Quizz d'analyse

18 décembre 2007

documents non autorisés - durée 1 heure

Questions de cours (7 points)

- 1. Enoncer le théorème du point fixe de Picard.
- 2. Ecrire l'inégalité de Cauchy-Schwarz dans un espace de Hilbert, et l'expliciter pour $L^2(\Omega)$.
- 3. Donner la caractérisation de la continuité d'une application linéaire entre espaces vectoriels normés.
- 4. Enoncer le théorème de convergence dominée.
- 5. Donner la définition d'une distribution sur un ouvert Ω de \mathbb{R} .
- 6. Donner la définition de la convergence dans $\mathcal{D}'(\Omega)$.
- 7. Rappeler la formule des sauts (dérivée au sens des distributions d'une fonction C^1 par morceaux).

Questions d'application (7 points)

Répondre aux questions ci-dessous en justifiant brièvement la réponse (une ou deux phrases suffisent).

- 1. Soit $\gamma > 0$. On considère l'opérateur A qui à $f \in C^0(\mathbb{R})$ associe $g = Af \in C^0(\mathbb{R})$ défini par $g(t) = f(\gamma t)$ pour tout $t \in \mathbb{R}$. Montrer que $A \in \mathcal{L}(C^0(\mathbb{R}), C^0(\mathbb{R}))$ et que A est de norme 1.
- 2. Soit Ω le disque de rayon 1 dans \mathbb{R}^2 . Pour $x \in \mathbb{R}^2$, on considère la fonction $\frac{1}{|x|^{\alpha}}$. Pour quelles valeurs de α cette fonction est-elle dans $L^1(\Omega)$?
- 3. Soit $a \in \mathbb{R}^2$ et $v \in \mathbb{R}^2$. Identifier la limite dans $\mathcal{D}'(\mathbb{R}^2)$ de $T_{\varepsilon} = \frac{1}{\varepsilon} (\delta_{a+\varepsilon v} \delta_a)$.
- 4. Soit $v_n(x) = \frac{n}{1 + n^2 x^2}$ et $w_n(x) = \arctan nx$.
 - (a) Montrer que $(v_n)_{n\in\mathbb{N}}$ converge presque partout sur \mathbb{R} et identifier sa limite.
 - (b) Montrer que $(v_n)_{n\in\mathbb{N}}$ converge dans $L^1(]-\infty, -\alpha[\cup]\alpha, +\infty[)$ pour tout $\alpha>0$.
 - (c) Montrer que $(w_n)_{n\in\mathbb{N}}$ converge dans $\mathcal{D}'(\mathbb{R})$ vers $\frac{\pi}{2}\mathrm{sign}(x)$, où la fonction $\mathrm{sign}(x)$ est définie par $\mathrm{sign}(x) = 1$ si x > 0, et $\mathrm{sign}(x) = -1$ si $x \leq 0$.
 - (d) Calculer de deux façons différentes la limite de la suite $(v_n)_{n\in\mathbb{N}}$ dans $\mathcal{D}'(\mathbb{R})$.

Exercice (6 points)

Soit u et v les applications linéaires de $\mathcal{D}(\mathbb{R}^2)$ dans \mathbb{R} définies par

$$\forall \phi \in \mathcal{D}(\mathbb{R}^2) \quad \langle u, \phi \rangle = \int_0^\infty \phi(z, 2z) \, dz$$

$$\forall \phi \in \mathcal{D}(\mathbb{R}^2) \quad \langle v, \phi \rangle = \frac{1}{2} \int_0^{+\infty} \left(\int_{-t}^t \phi(x, t) \, dx \right) \, dt.$$

On rappelle que $\delta_{(0,0)}$ est la distribution définie par

$$\forall \phi \in \mathcal{D}(\mathbb{R}^2), \langle \delta_{(0,0)}, \phi \rangle = \phi(0,0).$$

- 1. Montrer que u et v sont des distributions.
- 2. Montrer que

$$\frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = \delta_{(0,0)}.$$

3. Montrer que

$$\frac{\partial^2 v}{\partial t^2} - \frac{\partial^2 v}{\partial x^2} = \delta_{(0,0)}.$$

4. (facultative). Quelle est la fonction $f \in L^1_{\mathrm{loc}}(\mathbb{R}^2)$ telle que

$$\forall \phi \in \mathcal{D}(\mathbb{R}^2), \quad \langle v, \phi \rangle = \int_{\mathbb{R}^2} f \phi ?$$

Représenter son support et en donner une interprétation physique.