Éléments finis en dimension 1

Exercice 1 : estimation d'erreur en norme L^2

On considère le problème

$$\begin{cases} \text{Trouver } u \in H_0^1(\Omega) \text{ tel que} \\ \int_{\Omega} u'v' = \int_{\Omega} fv \quad \forall v \in H_0^1(\Omega), \end{cases}$$
 (1)

avec $\Omega =]0,1[$ et f une fonction donnée dans $L^2(\Omega)$. On approche ce problème avec la méthode des éléments finis de Lagrange \mathbb{P}_1 en utilisant un maillage uniforme de Ω de pas $h = \frac{1}{n+1}$, où n est un entier fixé, de sommets $x_j = jh$, $0 \le j \le n+1$, et de mailles $K_j = [x_j, x_{j+1}]$, $0 \le j \le n$. On introduit les espaces

$$V_h = \{ v_h \in C(\overline{\Omega}); \ v_h|_{[x_j, x_{j+1}]} \in \mathbb{P}_1, \ \forall 0 \le j \le n \},$$

$$V_{0h} = \{ v_h \in V_h; \ v_h(0) = v_h(1) = 0 \}.$$

On obtient le problème approché

$$\begin{cases}
\text{Trouver } u_h \in V_{0h} \text{ tel que} \\
\int_{\Omega} u'_h v'_h = \int_{\Omega} f v_h \quad \forall v_h \in V_{0h}.
\end{cases}$$
(2)

On rappelle l'estimation d'erreur

$$||u - u_h||_{H^1(\Omega)} \le C_{H^1} h ||f||_{L^2(\Omega)}.$$

Comme $||u-u_h||_{L^2(\Omega)} \leq ||u-u_h||_{H^1(\Omega)}$, on en déduit la même estimation d'erreur en norme L^2 . Toutefois, cette estimation n'est pas optimale et le but de cet exercice est de montrer une estimation d'erreur sur $||u-u_h||_{L^2(\Omega)}$ d'ordre 2 en h. Ce résultat, valable en toute dimension d'espace sous certaines hypothèses, porte le nom de lemme de Aubin-Nitsche.

1. On introduit le problème auxiliaire

$$\begin{cases}
\text{Trouver } \zeta \in H_0^1(\Omega) \text{ tel que} \\
\int_{\Omega} \zeta' v' = \int_{\Omega} (u - u_h) v \quad \forall v \in H_0^1(\Omega),
\end{cases}$$
(3)

où la donnée du problème est l'erreur. Montrer que

$$||u - u_h||_{L^2(\Omega)}^2 = \int_{\Omega} (u - u_h)'(\zeta - \mathcal{I}_h^{(1)}\zeta)',$$

où $\mathcal{I}_h^{(1)}$ est l'opérateur d'interpolation.

2. En déduire que

$$||u - u_h||_{L^2(\Omega)} \le C_{L^2} h^2 ||f||_{L^2(\Omega)}$$

avec une constante C_{L^2} que l'on précisera.

Exercice 2 : élément fini de Hermite

On considère un modèle de flexion d'une poutre de longueur unité (pour simplifier) et encastrée à ses deux extrémités. On pose $\Omega =]0,1[$ et on introduit l'espace

$$H_0^2(\Omega) = \{ v \in H^2(\Omega); \ v(0) = v(1) = 0; \ v'(0) = v'(1) = 0 \}.$$

On considère la formulation variationnelle

$$\begin{cases}
\text{Trouver } u \in H_0^2(\Omega) \text{ tel que} \\
\int_{\Omega} u''v'' = \int_{\Omega} fv \quad \forall v \in H_0^2(\Omega),
\end{cases}$$
(4)

où u est le déplacement vertical du point courant de la poutre et $f \in L^2(\Omega)$ la densité linéique du chargement vertical de la poutre.

- 1. Montrer que le problème (4) est bien posé. Que vaut u''''?
- 2. Soit n un entier positif. On considère un maillage uniforme de Ω de pas $h = \frac{1}{n+1}$. On introduit le sous-espace

$$W_{0h} := \{ v_h \in C^1(\overline{\Omega}); \ v_h|_{[x_i, x_{i+1}]} \in \mathbb{P}_3, \ \forall 0 \le j \le n; \ v_h(0) = v_h(1) = 0; \ v_h'(0) = v_h'(1) = 0 \}.$$

- a) Justifier pourquoi W_{0h} réalise une approximation conforme dans $H_0^2(\Omega)$.
- b) Montrer que tout polynôme de \mathbb{P}_3 est uniquement déterminé par sa valeur et celle de sa dérivée en deux points distincts.
- c) Construire deux familles de fonctions $\{\phi_1, \ldots, \phi_n\}$ et $\{\psi_1, \ldots, \psi_n\}$ de W_{0h} telles que, pour tout $1 \leq i, j \leq n$,

$$\phi_i(x_j) = \delta_{ij},$$
 $\phi'_i(x_j) = 0,$
 $\psi_i(x_j) = 0,$ $\psi'_i(x_j) = \delta_{ij},$

où δ_{ij} désigne le symbole de Kronecker. (Indication : on pourra considérer les fonctions de forme $\theta_1(t) = (1+2t)(1-t)^2$, $\theta_2(t) = t(1-t)^2$, $\theta_3(t) = t^2(3-2t)$ et $\theta_4(t) = t^2(t-1)$ définies pour $t \in [0,1]$.)

- d) Montrer que la famille $\{\phi_1, \ldots, \phi_n; \psi_1, \ldots, \psi_n\}$ forme une base de W_{0h} . Construire un opérateur d'interpolation $j_h: H_0^2(\Omega) \to W_{0h}$.
- 3. On désigne par u_h la solution approchée obtenue en considérant l'espace W_{0h} . Montrer la convergence de l'approximation à l'ordre deux en norme $\|\cdot\|_{H^2(\Omega)}$. Pour cela, on admettra qu'il existe une constante C telle que, pour tout $v \in H^4(\Omega) \cap H^2_0(\Omega)$,

$$\|(v-j_hv)''\|_{L^2(\Omega)} \le Ch^2\|v''''\|_{L^2(\Omega)}.$$

- 4. Soit $\mathcal{K}_h \in \mathbb{R}^{2n,2n}$ la matrice de rigidité.
 - a) Préciser la disposition des coefficients a priori non nuls de la matrice \mathcal{K}_h puis les évaluer.
 - b) On choisit maintenant d'ordonner les fonctions de la base de W_{0h} sous la forme

$$\{\phi_1, \psi_1, \phi_2, \psi_2, \dots, \phi_n, \psi_n\}.$$

Préciser la nouvelle disposition des coefficients non nuls dans la matrice de rigidité.

Corrigé

Exercice 1 : estimation d'erreur en norme L^2

1. On introduit la forme bilinéaire a sur $H_0^1(\Omega) \times H_0^1(\Omega)$ telle que

$$a(v,w) = \int_{\Omega} v'w'.$$

En prenant $v = u - u_h$ dans le problème auxiliaire, on constate que

$$||u - u_h||_{L^2(\Omega)}^2 = \int_{\Omega} (u - u_h)^2$$
$$= \int_{\Omega} (u - u_h)' \zeta' = a(u - u_h, \zeta).$$

Enfin, comme $\mathcal{I}_h^{(1)}\zeta\in V_{0h}$, on déduit de l'orthogonalité de Galerkine que

$$||u - u_h||_{L^2(\Omega)}^2 = a(u - u_h, \zeta) = a(u - u_h, \zeta - \mathcal{I}_h^{(1)}\zeta) = \int_{\Omega} (u - u_h)'(\zeta - \mathcal{I}_h^{(1)}\zeta)'.$$

2. En utilisant l'inégalité de Cauchy–Schwarz, le fait que $\zeta \in H^2(\Omega)$ (puisque $-\zeta'' = u - u_h$) et le résultat d'interpolation, il vient

$$||u - u_h||_{L^2(\Omega)}^2 \le ||(u - u_h)'||_{L^2(\Omega)} ||(\zeta - \mathcal{I}_h^{(1)}\zeta)'||_{L^2(\Omega)} \le ||(u - u_h)'||_{L^2(\Omega)} C_{\mathcal{I}} h ||\zeta''||_{L^2(\Omega)},$$

et comme $\|\zeta''\|_{L^2(\Omega)} = \|u - u_h\|_{L^2(\Omega)}$, on en déduit que

$$||u-u_h||_{L^2(\Omega)} \le C_{\mathcal{I}} h ||(u-u_h)'||_{L^2(\Omega)}.$$

Comme

$$||(u - u_h)'||_{L^2(\Omega)} \le ||u - u_h||_{H^1(\Omega)} \le C_{H^1} h ||f||_{L^2(\Omega)},$$

on obtient l'estimation annoncée avec la constante $C_{L^2} = C_{\mathcal{I}} C_{H^1}$.

Exercice 2 : élément fini de Hermite

1. On applique le théorème de Lax–Milgram. De par le théorème de trace (cf. cours d'Analyse), l'espace $H_0^2(\Omega)$ est fermé dans $H^2(\Omega)$; c'est donc un espace de Hilbert équipé de la norme

$$||v||_{H^2(\Omega)} = \left\{ ||v||_{L^2(\Omega)}^2 + ||v'||_{L^2(\Omega)}^2 + ||v''||_{L^2(\Omega)}^2 \right\}^{1/2}.$$

Les formes $a(v,w)=\int_\Omega v''w''$ et $L(w)=\int_\Omega fw$ sont clairement continues sur cet espace. Il reste à prouver la coercivité de a. Pour cela, on observe que si $v\in H^2_0(\Omega)$, alors $v'\in H^1_0(\Omega)$, si bien qu'en appliquant l'inégalité de Poincaré à v', il vient

$$||v'||_{L^2(\Omega)} \le C_P ||v''||_{L^2(\Omega)}.$$

En appliquant maintenant l'inégalité de Poincaré à v (car $H_0^2(\Omega) \subset H_0^1(\Omega)$), il vient $||v||_{L^2(\Omega)} \leq C_P ||v'||_{L^2(\Omega)} \leq C_P ||v''||_{L^2(\Omega)}$, d'où finalement,

$$||v||_{H^2(\Omega)} \le (1 + C_P^2 + C_P^4)^{1/2} ||v''||_{L^2(\Omega)},$$

ce qui montre la coercivité de a. Enfin, en prenant $v \in \mathcal{D}(\Omega)$, il vient au sens des distributions $\langle u'', v'' \rangle = \langle f, v \rangle$, d'où u'''' = f (dans $L^2(\Omega)$, car f est dans cet espace).

- 2. On considère l'espace d'approximation W_{0h} .
 - a) Comme les fonctions de W_{0h} sont de classe C^1 globalement sur $\overline{\Omega}$ et que sur chaque maille elles sont de classe C^2 , elles admettent des dérivées secondes dans $L^2(\Omega)$, qui s'obtiennent en prenant localement la dérivée seconde de la restriction à chaque maille. Par suite, $W_{0h} \subset H^2(\Omega)$. De plus, les conditions limites sont explicitement imposées dans W_{0h} . D'où $W_{0h} \subset H^2(\Omega)$. Enfin, W_{0h} est de dimension finie avec $\dim(W_{0h}) \leq 4(n+1)$ (4 degrés de liberté au plus par maille); nous verrons ci-dessous que $\dim(W_{0h}) = 2n$.
 - b) L'esapce \mathbb{P}_3 est de dimension 4. Il suffit donc de montrer que si $p \in \mathbb{P}_3$ est tel que p(a) = p'(a) = p(b) = p'(b) = 0 avec $a \neq b$, alors p est identiquement nul. Le fait que p(a) = p'(a) = 0 implique que $(x-a)^2$ divise p; de même, $(x-b)^2$ divise p. Comme $a \neq b$, cela implique que $(x-a)^2(x-b)^2$ divise p est de degré ≤ 3 , cela implique que p est identiquement nul.
 - c) Pour tout $1 \le i \le n$, le support de ϕ_i ainsi que celui de ψ_i est réduit aux deux mailles K_{i-1} et K_i . Les fonctions de forme sont telles que, pour tout $1 \le m, n \le 4$,

$$\sigma_m(\theta_n) = \delta_{mn}$$

avec les formes linéaires sur \mathbb{P}_3 définies par $\sigma_1(p) = p(0)$, $\sigma_2(p) = p'(0)$, $\sigma_3(p) = p(1)$ et $\sigma_4(p) = p'(1)$. Par conséquent, on obtient (attention aux facteurs d'échelle lorsqu'on passe de l'élément de référence [0,1] où sont définies les fonctions de forme à la maille courante)

$$\phi_i(x) = \begin{cases} \theta_3(h^{-1}(x - x_{i-1})) & x \in K_{i-1}, \\ \theta_1(h^{-1}(x - x_i)) & x \in K_i, \\ 0 & \text{sinon,} \end{cases} \qquad \psi_i(x) = \begin{cases} h\theta_4(h^{-1}(x - x_{i-1})) & x \in K_{i-1}, \\ h\theta_2(h^{-1}(x - x_i)) & x \in K_i, \\ 0 & \text{sinon.} \end{cases}$$

d) Pour montrer la liberté de la famille, on considère la combinaison linéaire $\sum_{i=1}^{n} \alpha_i \phi_i(x) + \sum_{i=1}^{n} \beta_i \psi_i(x)$ que l'on suppose identiquement nulle sur Ω . En évaluant cette combinaison en x_i , $\forall 1 \leq i \leq n$, il vient $\alpha_i = 0$, puis en évaluant la dérivée de cette combinaison en x_i , il vient $\beta_i = 0$. Pour montrer que la famille est génératrice, on se donne $v_h \in W_{0h}$ et on pose

$$w_h = \sum_{i=1}^{n} v_h(x_i)\phi_i(x) + \sum_{i=1}^{n} v'_h(x_i)\psi_i(x).$$

Sur chaque maille K_j , $0 \le j \le n$, les valeurs de v_h et de w_h , ainsi que celles de leur dérivée, coïncident aux deux extrémités de la maille. Les restrictions de v_h et w_h à cette maille étant dans \mathbb{P}_3 , on en déduit que $v_h = w_h$ sur chaque maille, et donc sur Ω . Enfin, l'opérateur d'interpolation est tel que, pour tout $v \in H_0^2(\Omega)$,

$$j_h v(x) = \sum_{i=1}^n v(x_i)\phi_i(x) + \sum_{i=1}^n v'(x_i)\psi_i(x) \in W_{0h}.$$

Noter que les valeurs ponctuelles de v et de v' sont bien définies pour $v \in H^2(\Omega)$.

3. On déduit du lemme de Céa que

$$||u - u_h||_{H^2(\Omega)} \le C_1 ||u - j_h u||_{H^2(\Omega)} \le C_2 ||(u - j_h u)''||_{L^2(\Omega)} \le C_3 h^2 ||f||_{L^2(\Omega)},$$

en utilisant le résultat de la question 1 pour majorer la norme H^2 , l'indication pour majorer l'erreur d'interpolation, et le fait que la solution exacte est telle que $||u''''||_{L^2(\Omega)} = ||f||_{L^2(\Omega)}$.

- 4. On considère la matrice de rigidité $\mathcal{K}_h \in \mathbb{R}^{2n,2n}$.
 - a) On obtient une structure bloc

$$\mathcal{K}_h = \begin{pmatrix} \mathcal{K}_h^{\phi\phi} & \mathcal{K}_h^{\phi\psi} \\ \mathcal{K}_h^{\psi\phi} & \mathcal{K}_h^{\psi\psi} \end{pmatrix}$$

où les quatre sous-matrices sont d'ordre n et tridiagonales. Comme la forme bilinéaire a est symétrique, la matrice \mathcal{K}_h est symétrique si bien que $\mathcal{K}_h^{\psi\phi} = (\mathcal{K}_h^{\phi\psi})^t$. En calculant, il vient

$$\theta_1''(t) = 12t - 6$$
, $\theta_2''(t) = 6t - 4$, $\theta_3''(t) = -12t + 6$, $\theta_4''(t) = 6t - 2$,

(observer que $\theta_1''(t) + \theta_3''(t) = (1)'' = 0$ et $\theta_2''(t) + \theta_3''(t) + \theta_4''(t) = (t)'' = 0$) si bien que

$$\left(\int_0^1 \theta_m''(t)\theta_n''(t)dt\right)_{1 \le m,n \le 4} = \begin{pmatrix} 12 & 6 & -12 & 6 \\ 6 & 4 & -6 & 2 \\ -12 & -6 & 12 & -6 \\ 6 & 2 & -6 & 4 \end{pmatrix}.$$

En prenant en compte les facteurs h, on obtient

$$\begin{split} \mathcal{K}_h^{\phi\phi} &= 12h^{-3}\operatorname{tridiag}(-1,2,-1),\\ \mathcal{K}_h^{\phi\psi} &= 6h^{-2}\operatorname{tridiag}(-1,0,1),\\ \mathcal{K}_h^{\psi\psi} &= 2h^{-1}\operatorname{tridiag}(1,4,1). \end{split}$$

b) Avec la nouvelle numérotation des fonctions de base, la matrice de rigidité est cette fois tridiagonale avec des blocs d'ordre 2, soit tridiag (B^t, A, B) avec

$$A = \begin{pmatrix} 24h^{-3} & 0 \\ 0 & 8h^{-1} \end{pmatrix}, \qquad B = \begin{pmatrix} -12h^{-3} & 6h^{-2} \\ -6h^{-2} & 2h^{-1} \end{pmatrix}.$$