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1 The newsvendor problem (integer formulation)

• Each morning, the newsvendor must decide how many copies u ∈ {1, 2, . . . , u♯} of the
day’s paper to order. The variable u is called control.

• During the day, the newsvendor will meet an unknown demand w ∈ {1, 2, . . . , w♯}.
The variable w is called uncertainty.

• The newsvendor faces an economic tradeoff:

– he pays the unitary purchasing cost c per copy, when he orders stock;

– he sells a copy at price p;

– if he remains with an unsold copy, it is worthless (perishable good).

• Therefore, the newsvendor’s costs are (where w ∈ {1, 2, . . . , w♯} is a possible value of
the demand)

j(u, w) = c u
︸︷︷︸

quantity

purchased

−pmin{u, w}
︸ ︷︷ ︸

quantity sold

. (1)

The newsvendor’s payoff is −j(u, w).
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Now, we introduce a random variable W, where W : Ω → {1, 2, . . . , w♯}. Here, Ω
is an underlying probability space, equipped with a probability P. We suppose that the
newsvendor knows the probability distribution PW of the demand W.

Thus equipped, we consider the stochastic optimization problem of expected costs mini-
mization:

min
u∈{1,2,...,u♯}

J(u) = EP[j(u,W)] . (2)

// demand

wsharp=100;// no larger, else the Poisson distribution cannot be computed

wflat=1;

demand=[wflat:wsharp];

// control

control=[demand,1+demand($)];

// Criterion / costs

cc=1;pp=10*cc;

// cc=1 ; pp=1.1*cc ;

// avoid that cc/pp is the inverse of an integer

// when the distribution of demand is uniform

costs=cc*control'*ones(demand)-pp*mini(ones(control')*demand,control'*ones(demand));

// one row by control, one column by demand

We will consider different demand distributions.

1.1 The demand distribution is uniform

First, we suppose that the demand distribution PW is uniform as follows.

probab=ones(demand);

probab=probab/sum(probab);

Question 1

a) [1] Draw a histogram of the random demand W.

b) [1+1] In the scilab code above, what does the matrix costs represent? (What do
you find at the intersection of a row and of a column?) Explain in detail why we have that
criterion = probab*costs’ is a row vector made of the values of J(u) = EP[j(u,W)]
for u ∈ {1, 2, . . . , u♯}?

c) [1+1] Draw the mapping u ∈ {1, 2, . . . , u♯} 7→ J(u). Thanks to the scicoslab macro
mini (that provides the minimum and the argmin index of a vector), give the numerical
value of the decision u⋆ (optimal order) that minimizes u 7→ J(u).
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d) [1+1] What does the vector decumprobab=1-cumsum(probab) represent? Explain
your answer. Check that, in agreement with the theory, we numerically have that

P(W > u⋆ − 1) ≥
c

p
≥ P(W > u⋆) .

e) [2+1] For a given value of u, explain why the random variable j(u,W) can at most
take the values {j(u, 1), . . . , j(u, u− 1), j(u, u)}. Give, for each of the u elements of this
list, the corresponding probability that j(u,W) takes this value in the list. In the end, you
will provide an expression of the probability distribution of j(u,W), using probab and
decumprobab.

f) [1+2] Draw histograms of the probability distribution of the random payoff (the
opposite of the costs) −j(u,W) for u = u⋆ (the optimal decision) and for u = EP[W]
(the naive deterministic solution consisting in ordering the mean demand EP[W]). Draw
the two histograms on the same picture, so that they have the same scale. Comment on
the differences between the two histograms.

g) [1+1+1+2] The vector grand(365,"markov",ones(probab’)*probab,1) repre-
sents a sequence of realizations of 365 i.i.d. random variables having the same distribution
than the demand W. Simulate and draw the trajectory of the cumulated payoffs of the
newsvendor during one year if, every day, he orders the optimal quantity u = u⋆. Do the
same for u = EP[W] and draw it on the same picture. In what sense does the the optimal
decision u = u⋆ does better than u = EP[W]? Justify in detail why the two trajectories
are approximately straight lines; to what correspond the slopes?

h) Now, we study if the results are robusts to changes in the the ratio between the unitary
purchasing cost c and the selling price p.

1) [2] Take c < p with c ≈ p. Find the optimal decision u⋆. Draw histograms of the
probability distribution of the random payoff −j(u,W) for u = u⋆ and for u = EP[W].
Simulate and draw trajectories of the corresponding cumulated payoffs.

2) [2] Same question with c << p.

3) [2] Discuss. In particular, how does the optimal solution u⋆ vary with the ratio
c/p?

//exec('newsvendor_data.sce');exec('newsvendor_uniform.sce');exec('newsvendor_main.sce')

xset("window",1);clf();plot2d2(demand,probab)

xtitle("Histogram of the demand")

// Criterion / expected costs

criterion=probab*costs';
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// a row vector

xset("window",3);clf();plot2d2(control,criterion)

xtitle("The expected costs as function of the decision")

// Optimal decision

[lhs,optcont]=mini(criterion);

disp("The optimal decision is "+string(optcont))

// Naive deterministic solution

meandemand=probab*demand';

disp("The expected demand is "+string(round(meandemand)))

// Check that the optimal decision satisfies the optimality condition

cumprobab=cumsum(probab);

decumprobab=1-cumprobab;

xset("window",4);clf();plot2d2(demand,decumprobab,rect = [demand(1)-1,0,demand($),1]);

plot2d(demand,cc/pp*ones(decumprobab),style = 5);

xtitle("The decumulative distribution of the demand")

disp("Is it true that "+string(cc/pp)+" lies between "+string(decumprobab(optcont))+ ...

" and "+string(decumprobab(optcont-1))+"?")

NS=365;

// simulated demands

DD=grand(NS,'markov',ones(probab')*probab,1);

time=[1:NS];

xset("window",8);clf();

plot2d2(time,cumsum(-costs(round(meandemand),DD)),style = 3);

plot2d2(time,cumsum(-costs(optcont,DD)),style = 5);

legends(["optimal solution "+string(optcont);

"naive deterministic solution "+string(round(meandemand))],[5,3],"lr");

xtitle("The cumulated payoffs as function of the number of days","time","payoff")

xset("window",10);clf();

uu=optcont;

ss=5;

plot2d2([costs(uu,[wflat:(uu-1)]),costs(uu,uu)], ...

[probab([wflat:(uu-1)]),decumprobab(uu-1)],style = ss, ...
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rect = [mini(costs),0,maxi(costs),1]);

//

uu=round(meandemand);

ss=3;

plot2d2([costs(uu,[wflat:(uu-1)]),costs(uu,uu)], ...

[probab([wflat:(uu-1)]),decumprobab(uu-1)],style = ss, ...

rect = [mini(costs),0,maxi(costs),1]);

//

legends(["optimal solution "+string(optcont);

"naive deterministic solution "+string(round(meandemand))],[5,3],"ur");

xtitle("Histograms of the costs")

1.2 The demand distribution is a mixture of two truncated Pois-
son distributions

Second, we suppose that the demand distribution PW is a mixture of two truncated Poisson
distributions as follows:

PW(w) = P(W = w) =
1

2
× k♭ (λ

♭)w

w!
+

1

2
× k♯ (λ

♯)w

w!
, ∀w ∈ {1, 2, . . . , w♯} . (3)

Question 2 [6] Same questions as in Question ?? when the demand W follows a
mixture of two truncated Poisson distributions.

// Poisson

lambdaflat=wsharp/4;lambdasharp=3*wsharp/4;

//

probabflat=(lambdaflat .^demand) ./(factorial(demand));

probabflat=probabflat/sum(probabflat);

//

probabsharp=(lambdasharp .^demand) ./(factorial(demand));

probabsharp=probabsharp/sum(probabsharp);

//

probab=0.5*probabflat+0.5*probabsharp;

1.3 The demand distribution is triangular

Question 3 [6] Same questions as in Question 1 when the demand W follows a tri-
angular distribution over {1, 2, . . . , w♯}.

// Triangular distribution

lambda=floor(wflat+0.3*(wsharp-wflat));

//

probab=[cumsum(ones([wflat:lambda]))/sum(ones([wflat:lambda])), ...

1-cumsum(ones([(lambda+1):wsharp]))/sum(ones([(lambda+1):wsharp]))];

probab=probab/sum(probab);
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2 The newsvendor problem (continuous formulation)

Here, we consider that the decision can take continuous values: u ∈ [0, u♯].
We also adopt new notations. We suppose that the demandW can take a finite number S

of possible values Ds, where s denotes a scenario in the finite set S (S=card(S)). We denote
πs the probability of scenario s ∈ S, with

∑

s∈S

πs = 1 and πs > 0 , ∀s ∈ S . (4)

Notice that we do not consider scenarios with zero probability.
We consider the stochastic optimization problem

min
u∈[0,u♯]

J(u) = EP[j(u,W)] . (5)

We now show how to rewrite this problem as a linear program. First, we write:

j(u, w) =cu− pmin{u, w} (6a)

=max{cu− pu, cu− pw} (6b)

=min
v∈R

{v | v ≥ cu− pu , v ≥ cu− pw} . (6c)

Second, we deduce

J(u) =EP[j(u,W)] (7a)

=
∑

s∈S

πsj(u,Ds) (7b)

=
∑

s∈S

πs min
vs∈R

{vs | vs ≥ cu− pu , vs ≥ cu− pDs} (7c)

= min
(vs)s∈S∈RS

∑

s∈S

πsvs (7d)

under the constraints ∀s ∈ S , vs ≥ cu− pu , vs ≥ cu− pDs . (7e)

Third, we conclude

min
u∈[0,u♯]

J(u) = min
u∈[0,u♯],(vs)s∈S∈RS

∑

s∈S

πsvs (8a)

under the constraints ∀s ∈ S , vs ≥ cu− pu , vs ≥ cu− pDs . (8b)

This is a linear program.

Question 4 Suppose that W follows a uniform distribution over {1, 2, . . . , w♯}.

a) [2] Write the linear program (8) under the form adapted to the scicoslab macro
linpro.

6



b) [1] Solve (8) with linpro and obtain the solution to the stochastic optimization
problem (5).

c) [1] Compare with the optimal solution of Question 1.

d) [2] Increase the number w♯ of values taken by the demand W. When can you no
longer solve numerically? Compare with the result of Question 1.

3 The newsvendor problem with risk (continuous for-

mulation)

Let λ ∈]0, 1[, that plays the role of a risk level. The Value at Risk of the cost X at level
λ ∈]0, 1[ is

VaRλ(X) = inf{x ∈ R | P(X > x) < λ}

The Tail Value at Risk of the cost X at level λ ∈]0, 1[ is

TVaRλ(X) =
1

1− λ

∫ 1

λ

VaRλ′(X)dλ′

We have the limit cases:

TVaR0[X] = E[X]

TVaR1[X] = lim
λ→1

TVaRλ[X] = sup
ω∈Ω

X(ω)

The Rockafellar-Uryasev formula establishes that

TVaRλ[X] = inf
s∈R

{
E[(X− s)+]

1− λ
+ s

}

, λ ∈ [0, 1[

We consider the risk averse stochastic optimization problem

min
u∈[0,u♯]

J(u) = TVaRλ[j(u,W)] . (9)

We rewrite this problem as a linear program.

min
u∈[0,u♯]

J(u) = min
u∈[0,u♯],r∈R,(vs)s∈S∈RS

r +
1

1− λ

∑

s∈S

πsvs (10a)

under the constraints ∀s ∈ S , vs ≥ cu− pu , vs ≥ cu− pDs . (10b)

Question 5 Suppose that W follows a uniform distribution over {1, 2, . . . , w♯}.
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a) [2] Write the linear program (10) under the form adapted to the scicoslab macro
linpro.

b) [1] Solve (10) with linpro and obtain the solution to the stochastic optimization
problem (9).

c) [1] Compare with the optimal solution of Question 4.

4 The newsvendor problem with backorder (continu-

ous formulation)

Now, we suppose that the newsvendor

• pays the unitary purchasing cost c per copy, when he orders stock;

• sells a copy at price p; we have that c > p;

• can buy extra copies at the unitary backorder cost b, after he observes a demand w
larger than the initial order u; we have that b > c

• pays the unitary holding cost h for each unsold copy, when the demand w is less than
the initial order u.

Therefore, the newsvendor’s costs are

j(u, w) = c u
︸︷︷︸

order

+b [w − u]+
︸ ︷︷ ︸

backorder

+h [u− w]+
︸ ︷︷ ︸

holding

−p w
︸︷︷︸

sold

, (11)

where we recall that x+ = max{x, 0} .

cc=0.1;pp=10*cc;bb=10*cc;hh=10*cc;

Question 6 We suppose that the demandW follows a uniform distribution over {1, 2, . . . , w♯}.

a) [1] Write a row vector criterion made of the values of J(u) = EP[j(u,W)] for
u ∈ {1, 2, . . . , u♯}.

b) [1+1] Draw the mapping u ∈ {1, 2, . . . , u♯} 7→ J(u). Thanks to the scicoslab macro
mini (that provides the minimum and the argmin index of a vector), give the numerical
value of the decision u⋆ (optimal order) that minimizes u 7→ J(u).

c) [1] Check that, in agreement with the theory, we numerically have that

P(W > u⋆ − 1) ≥
c+ h

b+ h
≥ P(W > u⋆) .
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d) [1+1] For a given value of u, what is the set of values taken by the random vari-
able j(u,W)? Give a scicoslab formula for the probability distribution of j(u,W), using
probab and decumprobab.

e) [1+1] Draw a histogram of the probability distribution of the random payoff (the
opposite of the costs) −j(u,W) for u = u⋆ (the optimal decision) and for u = EP[W]
(the naive deterministic solution consisting in ordering the mean demand EP[W]). Draw
the two histograms on the same picture, so that they have the same scale. Comment on
the differences between the two histograms.

f) [1+1+1] Simulate the trajectory of the cumulated payoffs of the newsvendor during
one year if, every day, he orders the optimal quantity u = u⋆. Do the same for u = EP[W].
Compare.

g) [4] Multiply the unitary holding cost h by a factor 5. Comment on the changes that
you observe.

h) [4] As in Section 2, write the new optimization problem as a linear program. Then,
write this latter under the form adapted to the scicoslab macro linpro. Solve with linpro
and compare with the optimal solution found above by the direct method.

i) [4] Increase the number w♯ of values taken by the demand W. When can you no
longer solve numerically? Compare with the direct method.
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