> plot(x+sin(2*Pi*x),x=0..49); > plot({BesselJ(0,x),BesselJ(1,x),BesselJ(2,x)},x=-20..20); > ?plots
> with(plots): > plot[parametric]([sin(t),cos(t),t=0..2*Pi]); > polarplot((4*cos(3*theta)+cos(13*theta))/cos(theta),theta=0..2*Pi); > contourplot(y+sin(x^2*y-1/x),x=-Pi..Pi,y=-Pi..Pi,grid=[100,100], > colour=black); > fieldplot([x/(x^2+y^2+4)^{(1/2)},-y/(x^2+y^2+4)^{(1/2)}],x=-2..2,y=-2..2);
> animate(sin(x*t),x=-10..10,t=1..2,frames=50); > # D'abord on g\'en\`ere une table de points implicites > for i from 0 to 8 do > P[i]:=implicitplot(x^3+y^3-5*x*y=1-i/4,x=-3..3,y=-3..3); > od; > #pour chaque P[i] on selectionne les courbes: > for i from 0 to 8 do > C[i]:=[op(1,P[i])]; > od; > plot(animate(seq(C[i],i=0..8))); # ne marche pas... > plots[display]([seq(P[i],i=0..8)],insequence=true);
> plot3d(x^2+y^2,x=-Pi..Pi,y=-Pi..Pi); > plot3d([r*cos(phi),r*sin(phi),phi],r=0..1,phi=0..6*Pi,grid=[15,15], > style=patch,orientation=[55,70],shading=zhue,axes=boxed); > sphereplot(1,theta=0..2*Pi,phi=0..Pi,style=patch,scaling=constrained); > r:=a+b*cos(n*t): z:=c*sin(n*t): > curve:=[r*cos(m*t),r*sin(m*t),z]: > a:=2:b:=4/5:c:=1:m:=4:n:=7: > tubeplot(curve,t=0..2*Pi,radius=1/4,numpoints=200,tubepoints=20, > orientation=[45,10],style=patch,shading=xyz,title=`torus de type 4,7`); > > gradplot3d(\sqrt{(x^2+y^2+z^2)},x=-1..1,y=-2..2,z=0..40,grid=[10,10,10], > axes=boxed); > #implicitplot3d,fieldplot3d,animate3d...
with(plots,conformal): > conformal(z^2); > conformal((z-I)/(z+I),z=-2-2*I..2+2*I,-3-3*I..3+3*I,grid=[21,21],numxy=[81,81], > title= `rationalfunction with pole at -I and zero at I`);