
Optimal control of a domestic microgrid

SOWG

October 10, 2017

Contents

1 Problem statement, formalisation and data 1

1.1 Problem statement . 1

1.2 System’s dynamic . 1

1.3 Criterion: operational costs . 3

1.4 Optimization criterion . 4

2 Simulation and evaluation of given policies 4

2.1 Evaluation of a policy . 5

2.2 Simulation of a given policy . 6

3 Solving by two different methods 8

3.1 Model Predictive Control . 8

3.2 Stochastic Dynamic Programming . 9

3.3 Comparison between different policies 11

A Discretization and interpolation schemes 12

A.1 Discretization . 12

A.2 Interpolation . 12

Abstract

1 Problem statement, formalisation and data

1.1 Problem statement

We consider here a house equipped with a thermal hot water tank, a combined
heat and power generator (CHP) and a battery. This house has two systems
to satisfy its energetical needs: a thermal system for heating, and an electrical
system to satisfy its electrical demand. These two systems are coupled together
via the CHP, rendering the optimal control difficult to find.

1

The CHP is a generator which produces both electricity and heat while burn-
ing gas. The power of the CHP can not be modulated: it produces always the
same amount of heat and electricity.

A battery can store the potential surplus of electricity (especially when de-
mand is low), and the house is connected to the grid to import electricy if neces-
sary. The heat produced by the CHP is stored in a hot water tank. Hot water is
withdrawn from this tank to satisfy thermal demand.

We aim to decrease the operational costs while taking into account that:

• the electrical price depends upon time, as shown in Figure 2,

• electrical and thermal demands are highly variable (the evolution of these
demands are displayed in Figure 3).

Figure 1: Different systems constituting the domestic microgrid.

1.2 System’s dynamic

We model our system with discrete linear equations, stating the evolution of the
system between two timesteps t and t+1. Controls are computed at the begining
of the time interval [t, t+ 1[, and are applied all along this interval. That gives a
discrete time optimal control problem.

We control here the system during one day, at a 15mn timestep.

2

Figure 2: Electrical price

Figure 3: Different scenarios for demand

1.2.1 Battery dynamic

Bt is the energy stored inside the battery at time t. The battery’s dynamic is the
following:

Bt+1 = Bt +∆t FB,t . (1)

Battery’s constraints The battery’s level must remain greater than a given
level otherwise its life expectancy decreases much more quickly. Usually, it is
specified that this level remains between 30% and 90% of the maximum level of
charge. The charge and discharge are also bounded by a maximum rampage rate
∆B. These two constraints write:

B♭ ≤ Bt ≤ B♯ . (2)

and
−∆B ≤ Bt+1 −Bt ≤ ∆B (3)

1.2.2 Hot water tank dynamic

We have two inputs for the hot water tank:

• the heat Fgh,t = (1− α)Pchp,t produced by the CHP,

3

• the heat FA,t produced by the auxiliary burner,

and one output: the thermal demand of the house Dth
t .

We denote the tank’s level Ht, denoting the energy stored inside the tank at
time t (in kWh). This level is bounded:

H♭ ≤ Ht ≤ H♯ . (4)

The hot water tank is modelled with:

H+
t = Ht +∆t

[
(1− α)Pchp,t + FA,t −Dth

t

]
, (5a)

Fth,t+1 = min
[
max (0, H♭ −H+

t)−H♭ +H♯, 0
]
, (5b)

Ht+1 = Ht +∆t
[
(1− α)Pchp,t + FA,t −Dth

t + Fth,t+1

]
. (5c)

All these equations are designed so as the constraints 4 are satisfied for all
demand Dth

t .
The recourse variable Fth,t+1 is penalized afterward in the cost function.

1.3 Criterion: operational costs

Electrical exchange We denote FN,t the electricity imported from the grid
at time t.

The balance equation between production and demand in the upper electric
part in Figure 1.1 writes:

αPchp,t + FN,t = Del
t + FB,t (6)

The electricity imported from the network is being paid at a tariff πel
t , which

depends upon time. The price scenario
(
πel
ti
, . . . , πel

Tf

)
is supposed to be known in

advance.

Operational costs Costs between [t, t+ 1[are:

Lt(Pchp,t, FA,t, FN,t, Fth,t+1) = πgasPchp,t︸ ︷︷ ︸
CHP

+ πgasFA,t︸ ︷︷ ︸
aux burner

+ πth|Fth,t+1|︸ ︷︷ ︸
uncomfort

+ πel
t FN,t︸ ︷︷ ︸

network

.

(7)
In (7), costs of different devices are considered:

• the cost to use the CHP, that is the gas we burn to produce heat and
electricity: πgasPchp,t,

• the cost to use the auxiliary burner πgasFA,t,

• the cost to import electricity from the grid πel
t FN,t,

• the virtual cost of uncomfort if thermal demand is unsatisfied: πthFth,t+1.

4

1.4 Optimization criterion

We can now write the optimization criterion:

min
u

E

[T−1∑

t=0

Lt(Pchp,t, FA,t, FN,t, Fth,t+1)
]

(8)

s.t.

Bt+1 = Bt +∆tFB,t

B♭ ≤ Bt ≤ B♯

∆B♭ ≤ Bt+1 −Bt ≤ ∆B♯

Ht+1 = Ht +∆t
[
(1− α)Pchp,t + FA,t −Dth

t + Fth,t+1

]

H♭ ≤ Ht ≤ H♯

We recall the different notations we used previously in Table 1.

State variables

Bt Battery level kWh

Ht Tank level kWh

Control variables

Pchp,t CHP power kW

FB,t Energy exchanged with the battery kW

FA,t Production of auxiliary burner kW

Noises

D
el
t Electrical demand kW

D
th
t Thermal demand kW

Parameters

π
el Electricity price euros

π
gas Gas price euros

π
th Price of uncomfort euros

Table 1: Notations

2 Simulation and evaluation of given policies

The states, controls and perturbations are now denoted:

xt = (Bt, Ht) (9a)

ut = (Yt, FBt , FA,t) (9b)

wt = (Del
t , D

th
t) (9c)

5

We suppose that states belong to a static set xt ∈ X, so do control ut ∈ U.
A demand scenarios is a sequence of demands from time t0 up to Tf − 1.

w(·) =
(
w0, · · · , wTf−1

)
, (10)

where for all t, wt = (Del
t , D

th
t).

w(·) is supposed to be the realization of a stochastic process (Wt)
Tf

t=0
.

2.1 Evaluation of a policy

An admissible policy γ : T × X → U assigns a control u = γ(t, x) ∈ U to any
time t ∈ T and to any state x ∈ X,

Given an admissible policy γ and given a demand scenario w(.) we are able
to build trajectories x(·) for battery and hot water tank: the dynamic is initiate
at time t0 by:

x0 = xini

and the trajectory is computed step by step with following equation:

ut = γ(t, xt)

xt+1 = ft(xt, ut, wt)

We obtain the payoff associated to the demand scenario w(·):

Jγ
(
w(·)

)
=

T∑

t=0

Lt(xt, ut, wt) (11)

The expected payoff associated with the policy γ is:

E

(
Jγ(w(·))

)
, (12)

where the expectation E is taken with respect to the product probability P. We

evaluate (12) by the Monte-Carlo method using Ns scenarios
(
w1(·), · · · , wNs(.)

)
:

1

Ns

Ns∑

s=1

Jγ
(
ws(·)

)
. (13)

In the next, we will evaluate each algorithm with this method:

• We compute trajectories with the help of the function γ given by the algo-
rithm.

• We evaluate the average costs with Equation (13).

• We consider the distribution of the costs.

The following code generate scenarios that can be used for simulation:

6

Read assessment scenarios:

De_assess = readcsv("demandelec_assess.csv")

Dt_assess = readcsv("demandtherm_assess.csv");

scenarios = zeros(model.stageNumber, 30, 2)

scenarios[:, :, 1] = De_assess

scenarios[:, :, 2] = Dt_assess;

The data used for scenarios generation can be obtained here in zip format
code.zip or tgz code.tgz.

Question 1

1. Copy this code and execute it.

2. Plot 10 scenarios of electrical demand and 10 scenarios of thermal demand.

2.2 Simulation of a given policy

The function simulate is used to simulate a policy:

function simulate(scenarios, policy)

nassess = size(scenarios, 2)

ntime = size(scenarios, 1)

x0 = [.6, 20.]

stocks = zeros(nassess, ntime, 2)

controls = zeros(nassess, ntime-1, 3)

costs = zeros(nassess)

Set first value of stocks equal to x0:

for i in 1:nassess

stocks[i, 1, :] = x0

end

for t=1:ntime-1

for k = 1:nassess

state_t = stocks[t, k, :]

aleas = scenarios[t, k, :]

uc = policy_mpc(t, state_t)

xf = dynamic(t, state_t, uc, aleas)

stocks[k, t+1, :] = xf

controls[k, t, :] = uc

costs[k] += cost(t, state_t, uc, aleas)

end

end

7

return costs, stocks, controls

end

Question 2

1. What is the inputs of the function simulate? And its outputs?

2. Relate this function with the theoritical model above.

We consider a first policy, given by the echelon-based heuristic:

• If the tank’s level is less than a given critical level Hc, then switch on the
CHP.

• Once the tank is filled, switch off the CHP.

Question 3

1. Implement this heuristic. The function should take as input the time t and
the current state xt and return a control ut.

2. Apply this policy along the scenarios generated in Question 1.

3. Show the costs’ distribution. Plot 10 trajectories for states and controls.

3 Solving by two different methods

We are going to compare two policies to solve the problem (8):

• a policy produced by the so called Model Predictive Control (MPC),

• a policy based upon Dynamic Programming (DP).

We will assess each policy along the scenarios generated in Question 1. How-
ever, these policies need to consider some scenarios as input for their algorithms.
To be fair, we will use optimization scenarios distinct from the assessment sce-
narios considered in Question 1.

As we are considering a real world problem, we do not have that much sce-
narios recorded. That is why we use only 30 scenarios for optimization and 30
scenarios for assessment.

3.1 Model Predictive Control

As time goes on, MPC computes at the beginning of each period [τ, τ + 1[the
control as a function of the current time and state xτ . Here are the details:

• Derive a deterministic scenario w(·) = (D
el
τ , D

th
τ , . . . , D

el
T , D

th
T) of demands

(forecast) with the optimization scenarios.

• Solve the deterministic optimization problem

8

min
u
·

T−1∑

t=τ

Lt(xt, ut, wt) (14)

s.t. u· = (uτ , . . . , uT−1)
xt+1 = ft(xt, ut, wt)

x♭ ≤ xt ≤ x♯

u ∈ U(xt)

• Apply only the first control u
♯

τ at time τ , and iterate at time τ + 1

The problem (14) returns a control u
♯

t for all time t and state xt. This problem
gives the MPC policy:

γMPC : T× X → U

(t, xt) → u
♯

t

(15)

γMPC is implemented in the function policy_mpc:

function policy_mpc(t::Int64, x0::Array{Float64})

tf = NTIME - t

m = Model()

Define constraints other variables:

@variable(m, 19 <= h[1:(tf+1)] <= 30)

@variable(m, 0.5 <= b[1:(tf+1)] <= 3)

@variable(m, -DELTA_B_MAX <= Fb[1:(tf)] <= DELTA_B_MAX)

@variable(m, 0. <= Fa[1:(tf)] <= 5.5)

@variable(m, Fh[1:(tf)] >=0)

@variable(m, 0 <= Yt[1:(tf)] <= 1)

@variable(m, Z1[1:(tf)] >= 0)

Set optimization objective:

@objective(m, Min, sum{P_BURNER*Fa[i] + P_CHP*Yt[i] +

Z1[i] + P_TH*Fh[i], i = 1:tf})

for i in 1:tf

@constraint(m, b[i+1] - ALPHA_B * b[i] +

DT*BETA_B*Fb[i] == 0)

@constraint(m, h[i+1] - ALPHA_H * h[i] -

DT*BETA_H*(Yt[i]*P_CHP_THERM + Fa[i] -

previsions[(i+t -1), 2] + Fh[i]) == 0)

@constraint(m, Z1[i] >= (previsions[(i+t -1), 1] -

Fb[i] - Yt[i]*P_CHP_ELEC)*priceElec[t+i-1])

@constraint(m, Z1[i] >= -(previsions[(i+t -1), 1] -

Fb[i] - Yt[i]*P_CHP_ELEC)*P_INJECTION)

end

9

Add initial constraints:

@constraint(m, b[1] == x0[1])

@constraint(m, h[1] == x0[2])

status = solve(m)

return [getvalue(Yt)[1]; getvalue(Fb)[1]; getvalue(Fa)[1]]

end

Question 4

1. Explain what the above code is doing.

2. Apply MPC policy along the scenarios generated in Question 1.

3. Show the costs’ distribution. Plot 10 trajectories for states and controls.

4. Does the trajectory of the battery’s state of charge seem reasonable?

3.2 Stochastic Dynamic Programming

Dynamic programming works in two stages: an offline stage where value functions
are computed, and an online stage where these functions are used to compute a
policy.

Offline: computation of value functions

• Use optimization scenarios to estimate expectation Ê

• Use these marginal distributions to compute so-called value functions, given
by

Vt(xt) = min
ut∈U

E
[
Lt(xt, ut, wt) + Vt+1

(
ft(xt, ut, wt)

)]

Online: construction of the policy DP policy computes at the beginning
of each period [τ, τ + 1[the control as a function of the current time τ and state
xτ :

• Solve the optimization problem with the help of the previously computed

value functions (Vt)
Tf

t=0
.

u
♯

τ ∈ argmin
uτ∈U

E
[
Lt(xτ , uτ , wτ) + Vτ+1

(
ft(xτ , uτ , wτ)

)]

• Apply control u
♯

τ at time τ , and iterate at time τ + 1.

xt+1 = ft(xt, ut, wt) is a functionnal relation, lying in the continuous state space
X. As we use a computer we will discretize state and control spaces to implement
dynamic programming. We restrict ourself to a subset X

d ⊂ X for states and
U
d ⊂ U for controls.

10

Implementation The Dynamic Programming solver is already implemented.
It is called by the function:

Vs = solve_DP(sdpmodel, paramSDP, 1)

which return the Bellman functions in a multidimensional array Vs.

Question 5 Generate marginal laws with the help of the given optimization sce-
narios and the function generate_laws.

Question 6

1. Compute Bellman functions with the function solve_DP.

2. Apply Dynamic Programming policy along scenarios generated in Question
1.

3. Show the costs’ distribution. Plot 10 trajectories for states and controls.

Question 7 Plot different Bellman functions with the help of the function
plot_bellman_functions. Comment the evolution of the shape of these func-
tions along time.

Question 8

1. Find the discretization used for states and controls. What is the cardinal of
the set Xd (approximation of the space X)? And those of the set Ud?

2. What happens if we refine the discretization of tank and battery by 10?

3.3 Comparison between different policies

We want to compare three different features for each algorithm:

• the offline computation time,

• the online computation time,

• the average costs obtained upon the assessment scenarios.

Policy Offline computation time Online computation time Average Costs

Heuristic

MPC

DP

Table 2: Benchmark

Question 9 Fill the Table 2 with the results previously obtained.

11

A Discretization and interpolation schemes

We have two stocks: a battery and thermal tank. Even if the dynamic program-
ming principle still holds, the numerical implementation is not as straightforward
as in the unidimensional case.

A.1 Discretization

We need to discretize state and control spaces to apply dynamic programming.
We restrict ourself to a subset X

d ⊂ X for states and U
d ⊂ U for controls. The

policy find by dynamic programming is then suboptimal.
To iterate upon different states in X

d, we define a bijective mapping between
X
d and N. This mapping is written:

φ : Xd → N (16)

Question 10

1. Find a mapping that satisfy to the conditions previously stated.

2. Implement it.

A.2 Interpolation

With this discretization, we know the value of Bellman function V only upon the
grid X

d, and not upon the whole state X.
We recall that the next state is given by the state equation: However, even if

xt ∈ X
d and ut ∈ U

d, we can not ensure that xt+1 ∈ X
d to compute future cost

Vt+1(xt+1). That is why we need to use an interpolation scheme to interpolate
Vt+1(xt+1) with the values of Vt+1 in X

d.

Figure 4: xt+1 could be outside the grid defined by X
d

Question 11 With the notation introduced in Figure 4, write the linear inter-
polation of xt+1 w.r.t Xd

i .

12

