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1 Problem statement

We consider a dam manager intenting to maximize the intertemporal payoff obtained by
selling power produced by water releases.
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1.1 Dam dynamics

Consider the dam dynamics st+1 = dyn (st, ut, at), where

dyn (s, u, a) = max{s,min{s̄, s− u+ a}} (1)

where

• time t ∈ [[t0, T ]] is discrete (such as days, weeks or months),

• st is the stock level (in water volume) at the beginning of period [t, t+1[, belonging to
S = [[s, s̄]], where s and s̄ are the minimum and maximum volume of water in the dam,

• the variable ut is the control decided at the beginning of period [t, t+ 1[ belonging to
U = [[0, ū]] (it can be seen as the period during which the turbine is open, and the
effective water release is min{st + at, ut}, necessarily less than the water st + at in the
dam at the moment of turbinating),

• at is the water inflow (rain, hydrology, etc.) during the period [t, t+ 1[.

1.2 Intertemporal payoff criterion

We consider a problem of payoff maximization where turbining one unit of water has unitary
price pt. On the period from t0 to T , the payoffs sum up to

T−1∑

t=t0

pt min{st + at, ut}+K
(
sT
)
, (2)

where K is the final valorization of the water in the dam.

1.3 Uncertainties and scenarios

Both the inflows at and the prices pt are uncertain variables. We denote by wt := (at, pt) the
couple of uncertainties at time t. A scenario

w(·) := (wt0 , · · · , wT ) (3)

is a sequence of uncertainties, inflows and prices, from initial time t0 up to the horizon T .

1.4 Generation of trajectories and payoff by a policy

A policy φ : [[t0, T − 1]] × S → U assigns a control u = φ(t, s) to any state s of dam stock
volume and to any time t ∈ [[t0, T − 1]].
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Given a policy φ and a scenario w(·) as in (3), we obtain a volume trajectory s(·) :=
(
st0 , . . . , sT−1, sT

)
and a control trajectory u(·) :=

(
ut0 , . . . , uT−1

)
produced by the “closed-

loop” dynamics
st0 = s0
ut = φ

(
t, st
)

st+1 = dyn
(
st, ut, at

)
.

(4)

Pluging the trajectories s(·) and u(·) given by (4) in the criterion (2), we obtain the evaluation

Crit
φ
(
t0, s0

)
:=

T−1∑

t=t0

pt min{st + at, ut}+K
(
sT
)
. (5)

1.5 Numerical data

We consider a weekly management over a year, that is t0 = 0 and T = 52, with

s0 = 30 hm3 , s = 1 hm3 , s̄ = 60 hm3 , ū = 10 hm3 . (6)

2 Evaluation of a strategy

We begin by generating a scenario of inflows and prices as follows.

Question 1 Download and execute in Scilab the file dam_management2.sce, so that a cer-
tain number of macros are now available. Generate one scenario by calling the macro
PricesInflows with the argument set to 1 (corresponding to a single scenario generation).

Then, we are going to implement the code corresponding to §1.4 under the form of a
macro simulation_det whose input arguments are a scenario and a policy (itself given
under the form of a macro with two inputs and one output).

Question 2 Complete the Scilab macro simulation det by implementing a time loop from
initial time t0 up to the horizon T . Within this loop, follow the dynamics (4) and use
formula (5) to compute the payoff. The outputs of this macro will be the gain (5) (scalar),
and the state and control trajectories (vectors of sizes T − t0 + 1 and T − t0) given by (4).

This done, we are going to test the above macro simulation det with simple strategies.

Question 3 Using the macro strat constant, compute the payoff, the state and control
trajectories attached to the scenario generated in Question 1. Plot the evolution of the stocks
levels as a function of time. Design other policies, like, for instance, the constant strategies
(ut = k for k ∈ [[Dmin,Dmax]]) and the myopic strategy consisting in maximizing the in-
stantaneous profit pt min{st+at, ut}. Compare the payoffs given by those different strategies.
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3 Optimization in a deterministic setting

In a deterministic setting, we consider that the sequences of prices p(·) and inflows w(·) are
known, and we optimize accordingly. The optimization problem we consider is

max
(st,ut)t∈{t0,...,T}

T−1∑

t=t0

pt min{st + at, ut}+K(sT ) (7)

st0 = s0 (8)

st+1 = dyn (st, ut, at) . (9)

The theoretical Dynamic Programming equation is







V (T, s) = K(s)
︸ ︷︷ ︸

final profit

,

V (t, s) = max
0≤u≤ū



pt min{st + at, ut}
︸ ︷︷ ︸

instantaneous profit

+V
(
t+ 1, dyn (st, ut, at)

︸ ︷︷ ︸

future stock level

)





(10)

3.1 Zero final value of water

Here, we fix the final value K of water in problem (7) to 0. This means that the water
remaining in the dam at time T presents no economic interest for the manager.

Question 4 Write the theoretical Dynamic Programming equation attached to Problem (7).
Then

• complete the Scilab macro optim det that compute the Bellman value of this problem,

• complete the Scilab macro simulation det Bellman which constructs the optimal
strategy given a Bellman’s Value function,

• simulate the stock trajectory using the macro simulation det,

• plot the evolution of the water levels, of the prices and of the controls.

What can you say about the level of water at the end of the period ? Can you explain ?

Question 5 Theoretically, what other mathematical methods could have been used to solve
the dynamic optimization problem (7)?
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3.2 Determining the final value of water

We are optimizing the dam on one year. However at the end of this year the dam manager
will still have to manage the dam, thus the more water in the dam at the end, the better for
the next year. The question is how to determine this value.

The main idea is the following : we want to optimize the management of our dam on a
very long time, however we would like to actually solve the problem only on the first year,
representing the remainings years by the final value function K in (7). Thus K(s) should
represent how much we are going to earn during the remaining time, starting at state s.

Question 6 Consider the optimal strategy s∗N obtained when we solve problem (7) on N

years, with zero final value (K = 0). Using the Dynamic Programming Principle find the
theoretical function KN such that the restriction of the strategy s∗N on the first year is optimal
for the one year problem (Problem 7) with final value K = KN .

Thus, choosing the final value K = KN means that we take in consideration the gains
on N years. We would like to have N going to infinity, however KN+1 −KN is more or less
the gain during one year, thus KN will not converge. In the following question we will find
a way of determining a final value converging with N that represents the problem on a long
time.

Question 7 Consider the optimal control problem (7) with final value K, and the same
problem with final value K + c, where c is a constant. What can you say about their optimal
strategies ? their optimal values ?

If K is the value of remaining water, what should be the value of K(s) (in the sense that
how much the future manager of the dam is ready to pay for you to keep the minimum water
level in the dam) ?

How do you understand the macro final value det ? Test it and comment it. Plot the
final value obtained as a function of the stock level.

3.3 Introducing a constraint on the water level during summer
months

For environemental and touristic reasons the level of water in the dam is constrained. We
expect that, during the summer months (week 25 to 40), the level of water in the dam must
be above a minimal level s′.

Question 8 Recall that a constraint can be integrated in the cost function : whenever the
constraint is violated the cost function should be infinite.

Create a Scilab macro optim det constrained to integrate this constraint.
Compare the evolution (for different minimal levels s′) of stock trajectories and optimal

values. What can you say about it ? What should you do in order to compute a final value
of water adapted to the problem with constraints ?
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3.4 Closed-loop vs open-loop control

A closed-loop strategy is a policy given by φ : [[t0, T − 1]] × S → U, which assigns a water
turbined u = φ(t, s) to any state s of dam stock volume and to any decision period t ∈
[[t0, T − 1]], whereas an open-loop strategy is a predetermined planning of control, that is a
function φ : [[t0, T − 1]] → U.

Let us note that, formally, an open-loop strategy is a closed-loop strategy.

Question 9 In a deterministic setting show that a closed-loop strategy is equivalent to an
open-loop strategy in the sense that, for a given initial stock s0, the stock and control trajec-
tories of (4) will be the same.

Write a Scilab macro that constructs an optimal open-loop strategy from the optimal
closed-loop solution.

However, one can make an error in his prediction on inflows or prices and open-loop
control may suffer from this. In order to represent this, we will proceed in the following way.

1. We simulate a scenario of prices and inflows.

2. We determine the optimal closed-loop strategy via Dynamic Programming.

3. We determine the associated optimal open-loop strategy.

4. We test both strategies on the original scenario.

5. We modify slightly the original scenario (keep in mind that all inflows must be integers)

6. We test both strategies on the modified scenario.

The “slight” modification of the original scenario must be simple and well understood.
Thus we should change either the price or the inflow, at a few times only. However the size
of the modification can be substantial.

Question 10 Write a Scilab macro comparison openVSclosed loop that will implement
this procedure and test it. Are there any differencies of value and stock trajectories for the
original scenario ? Are there any differencies of value and stock trajectories for the modified
scenario ? Why ?

In the same macro, compute the optimal strategy for the modified scenario and compare
the results of the open-loop and closed-loop strategies derived from the original scenario to
the optimal result of the modified scenario.

Comment on the pro and cons of closed-loop strategies against open-loop strategies (in a
deterministic setting).

4 Optimization in a stochastic setting

In section 3 we have made optimization and simulation on a single scenario. However water
inflows and prices are uncertain, and we will now take that into account.
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4.1 Probabilistic model on water inputs and expected criterion

We suppose that sequences of uncertainties
(
at0 , . . . , aT−1

)
,
(
pt0 , . . . , pT−1

)
are discrete ran-

dom variables with known probability distribution. Moreover we will assume that a(·) and
p(·) are independent, and that each of them is a sequence of independent random variables.

Notice that the random variables
(
at0 , . . . , aT−1

)
are independent, but that they are not

necessarily identically distributed. This allows us to account for seasonal effects (more rain
in autumn and winter).

To each strategy φ, we associate the expected payoff

E

[

Crit
φ
(
t0, s0

)
]

= E

[T−1∑

t=t0

pt min{st + at, ut}+K
(
sT
)
]

. (11)

This expected payoff will be estimated by a Monte-Carlo approach. In order to do that
we will use the macros Price and Inflows that generate a table of random trajectories of
the noise, each line being one scenario. The expected payoff of one strategy will be estimated
as the empirical mean of the payoff on these scenarios. In order to compare two strategies
we have to use the same scenarios for the Monte-Carlo estimation. Thus, we fix a set of
simulation scenarios (ωi)i∈[[1,n]], where ωi = {pi1, a

i
1, · · · , p

i
T , a

i
T}. and we will always evaluate

the criterion ECrit
φ as 1

N

∑N

i=1 Crit
φ(ωi).

Consequently the problem is now written as

max
ut,st

E

T−1∑

t=t0

pt min{st + at, ut}+K(sT ) (12)

st0 = s0 (13)

st+1 = dyn (st, ut, at) (14)

ut = φ(t, st) . (15)

4.2 Simulation of strategies in a stochastic setting

Here, we will use the macros simulation and simulation Bellman that simulate a strategy
on each scenario giving a vector of gains, as well as a matrix of stock and control trajectories.

Question 11 As in Question 1, test the constant strategies and compare the results.

4.3 Open-loop control of the dam in a probabilistic setting

We have seen that, in the deterministic case (without any errors of prevision), an open-loop
strategy is equivalent to a closed-loop strategy. Thus, in a probabilistic setting, one can be
tempted to determine an optimal open-loop strategy.

In a first part, we will work on a mean scenario to derive an open-loop strategy.
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Question 12 Complete the macro simu mean scenario, using the macros from the deter-
ministic study, to compute the optimal strategy for the mean scenario.

In a second part we compute the best open-loop strategy using the function optim

built-in in Scilab. We choose a set of optimization scenarios (ω′
i)i∈[[1,Nmc]], where ω′

i =
{p′i1 , a

′i
1 , · · · , p

′i
T , a

′i
T}. (let us note that this set of scenarios is fixed and that it is different

from the set of simulation scenarios). Then we construct a cost function J(u) as

J(u) :=
1

Nmc

Nmc∑

i=1

Crit(u)(ω′i)

where u is a vector of T − 1 variables reprensenting the planning of control. Thus we have

Crit(u)(ω′i) =
T−1∑

t=t0

pit min{sit + a′it , ut}+K
(
siT
)

with

sit+1 = dyn{sit, ut, a
′i
t }

Question 13 Use the macro best open loop to obtain the best possible open-loop strategy.
Test it and compare to the strategy obtained for the mean scenario. You will consider the
simulation of both strategies on the optimization scenarios and on the simulation scenarios.1

4.4 Stochastic Dynamic Programming Equation

4.4.1 Decision-Hazard framework

We will now focus on finding an optimal closed loop solution for problem (12) The dynamic
programming equation associated to the problem of maximizing the expected profits is







V (T, s) = K(s)
︸ ︷︷ ︸

final profit

,

V (t, s) = max
0≤u≤ū

E
[
pt min{st + at, ut}
︸ ︷︷ ︸

instantaneous profit

+V
(
t+ 1, dyn (st, ut, at)

︸ ︷︷ ︸

future stock level

)]
,

(16)

Question 14 Complete the function DP, that solves the dynamic programming equation (We
consider that K = 0).

Then write a macro simulation Bellman DH that will simulate the optimal strategy on
a set of simulation scenario.

Plot an histogram of the payoffs and plot an evolution of the stocks level. Compare the
gains obtained with this strategy to the open-loop strategy derived from the mean-scenario.
You can also compare this strategy to the optimal open-loop strategy.

1As the computation can take some time you might want to go to the next section before the computation

is done.
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4.4.2 Hazard-Decision framework

One may note that, in practice, the dam manager often assume that the weekly inflows
and prices are perfectly known. Indeed at the beginning of the week meteorologists and
economists can give some predictions. Moreover this problem is only an approximation of
the real one, as a dam is managed per hour and not per week, thus the manager has more
information than what we assume in a Decision-Hazard setting. Consequently we will now
change slightly problem (12) by assuming that, at each time step t we know the price pt and
inflow at.

Problem (12) is turned into

max
ut,stockt

E

(
T−1∑

t=t0

pt min{st + at, ut}+K(sT )

)

(17)

st0 = s0 (18)

st+1 = dyn (st, ut, at) (19)

ut = φ(st, pt, at) (20)

Question 15 Write a macro DP HD that will solve problem (17) in a hazard-decision setting.
Test it and compare to the solution from the decision-hazard setting (question 14).

4.5 (Anticipative) upper bound for the payoff

The choice of the probabilistic model of noises (prices and inflows) is quite important. Until
now, we have represented the noises as independent variables, and this is not the more
precise probabilistic model we could have used. Consequently we might want to estimate
the potential gain in using a more precise (but numerically less tractable) probabilistic model.
Thus we would like to have an upper bound on our problem. Such an upper bound can be
found by doing an anticipative study : for each scenario we compute the best possible gains
on this scenario.

Let us stress out that this will not give a strategy that can be used. It only gives an
upper bound on the possible gain for a set of simulation scenario, a-posteriori.

Question 16 Write a macro Simu anticipative, that computes for each scenario the up-
per bound given by the deterministic optimisation. Compare the results obtained by the
differents strategies with this upper bound.
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