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We consider a dam manager intenting to maximize the intertemporal payoff obtained by
selling power produced by water releases, when the water inflows (rain, outflows from upper
dams) are random. However, the manager must also respect a minimal volume during the
Summer months for tourism reasons.



1.1

Dam dynamics

We model the dynamics of the water volume in a dam by

with

S(t+1) =min{S* St) — q(t) +a(t)}, teT:={ty....,T—1}
—— ~ =~ =~

future volume volume  turbined inflow

time t € T := {to,..., T} is discrete (such as days), and ¢ denotes the beginning of the
period [¢,t + 1],

S(t) volume (stock) of water at the beginning of period [¢,t + 1], belonging to the
discrete set X = {0,1,2,...,5%}, made of water volumes, where S* is the maximum
dam volume,

a(t) inflow water volume (rain, etc.) during [t, ¢+ 1], belonging to W = {0,1,2,...,da*}
decision-hazard: a(t) is not available at the beginning of period [t,t + 1]

q(t) turbined outflow volume during [¢, ¢+ 1], decided at the beginning of period [t,t +
1[, supposed to depend on S(t) but not on a(t), belonging to the discrete set U =
{0,1,2,...,¢"}, where ¢* is the maximum which can be turbined by time unit (and
produce electricity),

s(t) = [S(t) — q(t) + a(t) — SﬁLr the spilled volume

The dam manager is supposed to make a decision, here turbining ¢(¢) at time ¢, before
knowing the water input a(t). Such a case is called decision-hazard. The constraint on the
water turbine ¢(t) is

0<q(t) <S(t). (1)

A scenario is a sequence of uncertainties:

1.2

a(-) := (alto),...,a(T = 1)) . (2)

Criterion: intertemporal payoff

The manager original problem is one of payoff mazimization where turbining one unit of
water has unitary price p(t). On the period from ¢y to T', the payoffs sum up to

2_: p(t)q(t) + UtilFin(T, S(T)) , (3)

t=to

where



e the sequence
p(-) = (p(to), ..., p(T — 1)) (4)

of prices is supposed to be known in advance (in other models, it could be progressively
revealed to the manager),

e the final term UtilFin(T,S(T)) gives value to the water volume in the dam at the
horizon T'.

1.3 Constraint: minimal volume during the Summer months

For “tourism” reasons, the following constraint is imposed
stock  S(t) >S5, Vte {July, August} .

In what follows, we shall be more specific about the sense with which this constraint has to
be satisfied, namely in probability.

1.4 Water turbined strategy

A strategy Rule : T x X — U assigns a water turbined ¢ = Rule(t,S) to any state S
of dam stock volume and to any decision period ¢ € T. Once given, we obtain uncertain
volume trajectories S(-) := (S(to),...,S(T" — 1), S(T)) and turbined trajectories ¢(-) :=
(q(to), oo q(T — 1)) produced by the “closed-loop” dynamics

S(to) - So
S(t+1) = min{St S(t) — q(t) + alt)} (5)
q(t) = Rule(t,S(t))

and function of the scenario a(-). Thus, in the end, we obtain an uncertain payoff
T—1
Crit™ (to, So, a()) = > _ p(t)q(t) + UtilFin(T, S(T)) (6)
t=to

where S(-) and ¢(-) are given by (5).

1.5 Probabilistic model on water inputs and expected criterion

We suppose that sequences of uncertainties (a(to), cona(T — 1)) are random variables with
a known probability distribution P on the set {0, ..., a*}7 .

We suppose that the random variables (a(to), ..., a(T" — 1)) are independent with distri-
bution (), ..., ma(t) on the set {0,..., a*}:

P{a(t) = 0} = mo(t), ..., Pla(t) = a'} = m(t) . (7)



Notice that the random variables (a(to),...,a(T" — 1)) are independent, but that they are
not necessarily identically distributed. This allows us to account for seasonal effects (more
rain in autumn and winter).

To each strategy Rule, we associate the expected payoff

T-1

E CritRule(to,SO,a(-))} =E[) _p(t)q(t) + UtilFin(T,S(T))] . (8)

t=to

where the expectation E is taken with respect to the probability P.

2 Maximizing the expected payoff and computing the
resulting probability to satisfy the constraint

2.1 Dynamic programming equation
The dynamic programming equation associated with the problem of mazimizing the expected

payoff (8) -
max [ Zp(t)q(t) + UtilFin(T, S(T))] (9)

t=to
is

final payoff
7

~

V(T,S) = UtilFin(T,S(T)),
V(t,S) = max Ea(t)[ p\(% +V(t+1,{nin{5ﬁ,5—q+a(t)}:)} ,

q€{071727"'7min{87qu}}

(10)

~
instant. payoff future stock volume

where the expectation E is taken with respect to the probability in (7).

2.2 Data for the numerical simulations

We know will make numerical simulations, and try different strategies. We shall consider a
daily management over one year

to=1 and T =365, (11)
with 0.4 0.5
Sp=0hm?®, S*=100hm?®, ¢ = 7 xS* and df = 7 x S* (12)

where we say that, during one week, one can turbine at maximum 40% of the dam volume,
and that during one week of full water inflows, an empty dam can be half-filled.



The sequence of prices is known in advance. We shall produce it by one sample from the
expression

p(t) = (1+et)p with 7 =66 MWh/hm?® x 2.7 euros/MWh? (13)

where €(t) is drawn from a sequence of i.i.d. uniform random variables in [—1/2,1/2].
The probability of water inflows (from zero to the maximum a*) is known in advance.!

Copy the following Scilab code into a file DamData.sce.

// exec DamData.sce

// State
volume_max=100;
volume_min=0;

// Control
control_max=0.4/7*volume_max;
control_max=control_max+1;

// Time

tt0=1;

horizon=365;
TT=tt0: (horizon-1);
bTT=tt0: (horizon) ;

// Prices
price=66*2.7;
price=pricex*(1/2+0.5%(rand(TT)-1/2));

// Uncertainties
uncertainty_max=floor(0.5/7*volume_max) ;

uncertainty=[0:uncertainty_max] ;

// Probabilities

"'We shall produce these probabilities by one sample drawn from a sequence of i.i.d. uniform random
variables. This does not mean that these probabilities are random. This is just a trick to have probabilities
differ from student to student.



unnormalized_proba=cumsum(ones (uncertainty))-1;
probal=unnormalized_proba/sum(unnormalized_proba) ;
// more rain in winter

probal82=probal($:-1:1);

// less rain in summer

// simulation of independent sequences of water inflows between 1 and
// uncertainty_maz+1

Simulations=50;
WW=zeros(Simulations,horizon-tt0+1);

for ss=1:Simulations do
for tt=bTT do
proba=(1-sin(%pi*tt/365))*probal+sin(%pi*tt/365)*probal82;
WW(ss,tt)=dsearch(rand (), cumsum(proba)) ;
end
end

Scenarios=WW;

xset ("window", 1) ;xbasc();
plot2d2(bTT,Scenarios"')

Copy the following Scilab macros into the same file DamData. sce.

In the macro trajectories, the output CC is the mean payoff averaged over the scenarios:
by the law of large numbers, CC is an approximation of the expected payoff if the number of
scenarios is large enough (Monte Carlo method).

/) mm
// MACROS

e

// Dynamics
function ssdot=dynamics(ss,qq,aa)

ssdot=max (volume_min,min(volume_max,ss-qq+aa)) ;
endfunction

// Instantaneous payoff function
function c=instant_payoff(tt,ss,qq,aa)
c=price(tt)*qq;



endfunction

// Final payoff function

function c=final_payoff (tt,ss)
c=0;

endfunction

// Trajectories simulations

function [SS,QQ,CCl=trajectories(SS0O,scenarios,policy)
Ss=[1;
QQ=[1;
cc=01;
nb_simulations=size(scenarios,'r');
for simu=1:nb_simulations do
ss=5S0;
qq=0];
cc=0;
aa=scenarios(simu,:);
for tt=TT do
qq=[qq,policy(tt,ss($))];
ss=[ss,dynamics(ss($),qq($) ,aa(tt))];
cc=cc+instant_payoff (tt,ss($),qq($) ,aa(tt));
end
cc=cc+final_payoff (TT($),ss($));
SS=[SS;ss];
QQ=1[QQ;qql;
CC=[CC;cc];
end
//
disp('The payoff is '+string(mean(CC)));
endfunction

2.3 Scilab code for the additive stochastic dynamic programming
equation

Copy the following Scilab code into the file Damoptimality.sce.

A A A A S A A VA
//  STOCHASTIC ADDITIVE DYNAMIC PROGRAMMING EQUATION

I A A A A A A A i A i i i s
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states=[0:volume_max] ;
controls=[0:control_max] ;

cardinal_states=prod(size(states));
cardinal_controls=prod(size(controls));
cardinal_uncertainty=prod(size(uncertainty));

state_min=min(states);
state_max=max(states);

/) S
// MACROS

Y R

function [FEEDBACK,VALUE]=SDP(FINAL_PAYQOFF)
VALUE=zeros (bTT'*states) ;
FEEDBACK=zeros (TT'*states) ;

VALUE (horizon, : )=FINAL_PAYOFF;// vector

// backward time
for tt=TT($:-1:1) do
loc=zeros(cardinal_controls,cardinal_states);
// local variable containg the values of the function to be minimized
for jj=l:cardinal_controls do
hh=controls(jj);
loc(jj,:)=0;
// the following loop computes an expectation
for dd=1:cardinal_uncertainty do
ww=uncertainty(dd) ;
loc(jj,:)=loc(jj,: )+ ...

proba(dd)*(-1/%eps*bool2s(states < hh)+bool2s(states >= hh)) .* ...

(instant_payoff (tt,states,hh,ww)+ ...
VALUE(tt+1,dynamics(states,hh,ww)-state_min+1));
end;
end

/7



[mmn, jjnl=min(loc,'r');
[mmx, jjx]=max(loc,'r');
// mm is the extremum achieved
// j7 is the index of the extremum argument
//
VALUE(tt, :)=mmx;
// mazimal payoff
FEEDBACK (tt, :)=controls(jjx);
// optimal feedback
end
endfunction

We first consider that the final “value of water” is zero:
UtilFin(T,S,) =0 . (14)

// We start with a zero value of water at the end of the year
zero_final_payoff_vector=zeros(states);

/) e
// SIMULATIONS

/-

[FEEDBACK,VALUE]=SDP (zero_final_payoff_vector);

// optimal strategy

function uu=optimal_rule(tt,xx)
uu=FEEDBACK (tt ,xx-state_min+1) ;

endfunction

// Trajectories simulations and visualization

S80=0;

[SS,HH,CC]=trajectories(SS0,Scenarios,optimal_rule);

xset ("window",10);// zbasc();

plot2d (bTT,SS"')

xtitle('Stock volumes in a dam following an optimal strategywith a zero final value of wu
"(time) ', ' (volume) ')

// Payoff histogram

xset ("window",20) ;xbasc();

histplot (100,CC)

xtitle('Histogram of the optimal payoff with a zero final value of water')



disp('The minimum of the optimal payoff is '+string(min(CC)));
disp('The mean of the optimal payoff is '+string(mean(CC)));
disp('The maximum of the optimal payoff is '+string(max(CC)));

Question 1 Picture the trajectories of the stocks corresponding to the optimal strategy.
FEvaluate the optimal expected payoff, and compare it with the value function V(ty,0) eval-
uated at the initial time to and the initial stock So = 0. Ezxplain why these two quantities
should be close. What do you observe for the final stocks? Explain why.

2.4 Optimal strategy when the final “value of water” is not zero

Till now, there was no gain in leaving water in the dam at the ultimate decision period.
From now on, we consider that the “value of water” UtilFin(T,Sy) is given by

UtilFin(T, Sy) =

V) (15)

where ﬁ is a discount factor. We shall take ry = 0.1 when 7" = 365 days.

VI 2022022022000 02N A A A A AN A AR AN A A N
// VALUE OF WATER

VIZZ 2222222020202 2 2 2 A 2 A A A A A A A A i
final_payoff_vector=(1/(1+0.1))*VALUE(1,:);
Copy the following Scilab code into the file DamOptimality.sce.

Attt
// SIMULATIONS
/) e

[FEEDBACK,VALUE]=SDP(final_payoff_vector) ;

// optimal strategy

function uu=optimal_rule(tt,xx)
uu=FEEDBACK (tt ,xx-state_min+1) ;

endfunction

// Trajectories simulations and visualization
[SS,HH,CC]=trajectories(SS0,Scenarios,optimal_rule);
xset ("window",10);// zbasc();
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plot2d (bTT,SS"')

xtitle('Stock volumes in a dam following an optimal strategy with a final value of water
"(time) ', ' (volume) ')

// Payoff histogram

xset ("window",20) ;xbasc();

histplot(100,CC)

xtitle('Histogram of the optimal payoff with a final value of water')

disp('The minimum of the optimal payoff is '+string(min(CC)));
disp('The mean of the optimal payoff is '+string(mean(CC)));
disp('The maximum of the optimal payoff is '+string(max(CC)));

Stock volumes in a dam following an optimal strategywith a final value of water

(volume)

g T T T T T
0 50 100 150 200 250 300 350 400

Figure 1: Stock volumes in a dam following an optimal strategy, with a final value of water

Question 2 Picture the trajectories of the stocks corresponding to the optimal strategy.
FEvaluate the optimal expected payoffs for different values of the initial stock Sy, and compare
them with the value function V(ty,Sy) evaluated at the initial time to and the initial stock

11



So. Display the histogram of the optimal payoff. Compare the mean of the optimal payoff
with the upper and lower bounds of the distribution.

Histogram of the optimal payoff with a final value of water
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Figure 2: Histogram of the optimal payoff, with a final value of water

2.5 Evaluation of the probability to satisfy the tourism constraint

Let S*(-) denote an optimal stock trajectory.

Question 3 FEwvaluate the probability
P{S*(t) > S", Vte {July, August}} (16)

that the water volume S*(t) remains above F% of S* during the months of July and August,
where F% varies between 0% and 100%.

/) e
// PROBABILITY CONSTRAINT EVALUATION

12



Probability that the summer tourism constraint is satisfied under the optimal strategy with a final value of water
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Figure 3: Probability that the summer tourism constraint is satisfied under the optimal
strategy, with a final value of water

/) T
Summer=([1:horizon] >= horizon/2 & [1:horizon] <= horizon/2+2*30%horizon/364);
VP=[]
for jj=0:100 do
VP=[VP,mean (bool2s (min(SS(:,Summer),'c') >= jj/100*volume_max))];
end

xset ("window",30) ;xbasc();

plot(0:100,VP)

xtitle('Probability that the summer tourism constraint is satisfied under the optimal st
'(guaranteed fraction of dam volume)','(probability)')
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3 Maximizing the viability probability to guarantee
jointly payoff and summer water volume

The payoff at time t € T is

‘ water turbined profit

B(t)=>_ p(s)q(s)

s=to
and
_1 Water turbined profit final st(J)Ek value
/-/‘ 7 N\
B(T)=Y_  p(t)g(t)  +UtilFin(T,S(T))

t=to

We propose an alternative stochastic viability formulation to (9)-(16) under the form

water input scenarios along which

the stocksS(t) > S*, Vt € {July, August}
and

the final profit B(T) > B’

max P ¢ a(-) (17)

3.1 Multiplicative dynamic programming equation

The dynamic programming equation associated with the problem of maximizing the viability
probability (17) is

final constraint

——
V(T,8B) = Toopy
V(T — 1, S, B) = max IE:a(Tfl) [1{5’25" ,T—1€{July,August}

q€{0,1,2,...,min{S,q?}}
xV(t+1,min{S* S — ¢+ a(T — 1)},
B+ p(T — 1)q 4+ UtilFin (T, min{S* S — ¢ + a(T — 1)})] ,

instantaneous constraint
7\

Ve

V(t,S,B) = a E.n |1 ulv. Augus
( ) qE{O,l,Q,I‘r.im%n{S,qﬁ}} (t)[ {S(t)>S" , te{July,August}}

xV (t+ l,fnin{Sﬁ,S(t) —q(t) +al)}, B —i—p(t)g)} , Vt=ty,...., T =2,

g

future stock volume future payoft
(18)
where the expectation E is taken with respect to the probability (7). Notice that the equation
for t =T — 1 takes into account the term UtilFin(S(7T)) in the payoff.

3.2 Scilab code for the multiplicative stochastic dynamic program-
ming equation

Copy the following Scilab code into the file DamViability.sce.

14
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Figure 4: Maximal viability probability as a function of guaranteed thresholds S* and B’

// exec DamViability.sce

horizon=10;

SSmax=volume_max;
nb_SS=SSmax+1;

state_PP=0: (horizon*SSmax) ;

nb_PP=length(state_PP);
PPmax=max(state_PP) ;
controls=0:nb_SS;
nb_CC=length(controls);

// For a practical work lower the number of points

15



volume_max=10;

SSmax=volume_max;

nb_SS=SSmax+1;

state_PP=0: (horizon*SSmax) ;
nb_PP=length(state_PP);
PPmax=max(state_PP);

// controls=0:nb_SS;
controls=linspace(0,SSmax+1,10);
nb_CC=length(controls);

uncertainties=0:1;
nb_WW=length(uncertainties);
proba=ones (1,nb_WW)/nb_WW;

R A A A A S A A A
//  MULTIPLICATIVE STOCHASTIC DYNAMIC PROGRAMMING EQUATION

VA A A A A A A A A A A A A A A A V4

/) S
// MACROS

)

function [FEEDBACK,VALUE]=MSDP(SS_min,PP_min)
// SS_min= SSmin * Summer ;
//  PP_min=PPmin;

VALUE=1ist () ;
FEEDBACK=1ist () ;
VALUE (horizon)=ones(nb_SS, 1)*bool2s(state_PP >= PP_min);
shift=[(horizon-1):(-1):1];
for tt=shift do
VVdot=VALUE(tt+1) ;
VV=zeros (VVdot) ;
for ss=1:nb_SS do
SS=ss-1;
if SS >= SS_min(tt) then
for pp=1:nb_PP do
PP=pp-1;
locext=[];

16



for cc=1:ss do
// control constraint
UU=cc-1;
locint=0;
for oo=1:nb_WW do
ww=uncertainties (o0o);
SSdot=(min(SSmax,SS-UU+ww) ) ; // physical value
ssdot=SSdot+1;// corresponding index
Ppdot=(min (PPmax-1,
PP+price(tt)*UU+bool2s(tt==horizon-1)*final_payoff (tt,ssdot)));
//physical value
ppdot=min(round (ppdot/PPmax)+1,nb_PP);//corresponding index
locint=locint+proba(oo)*VVdot (ssdot,ppdot) ;
end;// of the ezpectation loop
locext=[locext,locint];
end;// of the control loop
VV(ss,pp)=max(locext);
end;// of the pp loop
end;// of the if condition on SS
end;// of the ss loop
VALUE (tt)=VV;
end;// of the time tt loop
endfunction

3.3 Maximal viability probability function and viability kernels

Question 4 Compute the mazimal viability probability. Deduce the viability kernels with
confidence levels 100%, 95% and 90%.

stacksize('max');

PPmin=0.13*PPmax;
SSmin=0.89*SSmax;

[FEEDBACK, VALUE] =MSDP (SSmin*Summer ,PPmin)

3.4 Maximal viability probability as a function of guaranteed thresh-
olds

Copy the following Scilab code into the file DamViability.sce.

//precision=10;
precision=2;

17



Thresholds_EE=1linspace(0.1,0.15,precision)*PPmax;
nb_EE=length(Thresholds_EE);

//
Thresholds_BB=1linspace(0.75,0.99,precision) *SSmax;
nb_BB=length(Thresholds_BB);

ViabProba=zeros(nb_BB,nb_EE) ;

for bb=1:nb_BB do
SS_min=Thresholds_BB(bb)*Summer;
for ee=1:nb_EE do
PP_min=Thresholds_EE(ee);
[FEEDBACK,VALUE]=MSDP(SS_min,PP_min) ;
VV=VALUE(1) ;
ViabProba(bb,ee)=VV(nb_SS-2,1);
// initial state
end
// of the ee loop
end
// of the bb loop

save("ViabStoch.dat",ViabProba)

Question 5 Launch the above code (maybe you will have to reduce the time step, or the
horizon, and adapt the code in consequence if the computation takes too much time). Visu-
alize the maximal viability probability starting from an almost full dam. Draw iso-probability
curves. Comment on what you observe.

SP=1076;

SP=10;

// scale probability
SC=10;

SC=2;

xset('window',1);// zclear(); // xzbasc();

xset('colormap', jetcolormap(20));

// plot3d1(Thresholds_BB,SC*Thresholds_EE,SP*ViabProba) ;

// plot3d1((1:nb_BB)/nb_BB, (1:nb_EE)/nb_EE,SP*ViabProba) ;

plot3d1(SC*Thresholds_BB,Thresholds_EE,SP*ViabProba) ;

xtitle("Maximum viability probability","Environmental constr. (volume)",
"Economic constraint (profit)")
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xset('window',10) ;contour (Thresholds_BB, Thresholds_EE,ViabProba, [0.7:0.05:1]);
xtitle("Maximum viability probability","Environmental constraint (volume)",
"Economic constraint (profit)")

Maximum viability probability

B 0.7

Economic constraint (profit)

. 0.9
13.0-
12.5-
] 0.95
12.0 : . T
75 8.0 8.5 9.0 9.5 10.0

Environmental constraint (volume)

Figure 5: Iso-values for the maximal viability probability as a function of guaranteed thresh-
olds S* and B’
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