Corrigé de l'examen d'analyse du 5 février 2010

Problème de l'obstacle

Question 1. Evident.

Question 2. Par définition, $\int |\nabla \varphi|^2 \leq \|\varphi\|_{H^1}^2$. Par ailleurs, l'inégalité de Poincaré indique que, pour tout $\varphi \in H_0^1(\Omega)$, on a $\|\varphi\|_{L^2} \leq C_{\Omega} \|\nabla \varphi\|_{L^2}$. On a donc bien

$$\alpha \|\varphi\|_{H^1}^2 \le J(\varphi) \le \beta \|\varphi\|_{H^1}^2,$$

avec $\beta=1/2$ et $\alpha=1/(2(1+C_{\Omega}^2)).$

L'application $\varphi, \psi \mapsto \langle \varphi, \psi \rangle_J := \int_{\Omega} \nabla \varphi \cdot \nabla \psi$ est bilinéaire, symétrique, et positive. De plus, l'inégalité ci-dessus montre que, si $\langle \varphi, \varphi \rangle_J = 0$, alors $\varphi = 0$. Cette application est donc bien un produit scalaire sur $H^1_0(\Omega)$, qui induit une norme pour laquelle $H^1_0(\Omega)$ est encore un espace de Hilbert.

Question 3.

3a Il est clair que $g \in \mathcal{P}$. On vérifie facilement que \mathcal{P} est convexe.

3b Par construction, φ_n converge vers φ^* dans $L^2(\Omega)$, donc

$$\left| \int_{\Omega} \varphi_n \phi - \int_{\Omega} \varphi^* \phi \right| \leq \int_{\Omega} |\varphi_n - \varphi^*| \ |\phi| \leq \|\varphi_n - \varphi^*\|_{L^2} \ \|\phi\|_{L^2} \to_{n \to \infty} 0.$$

Par conséquent,

$$\int_{\Omega} (\varphi^* - g)\phi = \lim_{n \to \infty} \int_{\Omega} (\varphi_n - g)\phi \ge 0,$$

qui est un nombre positif ou nul comme limite d'une suite de nombres positifs ou nuls. Soit maintenant φ_n une suite d'éléments de \mathcal{P} qui converge vers $\varphi^* \in H^1_0(\Omega)$ dans $H^1_0(\Omega)$. On vient donc de montrer que, pour tout $\phi \in H^1_0(\Omega)$ vérifiant $\phi(x) \geq 0$ p.p. sur Ω , on a

$$\int_{\Omega} (\varphi^* - g)\phi \ge 0,$$

ce qui implique, en utilisant la propriété admise à la Question 1, que $\varphi^* \geq g$ presque partout. Donc $\varphi^* \in \mathcal{P}$, qui est donc un ensemble fermé dans $H_0^1(\Omega)$.

Question 4. On note $\|\cdot\|_J$ la norme associée au produit scalaire $\langle\cdot,\cdot\rangle_J$. On voit que $J(\varphi) = \frac{1}{2} \|\varphi\|_J^2$, donc le problème (1) s'écrit aussi $\inf_{\varphi \in K} \|\varphi - u\|_J$, pour u = 0, $H = H_0^1(\Omega)$ muni du produit scalaire $\langle\cdot,\cdot\rangle_J$, et $K = \mathcal{P}$.

Le théorème rappelé dans l'énoncé donne l'existence et l'unicité d'une solution au problème (1), notée v^* .

Question 5. Par construction, on voit que $v^* + \alpha \phi$ est dans l'espace \mathcal{P} . Donc

$$J(v^* + \alpha \phi) > \inf \{J(\varphi); \ \varphi \in \mathcal{P}\} = J(v^*).$$

Or,

$$J(v^* + \alpha \phi) = J(v^*) + \frac{\alpha^2}{2} \int_{\Omega} |\nabla \phi|^2 + \alpha \int_{\Omega} \nabla v^* \cdot \nabla \phi.$$

Ainsi, pour tout $\alpha \geq 0$, on a

$$\frac{\alpha^2}{2} \int_{\Omega} |\nabla \phi|^2 + \alpha \int_{\Omega} \nabla v^* \cdot \nabla \phi \ge 0.$$

En divisant par α et en passant à la limite $\alpha \to 0$, on obtient l'inégalité démandée.

Question 6.

6a En distinguant les cas $u(x) \ge 0$ ou $u(x) \le 0$, on montre que $u_+(x)u_-(x) = 0$ presque partout. Donc

$$\int_{\Omega} u^2(x) dx = \int_{\Omega} (u_+ - u_-)^2 = \int_{\Omega} (u_+)^2 + \int_{\Omega} (u_-)^2 \ge \int_{\Omega} (u_+)^2,$$

ce qui montre que $u_+ \in L^2(\Omega)$.

6b En écrivant $u = u_+ - u_-$, on a

$$||u - w||_{L^{2}}^{2} = ||u_{+} - w_{+}||_{L^{2}}^{2} + ||u_{-} - w_{-}||_{L^{2}}^{2} - 2 \int_{\Omega} (u_{+} - w_{+}) (u_{-} - w_{-})$$

$$= ||u_{+} - w_{+}||_{L^{2}}^{2} + ||u_{-} - w_{-}||_{L^{2}}^{2} + 2 \int_{\Omega} u_{+} w_{-} + 2 \int_{\Omega} w_{+} u_{-}$$

$$\geq ||u_{+} - w_{+}||_{L^{2}},$$

en utilisant que les 3 derniers termes de la seconde ligne sont positifs ou nuls.

Question 7. Comme $\phi \in \mathcal{D}(\Omega)$, on peut se ramener à la manipulation de distributions. Donc

$$\int_{\Omega} \nabla v \cdot \nabla \phi = \langle \nabla v, \nabla \phi \rangle = -\langle \Delta v, \phi \rangle = -\int_{\Omega} \phi \Delta v,$$

où on a utilisé à la dernière étape que $\Delta v \in L^2(\Omega)$. En utilisant la densité de $\mathcal{D}(\Omega)$ dans $H_0^1(\Omega)$, on généralise cette égalité à tout $\phi \in H_0^1(\Omega)$.

Question 8.

8a En utilisant le résultat de la Question 7, on obtient que, pour tout $\phi \in H_0^1(\Omega)$,

$$\int_{\Omega} p^* \phi = -\int_{\Omega} \Delta v^* \phi = \int_{\Omega} \nabla v^* \cdot \nabla \phi.$$

On choisit maintenant $\phi \in H^1_0(\Omega)$ telle que $\phi(x) \geq 0$ p.p. dans Ω . La Question 5 indique que $\int_{\Omega} \nabla v^* \cdot \nabla \phi \geq 0$, donc $\int_{\Omega} p^* \phi \geq 0$.

8b On utilise à nouveau la réciproque admise à la Question 1 pour déduire de la question précédente que $p^*(x) \ge 0$ presque partout. On distingue maintenant deux cas.

Si $v^*(x) > g(x)$, l'énoncé indique que $-\Delta v^*(x) = 0$, soit $p^*(x) = 0$. Par ailleurs, $\max(0, p^*(x) + \mu(g(x) - v^*(x))) = \max(0, \mu(g(x) - v^*(x))) = 0$, donc on a bien, en un tel x, l'égalité $p^* = [p^* + \mu(g - v^*)]_+$.

Si $v^*(x) = g(x)$, alors $\max(0, p^*(x) + \mu(g(x) - v^*(x)) = \max(0, p^*(x)) = p^*(x)$, et à nouveau, en un tel x, on a l'égalité $p^* = [p^* + \mu(g - v^*)]_+$.

Question 9. On calcule

$$\mathcal{L}(\varphi,q) = \frac{1}{2} \int_{\Omega} |\nabla \varphi|^2 - \int_{\Omega} \varphi q + \int_{\Omega} g q.$$

On est exactement dans le cadre de la section 9.3 du polycopié. Minimiser \mathcal{L} par rapport à φ (à q fixé) est équivalent à trouver $v \in H_0^1(\Omega)$ tel que $-\Delta v - q = 0$ dans $\mathcal{D}'(\Omega)$. On sait par le cours que ce problème admet une unique solution.

Le problème (9) est plus facile à résoudre que le problème (1) car il s'agit d'un problème d'optimisation sans contrainte.

Question 10.

10a Comme $p_0 \in L^2(\Omega)$, la fonction v_0 est bien définie dans $H_0^1(\Omega)$. On montre maintenant par récurrence que les fonctions v_n et p_n sont bien définies, respectivement dans $H_0^1(\Omega)$ et $L^2(\Omega)$. C'est vrai pour n=0.

On a $p_n + \mu(g - v_n) \in L^2(\Omega)$, donc, en utilisant la Question 6a et la définition (11), on obtient que $p_{n+1} \in L^2(\Omega)$. Par conséquent, le problème (10), à l'étape n+1, est bien posé et définit bien une unique fonction $v_{n+1} \in H_0^1(\Omega)$. Ceci conclut la récurrence.

Les équations (10) et (11) sont respectivement motivées par la définition (7) et la relation (8).

10b Pour tout $\phi \in H_0^1(\Omega)$, on a

$$\int_{\Omega} \nabla v^* \cdot \nabla \phi = \int_{\Omega} p^* \phi \quad \text{et} \quad \int_{\Omega} \nabla v_n \cdot \nabla \phi = \int_{\Omega} p_n \phi.$$

On fait la différence entre ces deux équations, et on choisit $\phi = v^* - v_n$, ce qui donne

$$\int_{\Omega} (\nabla v^* - \nabla v_n) \cdot (\nabla v^* - \nabla v_n) = \int_{\Omega} (p^* - p_n) (v^* - v_n).$$

10c En utilisant (11) et (8) puis la Question 6b, on obtient

$$||p_{n+1} - p^*||_{L^2} = ||[p_n + \mu(g - v_n)]_+ - [p^* + \mu(g - v^*)]_+||_{L^2}$$

$$\leq ||(p_n + \mu(g - v_n)) - (p^* + \mu(g - v^*))||_{L^2}$$

$$\leq ||(p_n - p^*) - \mu(v_n - v^*)||_{L^2}.$$

Donc

$$||p_{n+1} - p^*||_{L^2}^2 \le ||(p_n - p^*) - \mu(v_n - v^*)||_{L^2}^2$$

$$\le ||p_n - p^*||_{L^2}^2 + \mu^2 ||v_n - v^*||_{L^2}^2 - 2\mu \int_{\Omega} (p_n - p^*) (v_n - v^*)$$

$$\le ||p_n - p^*||_{L^2}^2 + \mu^2 ||v_n - v^*||_{L^2}^2 - 2\mu ||\nabla v_n - \nabla v^*||_{L^2}^2$$

en utilisant la Question 10b. L'inégalité de Poincaré donne

$$||v_n - v^*||_{H^1}^2 \le (1 + C_{\Omega}^2) ||\nabla v_n - \nabla v^*||_{L^2}^2,$$

donc

$$||p_{n+1} - p^*||_{L^2}^2 \le ||p_n - p^*||_{L^2}^2 + \mu^2 ||v_n - v^*||_{H^1}^2 - \frac{2\mu}{1 + C_0^2} ||v_n - v^*||_{H^1}^2,$$

ce qui est la majoration demandée avec $C = 2/(1 + C_{\Omega}^2)$.

10d On pose $\mu_c = C/2$, si bien que, dès que $0 < \mu \le \mu_c$, on a $\mu^2 - \mu C < 0$, et donc la suite $\|p_n - p^*\|_{L^2}^2$ est décroissante. Cette suite converge donc vers un réel ℓ . La majoration obtenue à la question précédente s'écrit aussi

$$(\mu C - \mu^2) \|v_n - v^*\|_{H^1}^2 \le \|p_n - p^*\|_{L^2}^2 - \|p_{n+1} - p^*\|_{L^2}^2.$$

Comme $\mu C - \mu^2 > 0$, on obtient $\lim_{n \to \infty} ||v_n - v^*||_{H^1} = 0$.

Principe d'incertitude d'Heisenberg

Question 1. On a

$$\operatorname{Re}\left(\int_{\mathbb{R}} -x \, \varphi^*(x) \frac{d\varphi}{dx}(x) \, dx\right) = -\frac{1}{2} \left(\int_{\mathbb{R}} \left\{ x \, \varphi^*(x) \frac{d\varphi}{dx}(x) + x \, \varphi(x) \frac{d\varphi^*}{dx}(x) \right\} \, dx\right)$$

$$= -\frac{1}{2} \int_{\mathbb{R}} x \, \frac{d|\varphi|^2}{dx}(x) \, dx$$

$$= \int_{\mathbb{R}} \frac{|\varphi|^2}{2}(x) \, dx$$

où on a utilisé une intégration par partie à la troisième ligne.

Question 2. On a

$$\int_{\mathbb{R}} \left| \frac{d\varphi}{dx}(x) \right|^2 dx = \frac{1}{2\pi} \int_{\mathbb{R}} \left| \frac{\widehat{d\varphi}}{dx}(\xi) \right|^2 d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} |i\xi\widehat{\varphi}(\xi)|^2 d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} \xi^2 |\widehat{\varphi}(\xi)|^2 d\xi.$$

Question 3. Pour deux fonctions à valeurs complexes $f, g \in L^2(\mathbb{R}; \mathbb{C})$, on rappelle que

$$\left| \int_{\mathbb{R}} f^* g \right| \le \left(\int_{\mathbb{R}} |f|^2 \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} |g|^2 \right)^{\frac{1}{2}}.$$

Ainsi on a

$$\int_{\mathbb{R}} \frac{|\varphi|^2}{2}(x) dx = \operatorname{Re} \left(\int_{\mathbb{R}} -x \, \varphi^*(x) \frac{d\varphi}{dx}(x) \, dx \right) \\
\leq \left| \left(\int_{\mathbb{R}} -x \, \varphi^*(x) \frac{d\varphi}{dx}(x) \, dx \right) \right| \\
\leq \left(\int_{\mathbb{R}} |x\varphi(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} \left| \frac{d\varphi}{dx}(x) \right|^2 \, dx \right)^{\frac{1}{2}} \\
\leq \left(\int_{\mathbb{R}} |x\varphi(x)|^2 \, dx \right)^{\frac{1}{2}} \left(\frac{1}{2\pi} \int_{\mathbb{R}} \xi^2 |\hat{\varphi}(\xi)|^2 \, d\xi \right)^{\frac{1}{2}}.$$

Cela donne

$$\left(\int_{\mathbb{R}} \xi^2 |\hat{\varphi}(\xi)|^2 d\xi\right)^{\frac{1}{2}} \left(\int_{\mathbb{R}} x^2 |\varphi(x)|^2 dx\right)^{\frac{1}{2}} \ge \sqrt{\frac{\pi}{2}} \left(\int_{\mathbb{R}} |\varphi|^2\right),$$

qui est exactement l'inégalité recherchée.

Question 4. Soit $\varphi \in F$ et une suite $\varphi_n \in \mathcal{D}(\mathbb{R})$ de fonctions telles que

$$\|\varphi - \varphi_n\|_F \to 0$$
 quand $n \to +\infty$.

Pour tout $\psi \in F$, on a

$$\|\psi\|_{F}^{2} = \int_{\mathbb{R}} \left| \frac{d\psi}{dx}(x) \right|^{2} dx + \int_{\mathbb{R}} |\psi(x)|^{2} dx + \int_{\mathbb{R}} x^{2} |\psi(x)|^{2} dx$$
$$= \sum_{i=1,2,3} a_{i}(\psi,\psi)$$

avec

$$\begin{cases} a_1(\psi,\zeta) = \frac{1}{2\pi} \int_{\mathbb{R}} \xi^2 \hat{\psi}^*(\xi) \hat{\zeta}(\xi) \ d\xi \\ a_2(\psi,\zeta) = \int_{\mathbb{R}} \psi^*(x) \zeta(x) \ dx \\ a_3(\psi,\zeta) = \int_{\mathbb{R}} x^2 \psi^*(x) \zeta(x) \ dx \end{cases}$$

Les formes hermitiennes a_i vérifient l'inégalité de Cauchy-Schwarz et donc leurs seminormes associées $N_i(\psi) = \sqrt{a_i(\psi,\psi)}$ vérifient l'inégalité triangulaire. Par conséquent,

$$|N_i(\varphi) - N_i(\varphi_n)| \le N_i(\varphi - \varphi_n) \le ||\varphi - \varphi_n||_F$$
.

Or l'inégalité vérifiée par φ_n s'écrit

$$N_1(\varphi_n)N_3(\varphi_n) \ge \frac{1}{2}(N_2(\varphi_n))^2.$$

On obtient donc simplement le résultat en passant à la limite.

Question 5. En utilisant l'indication, on montre que

$$\int_{\mathbb{R}} \psi^{2}(x) \, dx = \int_{\mathbb{R}} \left(\frac{a}{\pi}\right)^{\frac{1}{2}} e^{-ax^{2}} \, dx = 1.$$

Donc

$$\int_{\mathbb{R}} x^2 \psi^2 = \left(\frac{a}{\pi}\right)^{\frac{1}{2}} \int_{\mathbb{R}} x^2 e^{-ax^2} = -\left(\frac{a}{\pi}\right)^{\frac{1}{2}} \frac{d}{da} \left(\int_{\mathbb{R}} e^{-ax^2}\right) = -\left(\frac{a}{\pi}\right)^{\frac{1}{2}} \frac{d}{da} \left(\left(\frac{\pi}{a}\right)^{\frac{1}{2}}\right) = \frac{1}{2a}.$$

D'après le cours, on a $\hat{\psi}(\xi) = \left(\frac{a}{\pi}\right)^{\frac{1}{4}} \left(\frac{\pi}{\alpha}\right)^{\frac{1}{2}} e^{-\xi^2/(4\alpha)}$ avec $\alpha = a/2$, c'est-à-dire

$$\hat{\psi}(\xi) = \sqrt{2} \left(\frac{\pi}{a}\right)^{\frac{1}{4}} e^{-\xi^2/(2a)}.$$

Ainsi

$$\int_{\mathbb{R}} \xi^2 |\hat{\psi}|^2 = 2\left(\frac{\pi}{a}\right)^{\frac{1}{2}} \int_{\mathbb{R}} \xi^2 e^{-\xi^2/a} = 2\left(\frac{\pi}{a}\right)^{\frac{1}{2}} \frac{\pi^{\frac{1}{2}}}{2\beta^{\frac{3}{2}}} = \pi a,$$

avec $\beta = 1/a$. On a donc égalité dans l'inégalité démontrée à la Question 4.

Question 6. On a

$$\int_{\mathbb{R}} x |\psi(x)|^2 dx = \int_{\mathbb{R}} (x - c)|\varphi(x)|^2 dx = c - c \left(\int_{\mathbb{R}} |\varphi(x)|^2 dx \right) = 0.$$

De plus, $\hat{\psi}(\xi)=e^{i\xi c}\hat{\varphi}(\xi)$, donc $|\hat{\psi}(\xi)|=|\hat{\varphi}(\xi)|$. Par ailleurs, on a

$$\int_{\mathbb{R}} x^{2} |\psi(x)|^{2} dx = \int_{\mathbb{R}} (x - c)^{2} |\varphi(x)|^{2} dx
= \int_{\mathbb{R}} x^{2} |\varphi(x)|^{2} dx - 2c \left(\int_{\mathbb{R}} x |\varphi(x)|^{2} dx \right) + c^{2} \left(\int_{\mathbb{R}} |\varphi(x)|^{2} dx \right)
= \int_{\mathbb{R}} x^{2} |\varphi(x)|^{2} dx - 2c^{2} + c^{2}
= \int_{\mathbb{R}} x^{2} |\varphi(x)|^{2} dx - \left(\int_{\mathbb{R}} x |\varphi(x)|^{2} dx \right)^{2}.$$

En appliquant l'inégalité (11) de l'énoncé à la fonction ψ , on obtient alors :

$$\left\{ \frac{1}{2\pi} \int_{\mathbb{R}} \xi^2 |\hat{\varphi}(\xi)|^2 d\xi \right\}^{\frac{1}{2}} \cdot \left\{ \int_{\mathbb{R}} x^2 |\varphi(x)|^2 dx - \left(\int_{\mathbb{R}} x |\varphi(x)|^2 \right)^2 \right\}^{\frac{1}{2}} \ge \frac{1}{2}.$$

Question 7. De la même façon qu'à la Question 6, on a

$$\frac{1}{2\pi} \int_{\mathbb{R}} \xi |\hat{\theta}(\xi)|^2 d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} (\xi - p) |\hat{\varphi}(\xi)|^2 d\xi = p - p \left(\frac{1}{2\pi} \int_{\mathbb{R}} |\hat{\varphi}(\xi)|^2 d\xi \right) = 0.$$

De plus, $\theta(x) = e^{-ixp}\varphi(x)$, donc $|\theta(x)| = |\varphi(x)|$. Par ailleurs, on a

$$\frac{1}{2\pi} \int_{\mathbb{R}} \xi^{2} |\hat{\theta}(\xi)|^{2} d\xi = \frac{1}{2\pi} \int_{\mathbb{R}} (\xi - p)^{2} |\hat{\varphi}(\xi)|^{2} d\xi
= \frac{1}{2\pi} \int_{\mathbb{R}} \xi^{2} |\hat{\varphi}(\xi)|^{2} d\xi - 2p \left(\frac{1}{2\pi} \int_{\mathbb{R}} \xi |\hat{\varphi}(\xi)|^{2} d\xi\right) + p^{2} \left(\frac{1}{2\pi} \int_{\mathbb{R}} |\hat{\varphi}(\xi)|^{2} d\xi\right)
= \frac{1}{2\pi} \int_{\mathbb{R}} \xi^{2} |\hat{\varphi}(\xi)|^{2} d\xi - 2p^{2} + p^{2}
= \frac{1}{2\pi} \int_{\mathbb{R}} \xi^{2} |\hat{\varphi}(\xi)|^{2} d\xi - \left(\frac{1}{2\pi} \int_{\mathbb{R}} \xi |\hat{\varphi}(\xi)|^{2} d\xi\right)^{2}.$$

Question 8. En appliquant le résultat de la Question 6, on a

$$\left\{ \frac{1}{2\pi} \int_{\mathbb{R}} \xi^2 |\hat{\varphi}(\xi)|^2 d\xi \right\}^{\frac{1}{2}} \cdot \left\{ \int_{\mathbb{R}} x^2 |\varphi(x)|^2 dx - \left(\int_{\mathbb{R}} x |\varphi(x)|^2 \right)^2 \right\}^{\frac{1}{2}} \ge \frac{1}{2}.$$

En appliquant alors cette nouvelle inégalité à la fonction θ de la Question 7, on tire immédiatement le résultat demandé.

Question 9. On a directement

$$\left(\int_{\mathbb{R}} \widetilde{\rho}^{\alpha}\right)^{\frac{1}{\alpha}} \leq B_p^2 \left(\int_{\mathbb{R}} \rho^{\beta}\right)^{\frac{1}{\beta}}.$$

On remarque alors que $\alpha/(\alpha-1)=\beta/(1-\beta)$ et on élève les deux membres de l'inégalité à cette puissance.

Question 10. On a

$$\frac{1}{\alpha - 1} \ln \left(\int_{\mathbb{R}} \widetilde{\rho}^{\alpha} \right) + \frac{1}{\beta - 1} \ln \left(\int_{\mathbb{R}} \rho^{\beta} \right) \le \frac{2\alpha}{\alpha - 1} \ln B_p,$$

et donc

$$\frac{1}{\alpha - 1} \left[\ln \left(\frac{1}{2\pi} \int_{\mathbb{R}} \widetilde{\rho}^{\alpha} \right) - \ln \left(\frac{1}{2\pi} \int_{\mathbb{R}} \widetilde{\rho} \right) \right] + \frac{1}{\beta - 1} \left[\ln \left(\int_{\mathbb{R}} \rho^{\beta} \right) - \ln \left(\int_{\mathbb{R}} \rho \right) \right] \\
\leq \frac{2\alpha}{\alpha - 1} \ln B_p - \frac{1}{\alpha - 1} \ln(2\pi).$$

On remarque que

$$\int_{\mathbb{R}} \widetilde{\rho}^{\alpha}(x) \, dx = \int_{\mathbb{R}} \widetilde{\rho}(x) \, dx + (\alpha - 1) \int_{\mathbb{R}} \widetilde{\rho}(x) \ln \widetilde{\rho}(x) \, dx + o(\alpha - 1).$$

D'où en passant à la limite $\alpha \to 1, \, \beta \to 1,$ on tire l'inégalité demandée.