |T ∩ Si | ≤ 1 for all i and such that 0 ∈ conv(T ). This result gave birth to

several questions, some algorithmic and some more combinatorial. This thesis provides

answers on both aspects.

The algorithmic questions raised by the colorful Carathéodory theorem concern,

among other things, the complexity of finding a colorful set under the condition

of the theorem, and more generally of deciding whether there exists such a colorful set

when the condition is not satisfied. In 1997, Bárány and Onn defined colorful linear

programming as algorithmic questions related to the colorful Carathéodory theorem.

The two questions we just mentioned come under colorful linear programming. This

thesis aims at determining which are the polynomial cases of colorful linear program-

ming and which are the harder ones. New complexity results are obtained, refining the

sets of undetermined cases. In particular, we discuss some combinatorial versions of

the colorful Carathéodory theorem from an algorithmic point of view. Furthermore,

we show that computing a Nash equilibrium in a bimatrix game is polynomially re-

ducible to a colorful linear programming problem. On our track, we found a new way

to prove that a complementarity problem belongs to the PPAD class with the help of

Sperner’s lemma. Finally, we present a variant of the “Bárány-Onn” algorithm, which

is an algorithm computing a colorful set T containing 0 in its convex hull whose exis-

tence is ensured by the colorful Carathéodory theorem. Our algorithm makes a clear

connection with the simplex algorithm. After a slight modification, it also coincides

with the Lemke method, which computes a Nash equilibrium in a bimatrix game.

The combinatorial question raised by the colorful Carathéodory theorem concerns

the number of positively dependent colorful sets. Deza, Huang, Stephen, and Terlaky

(Colourful simplicial depth, Discrete Comput. Geom., 35, 597–604 (2006)) conjectured

that, when |Si | = d +1 for all i ∈ {1, . . . ,d +1}, there are always at least d 2 +1 colourful

sets containing 0 in their convex hulls. We prove this conjecture with the help of

combinatorial objects, known as the octahedral systems. Moreover, we provide a
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Abstract

thorough study of these objects.
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Résumé

Le théorème de Carathéodory coloré, prouvé en 1982 par Bárány, énonce le résultat

suivant. Etant donnés d +1 ensembles de points S1, . . . ,Sd+1 dans Rd , si chaque Si

contient 0 dans son enveloppe convexe, alors il existe un sous-ensemble arc-en-ciel

T ⊆⋃d+1
i=1 Si contenant 0 dans son enveloppe convexe, i.e. un sous-ensemble T tel que

|T ∩Si | ≤ 1 pour tout i et tel que 0 ∈ conv(T ). Ce théorème a donné naissance à de

nombreuses questions, certaines algorithmiques et d’autres plus combinatoires. Dans

ce manuscrit, nous nous intéressons à ces deux aspects.

En 1997, Bárány et Onn ont défini la programmation linéaire colorée comme l’ensemble

des questions algorithmiques liées au théorème de Carathéodory coloré. Parmi ces

questions, deux ont particulièrement retenu notre attention. La première concerne

la complexité du calcul d’un sous-ensemble arc-en-ciel comme dans l’énoncé du

théorème. La seconde, en un sens plus générale, concerne la complexité du problème

de décision suivant. Etant donnés des ensembles de points dansRd , correspondant aux

couleurs, il s’agit de décider s’il existe un sous-ensemble arc-en-ciel contenant 0 dans

son enveloppe convexe, et ce en dehors des conditions du théorème de Carathéodory

coloré. L’objectif de cette thèse est de mieux délimiter les cas polynomiaux et les cas

“difficiles” de la programmation linéaire colorée. Nous présentons de nouveaux résul-

tats de complexités permettant effectivement de réduire l’ensemble des cas encore

incertains. En particulier, des versions combinatoires du théorème de Carathéodory

coloré sont présentées d’un point de vue algorithmique. D’autre part, nous montrons

que le problème de calcul d’un équilibre de Nash dans un jeu bimatriciel peut être

réduit polynomialement à la programmation linéaire coloré. En prouvant ce dernier

résultat, nous montrons aussi comment l’appartenance des problèmes de complé-

mentarité à la classe PPAD peut être obtenue à l’aide du lemme de Sperner. Enfin,

nous proposons une variante de l’algorithme de Bárány et Onn, calculant un sous-

ensemble arc-en-ciel contenant 0 dans son enveloppe convexe sous les conditions du

théorème de Carathéodory coloré. Notre algorithme est clairement relié à l’algorithme

du simplexe. Après une légère modification, il coïncide également avec l’algorithme

de Lemke, calculant un équilibre de Nash dans un jeu bimatriciel.

La question combinatoire posée par le théorème de Carathéodory coloré concerne
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Résumé

le nombre de sous-ensemble arc-en-ciel contenant 0 dans leurs enveloppes con-

vexes. Deza, Huang, Stephen et Terlaky (Colourful simplicial depth, Discrete Comput.

Geom., 35, 597–604 (2006)) ont formulé la conjecture suivante. Si |Si | = d +1 pour

tout i ∈ {1, . . . ,d +1}, alors il y a au moins d 2 +1 sous-ensemble arc-en-ciel contenant

0 dans leurs enveloppes convexes. Nous prouvons cette conjecture à l’aide d’objets

combinatoires, connus sous le nom de systèmes octaédriques, dont nous présentons

une étude plus approfondie.
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Introduction

The colorful Carathéodory theorem

Given a set S of N ≥ 3 points in the plane and a point p in the convex hull of S, there is

a triangle formed with points of S containing p in its convex hull. In general dimension

d , the Carathéodory theorem states the following. Given a set S of N ≥ d +1 points in

Rd and a point p in the convex hull of S, there is a subset T ⊆ S of size at most d +1

containing p in its convex hull.

b

b

b

b
b

b

b

b

b

b

b

p

Figure 1: The Carathéodory theorem in dimension 2

Bárány [2] proposed a generalization of this theorem, in which S is partitioned into

d +1 sets, or colors, and the set T is colorful, i.e. it intersects each color at most once.

Consider blue points, green points, and red points in the plane, such that there is a

point p simultaneously in the convex hull of the blue points, in the convex hull of
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the green points, and in the convex hull of the red points. The colorful Carathéodory

theorem, proved by Bárány in 1982, ensures the existence of a colorful triangle, i.e. a tri-

angle formed with one blue point, one green point, and one red point, also containing

p in its convex hull.

In general dimension d , the colorful Carathéodory theorem states the following.

Theorem. Given d + 1 sets S1, . . . ,Sd+1, and any point p ∈ ⋂d+1
i=1 conv(Si ), there is a

colorful set T containing p in its convex hull, that is a set T ⊆⋃d+1
i=1 Si such that |T ∩Si | ≤

1 for all i ∈ [d +1], and p ∈ conv(T ).

b

b b

b

b

b

b

b

b

b

b

b

b
b
p

Figure 2: The colorful Carathéodory theorem in dimension 2

The colorful Carathéodory theorem gave birth to this thesis and motivated most of the

questions we considered during the course of my Doctoral study. Two main streams

of questions are raised by this theorem: the computational problems on the one

hand and a more combinatorial problem on the other hand. In the remaining of this

introduction, we present these two streams. We end the introduction with applications

of colorful linear programming.

Computational problems

A natural question raised by the colorful Carathéodory theorem is whether a colorful

set containing p in its convex hull can be computed in polynomial time. The case
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with S1 = ·· · = Sd+1, corresponding to the usual Carathéodory theorem, is known to be

computable in polynomial time via linear programming. However, the complexity of

the colorful version remains an open question.

A second problem concerns the complexity of deciding whether there exists such a

colorful set, in case the conditions of the colorful Carathéodory are not satisfied. More

precisely, given k sets S1, . . . ,Sk in Rd and a point p ∈ Rd , the problem is to decide

whether there is a colorful set containing p in its convex hull, i.e. a set T ⊆ ⋃k
i=1 Si

such that |T ∩Si | ≤ 1 for all i ∈ [d +1] and p ∈ conv(T ). This problem, often referred to

as the colorful linear programming problem, is known to be NP-complete in general.

Depending on the context, we may consider this problem with a linear programming

point of view. Formally, the problem is the following. Given a d ×n matrix A ∈Rd×n , a

vector b ∈Rd , and a partition of [n] into k sets I1, . . . , Ik , decide whether there exists a

solution x ∈Rn to the system

Ax = b,

x ≥ 0, (1)

|supp(x)∩ I j | ≤ 1, for all j ∈ [k],

where supp(x) is the set {i ∈ [n] | xi 6= 0}. We show that the problems of deciding

whether a colorful solution exists and of optimizing a linear cost function over all

colorful solutions can be polynomially reduced one to the other. Colorful linear pro-

gramming either refers to one or the other version. A seemingly more general problem

is obtained by replacing the constraints on the support by |supp(x)∩ I j | ≤ ` j for all

j ∈ [k], for some prefixed ` j ∈ Z+. We discuss the complexity of this generalization

and get some partial results in Chapter 3. A polyhedral interpretation of colorful linear

programming is also provided in the same chapter.

Another computational problem is raised by the Octahedron lemma, which is a the-

orem similar to the colorful Carathéodory. This theorem states that given d +1 pairs

of points in Rd and a point p ∈ Rd , all in general position, there is an even number

of colorful sets containing p in their convex hulls. In particular, it shows that if p is

contained in the convex hull of a colorful set, then p is contained in the convex hull

of another colorful set. The related computational problem, known as find another

colorful simplex is the following. Given d +1 pairs of points in Rd and a point p ∈Rd ,

all in general position, and given a colorful set containing p in its convex hull, compute

another colorful set containing p in its convex hull. The complexity of this problem

was an open question.

We obtain new results for these three computational problems. In particular, we
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provide combinatorial polynomial cases of the colorful Carathéodory theorem. We

propose a variant of the “Bárány-Onn” algorithm, which computes a colorful set con-

taining 0 in its convex hull. Our algorithm makes a clear connection with the simplex

algorithm. We also extended the result of Bárány and Onn on the NP-completeness of

colorful linear programming to the case with k = d +1, answering one of their ques-

tions. Finally we proved that find another colorful simplex is PPAD-complete. The

most surprising result we obtain is the fact that colorful linear programming contains

the problem of finding a Nash equilibrium in a bimatrix game. Most of these results,

presented in Chapter 2, can be found in the article

F. Meunier and P. Sarrabezolles. Colorful linear programming, Nash equi-

librium, and pivots. Discrete Applied Mathematics, under revision.

The colorful simplicial depth conjecture

Simplicial depth

Given a set S of real numbers, the median is a real number m such that half the

numbers in S are not larger than m and half the numbers in S are not smaller than

m. A median can equivalently be defined as a real number contained in the largest

possible number of segments [a,b] with a,b ∈ S.

In 1990, Liu [35] generalized the concept of median in higher dimension. This general-

ization, known as deepest point, is the following: given a set S of points in Rd , a deepest

point is a point m ∈Rd contained in the largest possible number of simplices formed

with points of S. This notion has many applications in statistics and in data analysis.

A natural question raised by this notion is how deep is a deepest point, i.e. what is the

maximal number of simplices formed with points of S whose convex hulls intersect?

This geometric question has been asked earlier, and a first answer was given by Bárány

using the colorful Carathéodory theorem.

Colorful simplicial depth

Liu’s notion can be extended to the colorful point configurations. Given d +1 sets

S1, . . . ,Sd+1 of points in R and a point p ∈ Rd , we define the colorful simplicial depth

of p to be the number of colorful sets containing p in their convex hulls. The colorful

Carathéodory theorem shows that under the conditions of the theorem, there is a

point with colorful simplicial depth at least equal to 1. On Figure 2, a point p as in the
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statement and a colorful triangle containing it are represented. There are in fact more

colorful triangles containing this point p.

In 2006, Deza et al. [17] conjectured that if each Si is of size at least d +1, then any

point p ∈⋂d+1
i=1 conv(Si ) is contained in the convex hulls of at least d 2 +1 colorful sets.

They proved in the same paper that the bound d 2 +1 is tight. As a matter of fact, there

are colorful point configurations, with d +1 sets of d +1 points in Rd , such that there is

a point p ∈⋂d+1
i=1 conv(Si ) contained in the convex hulls of exactly d 2 +1 colorful sets,

see Figure 3 for such a configuration in dimension 3.

b

b

b
b

b

b b b
b b b

b

b

b

b

b

b

p

Figure 3: A colorful point configuration in R3 with 10 colorful tetrahedra containing p

Bárány suggested a combinatorial approach to this problem. It consists in considering

a special class of hypergraphs generalizing the colorful point configuration, the octahe-

dral systems. Given a colorful point configuration, there is a corresponding octahedral

system, whose edges are identified with the colorful sets containing 0 in their convex

hulls. Hence a bound on the number of edges in an octahedral system gives a bound

on the colorful simplicial depth. The octahedral systems are studied in Chapter 4

and Chapter 5. Using this approach, we improve the best known bound. This work

appeared in the article

A. Deza, F. Meunier, and P. Sarrabezolles. A combinatorial approach to

colourful simplicial depth. SIAM Journal on Discrete Mathematics, 28(1):

306–322, 2014.

Finally, we prove the colorful simplicial depth conjecture, using the same approach.

This proof appeared in the article

17



Introduction

P. Sarrabezolles. The colorful simplicial depth conjecture. Journal of Com-

binatorial Theory, Series A, 130(0): 119–128, 2015.

Our proof actually shows that if each Si is of size m ≥ d + 1, then any point p ∈⋂d+1
i=1 conv(Si ) is contained in the convex hulls of at least (m −2)(d +1)+2 colorful

sets.

More generally, we formulate the following conjecture.

Conjecture. Consider a colorful point configuration with |S1| ≥ · · · ≥ |Sd+1| ≥ d +1 ≥ 2.

Any point p ∈⋂d+1
i=1 conv(Si ) is contained in the convex hulls of at least

d+1∑
i=1

(|Si |−2)+2

colorful sets.

Applications of colorful linear programming

The study of problems related to the colorful Carathéodory theorem is usually moti-

vated in the literature by the many theoretical applications of this result in geometry,

and by the challenging questions raised by these problems. We would like to give

another motivation here, with practical applications of colorful linear programming,

although these applications are not studied any further in the thesis. We are not aware

of similar applications in the literature, with industrial problems explicitly formulated

as colorful linear programs.

Colorful diet programming

We start with a famous application of linear programming: the diet programming

problem. This problem was introduced during the Second World War and aimed at

defining the daily diet of U.S. soldiers. More precisely, given a set of nutriments and a

set of foods, each containing a certain amount of each nutriment, the problem is to

find an optimal diet, with respect to some objective function, such that each nutriment

is sufficiently provided. It was one of the first problem on which the simplex algorithm

was tested, in 1947 [15]. Later, in 1990, Dantzig showed the limits of this model in an

over-viewing paper [16], in which he described how he tried to apply the model to his

own diet. The main struggle he encountered was “the lack of variety” of the solutions

given by the model.
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[...] In the early 1950s, I moved to Santa Monica to work for the RAND

corporation. My doctor advised me to go on a diet to lose weight. I decided

I would model my diet as a linear program and let the computer decide my

diet. Some revisions of the earlier model, of course, would be necessary in

order to give a greater variety of foods to choose from; [...]

(Dantzig, The diet problem, 1990)

Adding some upper bounds, he managed to avoid solutions using only one food, for

instance bran, but got instead solutions with all foods belonging to the same category,

for instance cereals. If he had known colorful linear programming, he might have

been able to fix this problem. Indeed, colorful linear programming consists exactly

in solving a linear program with the additional constraints that the variables belong

to categories, and that the number of variables of each category used in a solution

is bounded. Dantzig finally followed his wife advice, which was certainly even more

efficient.

Formally, the original diet problem is the following. We are given n foods and m

nutriments. Let ai j ∈ R+ be the quantity of nutriment j in one unit of food i , let b j

be the quantity of nutriment j needed by a soldier daily, and let Xi be the maximal

amount of aliment i a soldier can tolerate in one day. Finally, let ci be the cost of

one unit of food i . We define the variables x1, . . . , xn ∈ R+, modeling the quantity of

food i that will be recommended by the diet program. We also define slack variables

z1, . . . , zm ∈R+ and y1, . . . , yn ∈R+. The diet problem aims at solving

min
n∑

i=1
ci xi

s.t.
n∑

i=1
ai j xi − z j = b j for all j ∈ [m],

xi + yi = Xi for all i ∈ [n],

xi , yi ≥ 0 for all i ∈ [n],

z j ≥ 0 for all j ∈ [m].

We now want to model the fact that for example a soldier does not eat more than three

types of vegetables, two types of meat and one fruit each day, and so on. In general,

the foods are partitioned into different categories, for instance vegetables, fruits,...:

[n] = I1 ∪·· ·∪ Ik , and the number of different foods of each category h ∈ [k] a soldier

will tolerate to eat in one day is bounded by some integer `h . These combinatorial

constraints can be modeled by adding the following constraints to the previous linear
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program:

|{i ∈ Ih | xi 6= 0
}| ≤ `h for all h ∈ [k].

This model is a colorful linear program.

In the same line of ideas, colorful linear programming appears in many problems for

which variety is required. For instance, it may appear in production. Indeed, to prevent

the risk of a lack of raw material, or the change of taste of its clients, a firm may require

to produce various types of goods in addition to optimize its income. Similarly, while

optimizing a stock option portfolio, it may be interesting to add the constraint that not

all stock options belong to the same category.

Other application: sparse solutions of linear systems

Colorful linear programming is not the first variant of linear programming to which an

additional constraint on the support of the solutions is added. Indeed, the problem of

finding a sparse solution to an undetermined linear system also belongs to this class of

problem. It has itself many applications in signal processing. In particular, it is a useful

tool for encoding and recovering without errors messages, which may be corrupted

during their transmissions, see Chapter 8.5 of [37] for more details on this problem.

Formally, the problem is the following. Given a matrix A ∈Rd×n , a vector b ∈Rd , and a

nonnegative integer r ∈Z+, decide whether there is a solution x ∈Rn to the system

Ax = b,

|supp(x)| ≤ r.

This problem is actually generalized by colorful linear programming, since it is a

particular case with only one type of variable.
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1 The colorful Carathéodory theorem
and its relatives

In this chapter we present geometric results related to the colorful Carathéodory

theorem and several variants of the theorem itself. Our aim is to give a survey of the

many geometric results given by Bárány in his original paper proving the colorful

Carathéodory theorem [2] and to extend some of them. We also use this chapter to

define most of the technical tools required for reading the thesis.

1.1 Definitions and preliminaries

In this section, we introduce the basic notions and terminology used in the thesis.

More specific notions are introduced throughout the five chapters.

1.1.1 Basic geometric notions

Rd denotes the d-dimensional Euclidean space. For a point x = (x1, . . . , xd ) ∈ Rd , the

Euclidean norm of x is ‖x‖ =
√

x2
1 +·· ·+x2

d . The distance between two points x,y ∈Rd

is ‖x−y‖. The distance between a point p ∈Rd and a set S ⊆Rd , denoted dist(p,S), is

infs∈S ‖p−s‖.

The support of a vector x ∈Rd , denoted supp(x), is the set
{
i ∈ [d ] | xi 6= 0

}
. For a point

x = (x1, . . . , xd ) ∈Rd and a set I ⊆ [d ], we define xI ∈Rd to be the projection of x on the

subspace
{

x ∈Rd | xi = 0 for all i ∉ I
}
. It implies supp(xI ) ⊆ I .

A convex set C ⊆Rd is such that for all x,y ∈C , we have [x,y] ⊆C . In other words, any

convex combination of points of C is in C . The convex hull of a set S, denoted conv(S),

is the smallest convex set containing S. If S is finite, S = {s1, . . . ,st }, the following
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equality holds

conv(S) =
{ t∑

i=1
λi si |

t∑
i=1

λi = 1,λi ≥ 0 for all i ∈ [t ]
}

.

A set S containing 0 in its convex hull is called positively dependent. Otherwise, S is

positively independent.

A cone C ⊆ Rd is a set such that for all x,y ∈ C and all α ∈ R+, we have αx+y ∈ C . In

other words, any positive combination of points of C is in C . Note that a cone is always

convex. The conic hull of a set S, denoted pos(S), is the smallest cone containing S. If S
is finite, S = {s1, . . . ,st }, the following equality holds

pos(S) =
{ t∑

i=1
λi si |λi ≥ 0 for all i ∈ [t ]

}
.

An affine subspace H ⊆ Rd is a set such that for all x,y ∈ H and all α ∈ R, we have

αx+y ∈ H . In other words, any linear combination of points of an affine subspace H is

in H . The affine hull of a set S, denoted by aff(S), is the smallest affine space containing

S. If S is finite, S = {s1, . . . ,st }, the following equality holds

aff(S) =
{ t∑

i=1
λi si |λi ∈R for all i ∈ [t ]

}
.

A set S such that a point in S is in the affine hull of the other points in S is affinely

dependent. Otherwise, S is affinely independent.

1.1.2 Linear programming

For a matrix A ∈Rd×n , let A j denote the j th column of A. Given a set I ⊆ [n], the matrix

AI denotes the matrix formed with the columns in
{

A j | j ∈ I
}
, arranged in the same

order.

A linear program, is an optimization problem which can be written as follows (standard

form).

min cT x

s.t. Ax = b, (1.1)

x ≥ 0,
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with c ∈Rn , A ∈Rd×n of full rank, and b ∈Rd .

A basis is a set B ⊆ [n] of size d such that the matrix AB is nonsingular. The basic

solution associated to B is the unique xB ∈Rn such that supp(xB ) ⊆ B and AxB = b.

A feasible basis is a basis B ⊆ [n] such that xB ≥ 0. In this case, xB is a feasible basic

solution. An important result in linear programming states that, for any c, if the

optimum of (1.1) is finite, then there is an optimal solution attained on a feasible

basis [15].

The feasibility problem related to a linear program, refers to the decision problem: is

there a solution to the system

Ax = b,

x ≥ 0?

The optimization problem above can be reduced to such a feasibility problem, using

duality.

1.1.3 General position, degeneracy, perturbation

Points in Rd are in general position if no k ≤ d + 1 points among them are affinely

dependent. Given a point configuration X0, there are point configurations arbitrarily

close to X0, whose points are in general position. A perturbation argument consists

in showing that, if a statement is valid on configurations arbitrarily close to X0, then

it is valid for X0 as well. For instance, given a set S and a point p, we can perturb the

points in S such that if p is contained in some simplex of the perturbed configuration,

then it is also contained in the corresponding simplex of the original configuration.

Furthermore, such a perturbation can be made in polynomial time, [38].

Consider a linear program of the form (1.1). A basic solution xB is non-degenerate

if supp(xB ) = B . Otherwise, it is degenerate. A linear system
{

Ax = b, x ≥ 0
}
, is non-

degenerate if it admits no degenerate solutions. Otherwise, it is degenerate. In other

words, a linear program of the form (1.1) with A of full rank d is degenerate if the point

b can be written as a linear combination of r < d columns of A. By a slight perturbation

of b, a degenerate linear program can be made non-degenerate. Such a perturbation

can be made in polynomial time, see [39] for more details.
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1.1.4 Polytope, polyhedron, triangulation

A polyhedron P ⊆Rn is an intersection of finitely many closed half-spaces in Rn . Note

that a polyhedron is a convex set. A polytope is a bounded polyhedron. A polytope can

equivalently be defined as the convex hull of finitely many points. The dimension of a

polyhedron is the dimension of its affine hull.

A simplex is the convex hull of affinely independent points. A k-simplex is the convex

hull of k +1 affinely independent points. The dimension of a k-simplex is k.

A face of a polyhedron P is the intersection of P and a hyperplane in Rn such that all

the points of P lie on the same closed half-space defined by this hyperplane. Note that

a face is also a polyhedron. Given a polyhedron P of dimension r , the facets of P are

the faces of dimension r −1, the edges are the faces of dimension 1, and the vertices are

the faces of dimension 0. By convention, the empty face is a face of the polyhedron and

it is of dimension −1. The 1-skeleton of a polyhedron P is the graph whose vertices

and edges are the vertices and edges of P . An elementary result in polyhedral theory

is that the 1-skeleton of a polyhedron is connected, as soon as dimP ≥ 2.

Given a linear program of the form (1.1), the set of solutions P = {
x ∈Rn | Ax = b,x ≥ 0

}
defines a polyhedron. When A ∈ Rd×n is of full rank, the dimension of P = {

x ∈
Rn | Ax = b,x ≥ 0

}
is at most n −d . If the linear program is non-degenerate, the vertices

of P = {
x ∈ Rn | Ax = b,x ≥ 0

}
are identified with the feasible bases. In this case, two

vertices of P are neighbors in the 1-skeleton if the corresponding feasible bases B and

B ′ differ by only one: |B ∩B ′| = d −1.

A polyhedral complex K is a finite collection of polyhedra, called cells, such that

• the empty set is in K,

• if P is in K, then all faces of P are also in K,

• if P ,Q are two polyhedra of K, then P ∩Q is a (possibly empty) face of both P

and Q.

A polyhedral complex whose polyhedra are all polytopes is a polytopal complex. The

dimension of a polyhedral complex K is the largest dimension of a polyhedron in K. A

simplicial complex is a polyhedral complex whose polyhedra are all simplices.

A simplicial complex T is a triangulation of the set
⋃

S∈TS. The vertices of T , denoted

by V (T), are the 0-simplices of the simplicial complex.

24



1.2. The Colorful Carathéodory theorem: various formulations

1.2 The Colorful Carathéodory theorem: various formu-

lations

Given sets S1, . . . ,Sk ⊆Rd , a set T ⊆⋃k
i=1 Si is colorful if |T ∩Si | ≤ 1 for all i ∈ [k]. A col-

orful simplex is the convex hull of a colorful set whose points are affinely independent.

A colorful point configuration is a family of d +1 sets of points S1, . . . ,Sd+1 in Rd . These

sets are referred as colors.

Given a colorful point configuration S1, . . . ,Sd+1 ⊆Rd , a transversal is a set T ⊆⋃d+1
i=1 Si

such that |T ∩Si | ≤ 1 for all i ∈ [d +1] and |T | = d . In other words, T is a colorful set

intersecting all colors but one. An i -transversal T is a transversal such that |T ∩Si | = 0.

The colorful Carathéodory theorem proved by Bárány in 1982 and already given in

Introduction can be rephrased as follows.

Theorem 1.2.1 (Colorful Carathéodory theorem, Bárány [2]). Given d +1 sets of points

S1, . . . ,Sd+1 in Rd , all positively dependent, there exists a positively dependent colorful

set T .

In the same paper, Bárány gave the following conic version of the theorem.

Theorem 1.2.2 (Colorful Carathéodory theorem, conic version). Given d sets S1, . . . ,Sd

in Rd , and a vector p in
⋂d

i=1 pos(Si ), there exists a colorful set T such that p ∈ pos(T ).

We give proofs of Theorem 1.2.1 and Theorem 1.2.2 in the next section. Theorem 1.2.2

is slightly more general than Theorem 1.2.1. We prove this statement at the end of the

section.

Finally, there is a “linear programming formulation” of Theorem 1.2.2. This version is

actually strictly equivalent to Theorem 1.2.2 and we mention it mostly to familiarize

the reader with the notations of this formulation. Consider the system

Ax = b, (1.2)

x ≥ 0,

with A being a matrix in Rd×n and b being a vector in Rd .

Theorem 1.2.3 (Colorful Carathéodory theorem, linear programming version). If (1.2)

admits d pairwise disjoint feasible bases B1, . . . ,Bd ⊆ [n], then there is a feasible basis

B ⊆ [n] such that |B ∩Bi | ≤ 1 for all i ∈ [d ].
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Similarly, we could give a linear programming formulation of Theorem 1.2.1, by simply

adding a row of ones to A and b.

Bárány proved that Theorem 1.2.1 is actually a corollary of Theorem 1.2.2. We explain

this proof now. Consider a colorful configuration of points S1, . . . ,Sd . By a standard

perturbation argument, see Section 1.1.3, we can assume that 0 ∈ intconv(Si ) for all

i ∈ [d ]. Consider a point p ∈Rd . Choosing ε≥ 0 small enough, we have εp ∈ conv(Si ) ⊆
pos(Si ) for all i ∈ [d ]. Applying Theorem 1.2.2, we obtain a colorful set T = {t1, . . . ,td } ⊆⋃d

i=1 Si that contains εp in its conic hull. Hence, there exist α1, . . . ,αd ≥ 0 such that

εp =
d∑

i=1
αi ti .

Dividing by ε+∑d
i=1αi , we obtain that 0 lies in the convex hull of {t1, . . . ,td ,−p}. Re-

placing −p by any point in Sd+1 proves Theorem 1.2.1.

Moreover, it proves that any v ∈⋃d+1
i=1 Si is part of some positively dependent colorful

set. We have therefore the following stronger statement.

Theorem 1.2.4 (Strong colorful Carathéodory theorem). Given d positively dependent

sets of points S1, . . . ,Sd in Rd , and a point v0 ∈Rd , there exists a colorful set T such that

T ∪ {v0} is positively dependent.

Other generalizations of the colorful Carathéodory theorem have been formulated. For

instance, the condition 0 ∈ conv(Si ) for all i ∈ [d+1] can be replaced by 0 ∈ conv(Si ∪S j )

for all i , j ∈ [d +1], i 6= j , see [1, 24]. More generalizations are given in [41].

1.3 Proofs of the colorful Carathéodory theorem

1.3.1 Original proof by Bárány

We start this section with the original proof given by Bárány [2]. We prove here Theo-

rem 1.2.1, whereas this original proof showed the more general Theorem 1.2.2. The

arguments are roughly the same, and the proof of Theorem 1.2.1 provides an algorithm

computing the positively dependent colorful set.

Consider d +1 sets of points S1, . . . ,Sd+1 in Rd such that 0 ∈⋂d+1
i=1 conv(Si ). Consider

now a colorful set T = {t1, . . . ,td+1} that is closest to 0. By closest, we mean a colorful

set T minimizing dist
(
0,conv(T )

)
. If dist

(
0,conv(T )

)= 0, then 0 ∈ conv(T ), and hence

T satisfies the statement of the theorem. Otherwise, consider a point z0 ∈ conv(T )
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1.3. Proofs of the colorful Carathéodory theorem

minimizing ‖z0‖2. For all z ∈ conv(T ), we have zT
0 z > 0. Besides, z0 can be written as a

positive sum of points in T , namely z0 =∑d+1
i=1 γi ti , with γi ≥ 0 for all i ∈ [d +1] and one

of the γi ’s equal to 0. Indeed, if conv(T ) is a simplex of dimension d , the projection

of 0 lies on a face of the simplex, and if conv(T ) is of smaller dimension, then we can

clearly set one of the γi ’s to zero.

Without loss of generality, we assume that γ1 = 0. Since t1 ∈ conv(T ), we have zT
0 t1 > 0.

Since 0 ∈ conv(S1), there is necessarily a vector t′1 ∈ S1 such that zT
0 t′1 < 0. Replacing t1

by t′1 in T we obtain a colorful set T ′, which is strictly closer to 0 than T. Indeed, for

0 ≤α≤ 1, we have (1−α)z0 +αt′1 ∈ conv(T ′), and

dist(0,T ′)2 ≤ ‖(1−α)z0 +αt′1‖2

= (1−α)2‖z0‖2 +2α(1−α)zT
0 t′1 +α2‖t ′1‖2.

Choosing α > 0 small enough, we obtain dist(0,T ′) < dist(0,T ). This contradiction

shows that T must contain 0 in its convex hull.

b
0

z0

b

b

b

b

b

t1

t′1

Figure 1.1: Bárány’s proof of the colorful Carathéodory theorem

This proof provides an algorithm for finding a colorful set containing 0 in its convex

hull. The algorithm goes roughly as follows. Choose a colorful set T . As long as T

does not contain 0 in its convex hull, we can replace one point of T as in the previous

proof and obtain a colorful set strictly closer to 0. Since there is a finite number of

colorful sets, this algorithm ends and returns a positively dependent colorful set. This

algorithm is not known to be polynomial and has been studied in [5] and later in [18].

We discuss it more thoroughly in Section 2.1.2.
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1.3.2 Sperner’s lemma proves the colorful Carathéodory theorem

We sketch here a new proof of Theorem 1.2.3, and hence of the strong version of the

colorful Carathéodory theorem, namely Theorem 1.2.4. The proof uses the well-known

Sperner’s lemma, originally introduced to give a constructive proof of the Brouwer fixed

point theorem [49]. The motivation for this proof is to make a connection between two

colorful results.

Consider a d-simplex ∆d = conv{v1, . . . ,vd+1}, and a triangulation T of this simplex. A

Sperner labeling is a mapλ : V (T) → [d+1] such that for v ∈V (T), if F = conv(vi1 , . . . ,vik )

is the smallest face of ∆d containing v, then λ(v) ∈ {i1, . . . , ik }. In particular, we have

λ(vi ) = i for all i ∈ [d +1].

A simplex in the triangulation is fully-labeled if it is of dimension d and its vertices

have pairwise distinct labels.

1

2 3

3

3

1

3

1

1

2

2

Figure 1.2: A Sperner labeling in dimension 2

Theorem 1.3.1 (Sperner’s Lemma, Sperner [49]). Given a triangulated simplex and

a Sperner labeling of its triangulation, there exists an odd number of fully-labeled

simplices.

The proof of this theorem is standard and may be found in [13, 48].

Given a polyhedron P = {
x ∈Rn | Ax = b,x ≥ 0

}
and a set I ⊆ [n], we define a polyhe-

dron P I := {
x ∈ P | xi = 0 for all i ∉ I

}
. If A is of full rank, the dimension of P I is at

most |I |−d , for |I | ≥ d . The faces of P are exactly the P I ’s, with I ⊆ [n] (the empty

face being considered as one of the faces).

Consider now A, b, and disjoint feasible bases B1, . . . ,Bd as in the statement of The-

orem 1.2.3. By a standard perturbation argument, we assume that the system
{

Ax =
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1.3. Proofs of the colorful Carathéodory theorem

b | x ≥ 0
}

is non-degenerate. We define P to be the polyhedron P := {
x ∈ Rn |Ax =

b,x ≥ 0
}
. The vertices of P are identified with the feasible bases B ⊆ [n]. Define a

labeling λ of the vertices of the polyhedron by

λ(B) := min argmaxi∈[d ]

(|B ∩Bi |
)
.

Less formally, the label of a vertex identified with B is the index i maximizing |B ∩Bi |.
If there is more than one such i , then λ(B) is chosen as the smallest among them. In

particular, we have λ(Bi ) = i .

Consider now B1 and B2. Because of the connectedness of the 1-skeleton of the face

PB1∪B2 , there is a path between the two vertices B1 and B2 in this graph. The vertices

on this path correspond to bases B ⊆ B1 ∪B2, and hence having their labels equal

to 1 or 2. Similarly, we define a path between B1 and B3 and a path between B2 and

B3. Again, by a connectedness argument, these three paths form the boundary of a

polyhedral complex on the boundary of the face PB1∪B2∪B3 of dimension 2. All the

vertices of this complex clearly have their labels equal to 1, 2, or 3.

In general, given a set X ∈ [d ], we define RX to be a polytopal complex of dimension

|X | −1 whose boundary is ∂RX = ⋃
i∈X RX \{i }. Such a complex exists, since the face

P⋃
i∈X Bi is connected. In the end, we have a polyhedral complex K = R[d ] on the

boundary of P , whose polyhedra are of dimension at most d −1. Furthermore, this

polyhedral complex resembles the faces of ∆d with the identfication “RX
∼= face of

∆d ”. The labeling of this complex is a proper labeling for Sperner’s lemma. Up to

triangulating the polyhedra in K, we have thus at least one fully-labeled (d−1)-simplex,

and hence at least one fully-labeled face F of P of dimension d −1, i.e. a face such

that λ(V (F )) = [d ].

Recall that a face of P is a polyhedron P I for some I ⊆ [n]. Considering I minimal

such that the face is equal to P I , the dimension of the face is at least |I |−d . Hence, we

have found a set I ⊆ [n] such that |I | ≤ 2d −1 and such that all possible labels are used

on the vertices of F . Thus, we have Bi ∩ I 6= ; for all i ∈ [d ] and hence |Bi ∩ I | = 1 for

some i ∈ [d ]. Consider such a i , and call it i0. Let B be a feasible basis associated with

a vertex of F whose label is i0. We have |B ∩Bi | ≤ |B ∩Bi0 | = 1 for all i ∈ [d ]. Therefore,

B is a colorful feasible basis, which proves the theorem.

There is an algorithmic proof of Sperner’s lemma. Therefore, this new proof gives, in

some sense, another algorithm for the colorful Carathéodory theorem. Here again we

do not know the exact complexity but it might be exponential.
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1.4 Applications in geometry

This section gathers applications of the colorful Carathéodory theorem in discrete

geometry.

1.4.1 Tverberg’s theorem

Given a set S of n points in Rd , a Tverberg k-coloring of S is a partition of the points in S
into k sets S1, . . . ,Sk such that

⋂k
i=1 conv(Si ) is nonempty. Tverberg’s theorem, proved

in 1966 [52], states the following.

Theorem 1.4.1 (Tverberg’s theorem). Any set of n points in Rd with n ≥ (k−1)(d+1)+1

admits a Tverberg k-coloring.

Sarkaria proposed a proof of this theorem using the colorful Carathéodory theorem [46].

We present here a simplified version of this proof by Bárány and Onn [5].

Proof. Consider a finite set S = {v1, . . . ,vn} ⊆ Rd and an integer k such that n ≥ (k −
1)(d +1)+1. Let N = (k −1)(d +1). A Tverberg k-coloring of the points in {v1, . . . ,vN+1}

induces a Tverberg k-coloring of S, by assigning the remaining points in S to any set

of the partition. We can thus assume that n = N +1. The idea of the proof is to define

k copies of each point in S, numbered from 1 to k, in a space of higher dimension. A

colorful set in this higher dimensional space will associate each point of S to one of its

k copies, and hence will give a partition of S.

Choose arbitrarily a family f1, . . . , fk ∈Rk−1 such that f1 +·· ·+ fk = 0, and such that any

subfamily is linearly independent. For i ∈ [n], define the set of k copies of vi by

Ti =
{

f j ⊗
(

vi

1

)
| j ∈ [k]

}
⊆Rk−1 ⊗Rd+1.

We clearly have 0 ∈ conv(Ti ) for all i ∈ [n]. Applying the colorful Carathéodory theorem,

in dimension N , to the colors T1, . . . ,TN+1, we obtain a colorful set T =
{

fπ(i )⊗
(

vi

1

)
| i ∈

[N +1]
}

containing 0 in its convex hull, where π(i ) ∈ [k] is the index j of the point of Ti

chosen in T . We have 0 =∑n
i=1αi fπ(i ) ⊗

(
vi

1

)
, with α≥ 0, which can be rewritten

0 =
k∑

j=1

∑
i∈π−1( j )

αi f j ⊗
(

vi

1

)
=

k∑
j=1

f j ⊗
( ∑

i∈π−1( j )

αi

(
vi

1

))
.
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Thus, by the assumption made on the fi ’s, we have

∑
i∈π−1(1)

αi

(
vi

1

)
= ·· · = ∑

i∈π−1(k)

αi

(
vi

1

)
.

Let M = ∑
i∈π−1(1)αi = ·· · = ∑

i∈π−1(k)αi and define S j := {
vi ∈ S | i ∈ π−1( j )

}
for all

j ∈ [k]. We have

z = 1

M

∑
i∈π−1(1)

αi vi ∈ conv(S j ), for all j ∈ [k].

We conclude that the partition S1, . . . ,Sk defines a Tverberg k-coloring of S.

1.4.2 First selection lemma

Given n points in the plane in general position, a result by Boros and Füredi [8] states

that there is a point, not necessarily one of these n points, in at least 2
9

(n
3

)
triangles

spanned by these points, and that this is the best possible bound. A similar statement

holds in arbitrary dimension, answering a question of Boros and Füredi. It was first

proved by Bárány as an application of the colorful Carathéodory theorem.

Theorem 1.4.2 (First selection lemma). Given a set S of n points in Rd in general

position, there exists a point p ∈Rd contained in at least cd
( n

d+1

)
simplices of dimension

d formed by points of S, where cd is a constant depending only on the dimension d.

The proof by Bárány provides a constant cd equal to (d +1)−(d+1). A better bound was

obtained by Gromov [23, 28] via a topological approach providing a constant cd equal

to 1
(d+1)! .

Proof of Theorem 1.4.2. The proof starts by using Tverberg’s theorem to partition the

points in S. Define k := ⌊n−1
d+1

⌋+1 such that |S| ≥ (k −1)(d +1)+1. We assume that n is

sufficiently large, so that k > d . According to Tverberg’s theorem, we have a partition

of S into k sets, or colors, S1, . . . ,Sk such that
⋂k

i=1 conv(Si ) is nonempty.

Up to translating the configuration, we can assume that 0 ∈⋂k
i=1 conv(Si ). Apply the

colorful Carathéodory theorem for every choice of d +1 sets Si1 , . . . ,Sid+1 among the k

colors. It gives a positively dependent colorful set. Besides, each choice of Si1 , . . . ,Sid+1

provides a different colorful set. Therefore 0 is in at least
( k

d+1

)= 1
(d+1)d+1

( n
d+1

)+O(nd )

simplices.
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Chapter 1. The colorful Carathéodory theorem and its relatives

1.4.3 Weak ε-nets

Given a set X ⊆Rd in general position with |X| = n, and ε> 0, the set S ⊆Rd is a weak

ε-net if it satisfies S∩conv(Y) 6= ; for all Y ⊆ X of size |Y| ≥ εn. The problem here is to

find a weak ε-net as small as possible. Applying the first selection lemma, we can show

the following theorem, better bounds have been obtained by Chazelle et al. [10].

Theorem 1.4.3. Given a set of points X ⊆Rd in general position with |X| = n, there exists

a weak ε-net of size at most O
( 1

cdε
d+1

)
.

Proof of Theorem 1.4.3. Start with S = ; and H = ( X
d+1

)
. At each step, ask whether

there is a subset Y ⊆ X such that |Y| ≥ εn and S∩conv(Y) =;. If the answer is no, then S
is a weak ε-net and return it. Otherwise, consider such a Y. Applying the first selection

lemma, there is a point z in the convex hull of at least cd
( |Y|

d+1

)
simplices formed by

points of Y. Let S := S∪ {z} and H =H \ {T ∈H | z ∈ conv(T)}.

The initial set H is of size
( n

d+1

)
and at each step, at least cd

( εn
d+1

)
elements of H are

removed from it. Hence, there is at most O
( 1

cdε
d+1

)
steps, and in the end, the set S is a

weak ε-net of size at most O
( 1

cdε
d+1

)
.

1.5 Octahedron lemma: three proofs

The following lemma is ubiquitous in colorful linear programming.

Theorem 1.5.1 (Octahedron lemma). Consider d +1 pairs of points S1, . . . ,Sd+1 in Rd

and a point p ∈Rd , all together in general position. The point p is contained in an even

number of colorful simplices.

In dimension 2, it means that given two blue points, two red points, and two green

points in the plane, in general position, any point in the plane is covered by an even

number of colorful triangles, see Figure 1.3.

This theorem has a similar flavor as the colorful Carathéodory theorem, and leads to

similar algorithmic questions, studied in Chapter 2. It is also a key tool for counting

the number of colorful simplices under the conditions of the colorful Carathéodory

theorem, see Chapter 4 and Chapter 5.

We propose three different proofs of the Octahedron lemma. Although this theorem

was known and used in [4, 18, 19], the proof was not fully written before 2011 [41].
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Figure 1.3: The Octahedron lemma in dimension 2

1.5.1 Topological proof

The first proof is topological and was mentioned by Bárány and Matoušek [4].

Topological proof of Theorem 1.5.1. Consider the crosspolytope 3d+1 in Rd+1, i.e. the

polytope whose vertices are e1,−e1, . . . ,ed+1,−ed+1, with ei the standard i th unit vector.

Define a mapping from 3d+1 to Rd , by mapping ei and −ei to the two points in Si for

all i ∈ [d +1], and extend it affinely, see Figure 1.4

By a basic topological argument, each point of Rd has an even number of points in its

preimage, except those that are the image of points in the faces of 3d+1 of dimension

d −1. Since the facets of 3d+1 are exactly mapped to the colorful simplices in Rd and

since S1, . . . ,Sd+1 and p are in general position, the point p is in an even number of

colorful simplices.

1.5.2 Parity proof argument

The following proof was proposed by Meunier and Deza [41].

Proof of Theorem 1.5.1 using complementary pivots. Consider d +1 pairs of points S1,

. . . ,Sd+1 in Rd and a point p ∈ Rd in general position. Define a graph G = (V ,E) as

follows. The vertices in V are identified with subsets of
⋃d+1

i=1 Si . We consider three

types of subsets, defining three sets of vertices V1, V2, and V3. The vertices in V1

correspond to the colorful sets containing p in their convex hull. The vertices in V2
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Figure 1.4: Affine mapping of the crosspolytope

correspond to sets T ⊆⋃d+1
i=1 Si such that |T ∩Si | ≤ 1 for all i ∈ [d ], Sd+1 ⊆ T , |T | ≤ d +1,

and p ∈ conv(T ). Note that since the points are in general position, the vertices in V1

and V2 correspond to sets of size d +1. Hence, the vertices in V2 correspond to sets

missing exactly one color. Finally, the vertices of V3 correspond to sets T such that

|T ∩Si | ≤ 1 for all i ∈ [d ], Sd+1 ⊆ T , |T | = d +2, and p ∈ conv(T ).

Two vertices are neighbors in G if one of them is in V1 ∪V2 and the other is in V3, and if

the corresponding sets have d +1 points in common. We show that the vertices in V1

are of degree 1, and that the vertices in V2 and V3 are of degree 2. The graph G being a

collection of cycles and paths with endpoints in V1, we conclude that |V1| is even.

Consider a vertex v ∈V3 and the corresponding set T . The neighbors of v correspond

to sets T ′ ⊆ T such that |T ′| = d +1 and p ∈ conv(T ′). By a usual argument in linear

programming, there are exactly two of them. Consider a vertex v ∈V1 and the corre-

sponding set T . It is clear that v has exactly one neighbor, which is the vertex of V3

corresponding to T ∪Sd+1. Finally, consider v ∈ V2 and the corresponding set T . It

misses one color S j = {s1
j ,s2

j }, and hence v has exactly two neighbors being the vertices

in V3 corresponding to the sets T ∪ {s1
j } and T ∪ {s2

j }.
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1.5. Octahedron lemma: three proofs

1.5.3 Geometric proof

The following proof was inspired by discussions with Raman Sanyal on the combinato-

rial proof of the colorful simplicial depth conjecture, see Chapter 4.

Geometric proof of Theorem 1.5.1. Consider d +1 pairs of points S1, . . . ,Sd+1 in Rd and

a point p ∈ Rd in general position. For each transversal T ⊆ ⋃d+1
i=1 Si , consider the

(d −1)-simplex defined by conv(T ). Denote by K the sets of all these simplices. Pick a

point p0 ∈Rd not in conv(
⋃d+1

i=1 Si ). The point p0 is in no colorful simplices. Consider

the line L joining p0 and p. Up to slightly moving the point p0, we can assume that this

line crosses the simplices in K in their interior and on distinct points. We denote by

T1, . . . ,Tr the transversals corresponding to the simplices of K intersected by L in this

order when going from p0 to p, and by q1, . . . ,qr the intersection points.

Clearly no colorful simplices contain a point in [p0,q1[. All points in ]qi ,qi+1[ are

contained in exactly the same colorful simplices, for i ∈ [r −1], and all the points in

]qr ,p] are contained in exactly the same colorful simplices.

We denote by Ω0 the empty-set, by Ωi the set of colorful simplices containing the

points in ]qi ,qi+1[ for i ∈ [r −1], and by Ωr the set of colorful simplices containing

the points in ]qr ,p]. Note that Ωr is exactly the set of colorful simplices containing

p. Finally, for a transversal T , we note U (T ) the set of all colorful simplices having

conv(T ) as a facet. We have |U (T )| = 2, since the Si ’s are all of size 2.

Note thatΩi+1 =Ωi4U (Ti ), where 4 denotes the symmetric difference (defined for

two sets A and B by A4B = (A ∪B) \ (A ∩B)). Since |Ω0| = 0 and |U (Ti )| = 2 for all

i ∈ [r ], we have that |Ωi | is even for all i ∈ [r ]. In particular, |Ωr | is even.

Considering more generally the Si ’s being of even size, instead of being simply pairs,

we get the following theorem with an almost identical proof. This theorem was given

in [20].

Theorem 1.5.2 (Extension of the Octahedron lemma). Consider d +1 sets of points

S1, . . . ,Sd+1 in Rd and a point p ∈Rd , all together in general position. If |Si | is even for

all i ∈ [d +1], then the point p is covered by an even number of colorful simplices.

We now show that Theorems 1.5.1 and 1.5.2 are equivalent. It is clear that Theorem 1.5.2

implies the Octahedron lemma. The converse is also true: we can prove Theorem 1.5.2

from the Octahedron lemma.
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Proof. Consider d + 1 sets S1, . . . ,Sd+1, with |Si | even for all i ∈ [d + 1] and a point

p ∈ Rd in general position. For any X = X1 ∪ ·· · ∪Xd+1 with Xi ⊆ Si and |Xi | = 2 for

all i , define N (X) to be the number of colorful simplices, formed with points in X,

containing p. Let N be the total number of colorful simplices containing p. We

have
∑

X N (X) = N
∏d+1

i=1 (|Si |−1), since every colorful simplex containing p is counted∏d+1
i=1 (|Si |−1) times in this sum. The Octahedron lemma ensures that N (X) is even for

all X. Since
∏d+1

i=1 (|Si |−1) is odd, N is also even.

1.6 Other colorful results in geometry

We end this chapter with two colorful results in geometry, more or less related to the

colorful Carathéodory theorem.

1.6.1 Colored Tverberg’s theorem

Given d +1 sets of points S1, . . . ,Sd+1 in Rd , the problem, known as colored Tverberg,

aims at finding a point in the convex hulls of many disjoint colorful sets. For d ,r ∈Z+
we define t(d ,r ) to be the minimal integer, independent from the Si ’s, such that if

|Si | ≥ t (d ,r ) for all i , then there are r disjoint colorful sets whose convex hulls intersect.

The following colored Tverberg theorem was conjectured by Bárány, Füredi, and Lovász

in 1990 [6].

Theorem 1.6.1. t (d ,r ) is finite for all d ,r ∈Z+.

A proof of t(d ,2) = 2 was first given by Lovász. His proof can be found in a paper

by Bárány and Larman [3], in which they also proved that t(1,r ) = t(2,r ) = r , and

conjectured that t (d ,r ) = r for all d ,r ∈Z+.

The general case was first proved by Živaljević and Vrećica [54], who also showed that

for r prime, we have t(d ,r ) ≤ 2r −1. Later Blagojević, Matschke, and Ziegler proved

that for r +1 prime, we have t (d ,r ) = r , via a topological proof [7]. The conjecture of

Bárány and Larman remains open.

1.6.2 Colorful Helly’s theorem

The second result we present here, known as colorful Helly theorem, was introduced

by Lovász and presented by Bárány in 1982, in his paper on the colorful Carathéodory

theorem [2].
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Theorem 1.6.2 (Colorful Helly’s theorem, Lovász [2]). Let F1, . . . ,Fd+1 be d +1 finite

families of convex sets in Rd . If for all choices of d +1 sets F1 ∈F1, . . . ,Fd+1 ∈Fd+1, we

have
⋂d+1

i=1 Fi 6= ;, then
⋂

F∈Fi F 6= ; for some i ∈ [d +1].

The usual Helly theorem, states that, given a family of n convex sets, if every d +1 of

them intersect, then they all intersect. This result is a corollary of Theorem 1.6.2, by

taking F1 = ·· · =Fd+1.

The key tools used by Bárány for proving Theorem 1.6.2 are the classical Helly theorem

and the colorful Carathéodory theorem.
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2 Computational problems

In 1997, Bárány and Onn defined algorithmic and complexity problems related to the

colorful Carathéodory theorem [5], giving birth to colorful linear programming. In their

paper, the complexity question raised by the colorful Carathéodory theorem is referred

as an “outstanding problem on the borderline of tractable and intractable problems”.

In addition to provide a theoretical challenge, we have seen in Chapter 1 that the

colorful Carathéodory theorem has several applications in discrete geometry (e.g.

Tverberg partition, First selection lemma, see [38]). Any efficient algorithm computing

such a colorful set T would benefit these applications. In this chapter, we formally

define three problems related to the colorful Carathéodory theorem. Section 2.1

focuses on the algorithmic question raised by the colorful Carathéodory theorem,

Section 2.2 deals with the more general decision problem, usually known as colorful

linear programming, and Section 2.3 tackles the algorithmic question raised by the

Octahedron lemma. The last section focuses on combinatorial cases of these three

problems. To ease the discussion on the complexity, the inputs of all the problems

considered in this chapter are rational numbers.

2.1 Colorful linear programming, TFNP version

2.1.1 Definition

Given a colorful point configuration S1, . . . ,Sd+1 with the Si ’s being positively depen-

dent colorful sets, the colorful Carathéodory theorem ensures the existence of a posi-

tively dependent colorful set. We formally define the problem of finding such a colorful

set T .
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COLORFUL LINEAR PROGRAMMING (TFNP version)

Input. A configuration of d +1 positively dependent sets of points S1, . . . ,Sd+1 inQd .

Task. Find a positively dependent colorful set.

It is a search problem, which more specifically belongs to the TFNP class. A search

problem is like a decision problem but a certificate is sought in addition to the ‘yes’

or ‘no’ answer. The class of search problems whose decision counterpart has always a

‘yes’ answer is called TFNP, where TFNP stands for “Total Function Non-deterministic

Polynomial”. As we have already mentioned, the complexity status is still open.

A more general problem, still in TFNP, has been recently proved to be PLS-complete by

Mülzer and Stein [42]. The PLS class, where PLS stands for “Polynomial Local Search”, is

a subclass of the TFNP class and contains the problems for which local optimality can

be verified in polynomial time [27]. Besides, the new proof of the colorful Carathéodory

theorem, given in Section 1.3.2 and using Sperner’s lemma, gives the intuition that

the problem should belong to the class PPAD. The PPAD class, where PPAD stands for

“Polynomial Parity Argument on Directed Graphs”, is also a subclass of the TFNP class,

see Section 2.3 for more details on this complexity class.

As for the colorful Carathéodory theorem, we have a linear programming formulation

of this problem. Following is the TFNP problem corresponding to Theorem 1.2.3.

COLORFUL LINEAR PROGRAMMING (linear programming TFNP version)

Input. A linear program Ax = b, x ≥ 0 and d disjoint feasible bases B1, . . . ,Bd .

Task. Find a feasible basis B such that |B ∩Bi | ≤ 1 for all i ∈ [d ].

2.1.2 Simplexification of Bárány-Onn algorithm

The original proof of the colorful Carathéodory theorem by Bárány naturally provides

an algorithm computing a solution to this problem. This algorithm, known as the

Bárány-Onn algorithm, was analyzed in [5]. It is a pivot algorithm roughly relying on

computing the closest to 0 facet of a simplex. Although not polynomial, this algorithm

is quite efficient, as stated by Deza et al. through an extensive computational study [18].

Algorithm

The pivoting algorithm proposed by Bárány and Onn for finding a positively dependent

colorful set goes roughly as follows. The input is the sets S1, . . . ,Sd+1 of points in Qd ,

each of cardinality d +1 and positively dependent. All points are moreover assumed to

be in general position.
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Bárány-Onn algorithm

• Choose a first colorful set T1 of size d +1 and let i := 0.

• Repeat:

– Let i := i +1.

– If 0 ∈ conv(Ti ), stop and output Ti .

– Otherwise, find Fi ⊆ Ti of cardinality d such that aff(Fi ) separates Ti \ Fi

from 0; choose in the half-space containing 0 a point t of the same color as

the singleton Ti \ Fi ; define Ti+1 := Fi ∪ {t }.

Since each conv(Si ) contains 0, there is always a point of each color in the half-space

delimited by aff(Fi ) and containing 0. It explains why a point t as in the algorithm can

always be found as long as the algorithm has not terminated.

The technical step is the way of finding the subset Fi and requires a distance compu-

tation or a projection [5], or the computation of the intersection of a fixed ray and

conv(Ti ) [41]. Deza et al. [18] proceed to an extensive computational study of algo-

rithms solving this problem, with many computational experiments. In addition to

some heuristics, “multi-update” versions are also proposed, but they do not avoid this

kind of operations.

We propose a modified approach that avoids this kind of computation. We add a

dummy point v and define the following optimization problem.

min z

s.t. Aλ+ z v̄ =


0
...

0

1


λ≥ 0, z ≥ 0,

where v̄ = (v ,1) and where A is the (d+1)×(d+1)2 matrix whose columns are the points

of
⋃d+1

i=1 Si with an additional 1 on the (d +1)th row. This optimization problem simply

looks for an expression of 0 as a convex combination of the points in {v }∪⋃d+1
i=1 Si

with a minimal weight on v . Especially, if 0 ∈ conv(
⋃

i Si ), the optimal value is 0. The
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idea consists in seeking an optimal basis, with the terminology of linear programming,

which in addition is required to be colorful. The colorful Carathéodory theorem

ensures that such a basis exists.

Now, choose a first transversal F1, which is a colorful set of cardinality d . Choose the

dummy point v so that F1 ∪ {v } contains 0 in the interior of its convex hull. Note that

F1 ∪ {v } is a feasible basis. The algorithm proceeds with simplex pivots, going from

feasible colorful basis to feasible colorful basis, until an optimal colorful basis is found.

We start with i := 0. We repeat then

– Let i := i +1.

– Choose a point t of the missing color in Fi with negative reduced cost. The

reduced costs are computed according to the current basis Fi ∪ {v }.

– Proceed to a simplex pivot operation with t entering the current basis.

– If v leaves the basis, stop and output Fi ∪ {t } (it is an optimal colorful basis).

– Otherwise, define Fi+1 to be the new basis minus v .

This algorithm eventually finds a positively dependent colorful set because of the

following lemma. The remaining arguments are exactly the same as above: as long as a

positively dependent colorful set has not been found, there is a point of the missing

color in the half-space delimited by aff(Fi ) and containing 0.

Lemma 2.1.1. The points in the half-space delimited by aff(Fi ) and containing 0 are

precisely the points with a negative reduced cost.

Proof. Let Fi = {u1, . . . ,ud } and let t be any other point in
(⋃d+1

j=1 S j

)
\ Fi . Consider

x1, . . . , xd ,r, s ∈R such that

r t + sv +
d∑

i=1
xi ui = 0, (2.1)

with r > 0 and r + s+∑d
i=1 xi = 0. We have s 6= 0 by genericity assumption. The reduced

cost of t is exactly s/r . Therefore, proving the lemma amounts to prove that s is

negative exactly when t is in the half-space delimited by aff(Fi ) and containing 0.

To see this, note that Equation (2.1) can be rewritten

r (t −u1)+ s(v −u1)+
d∑

i=2
xi (ui −u1) = 0. (2.2)
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Now, take the unit vector n orthogonal to aff(Fi ) and take the scalar product of Equa-

tion (2.2) and n. It gives

r n · (t −u1)+ sn · (v −u1) = 0

and the conclusion follows since v and 0 are in the same half-space delimited by

aff(Fi ).

This approach is reminiscent of the “Phase I” simplex method, which is searching for a

first feasible basis by solving an auxiliary linear program whose optimal value is 0 on

such a basis.

Numerical results

We implemented our algorithm in C++. The tests are performed on a PC Intel® Core™

i3-2310M, with two 64-bit CPUs, clocked at 2.1 GHz, with 4 GB RAM. The instances

are provided by five random generators, implemented by Huang in MATLAB. All the

generators provide instances of (d +1)2 points in general position on the unit sphere,

partitioned into d +1 colors and such that the origin 0 is in the convex hull of each

color. Descriptions of the generators can be found in [26]. At each iteration, we choose

the entering point t that has the most negative reduced cost.

Table 2.1 presents the computational results on 50 instances by dimension and by

generators. The columns “time” give the average execution time of the algorithm

in milliseconds. The columns “# pivots” give the average number of pivots. The

entry corresponding to the “tube” case in dimension 384 is empty, since we faced

cycling behavior for some instances (we felt that adding anti-cycling pivot rules was

not imperative for our experiments).

Random Tube Highdensity Lowdensity Middensity
d time # pivots time # pivots time # pivots time # pivots time # pivots
3 0.0135 1.94 0.0123 2.02 0.0342 1.62 0.0138 2.32 0.0170 1.70
6 0.0180 3.38 0.0195 3.42 0.0474 1.98 0.0213 6.50 0.0164 2.88

12 0.0406 6.56 0.0396 7.68 0.0609 1.84 0.0591 19.00 0.0371 4.88
24 0.1433 13.76 0.1574 19.66 0.0871 1.94 0.2958 51.06 0.1123 9.62
48 0.9612 31.86 1.1684 43.88 1.1006 1.94 2.7946 133.70 0.7725 19.44
96 8.5069 76.42 11.2441 108.10 3.1116 1.92 28.5813 349.44 6.1306 39.46

192 8.1017 186.62 250.1050 284.96 21.6753 1.86 263.1400 831.26 50.2998 93.88
384 1111.5020 476.50 441.1310 2.00 5987.8880 2032.6 846.9148 279.12

Table 2.1: Average solution time and number of pivots for the simplex-like algorithm

We compared these results with those of the Bárány-Onn algorithm presented in the

paper by Deza et al. [18] using the same generators. In general, our number of pivots is
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slightly larger than what they get. Regarding the time per iteration, it is hard to draw

a conclusion since their implementation was done in MATLAB and since they used

a different machine (a server with eight 64-bit CPUs, clocked at 2.6 GHz, with 64 GB

RAM). However, the time per iteration of our algorithm is of the order of a thousand

times smaller.

2.2 Colorful linear programming, decision version

In addition to the TFNP version of COLORFUL LINEAR PROGRAMMING, Bárány and Onn

formulated the following problem, which is in a sense more general.

COLORFUL LINEAR PROGRAMMING

Input. A configuration of k sets of points S1, . . . ,Sk inQd .

Task. Decide whether there exists a positively dependent colorful set for this configu-

ration of points. If there is one, find it.

The problem of computing the colorful set T of the colorful Carathéodory theorem

corresponds to the special case of COLORFUL LINEAR PROGRAMMING with k = d +1

and 0 ∈ ⋂d+1
i=1 conv(Si ). Bárány and Onn showed that the case of COLORFUL LINEAR

PROGRAMMING with k = d is NP-complete even if each Si is of size 2, proving that the

general case is NP-complete as well. It contrasts with the TFNP version of COLORFUL

LINEAR PROGRAMMING. In this version, when each Si is of size 2, we clearly have a

polynomial special case: select one point in each Si , find the linear dependency, and

change for the other point in Si for those having a negative coefficient.

For a fixed q ∈Z, we define CLP(q) to be the COLORFUL LINEAR PROGRAMMING prob-

lem with the additional constraint that k −d = q . We have the two following lemmas.

Lemma 2.2.1. If CLP(q) is NP-complete, then CLP(q −1) is also NP-complete.

Proof. Define d ′ = d +1. Let S1, . . . ,Sk in Rd be an instance with k = d +q . Embedding

this instance in Rd ′
by adding a d ′th component equal to 0, we get an instance with

k = d ′+q −1, every solution of which provides a solution for the case k = d +q , and

conversely. This latter case being NP-complete, we get the conclusion.

Lemma 2.2.2. If CLP(q) is NP-complete, then CLP(q +1) is also NP-complete.

Proof. Define d ′ = d+1 and k ′ = k+2. Let S1, . . . ,Sk in Rd be an instance with k = d+q .

Embed this instance in Rd ′
by adding a d ′th component equal to 0. Add two sets Sk+1
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and Sk+2 entirely located at coordinate (0, . . . ,0,1). We have thus an instance with

k ′ = d ′+q +1, every solution of which provides a solution for the case k = d +q , and

conversely. This latter case being NP-complete, we get the conclusion.

Combining the previous two lemmas, we obtain the following theorem.

Theorem 2.2.3. CLP(q) is NP-complete for any fixed q ∈Z.

Proof of Theorem 2.2.3. CLP(0) is NP-complete according to Theorem 6.1 in [5]. Lem-

mas 2.2.1 and 2.2.2 allow to conclude.

Polynomially checkable sufficient conditions ensuring the existence of a positively

dependent colorful set exist: the condition of the colorful Carathéodory theorem is one

of them. More general polynomially checkable sufficient conditions when k = d +1 are

given in [1, 24, 41]. However, the fact that CLP(1) is NP-complete implies that there are

no polynomially checkable conditions that are simultaneously sufficient and necessary

for a positively dependent colorful set to exist when k = d +1, unless P=NP.

Remark 2.2.4. The instances built in the proof of Lemma 2.2.2 are not in general

position, since 0 and the Si ’s with i ≤ k are all in the same hyperplane. We could

wonder whether the case k = d + 1 remains NP-complete when the points are in

general position. The answer is yes, and we explain how to reduce the instance built in

the proof of Lemma 2.2.2 to an instance in general position.

First, the sets Sk+1 and Sk+2 can be slightly perturbed without changing the conclusion.

Second, we slightly move 0 into one of the half-spaces delimited by the hyperplane

containing the Si ’s for i ≤ k. We choose the half-space containing Sk+1 and Sk+2.

This move must be sufficiently small so that 0 does not traverse another hyperplane

generated by d ′ points in
⋃k+2

i=1 Si . All coordinates being rational, Cramer’s formula

allows to compute a length of the displacement that ensures this condition. Third, we

move each point of the
⋃k

i=1 Si independently along a line originating from 0.

The following problem gives a linear programming formulation of COLORFUL LINEAR

PROGRAMMING.

COLORFUL LINEAR PROGRAMMING (linear programming decision version)

Input. A linear program Ax = b, x ≥ 0 and a partition of [n] into k subsets I1, . . . , Ik .

Task. Decide whether there is a feasible basis B such that |B ∩ Ii | ≤ 1 for all i ∈ [k].

Note that this formulation gives a conic version of the problem more general than

COLORFUL LINEAR PROGRAMMING, which corresponds to the specific case with A =
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(
A′

1. . .1

)
and b =

(
0
1

)
.

As noted before, by a basic geometric argument, when there are no solutions to the

system
{

Ax = 0, x ≥ 0
}
, deciding whether b is a positive combination of the columns

of A is equivalent to deciding if some point b̃ is in the convex hull of the columns

of Ã, with b̃ ∈ Rd−1 and Ã ∈ R(d−1)×n . Hence, adding the condition that there are no

solutions to the system
{

Ax = 0, x ≥ 0
}
, the two formulations of COLORFUL LINEAR

PROGRAMMING are reducible one to the other.

2.3 Find another colorful simplex

2.3.1 Main result

Another problem related to COLORFUL LINEAR PROGRAMMING was proposed by Me-

unier and Deza [41] as a byproduct of the Octahedron lemma, see Section 1.5. The

problem we call FIND ANOTHER COLORFUL SIMPLEX is the following.

FIND ANOTHER COLORFUL SIMPLEX

Input. A configuration of d +1 pairs of points S1, . . . ,Sd+1 inQd and a positively depen-

dent colorful set in this configuration.

Task. Find another positively dependent colorful set.

Another positively dependent colorful set exists for sure. Indeed, by a slight pertur-

bation, we can assume that all points are in general position, see Section 1.1.3. If

there were only one positively dependent colorful set, there would also be only one

positively dependent colorful set in the perturbed configuration, which violates the

evenness property stated by the Octahedron lemma. In their paper, Meunier and Deza

question the complexity status of this problem. We solve the question by proving that

it is actually a generalization of the problem of computing a Nash equilibrium in a

bimatrix game.

Proposition 2.3.1. FIND ANOTHER COLORFUL SIMPLEX is PPAD-complete.

In [41], it was noted that FIND ANOTHER COLORFUL SIMPLEX is in PPA. The class PPA,

also defined by Papadimitriou in 1994 [45], contains the class PPAD. PPA contains the

problems that can be polynomially reduced to the problem of finding another degree 1

vertex in a graph whose vertices all have degree at most 2 and in which a degree 1 vertex

is already given. The graph is supposed to be implicitly described by the neighborhood

function, which, given a vertex, returns its neighbors in polynomial time. The PPAD
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class is the subclass of PPA for which the implicit graph is oriented and such that each

vertex has an outdegree at most 1 and an indegree at most 1. The problem becomes

then: given an unbalanced vertex, that is a vertex v such that deg+(v)+deg−(v) = 1,

find another unbalanced vertex. See [45] for further precisions.

We prove Proposition 2.3.1 in the next section, by first showing that FIND ANOTHER

COLORFUL SIMPLEX is in PPAD. We proceed by showing that the existence of the

other positively dependent colorful set is a consequence of Sperner’s lemma [49].

Our method for proving that FIND ANOTHER COLORFUL SIMPLEX belongs to PPAD is

adaptable for other complementarity problems, among them BIMATRIX, see below the

definition of this problem. We believe that our method is new. It avoids the use, as

in [12, 30, 45, 53], of oriented primoids or oriented duoids defined by Todd [51].

2.3.2 FIND ANOTHER is PPAD-complete

One of the multiple versions of Sperner’s lemma is the following theorem, proposed by

Scarf [48], which involves a triangulation of a sphere, whose vertices are labeled, see

Section 1.3.2 for another version of this theorem.

Theorem 2.3.2 (Sperner’s lemma). Let T be a triangulation of an n-dimensional sphere

S n and let V (T) be its vertex set. Assume that the elements of V (T) are labeled according

to a map λ : V → E, where E is some finite set. If E is of cardinality n+1, then there is an

even number of fully-labeled n-simplices.

We first have the following proposition.

Proposition 2.3.3. FIND ANOTHER COLORFUL SIMPLEX is in PPAD.

Proof. By a perturbation argument, we can assume the points to be in general position,

see Section 1.1.3 and the references therein for a description of such a polynomial-time

computable perturbation. The proof consists then in proving the existence of another

positively dependent colorful set via a polynomial reduction to Sperner’s lemma.

We define a simplicial complex K with vertex set
⋃d+1

i=1 Si :

K= {
σ⊆

d+1⋃
i=1

Si |
d+1⋃
i=1

Si \σ is positively dependent
}
.

Since any superset of a positively dependent set is a positively dependent set, K is

a simplicial complex. The points being in general position, the dimension of K is
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2(d +1)− (d +1)−1 = d . Actually, K is a triangulation of S d . It can be seen using Gale

transform and Corollary 5.6.3 (iii) of [38].

Now, for a vertex v of K, define λ(v) to be its color, i.e. the index i such that v ∈ Si . Any

fully-labeled simplex σ of K is such that
⋃d+1

i=1 Si \σ is a positively dependent colorful

set and conversely. There is thus an explicit one-to-one correspondence between

the fully-labeled simplices of K and the positively dependent colorful sets. Applying

Theorem 2.3.2 (Sperner’s lemma) with T=K, n = d , and E = [d +1] shows that there

is an even number of fully-labeled simplices in K, and hence, an even number of

positively dependent colorful sets. Since there is a proof of Sperner’s lemma using

an oriented path-following argument [48, 40] and since the triangulation here can

easily be encoded by a Turing machine computing the neighbors of any simplex in the

triangulation, i.e. the ones sharing d points with it, in polynomial time, FIND ANOTHER

COLORFUL SIMPLEX is in PPAD.

We now derive the hardness of FIND ANOTHER COLORFUL SIMPLEX from the complexity

of BIMATRIX.

Proposition 2.3.4. FIND ANOTHER COLORFUL SIMPLEX is PPAD-complete.

The prove uses BIMATRIX we describe now.

A bimatrix game involves two m ×n matrices with real coefficients A = (ai j ) and

B = (bi j ). There are two players. The first player chooses a probability distribution on

{1, . . . ,m}, the second a probability distribution on {1, . . . ,n}. Once these probability

distributions have been chosen, a pair (ī , j̄ ) is drawn at random according to these

distributions. The first player gets a payoff equal to a(ī , j̄ ) and the second a payoff equal

to b(ī , j̄ ). A Nash equilibrium is a choice of distributions in such a way that if a player

changes his distribution, he will not get in average a strictly better payoff.

Let ∆k be the set of vectors x ∈Rk+ such that
∑k

i=1 xi = 1. Formally, a Nash equilibrium

is a pair (y∗, z∗) with y∗ ∈∆m and z∗ ∈∆n such that

y ′T Az∗ ≤ y∗T Az∗ for all y ′ ∈∆m and y∗T B z ′ ≤ y∗T B z∗ for all z ′ ∈∆n . (2.3)

It is well-known that if the matrices have rational coefficients, there is a Nash equi-

librium with rational coefficients, which are not too large with respect to the input.

BIMATRIX is the following problem: given A and B with rational coefficients, find a

Nash equilibrium. Papadimitriou showed in 1994 that BIMATRIX is in PPAD [45]. Later,

Chen, Deng, and Teng [12] proved its PPAD-completeness.
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A combinatorial approach to these equilibria consists in studying the complementary

solutions of the two systems

[A, Im]x = (1, . . . ,1)T and x ∈Rn+m
+ (2.4)

and

[In ,B T ]x = (1, . . . ,1)T and x ∈Rn+m
+ . (2.5)

By complementary solutions, we mean a solution xA of (2.4) and a solution xB of (2.5)

such that xA · xB = 0. Indeed, complementary solutions with supp(xA) 6= {n +1, . . . ,n +
m} or supp(xB ) 6= {1, . . . ,n} give a Nash equilibrium. This point of view goes back to

Lemke and Howson [34]. A complete proof within this framework can be found in

Remark 6.1 of [40].

Proof of Proposition 2.3.1. We prove that the following version of FIND ANOTHER COL-

ORFUL SIMPLEX with cones is PPAD-complete. By an usual geometric argument, this

version is equivalent to FIND ANOTHER COLORFUL SIMPLEX.

FIND ANOTHER COLORFUL CONE

Input. A configuration of d +1 pairs of points S1, . . . ,Sd+1 inQd+1, an additional point

p inQd+1 such that conv({p}∪⋃d+1
i=1 Si ) does not contain 0, and a colorful set T such

that p ∈ pos(T ).

Task. Find another colorful set T ′ such that p ∈ pos(T ′).

The proof uses a reduction of BIMATRIX to FIND ANOTHER COLORFUL CONE. Consider

an instance of BIMATRIX. First note that we can assume that all coefficients of A and B

are positive. Indeed, adding the same constant to all entries of both matrices does not

change the game. Build the (m +n)× (2(m +n)) matrix

M =
(

A Im 0 0
0 0 In B T

)
.

We denote by Mi the i th column of M . Note that the vector u = (1, . . . ,1) ∈Rn+m is in

the conic hull of T = {Mn+1, . . . , Mn+m , Mn+m+1, . . . , M2n+m}. Indeed, the corresponding

sub-matrix is the identity matrix.

Let Si be the pair {Mi , Mm+n+i } for i = 1, . . . ,m +n. Since all coefficients of A and B

are positive, 0 is not in the convex hull of the columns of M and u. A polynomial time

algorithm solving FIND ANOTHER COLORFUL CONE with T as input set would find

another colorful set T ′ such that u ∈ pos(T ′). The decomposition of u on the points in
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T ′ gives a vector x such that M x = u, xi xm+n+i = 0 for i = 1, . . . ,m +n, and supp(x) 6=
{n + 1, . . . ,2n +m}. Such an x can be written (xA, xB ) with xA, xB ∈ Rm+n+ satisfying

xA · xB = 0 and such that either supp(xA) 6= {n +1, . . . ,n +m} or supp(xB ) 6= {1, . . . ,n}.

In other words, xA and xB are complementary solutions and this would find a Nash

equilibrium. BIMATRIX being PPAD-complete, Proposition 2.3.3 implies therefore that

FIND ANOTHER COLORFUL SIMPLEX is PPAD-complete.

This proof shows that FIND ANOTHER COLORFUL SIMPLEX is more general than comput-

ing complementary solutions of Equations (2.4) and (2.5). In [41], a pivoting algorithm

for solving FIND ANOTHER COLORFUL SIMPLEX is proposed. It reduces to the clas-

sical pivoting algorithm due to Lemke and Howson [34] used for computing such

complementary solutions, see Section 3.2 for more details on this subject.

Remark 2.3.5 (Complexity of Sperner’s lemma). In the proof of Proposition 2.3.3, we

reduced FIND ANOTHER COLORFUL SIMPLEX to the following Sperner-type problem.

Let T be a triangulation of the d-dimensional sphere involving 2(d +1) vertices and let

λ : V (T) → {1, . . . ,d +1} be a labeling. Given a fully-labeled simplex; find another fully-

labeled simplex. Proposition 2.3.1 shows that this problem is actually PPAD-complete,

even if each label appears exactly twice. Sperner-type problems have already been

proved to be PPAD-complete [11, 45], but these latter problems are in fixed dimension,

with an exponential number of vertices, and with a labeling given by an oracle, while

the Sperner-type problem we introduced has an explicit description of the vertices and

of the labeling. Note that the number of vertices is small. A computational problem

with similar features has been proposed in a paper by Király and Pap [31], but it involves

a polyhedral version of Sperner’s lemma distinct from the classical Sperner’s lemma.

Remark 2.4.12 in Section 2.4.4 will exhibit some polynomial cases of the Sperner-type

problem we introduced here.

2.3.3 Reduction of BIMATRIX to COLORFUL LINEAR PROGRAMMING

Proposition 2.3.6. There is an explicit polynomial reduction of BIMATRIX to the decision

version of COLORFUL LINEAR PROGRAMMING.

This proposition provides a concrete illustration of the fact that NP-complete problems

are harder than PPAD problems. A similar method appears in [22].

Proof of Proposition 2.3.6. Let A be an algorithm solving COLORFUL LINEAR PROGRAM-

MING. We refer here to the decision problem of Section 2.2. We describe an algorithm

solving FIND ANOTHER COLORFUL SIMPLEX, and therefore BIMATRIX because of the
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reduction described in Section 2.3.2, by calling exactly d +1 times A . We get this way a

polynomial reduction of BIMATRIX to COLORFUL LINEAR PROGRAMMING.

The input is given by the d +1 pairs of points S1, . . . ,Sd+1 and the positively dependent

colorful set T . The algorithm selects successively a point in each of the Si ’s. Each

iteration consists in testing with the help of A which point of Si is in a positively

dependent colorful set compatible with the already selected points and in selecting

such a point, with the priority given to Si \ T . A typical iteration is

• Define S′
i := Si \ T ;

• Apply A to S′
1, . . . ,S′

i ,Si+1, . . . ,Sd+1;

• if the answer is ‘no’, define instead S′
i := Si ∩T .

At the end, the algorithm outputs
⋃d+1

i=1 S′
i .

Since we know that there is another positively dependent colorful set, the answer

will be ‘yes’ for at least one i . The returned colorful simplex is therefore a positively

dependent colorful set distinct from T . This algorithm returns another positively

dependent colorful set after calling d +1 times A .

Remark 2.3.7. The same approach shows that the TFNP version of COLORFUL LINEAR

PROGRAMMING is polynomially reducible to the general version of COLORFUL LINEAR

PROGRAMMING.

2.4 Combinatorial cases of colorful linear programming

and analogues

In the paper proving the colorful Carathéodory theorem, Bárány gives an application

of this theorem to colorful circuits in a directed graph, suggested by Frank and Lovász.

We consider here the computational problems raised by this application as well as ad-

ditional combinatorial cases on directed graphs. The results of Sections 2.4.2 and 2.4.3

were found in collaboration with Wolfgang Mülzer and Yannik Stein.

2.4.1 Colorful linear programming, TFNP version

Even if the complexity of the TFNP version of COLORFUL LINEAR PROGRAMMING in the

general case is unknown, the two problems presented here are polynomial cases of

this problem.
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Proposition 2.4.1. Let D = (V , A) be a directed graph with n vertices. Let C1, . . . ,Cn be

pairwise arc-disjoint circuits of D. Then there exists a circuit C sharing at most one arc

with each of these Ci . Moreover, such a circuit can be computed in polynomial time.

The existence of the colorful circuit as a consequence of the colorful Carathéodory

theorem has already been noted and is attributed to Frank and Lovász [2]. We give

here another proof of existence, providing a polynomial time algorithm to compute

the circuit.

Proof. Define a bipartite graph G = (V ∪ [n],E). The vertices in V are identified with

the vertices of D and the vertices in [n] are identified with the colors. There is an edge

vi ∈ E if the vertex v belongs to Ci . Suppose first that each X ⊆V has a neighborhood

in G of size at least |X |. Hall’s marriage theorem ensures the existence of a perfect

matching in the bipartite graph. We can then select for each vertex v ∈V an arc a in

δ−(v) belonging to a distinct Ci . The subgraph induced by these arcs contains a circuit

C as required.

Otherwise, there is a subset X ⊆ V with a neighborhood in G of cardinality at most

|X |−1. One can remove X from D and apply induction. Note that the existence of such

an X can be decided in polynomial time by a classical maximum matching algorithm,

which also provides the set X itself if it exists.

The existence statement of the next proposition is a consequence of the conic version

of the colorful Carathéodory theorem (Theorem 1.2.2). We provide a direct proof based

on a greedy algorithm.

Proposition 2.4.2. Let D = (V , A) be a directed graph with n vertices. Let s and t be two

vertices, and P1, . . . ,Pn−1 be pairwise arc-disjoint s-t paths. Then there exists an s-t

path P sharing at most one arc with each Pi . Moreover, such a path can be computed in

polynomial time.

Proof. We build an arborescence rooted at s, step by step. We start with X = {s}. At

each step, X is the set of vertices reachable from s in the partial arborescence. At step

i , if X does not contain t , choose an arc a of Pi belonging to δ+(X ) and add to X the

endpoint of a not yet in X . This arc exists since by direct induction X is of cardinality i

at step i and the s-t path Pi leaves X .
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2.4.2 Colorful linear programming, decision version

The decision version of COLORFUL LINEAR PROGRAMMING is NP-complete in general.

In this section, we show that the problem remains NP-complete in some combinatorial

cases, but is polynomial in some others. We mainly focus on three cases: colorful path,

colorful circuit, and colorful arborescence.

COLORFUL PATH

Input. A directed graph D = (V , A), whose arcs are partitioned into color classes

C1, . . . ,Ck and two vertices s, t ∈V .

Output. Decide whether there exists an oriented path from s to t using at most one

arc from each color class.

This problem is the decision counterpart of the polynomial problem presented in

Proposition 2.4.2. However, when the conditions of the colorful Carathéodory theorem

are not satisfied we have the following proposition.

Proposition 2.4.3. COLORFUL PATH is NP-complete, even if the graph is acyclic.

Proof. The proof works by a reduction of 3-SAT. Consider an instance of 3-SAT: a set

of variables {x1, . . . , xn} and a set of clauses C1, . . . ,Cm , each containing three literals,

a clause being a disjunction of literals. 3-SAT aims at deciding whether there is an

assignment of the variables satisfying all the clauses. This problem is NP-complete,

see [21].

For each variable x, we define px the number of clauses containing the literal x and nx

the number of clauses containing x̄. We define then pxnx colors λi , j (x) where Ci is a

clause containing x and C j is a clause containing x̄.

We define a directed graph D = (V , A) as follows. For each clause Ci we define a vertex

vi . We also define a source v0 ∈V . For all i ∈ [m] we define three paths from vi−1 to vi ,

one for each literal in the clause Ci . If the literal is positive, i.e. of the form x, the path

from vi−1 to vi corresponding to this literal has a number of arcs equal to the number

of clauses containing the literal x̄, colored with the color λi , j (x) where C j is a clause

containing x̄. Otherwise, if the literal is negative, i.e. of the form x̄, the path from vi−1

to vi corresponding to this literal has a number of arcs equal to the number of clauses

containing the literal x, colored with the color λ j ,i (x) where C j is a clause containing

x. In both cases, the path might be empty, in which case vi−1 and vi are mingled. See

Figure 2.1 for an illustration of this construction.

Deciding whether there is a satisfying assignment is equivalent to deciding whether

there is a colorful path from v0 to vm . Indeed, suppose that such a colorful path exists.
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Figure 2.1: Construction of D for the formula (x1∨x2∨ x̄3)∧(x1∨ x̄2∨x3)∧(x̄1∨ x̄2∨x3)

Then, given a colorful path, we can assign values to the variables with the following

rules. For all i ∈ [m], if the colorful path goes from vi−1 to vi through the edges cor-

responding to the literal x, then the corresponding variable is given the value ‘true’

(respectively ‘false’ if the literal is a negation, i.e. of the form x̄). This assignment is

consistent, no variables is given both values true and false, since the path is colorful.

Moreover, at least one literal of each clause is satisfied, hence the formula is satisfied.

Conversely, if there is a satisfying assignment, we can choose for each i ∈ [m] a literal

satisfied in the clause Ci and the corresponding path from vi−1 to vi in D. Concate-

nating these paths, we obtain a colorful path from v0 to vm . Indeed, in any subpath

between two consecutives vi ’s there are no two arcs of the same color, by construction.

Moreover, if there were two arcs of the same color, say λi , j (x), on the choosen path, it

would then mean that x has been assigned a positive value to satisfy clause Ci and a

negative one to satisfy C j , which leads to a contradiction.

Since 3-SAT is NP-complete, COLORFUL PATH is NP-complete as well.

A proof of the NP-completeness of an undirected version of COLORFUL PATH can be

found in [9]. Their proof can also be adapted to prove Proposition 2.4.3.

COLORFUL CIRCUIT

Input. A directed graph D = (V , A), whose arcs are partitioned into color classes

C1, . . . ,Ck .

Output. Decide whether there is a circuit using at most one arc from each color class.

This problem is the decision counterpart of the polynomial problem presented in

Proposition 2.4.1. However, when the conditions of the colorful Carathéodory theorem
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are not satisfied, we have the following proposition.

Proposition 2.4.4. COLORFUL CIRCUIT is NP-complete.

Proof. We can easily reuse the proof of Proposition 2.4.3 for this proof, just by adding

an arc from vm to v0.

Although COLORFUL LINEAR PROGRAMMING remains NP-complete for the two previ-

ous combinatorial cases, there are also some non trivial polynomial cases. COLORFUL

ARBORESCENCE is one of these problems, since it corresponds to a standard matroid

intersection problem, see Proposition 2.4.11. The two matroids involved here have

the arcs of A as ground set. The independents of the first matroid are the colorful

sets of arcs. The independents of the second matroid are the sets of arcs S ⊆ A sat-

isfying |δ−S (x)| ≤ 1 for all vertices x ∈ V \ {s}, hence the bases of this matroid are the

arborescences.

COLORFUL ARBORESCENCE

Input. A directed acyclic graph D = (V , A), whose arcs are partitioned into color classes

C1, . . . ,Ck and a root s ∈V .

Output. Decide whether there exists a colorful arborescence rooted at s.

2.4.3 Combinatorial cases of FIND ANOTHER

FIND ANOTHER COLORFUL SIMPLEX is PPAD-complete in general. We consider in this

section the ‘find another’ versions of COLORFUL CIRCUIT and COLORFUL ARBORES-

CENCE, which are both polynomial cases of FIND ANOTHER COLORFUL SIMPLEX or of

its equivalent problem FIND ANOTHER COLORFUL CONE, defined in Section 2.3.2.

The following problem is a combinatorial case of FIND ANOTHER COLORFUL CONE.

Proposition 2.4.5. Let D = (V , A) be an acyclic directed graph whose arcs are partitioned

into n pairs C1, . . . ,Cn , corresponding to colors, with n = |V |−1. If there is a colorful

oriented arborescence of size n, rooted at a vertex s ∈V , then there is another colorful

oriented arborescence of size n also rooted at s, and it can be computed in polynomial

time.

Proof. Let MD ∈ R(n+1)×2n be the incidence matrix of D, and b = (bv )v∈V ∈ Rn be

defined by bs = n and bv = −1 for all v ∈ V \ {s}. An arborescence rooted at s is a

solution of the linear program MD x = b, x ≥ 0. Since D is acyclic, 0 is not contained in
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the convex hull of the columns of MD . Hence, the rank of MD being n, the existence

of the second arborescence is a consequence of the Octahedron lemma. To compute

it, we use the following algorithm. Let T be the arborescence {a1, . . . , an} ⊆ A. We start

with i := 0. We repeat then

1. Set i := i +1.

2. Let āi be the single arc in Ci \ ai .

3. Decide whether there is a colorful arborescence rooted at s and formed with arcs

in {ā1, . . . , āi }∪⋃n
k=i+1 Ck .

4. If the answer is ‘no’, let āi := ai .

5. Go back to step 1.

The algorithm ends when i = n +1 and returns the set {ā1, . . . , ān}. As the existence

of another colorful tree is ensured by the colorful Carathéodory theorem, the algo-

rithm eventually answers ‘yes’ in Step 3. Hence, this arborescence is different from

T . Proposition 2.4.11 ensures that the decisions in Step 3 can be made in polynomial

time.

Remark 2.4.6. Proposition 2.4.5 also implies the following result. Given a colorful

Hamiltonian s-t path in an acyclic directed graph, we can find another colorful s-t

path, not necessarily Hamiltonian, in polynomial time.

The second proposition is the “find another” version of COLORFUL CIRCUIT. Again, the

existence in Proposition 2.4.7 is a consequence of the Octahedron lemma.

Proposition 2.4.7. Let D = (V , A) be a directed graph with n vertices and 2n arcs, whose

arcs are partitioned into n pairs C1, . . . ,Cn , corresponding to colors. If there exists a

colorful Hamiltonian circuit, then there exists another colorful circuit, not necessarily

Hamiltonian, and it can be found in polynomial time.

Proof. Define a bipartite graph G = (V ∪ [n],E). The vertices in V are identified with

the vertices of D and the vertices in [n] are identified with the colors. There is an edge

ui ∈ E if there is an arc in δ+(u)∩Ci . The arcs of the Hamiltonian circuit yield a perfect

matching M in this bipartite graph.

Since the cardinality of E is 2n, there is a cycle in G . Consider such a cycle L. Each

vertex of G in [n] is incident to exactly two edges, and exactly one from M . Hence, the
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cycle is of even length and edges from the matching and edges outside the matching

alternate on L.

We obtain a new perfect matching of G by taking the symmetric difference of M and

L. This perfect matching corresponds to a set of arcs in D, all of distinct colors, such

that each vertex has exactly one outgoing arc in this set. This set contains a colorful

circuit.

2.4.4 Similar combinatorial problems

The problem COLORFUL ARBORESCENCE, encountered in the previous section, cor-

responds to a standard matroid intersection problem, where the two matroids are

partition matroids. In this section we consider other matroid intersection problems,

where one of the matroids is a partition matroid, providing matroidal counterparts of

the results obtained for colorful linear programming.

The next proposition is common knowledge in combinatorics. It is a matroidal version

of the colorful Carathéodory theorem (with an additional algorithmic result).

Proposition 2.4.8. Let M be a matroid of rank d. Assume that the elements of M are

colored in d colors. If there exists a monochromatic basis in each color, then there exists

a colorful basis and this latter can be found by a greedy algorithm.

A stronger statement has been conjectured by Rota in 1989 [25]. Interestingly, this

conjecture has a similar flavor with the colored Tverberg conjecture, by Bárány and

Larman, mentioned in Section 1.6.1.

Conjecture 2.4.9 (Rota’s Conjecture). Consider a matroid of rank n and n disjoint bases

B1, . . . ,Bn . There exist n disjoint bases C1, . . . ,Cn such that |Ci ∩B j | = 1 for all i , j ∈ [n].

A matroidal version of the Octahedron lemma stated in Section 1.5 also exists. It is due

to Magnanti [36].

Proposition 2.4.10. Let M be a matroid of rank d with no loops. Assume that the

elements of M are colored in d colors and that the number of elements colored in each

color is at least two. If there is a colorful basis, then there is another colorful basis and

this latter can then be found in polynomial time.

The proof by Magnanti is based on the matroid intersection algorithm due to Lawler [32].

The same algorithm shows that the matroidal decision version of COLORFUL LINEAR

PROGRAMMING, namely deciding whether there is a colorful basis in a matroid whose

elements are colored, is polynomial.
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Proposition 2.4.11. Given a matroid M whose elements are partitioned into color

classes, it can be decided in polynomial time whether there exists a colorful basis.

While colorful linear programming and the problem of finding a colorful base of a

matroid are not special case one of the other, the problem COLORFUL ARBORESCENCE

falls in both of them.

Remark 2.4.12 (Back to Sperner’s lemma). Remark 2.3.5 of Section 2.3.2 shows that

even a very special case of Sperner’s lemma already leads to a PPAD-complete prob-

lem. The matroidal counterpart of the Octahedron lemma implies that the problem

becomes polynomial when the triangulation is the boundary of the cross-polytope

3d+1, defined in Section 1.5.

Proposition 2.4.13. Let T be the boundary of the (d +1)-dimensional cross-polytope

and let λ : V (T) → [d +1] be any labeling. Assume given a fully-labeled simplex. Another

fully-labeled simplex can be computed in polynomial time.

Proof. If a vertex has a label that appears only once on V (T), we remove it and its

antipodal, and work on the boundary of a cross-polytope with a dimension smaller

by one. Solving this new problem leads to a solution for the original problem. We

repeat this process until each label appears exactly twice. Now, note that the simplices

of the boundary of a cross-polytope form the independents of a matroid (it is a par-

tition matroid). Considering the labels as colors, the conclusion follows then from

Proposition 2.4.10.

With a similar proof (omitted), we also have the following proposition.

Proposition 2.4.14. Let T be the boundary of the (d +1)-dimensional cross-polytope

and let λ : V (T) → [d +1] be any labeling. Deciding whether there is a fully-labeled

simplex can be done in polynomial time. Moreover, if there is such a fully-labeled

simplex, it can be found in polynomial time as well.
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3 A generalization of linear program-
ming and linear complementarity

In this chapter, we present links between colorful linear programming, linear pro-

gramming, and linear complementarity problems. As a matter of fact, colorful linear

programming generalizes both linear programming and the linear complementarity

problem defined by Cottle in 1965. A better understanding of colorful linear program-

ming would therefore benefit both of them. Linear programming and the linear com-

plementarity problem are tools of mathematical programming among the most used

in industry. Therefore we found it appropriate to dedicate a chapter of this manuscript

to their links with colorful linear programming. Section 3.1 presents the links between

colorful linear programming and linear programming and gives a common generaliza-

tion of the two problems. Section 3.2 focuses on the relation between colorful linear

programming, the problem FIND ANOTHER COLORFUL SIMPLEX of Section 2.3, and the

linear complementarity problem. It gives in particular a colorful interpretation of the

complementary pivot algorithm for computing a Nash equilibrium in bimatrix games,

due to Lemke and Howson. As in Chapter 2, the inputs of the problems considered in

this section are rational numbers, to ease the discussion on complexity.

3.1 A generalization of linear programming

3.1.1 Generalization of linear programs: feasibility, optimization

We consider a linear program as follows.
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min cT x

s.t. Ax = b,

x ≥ 0,

with A ∈Rd×n of full rank, and b ∈Rd .

In 1997, when they introduced colorful linear programming, Bárány and Onn also

proved that the feasibility problem related to colorful linear programming generalizes

the feasibility problem related to linear programming. Moreover, the colorful linear

programming optimization problem generalizes the bounded linear programming op-

timization problem. Indeed, consider a bounded linear program, as the one above, and

define Ã ∈Rd×nd to be the matrix consisting of d copies of A, and c̃ ∈Rnd consisting of

d copies of c.

Ã = (A, A, . . . , A), c̃ =

 c
· · ·
c

 .

Define now the colors to be I1 = {1, . . . ,n}, I2 = {n + 1, . . . ,2n}, . . . , Id = {n(d − 1) +
1, . . . ,nd}. A feasible solution of the colorful program

Ãx = b,

x ≥ 0,

|supp(x)∩ Ii | ≤ 1, for all i ∈ [d ],

induces a solution of the original linear program with the same cost. Conversely,

according to a classical result in linear programming, if the optimum is finite, there

is an optimal feasible basic solution, hence there is an optimal feasible solution y of

the linear program with |supp(y)| ≤ d . This solution gives a feasible solution ỹ of the

colorful linear program with same value cT y = c̃T ỹ.

So far we have only considered only the feasibility problem related to colorful linear

programming. We now show the following proposition.

Proposition 3.1.1. The two problems of deciding the feasibility of a colorful linear

program and of optimizing a colorful linear program are polynomially reducible one to

the other.

Proof. Clearly, the feasibility problem is reducible to the optimization problem. Con-

versely, we can reduce an optimization problem to the feasibility problem, using binary
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search. Consider a colorful linear program as follows.

min cT x (3.1)

s.t. Ax = b, (3.2)

x ≥ 0, (3.3)

|supp(x)∩ Ii | ≤ 1, for all i ∈ [d ], (3.4)

with A ∈Rd×n of full rank, b ∈Rd , and I1 ∪·· ·∪ Id forming a partition of [n].

We assume that the problem has a feasible solution. Releasing the constraint (3.4), the

problem becomes a linear program we refer to as the non-colorful relaxation. Since the

feasible solutions of the colorful linear program are bases of its non-colorful relaxation,

we have a lower boundµinf for this problem. By basic properties of linear programming,

µinf can be polynomially encoded (Cramer’s rule). We also obtain an upper bound

µsup, with any feasible solution of the program. Consider now µ ∈ [µinf,µsup] and the

following feasibility problem.

(
A 0

c 1

)
x′ =

(
b
µ

)
,

x′ ≥ 0, (3.5)

|supp(x′)∩ Ii | ≤ 1 for all i ∈ [n],

|supp(x′)∩ {n +1}| ≤ 1,

The colors for this new colorful linear program are the Ii ’s defined for the original

program and an additional (d +1)th color Id+1 = {n +1}. If the problem (3.5) is feasi-

ble, then a colorful solution

(
x
z

)
of this problem induces a colorful solution x of the

optimization problem with value smaller than µ.

Using binary search, we can thus solve the problem. At each step, we consider the

problem (3.5) with µ= (µinf +µsup)/2. If the problem is feasible, we update µsup :=µ,

otherwise we update µinf :=µ. At each step the size of [µinf,µsup] is hence divided by

two. Using Cramer’s rule again, we know that there is a minimal gap ε, polynomially

computable, between two values of cT x with x being a feasible basis of the system

{Ax = b, x ≥ 0}. Hence, after log2(
µsup−µinf

ε
) iterations, the feasible basis we obtain for
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the problem with µ=µsup is the optimum.

Remark 3.1.2. The solutions of a colorful linear program are the vertices of the polyhe-

dron corresponding to its non-colorful relaxation. Hence, a colorful linear optimization

problem is either infeasible or bounded.

Remark 3.1.3. For linear programming, it is well-known that the optimization problem

can be reduced to the feasibility problem. Indeed, if the optimum is finite, then the

dual problem also admits a solution with same value, hence combining the primal

and the dual problems, we simply have to solve a feasibility problem. Otherwise the

value is −∞ if there is a feasible solution and +∞ if not. We were not able to adapt

such arguments to colorful linear programming, as the notion of dual itself is not clear

for colorful linear programming. Indeed, we do not know a general method that, given

any minimization colorful linear program, provides a maximization colorful linear

program whose optimal value gives a lower bound on the first problem.

3.1.2 Polyhedral interpretations, almost colorful connectivity

Given a colorful linear program, it is natural to consider its non-colorful relaxation.

As mentioned before, the colorful solutions correspond to particular bases of this

relaxation. In this section we try to give a polyhedral interpretation of these solutions

as vertices of the polyhedron

P = {
x ∈Rn | Ax = b,x ≥ 0

}
,

when considering the conic version, and the polyhedron

P =
{

x ∈Rn |
(

A

1 · · ·1

)
x =

(
b
1

)
,x ≥ 0

}
,

when considering the convex version.

In the convex case, the polyhedron P is bounded. In the conic case, the polyhedron is

bounded if and only if 0 is not contained in the conic hull of the columns of A. This

latter case is actually equivalent to the convex case. Indeed, since the columns of

A do not contain 0 in their convex hull, there is a hyperplane H , not containing 0
and intersecting all the half-lines defined by the column vectors of A. Let vi ∈H be

the intersection point of H and the half-line defined by the i th columns of A, for all

i ∈ [n]. Then b is in the conic hull of the columns of A if and only if there is a positive

combination of b in the convex hull of the vi ’s. From now on, considering the convex

case simply means that we consider cases with P being a polytope.
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b

b

b

b

0

b

Figure 3.1: Reduction of a bounded conic case to a convex case

A first open question concerns the location of the colorful vertices on the polyhedron.

The set of all colorful solutions does not yield, in general, a connected component of

the 1-skeleton of the polyhedron P . Consider for instance the case of Figure 3.2, which

corresponds to a conic case of colorful linear programming. Figure 3.3 represents the

polyhedron
{

x ∈R4 | ∑
xi vi = b,x ≥ 0

}
, whose vertices are identified with the feasible

basis. The only two colorful feasible bases are {1,3} and {2,4}. Hence, they do not form

a connected component.

b

v1

v4

v3 v2

Figure 3.2: Colorful configuration defining P = {
x ∈R4 | ∑

xi vi = b,x ≥ 0
}

Assume that A is non-degenerate. An almost colorful basis is a basis B of the non-

colorful relaxation, such that |B ∩ Ii | ≤ 1 for all i ∈ [n] but one for which |B ∩ Ii | = 2. In

other words, an almost colorful solution is a feasible basis intersecting every color but
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x 1
=
0

x3 = 0

x2 = 0

x 4
=
0

{2, 4}

{1, 2}

{1, 3}

{3, 4}

P

Figure 3.3: Polyhedron P = {
x ∈R4 | ∑

xi vi = b,x ≥ 0
}

defined in Figure 3.2

one, and hence intersecting one color exactly twice. This particular color is the color of

the almost colorful basis.

Proposition 3.1.4. Suppose that the color classes Ii are all of size 2. The colorful feasible

bases and almost colorful feasible bases of color i , i.e. the feasible bases such that

|B ∩ Ii | = 2, form a collection of cycles and paths of the 1-skeleton of P . In the conic case,

some of these paths may have infinite rays.

Proof. The idea in this proof comes from the complementary pivot algorithm used by

Meunier and Deza to prove the Octahedron lemma, see Section 1.5. We recall that two

feasible bases B and B ′ correspond to neighbor vertices if and only if |B ∩B ′| = d −1.

An almost colorful feasible basis B of color i has at most two neighbors which are

either colorful or almost colorful of color i . Indeed, there is exactly one color I j , such

that |B ∩ I j | = 0. Consider the two variables indexed by I j as entering variables. For

each of them, either we obtain another basis, which is either colorful or almost colorful

of color i , depending on whether a variable from Ii leaves the basis or not, or we have

an infinite ray.

A colorful feasible basis has at most one neighbor which is either colorful or almost

colorful of color i . By the same argument, choosing the variable indexed by Ii \ B to be
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the entering variable either gives another feasible basis, or corresponds to an infinite

ray.

Remark 3.1.5. Consider an orientation of Rd . A colorful basis B is positively oriented if

the column vectors in AB are positively oriented with respect to the order of the colors

I1, . . . , Id . Otherwise, it is negatively oriented. In the convex case, we can show that the

paths in Proposition 3.1.4 have their endpoints of opposite orientation, i.e. the set of

colorful bases and almost colorful bases of a fixed color form a collection of cycles and

paths between a positively oriented colorful basis and a negatively oriented colorful

basis. This result can be shown by slightly adapting the proof of Proposition 3.1.4, using

the oriented pivots by Todd [51]. Furthermore, it shows that the number of positively

oriented colorful solutions is equal to the number of negatively oriented solutions

in the convex case. It also shows that two solutions of same orientation cannot be

connected by an almost colorful path, in which the twice intersected color is fixed.

We end this section with an open question.

Open question. What can be said, in addition to Proposition 3.1.4, about the location

of the colorful feasible bases and almost colorful feasible bases of any color on the

1-skeleton of the non-colorful relaxation?

A possible answer to this question would be that the colorful feasible bases and almost

colorful bases of any color form a connected component of the 1-skeleton. If this

statement were true, it would be sufficient to prove it in the case with all Ii ’s of size

two. Using Proposition 3.1.4 and its oriented extension in the convex case, we note the

following. Consider a convex case of colorful linear programming. Define a bipartite

graph whose vertex sets are the positively oriented feasible colorful bases on the one

hand and the negatively oriented feasible bases on the other hand. For each color

i ∈ [d ] and each almost colorful path of color i given by Proposition 3.1.4, we define

an edge between the two colorful bases connected by this path and color it with

color i . This bipartite graph is d-regular and the coloring of the edges yields a proper

edge-coloring.

3.1.3 A generalization of colorful linear programming

The results of this section were obtained in collaboration with Wolfgang Mülzer and

Yannik Stein.

In this section, we consider a generalization of colorful linear programming, which

is quite natural in regards to the applications of this problem, as the colorful diet
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programming. Given a partition of the variables, [n] = I1 ∪·· ·∪ Ik , the aim of colorful

linear programming is to find solutions of linear programs with a “various support”,

via the conditions |supp(x)∩ Ii | ≤ 1 for all i ∈ [k]. This notion of variety can easily be

extended, by replacing the righthandsides in these inequalities by some `i ∈Z+: the

constraints become |supp(x)∩ Ii | ≤ `i for all i ∈ [k].

This extension was already proposed by Bárány in [2] for the colorful Carathéodory

theorem, when he stated the following.

Theorem 3.1.6 (General colorful Carathéodory theorem). Consider k sets of points

S1, . . . ,Sk ⊆ Rd and a point p ∈Rd , such that p ∈⋂k
i=1 pos(Si ), and `1, . . . ,`k ∈Z+ satisfy-

ing `1 +·· ·+`k = d. There exists a set T ⊆⋃k
i=1 Si satisfying p ∈ pos(T ) and |T ∩Si | ≤ `i

for all i ∈ [d ].

The linear programming version of this theorem is the following. Consider a linear

program

Ax = b,

x ≥ 0,

with A ∈Rd×n of full rank and b ∈Rd .

Theorem 3.1.7. Consider k disjoint feasible bases B1, . . . ,Bk of the previous linear pro-

gram and k integers `1, . . . ,`k ∈Z+ such that `1 +·· ·+`k ≥ d. There is a feasible basis B

satisfying |B ∩Bi | ≤ `i for all i ∈ [k].

Proof. For all i ∈ [k], we duplicate `i times the matrix ABi , forming

Ã = (AB1 , AB1 , . . . , ABk , ABk ).

We now have `1 + ·· · +`k disjoint feasible bases B (1)
1 , . . . ,B (`1)

1 , . . . ,B (`k )
k of the linear

program

Ãx = b,

x ≥ 0.

According to the usual colorful Carathéodory theorem (Theorem 1.2.3), there exists

a basis B intersecting each B ( j )
i at most once. This basis yields a basis satisfying the

statement of the theorem for the original linear program.
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Remark 3.1.8. Theorem 3.1.7 shows that if there are two disjoint bases B1,B2 of a

linear program, then for any 0 ≤ `≤ d there is a basis B ⊆ B1∪B2, such that |B ∩B1| ≤ `
and |B ∩B2| ≤ d −`. Actually, the result with two colors can be proved just by using

the connectivity of the 1-skeleton of the polytope of solutions with support in B1 ∪B2,

see Section 1.1.4. Indeed, the two bases B1 and B2 correspond to two vertices of the

polytope connected by a path. Two vertices on this path are neighbors if and only if

their supports differ only by one. Hence, following this path, we change the size of

B ∩B2 by at most one at each step, and must therefore visit bases with all values of

|B ∩B2| between 0 and d . Nevertheless, such a proof does not work as soon as the

number of colors is larger than 3, in which case we need Theorem 3.1.7.

Our aim here is to study the algorithmic problems related to the general colorful

Carathéodory theorem, as we did for the classical one. Again we consider the problems

of finding a solution under the conditions of Theorem 3.1.7 on the one hand and of

deciding whether a solution exists on the other hand. Bárány and Onn [5] show that

given ε> 0, their algorithm provides a colorful set whose distance to 0 is less than ε

in time polynomial in the bit size, in log(1/ε) and in 1/ρ, where ρ > 0 is the radius of

a ball contained in
⋂d

i=1 convSi . Finding a colorful set ε-close to 0 gives some sort of

approximation to colorful linear programming. The colored problems we define in

this section can also be seen as approximations of the colorful linear programming

problems. Instead of approximating by finding the colorful cone closest to p, we aim

for a cone containing p “as colorful as possible”.

COLORED LINEAR PROGRAMMING, TFNP version

Input. k sets of points S1, . . . ,Sk ⊆Qd , a point p ∈Qd , satisfying p ∈⋂k
i=1 pos(Si ) and k

positive integers `1, . . . ,`k , such that `1 +·· ·+`k ≥ d .

Output. Find a set T ⊆⋃k
i=1 Si , such that p ∈ pos(T ) and |T ∩Si | ≤ `i for all i ∈ [k].

As for the classical version, the complexity of this problem is unknown. Yet the special

case with two colors is solvable in polynomial time.

Proposition 3.1.9. Given two disjoint feasible bases B (1) and B (2) of a linear program

and an integer ` ∈Z+, we can compute a feasible basis B ⊆ B (1)∪B (2), such that |B∩B1| =
` in polynomial time.

We assume genericity. Before describing the polynomial algorithm, we define c(1) and

67



Chapter 3. A generalization of linear programming and linear complementarity

c(2) to be (generic) vectors in Rn such that B (i ) is an optimal basis for the problem

min c(i )T x
s.t. Ax = b

x ≥ 0.

We define then c(t ) to be the vector (1− t )c(1) + tc(2) for any t ∈ [0,1] and consider the

linear programs
min c(t )T x

s.t. Ax = b
x ≥ 0.

(3.6)

The following is a key property in the proof of Proposition 3.1.9.

Proposition 3.1.10. There exists a finite number of intervals I1, . . . , Is with pairwise

disjoint interiors such that
⋃s

i=1 Ii = [0,1] satisfying the following properties:

• for each i ∈ {1, . . . , s}, the same basis of the linear program (3.6) is optimal for all

t ∈ Ii .

• for each i ∈ {1, . . . , s}, the linear program (3.6) has a unique optimal basis for all t

in the interior of Ii .

• for t belonging to two consecutive distinct intervals Ii ’s, there are exactly two

optimal bases differing exactly by one element.

Moreover, we can require that each interval is of length larger than 1/K , where K is some

integer with a polynomial number of bits.

Proof. Consider a t such that the reduced costs at optimality are all positive. There

is an interval I = [a,b] containing t such that all t ′ in I have the same optimal basis,

such that for all t ′ in the interior of I this optimal basis is unique, and such that for

t ′ = a or t ′ = b there is exactly one other optimal basis. These a and b are obtained

precisely for a t ′ making one of the reduced costs equal to 0. The fact that there is

exactly one other optimal basis is a consequence of the generic choice of the c(i )’s and

of the non-degeneracy of the system
{

Ax = b | x ≥ 0
}
.

We have thus a collection of intervals with disjoint interiors in [0,1] satisfying the

three properties of the statement. Two things remain to be shown. First, that the

intervals actually cover [0,1]. Second, that the length of each interval is bounded from
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below by 1/K (the fact that there is a finite number of such intervals is then a direct

consequence).

Again because of genericity and non-degeneracy, any t not in the interior of one of

these intervals has exactly one reduced cost being equal to 0. It is then easy to see that

this t is the boundary of some of the intervals. Thus the intervals cover [0,1].

For such an interval I = [a,b], the numbers a and b are each solution of a linear

equation involving only coefficients from the c(i )’s, from the matrix A, from inverses of

its square sub-matrices, and from b. This implies the statement about the size of the

intervals.

Proof of Proposition 3.1.9. Let us now describe the algorithm. It is a binary search

based algorithm. We repeatedly solve the linear program (3.6) for successive values of

t as follows. We start with u0 = 0 and v0 = 1. At each iteration k, we have an interval

[uk , vk ] such that the optimal basis for t = uk has at least than ` elements from B (1)

and such that the optimal basis for t = vk has at most than ` elements from B (1). We

solve then the linear program for t = (uk + vk )/2. If the optimal basis associated to this

t has at least than ` elements from B (1), we define uk+1 = (uk + vk )/2 and vk+1 = vk .

Otherwise, we define uk+1 = uk and vk+1 = (uk + vk )/2.

We explain now why after a polynomial number of iterations we get the desired basis.

Note that each iteration can be done in polynomial time.

After a number of iterations bounded from above by log2 K , either we get [uk , vk ]

completely inside an interval Ii , and in such a case the corresponding optimal basis is

the sought basis, or we get [uk , vk ] belonging to two adjacent intervals, and one of the

two corresponding optimal bases is the one we seek.

Consider now the following decision problem.

COLORED LINEAR PROGRAMMING, decision version

Input. k sets of points S1, . . . ,Sk ⊆ Qd , a point b ∈ Qd , and k nonnegative integers

`1, . . . ,`k .

Output. Decide whether there is a set T ⊆⋃k
i=1 Si satisfying b ∈ conv(T ) and |T ∩Si | ≤

`i for all i ∈ {1, . . . ,k}.

Since COLORFUL LINEAR PROGRAMMING is NP-complete, so is this problem. We show

that it remains NP-complete even when the number of colors is 2.
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Proposition 3.1.11. COLORED LINEAR PROGRAMMING is NP-complete even if k = 2 and

`1 = `2 =
⌈

d−1
2

⌉
.

Before showing this result, we give an equivalent linear programming formulation of

this proposition. Consider a linear program(
A

1. . .1

)
x =

(
b
1

)
,

x ≥ 0,

with A ∈ R(d−1)×n and a partition of [n] into two sets [n] = I1 ∪ I2. Deciding whether

there exists a feasible solution x, whose support |supp(x)∩ I1| ≤
⌈

d−1
2

⌉
and |B ∩ I2| ≤⌈

d−1
2

⌉
is an NP-complete problem. Proving this statement is equivalent to proving

Proposition 3.1.11.

Proof. The proof works by a reduction of a version of the problem PARTITION. Consider

an instance of partition, i.e. a set of d − 1 integers {a1, . . . , ad−1}, with d − 1 even.

PARTITION aims at deciding whether we can partition [d − 1] into two sets I and

[d −1] \ I of equal size such that
∑

i∈I ai =∑
i∉I ai . This problem is NP-complete [21].

For i ∈ [d −1], we define the vector vi ∈ Rd having its i th coordinate equal to 1, its

(i + 1)th coordinate (respectively 1st coordinate for i = d − 1) equal to −1, and its

dth coordinate equal to ai . Similarly, we define vectors wi ∈ Rd , and just replace

the last coordinate by −ai . Deciding whether there exists a set formed with at most

(d −1)/2 vectors vi ’s and at most (d −1)/2 vectors wi ’s containing 0 in its convex hull,

is equivalent to deciding whether there exists a partition as wished.

Indeed, given such a partition, the set
{

vi | i ∈ I
}∪{

wi | i ∈ [d −1] \ I
}

contains 0 in its

convex hull. Conversely, let S1 =
{

vi | i ∈ [d −1]
}

and S2 =
{

wi | i ∈ [d −1]
}
. Given a set

T ⊆ S1∪S2, positively dependent, such that |T ∩S1| ≤ d−1
2 and |T ∩S2| ≤ d−1

2 , we define

I = {
i ∈ [d −1] | vi ∈ T ∩S1

}
and I ′ = {

i ∈ [d −1] | wi ∈ T ∩S2
}

. The set T being positively

dependent, we have d −1 nonnegative real numbers α1, . . . ,αd−1, not all equal to zero,

such that ∑
i∈I
αi vi +

∑
i∈I ′

αi wi = 0.

By definition of the vi ’s and wi ’s, we necessarily have that I and I ′ form a partition of

[d −1] and that the αi ’s are all equal to some positive real number α. Finally, we obtain∑
i∈I

ai =
∑
i∉I

ai ,
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with |I | = |[d −1] \ I | = d−1
2 .

Note that the proposition gives a complexity result for a case of colored linear pro-

gramming with points not in general position. We do not know whether the problem

remains NP-complete in the case of points in general position.

3.2 A generalization of linear complementarity

3.2.1 The linear complementarity problem

In this second section we focus on another important problem in mathematical pro-

gramming generalized by colorful linear programming: the linear complementarity

problem. The problem of finding an equilibrium in a bimatrix game, see Section 2.3.2,

is one of the many applications of linear complementarity.

The linear complementarity problem can be formalized as follows.

LINEAR COMPLEMENTARITY PROBLEM (LCP(M ,q))

Input. A matrix M ∈Qd×d and a vector q ∈Qd .

Task. Decide whether there exists a solution to the system

w−Mz = q, (3.7)

w ≥ 0,z ≥ 0, (3.8)

wT z = 0. (3.9)

A solution

(
w
z

)
satisfies w ≥ 0 and z ≥ 0. Hence the condition (3.9) implies that for all

i ∈ [d ] either wi = 0 or zi = 0. This condition, known as the complementary conditions

corresponds to a colorful condition in colorful linear programming, where each color

is of size 2.

More formally, the problem LCP(M ,q) is equivalent to deciding the feasibility of the

following colorful linear program.
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(Id ,−M)x = q,

x ≥ 0, (3.10)

|supp(x)∩ {i ,d + i }| ≤ 1, for all i ∈ [d ].

This formulation corresponds indeed to the formulation of colorful linear program-

ming (1), given in Introduction. Any algorithm solving the conic version of COLORFUL

LINEAR PROGRAMMING would hence provide an algorithm for LCP.

Besides, we noted in Section 2.2 that if there are no solutions to the system
{

(Id ,−M)x =
0, x ≥ 0

}
, then the problem is equivalent to a convex case of COLORFUL LINEAR PRO-

GRAMMING in dimension d −1. Hence, any algorithm solving the convex version of

COLORFUL LINEAR PROGRAMMING would provide an algorithm for LCP when 0 is not

contained in the conic hull of the columns of (Id ,−M).

The algorithms we discussed in Chapter 2 generalize ideas of well-known algorithms

for LCP, namely the Lemke algorithm and the Lemke-Howson algorithm, which solves

BIMATRIX. Our aim in this chapter is to emphasize the links between these algorithms.

3.2.2 The Lemke method

The simplex-like version of Bárány-Onn algorithm, presented in Section 2.1.2, com-

putes a colorful feasible basis under the conditions of the colorful Carathéodory theo-

rem (Theorem 1.2.3). We adapt this algorithm to any colorful linear program with each

Ii of size two. The adapted Bárány-Onn algorithm works as follows.

Consider a non-degenerate colorful linear program given by

Ax = b,

x ≥ 0,

|supp(x)∩ Ii | ≤ 1, for all i ∈ d ,

with A being a matrix in Rd×n of full rank, b being a point in Rd , and I1, . . . , Id ⊆ [n]

forming a partition of [n]. As for the algorithm presented in Section 2.1.2, we start by

adding a dummy column to the matrix A and the corresponding dummy variable z0.

The dummy column is chosen such that, one the one hand, it forms a colorful feasible

basis with a transversal T ⊆ [n], and on the other hand, if Ii is the missing color in T ,

i.e. such that |T ∩ Ii | = 0, at least one of the two variables in Ii gives an infinite ray
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when entering the basis. We then proceed with pivot steps, going from colorful feasible

basis to colorful feasible basis, until z0 leaves the basis or until we reach an infinite ray.

What changes in this version of the algorithm from the version given in Section 2.1.2

is the pivot rule. In the original algorithm the entering variable is a variable of the

missing color of negative reduce cost. This choice ensures that the algorithm does

not cycle. Meanwhile, the termination of the algorithm is ensured by the colorful

Carathéodory theorem. In this new case, we are no longer ensured to find a point of

the missing color of negative reduced cost. However, since we consider the case where

all the colors are of size two, we are still able to define the following pivot rule ensuring

that the adapted Bárány-Onn algorithm does not cycle. Any colorful feasible basis

containing the dummy variable z0 has at most two neighbors corresponding to the

basis we would obtain by entering one or the other variable of the missing color. As

the dummy variable is chosen such that the first colorful feasible basis has only one

neighbor, we know, by a classic parity proof argument, that z0 eventually leaves the

basis or we reach an infinite ray.

Note that this algorithm may reach an infinite ray even if there were a colorful feasible

solution.

Remark 3.2.1. Unlike the simplex algorithm, this method does not seek entering

variables with negative reduced cost. Hence the value of the problem may increase

along the pivot steps.

The case of colorful linear programming with all Ii ’s of size two generalizes (3.10), and

in this case the adapted Bárány-Onn algorithm coincides with the Lemke method.

The complementary pivot algorithm, known as the Lemke method, was introduced

by Lemke in 1965 [33]. This algorithm tries to compute a solution to LCP(M ,q), i.e. a

colorful feasible basis of the corresponding colorful linear program (3.10).

First note that, if q ≥ 0, then w = q and z = 0 yield a solution to the problem. Otherwise,

we consider the following optimization problem, which corresponds also to a colorful

linear program

min x2d+1

s.t. (Id ,−M ,−ed )x = q, (3.11)

x ≥ 0,

|supp(x)∩ {i ,d + i }| ≤ 1, for all i ∈ [d ],
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where

ed =


1
...

1

 ∈Rd .

This optimization problem has value 0 if and only if there is a solution to the linear

complementarity problem. We assume that (Id ,−M ,−ed ) is non-degenerate. A classic

perturbation argument can be used to tackle the degenerate case.

Consider i0 such that qi0 ≤ qi for all i ∈ [d ], and let w = q−qi0 ed . The vector (w,0, qi0 )T

is a basic feasible solution of the problem (3.11), corresponding to the basis B0 =
([d ] \ {i0})∪ {2d +1}. The Lemke algorithm proceeds with simplex pivots, going from

colorful feasible basis to colorful feasible basis, until we reach an optimal colorful basis

or an infinite ray.

This corresponds exactly to the adapted Bárány-Onn algorithm, where ed is the dummy

variable and [n] \ {i0} is the transversal.

If the algorithm returns a solution, then the answer to the decision problem LCP(M ,q)

is ‘yes’. However, it may happen that the answer is ‘yes’, and yet the algorithm does not

return a solution, but reaches an infinite ray instead. There are classes of matrices M

for which the algorithm reaches an infinite ray if and only if the problem LCP(M ,q)

is infeasible, see [44] for more details on this subject. As a corollary, the matrices

(I ,−M) where M belongs to one of these classes define a class of matrices for which

the adapted Bárány-Onn algorithm outputs an infinite ray if and only if the colorful

linear program is infeasible. It would be interesting to determine more general such

classes of matrices.

When the Ii have size larger than two, we can ask whether a similar pivot rule can be

designed, leading to an efficient behaviour of the algorithm.

3.2.3 The Lemke-Howson algorithm for BIMATRIX

The pivot algorithm proposed by Meunier and Deza in [41] computes a solution to

the problem FIND ANOTHER COLORFUL SIMPLEX. Consider a non-degenerate colorful

linear program of the form

Ax = b,

x ≥ 0,

|supp(x)∩ Ii | ≤ 1 for all i ∈ [d ],
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with |Ii | = 2 for all i ∈ [d ], such that the polyhedron corresponding to the non-colorful

relaxation is bounded. Given an initial colorful feasible basis of this colorful linear

program, FIND ANOTHER COLORFUL SIMPLEX aims at computing another colorful

feasible basis, whose existence is ensured by the Octahedron lemma.

The Meunier-Deza algorithm works as follows. We start with the initial colorful feasible

basis, and choose arbitrarily a color I0 = {i0,m +n + i0} to be pivot color. One variable

of I0 is not in the basis. We proceed to a pivot step of the simplex algorithm, with this

variable entering the basis. If the other variable of I0 leaves the basis, we are done,

otherwise we have reached a first almost colorful feasible basis. We then proceed to

pivot steps, going from almost colorful feasible basis to almost colorful feasible basis,

until one of the variables in I0 leaves the basis.

In Section 2.3.2, we showed that this algorithm solves BIMATRIX. To prove this result,

we used the formulation of BIMATRIX as a colorful linear program:

(
Im 0 A 0

0 In 0 B T

)
x =


1
...

1


x ≥ 0, (3.12)

|supp(x)∩ {i ,m +n + i }| ≤ 1, for all i ∈ [m +n].

Note that this formulation coincides with the formulation of a linear complementarity

problem, given in (3.10).

The Lemke-Howson algorithm, formalized by Lemke and Howson in 1964, also tackled

the problem of computing a Nash equilibrium in a bimatrix game. Their approach

was later extended by Lemke, giving birth to the Lemke method. For the special

case of BIMATRIX, the Meunier-Deza algorithm coincides with the Lemke-Howson

algorithm. The only difference between the two algorithms is the starting point. For

the Meunier-Deza algorithm, the polyhedron is bounded and the algorithm starts

from a given colorful basis. The Lemke-Howson algorithm, on its part, starts with an

almost colorful feasible basis such that only one variable of the missing color can enter

the basis, the other giving immediately an infinite ray. It can be shown that for linear

complementarity problem arising from BIMATRIX, the Lemke-Howson algorithm never

reaches an infinite ray, i.e. there is always a solution, and a solution is always found by

the algorithm.
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Under the conditions of the colorful Carathéodory theorem, there always exists a

colorful set containing 0 in its convex hull. As a matter of fact, there are more than one

such colorful set. We have seen in Section 1.4.2 that the colorful Carathéodory theorem

can be used to provide a bound in the First selection lemma. The arguments providing

this bound motivated the following question: how many colorful sets, at least, contain 0
in their convex hulls? An exact bound for the minimal number of such colorful sets has

been sought in several papers since 2003 [4, 17, 50] and a conjecture was formulated

by Deza et al. in 2006 [17]. In this chapter, we study combinatorial objects, known as

octahedral systems, suggested by Bárány to investigate this geometric problem. A proof

of the colorful simplicial depth conjecture using the octahedral systems is given in the

next chapter. Most results of these two chapters were published in [20, 47].

4.1 Octahedral systems

4.1.1 Definition

Let V1, . . . ,Vn be n pairwise disjoint finite sets, each of size at least 2. An octahedral

system is a set Ω⊆ V1 ×·· ·×Vn satisfying the parity condition: the cardinality of Ω∩
(X1 ×·· ·× Xn) is even if Xi ⊆ Vi and |Xi | = 2 for all i ∈ [n]. We use the terminology of

hypergraphs to describe an octahedral system: the sets Vi are the classes, the elements

in
⋃n

i=1 Vi are the vertices, and the n-tuples in V1×·· ·×Vn are the edges. An edge whose

i th component is a vertex x ∈Vi is incident to the vertex x, and conversely. A vertex x

incident to no edge is isolated. A class Vi is covered if each vertex of Vi is incident to at

least one edge. Finally, the set of edges incident to x is denoted by δΩ(x) and the degree

of x, denoted by degΩ(x), refers to |δΩ(x)|.
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An octahedral systemΩ⊆V1×·· ·×Vn with |Vi | = mi for all i ∈ [n] is called an (m1, . . . ,mn)-

octahedral system. Let ν(m1, . . . ,mn) denote the minimum number of edges over all

(m1, . . . ,mn)-octahedral systems without isolated vertices. The minimum number of

edges over all (d +1, . . . ,d +1)-octahedral systems has been considered by Deza et

al. [14] who denote this quantity by ν(d). By a slight abuse of notation, we identify ν(d)

with ν(d +1, . . . ,d +1︸ ︷︷ ︸
d+1 times

).

Throughout this chapter, given an octahedral system Ω ⊆ V1 × ·· · ×Vn , the parity

property refers to the evenness of |Ω∩(X1×·· ·×Xn)| if Xi ⊆Vi and |Xi | = 2 for all i ∈ [n].

In a slightly weaker form, the parity property refers to the following observation: If

e = (x1, . . . , xn) is an edge in Ω, and yi a point in Vi \ {xi }, for all i ∈ [n], then defining

Xi = {xi , yi }, there is an edge distinct from e inΩ∩(X1×·· ·×Xn). Indeed, |Xi | = 2 for all

i ∈ [n], hence the number of edges inΩ∩ (X1 ×·· ·×Xn) is even. An octahedral system

being a simple hypergraph, there in an edge distinct from e inΩ∩ (X1 ×·· ·×Xn).

4.1.2 Motivation

Let µ(d) denote the minimal number of colorful sets containing 0 in their convex

hulls over all colorful point configurations S1, . . . ,Sd+1 in Rd such that 0 ∈ conv(Si ) and

|Si | = d +1 for all i ∈ [d +1]. In 2003, Deza et al. [17] conjectured that µ(d) ≥ d 2 +1. We

prove this conjecture with the help of the octahedral systems, see Chapter 5.

Given a colorful point configuration S1, . . . ,Sd+1, the Octahedron lemma [4, 17] states

that, for any S′
1 ⊆ S1, . . . ,S′

d+1 ⊆ Sd+1, with |S′
1| = · · · = |S′

d+1| = 2, the number of colorful

simplices generated by
⋃d+1

i=1 S′
i and containing 0 in their convex hulls is even. The hy-

pergraph over V1×·· ·×Vn where Vi is identified with Si and whose edges are identified

with the colorful simplices containing 0 in their convex hulls is therefore an octahedral

system. This is the original motivation for introducing these objects.

Furthermore, according to Theorem 1.2.4, given in Chapter 1, if 0 ∈⋂d+1
i=1 conv(Si ), then

each point of the colorful point configuration is in some colorful simplices containing

0 in their convex hulls. Hence, in an octahedral systemΩ arising from such a colorful

point configuration, each class Vi is covered. Therefore, we have ν(d) ≤µ(d).

The combinatorial approach consists in studying ν to provide lower bounds for µ. In

this manuscript, we provide a more detailed study of the octahedral systems than the

one needed to prove the conjecture.
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4.1.3 First properties

The following proposition provides an alternate definition for octahedral systems

where the condition “|X ∩Vi | = 2” is replaced by “|X ∩Vi | is even” for all i ∈ [n]. The

proof of this proposition is similar to the proof of Theorem 1.5.2, hence we omit its

proof.

Proposition 4.1.1. An octahedral systemΩ⊆V1 ×·· ·×Vn with even |Vi | for all i ∈ [n]

has an even number of edges.

Lemma 4.1.2 and Proposition 4.1.3 are key properties in the study of octahedral sys-

tems, as they are the starting point of any inductive proof.

Lemma 4.1.2. In every nonempty octahedral system, at least one class is covered.

Proof. Consider an octahedral system Ω ⊆ V1 × ·· ·×Vn . Suppose that no class Vi is

covered. Then there is at least one isolated vertex xi in each Vi . Hence, if there were an

edge (y1, . . . , yn) inΩ, then the parity condition would not be satisfied for Xi = {xi , yi }

for all i ∈ [n].

The symmetric difference of two sets is defined by A4B = (A∪B)\(A∩B). The following

proposition, proved in [20], states that the set of all octahedral systems is stable under

the symmetric difference operation.

Proposition 4.1.3. LetΩ andΩ′ be two octahedral systems over the same vertex set. The

setΩ4Ω′ is an octahedral system.

Proof. LetΩ′′ =Ω4Ω′. AsΩ′′ is a subset of V1 ×·· ·×Vn , we simply need to check that

the parity condition is satisfied. Consider X1 ⊆ V1, . . . , Xn ⊆ Vn with |Xi | = 2 for all

i ∈ [n]. We have

|Ω′′∩(X1×·· ·×Xn)| = |Ω∩(X1×·· ·×Xn)|+|Ω′∩(X1×·· ·×Xn)|−2|Ω∩Ω′∩(X1×·· ·×Xn)|.

All the terms of the sum are even, which allows to conclude.

We now present a family of specific octahedral systems we call umbrellas. An um-

brella U is a set of the form {x(1)}×·· ·× {x(i−1)}×Vi × {x(i+1)}×·· ·× {x(n)}, with x( j ) ∈V j

for j 6= i . The class Vi covered in U is called the color of U . The (n − 1)-tuple T =
(x(1), . . . , x(i−1), x(i+1), . . . , x(n)) is its transversal. An umbrella is clearly an octahedral

system over V1 ×·· ·×Vn ; moreover we have the following proposition.

79



Chapter 4. Octahedral systems

Figure 4.1: An umbrella of color V3

Proposition 4.1.4. Two umbrellas of the same color have an edge in common if and

only if they are equal.

Proof. An umbrella is entirely determined by its color Vi and its transversal T . There-

fore, if two umbrellas of the same color have an edge in common, they necessarily have

the same transversal, which implies that they are equal.

4.2 Decomposition

In this section, we describe any octahedral system as a symmetric difference of other

octahedral systems. This decomposition will allow us to bound the cardinality of

octahedral systems, see Chapter 5.

Consider a nonempty octahedral system Ω ⊆ V1 ×·· ·×Vn with |Vi | ≥ 2 for all i ∈ [n].

Denote by i1 the smallest i ∈ [n] such that Vi is covered in Ω. Such an i1 exists ac-

cording to Lemma 4.1.2. We order the vertices {x1, . . . , xm} of Vi1 by increasing degree:

degΩ(x1) ≤ ·· · ≤ degΩ(xm). We define U to be the set of umbrellas of color Vi1 con-

taining an edge of Ω incident to x1 and set W := 4U∈UU . Note that, according to

Proposition 4.1.4, W =⋃
U∈U U . LetΩ j be the set of all edges inΩ4W incident to x j

for all j ∈ [m]. Formally,

U = {
U |U umbrella of color Vi1 and U ∩δΩ(x1) 6= ;}

and Ω j = δΩ4W (x j ).

Note that |U | = degΩ(x1). In the sequel we refer to (U ,Ω2, . . . ,Ωm) as a suitable decom-
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position.

Lemma 4.2.1. Let (U ,Ω2, . . . ,Ωm) be a suitable decomposition and W =4U∈UU . We

have

(i) Ω j ∩Ω` =;, for all j 6= ` (they have no edges in common).

(ii) Ω=W 4Ω24···4Ωm .

(iii) Ω j is an octahedral system, for all j .

(iv) degΩ(x j ) ≥ max(|U |, |Ω j |− |Ω j ∩W |) for all j .

(v) If Vi is not covered inΩ, then Vi is neither covered inΩ4W nor in anyΩ j .

The terminology suitable decomposition is due to item (ii) of Lemma 4.2.1.

Proof. We first prove (i). The i1th component of any edge in Ω j is x j . Therefore, Ω j

andΩ` have no edges in common if j 6= `.

We then prove (ii). There are exactly degΩ(x1) umbrellas of color Vi1 containing an

edge of Ω incident to x1. As W is the symmetric difference of these umbrellas, x1

is isolated in Ω4W . Thus, Ω2, . . . ,Ωm form a partition of the edges in Ω4W and

Ω4W = Ω24···4Ωm . Taking the symmetric difference of this equality with W we

obtainΩ=W 4Ω24···4Ωm .

We now prove (iii). By definition, the Ω j ’s are subsets of V1 × ·· · ×Vn . It remains

to prove that they satisfy the parity condition. Consider Xi ⊆ Vi with |Xi | = 2 for

i ∈ [n]. If Xi1 does not contain x j , there are no edges in Ω j induced by X1 ×·· ·× Xn .

If Xi1 contains x j , the edges in Ω j induced by X1 ×·· ·× Xn are the ones induced by

X1×·· ·×Xi1−1×{x j }×Xi1+1×·· ·×Xn . As x1 is isolated inΩ4W , those edges are exactly

the edges inΩ4W induced by X1 ×·· ·×Xi1−1 × {x1, x j }×Xi1+1 ×·· ·×Xn . According to

Proposition 4.1.3, W is an octahedral system andΩ4W as well, hence there is an even

number of edges.

We prove (iv). We have |U | = degΩ(x1) ≤ degΩ(x j ) for all j ∈ [m]. Furthermore, by

definition of the symmetric difference, we have (Ω24···4Ωm) \W ⊆Ω. This inclusion

becomes (Ω2 \ W )4···4(Ωm \ W ) ⊆Ω. As two Ω`’s share no edges, Ω j \ W ⊆Ω and

thusΩ j \W ⊆ δΩ(x j ) for all j ∈ {2, . . . ,m}. We obtain

|Ω j |− |Ω j ∩W | ≤ degΩ(x j ).
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Finally to prove (v) it suffices to prove that a class Vi not covered in Ω remains not

covered inΩ4W . Indeed, if a class is covered in anΩ j , it is also covered inΩ4W , as

no twoΩ`’s have an edge in common. Consider Vi not covered inΩ. There is a vertex

x ∈Vi incident to no edges inΩ. In particular, there are no edges inΩ incident to x1

and x. Therefore, the umbrellas in U , which are defined by the edges incident to x1,

contain no edges incident to x. Hence, x is isolated in W =4U∈UU and inΩ. Finally,

x remains isolated inΩ4W .

Unlike the suitable decomposition of Ω, which is a decomposition over general oc-

tahedral systems, the decomposition given in the following lemma is over umbrellas

only.

Lemma 4.2.2. Consider an octahedral systemΩ⊆V1×·· ·×Vn with |Vi | ≥ 2 for all i ∈ [n].

There exists a set of umbrellas D such that Ω = 4U∈DU and such that the following

implication holds:

Vi is the color of some U ∈D =⇒ Vi is covered inΩ.

Proof. The proof proceeds by induction on the number of covered classes inΩ. If no

classes are covered, then, according to Lemma 4.1.2,Ω is empty.

Suppose now that k ≥ 1 classes are covered and consider a suitable decomposition

(U ,Ω2, . . . ,Ωm) ofΩ. Denote by W the symmetric difference W =4U∈UU . According

to Proposition 4.1.3, W is an octahedral system, and so is Ω4W . There are strictly

fewer covered classes inΩ4W than inΩ. Indeed, inΩ4W , the class Vi1 is no longer

covered, since x1 is isolated, and according to item (v) of Lemma 4.2.1, a class not

covered in Ω remains not covered in Ω4W . By induction, there exists a set D′ of

umbrellas such thatΩ4W =4U∈D′U , and such that if there is an umbrella of color Vi

in D′, then Vi is covered inΩ4W . As the umbrellas in D′ are not of color Vi1 , we have

U ∩D′ =;. Therefore,Ω= (4U∈UU )4(4U∈D′U ) and the set D =U ∪D′ satisfies the

statement of the lemma.

4.3 Other properties of octahedral systems

4.3.1 Geometric interpretation of the decomposition

Raman Sanyal suggested that the umbrellas are not only a combinatorial tool, but

may also have a geometric counterpart. They do indeed, and this counterpart is the

following, already seen in Section 1.5 for the third proof of the Octahedron lemma.
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Consider a colorful point configuration S1, . . . ,Sd+1 ⊆ Rd and the origin 0 ∈ Rd in

general position. Define the set of all transversals

T =
{

T ⊆
d+1⋃
i=1

Si | |T | = d , |T ∩Si | ≤ 1 for all i ∈ [d +1]
}

.

The convex hulls of the sets in T are (d −1)-simplices. We remove these simplices

from Rd and obtain a collection of connected components, called the cells, which are

open sets in Rd . The closure of the cells is Rd itself. One cell is unbounded, and all the

other cells are bounded. All the points in one cell are contained in exactly the same

colorful simplices. Hence, given a cell, we can define the corresponding set of colorful

sets containing the cell in their convex hulls. The points in the unbounded cell are

contained in the convex hulls of no colorful sets at all.

Proposition 4.3.1. Consider two cells C and C ′, the corresponding sets of colorful sim-

plices Ω and Ω′, and a path from C to C ′, going through cell faces corresponding to

transversals T1, . . . ,Tr . We haveΩ4Ω′ =U (T1)4···4U (Tr ), where U (T ) denotes the set

of all colorful sets containing a transversal T .

Proof. Considering two adjacent cells and the corresponding setsΩ1 andΩ2 of colorful

sets, we claim that Ω1 =Ω24U (T ), where T is the transversal corresponding to the

face separating the two cells. Consider a colorful set S containing the first cell in its

convex hull. If S does not contain T , then while crossing the face we do not leave the

convex hull of S. Hence the second cell is also contained in conv(S). Otherwise, S

contains T . Consider the point s ∈ S \ T and the two half-spaces defined by aff(T ). The

point s lies in the same half-space as the first cell, as it is contained in conv(S). Thus,

the second cell is not contained in conv(S).

Using this remark, each time the path from C to C ′ crosses a transversal, givesΩ∩Ω′ =
U (T1)4···4U (Tr ).

We already noted that the points in the unbounded cell are in the convex hulls of no

colorful sets. Hence, the previous proposition applied to the unbounded cell and to

the cell containing 0 shows that the set of positively dependent colorful sets is of the

form U (T1)4···4U (Tr ). This gives another proof that the set of positively dependent

colorful setsΩ is an octahedral system.
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4.3.2 Further uses of umbrellas and discussions

Given two cells and the corresponding sets of colorful sets Ω1 and Ω2, we define

Ω :=Ω14Ω2. Any path from one cell to the other will go through a collection of (d −1)-

simplices, corresponding to a collection T1, . . . ,Tr of transversals in T , which satisfies

Ω=U (T1)4···4U (Tr ), according to Proposition 4.3.1. Hence, a cycle, starting from

a cell and returning to the same cell, corresponds to a symmetric difference equal to

the empty set, which shows that the umbrellas do not form a F2-independent family,

identifying the sum in F2 and the symmetric difference.

A natural question is the following. Given two cells, what is the smallest number of

cells crossed by a path from one cell to the other? In particular, this would answer the

question: can we express the set of positively dependent colorful sets as a symmetric

difference of few umbrellas? This is in general not possible. For instance, in the

configuration of Figure 4.2, the origin 0 is in (d +1)d+1 colorful simplices, and hence

any path from the unbounded cell to 0 must cross at least (d +1)d cell faces. Yet, the

question remains interesting for specific configurations, such as the ones satisfying the

conditions of the colorful Carathéodory theorem. For this particular case, a tight upper

bound on the number of colorful simplices containing 0 is not known, and could be

tackled via an umbrella approach.

b
b
b

b

b b

b

b

b

b 0

Figure 4.2: The complete octahedral system

Any point in Rd , not only 0, can be reached by a path starting from the unbounded

cell. Although the octahedral systems and in particular the umbrellas were introduced

to tackle the colorful simplicial depth conjecture and hence to consider a point in⋂d+1
i=1 conv(Si ), other open questions can be interpreted in terms of umbrellas.
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For instance, the colored Tverberg conjecture, presented in Section 1.6.1, corresponds

to two questions. Consider S1, . . . ,Sd+1 ⊆Rd in general position, such that |Si | = t for

all i ∈ [d +1]. The first question is to determine, which are the octahedral systems

Ω⊆V1 ×·· ·×Vn with |Vi | = t for all i ∈ [n] containing a perfect matching? The second

question is to decide whether there is a cell such that the paths from the unbounded

cell to this cell correspond to a symmetric difference of umbrellas belonging to this

family of octahedral systems.

The realizability problem presented in the next section can also be interpreted in terms

of umbrellas.

4.3.3 Realizability

Question 6 of [14] asks whether any octahedral systemΩ⊆V1 ×·· ·×Vn with n = |V1| =
. . . = |Vn | = d +1 can arise from a colorful point configuration S1, . . . ,Sd+1 in Rd ? That

is, are all octahedral systems realizable? We give a negative answer to this question

in Proposition 4.3.2. Notice that Proposition 4.3.2 also holds for octahedral systems

without isolated vertices.

Proposition 4.3.2. Not all octahedral systems are realizable.

Proof. We provide an example of a non realizable octahedral system without isolated

vertices in Figure 4.3. Suppose by contradiction that this octahedral system can be

realized as a colorful point configuration S1,S2,S3. Without loss of generality, we can

assume that all the points lie on a circle centered at 0. Take x3 ∈ S3, and consider the

line ` going through x3 and 0. There are at least two points x1 and x′
1 of S1 on the same

side of `. There is a point x2 ∈ S2, respectively x′
2 ∈ S2, on the other side of the line `

such that 0 ∈ conv(x1,x2,x3), respectively 0 ∈ conv(x′
1,x′

2,x3). Assume without loss of

generality that x′
2 is further away from x3 than x2. Then, conv(x1,x′

2,x3) contains 0 as

well, contradicting the definition of the octahedral system given in Figure 4.3.

In terms of umbrellas, the realizability problem correspond to two questions. First,

consider a realizable octahedral system, and a colorful point configuration realizing it.

For any decomposition of this octahedral system into umbrellas, is there a path from

the unbounded cell to this cell corresponding to this decomposition? The answer is

trivially no, if we do not restrict ourselves to minimal decomposition, in the sense that

no sub-sum of the symmetric difference is the empty-set. We do not know the answer,

when we add this restriction. Assuming that the answer is yes, the realizability problem

would become the following. Given a minimal decomposition, can we define points in

85



Chapter 4. Octahedral systems

Figure 4.3: A non realizable (3,3,3)-octahedral system with 9 edges

Rd and a path from infinity to 0, such that the only (d −1)-colorful simplices crossed

by the path are the ones corresponding to the umbrellas of the decomposition? This

would allow to reformulate the proof that the octahedral system from Figure 4.3 is non

realizable, as follows. First note that this octahedral system is the symmetric difference

of the three umbrellas given in Figure 4.4 and that this decomposition is minimal.

Figure 4.4: Decomposition of the (3,3,3)-octahedral system of Figure 4.3

If it were realizable, we would have three segments [R1,B1], [R2,B2], and [R3,B3] and a

simple path crossing these three segments but no other [Ri ,B j ] with 1 ≤ i , j ≤ 3. The

path would divide each segment in two, defining the set G of points on the left and D

the points on the right, with |G| = |D| = 3, see Figure 4.5. Without loss of generality, we

could assume that at least two blue points are in G and at least two red points are in D .

Hence it would give an additional red-blue segment crossed by the path, which leads

to a contradiction.

We now provide examples of octahedral systems not realizable by configuration of

points in general position, for n ≥ 4.

Let S1, . . . ,Sd+1 in Rd be a colorful point configuration. The i -degree of a point x in Rd

relatively to a colorful point configuration is defined as the number of i -transversals

T such that 0 ∈ conv(T ∪ {x}). In addition to the i -degree, we define the i -fan. It is

obtained as follows. We remove from Rd all (d −1)-dimensional cones of the form
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b

bb

b

b

b

b

G
D

Figure 4.5: Proof of the non realizability of the (3,3,3)-octahedral system of Figure 4.3

pos(X ), where

|X ∩S j | ≤ 1 for all j ∈ [d +1], |X | = d −1, and X ∩Si =;. (4.1)

We call the collection of the remaining connected components the i -fan relative to the

colorful point configuration and denote it Fi . Note that a connected component is an

open set of Rd and that the closure of these components is Rd itself. We have that all

points in a same connected component in Fi have same i -degree.

We can now speak of the i -degree in a connected component. We are in position to

prove the following proposition. Note that the degree of a vertex v in a class Vi of an

octahedral system arising from a colorful point configuration is precisely the i -degree

of its geometric counterpart xv .

Proposition 4.3.3. LetΩ⊆V1×·· ·×Vd+1 be an octahedral system arising from a generic

colorful point configuration S1, . . . ,Sd+1 inRd with |S j | = d+1 for all j ∈ [d+1]. Suppose

that a vertex v of
⋃d+1

i=1 Vi is of degree (d +1)d , i.e. all possible edges containing v exist in

Ω. Then the degree of every vertex in the same class Vi as v is a multiple of d +1.

Proof. Let v be the vertex as in the statement, and let Vi be the class it belongs to. Let

xv be the geometric counterpart of v .

Take two distinct connected components K and L of Fi that are neighbors. We show

that the i -degrees in K and L differ by a multiple of d +1.

87



Chapter 4. Octahedral systems

Let X be a subset satisfying constraint (4.1) and such that pos(X ) separates K and L.

In addition to color i , the set X misses exactly one other color, which we denote k.

All points of Sk are on the same side of the hyperplane containing X and 0, since the

convex hull of X ∪ {xv , p} contains the origin for every p in Sk . The intersection of all

cones of the form pos(X ∪ {−y, p}) is thus a nonempty polyhedron with a nonempty

interior. Take a point y of K arbitrarily close to CX . Then, either conv(X ∪ {y, p})

contains the origin for all p ∈ Sk , or it contains the origin for none of them. Therefore,

the i -degree differs between K and L by the cardinality of Sk , i.e. of d +1. It shows that

when going through such a CX , the i -degree changes by a multiple of d +1.

Since it is possible to go from any connected component to any other using neighbors,

we get that the i -degrees in the connected components are all equal modulo d +1. We

show now that i -degree in each connected component of Fi is a multiple of d +1. Take

a point x is some other connected component of Fi . According to what have been just

proved, the i -degree of x and the i -degree of xv differ by a multiple of d +1. Since the

i -degree of xv is a multiple of d +1, the i -degree of x is a multiple of d +1 as well.

Now consider Ω ⊆ V1 × ·· · ×Vd+1, with |Vi | = d + 1 for all i ∈ [d + 1], defined as the

symmetric difference of the complete hypergraph V1×·· ·×Vd+1 and the two umbrellas

U1 =V1 × {v2
1}×·· ·× {vd+1

1 } and U2 = {v1
1}×V2 × {v3

1}×·· ·× {vd+1
1 }.

Any vertex in V3 \ {v3
1} is of degree (d +1)d . However, degΩ(v3

1) = (d +1)d −2d , which is

not a multiple of d +1. According to Proposition 4.3.3, this octahedral system cannot

arise from a colorful configuration of points in general position.

4.3.4 Number of octahedral systems

This section provides an answer to an open question raised in [14] by determining the

number of distinct octahedral systems.

We recall that the octahedral systems over V1×·· ·×Vn form a F2-vector space, according

to Lemma 4.2.1. Additionally, by Lemma 4.2.1, the umbrellas form a generating family

of the octahedral systems. Let Fi denote the binary vector space FVi
2 and H denote the

tensor product F1 ⊗·· ·⊗Fn . There is a one-to-one mapping between the elements of

H and the subsets of V1 ×·· ·×Vn . Each edge (v1, . . . , vn) of such a set H ⊆V1 ×·· ·×Vn

is identified with the vector x1 ⊗·· ·⊗xn where xi is the unit vector of Fi having a 1 at

position vi and 0 elsewhere. The decomposition over umbrellas can be translated as

follows.
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Proposition 4.3.4. The subspace of H generated by the vectors of the form x1 ⊗ ·· ·⊗
x j−1 ⊗e ⊗x j+1 ⊗·· ·⊗xn , with j ∈ [n] and e = (1, . . . ,1) ∈ FV j

2 , forms precisely the set of all

octahedral systems.

Karasev [29] noted that the set of all colorful simplices in a colorful point configuration

forms a d-dimensional co-boundary of the join S1 ∗ . . .∗Sd+1 with mod 2 coefficients,

see [43] for precise definitions of joins and co-boundaries. With the help of Propo-

sition 4.3.4, we further note that the octahedral systems form precisely the (n −1)-

co-boundaries of the join V1 ∗ . . .∗Vn with mod 2 coefficients. Indeed, the vectors of

the form x1 ⊗ . . .⊗x j−1 ⊗ x̂ j ⊗x j+1 ⊗ . . .⊗xn , with j ∈ [n], generate the (n −2)-cochains

of V1 ∗ . . .∗Vn , and the co-boundary of a vector x1 ⊗ . . .⊗ x j−1 ⊗ x̂ j ⊗ x j+1 ⊗ . . .⊗ xn is

x1 ⊗ . . .⊗x j−1 ⊗e ⊗x j+1 ⊗ . . .⊗xn with e = (1, . . . ,1) ∈ FV j

2 .

Theorem 4.3.5. Given n disjoint finite vertex sets V1, . . . ,Vn , the number of octahedral

systems on V1, . . . ,Vn is 2Π
n
i=1|Vi |−Πn

i=1(|Vi |−1).

Proof. We denote by Gi the subspace of Fi whose vectors have an even number of 1’s.

Let X be the tensor product G1 ⊗ . . .⊗Gn . Define now ψ as follows:

ψ : H → X ∗

H 7→ 〈H , ·〉

By the above identification between H and the hypergraphs and according to the

alternate definition of an octahedral system given by Proposition 4.1.1, the subspace

kerψ of H is the set of all octahedral systems on vertex sets V1, . . . ,Vn . Note that

by definition ψ is surjective. Therefore, we have dimkerψ+dimX ∗ = dimH which

implies dimkerψ= dimH −dimX using the isomorphism between a vector space

and its dual. The dimension of H isΠn
i=1|Vi | and the dimension of X isΠn

i=1(|Vi |−1).

This leads to the desired conclusion.

Two isomorphic octahedral systems, that is, identical up to a permutation of the Vi ’s, or

of the vertices in one of the Vi ’s, are considered distinct in Theorem 4.3.5, which means

that we are counting labeled octahedral systems. A natural question is whether there is

a non-labeled version of Theorem 4.3.5, that is whether it is possible to compute, or to

bound, the number of non-isomorphic octahedral systems. Answering this question

would fully answer Question 7 of [14].

89





5 Octahedral systems: computation of
bounds

In this chapter, we keep on with the study of octahedral systems introduced in Chap-

ter 4 and more specifically with the study of bounds on their cardinality. The octahedral

systems over V1 ×·· ·×Vn generalize the colorful point configurations in Rn−1, and this

for any sizes of the |Vi |’s, as soon as all the colorful sets and 0 are in general position.

The colorful simplicial depth conjecture tackled the problem for colorful point configu-

rations satisfying the conditions of the colorful Carathéodory theorem, with |Si | = d +1

for all i ∈ [d +1]. In this chapter, we are interested in a more general setup. The chapter

is divided into three sections, one for the upper bounds, one for the lower bounds, and

a final one explaining how to use the previous results to prove the colorful simplicial

depth conjecture.

5.1 Upper bounds

The following proposition gives a general upper bound for ν(m1, . . . ,mn). Recall that

ν(m1, . . . ,mn) denotes the minimum number of edges in an (m1, . . . ,mn)-octahedral

system without isolated vertices.

Proposition 5.1.1. Suppose that m1 ≥ ·· · ≥ mn ≥ 2. Then,

ν(m1, . . . ,mn) ≤ min
0≤c≤k≤n
c≤mk+1

k∑
i=1

(mi −2)+2c +mn(mk+1 − c),

with the convention mn+1 = 1.

Proof. Consider n sets V1, . . . ,Vn and denote v (i )
1 , . . . , v (i )

mi
the vertices in Vi for all i ∈ [n].

For all k ∈ {0, . . . ,n} and all c such that 0 ≤ c ≤ min(k,mk+1), we construct an octahedral
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systemΩ(k,c) ⊆V1 ×·· ·×Vn satisfying |Ω(k,c)| ≤∑k
i=1(mi −2)+2c + (mk+1 −c)mn . The

construction is illustrated in Figure 5.1. Throughout the construction, we use the

following convention. If j ≥ mi , then the vertex denoted by v (i )
j is simply the vertex

v (i )
mi

.

P1 and P2

Q1 and Q2

U1 and U2

Figure 5.1: Construction ofΩ(4,2) ⊆V1 ×·· ·×V7 with |V1| = · · · = |V7| = 4

Case (a). We start with the case k = 0 and c = 0. We define m1 umbrellas of color Vn :

U j = {v (1)
j }×·· ·× {v (n−1)

j }×Vn for all j ∈ [m1].

The octahedral system defined by Ω(0,0) =4 j∈[m1]U j covers all classes and satisfies

|Ω(0,0)| = m1 ×mn . Indeed, the U j ’s are pairwise disjoint, since they are all of the same

color, and each of them contains mn edges.
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Figure 5.2: Ω(4,2) ⊆V1 ×·· ·×V7 with |Vi | = 4 for all i

Case (b). Consider now k ∈ [n − 1] and 0 ≤ c ≤ min(k,mk+1). We first define k − c

umbrellas:

Pi = {v (1)
2 }×·· ·× {v (i−1)

2 }×Vi × {v (i+1)
1 }×·· ·× {v (n)

1 } for all i ∈ [k − c].

The octahedral system defined by ΩP = 4i∈[k−c]Pi satisfies |ΩP | = ∑k−c
i=1 (mi −2)+2.

Indeed, two umbrellas Pi and P j share an edge if and only if i and j are consecutive

numbers, and in this case they share exactly one edge.

Then, we define c umbrellas:

Qi = {v (1)
2 }×·· ·× {v (k−c+i−1)

2 }×Vk−c+i × {v (k−c+i+1)
i }×·· ·× {v (n)

i } for all i ∈ [c].

The octahedral system defined byΩQ =4c
i=1Qi satisfies |ΩQ | =∑c

i=1 mk−c+i . Indeed,

the Qi ’s form a set of pairwise disjoint umbrellas, since all the edges in Qi are incident

to the same vertex v (k+1)
i ∈Vk+1 and v (k+1)

i 6= v (k+1)
j for all 1 ≤ i < j ≤ c.

Then, we define mk+1 − c umbrellas of color Vn :

U j = {v (1)
c+ j }×·· ·× {v (k)

c+ j }× {v (k+1)
c+ j }×·· ·× {v (n−1)

c+ j }×Vn for all j ∈ [mk+1 − c].

The octahedral system defined by ΩU =4mk+1−c
j=1 U j satisfies |ΩU | = ∑c

i=1 mk−c+i . In-

deed, the U j ’s form a set of pairwise disjoint umbrellas, since they are of the same

color.

Finally, ΩP and ΩQ only share the edge (v (1)
2 , . . . , v (k−c)

2 , v (k−c+1)
1 , . . . , v (n)

1 ). The octa-

hedral system ΩU shares edges neither with ΩP nor with ΩQ . Hence, the octahe-

dral system defined by Ω(k,c) = (4k−c
i=1 Pi )4(4c

i=1Qi )4(4mk+1−c
j=1 U j ) satisfies |Ω(k,c)| =∑k

i=1(mi −2)+2c + (mk+1−c)mn . Furthermore,Ω(k,c) covers every classes. Indeed, the

classes V1, . . . ,Vk as well as the c first vertices of each class Vk+1, . . . ,Vn are covered in

ΩP4ΩQ . The remaining vertices of Vk+1, . . . ,Vn are covered inΩU . We can conclude

sinceΩP4ΩQ andΩU are disjoint.
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Case (c). Finally, for k = n and c = 1, we define n umbrellas:

Pi = {v (1)
2 }×·· ·× {v (i−1)

2 }×Vi × {v (i+1)
1 }×·· ·× {v (n)

1 } for all i ∈ [n].

The octahedral system defined by Ω(n,1) =4n
i=1Pi covers every classes and satisfies

|Ω(n,1)| =∑n
i=1(mi −2)+2.

Since mn ≥ 2, definingΩ(n,0) :=Ω(n,1) gives an octahedral system covering every classes

and satisfying |Ω(n,0)| ≤∑n
i=1(mi −2)+mnmn+1.

Propositions 5.1.1 can be seen as generalizations of the upper bounds given in [20],

which already generalized µ(d) ≤ d 2 +1, proved in [17].

Note that when m1 ≥ ·· · ≥ mn ≥ n ≥ 2, the bound is simply

ν(m1, . . . ,mn) ≤
n∑

i=1
(mi −2)+2.

5.2 Lower bounds

5.2.1 Preliminaries

The first bound is an immediate corollary of Lemma 4.1.2. It generalizes the fact that

µ(d) ≥ d +1, already proved in [2].

Proposition 5.2.1. The trivial octahedral system without edges apart, an octahedral

system has at least mini |Vi | edges.

Proof. According to Lemma 4.1.2, if the octahedral system is nonempty, then at least

one class Vi is covered. Therefore, there are at least mini |Vi | edges.

The proof of our main result, namely Theorem 5.2.5, distinguishes two cases. The

following proposition deals with the first case.

Proposition 5.2.2. Consider an octahedral systemΩ⊆V1 ×·· ·×Vn with |V j | = m j ≥ 2

for all j ∈ [n] and a class Vi covered inΩ. Define

m = min{m j |V j covered inΩ, j 6= i }.

IfΩ can be written as a symmetric difference of umbrellas, none of them being of color

Vi , then |Ω| ≥ mi m.
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Proof. Let D be a set of umbrellas such that there are no umbrellas of color Vi in D and

Ω=4U∈DU . Denote by y1, . . . , ymi the vertices of Vi , and by Q j the set of umbrellas

in D incident to y j for each j ∈ [mi ]. As D contains no umbrellas of color Vi , all the

umbrellas in Q j have transversals with i th component equal to y j . Denote by Q j the

symmetric difference of the umbrellas in Q j . We have that Q j is an octahedral system,

according to Proposition 4.1.3, and that δΩ(y j ) =Q j , Q j 6= ;, and Q j ∩Q` =; for all

j 6= `. If a vertex is isolated inΩ, then it is also isolated in Q j . In other words, the classes

covered in Q j are also classes covered in Ω. Since Q j is not empty and according to

Proposition 5.2.1, |Q j | ≥ m. Therefore, we have

|Ω| =
mi∑
j=1

degΩ(y j ) =
mi∑
j=1

|Q j | ≥ mi m.

We end this preliminary section with a result proved in [20].

Proposition 5.2.3. An octahedral system without isolated vertices has at least maxi 6= j (|Vi |+
|V j |)−2 edges.

The special case of this proposition for octahedral systems arising from colorful point

configurations S1, . . . ,Sd+1 with |Si | = d +1 for all i ∈ [d +1], i.e. µ(d) ≥ 2d , has been

proved in [17].

Proof. Assume without loss of generality that |V1| ≥ . . . ≥ |Vn−1| ≥ |Vn | ≥ 2. Let v∗ be

the vertex minimizing the degree inΩ over V1. If degΩ(v∗) ≥ 2, then there are at least

2|V1| ≥ |V1| + |V2| −2 edges. Otherwise, degΩ(v∗) = 1 and we note e(v∗) the unique

edge incident to v∗. Pick wi in Vi \ e(v∗) for all i > 1. Applying the parity property

to e(v∗), the points in {w1, . . . , wn}, and any w ∈V1 \ {v∗} yields at least |V1| edges not

intersecting with V2 \ {e(v∗)2, w2}. In addition, |V2|−2 edges are needed to cover the

vertices in V2 \ {e(v∗)2, w2}. In total we have at least |V1|+ |V2|−2 edges.

Proposition 5.1.1 combined with Proposition 5.2.3 directly implies Proposition 5.2.4.

Proposition 5.2.4. ν(m1,m2,2, . . . ,2) = m1 +m2 −2 for m1,m2 ≥ 2.

5.2.2 Proof of the main result

Our main result provides a lower bound on the cardinality of octahedral systems with

all classes of size m and with m not smaller than the number of classes.
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Theorem 5.2.5. Let Ω ⊆ V1 ×·· ·×Vn be an octahedral system with |V1| = · · · = |Vn | =
m ≥ n ≥ 2. If k ≥ 1 classes among the Vi ’s are covered, then |Ω| ≥ k(n −2)+2.

As mentioned in the previous section, the proof of this theorem distinguishes two cases.

Proposition 5.2.6 corresponds to the second case. We first prove this proposition.

Proposition 5.2.6. Consider an octahedral systemΩ⊆V1×·· ·×Vn with |Vi | = m for all

i ∈ [n] and a suitable decomposition (U ,Ω2, . . . ,Ωm) of Ω. Consider O ⊆ {Ω2, . . . ,Ωm}

such that for eachΩ j ∈O there is a class Vi covered inΩ j and in no otherΩ` ∈O . Denote

by P ⊆O the set of umbrellas in O . We have

|Ω| ≥ |U |(m −|O |)+ ∑
Ω j∈O

|Ω j |− |U |(|O |− |P |)−|U |− |P |+1.

Proof. Let W = 4U∈UU . The number of edges in Ω is equal to
∑m

j=1 degΩ(x j ). We

bound degΩ(x j ) by |U | for j = 1 and ifΩ j ∉O and by |Ω j |−|Ω j ∩W | otherwise, see (iv)

in Lemma 4.2.1. We obtain

|Ω| ≥ |U |(m −|O |)+ ∑
Ω j∈O

(|Ω j |− |Ω j ∩W |).

We introduce a graph G = (V ,E ) defined as follows. We use the terminology nodes and

links for G in order to avoid confusion with the vertices and edges of Ω. The nodes

in V are identified with the umbrellas in U and the Ω j ’s in O : V =U ∪O . There is a

link in E between two nodes if the corresponding octahedral systems have an edge

in common. The graph G is bipartite: indeed, two umbrellas in U are of the same

color Vi1 and, according to Proposition 4.1.4, they do not have an edge in common.

According to Lemma 4.2.1, twoΩ j ’s do not have an edge in common either.

ForΩ j in O , we have |Ω j ∩W | =∑
U∈U |Ω j ∩U | = degG (Ω j ), note that here the degree

is counted in G . The fact that the umbrellas in U are disjoint proves the first equality.

The second equality is deduced from the facts thatΩ j has at most one edge in common

with each umbrella in U , the one incident to x j , and thatΩ j has no neighbors in O .

We obtain the following bound

|Ω| ≥ |U |(m −|O |)+ ∑
Ω j∈O

(|Ω j |−degG (Ω j )
)

= |U |(m −|O |)+ ∑
Ω j∈O

|Ω j |−degG (O \P )−degG (P ).

Again, for the equality, we use the fact that G is bipartite. The number of links in E

incident to a node in O \ P is at most |U |. Hence, degG (O \ P ) ≤ |U |(|O | − |P |). It
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remains to bound degG (P ). Note that if U is an umbrella in P , it is the only umbrella

of its color in P , otherwise it would contradict the property of O . We now prove that

there are no cycles induced by P ∪U in G .

Suppose there is such a cycle C and consider an umbrella U of P in this cycle. Denote

its color by Vi and its neigbours in C by L and R. As G is simple, L and R are distinct.

The umbrellas L and R are both in U , and hence are of color Vi1 and do not have an

edge in common. Therefore U ∩L and U ∩R do not have an edge in common either,

which implies that the i th component of the transversals of L and R are distinct. Note

that two umbrellas adjacent in C , both of color distinct from Vi , have necessarily

transversals with the same i th component. Hence there must be another umbrella of

color Vi in the path in C between L and R not containing U . This is a contradiction

since U is the only umbrella in P of color Vi .

The number of links in E incident to P is then at most |U |+ |P |−1. This allows us to

conclude.

Proof of Theorem 5.2.5. LetΩ⊆V1 ×·· ·×Vn be an octahedral system with |V1| = · · · =
|Vn | = m ≥ n ≥ 2, and suppose that k ≥ 1 classes Vi1 , . . . ,Vik , with i1 < ·· · < ik , are cov-

ered inΩ. The proof works by induction on k.

If k = 1, thenΩmust contain at least m edges for one class to be covered.

Assume now that k > 1. If |U | ≥ m −1, then, according to item (iv) of Lemma 4.2.1,

|Ω| = ∑n
j=1 degΩ(x j ) ≥ n|U | ≥ k(m −2)+2 and we are done. Assume now that |U | ≤

m −2. We consider a suitable decomposition (U ,Ω2, . . . ,Ωm) ofΩ and distinguish two

cases.

Case 1: One of the covered classes Vi , for i ∈ {i2, . . . , ik }, is not covered in any Ω j . Let

Vi be a covered class in Ω, which is not covered in any Ω j . For each j ∈ {2, . . . ,m},

applying Lemma 4.2.2 onΩ j gives a set D j of umbrellas, all of color distinct from Vi ,

such thatΩ j =4U∈D j U . We obtainΩ= (4U∈UU )4(4m
j=24U∈D j U ), according to item

(ii) of Lemma 4.2.1. Thus, we can apply Proposition 5.2.2 which ensures that1

|Ω| ≥ m2 ≥ k(m −2)+2.

Case 2: Each covered class Vi , for i ∈ {i2, . . . , ik }, is covered in at least one of the Ω j .

1Here is the only case, where we use the fact that m ≥ n ≥ k
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Chapter 5. Octahedral systems: computation of bounds

Choose a set O ⊆ {Ω2, . . . ,Ωn}, minimal for inclusion, such that each covered class

Vi , for i ∈ {i2, . . . , ik }, is covered in at least one of the Ω j ∈ O . Such set O satisfies the

statement of Proposition 5.2.6. Applying this proposition, we obtain

|Ω| ≥ |U |(m −|O |)+ ∑
Ω j∈O

|Ω j |− |U |(|O |− |P |)−|U |− |P |+1.

We now bound
∑
Ω j∈O |Ω j |. Let k j be the number of classes covered in Ω j . By mini-

mality of O , there is at least one class covered in eachΩ j ∈O , and according to item

(v) of Lemma 4.2.1 we have k j < k, hence 1 ≤ k j < k. By induction, the cardinality

of Ω j is at least k j (m −2)+2. This lower bound is not good enough for the Ω j ∉ P

such that k j = 1. We denote by A those Ω j ’s. We explain now how to improve the

lower bound for Ω j ∈ A . Only one class is covered in Ω j and Ω j ∉ P . According to

Lemma 4.2.2,Ω j can be written as a symmetric difference of distinct umbrellas of the

same color. According to Proposition 4.1.4, these umbrellas are pairwise disjoint and

|Ω j | is equal to m times the number of umbrellas in this decomposition. Since Ω j

is not an umbrella itself, otherwise Ω j would have been in P , there are at least two

umbrellas in this decomposition. We obtain∑
Ω j∈O

|Ω j | ≥
( ∑
Ω j∈O\A

k j
)
(m −2)+2|O \A |+2m|A | = ( ∑

Ω j∈O

k j
)
(m −2)+2|O |+m|A |.

Consequently

|Ω| ≥ |U |(m −|O |)+ ( ∑
Ω j∈O

k j
)
(m −2)+2|O |+m|A |− |U |(|O |− |P |)−|U |− |P |+1.

Finally, we have

2|O |− |P |− |A | ≤ ∑
Ω j∈O

k j , (5.1)

k −1 ≤ ∑
Ω j∈O

k j . (5.2)

Ineqality (5.1) is obtained by distinguishing theΩ j with k j = 1 from those with k j ≥ 2.

Inequality (5.2) results from the fact that each class Vi2 , . . . ,Vik is covered in at least one

Ω j in O . Thus,

98



5.2. Lower bounds

|Ω| ≥ |U |(m −|O |)+ ( ∑
Ω j∈O

k j
)
(m −2)+2|O |+ |U ||A |− |U |(|O |− |P |)−|U |− |P |+1

≥ (k −1)(m −2)+2|O |− |P |+1+ ( ∑
Ω j∈O

k j −k +|A |+m −2|O |+ |P |)|U |

where we only used the inequalities m ≥ m −2 ≥ |U | and (5.2). According to (5.1), the

expression ∑
Ω j∈O

k j −k +|A |+m −2|O |+ |P |

is nonnegative. Moreover, we have already noted that |U | = degΩ(x1), which is at least

1. Therefore,

|Ω| ≥ (k −1)(m −2)+2|O |− |P |+1+ ∑
Ω j∈O

k j −k +|A |+m −2|O |+ |P |.

Using (5.2) again, we obtain |Ω| ≥ k(m −2)+2.

Remark 5.2.7. The case of equality in Theorem 5.2.5 occurs if and only if Ω can be

written as a symmetric difference of k umbrellas of pairwise distinct colors, such that

G is a tree, where G is the graph whose vertices are identified with these k umbrellas

and whose edges are the pairs of umbrellas with an edge in common. We can easily

check that if the latter condition is satisfied, then we have equality. Indeed, in this

case we have |Ω| = km −2|E | = k(m −2)+2. The reverse implication is less direct but

can be obtained via a careful yet tedious analysis of the inequalities along the proof of

Theorem 5.2.5.

Proposition 5.1.1 combined with Theorem 5.2.5 directly implies Proposition 5.2.8.

Proposition 5.2.8. If m ≥ n ≥ 2, then ν(m, . . . ,m) = n(m −2)+2.

5.2.3 Other bounds

We now present results obtained in collaboration with Antoine Deza [20], providing

lower bounds on the cardinality of octahedral systems with classes of size not larger

than the number of classes. We believe that the use of the suitable decomposition may

simplify the proofs and provide even stronger results for this case.

The main result is the following.
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Chapter 5. Octahedral systems: computation of bounds

Theorem 5.2.9. An octahedral system without isolated vertices and with |V1| = · · · =
|Vn | = m has at least 1

2 m2 + 5
2 m −11 edges for 4 ≤ m ≤ n.

Let D(Ω) be the directed graph (V , A) associated to Ω ⊆ V1 × ·· ·×Vn with vertex set

V :=⋃n
i=1 Vi and where (u, v) is an arc in A if, whenever v is incident to e ∈Ω, we have

u incident to e . In other words, (u, v) is an arc of D(Ω) if any edge incident to v is

incident to u as well.

For an arc (u, v) ∈ A, v is an outneighbor of u, and u is an inneighbor of v . The set

of all outneighbors of u is denoted by N+
D(Ω)(u). Let N+

D(Ω)(X ) = (⋃
u∈X N+

D(Ω)(u)
)

\ X ;

that is, the subset of vertices, not in X , being heads of arcs in A having tail in X . The

outneighbors of a set X are the elements of N+
D(Ω)(X ). Note that D(Ω) is a transitive

directed graph: if (u, v) and (v, w) with w 6= u are arcs of D(Ω), then (u, w) is an arc

of D(Ω). In particular, it implies that there is always a nonempty subset X of vertices

without outneighbors inducing a complete subgraph in D(Ω). Moreover, a vertex of

D(Ω) cannot have two distinct inneighbors in the same Vi .

While Lemma 5.2.10 allows induction within octahedral systems, Lemmas 5.2.11, 5.2.12,

and 5.2.13 are used in the subsequent sections to bound the number of edges of an

octahedral system without isolated vertices.

Consider Xi ⊆ Vi such that |Xi | ≥ 2 for all i ∈ [n]. The set Ω∩ X1 × ·· ·× Xn forms an

octahedral system over X1 ×·· ·×Xn . Indeed, the parity property is clearly satisfied.

Lemma 5.2.10. Consider an octahedral systemΩ without isolated vertices. Consider

Xi ⊆Vi such that |Vi \Xi | ≥ 2 for all i ∈ [n] and such that X =⋃n
i=1 Xi induces a complete

subgraph in D(Ω). LetΩ′ be the octahedral system over V1 \ X1 ×·· ·×Vn \ Xn equal to

Ω∩V1 \ X1 ×·· ·×Vn \ Xn . If N+
D(Ω)(X ) =;, thenΩ′ is without isolated vertices.

Proof. Each vertex v of
⋃n

i=1 Vi \ Xi is contained in at least one edge of Ω. Since X

induces a complete subgraph, any edge ofΩ incident to some vertex in X is incident

to the whole subset X . Thus, since v ∉ N+
D(Ω)(X ), the vertex v is in an edge of Ω not

incident in any X .

Lemma 5.2.11. For n ≥ 4, consider a (m1, . . . ,mn−k ,

k−z times︷ ︸︸ ︷
k, . . . ,k ,

z times︷ ︸︸ ︷
k −1, . . . ,k −1)-octahedral

system Ω ⊆ V1 × ·· · ×Vn without isolated vertices, with m1 ≥ ·· · ≥ mn−k ≥ k ≥ 3 and

0 ≤ z < k ≤ n. If there is a subset X ⊆⋃n−z
i=1 Vi of cardinality at least 2 inducing in D(Ω)

a complete subgraph, then Ω has at least (k − 1)2 + 2 edges, unless Ω is a (3,3,2,2)-

octahedral system. Under the same condition on X , a (3,3,2,2)-octahedral system has at

least 5 edges.

100



5.2. Lower bounds

Proof. Any edge intersecting X contains X since X induces a complete subgraph in

D(Ω), implying degΩ(X ) ≥ 1. Moreover, we have |X ∩Vi | ≤ 1 for i = 1, . . . ,n.

Case (a): degΩ(X ) ≥ 2. Choose i∗ such that |X ∩Vi∗ | 6= 0. We first note that the degree

of each w in Vi∗ \ X is at least k −1.

Indeed, take an edge e containing w and a i∗-transversal T disjoint from e and X . Note

that e does not contain any vertex of X as underlined in the first sentence of the proof.

Apply the weak form of the parity property to e, T , and the unique vertex x in X ∩Vi∗ .

There is an edge distinct from e in e∪T ∪{x}. Note that this edge contains w , otherwise

it would contain x and any other vertex in X . It also contains at least one vertex in

T . For a fixed e, we can actually choose k −2 disjoint i∗-transversals T of that kind

and apply the weak form of the parity property to each of them. Thus, there are k −2

distinct edges containing w in addition to e.

Therefore, we have in total at least (k −1)2 edges, in addition to degΩ(X ) ≥ 2 edges.

Case (b): degΩ(X ) = 1. Let e(X ) denote the unique edge containing X . For each i such

that |X ∩Vi | = 0, pick a vertex wi in Vi \ e(X ). Applying the weak form of the parity

property to e(X ), the wi ’s, and any colorful selection of ui ∈Vi \ X when i is such that

|X ∩Vi | 6= 0 shows that there is at least one additional edge containing all ui ’s. We can

actually choose (k−1)|X | distinct colorful selections of ui ’s. With e(X ), there are in total

(k −1)|X |+1 edges.

If |X | ≥ 3, then (k−1)|X |+1 ≥ (k−1)2+2. If |X | = 2, there exists j ≤ 3 such that |X∩V j | = 0.

If |V j | ≥ 3, then at least |V j | −2 ≥ 1 edges are needed to cover the vertices of V j not

belonging to these (k −1)|X |+1 edges. Otherwise, |V j | = 2 and we have j ≥ n − z +1

and k = 3. In this case, we have thus k −1 ≥ z ≥ n −2, i.e. n = 4 and z = 2. Ω is then a

(3,3,2,2)-octahedral system and (k −1)|X |+1 = 5.

While Lemma 5.2.12 is similar to Lemma 5.2.11, we were not able to find a common

generalization.

Lemma 5.2.12. Consider a (m1, . . . ,mn−k ,

k−z times︷ ︸︸ ︷
k, . . . ,k ,

z times︷ ︸︸ ︷
k −1, . . . ,k −1)-octahedral system

Ω⊆V1 ×·· ·×Vn without isolated vertices, with m1 ≥ ·· · ≥ mn−k ≥ k ≥ 3 and 0 ≤ z < k ≤
n. If there is a subset X ⊆⋃n−z

i=1 Vi of cardinality at least 2 inducing in D(Ω) a complete

subgraph without outneighbors, thenΩ has at least (k −1)2 +|V1|+ |V2|−2k +1 edges.

Proof. Choose i∗ such that X ∩Vi∗ 6= ;. Choose Wi∗ ⊆ Vi∗ \ X of cardinality k − 1.
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For each vertex w ∈ Wi∗ , choose an edge e(w) containing w . Let v∗ be the vertex

v∗ minimizing the degree in Ω over V1 \ X . Since X induces a complete subgraph

without outneighbors, there is at least one edge disjoint from X containing v∗. We can

therefore assume that there is a vertex w∗ ∈Wi∗ such that e(w∗) contains v∗. Choose

Wi ⊆Vi for i 6= i∗ such that |Wi | = k −1 and

⋃
w∈Wi∗

e(w) ⊆W =
n⋃

i=1
Wi .

Case (a): the degree of v∗ in Ω is at most k −2. For all w ∈ Wi∗ , applying the parity

property to e(w), the unique vertex of X ∩Vi∗ , and k −2 disjoint i∗-transversals in W

yields (k−1)2 distinct edges, in a similar way as in Case (a) of the proof of Lemma 5.2.11.

Applying the weak form of the parity property to e(w∗), any 1-transversal in W not

intersecting the neighborhood of v∗ inΩ, and each vertex in V1 \W1 gives |V1|−k +1

additional edges not intersecting V2 \ W2. In addition, |V2|−k +1 edges are needed

to cover the vertices of V2\W2. In total we have at least (k−1)2+|V1|+|V2|−2(k−1) edges.

Case (b): the degree of v∗ inΩ is at least k−1. We have then at least (k−1)(|V1|−1)+1 =
(k −1)2 + (k −1)(|V1|−k)+1 ≥ (k −1)2 +|V1|+ |V2|−2k +1 edges.

Lemma 5.2.13. Consider a (m1, . . . ,mn−k ,

k−z times︷ ︸︸ ︷
k, . . . ,k ,

z times︷ ︸︸ ︷
k −1, . . . ,k −1)-octahedral system

Ω⊆V1 ×·· ·×Vn without isolated vertices, with m1 ≥ ·· · ≥ mn−k ≥ k ≥ 3 and 0 ≤ z < k ≤
n. If there are at least two vertices of V1 having outneighbors in D(Ω) in the same Vi∗

with i∗ > n −k +1, then the octahedral system has at least |Vi∗ |(k −1)+|V1|+ |V2|−2k

edges.

Proof. Let v and v ′ be the two vertices of V1 having outneighbors in Vi∗ . Let u and

u′ be the two vertices in Vi∗ with (v,u) and (v ′,u′) forming arcs in D(Ω). Note that

according to the basic properties of D(Ω), we have u 6= u′. For each vertex w ∈ Vi∗ ,

choose an edge e(w) containing w . We can assume that there is a vertex w∗ ∈Vi∗ such

that e(w∗) contains a vertex v∗ in V1 of minimal degree inΩ.

Case (a): |Vi∗ | = k. Choose Wi ⊆ Vi such that |Wi | = k for i ∈ [n − z], |Wi | = k −1 for

i ∈ {n − z +1, . . . ,n}, and ⋃
w∈Vi∗

e(w) ⊆W =
n⋃

i=1
Wi .
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We first show that the degree of any vertex in Vi∗ is at least k −1 in the hypergraph

induced by W . Pick w ∈ Vi∗ and consider e(w). If v ∈ e(w), take k − 2 disjoint i∗-

transversals in W not containing v ′ and not intersecting with e(w). In this case, we

necessarily have w 6= u′ since v ′ ∉ e(w). Applying the weak form of the parity property

to e(w), u′, and each of those i∗-transversals yields, in addition to e(w), at least k −2

edges containing w . Otherwise, take k −2 disjoint i∗-transversals in W not containing

v and not intersecting with e(w), and apply the weak form of the the parity property to

e(w), u, and each of those i∗-transversals. Therefore, in both cases, the degree of w in

the hypergraph induced by W is at least k −1.

Then, we add edges not contained in W . If the degree of v∗ in Ω is at least 2, there

are at least 2(|V1|−k) distinct edges intersecting V1 \ W1. Otherwise, the weak form

of the parity property applied to e(w∗), any 1-transversal in W , and each vertex in

V1 \W1 provides |V1|−k additional edges not intersecting V2 \W2. Therefore, |V2|−k

additional edges are needed to cover these vertices of V2 \W2.

In total, we have at least k(k −1)+|V1|+ |V2|−2k edges.

Case (b): |Vi∗ | = k −1. Choose Wi ⊆Vi such that |Wi | = k −1 for i ∈ {2, . . . ,n, |W1| = k,

and ⋃
w∈Vi∗

e(w) ⊆W =
n⋃

i=1
Wi .

Similarly, we show that the degree of any vertex in Vi∗ is at least k −1 in the hyper-

graph induced by W . Pick w ∈ Vi∗ and consider e(w). If v ∈ e(w), take k −2 disjoint

i∗-transversals in W not containing v ′ and not intersecting with e(w). Applying the

weak form of the parity property to e(w), u′, and each of those i∗-transversals yields,

in addition to e(w), at least k −2 edges containing w . Otherwise, take k −2 disjoint

i∗-transversals in W not containing v and not intersecting with e(w), and apply the

weak form of the the parity property to e(w), u, and each of those i∗-transversals.

Therefore, in both cases, the degree of w in the hypergraph induced by W is at least

k −1.

Then, we add edges not contained in W . If the degree of v∗ in Ω is at least 2, there

are at least 2(|V1|−k) distinct edges intersecting V1 \ W1. Otherwise, the weak form

of the parity property applied to e(w∗), any 1-transversal in W , and each vertex in

V1 \W1 provides |V1|−k additional edges not intersecting V2 \W2. Therefore, |V2|−k+1

additional edges are needed to cover these vertices of V2 \W2.
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Figure 5.3: The vertex set of the (m1, . . . ,mn−k ,k, . . . ,k,k−1, . . . ,k−1)-octahedral system
Ω⊆V1 ×·· ·×Vn used for the proof of Proposition 5.2.14

In total, we have at least (k −1)2 +|V1|+ |V2|−2k edges.

The following proposition is proved by induction on the cardinality of the Vi ’s, for

octahedral systems of the form illustrated in Figure 5.3. Either the deletion of a vertex

results in an octahedral system satisfying the condition of Proposition 5.2.14 and we

can apply induction, or we apply Lemma 5.2.12 or Lemma 5.2.13 to bound the number

of edges of the system. Lemma 5.2.10 is a key tool to determine if the deletion of a

vertex results in an octahedral system satisfying the condition of Proposition 5.2.14.

Proposition 5.2.14. A (m1, . . . ,mn−k ,

k−z times︷ ︸︸ ︷
k, . . . ,k ,

z times︷ ︸︸ ︷
k −1, . . . ,k −1)-octahedral system Ω ⊆

V1 ×·· ·×Vn without isolated vertices, with m1 ≥ ·· · ≥ mn−k ≥ k ≥ 2 and 0 ≤ z < k ≤ n,

has at least
1
2 k2 + 1

2 k −8+|V1|+ |V2|− z edges if k ≤ n −2,
1
2 n2 + 1

2 n −10+|V1|− z edges if k = n −1,
1
2 n2 + 5

2 n −11− z edges if k = n.

Before proving this proposition, we note that Theorem 5.2.9 can be deduced from this

proposition, by setting k = m and z = 0.

104



5.2. Lower bounds

Proof of Proposition 5.2.14. The proof works by induction on
∑n

i=1 |Vi |. The base case

is
∑n

i=1 |Vi | = 2n, which implies z = 0 and k = |V1| = |V2| = 2. The three inequalities

trivially hold in this case.

Suppose that
∑n

i=1 |Vi | > 2n. We choose a pair (k, z) compatible with Ω. Note that

(k, z) is not necessarily unique. If k = 2, Proposition 5.2.3 proves the inequality. We

can thus assume that k ≥ 3. We consider the two possible cases for the associated D(Ω).

If there are at least two vertices of V1 having an outneighbor in the same Vi∗ , with

i∗ > n −k +1, we can apply Lemma 5.2.13. If k ≤ n −2, the inequality follows by a

straightforward computation, using that z ≥ 1 when |Vi∗ | = k −1; if k = n −1, we use

the fact that |V2| = n −1; and if k = n, we use the fact that |V2| ≥ n −1 and |V1| = n.

Otherwise, for each i > n−k+1, there is at most one vertex of V1 having an outneighbor

in Vi . Since k −1 < |V1|, there is a vertex x of V1 having no outneighbors in
⋃n

i=n−k+2 Vi .

Starting from x in D(Ω), we follow outneighbors until we reach a set X inducing a

complete subgraph of D(Ω) without outneighbors. Since D(Ω) is transitive, we have

X ⊆⋃n−k+1
i=1 Vi . If |X | ≥ 2, we apply Lemma 5.2.12. Thus, we can assume that |X | = 1.

The subhypergraph Ω′ of Ω induced by
(⋃n

i=1 Vi
)

\ X is an octahedral system with-

out isolated vertices since X is a single vertex without outneighbors in D(Ω), see

Lemma 5.2.10. Recall that the vertex in X belongs to
⋃n−k+1

i=1 Vi . Let (k ′, z ′) be possible

parameters associated to Ω′ determined hereafter. Let i0 be such that X ⊆ Vi0 . The

induction argument is applied to the different values of |Vi0 |. It provides a lower bound

on the number of edges inΩ′; adding 1 to this lower bound, we get a lower bound on

the number of edges inΩ since there is at least one edge containing X .

If |Vi0 | ≥ k +1, we have (k ′, z ′) = (k, z) and we can apply the induction hypothesis with

|V1|+ |V2| decreasing by at most one (in case i0 = 1 or 2) which is compensated by the

edge containing X .

If |Vi0 | = k, z ≤ k −2, and k ≤ n −1, we have (k ′, z ′) = (k, z +1) and we can apply the

induction hypothesis with same |V1| and |V2| since z ≤ n −3, while z ′ replacing z takes

away 1 which is compensated by the edge containing X .
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If |Vi0 | = k, z = k − 1, and k ≤ n − 2, we have (k ′, z ′) = (k − 1,0) and we can apply

the induction hypothesis with same |V1| + |V2| since z ≤ n − 3. We get therefore
1
2 (k − 1)2 + 1

2 (k − 1)− 8+ |V1| + |V2| edges in Ω′, plus at least one containing X . In

total, we have 1
2 k2 + 1

2 k −8+|V1|+ |V2|−k +1 edges inΩ, as required.

If |Vi0 | = k, z = k − 1, and k = n − 1, we have (k ′, z ′) = (n − 2,0) and we can apply

the induction hypothesis with |V1| + |V2| decreasing by at most one. We get there-

fore 1
2 (n −2)2 + 1

2 (n −2)−8+ |V1| + |V2| −1 edges in Ω′, plus at least one containing

X . Since |V2| = n−1, we have in total 1
2 n2+ 1

2 n−10+|V1|−(n−2) edges inΩ, as required.

If |Vi0 | = k, z = k −1, and k = n, we have i0 = n and (k ′, z ′) = (n −1,0). We can apply

the induction hypothesis and get therefore 1
2 n2 + 1

2 n −10+ (n −1) edges in Ω′, plus

at least one containing X . In total, we have 1
2 n2+ 5

2 n−11−(n−1) edges inΩ, as required.

If |Vi0 | = k, z ≤ k − 2, and k = n, we have i0 = 1. For Ω′, the pair (k ′, z ′) = (n, z + 1)

provides possible parameters. Note that in this case, the colors must be renumbered

to keep them with non-decreasing sizes from 1 to n for Ω′. We can then apply the

induction hypothesis and get therefore 1
2 n2 + 5

2 n −11− z −1 edges inΩ′, plus at least

one containing X . In total, we have 1
2 n2 + 5

2 n −11− z edges inΩ, as required.

5.3 The colorful simplicial depth conjecture

5.3.1 Proof of the original conjecture

Recall that µ(d) denotes the minimal number of positively dependent colorful sets

over all colorful point configurations S1, . . . ,Sd+1 in Rd such that 0 ∈ conv(Si ) and

|Si | = d +1 for all i ∈ [d +1]. The colorful Carathéodory theorem states that µ(d) ≥ 1.

The strong version of the colorful Carathéodory theorem, i.e. Theorem 1.2.4 given

in Section 1.2, shows that µ(d) ≥ d +1. The quantity µ(d) has been investigated by

Deza et al. [17]. They proved that 2d ≤µ(d) ≤ d 2+1 and conjectured that µ(d) = d 2+1.

Later Bárány and Matoušek [4] proved that µ(d) ≥ max
(
3d ,

⌈d(d+1)
5

⌉)
for d ≥ 3, Stephen

and Thomas [50] proved that µ(d) ≥ ⌊ (d+2)2

4

⌋
, and Deza et al. [19] showed that µ(d) ≥⌈ (d+1)2

2

⌉
. Deza et al. [20] improved the bound to 1

2 d 2 + 7
2 d −8 for d ≥ 4.

Theorem 5.3.1. The equality µ(d) = d 2 +1 holds for every integer d ≥ 1.

Proof. The inequality µ(d) ≤ d 2+1 is proved in [17]. Let S1, . . . ,Sd+1 be a colorful point
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configuration in Rd . As explained in Section 4.1.1, the set Ω ⊆ V1 ×·· ·×Vd+1, with

Vi = Si for all i ∈ [d +1] and whose edges correspond to the colorful sets containing 0
in their convex hulls, is an octahedral system. According to [2, Theorem 2.3.], all the

classes are covered in this octahedral system. Applying Theorem 5.2.5 with k = n = d+1

gives the lower bound: µ(d) ≥ d 2 +1.

5.3.2 A more general conjecture

Theorem 5.3.1 deals with colorful point configuration satisfying the conditions of the

colorful Carathéodory theorem, with all Si of size d + 1. The following conjecture

generalizes the one given in Introduction. If it were true, it would generalize this result

to colorful point configurations of arbitrary size.

Conjecture 5.3.2. Consider a colorful point configuration with |S1| ≥ · · · ≥ |Sd+1| ≥ 2.

Any point p ∈⋂d+1
i=1 conv(Si ) is contained in the convex hulls of at least

min
0≤c≤k≤d+1

c≤|Sk+1|

k∑
i=1

(|Si |−2)+2c +|Sd+1|
(|Sk+1|− c

)
,

colorful simplices, with the convention |Sd+2| = 1.

This combinatorial counterpart of this conjecture is the following. Conjecture 5.3.2 is

an immediate corollary of this combinatorial version.

Conjecture 5.3.3. Consider an octahedral system Ω ⊆ V1 × ·· · ×Vn with |V1| ≥ · · · ≥
|Vn | ≥ 2. If every class is covered inΩ, then

|Ω| ≥ min
0≤c≤k≤d+1

c≤|Sk+1|

k∑
i=1

(|Vi |−2)+2c + (|Vk+1|− c
)×|Vn |,

with the convention |Vn+1| = 1.

In other words, we conjecture that the upper bound given in Proposition 5.1.1 is tight.

As for the proof of Theorem 5.2.5, the case whenΩ can be written as a sum of umbrellas

with no umbrellas of color V1 is settled by Proposition 5.2.2. The proof of the remaining

cases seem to need finer inequalities than the one used for Theorem 5.2.5.
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facet, 22

polytope, 22

vertex, 22

positively dependent, 20

PPAD, see complexity

Rota’s conjecture, 54
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