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This practical work is aimed at presenting the theory of the SDDP algorithm and apply
it on a simple dam management problem.

The Stochastic Dual Dynamic Programming (SDDP) algorithm is close to the Dynamic
Programming method. The main difference being that, instead of computing the Bellman
function at every point, the algorithm construct a polyhedral approximation of the Bellman
function. More precisely the algorithm construct a piecewise linear function that is a lower
approximation of the exact Bellman function.

This document is given in three parts:

• In §1, we present a few results about piecewise linear functions. We also recall the
cutting plane algorithm, known as Kelley’s algorithm.

• In §2, we present the SDDP algorithm.

• In §3, we present the dam management problem we want to tackle.

• Finally, in §4, we apply the SDDP algorithm on the dam management problem.

Before going any further you should download the following code:

1. Kelley,

2. DamData,

3. sdp,

4. CutPerAlea

5. sddp.

1 Preliminary

1.1 Piecewise linear functions

Recall that the supremum of a finite number of hyperplane is a convex piecewise linear
function. We consider the function

{
f : R

n → R,
f(x) := max

i=1...k
(ai · x+ bi) ,

(1)

where bi ∈ R and ai ∈ R
n for i ∈ {1, · · · , k}.

Question 1 Find a new representation of f as a linear programm. That is f(x) is the value
of a minimization problem with linear cost and linear equality or inequality constraints.
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1.2 The cutting plane method: Kelley algorithm

The Kelley algorithm enables someone to approximate the minimum of a convex function
f on a compact C only by having an oracle able to compute at each point its value and
derivative. Recall that a convex function is always above its tangents. The cutting plane
method consists in constructing a lower approximation f̌ of the objective function f as
the maximum of tangents. This lower approximation is a piecewise-linear function, and is
improved throughout the algorithm.

Let describe more precisely the algorithm. We start at a given point x0. The first lower
approximation is the tangent at this point,

f̌ 1(x0) := T1(x0) .

Then, at each step, we computes the equation of the tangent of f at the minimum of the
approximate function f̌ ,

{
xk ∈ argmin

x∈C
f̌k−1(x) ,

Tk(x) := f ′(xk) · (x− xk) + f(xk) .
(2)

The new lower approximation f̌k+1 is given by the maximum of the old one and the
tangent,

f̌k+1(x) := max
(
f̌k(x), Tk(x)

)
. (3)

Question 2 Run the algorithm in the file Kelley.sce that picture the initial function and
the cutting planes found on the same graph. Evaluate graphically the difference between the
minimum found and the real one.

Test the algorithm for different convex function and for an increasing number of iteration.
Comments.

2 The Structure of SDDP

In this section we present the Stochastic Dual Dynamic Programming (SDDP) algorithm.
More precisely we present the so called DOASA implementation. For clarity reason we
present it in the deterministic case in a first place, and then go to the stochastic case.

2.1 The Deterministic case

The SDDP algorithm in a deterministic setting is really close to the Kelley’s algorithm on a
multistage problem instead of a static problem.
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2.1.1 Problem statement

We consider a controled dynamic system in discrete time that follows the equation

∀t ∈ {0, . . . , T − 1}, xt+1 = ft(xt, ut),

where xt ∈ X is the state at time t of the system and ut ∈ U the control applied at time t;
ft is the dynamics of the system. We assume that the sets U and X are compact subset of
a finite dimensionnal vector space. We also assume that the functions ft are linear. At each
time t there is a convex cost Lt(xt, ut) that depends on the current state and the control
choosen. Moreover there is a final cost K(xT ) that depends on the final state of the system.
A policy is a sequence of functions π = (π1, . . . , πT−1) giving for any state x a control u.

We consider the following problem

min
u∈UT

T−1∑

t=0

Lt(xt, ut) +K(xT ),

s.t. xt+1 = ft(xt, ut).

(4)

This problem can be solved by dynamic programming.

Question 3 Write the Dynamic Programming equation relative to this problem. How to
compute the Bellman Value function ? How to compute the optimal policy ?

2.1.2 Bellman operator

In order to understand the SDDP algorithm it is useful to introduce the Bellman operator
Tt of the problem.

For any time t, and any function A mapping the set of states into R we define:

∀x ∈ X, Tt(A)(x) = min
ut∈U

Lt(x, ut) + A ◦ ft(x, ut). (5)

Question 4 Write the Dynamic Programming equation with the Bellman operator.

Let study a few properties of the Bellman operator.

Monotonicity For any couple of functions (V, V ), we have

∀x ∈ X, V (x) ≤ V (x) ⇒ ∀x ∈ X,
(
T V

)
(x) ≤

(
T V

)
(x). (6)

Convexity For any function V , if Lt is jointly convex in (x, u), V is convex, and ft is
affine then

x 7→
(
T V

)
(x) is convex. (7)
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Linearity For any piecewise linear function V , if Lt is also piecewise linear, and ft
affine, then

x 7→
(
T V

)
(x) is piecewise linear. (8)

Question 5 Prove these three results.

2.1.3 Duality property

Let J be a function mapping X× U into R. Consider the function ϕ defined as

ϕ(x) = min
u∈U

J(x, u),

where J is jointly convex in (x, u). Then the interpretation of the multiplier as a marginal
cost implies that a subgradient λ ∈ ∂ϕ(x0) of ϕ at x0 is the dual multiplier of constraint
x0 − x = 0 in the following problem

min
x,u

J(x, u),

s.t. x0 − x = 0.

In particular it means that, as ϕ is convex

∀x ∈ X, ϕ(x) ≥ ϕ(x0) + 〈λ, x− x0〉. (9)

2.1.4 SDDP algorithm (deterministic case)

As in the Kelley’s algorithm, the SDDP algorithm recursively constructs a lower-approximation
V̌

(k)
t of each Bellman function Vt as the supremum of a number of affine functions. Each of

this affine functions is called a cut.
Stage k of the SDDP algorithm goes as follows.
Suppose that we have a collection of T lower approximation of the Bellman functions

denoted V̌
(k)
t that is a maximum of affine functions. In order to improve our approximation

we follow an optimal trajectory (x
(k)
t )t of the approximated problem and add a cut computed

along the optimal trajectory for each Bellman function.
Thus, we begin with a loop forward in time by setting t = 0 and x

(k)
t = x0, and solve

min
x,u

Lt(x, u) + V̌
(k)
t+1 ◦ ft(x, u),

x = x
(k)
t .

We call β
(k+1)
t the value of the problem, λ

(k+1)
t a multiplier of the constraint x = x

(k)
t , and

u
(k)
t an optimal solution. This can also be written as





β
(k+1)
t = Tt

(
V̌

(k)
t+1

)(
x
(k)
t

)
,

λ
(k+1)
t ∈ ∂Tt

(
V̌

(k)
t+1

)(
x
(k)
t

)
.
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Question 6 Show that, by (9), and by monotonicity of Tt, we obtain

∀x ∈ X, β
(k+1)
t + 〈λ

(k+1)
t , x− x

(k)
t 〉 ≤ Tt

(
V̌

(k)
t+1

)
(x) ≤ Tt (Vt+1) (x) = Vt(x). (10)

Thus we have by (9), and by monotonicity of Tt,

∀x ∈ X, β
(k+1)
t + 〈λ

(k+1)
t , x− x

(k)
t 〉 ≤ Tt

(
V̌

(k)
t+1

)
(x) ≤ Tt (Vt+1) (x) = Vt(x). (11)

This ensures that the function x 7→ β
(k+1)
t +

〈
λ
(k+1)
t , x− x

(k)
t

〉
is indeed a cut, i.e an affine

function below Vt. Consequently we update our approximate of Vt by defining

V̌
(k+1)
t = max

{
V̌

(k)
t , β

(k+1)
t +

〈
λ
(k+1)
t , · − x

(k)
t

〉}
.

Furthermore we can see that V̌
(k+1)
t is convex and lower than Vt. We go to the next time

step by setting

x
(k)
t+1 = ft

(
x
(k)
t , u

(k)
t

)
.

Upon reaching time t = T we have completed iteration k of the algorithm.

2.1.5 Initialization and stopping rule

In order to initialize the algorithm it seems that we need a lower bound to all value function.
According to our assumptions this bound always exist but is not necessary in order to
implement the algorithm. Indeed we can choose V

(0)
t = 0 in order to compute the trajectories,

and simply set V
(1)
t equal to the first cut, which means that we “forget” V (0) in the maximum

that determine V
(1)
t .

Note that at any step k of the algorithm we have a (non optimal) solution (u(k))t of

Problem (4), and we can estimate the quality of the solution. Indeed V
(k)
0 (x0) is a lower

bound to the optimal value of Problem (4). Moreover the simulated cost following the
solution given by

T−1∑

t=0

Lt

(
x
(k)
t , u

(k)
t

)
+K

(
x
(k)
T

)
,

is an upper bound to the value of Problem (4). A reasonable stopping rule for the algorithm
is given by checking that the (relative) difference of the upper and lower bound is smaller
than some constant as they are both asymptotically exact bounds, i.e. both converges toward
the value of Problem (4).

2.2 The Stochastic case

Now we introduce some random variables in our problem. This complexify the algorithm in
different ways:
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• we need some probabilistic assumptions;

• for each stage k we need to do a forward phase that yields a trajectory (x
(k)
t )t, and a

backward phase that gives a new cut;

• we cannot compute an exact upper bound for the problem’s value.

2.2.1 Problem statement

As in the deterministic case we consider a controled stochastic dynamic system in discrete
time that follows the equation

∀t ∈ {0, . . . , T − 1}, xt+1 = ft(xt, ut,Wt),

where xt ∈ X is the state at time t of the system, ut the control applied at time t, and Wt

an exogeneous discrete noise ; ft is the dynamic of the system.
We assume that the stochastic process (Wt)t=1,...,T−1 is independent in time. Moreover

we assume that at any time t we know the whole past of the noise process up to, and
including, time t. The independence assumption ensures that we can only consider control
ut measurable with respect to (xt,Wt). This is the so called hazard-decision information
structure where we know at time t the realization of the noise before choosing our control.

At each time t there is a jointly convex in (xt, ut) cost, Lt(xt, ut,Wt) that depends on the
current state and the control choosen ; and there is a final cost K(xT ) the depends on the
final state of the system. A policy is a sequence of measurable functions π = (π1, . . . , πT−1)
giving for any state x, and realization of the noise w a control u.

We consider the following problem

min
π

E

(
T−1∑

t=0

Lt(xt, ut,Wt) +K(xT )

)
,

s.t. xt+1 = ft(xt, ut,Wt),
ut = πt(xt,Wt).

(12)

2.2.2 Bellman operator

As in the deterministic case we also introduce the stochastic Bellman operator Tt of the
problem. For any time t, and any function A mapping the set of states and noises X ×W

into R we define:

∀x ∈ X, T̂t(A)(x, w) = min
ut∈U

Lt(x, ut, w) + A ◦ ft(x, ut, w).

The stochastic Bellman operator Tt, is given by

∀x ∈ X, Tt(A)(x) = E
(
T̂t(A)(x,Wt)

)
.

Question 7 Write the Dynamic Programming used to solve this problem in two ways: di-
rectly, and with the help of the Bellman operator.

Question 8 Show that the Bellman operator have the same properties as in the deterministic
case.

7



2.2.3 Duality theory

Suppose that for an iteration k and a time step t + 1 we have a lower estimation V k+1
t+1 of

Vt+1. We consider, for any w, the problem

min
x,u

Lt(x, u, w) + V̌
(k+1)
t+1 ◦ ft(x, u, w),

s.t x = x
(k)
t ,

(13)

and call β̂
(k+1)
t (w) the optimal value, and λ̂

(k+1)
t (w) an optimal multiplier of the constraint.

As in the deterministic case we have




β̂
(k+1)
t (w) = T̂t

(
V̌

(k)
t+1

)
(x

(k)
t , w),

λ̂
(k+1)
t (w) ∈ ∂xT̂t

(
V̌

(k)
t+1

)
(x

(k)
t , w),

(14)

Question 9 Show that we have

∀x ∈ X, ∀ω, β̂
(k+1)
t (w) +

〈
λ̂
(k+1)
t (w), x− x

(k)
t

〉
≤ T̂t

(
V̌

(k)
t+1

)
(x, w) ≤ V̂t(x, w) . (15)

By defining

β
(k+1)
t := E

(
β
(k+1)
t (Wt)

)

λ
(k+1)
t := E

(
λ
(k+1)
t (Wt)

)

show that we have
β
(k+1)
t +

〈
λ
(k+1)
t , · − x

(k)
t

〉
≤ Vt . (16)

2.2.4 SDDP algorithm (stochastic case)

At the beginning of step k we suppose that we have, for each time step t an approximation
V̌

(k)
t of Vt verifying

• V̌
(k)
t ≤ Vt,

• V k
T = K,

• V̌
(k)
t is convex.

Forward path We randomly select a scenario (w0, . . . , wT−1) ∈W
T . We recursively, by a

forward loop in time, define a trajectory (x
(k)
t )t=0,...,T by x

(k)
t+1 = ft(x

(k)
t , u

(k)
t , wt), where u

(k)
t

is an optimal solution of

min
u∈U

Lt

(
x
(k)
t , u, wt

)
+ V̌

(k)
t+1 ◦ ft

(
x
(k)
t , u, wt

)
. (17)

This trajectory is a trajectory given by the optimal policy of Problem (12) where Vt is

replaced by its current approximation V̌
(k)
t .
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Backward path We reader improve the approximation of Vt by adding a cut at Vt(x
(k)
t ).

We procede backward in time by setting t = T − 1, and solve Problem (13) for every w in

the support of Wt. We obtain λ̂
(k+1)
t (w) and β̂

(k+1)
t (w). As Wt is discrete we can compute

exactely the expectation λ
(k+1)
t and β

(k+1)
t , and define the new lower approximation

∀x ∈ X, V̌
(k+1)
t (x) = max

{
V̌

(k)
t (x), β

(k+1)
t +

〈
λ
(k+1)
t , x− x

(k)
t

〉}

Question 10 Check that V̌
(k+1)
t is a lower convex approximation of Vt.

Go one step back in time: t← t− 1. Upon reaching t = 0 we have completed step k of the
algorithm.

Question 11 For one iteration of the SDDP, algorithm, how many one-step one-alea prob-
lem (Problem (17)) do we need to solve ?

2.2.5 Initialization and stopping rule

We can intialize as suggested in the deterministic case. However in order to accelerate the
convergence it can be useful to bypass a few forward paths by abritrarily choosing some
trajectories (x

(k)
t )t.

As in the deterministic case we have an exact lower bound of Problem (12) given by

V
(k)
0 (x0). However, determining an upper bound is more difficult. Indeed, the upper bound

is given as the expectation of the cost induced by the optimal strategy of the approximated
problem. This expectation is to be taken on the whole process (W0, . . . ,WT−1) and cannot
be computed exactly. Consequently this expectation is estimated by Monte-Carlo methods,
and we have no control over the error of our solution.

A heuristic stopping rule consist in stopping the algorithm if the lower bound is in the
confidence interval of the upper bound for a determined number of Monte-Carlo simulation.

2.2.6 A few other possibilities

In the algorithm presented here, also called DOASA, we select one scenario (one realization
of (W1, . . . ,WT−1)) to do a forward and backward path. It is also possible to select a number
N of scenarios to do the forward path (computation can be parallelized). Then during the
backward path we add N cuts to Vt before computing the cuts on Vt−1. This is the original
implementation of the algorithm.

Otherwise the CUPPS algorithm suggest to use V̌
(k)
t+1 instead of V

(k+1)
t+1 in the computation

of the cuts (14). In practice it means that we do only a forward path at step k:

• select randomly a scenario (wt)t=0,...,T−1;

• at time t we have a state x
(k)
t , we solve problem (13) for every possible realization of

Wt in order to compute the new cut for Vt;
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• choose the optimal control corresponding to the realization Wt = wt in order to com-
pute the state x

(k)
t+1 where the cut for Vt+1 will be computed, and goes to the next

step.

Moreover it is possible to select more than one scenario, and everything can be parralelized
in this implementation.

Finally it is always possible, and most of the time fruitful to compute some cuts before
starting the algorithm. One way of doing this is to bypass the forward phase by choosing
the trajectory (x

(k)
t )t=0,...,T instead of computing it as some optimal trajectory.

3 Problem data

We consider a dam manager intenting to minimize the intertemporal cost obtained by turbin-
ing the water in a dam, when the water inflow (rain, outflows from upper dams) is supposed
to be stochastic.

3.1 Dam dynamics

St+1︸︷︷︸
future volume

= St︸︷︷︸
volume

− qt︸︷︷︸
turbined

− δt︸︷︷︸
spilled

+ at︸︷︷︸
inflow

, t ∈ T := {t0, . . . , T − 1}

with

• time t ∈ T := {t0, . . . , T} is discrete (days), and t denotes the beginning of the period
[t, t+ 1[,

• St volume (stock) of water at the beginning of period [t, t + 1[, belonging to the set
X = [0, S♯], made of water volumes (h m3), where S♯ is the maximum dam volume,

• at inflow water volume (rain, etc.) during [t, t+ 1[, belonging to W = {0, 1, 2, . . . , a♯},
and supposed to be known at the beginning of the period (Hazard-Decision),

• qt turbined outflow volume during [t, t+1[, decided at the beginning of period [t, t+1[,
belonging to the set U = [0, q♯], where q♯ is the maximum which can be turbined by
time unit (and produce electricity),

• δt spilled outflow volume during [t, t+ 1[, decided at the beginning of period [t, t+ 1[,
belonging to the set D = R+, and such that

0 ≤ qt + δt ≤ St + at . (18)

The dam manager is supposed to make a decision, here turbining qt and spilling δt, at
the beginning of the period [t, t+ 1], after knowing the water inflow at.

A water inflows scenario is a sequence as

a :=
(
at0 , . . . , aT−1

)
. (19)
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Compared to other methods, we have added the spilled outflow volume δ in order to
get a linear dynamics and we are placed in the Hazard-Decision case. These two points are
mandatory to apply the SDDP algorithm.

3.2 Criterion: intertemporal cost

The manager original problem is one of cost minimization where turbining one unit of water
has unitary cost −pt. On the period from t0 to T , the costs sum up to

T−1∑

t=t0

−ptqt +K
(
ST

)
, (20)

where

• a scenario of costs
−p(·) =

(
− pt0 , . . . ,−pT−1

)
(21)

is given (data of the problem) and supposed to be known in advance (deterministic
setting),

• the final term K
(
ST

)
gives value to the water volume in the dam at the horizon T .

3.3 Probabilistic model for water inflows

We suppose that sequences of uncertainties (at0 , . . . , aT−1) are random variables with a known
probability distribution P on the set {0, . . . , a♯}, with P{at = a} given.

Notice that the random variables (at0 , . . . , aT−1) are independent, but that they are not
necessarily identically distributed. This allows us to account for seasonal effects (more rain
in autumn and winter).

3.4 Numerical data

We now perform numerical simulations, and try different policies.

Time. We consider a daily management over one year

t0 = 1 and T = 365 , (22)

Bounds. Concerning the dam and water inflows, we consider the following bounds:

S0 = 0 hm3 , S♯ = 100 hm3 , q♯ =
0.4

7
× S♯ and a♯ =

0.5

7
× S♯. (23)

These figures reflect the assumptions that, during one week, one can release at maximum
40% of the dam volume, and that during one week of full water inflows, an empty dam can
be half-filled.
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Costs scenario. The scenario −p(·) =
(
− pt0 , . . . ,−pT−1

)
of costs is known in advance.

We produce it by one sample from the expression

−pt = (1 + ε(t))−p with −p = −66MWh/hm3 × 2.7 euros/MWh3 (24)

where ε(t) is drawn from a sequence of i.i.d. uniform random variables in [−1/2, 1/2].

Water inflow scenarios. We produce scenarios a(·) :=
(
at0 , . . . , aT−1

)
of water inflows

by a sequence of independent random draws from the set {0, 1, · · · , a♯}.

3.5 Water turbined policy

An admissible policy π : T × X ×W → U × D assigns an amount of water turbined and
spilled (q, δ) = πt(S, a) to any state S of dam stock volume, to any decision period t ∈ T

and to any water inflow a ∈W, while respecting the constraints





0 ≤ qt ≤ q♯ ,
0 ≤ δt ,
0 ≤ qt + δt ≤ St + at ,
0 ≤ St + at − qt − δt ≤ S♯

(25)

that can also be written




−qt ≤ 0 ,
qt ≤ q♯ ,
−δt ≤ 0 ,

qt +δt −St ≤ at ,
−qt −δt +St ≤ S♯ − at.

(26)

The system (26) is equivalent to




−1 0
1 0
0 −1
1 1
−1 −1




︸ ︷︷ ︸
A

·

(
qt
δt

)
+ St.




0
0
0
−1
1




︸ ︷︷ ︸
E

≤




0
q♯

0
at

S♯ − at




︸ ︷︷ ︸
b(t)

. (27)

In the following, we will simply write as defined A ·

(
q
δ

)
+ St.E ≤ b(t).

Once the policy given, we obtain a volume trajectory S(·) = (St0 , · · · , ST−1, ST ), a tur-
bined trajectory q(·) = (qt0 , · · · , qT−1, qT ) and a spilled trajectory δ(·) = (δt0 , · · · , δT−1, δT )
produced by the ”closed-loop” dynamics
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



St0 = S0 ,
St+1 = St + at − qt − δt ,(

qt, at
)

= πt

(
St, at

)
.

(28)

and function of the scenario a(·). Thus, in the end, we obtain the cost

Crit
πt0

(
S0, at0 , · · · , a(T )

)
:=

T−1∑

t=t0

−ptqt −K
(
ST

)
. (29)

3.6 Minimization under constraints

The aim of this part is to compute the minimum of a given convex function under linear
constraints and to find a cutting plane. We will use this to find an optimal strategy.

The problem is

V k
t (z) = min

q,δ
Lt(z, q, δ, at) + V k

t+1 ◦ f(z, q, δ, at),

s.t. A ·

(
q
δ

)
+ E · z ≤ b(t)

(30)

In order to use the linear solver, we have to transform this formula into one of the form

min
u′

C · u′ ,

s.t. A′ · u+ E ′ · z ≤ b′(t) .
(31)

We remind the reader that V k
t+1 is a piecewise linear function written

V k
t+1(z) = max

0≤i≤k
{λi · z + βi} ,

which is equivalent to (as seen in § 1.1)

V k
t+1(z) = min

γ
γ ,

s.t. γ ≥ λi · z + βi, ∀i ∈ {1, . . . , k}
(32)

By writting

u =




q
δ
γ


, A′

k =




A 0
−λ1 −λ1
...

...
−λk −λk

−1
...
−1


, E ′

k =




E
λ1
...
λk


 and b′k(t) =




b(t)
−β1 − λ1 · at

...
−βk − λk · at


,

we obtain the wanted form for the minimization problem (see (31)).
The last step is to find the parameters of the cutting plane of the Bellman function V k

t

at a given point z. To do so, we transform the state z in the previous equation in a variable

13



x and add the constraint x = z. The Lagrange multiplier of this equality constraint is the
slope of a new cutting plane and the minimum cost is the ordinate at the origin.

The following macro returns the parameters of the plane (λ, β) and the point at which
the minimum is reached uopt given the matricial form of the cost (−p, V ), the constraints
(A, b(t), E), the value of the uncertainty a, the dynamics given by (Q,R) and the state z.

Question 12 Explain the objective of the function CutPerAlea. Where, in the SDDP algo-
rithm, is this function required ? How many times is the function called for a step k of the
SDDP algorithm ?

4 Dam optimal management

We now solve the problem presented earlier in this practical work, by Dynamic Programming
and by Stochastic Dual Dynamic Programming.

Question 13 First of all open the file damdata.sce, and understand the different macro
given in this file, in particular the macro trajectories.

Now define a policy (a function taking a time t, a current stock s and an inflow a and
giving an admissible control), and test it. Plot (using plot2d2) the trajectories of the stock
with this policy.

4.1 DP resolution

We solve exactly the problem using Dynamic Programming.

Question 14 In the file sdp.sce a Dynamic Programming approach is presented. Under-
stand how the function works, and plot the optimal stock trajectory using function from
damdata.sce.

From the function of sdp.sce what is the exact value of the optimization problem ?
Simulate the optimal strategy and give an estimation of this value and asymptotic error
bounds.

What do you observe for the final stock? Explain why.

4.2 SDDP resolution

We now apply an SDDP approach to the same problem.
In the files that were downloaded at the beginning, the function SDDP creates an ap-

proximate of the Bellman function given the constraints and random trajectories, then the
function sddp policy defines the optimal policy given the former approximate.

Question 15 Using the function of SDDP picture the trajectory of the stocks corresponding
to the optimal policy. Evaluate the optimal payoff, and the error bounds.

Evaluate the lower bound given by SDDP. Deduce the estimated gap (in %).
Plot the improvement of the gap with iterations of SDDP.
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4.3 Comparison of SDDP and DP

Question 16 Compare the numerical results given by the DP approach, and the SDDP
approach.

Sum up the theoretical and practical differences between DP and SDDP: what are the pros
and cons of each method.
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