Optimal scheduling for open pit mine extraction

Michel DE LARA
October 10, 2017

Contents
1 A two-dimensional open pit mine optimal extraction model 1
2 Dynamic programming algorithm 5

3 Simulating extraction strategies
3.1 Data
3.2 Upper and lower bounds for the value of the mine
3.3 Optimal trajectories simulation

co 3o O

1 A two-dimensional open pit mine optimal extraction
model

Open pit mines are generally designed with the help of so-called block models, or resource
models. These latter represent the material inside the pit using millions of blocks with given
shape. Open pit mines extraction is submitted to physical restrictions: only blocks at the
surface may be extracted; a block cannot be extracted if the slope made with one of its
neighbors is too high, due to geotechnical constraints on mine wall slopes.

In essence, exploiting an open pit mine can be seen as selecting an admissible extraction
sequence of blocks where, by admissible, we mean that the above physical restrictions are
satisfied. Among all admissible extraction sequences, of particular economic interest are
those which are the more profitable.

Block model

For simplicity, we shall consider a two-dimensional mine [1] as in Fig. 1. Each block is a
two-dimensional rectangle identified by its vertical position d € {1, ..., D} (d for depth) and
by its horizontal position ¢ € {1,...,C} (c for column).

1 2 3 @ C Columns

-

Depth

Figure 1: An extraction profile in an open pit mine

Dynamics

We assume that blocks are extracted sequentially under the following hypothesis [2, 1]:
e it takes one time unit to extract one block;
e only blocks at the surface may be extracted;

e a block cannot be extracted if the slope made with one of its two neighbors is too
high, due to geotechnical constraints on mine wall slopes (the rule is mathematically
decribed in the sequel);

e a retirement option is available where no block is extracted.

States and admissible states

Denote discrete time by ¢t = 0,1,...,T, where an upper bound for the number of extraction
steps is the number C' x D of blocks (it is in fact strictly lower due to slope constraints). At
time t, the state of the mine is a profile

2(t) = (w1(t), ..., 20(t)) € X ={1,...,D+1}°

where z.(t) € {1,..., D+1} is the vertical position of the top block with horizontal position
ce{l,...,C} (see Fig. 1). The initial profile is (0) = (1,1,...,1) while the mine is totally
exhausted in state t = (D + 1, D +1,..., D +1).

2

An admissible profile is one that respects local angular constraints at each point, due to
physical requirements. A state x = (z1,...,2¢) is said to be admissible if the geotechnical
slope constraints are respected in the sense that

ry=1 or 2 (border slope)
|Tey1 — x| <1, for ec=1,...,C—1 (1)

re=1 or 2 (border slope).

Denote by A C {1,...,D + 1}© the set of admissible states satisfying the above slope
constraints (1).

Controlled dynamics

A decision is the selection of a column in C = {1,...,C}, the top block of which will
be extracted. A decision may also be the retirement option, that we shall identify with
an additional fictituous column denoted oco. Thus, a decision u is an element of the set
C=CuU{oo} ={1,...,C,00}.

At time ¢, if a column u(t) € {1,...,C} is chosen at the surface of the open pit mine,
the corresponding block is extracted and the profile z(t) = (z1(¢),...,z¢c(t)) becomes

S £ A Wl

In case of retirement option u(t) = oo, then x(¢ + 1) = z(t) and the profile does not change.
In other words, the dynamics is given by x(t + 1) = DYN(x, u) where

foa.+1 if c=uef{l,...,C}
DYNe(2,u) = { Te if ctu or =00. (2)
Indeed, the top block of column ¢ is no longer at depth z.(t) but at z.(t) + 1, while all other
top blocks remain.
Starting from state z = (2,3, 1,4,3) in Figure 2 and applying control u = 3, one obtains

the following state (2, 3,2,4,3) as in Figure 3.

Decision constraints

Not all decisions u(t) = ¢ are possible either because there are no blocks left in column ¢
(x. = D + 1) or because of slope constraints.

When in state z € A, the decision u € C is admissible if the future profile DYN(z,u) € A,
namely if it satisfies the geotechnical slope constraints. This may easily be transformed into
a condition u € B(x), where

B(z) := {u € C | DYN(z,u) € A}. (3)

Figure 2: State (2,3,1,4,3)

Figure 3: State (2,3,2,4,3)

Intertemporal profit maximization

The open pit mine optimal scheduling problem consists in finding a path of admissible blocks
which maximizes an intertemporal discounted extraction profit. It is assumed that the value
of blocks differs in depth and column because richness of the mine is not uniform among
the zones as well as costs of extraction. The profit model states that each block has an
economic value Rent(d,c) € R, supposed to be known.! By convention Rent(d,cc) = 0
when the retirement option is selected. Selecting a column u(t) € C at the surface of the
open pit mine, and extracting the corresponding block? at depth ¢ (¢) yields the value

Rent @y (t), u(t)). With discount rate ry > 0 and discount factor 0 < ﬁ < 1, the

optimization problem is sup,,, SIS J:Tf)'Rent (24 (), u(t)). Notice that the sum is in

fact finite, bounded above by the number 7' — 1 of blocks. Thus, we shall rather consider®

T-1

1
sup (YRent (2 (1), u(t)) . (4)
u(0),...,u(T—1) ; 1+ (())

IPartly determined by “carrots” extraction, this economic value may more generally be assumed either
deterministic or random.

*When u(t) = oo, there is no corresponding block and the following notation @) (t) = s (t) is mean-
ingless, but this is without incidence since the value Rent (moo(t), oo) =0.

3If we account for transportation costs, we may subtract to Rent a term proportional to &§(u(t), u(t — 1)),
measuring the distance between two subsequent extraction columns.

Dynamic programming equation

The maximization problem (4) may theoretically be solved by dynamic programming. The
value function V(t,x) solves V(T,x) = 0 and

1
Vit o) = max ("Rent(z,,u) + V(¢ + 1,DYN(z,u))). 5
(2) = i () Rent(a,w) + (,w))

However, due to numerical considerations (curse of dimensionality), we shall have to
introduce a new, and more parcimonious, state before applying the dynamic programming
algorithm.

2 Dynamic programming algorithm

Numerical considerations

To give a flavor of the complexity of the problem, notice that 4 columns (C' = 4) each
consisting of nine blocks (D = 9) give 10 000 states (X* = 10*), while this raises to 1020 90
if we assume that the surface consists of 100 x 100 columns (C' = 10 000) with ninety-nine
blocks (D =99) .

However, the set A of acceptable states has a cardinal A* which is generally much smaller
than X*. To see this, let us introduce the mapping z = (z1,...,7¢) — @(x) = (z1,72 —
T1,...,Tc—Tco-1). Let x € A and y = ¢(x). Since z satisfies the admissibility condition (1),
the dynamic programming algorithm will be released with the new state y=(y1,...,9c) €
{1,2} x {—=1,0,1}9~! corresponding to the increments of the state z. Table 2 provides some
figures.

C |D ¢ AF AF/XE
4 9 10* < 270 <3%
10 000 | 99 1020 000 <2 x 1010 000 | 9+ < 10—10 000

Table 1: Cardinals of states and acceptable states sets

A new incremental state

The dynamic programming algorithm will be released with the new state

y=(y1,...,yc) €Y :={1,2} x {~1,0,1}¢! (6)

corresponding to the increments of the state x given by the inverse mapping
y= (1. ye) €Y= o (y) = (1 + %2, y1 + 2+ +ye) €NO. (7)

5

By construction, z = ¢~ 1(y) always satisfies the slope constraints (1). However, it does not

always correspond to a mine profile state. Indeed, some y € Y give v = ¢ !(y) € X =

{1,...,D +1}¢: for instance y = (1,—1,—1,...,—1) yields z = (1,0, -1, -2,...,C — 2).
The dynamics (z,u) — DYN(z, u) now becomes (y,u) — G(y,u) = ¢(DYN(¢ ™ (y), u)):

Yo+ 1 if c=1u
Gly,u)e =1 ye—1 if c=u+1 (8)
Ye else.

Labelling the states

The new state set Y is a product space: we shall label its elements with integers. Let
Q €{-1,0,1,2,...} be the unique integer such that

39 « D41 <3972, (9)

Consider the following labelling mapping?

c
y=n o) €Y Ay) = — 1)+ > (s +1)397 €N, (10)
=2
The inverse mapping of A is given as follows. Any integer z € {0,1,...,39t“*1} may be

decomposed in the basis {1,39+2 ... 39%C} as

C
p=xn+Y z39" with x5 €{0,1,...,39 -1} and z€{0,1,2} (11)
=2

fori =2,...,C. Thus (yi,...,yc) = \1(2) is given by y; = 2z; +1 € {1,...,39"2} and
yi=2—1€{-1,0,1} fori =2,...,C. Denote by Z, C {0,1,...,397¢*1} those z to which
corresponds an admissible state z = ™' (A7!(2)) € A.

The dynamics (8) is translated in

241 —39+2 if u=1
(z,u) ENx{1,...,C} = H(z,u) := { z+ 39w — 3@+utl if wei{2,...,C -1}
z 4 39+¢ if u=C_C

(12)

because of the expression (11) for z.
Let z € Z,. Of course, 2/ = H(z,u) corresponds to an admissible state (2’ € Z,) if and
only if u is admissible for the state x = 1 (/*1(2)) € A, property that we shall denote by

ueUy(z) C{1,...,C}.

4The justification of the terms (y; — 1) and (y; + 1) is as follows. Recall that (yi,...,yc) € Y = {1,2} x
{~1,0,1}°~1. Thus, y1 € {1,...,39*2} implies that (y; — 1) € {0,1,...,39+2 — 1}, while y; € {-1,0,1}
implies that (y; +1) € {0,1,2}.

3 Simulating extraction strategies

3.1 Data

Copy the file "marvin_7440_valores.txt" in your local directory. Then, create a file
"data.sce" in your local directory containing the following code.

// 2D agregated Marvin mine
RICHNESS=zeros(5,11);
richness=fscanfMat ("marvin_7440_valores.txt");
for i=1:5 do
for j=1:11 do
RICHNESS(i,j)=sum(richness([((i-1)*4+1) :mini((i*4),17)], [((j-1)*6+1) :mini((j*6),61)]
end
end
richness=RICHNESS;

[/ mm
// RICHNESS MATRIX SIZE

/)

[HH,NN]=size(richness);
TT=HH* (HH+2)+1;// horizon
TT=HH*NN; // horizon

/) —mm e
// DISCOUNT FACTOR

Y

interest=10;
annual _discount=1/(1+(interest/100));

discount=(annual_discount) "~ (1/1500);
// 1500 extractions a year

discount=(annual_discount) ~(1/(6%4));
// 6%/ ezxtractions a year

3.2 Upper and lower bounds for the value of the mine

The so called value of the mine is V(0,2(0)) given by (4).

7

Question 1 Rearrange the elements of the matriz Rent(d, ¢) and deduce an upper bound for
the value of the mine.

blocks=prod(size(richness));

rich=matrix(richness,1,blocks);
sorted_richness=sort(rich);// richness sorted by decreasing order
sorted_richness=maxi(0,sorted_richness);

UB=sum((discount .~ (0:(blocks-1))) .*sorted_richness);

3.3 Optimal trajectories simulation
State labelling

Copy the following code in a file "mine_DP_label.sce"

/)
// LABELLING STATES AND DYNAMICS

[/ —mmmmmm T oo
MM=3"{NN}; // number of states
Integers=(1:MM)';// labelled states

State=zeros(MM,NN) ;

// Will contain, for each integer z in Integers,
// a sequence s=(s_1,...,s_NN) with

// s_1 \in \{1,2\}

// and s_k \in \{0,1,2\} for k \geq 2, such that

// 1) z = s_1 + s_2%¥3°{1} + ... + s_NN*3~{NN-1}
// 2) a mine profile p_1,...,p_NN is given by
// p_k =y_1+ ... + y_k where y_1= s_1-1 \in \{0,1\}

// and y_5 = s_j - 1 \in \{-1,0,1\} for j>1.
Increments=zeros (MM, NN) ;

// Will contain, for each integer z in Integers,

// the sequence y=(y_1,...,y_NN).

// The initial profile is supposed to be p(0)=(0,0,...,0)

8

// to which corresponds y(0)=(0,0,...,0) and
// s(0)=(1,1,...,1) and 2(0)=1+ 3°{1} + ... + 3~{NN-1}.

Partial_Integer=zeros(MM,NN) ;

// Will contain, for each integer z in Integers,

// a lower aprozimation of 2z in the basis

// 1, 3°{1},..., 3"{NN-1}

// Partial_Integer(z,k)=s_1 + s_2*¥3°{1} +...+ s_k*3"{k-1}.

Future_Integer=zeros (MM,NN) ;

// Will contain, for each integer z in Integers,

// the image by the dynamics under the control consisting in
// extracting block in the corresponding column.

State(:,1)=pmodulo(Integers,3°{1});

// State(z,1)=s_1

Partial_Integer(:,1)=State(:,1);

// Partial_Integer(z,1)=s_1
Future_Integer(:,1)=maxi(1l,Integers+1-3"{1});

// Dynamics (with a "mazi" because some integers in

// Integers+1-3~{1} do mot correspond to "mine profiles”).
Increments(:,1)=State(:,1)-1;

for k=2:NN do
remainder=(Integers-Partial_Integer(:,k-1))/37{k-1};
/7 s_{k} + s_{k+1}*3 + ...
State(:,k)=pmodulo(remainder,3);
// State(:,k)=s_{k}
Increments(:,k)=State(:,k)-1;
Partial_Integer(:,k)=Partial_Integer(:,k-1)+3"{k-1}*State(:,k);
// Partial_Integer(z,k)=s_1+s_2*3°{1}+...+s_k*3 {k-1}
Future_Integer(:,k)=maxi(1l,Integers+3~{k-1}-37{k});
// Dynamics (with a "mazi" because some integers
// in Integers+3~{k-1}-3"{k}
// do mot correspond to "mine profiles”)

end

Future_Integer(: ,NN)=mini (MM, Integers+3~{NN-1});

// Correction for the dynamics

// when the last column NN is selected.

// Dynamics (with a "mint" because some integers in

// Integers+3~{NN-1} do mot correspond to "mine profiles”).

/)
// FROM PROFILES TO INTEGERS
/)

function z=profile2integer (p)
// p : profile as a Tow vector
yy=p-[0,p(1: ($-1))71;
ss=yy+1;
z=sum(ss .*[1,3 .~{[1:(NN-1)]1}1);
endfunction

/) e
// ADMISSIBLE INTEGERS

/)

// Mine profiles are those for which

// HH \geq p_1 \geq O0,..., HH \geq p_NN \geq O

// that is, HH \geq y_1 + ... + y_k \geq O for all k

// Since, starting from the profile p(0)=(0,0,...,0)), the
// following extraction rule will always give "mine profiles”,
// we shall not exclude other unrealistic profiles.

Admissible=zeros (MM,NN) ;

Profiles=cumsum(Increments,"c");
// Each line contains a profile, realistic or not.

adm_bottom=bool2s(Profiles < HH);

// A block at the bottom cannot be extracted:

// an element in adm_bottom is ome if and only <f
// the top block of the column ts mot at the bottom.

// Given a mine profile, extracting one block at the surface
// is admissible if the slope ts mot too high.

/7

// Eztracting block in column 1 is admisstible

// if and only if p_1=0.

/7

10

// Eztracting block in column 7 1<j<NN) <s not admissible
// if and only if y_j=1 or y_{j+1}=-1 that is,

// (s_j-1)=1 or (s_{j+1}-1)=-1.

// Eztracting block tn column j is admisstible

// if and only if s_j < 2 and s_{j+1} > 0.

//

// Eztracting block in column NN is admissible

// if and only if p_{NN}=0.

Admissible(:,1)=bool2s(Profiles(:,1)==0);
Admissible(:,NN)=bool2s(Profiles(:,NN)==0);

// Corresponds to side columns 1 and NN, for which only the
// original top block may be extracted:

// an element in columns 1 and NN of Admissible is one

// if and only <if the pair (state,control) is admissible.

Admissible(:,2:($-1))=bool2s(State(:,2:($-1)) < 2 & State(:,3:$) > 0);
// An element in column 1<j<NN of AA is one if and only
// s_j < 2 and s_{j+1} > 0.

Admissible=Admissible .*adm_bottom;

// An element in column j of admissible is zero
// if and only if

// extracting block in column j s not admisstible,
// else it is one.

Stop_Integers=Integers(prod(1-Admissible,'c")==1);
// Labels of states for which no dectision is admissible,
// hence the decision is the retirement option

/) e
// INSTANTANEQUS GAIN

// T T
Forced_Profiles=mini(HH,maxi(1,Profiles));

// Each line contains a profile, forced to be realistic.
// This trick is harmless and useful

// to fill in the instantaneous gain matric.

instant_gain=zeros (MM,NN) ;

11

for uu=1:NN do
instant_gain(:,uu)=Admissible(:,uu) .* ...

richness(Forced_Profiles(Future_Integer(:,uu),uu),uu)+ ...

(1-Admissible(:,uu))*bottom;
end
// When the control wu is admissible,
// instant_gain is the richness of the top block of column uu.
// When the control uwu %s not admissible, instant_gain
// has value "bottom", approzimation of -infinity.

Dynamic programming algorithm

Copy the following code in a file "mine_DP_algorithm.sce"

/)
// DYNAMIC PROGRAMMING ALGORITHM

/)

VV=zeros (MM, TT);// value functions in a matriz
// The final value function is zero.
UUopt=(NN+1)*ones (MM, TT) ; // optimal controls in a matriz

for t=(TT-1):(-1):1 do
loc=[];
// will contain the wvector to be maxzimized
loc_bottom=mini (VV(:,t+1));
// The wvalue attributed to the value function VV(:,t)
// when a control is not admissible.

//
for uu=1:NN do
loc=[loc,
Admissible(:,uu) .* ...
(discount~t*instant_gain(:,uu)+VV(Future_Integer(:,uu),t+1)),
(1-Admissible(:,uu)) .*(discount”t*bottom+loc_bottom)];
end

// When the control wu s admissible,

// loc ts the usual DP expression.

// When the control uwu is not admissible,
// loc is the DP expression

// with both terms at the lowest walues.
/7

loc=[loc,VV(:,t+1)+discount"t*0];

12

// Adding an ezxtra control/column which provides zero
// instantaneous gain and does mot modify the state:
// retire option.

//
[1hs,rhs]=maxi(loc,"c");// DP equation
VV(:,t)=1lhs;
UUopt (:,t)=rhs;
//
UUopt (Stop_Integers,t)=(NN+1)*ones(Stop_Integers);
// retire option
end

Visualization

Copy the following code in a file "mine_visualize.sce"

// exec mine_visualize.sce
lines(0);
[HH,NN]=size(richness);

/)

// Visualizing the richness matriz

J)

Margin=0.01;
// Margin=0.5 ;

range=6;
range=16;
range=64;

rich_color=floor((range-1)*(maxi(richness)-richness) ./(maxi(richness)-mini(richness)))+
// varies between 1 and range:

// mazi(richness) corresponds to 1

// mini(richness) corresponds to range

// To change the color convention, do
// rich_color=range-rich_color +1 ;
// gives too much color

prop=1/2;

prop=0.2;

13

rich_color=prop*range+(l-prop)*rich_color;

vect_richness=sort(matrix(rich_color ,HH*NN)) ;
// xset ("window",10) ;zbasc(); plot(vect_richness);
// ztitle("Distribution of colors”);

visual_range=range;
visual_range=2*range;// to avoid white
xset("colormap",hotcolormap(visual_range));
// table of colors

xset ("window",0);

xbasc() ;plot2d2(-Margin+0: (NN+2) ,-[0,zeros(1,NN),0,0] ,rect = [0,-HH-Margin,NN+1,Margin])
Matplotl(rich_color, [0,-HH-Margin,NN+1,Margin]);

xtitle("Mine richness");

function display_profile(xx,time)
// Displays graphics of mine profiles
xset ("window",time) ;
xset ("colormap" ,hotcolormap(visual_range));
// xset("colormap",hotcolormap (64));
xbasc();
plot2d2(-Margin+0: (NN+2) ,-[0,xx(time,:),0,0] ,rect = [0,-HH-Margin,NN+1,Margin]);
// Just to to set the frame
Matplotl(rich_color, [0,-HH-Margin,NN+1,Margin]);
// The wvalue of the mine blocks in color.
// Will be in background.
plot2d2(-Margin+0: (NN+2) ,-[0,xx(time,:),0,0] ,rect = [0,-HH-Margin,NN+1,Margin]);
e=gce();
p=e.children;
p.thickness=3;
endfunction

Optimal trajectories simulation

Copy the following code in a file "mine_DP_trajectories.sce"

// exec mine_DP_trajectories.sce

[/ mm e
// OPTIMAL TRAJECTORIES

14

xx=zeros (TT,NN) ;
zz=zeros (TT,1);
uu=(NN+1) *ones(TT, 1) ;
vv=0;

xx(1,:)=zeros(1,NN);
// initial profile

xset ("window",999) ;

// xzset("colormap",hotcolormap (64));

xset("colormap" ,hotcolormap(visual_range));

// table of colors

xbasc() ;plot2d2(-Margin+0: (NN+2) ,-[0,xx(1,:),0,0] ,rect = [0,-HH-Margin,NN+1,Margin])
Matplotl(rich_color, [0,-HH-Margin,NN+1,Margin]);

t=1;last_control=0;
//
while last_control < NN+1 do
zz(t)=profile2integer (xx(t,:));
uu(t)=Ulopt (zz(t) ,t);
xx(t+1,) =xx(t,:);
if uu(t) < NN+1 then
xx(t+1,uu(t))=xx(t,uu(t))+1;
vv=vv+discount " t*richness (xx(t+1,uu(t)) ,uu(t));
end
// halt()
// zbasc();
// Matplotl(rich_color, [0,-HH-Margin, NN+1,Margin]);
// plot2d2(-Margin + 0:(NN+2),-[0 zz(t+1,:) 0 OF,...
// rect=[0,-HH-Margin, NN+1,Margin]) ;
// e=gce();
// p=e.children;
// p.thickness=3;
// ztitle("Optimal extraction profile for annual interest rate "...

// +string (interest)+"%")
// zxpause(400000) ;
/7
last_control=uu(t);
t=t+1;
end

15

//ztitle("Optimal extraction profile for annual interest rate "...
// +string (interest)+"%")

final_time=t;

time=1+final_time;

display_profile(xx,time)

xtitle("Optimal final extraction profile at time t="+string(time-1)+ ...
" for annual interest rate "+string(interest)+"J")

for time=1:final_time do
display_profile(xx,time)
xtitle("Optimal extraction profile at time t="+string(time)+" for annual interest rate
string(interest)+"%")
xs2eps(time, 'optimal_'+string(time)+'.eps');
end

Question 2 Copy the following code in a file "mine_DP.sce", then execute it. Change the
economic model and the discount rate.

// exec mine_DP.sce
lines(0);

stacksize(2%1078);
// try higher values

exec data.sce

Y e e
// DYNAMIC PROGRAMMING ALGORITHM

/)

exec mine_DP_label.sce
exec mine_DP_algorithm.sce
// do it once, them comment the above line

/e
// DYNAMIC PROGRAMMING STRATEGY TRAJECTORIES

/)

exec mine_visualize.sce
exec mine_DP_trajectories.sce

16

References

[1] M. De Lara and L. Doyen. Sustainable Management of Natural Resources. Mathematical
Models and Methods. Springer-Verlag, Berlin, 2008.

2] G.C. Goodwin, M.M. Seron, R.H. Middleton, M. Zhang, B.F. Hennessy, P.M. Stone, and
M. Menabde. Receding horizon control applied to optimal mine planning. Automatica,
42(8):1337-1342, 2006.

17

