
Dam Optimal Management under Uncertainty

P. Carpentier, J.-P. Chancelier, M. De Lara and V. Leclère

April 11, 2018

Contents

1 Problem statement and data 1

1.1 Dam dynamics . 1
1.2 Criterion: intertemporal payoff . 2
1.3 Probabilistic model for water inflows . 3
1.4 Numerical data . 3

2 Simulation and evaluation of given policies 7

2.1 Evaluation of a turbining policy . 7
2.2 Simulation of a given policy . 9

3 Resolution by the stochastic dynamic programming approach 11

3.1 Stochastic dynamic programming equation 11
3.2 Scilab code for the dynamic programming equation 12
3.3 Simulation of the optimal policy . 13

4 Possible extensions 15

4.1 Hazard-decision framework . 15
4.2 Computation of a fair final value of water . 15
4.3 Robustness with respect to water inflow scenarios 16

Abstract

In this practical work, you will play the role of a dam manager. You will try to
maximize the mean intertemporal payoff obtained by selling hydropower produced by
water releases, when the water inflows (rain, snowmelt, outflows from upper dams)
are supposed to be random and the energy prices deterministic. You will propose dif-
ferent water turbinated policies and you will compute their expected payoff. Then,
you will compute the optimal payoff and display an optimal policy. At last, you will
consider different variations around this problem: highlighting the information struc-
ture influence by comparing the “decision-hazard” and the “hazard-decision” settings,
evaluating a “fair final value of the water” or testing robustness with respect to inflow
probability distribution.

1

1 Problem statement and data

We consider a dam manager intending to maximize the intertemporal payoff obtained by
selling power produced by water releases, when the water inflows (rain, snowmelt, outflows
from upper dams) are random and the energy prices are supposed to be deterministic.

1.1 Dam dynamics

We model the dynamics of the water volume in a dam by a function f defined as follows1

x(t+ 1)
︸ ︷︷ ︸

future volume

= min
{
x, x(t)

︸︷︷︸

volume

− u(t)
︸︷︷︸

turbined

+w(t+ 1)
︸ ︷︷ ︸

inflow

}
,

= f
(
t, x(t), u(t), w(t+ 1)

)
(1)

where

• time t ∈ T = {ti, ti + 1, . . . , tf} is discrete (months in this case), and t denotes the
beginning of the period [t, t+ 1[; we call ti the initial time and tf the horizon;

• x(t) volume of water in the dam at the beginning of period [t, t + 1[, belonging to a
finite set X ⊂ [x , x], where x (resp. x) is the minimum (resp. maximum) dam volume;

• u(t) turbinated outflow volume during [t, t + 1[, decided at the beginning of the time
period [t, t + 1[, and belonging to a finite set U ⊂ [u , u], where u (resp. u) is the
minimum (resp. maximum) volume which can be turbinated by time unit; we assume
that the minimum value u is equal to zero:

0 ≤ u(t) ≤ u . (2)

• w(t) inflow water volume (rain, snowmelt, etc.) during the time period [t − 1, t[,
belonging to the finite set W(t) ⊂ [w(t) , w(t)], where w(t) (resp. w(t)) is the minimum
(resp. maximum) possible inflow at time t; we assume that w(t) ≥ 0 for all t; the
dependence of the sets W(t) upon time t allows to take into account seasonal effects
(e.g. more rain in autumn).

The dam manager is supposed to make a decision at each t ∈ T, here turbinating u(t) at
the beginning of the period [t, t+ 1[, before knowing the water inflow w(t+ 1): such a setup
is called decision-hazard setting. We add the following constraint on the turbinated water:

u(t) ≤ x(t) . (3)

Constraint (3) ensures u(t) is feasible, that is, such that the dam volume remains greater or
equal to its minimum value x (remember that any inflow w(t) is nonnegative).

1The min operator in the definition of the dynamics ensures that the dam volume always remains less
than or equal to its maximum value x.

2

1.2 Criterion: intertemporal payoff

The manager problem is one of payoff maximization. At each time t, the turbinated wa-
ter u(t) produces electricity which is sold on markets at a price p(t). The associated financial
income is modeled by a linear function L(t, u) = p(t)u, leading to the instantaneous payoff

L
(
t, u(t)

)
= p(t)u(t) . (4)

Moreover, the volume x(tf) remaining in the dam at the horizon tf is valued (this is the
so-called final value of water) using a quadratic function K, leading to the final payoff

K
(
x(tf)

)
= −α

(

min
{
0, x(tf)− xref

})2

. (5)

Here, α is a coefficient and xref is a given reference volume for the dam at horizon tf . The
final payoff is negative if and only if x(tf) < xref . From ti to tf , the payoffs sum up to

tf−1
∑

t=ti

L
(
t, u(t)

)
+K

(
x(tf)

)
. (6)

The sequence of prices
(
p(ti), . . . , p(tf − 1)

)
is supposed to be deterministic, hence known in

advance at initial time ti where the optimization problem is posed.

1.3 Probabilistic model for water inflows

A water inflow scenario is a sequence of inflows in the dam from time ti up to tf − 1

w(·) :=
(
w(ti), . . . , w(tf − 1)

)
. (7)

We model water inflow scenarios using a sequence of random variables with a known joint
probability distribution P such that

• the random variables
(
w(ti), . . . , w(tf − 1)

)
are independent,

• each random variable w(t) follows a uniform probability distribution2 on the finite
set W(t):

Pw(t){w} =
1

card
(
W(t)

) , ∀w ∈ W(t) . (8)

Notice that the random variables
(
w(ti), . . . , w(tf − 1)

)
are independent, but that they

are not identically distributed. Independence is a key assumption to obtain the dynamic
programming equation (18) with state x.

2The assumption of uniform law is made for the sake of simplicity and can be relaxed without difficulty.

3

1.4 Numerical data

Time. We consider a montly management (the interval [t, t + 1[represents one month)
over one year, so that

ti = 1 and tf = 13 . (9)

State and control. Concerning the dam volume and the turbinated water, we consider
the following bounds:

x = 0 hm3 , x = 80 hm3 , u = 0 hm3 , u = 40 hm3 . (10)

We assume that the dam volume is discretized using a stepsize δx = 2 hm3, whereas the
stepsize used for discretizing the control is δu = 8 hm3 (multiple of δx). Accordingly, the
sets containing the possible values of the state and the control are

X =
{
0, 2, 4, . . . , 80

}
and U =

{
0, 8, 16, . . . , 40

}
.

The water volume in the dam at time ti is known and equal to xi = 40 hm3, and the reference
volume used to define the final payoff K in (5) is xref = 40 hm3.

Prices scenario. The price scenario
(
p(ti), . . . , p(tf − 1)

)
, known in advance, is shown in

Figure 1.

0 102 4 6 8 121 3 5 7 9 11

20

40

60

80

10

30

50

70

90

Time

P
ric

e

Market prices

Figure 1: Prices trajectory for valuing the turbinated water

4

Water inflow scenarios. At each time t, the range W(t) of the water inflow w(t) is
obtained by discretizing an interval centered around a given mean value (see Figure 2). Each
interval is discretized using a stepsize δw = 2 hm3 (multiple of δx). Consider for example
time t = 1: the minimum (resp. maximum) inflow value is w(1) = 12 hm3 (resp. w(1) =
28 hm3), so that the finite support W(1) of the (uniform) probability distribution associated
with the random variable w(1) is

W(1) =
{
12, 14, 16, . . . , 28

}
,

the probability weight of each element w ∈ W(1) being 1/9.
Knowing the probability distribution, it is easy to draw water inflow scenarios since we

assumed that the random variables w(t) are independent.

0 102 4 6 8 121 3 5 7 9 11

0

20

40

10

30

50

5

15

25

35

45

Time

In
fl
o
w

Water inflows

0 102 4 6 8 121 3 5 7 9 11

0

20

40

10

30

50

5

15

25

35

45

Time

In
fl
o
w

Water inflows

Figure 2: Inflows probability laws support (left) and some associated scenarios (right)

Scilab code. The following Scilab code contains the data and macros corresponding to
the numerical example described in §1.4.

//------------------------------

// PROBLEM DATA

//------------------------------

// Time characteristics

// --------------------

// Time horizon

Ti=1;// Don't change this value!

Tf=13;

5

// Dam characteristics

// -------------------

xmin=0;

xmax=80;

xini=40;

xref=40;

// Dam discretization

xdlt=2;// Integer: xmin, xmax and xini are multiples of xdlt

Nx=((xmax-xmin)/xdlt)+1;

// Control characteristics

// -----------------------

umin=0;// Don't change this value!

umax=40;

// Control discretization

udlt=8;// Integer, multiple of xdlt: umin and umax are multiples of udlt

Nu=((umax-umin)/udlt)+1;

// Electricity prices

// ------------------

prices=[48.0,47.0,87.0,37.0,35.0,40.0,29.0,16.0,33.0,38.0,48.0,36.0];

// Inflows characteristics

// -----------------------

// Inflow discretization

wdlt=2;// Integer, multiple of xdlt

// Inflow mean values and maximal variations

wexp=[20.0,24.0,16.0,12.0,08.0,04.0,04.0,10.0,16.0,18.0,30.0,20.0];

wect=[08.0,16.0,08.0,08.0,04.0,02.0,02.0,08.0,10.0,12.0,20.0,10.0];

// Probability laws of the inflows (uniform law with finite support)

wlaws=list();

plaws=list();

for t=Ti:Tf-1 do

6

wlaws(t)=[(wexp(t)-wect(t)):wdlt:(wexp(t)+wect(t))];

plaws(t)=ones(wlaws(t))/length(wlaws(t));

end

// Macro generating Ns inflow scenarios

function wscenarios=inflow_scenarios(Ns,wlaws,plaws)

// Random number generator

grand("setgen","clcg2");

grand("setsd",12345,67890);

// Scenario generation

wscenarios=zeros(Ns,Tf-1);

for t=Ti:Tf-1 do

// Probability law at t

wlawt=wlaws(t);

plawt=plaws(t);

// Probability transition matrix for uniform sampling

// We use grand(...,"markov",...,...) to generate independent sequences

proba=ones(length(plawt),1)*plawt;

samples=grand(Ns,"markov",proba,1);

wscenarios(:,t)=wlawt(samples)';

end

endfunction

Question 1

a) [1] Copy this code into a file DamManagement.sce and check that it corresponds to
the data given in §1.4.

b) [2] Launch Scilab and execute the file DamManagement.sce. Use the macro inflow scenarios

to generate 100 scenarios of water inflow. Plot the first 20 scenarios and compare them
to the ones given in Figure 2.

2 Simulation and evaluation of given policies

In order to simulate (and then optimize) the dam behavior, we need to have the Scilab
macros computing the dynamics (1) and the payoffs (4) and (5).

//------------------------------

// DAM MACROS

//------------------------------

7

function xn=dynamics(t,x,u,w)

// Dynamics of the dam

xn=min(xmax,x-u+w);

endfunction

function payoff=instant_payoff(t,u)

// Instantaneous payoff at time t

payoff=prices(t)*u;

endfunction

function payoff=final_payoff(x)

// Final payoff at horizon

payoff=-min(0,x-xini) .^2;

endfunction

Question 2 [2] Copy the above Scilab code at the end of the file DamManagement.sce

and check that it corresponds to the expressions (1)–(4)–(5). Notice that these macros are
written in such a way that they may be fed either with scalar values or with vector values. This
feature will be be used for efficiently simulating a bunch of inflow scenarios (see Question 3).

2.1 Evaluation of a turbining policy

An admissible policy γ : T × X → U assigns a turbinated water amount u = γ(t, x) ∈ U to
any time t ∈ T and to any dam volume x ∈ X, while respecting constraint (3), that ias,

u ≤ x .

Hence, by (2), we obtain that
u ≤ min{x, u} .

Given an admissible policy γ and given an inflow scenario

w(·) =
(
w(ti), . . . , w(tf − 1)

)
, (11)

we are able to build a dam volume trajectory

x(·) :=
(
x(ti), . . . , x(tf − 1), x(tf)

)
(12)

and a turbinated water trajectory

u(·) :=
(
u(ti), . . . , u(tf − 1)

)
(13)

produced by the “closed-loop” dynamics initialized at the initial time ti by

x(ti) = xi (14a)

8

and propagated from t = ti up to t = tf − 1 according to the policy

u(t) = γ
(
t, x(t)

)
(14b)

and the dynamics (1)

x(t+ 1) = f
(
t, x(t), u(t), w(t+ 1)

)
. (14c)

We also obtain the payoff associated to the inflow scenario w(·)

Jγ
(
ti, xi, w(·)

)
:=

tf−1
∑

t=ti

L
(
t, u(t)

)
+K

(
x(tf)

)
, (15)

where x(·) and u(·) are given by (14c). The expected payoff associated with the policy γ is

E

(

Jγ
(
ti, xi, w(·)

))

, (16)

where the expectation E is taken with respect to the product probability P, whose marginals
are given by (8). The true expected value (16) is difficult to compute,3 and we evaluate it
by the Monte Carlo method using Ns inflow scenarios

(
w1(·), . . . , wNs(·)

)
:

1

Ns

Ns∑

s=1

Jγ
(
ti, xi, w

s(·)
)
. (17)

By the law of large numbers, the mean payoff (17) is a “good” approximation of the expected
payoff(16) if the number of scenarios is “large enough”.

We propose the following Scilab code in order to evaluate the mean payoff associated to
a policy given by the Scilab macro policy.

//------------------------------

// SCENARIO BASED SIMULATOR

//------------------------------

function [xscenarios,uscenarios,cscenarios]=simulation(wscenarios,policy)

// Initialization

xscenarios=zeros(Ns,Tf);// used to store the state trajectories

uscenarios=zeros(Ns,Tf-1);// used to store the control trajectories

cscenarios=zeros(Ns);// used to store the payoff values

// Simulation in forward time

xscenarios(:,1)=xini*ones(Ns,1);

3Note however that this computation is achievable insofar all quantities it involves belong to finite sets.

9

for t=Ti:Tf-1 do

x=xscenarios(:,t);

u=policy(t,x);

w=wscenarios(:,t);

xn=dynamics(t,x,u,w);

cscenarios=cscenarios+instant_payoff(t,u);

xscenarios(:,t+1)=xn;

uscenarios(:,t)=u;

end

cscenarios=cscenarios+final_payoff(xn);

printf('\n Mean payoff (Monte Carlo): %f\n',mean(cscenarios));

endfunction

Question 3

a) [1] Copy the above Scilab code at the end of the file DamManagement.sce. Check that
it corresponds to the expressions (14c)–(15)–(17) for a given policy γ (input argument
policy of the macro simulation).

b) [2] Explain in detail how the macro simulation computes these quantities (see Ques-
tion 2).

2.2 Simulation of a given policy

In order to test the Scilab macro simulation given above, consider the following code.

//------------------------------

// HEURISTIC POLICY EVALUATION

//------------------------------

function u=heuristic_policy(t,x)

// Heuristic policy

thresmin=xref;

thresmax=xref;

u=(umax*bool2s(x > thresmin))+(umin*bool2s(x <= thresmax));

u=min(u,x);

endfunction

// Scenarios generation

Ns=10000;

wscenarios=inflow_scenarios(Ns,wlaws,plaws);

// Simulation

10

[xscenarios,uscenarios,cscenarios]=simulation(wscenarios,heuristic_policy);

// Payoff histogram

xset("window",101);

clf();

histplot(50,cscenarios,normalization = %t,style = 5);

xgrid;

xtitle("Payoff distribution");

// State trajectories

xset("window",102);

clf();

plot2d([Ti:Tf],xscenarios(1:20,:)');

xgrid;

xtitle('Dam volume','Time','State');

// Control trajectories

xset("window",103);

clf();

plot2d([Ti:Tf-1],uscenarios(1:20,:)');

xgrid;

xtitle('Turbined water','Time','Control');

Question 4

(a) [2] Explain the control policy induced by the Scilab macro heuristic policy. Copy
the relevant part of the above Scilab code at the end of DamManagement.sce, then gen-
erate 10,000 inflow scenarios and simulate the policy heuristic policy along them.

(b) [2] Copy the relevant part of the above Scilab code at the end of DamManagement.sce,
then plot some trajectories corresponding to the dam volume and to the turbinated water
obtained using this policy, and provide a histogram of the payoff distribution. Comment
the figures thus obtained.

We now want to design new policies, writing Scilab macros following the model given by
the macro below:

function u=my_policy(t,x)

u=max(umin,min(WRITE_A_FORMULA_HERE,min(x,umax)));

endfunction

Question 5

(a) [2] Explain why we use the expression max(umin,min(..... , min(x,umax))) in
the macro my policy above.

11

(b) [1+1+2] Write the Scilab code of the following policies:

• always turbinate at the maximum possible (myopic),

• turbinate a fraction of the maximum possible,

and evaluate them thanks to the scenario based simulator.

(c) [2] Propose a policy which depends on the prices knowledge, and explain how you
designed this policy.

(d) [2] Evaluate this last policy, and compare it to the ones designed in item (b).

3 Resolution by the stochastic dynamic programming

approach

In order to compute the optimal turbinated water policy, we provide the stochastic dynamic
programming (or Bellman) equation associated with the problem of maximizing the expected
payoff (16), as well as the corresponding Scilab code.

3.1 Stochastic dynamic programming equation

Since the water inflows w(t) are supposed to be independent random variables, Dynamic Pro-
gramming applies and the equation associated with the problem of maximizing the expected
payoff (16) writes

V (tf , x) = K
(
x
)
,

V
(
t, x

)
= max

u∈U , u≤x
E

(

L
(
t, u

)
+ V

(
t+ 1, f(t, x, u, w(t+ 1))

))

, (18)

for t varying from tf − 1 to ti. The expectation E is taken with respect to the marginal
probability distribution Pw(t+1) given by (8), that is,

E

(

L
(
t, u

)
+V

(
t+1, f(t, x, u, w(t+1))

))

=
1

card
(
W(t)

)

∑

w∈W(t)

L
(
t, u

)
+V

(
t+1, f(t, x, u, w)

)
.

A difficulty when programming the Bellman equation is that we need to manipulate both
the values (t, x) of the time and of the state, and the associated indices (t, i) in the table
storing the values of the function V (t, x). In our application, the treatment of index t is
obvious because t ∈ T = {ti, ti + 1, . . . , tf}, but we need a tool performing the conversion
for the volume. The following Scilab macro state index returns the index i associated to
an element x in the finite set X containing the possible values of the dam volume.

12

function i=state_index(x)

// Index associated with a volume value

i=dsearch(x,[xmin:xdlt:xmax],'d');

if i==0 then

printf('\n Invalid dam volume: %f\n',x);

end

endfunction

Question 6 [2] Copy the above Scilab code at the end of the file DamManagement.sce.
Explain in detail how the macro works.

3.2 Scilab code for the dynamic programming equation

We provide the following code in order to compute the Bellman function.

//-------------------------------

// STOCHASTIC DYNAMIC PROGRAMMING

//-------------------------------

// Initialization

Vbell=-ones(Tf,Nx)*%inf;// Used to store the optimal payoff functions

Ubell=ones(Tf-1,Nx)*%inf;// Used to store the optimal controls

// SDP computation by backward induction

function [Vbell,Ubell]=sdp_solve()

// Bellman function at final time

payoff=final_payoff([xmin:xdlt:xmax]);

Vbell(Tf,:)=payoff';

// Loop backward in time

for t=Tf-1:-1:Ti do

wlawt=wlaws(t);

plawt=plaws(t);

Nw=length(wlawt);

for x=xmin:xdlt:xmax do

i=state_index(x);

for u=[umin:udlt:min(x,umax)] do

ctot=0;

for k=1:Nw do

w=wlawt(k);

p=plawt(k);

xn=dynamics(t,x,u,w);

in=state_index(xn);

ctot=ctot+(p*Vbell(t+1,in));

13

end

ctot=ctot+instant_payoff(t,u);

if ctot > Vbell(t,i) then

Vbell(t,i)=ctot;

Ubell(t,i)=u;

end

end

end

end

endfunction

Question 7

(a) [2] Copy the above Scilab code at the end of the file DamManagement.sce. Explain
in detail why the macro sdp solve corresponds to the computation of the Dynamic
Programming equation (18).

(b) [1] Execute the macro sdp solve, which generates the table Vbell containing the
values of the Bellman function and the table Ubell containing the values of the optimal
controls. Display the value of the Bellman function at (ti, xi).

(c) [2] Plot different Bellman functions and comment on their shape.

3.3 Simulation of the optimal policy

Consider the following Scilab macro.

function u=optimal_policy(t,x)

i=state_index(x);

u=Ubell(t,i)';

endfunction

Question 8

(a) [2] Explain why the control policy induced by the Scilab macro optimal policy is
optimal.

(b) [1] Generate 10,000 water inflow scenarios using the macro simulation and simu-
late the policy optimal policy along them. Plot some trajectories corresponding to the
dam volume and to the turbinated water, obtained using this policy.

(c) [2] Provide a histogram of the distribution of the random payoff, and compare the
mean payoff (17), with the value V (ti, xi) of the Bellman function evaluated at (ti, xi).

(d) [3] Compare these results with those obtained using all previous policies.

14

Here we assume that the values of optimal control have not be stored in the table Ubell,
so that the only outcome of the macro sdp solve is the table Vbell (Bellman values).

Question 9 [2] Provide a method and the corresponding code to compute the optimal
value of the control at time t for a given dam volume x(t) using only the values stored in the
table Vbell at time t+ 1.

Hint: the optimal control at (t, x(t)) is the argmax of the following optimization problem:

max
u∈U , u≤x(t)

E

(

L
(
t, u

)
+ V

(
t+ 1, f(t, x(t), u, w)

))

. (19)

Be careful that your code must accept a vector of volumes as input.

15

4 Possible extensions

In this section, we propose several developments and extensions for the dam management
problem.

4.1 Hazard-decision framework

In the hazard-decision framework, the dam manager is supposed to make a decision, here
turbining u(t) at the beginning of the period [t, t+ 1[, knowing the water inflow w(t+ 1) in
advance.

The Bellman equation is now

V (tf , x) = K
(
x
)
,

V
(
t, x

)
= E

(

max
u∈U , u≤x

L
(
t, u

)
+ V

(
t+ 1, f(t, x, u, w(t+ 1))

))

. (20)

Once the value function V (t, x) evaluated and stored for all time t and state x, the optimal
control at time t starting from state x and observing the water inflow w is the argmax of

max
u∈U , u≤x

L
(
t, u

)
+ V

(
t+ 1, f(t, x, u, w)

)
, (21)

which leads to an optimal policy depending on the triplet (t, x, w).

Question 10

(a) [1] Explain the difference between (20) and (18).

(b) [2] Adapt the Scilab macro sdp solve to solve the hazard-decision Bellman equa-
tion (20). We decide not to store the optimal policy in the table Ubell.

(c) [1+2] Based on (21), write the Scilab code which computes the optimal control as
a function of (t, x, w), and use it to obtain by simulation the optimal trajectories of the
state and the control as well as the optimal payoff distribution. Compare.

4.2 Computation of a fair final value of water

Till now, the gain in leaving water in the dam at the end of the time horizon was arbitrarily
fixed. Now, we provide a procedure to estimate a “ fair final value of water”, that is, a
function x 7→ K(x) as in (5).

The intuition behind the procedure is that the final value of water is the value that a
manager would put on the dam, were he to run it from the date tf + 1 to infinity. The final
value of water is the solution of an infinite horizon maximization problem. The procedure
below mimicks an algorithm to find a fixed point by iterations.

First, we start with a zero final payoff function K(1)(·) ≡ 0 and obtain, by backward
induction, the Bellman function V (1)(ti, ·) at initial time ti. Up to a translation — to

16

account for the fact that an empty dam has zero final value of water — we identify the
function V (1)(ti, ·)− V (1)(ti, x) with the new final value of water K(2)(·). Proceeding along,
we expect that this loop converges towards a function x 7→ K(∞)(x) which is a good candidate
for the final value of water.

We design a loop for n = 1, . . . , N , starting with a zero final value of water

K(1)(x) = 0 , ∀x ∈ X ,

then solving the backward Bellman equation

V (n)(tf , x) = K(n)
(
x
)
,

V (n)
(
t, x

)
= max

u∈U , u≤x
E

(

L
(
t, u

)
+ V (n)

(
t+ 1, f(t, x, u, w(t+ 1))

))

,

and then closing the loop by choosing the new final value of water

K(n+1)(x) = V (n)(ti, x)− V (n)(ti, x) , ∀x ∈ X , (22)

as the Bellman function at the initial time ti after a shift, so that K(n+1)(x) = 0.

Question 11 Implement the iterative procedure described above, and compute and plot the
“fair final value of water” in the dam.

4.3 Robustness with respect to water inflow scenarios

An interesting point, which occurs in practical problems, is the following. In the case where
the random variables

(
w(ti), . . . , w(tf − 1)

)
are correlated in time, it is always possible to

obtain the marginal probability laws Pw(t) of each w(t) and then compute the Bellman
function as in §3. We thus obtain a feedback policy that would be optimal if the random
inflow variables were uncorrelated. The loss of optimality may be evaluated by simulating
the feedback policy along scenarios drawn using the “true” probability law P of the process
(
w(ti), . . . , w(tf − 1)

)
.

Question 12

(a) Draw inflow scenarios according to an auto-regressive AR(1) process.

(b) Compute the marginal probability distribution Pw(t) induced by these scenarios.

(c) Compute the Bellman solution of the problem using these marginal probability laws and
the associated optimal policy.

(d) Using this policy, run a simulation along scenarios drawn according to the AR(1) process.

(e) Evaluate the loss of optimality induced by ignoring the correlation in the inflow process.

17

References

D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
Massachusets, second edition, 2000. Volumes 1 and 2.

M. De Lara and L. Doyen. Sustainable Management of Natural Resources. Mathematical
Models and Methods. Springer-Verlag, Berlin, 2008.

18

