Partiel d'analyse

6 janvier 2009

Documents non autorisés - Durée 1 heure

1 Questions de cours (7 points)

- 1. Donner la définition d'un espace de Hilbert, et donner un exemple en dimension infinie.
- 2. Soit H un espace de Hilbert muni du produit scalaire (\cdot, \cdot) , e_n une base hilbertienne de H et $x \in H$. Que peut-on dire des séries $\sum_{n \in \mathbb{N}} (x, e_n) e_n$ et

 $\sum_{n\in\mathbb{N}} |(x,e_n)|^2$? Donner leur limite le cas échéant.

- 3. Soient V et W deux espaces vectoriels normés. Proposer une norme sur $\mathcal{L}(V,W)$.
- 4. Enoncer le théorème du point fixe de Picard.
- 5. Enoncer le théorème de convergence dominée.
- 6. Soit Ω un ouvert de \mathbb{R}^d et $\phi: \Omega \to \mathbb{R}$ continue. Définir le support de ϕ .
- 7. Donner la définition d'une distribution sur un ouvert Ω de \mathbb{R} .

2 Questions d'application (6 points)

Répondre aux questions ci-dessous en justifiant brièvement la réponse.

- 1. Quelle est la mesure de Lebesgue de l'ensemble \mathbb{Q} ?
- 2. La fonction $f(t) = \frac{e^{-1/|t|}}{t}$ est-elle dans $L^1_{loc}(\mathbb{R})$? dans $L^1(\mathbb{R})$?
- 3. Soit p un réel dans $[1, +\infty[$. Donner une condition nécessaire et suffisante sur α pour que la fonction $f(x) = \frac{1}{|x|^{\alpha}}$ soit dans $L^p_{loc}(\mathbb{R}^3)$. On rappelle le changement de variables en coordonnées sphériques dans \mathbb{R}^3 :

$$\int_{\mathbb{R}^3} h(x)dx = \int_0^{+\infty} \int_0^{\pi} \int_0^{2\pi} h(r\sin\theta\cos\phi, r\sin\theta\sin\phi, r\cos\theta)r^2 dr\sin\theta d\theta d\phi$$

4. Soit $f: \mathbb{R}^+ \to \mathbb{R}$ continue et tendant vers un réel l en $+\infty$. Montrer que

1

$$\lim_{n \to +\infty} \int_0^\infty n \frac{f(t)}{n^2 + t^2} dt = \frac{\pi}{2} l$$

5. Parmi les applications $T: \mathcal{D}(\mathbb{R}) \to \mathbb{R}$ suivantes, déterminer celles qui définissent des distributions sur \mathbb{R} :

a)
$$\langle T, \phi \rangle = \int_{\mathbb{R}} |\phi(t)| dt$$

b)
$$\langle T, \phi \rangle = \sum_{n=0}^{\infty} \phi^{(n)}(n)$$

6. Calculer la limite dans $\mathcal{D}'(\mathbb{R})$ de la suite $T_n(x) = n \sin(nx) \mathbb{1}_{x \geq 0}$.

3 Exercice (7 points)

On rappelle le lemme de Hadamard :

Lemme. Soit $a \in \mathbb{R}$ et $\phi \in \mathcal{D}(\mathbb{R})$ tel que $\phi(a) = 0$. Alors il existe $\psi \in \mathcal{D}(\mathbb{R})$ tel que pour tout $x \in \mathbb{R}$, $\phi(x) = (x - a)\psi(x)$.

1. Soit a un réel. Montrer que $T \in \mathcal{D}'(\mathbb{R})$ vérifie (x-a)T = 0 si et seulement si il existe une constante C telle que $T = C\delta_a$.

Indication. On pourra définir une fonction $\rho \in \mathcal{D}(\mathbb{R})$ telle que $\rho(a) = 1$ et, pour toute fonction test $\phi \in \mathcal{D}(\mathbb{R})$, appliquer le lemme de Hadamard à $\theta(x) = \phi(x) - \phi(a)\rho(x)$.

2. Soient a et b deux réels, tels que $a \neq b$. Résoudre dans $\mathcal{D}'(\mathbb{R})$ l'équation

$$(x-a)T = \delta_b$$

3. Soit $a \in \mathbb{R}$. Résoudre dans $\mathcal{D}'(\mathbb{R})$ l'équation

$$(x-a)T = \delta_a$$

4. Soient a et b deux réels. A l'aide des questions précédentes, résoudre dans $\mathcal{D}'(\mathbb{R})$ l'équation

2

$$(x-a)(x-b)T = 0$$

On distinguera les cas a = b et $a \neq b$.

Indication. On pourra poser S = (x - b)T.