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1 Problem statement

We formalize the problem of fixing energy reserves in a day-ahead market as a two stage
stochastic optimization problem. A decision has to be made at night of day J — which
quantity of the cheapest energy production units (reserve) to be mobilized — to meet a
demand that will materialize at morning of day J+1. Excess reserves are penalized; demand
unsatisfied by reserves have to be covered by costly extra units. Hence, there is a trade-off
to be assessed by optimization.

1.1 Stages

There are two stages, represented by the letter t (for time):

• t = 0 corresponds to night of day J ;

• t = 1 corresponds to morning of day J + 1.

1.2 Probabilistic model

We suppose that the demand, materialized on the morning of day J + 1, can take a finite
number S of possible values Ds, where s denotes a scenario in the finite set S (S=card(S)).

We denote πs the probability of scenario s, with

∀s ∈ S , πs > 0 ,
∑

s∈S

πs = 1 . (1)

Notice that we do not consider scenarios with zero probability.

1



1.3 Decision variables

The decision variables are the scalar Q0 and the finite sequence (Q1,s)s∈S of scalars, as follows:

• at stage t = 0, the energy reserve is Q0;

• at stage t = 1, a scenario s materializes and the demand Ds is observed, so that one
decides of the recourse quantity Q1,s.

The decision variables can be considered as indexed by a tree with one root (corresponding
to the index 0) and as many leafs as scenarios in S (each leaf corresponding to the index 1, s):
Q0 is attached to the root of the tree, and each Q1,s is attached to a leaf corresponding to s.

1.4 Optimization problem formulation

The balance equation between supply and demand is

Q0 +Q1,s = Ds , ∀s ∈ S . (2)

The energies mobilized at stages t = 0 and t = 1 display different features:

• at stage t = 0, the energy production has maximal capacity Q♯
0, and producing Q0

costs C0(Q0);

• at stage t = 1, the energy production is supposed to be unbounded, and producing Q1

costs C1(Q1).

We consider the stochastic optimization problem

min
Q0, Q1,s, s∈S

∑

s∈S

πs [C0(Q0) + C1(Q1,s)] (3a)

s.t. 0 ≤ Q0 ≤ Q♯
0 (3b)

0 ≤ Q1,s ∀s ∈ S (3c)

Ds = Q0 +Q1,s ∀s ∈ S (3d)

Here, we look for energy reserve Q0 and recourse energy Q1,s so that the balance equa-
tion (3d) is satisfied (at stage t = 1) at minimum expected cost in (3a). By weighing each
scenario s with its probability πs, the optimal solution

(

Q⋆
0, (Q

⋆
1,s)s∈S

)

performs a compromise
between scenarios.

2 Formulation on a tree with linear costs

Here, we suppose that the costs are linear:

C0(Q0) = l0Q0 , C1(Q1) = l1Q1 . (4)
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Therefore, the stochastic optimization problem (3) now becomes

min
Q0, Q1,s, s∈S

∑

s∈S

πs(l0Q0 + l1Q1,s) (5a)

s.t. 0 ≤ Q0 ≤ Q♯
0 (5b)

0 ≤ Q1,s ∀s ∈ S (5c)

Ds = Q0 +Q1,s ∀s ∈ S (5d)

This optimization problem (5) is linear. When the number S of scenarios is not too large,
we can use linear solvers.

Question 1 We consider the case when S = {L,M,H} has S = 3 scenarios (low, medium,
high). We want to transform the linear optimization problem (5) under a form adapted to a
linear solver.

a) [1+1+1] Expand the criterion (5a). Expand the inequalities (5b)–(5c) into an array
of five scalar equations (one inequality per equation), and the equalities (5d) into an array
of three scalar equations (one equality per equation).

b) [1+1+1+1+1] Let x be the column vector x = (Q0, Q1L, Q1M , Q1H). Propose ma-
trices Ae, Ai and column vectors be, bi and c such that the linear optimization problem (5)
can be written under the form

min
x∈R4

c′x (6a)

s.t. Aex = be (6b)

Aix ≤ bi (6c)

Question 2 We are going to numerically solve the linear optimization problem (5).

a) [2] Interpret the code below. What is the macro linpro doing? What is lopt? Copy
the code into a file named tp q1.sce.

b) [1+2] Solve a numerical version of problem (5) with S = 3 scenarios and the pa-
rameters in the code below, by executing the file tp q1.sce. What is the optimal value Q⋆

0

of the reserve? What is the optimal value Q⋆
1,L? Can you explain why these values are op-

timal? (there is an economic explanation based on relative costs; there is a mathematical
explanation based on the properties of the solutions of a linear program).

c) [3] Then, increase and decrease the value of the unitary cost l1 (especially above
and below l0). Show the numerical results that you obtain. What happens to the optimal
values Q⋆

0? Explain why (make the connection with the properties of the solutions of a
linear program).
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// Formulation on a tree with linear costs.

// Numerical resolution by linear programming

// Constant initialization

S=3;// Number of random scenarios

q0m=30;// max capacity for q0

// Demand

if S==3 then

D=[15;20;50];

Pr=[0.2;0.6;0.2];// Probabilities of Demand

else

D=grand(S,1,'uin',5,50);

Pr=grand(S,1,'unf',0,1);

Pr=Pr ./sum(Pr);// Probabilities of Demand

end

// Constants used in the cost function

ll0=2;ll1=5;

// a revoir pour passer a des contraintes egalité et utiliser lb et ub

c=[ll0;ll1 .*Pr];// cost coefficients

// inequality constraints (bounds on production)

Ai=[-eye(S+1,S+1);eye(1,S+1)];

bi=[zeros(S+1,1);q0m];

// equality constraints, i.e. production equals demand

Ae=[ones(S,1),eye(S,S)];

be=[D];

// solving by linear

// xopt should be [ 15, 0, 5, 35 ] when S=3

// scicoslab version with linpro

A=[Ae;Ai];b=[be;bi];

[xopt,lopt,fopt]=linpro(c,A,b,[],[],size(be,'*'))

Question 3 We are going study the impact of the number S of scenarios on the numerical
resolution of the linear optimization problem (5).

a) [2] Take S = 100. What is the optimal value Q⋆
0 of the reserve? Identify the

scenario s̄ with the lowest demand. What is the optimal value Q⋆
1,s̄? Explain.
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b) [1] For what value of n in S = 10n can you no longer solve numerically?

3 Formulation on a tree with quadratic convex costs

Here, we suppose that the costs are quadratic and convex:

C0(Q0) =
1

2
K0Q

2
0 + l0Q0 , K0 > 0 , C1(Q1) =

1

2
K1Q

2
1 + l1Q1 , K1 > 0 . (7)

The optimization problem (3) is quadratic convex:

min
Q0, Q1,s, s∈S

∑

s∈S

πs

[

1

2
K0Q

2
0 + l0Q0 +

1

2
K1Q

2
1,s + l1Q1,s

]

(8a)

s.t. 0 ≤ Q0 ≤ Q♯
0 (8b)

0 ≤ Q1,s ∀s ∈ S (8c)

Ds = Q0 +Q1,s ∀s ∈ S (8d)

When the number S of scenarios is not too large, we can use quadratic solvers.

Question 4 We are going to numerically solve the quadratic convex optimization prob-
lem (8).

a) [1] Interpret the code below. What is the macro quapro doing? Copy the code into
a file named tp q2.sce.

b) [1] Solve a numerical version with S = 3 scenarios and the parameters in the code
below, by executing the files tp q1.sce and tp q2.sce. What is the optimal value Q⋆

0 of the
reserve? What is the optimal value Q⋆

1,L?

c) [1+1+2] Check numerically that (Q⋆
0, Q

⋆
1,L, Q

⋆
1,H , Q

⋆
1,M ) is an inner solution to the

optimization problem (8a), that is, check numerically that the inequalities (8b) and (8c)
are strict. What is the difference with the optimal solution of Question 2? Discuss the
difference (make the connection with the properties of the solutions of a linear program).

d) [2+1] Compute the derivatives of the cost functions in (7). Check numerically (giv-
ing the details of computation) that the optimal solution (Q⋆

0, Q
⋆
1,L, Q

⋆
1,M , Q⋆

1,H) satisfies
the following relation between marginal costs:

C ′

0(Q
⋆
0) = πLC

′

1(Q
⋆
1,L) + πMC ′

1(Q
⋆
1,M) + πHC

′

1(Q
⋆
1,H) . (9)
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// Formulation on a tree with quadratic costs

// Numerical resolution by brute force quadratic programming

// just to get common data

exec('tp_q1.sce');

// the problem is now quadratic; we use a quadratic solver

A=[Ae;Ai];b=[be;bi];

KK0=10;KK1=1;

KK=diag([KK0,KK1*Pr' .*ones(1,S)]);

// scicoslab version with quapro

[xopt,lopt,fopt]=quapro(KK,c,A,b,[],[],size(be,'*'))

Question 5 We are going to numerically solve the quadratic convex optimization prob-
lem (8) after changing the relative values of the (quadratic) parameters K0 and K1. For
the parameters K0, l0, l1, we take the same values as those in Question 2 (hence l1 > l0)
and in Question 4.

a) [1] Take K1 > K0 with K1 ≈ K0. What are the optimal value Q⋆
0 of the reserve and

the optimal value Q⋆
1,L?

b) [1] Take K1 > K0 with K1 >> K0. What are the optimal value Q⋆
0 of the reserve

and the optimal value Q⋆
1,L?

c) [2] Discuss.

Question 6 We are going study the impact of the number S of scenarios on the numerical
resolution of the quadratic convex optimization problem (8).

a) [1] Take S = 100. Solve a numerical version of problem (8) with the parameters K0,
l0, K1, l1 as in the code of Question 4. What is the optimal value Q⋆

0 of the reserve?
Identify the scenario s̄ with the lowest demand. What is the optimal value Q⋆

1,s̄?

b) [1] For what value of n in S = 10n can you no longer solve numerically?

Question 7 This theoretical question may be ignored

(by those who want to focus on numerical results)

For this question, we temporarily ignore the inequalities (8b) and (8c) in (8). Therefore, we
consider the optimization problem (8a) with equality constraints (8d), that is:

min
Q0, Q1,s, s∈S

∑

s∈S

πs

[

1

2
K0Q

2
0 + l0Q0 +

1

2
K1Q

2
1,s + l1Q1,s

]

(10a)

s.t. Ds = Q0 +Q1,s , ∀s ∈ S . (10b)
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a) [2] Compute the Hessian matrix of the criterion

J0 :
(

Q0, (Q1,s)s∈S
)

∈ R× R
S 7→

∑

s∈S

πs

[

1

2
K0Q

2
0 + l0Q0 +

1

2
K1Q

2
1,s + l1Q1,s

]

. (11)

What are the dimensions of the Hessian matrix?

b) [3] Why does optimization problem (10) have a solution? (Beware of the domain)

c) [2] Why is the solution unique?

d) [1+2] Why are the equality constraints (10b) qualified? Why does an optimal so-
lution

(

Q⋆
0, (Q

⋆
1,s)s∈S

)

of (10) satisfy the Karush-Kuhn-Tucker (KKT) conditions (first-
order optimality conditions)?

e) [2] Why is a solution of the KKT conditions an optimal solution of (10)?

f) [1] Write the Lagrangian L0 (Q0, (Q1,s)s∈S, (µs)s∈S) associated with problem (10).

g) [2] Deduce the KKT conditions. Show that there exist (µ⋆
s, s ∈ S) such that

C ′

0(Q
⋆
0)−

∑

s∈S

µ⋆
s = 0 and πsC

′

1(Q
⋆
1,s)− µ⋆

s = 0 , ∀s ∈ S . (12)

h) [2] Deduce that — when
(

Q⋆
0, (Q

⋆
1,s)s∈S

)

is an inner optimal solution to problem (8a)
— we have the following relation between marginal costs:

C ′

0(Q
⋆
0) =

∑

s∈S

πsC
′

1(Q
⋆
1,s) . (13)

Give an economic interpretation of this equality.

4 Formulation on a fan with quadratic convex costs

When the number S of scenarios is too large, Problem (5) — be it linear or convex — cannot
be solved by direct methods.

4.1 Dualization of non-anticipativity constraints

To bypass this problem, we use a “trick” consisting in introducing new decision variables
(Q0,s)s∈S, instead of the single decision variable Q0, and we write

Q0,s =
∑

s′∈S

πs′Q0,s′ , ∀s ∈ S . (14)
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These equalities are called the non-anticipativity constraints. Indeed, the equations (14)
express that

Q0,s = Q0,s′ , ∀(s, s′) ∈ S
2 , (15)

that is, the decision at stage t = 0 does not depend on the scenario s, hence cannot anticipate
the future. Later, we will treat the constraints (14) by duality.

Therefore, the stochastic optimization problem (3) now becomes

min
Q0,s, Q1,s, ∀s∈S

∑

s∈S

πs [C0(Q0,s) + C1(Q1,s)] (16a)

s.t 0 ≤ Q0,s ≤ Q♯
0 ∀s ∈ S (16b)

0 ≤ Q1,s ∀s ∈ S (16c)

D1,s = Q0,s +Q1,s ∀s ∈ S (16d)

Q0,s =
∑

s′∈S

πs′Q0,s′ ∀s ∈ S

By the assumption (1) that there are no scenarios with zero probability (πs > 0), we replace
each equality in the last equation by the equivalent one

πsQ0,s = πs

∑

s′∈S

πs′Q0,s′ , ∀s ∈ S . (16e)

We attach, to each equality above a multiplier λ0,s. We put

Q = ((Q0,s)s∈S, (Q1,s)s∈S) , λ = (λ0,s)s∈S . (17)

The corresponding Lagrangian is

L(Q, λ) =
∑

s∈S

πs

[

C0(Q0,s) + C1(Q1,s) + λ0,s(Q0,s −
∑

s′∈S

πs′Q0,s′)

]

(18a)

=
∑

s∈S

πs

[

C0(Q0,s) + (λ0,s −
∑

s′∈S

πs′λ0,s′)Q0,s + C1(Q1,s)

]

. (18b)

Question 8 This theoretical question may be ignored

(by those who want to focus on numerical results)

When the costs are quadratic and convex as in (7), show that

a) [3] the criterion

J : Q ∈ R
S × R

S 7→
∑

s∈S

πs

[

1

2
K0Q

2
0,s + l0Q0,s +

1

2
K1Q

2
1,s + l1Q1,s

]

(19)

in (16a) is a-strongly convex in ((Q0,s)s∈S, (Q1,s)s∈S), and provide a possible a > 0,
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b) [2] the domain defined by the constraints in the optimization problem (16) is closed,

c) [2] the domain defined by the constraints in the optimization problem (16) is convex,

d) [2+1] the optimization problem (16) has a solution, and it is unique, denoted by Q⋆,

e) [1] there exists a multiplier λ⋆ such that (Q⋆, λ⋆) is a saddle point of the Lagrangian L
in (18).

4.2 Uzawa algorithm

We consider the following optimization problem

min
u∈Uad

J(u) (20a)

s.t. Θ(u) = 0 , (20b)

under the assumptions that

• the set Uad is a closed convex subset of a Euclidian space R
N ,

• the criterion J : RN → R is an a-strongly convex (a > 0) and differentiable function,

• the constraint mapping θ : RN → R
M is affine, κ-Lipschitz (κ > 0),

• the Lagrangian L(u, λ) = J(u) + 〈λ,Θ(u)〉 admits a saddle-point over Uad × R
M .

Then the following algorithm — called dual gradient algorithm, or Uzawa algorithm —
converges toward the optimal solution of Problem (20), when 0 < ρ < 2a/κ2.

Data: Initial multiplier λ(0), step ρ
Result: optimal decision and multiplier;
repeat

u(k) = argminu∈Uad L(u, λ(k)) ;
λ(k+1) = λ(k) + ρΘ(u(k)) ;

until Θ(u(k)) = 0;

Algorithm .1: Dual Gradient Algorithm
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4.3 Numerical resolution by Uzawa algorithm (quadratic convex
case)

When the costs are quadratic and convex as in (7), the optimization problem (16) becomes:

min
Q0,s, Q1,s, ∀s∈S

∑

s∈S

πs

[

1

2
K0Q

2
0,s + l0Q0,s +

1

2
K1Q

2
1,s + l1Q1,s

]

(21a)

s.t 0 ≤ Q0,s ≤ Q♯
0 ∀s ∈ S (21b)

0 ≤ Q1,s ∀s ∈ S (21c)

D1,s = Q0,s +Q1,s ∀s ∈ S (21d)

Q0,s =
∑

s′∈S

πs′Q0,s′ ∀s ∈ S (21e)

Question 9 This theoretical question may be ignored

(by those who want to focus on numerical results)

When the costs are quadratic and convex as in (7), identify in the optimization problem (21)
the corresponding elements in the Uzawa algorithm .1:

a) [1] decision variable u,

b) [1] decision set RN (for what N?),

c) [2] affine constraints mapping Θ : RN → R
M , corresponding to the constraints (21e)

(why is it κ-Lipschitz, and for which κ?).

d) [3] Explain why the Uzawa algorithm converges towards the optimal solution of Prob-
lem (21).

Question 10 We are going to numerically solve the quadratic convex optimization prob-
lem (21) by Uzawa algorithm.

a) [3] Detail what the code below is doing ; explain how the code implements the Uzawa
algorithm. Why do we use the macro quapro? What is the dual function? Copy the code
into a file named tp q3.sce.

b) [2] Solve a numerical version with S = 3 scenarios. What is the solution
(

Q⋆
0, (Q

⋆
1,s)s∈S

)

given by the algorithm? Do you have that D1,s = Q⋆
0 +Q⋆

1,s, for all s ∈ S?

c) [1] Then, try with S = 100. What is the value Q⋆
0 of the reserve given by the

algorithm? Identify the scenario s̄ with the lowest demand. What is the value Q⋆
1,s̄ given

by the algorithm?

d) [1] For what value of n in S = 10n can you no longer solve numerically?
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// formulation on a fan

// Constant initialization

// Constant initialization

S=3;// Number of random scenarios

q0m=30;// max capacity for q0

// Demand

if S==3 then

D=[15;20;50];

Pr=[0.2;0.6;0.2];// Probabilities of Demand

else

D=grand(S,1,'uin',5,50);

Pr=grand(S,1,'unf',0,1);

Pr=Pr ./sum(Pr);// Probabilities of Demand

end

// Constants used in the cost function

ll0=2;ll1=5;

KK0=10;KK1=1;

// Uzawa iterations when the dualized constraints are the S constraints

// Q0(ss) = sum(Pr.*Q0);

Q0=zeros(S,1);

Q1=zeros(S,1);

f0=zeros(S,1);

rho=5;

lambda=zeros(S,1);

// iterations of the Uzawa algorithm

for it=0:30 do

// decomposed minimizations (loop over scenarios ss)

for ss=1:S do

// inequality constraints (bounds)

// bounds on (Q0s,Q1s)

ll=[ll0*Pr(ss);ll1*Pr(ss)];// cost coefficients

Ai=[-eye(2,2);eye(1,2)];

bi=[zeros(2,1);q0m];

// equality constraints i.e production equals demand

Ae=[1,1];
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be=[D(ss)];

A=[Ae;Ai];b=[be;bi];

KK=Pr(ss)*diag([KK0,KK1]);

//

cc=ll+Pr(ss)*[lambda(ss)-sum(Pr .*lambda);0];

[xopt,lopt,fopt]=quapro(KK,cc,A,b,[],[],size(be,'*'));

Q0(ss)=xopt(1);

Q1(ss)=xopt(2);

f0(ss)=fopt;

printf("Dual function %f\n",sum(f0));

end

Q0bar=sum(Pr .*Q0);

lambda=lambda+rho*(Pr .*(Q0-Q0bar));

end

5 Formulation on a fan with linear costs

Here, we suppose that the costs are linear, as in (4).

5.1 Difficulties in applying Uzawa algorithm with linear costs

The optimization problem (16) becomes:

min
Q0,s, Q1,s, ∀s∈S

∑

s∈S

πs [l0Q0,s + l1Q1,s] (22a)

s.t 0 ≤ Q0,s ≤ Q♯
0 ∀s ∈ S (22b)

0 ≤ Q1,s ∀s ∈ S (22c)

D1,s = Q0,s +Q1,s ∀s ∈ S (22d)

Q0,s =
∑

s′∈S

πs′Q0,s′ ∀s ∈ S (22e)

Question 11 We are going to numerically solve the linear optimization problem (22).

a) [2] Detail what the code below is doing. Why do we use the macro linpro? Copy
the code into a file named tp q4.sce.

b) [3] Solve a numerical version with S = 3 scenarios. What do you observe regarding
convergence of the Uzawa algorithm? Can you explain why?

// formulation on a fan with linear cost

// Uzawa does not work
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S=3;// Number of random scenarios

q0m=30;// max capacity for q0

D=[15;20;50];

Pr=[0.2;0.6;0.2];// Probabilities of Demand

rho=0.1;

// Constants used in the cost function

ll0=2;ll1=5;

// Uzawa iterations when the dualized constraints are the S constraints

// Q0(ss) = sum(Pr.*Q0);

Q0=zeros(S,1);

Q1=zeros(S,1);

f0=zeros(S,1);

lambda=zeros(S,1);

for it=0:30 do

// decomposed minimizations

for ss=1:S do

// inequality constraints (bounds)

// bounds on (Q0s,Q1s)

ll=[ll0*Pr(ss);ll1*Pr(ss)];// cost coefficients

Ai=[-eye(2,2);eye(1,2)];

bi=[zeros(2,1);q0m];

// equality constraints i.e production equals demand

Ae=[1,1];

be=[D(ss)];

A=[Ae;Ai];b=[be;bi];

//

cc=ll+Pr(ss)*[lambda(ss)-sum(Pr .*lambda);0];

[xopt,lopt,fopt]=linpro(cc,A,b,[],[],size(be,'*'));

Q0(ss)=xopt(1);

Q1(ss)=xopt(2);

f0(ss)=fopt;

printf("Dual function %f\n",sum(f0));

end

Q0bar=sum(Pr .*Q0);

lambda=lambda+rho*(Pr .*(Q0-Q0bar));

end
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5.2 Dualization of non-anticipativity constraints

To bypass the difficulty in applying Uzawa algorithm with linear costs, we use a “trick” con-
sisting in introducing new decision variables Q0 and (Q0,s)s∈S, instead of the single decision
variable Q0, and we write

Q0,s = Q0 , ∀s ∈ S . (23)

These equalities are another form of the non-anticipativity constraints. Indeed, the equa-
tions (23) express that the decision at stage t = 0 cannot anticipate the future, hence cannot
depend on the scenario s. We will treat these constraints by duality.

Therefore, the stochastic optimization problem (3) now becomes

min
Q0, Q0,s, Q1,s, ∀s∈S

∑

s∈S

πs [l0Q0,s + l1Q1,s] (24a)

s.t 0 ≤ Q0,s ≤ Q♯
0 ∀s ∈ S (24b)

0 ≤ Q1,s ∀s ∈ S (24c)

D1,s = Q0,s +Q1,s ∀s ∈ S (24d)

Q0,s = Q0 ∀s ∈ S (24e)

By the assumption (1) that there are no scenarios with zero probability (πs > 0), we
replace each equality in (24e) by the equivalent one

πsQ0,s = πsQ0 , ∀s ∈ S . (25)

We attach, to each equality above a multiplier λ0,s. We put

Q0 = (Q0,s)s∈S , Q1 = (Q1,s)s∈S , λ = (λ0,s)s∈S . (26)

5.3 Augmented Lagrangian and obstacles to decomposition

5.4 Progressive Hedging algorithm (quadratic solver)

Question 12 We are going to numerically solve the linear optimization problem (24) by the
Progressive Hedging algorithm.

a) [3] Detail what the code below is doing. Why do we use the macro quapro? Explain
the two roles of the new parameter rr. Copy the code into a file named tp q5.sce.

b) [2] Solve a numerical version with S = 3 scenarios. What do you observe regarding
convergence of the Uzawa algorithm? Can you explain why?

// formulation on a fan

// with linear cost and augmented lagrangian
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S=3;// Number of random scenarios

q0m=30;// max capacity for q0

D=[15;20;50];

Pr=[0.2;0.6;0.2];// Probabilities of Demand

// Constants used in the cost function

ll0=2;ll1=5;

// Constant used both as a quadratic term and as a gradient step

rr=0.1;

// Uzawa iterations when the dualized constraints are the S constraints

// Q0s = sum(Pr.*Q0)

Q0=zeros(S,1);

Q1=zeros(S,1);

f0=zeros(S,1);

lambda=zeros(S,1);

Q0bar=0;

for it=0:300 do

// decomposed minimizations

// we alternate minimization

for ss=1:S do

// inequality constraints (bounds)

// bounds on (Q0s,Q1s)

ll=[ll0*Pr(ss);ll1*Pr(ss)];// cost coefficients

Ai=[-eye(2,2);eye(1,2)];

bi=[zeros(2,1);q0m];

// equality constraints i.e production equals demand

Ae=[1,1];

be=[D(ss)];

A=[Ae;Ai];b=[be;bi];

KK=rr*Pr(ss)*diag([1,0]);

cc=ll+[Pr(ss)*lambda(ss);0];

cc=cc+[-rr*Q0bar*Pr(ss)];

[xopt,lopt,fopt]=quapro(KK,cc,A,b,[],[],size(be,'*'));

Q0(ss)=xopt(1);

Q1(ss)=xopt(2);

f0(ss)=fopt;

end

// updates of Q0bar

Q0bar=sum(Pr .*Q0);

lambda=lambda+rr*(Pr .*(Q0-Q0bar));
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end

// solution (Q0bar,Q1)

Q1=max(0,(D-Q0bar));

// to be compared with tp_q1

5.5 Progressive Hedging algorithm (linear solver)

A Additional code for “Formulation on a tree with lin-

ear costs”

// Formulation on a tree with linear costs.

// Numerical resolution by linear programming

// using nsp linprog (glpk).

// Constant initialization

S=3;// Number of random scenarios

q0m=30;// max capacity for q0

// Demand

if S==3 then

D=[15;20;50];

Pr=[0.2;0.6;0.2];// Probabilities of Demand

else

D=grand(S,1,'uin',5,50);

Pr=grand(S,1,'unf',0,1);

Pr=Pr ./sum(Pr);// Probabilities of Demand

end

// Constants used in the cost function

ll0=2;ll1=5;

// a revoir pour passer a des contraintes egalité et utiliser lb et ub

c=[ll0;ll1 .*Pr];// cost coefficients

// inequality constraints (bounds on production)

Ai=[-eye(S+1,S+1);eye(1,S+1)];

bi=[zeros(S+1,1);q0m];

// equality constraints, i.e. production equals demand

Ae=[ones(S,1),eye(S,S)];

be=[D];
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// solving by linear

// xopt should be [ 15, 0, 5, 35 ] when S=3

if exists('%nsp') then

// in nsp linprog is glpk

[xopt,fopt,flag]=linprog(c,Ai,bi,Ae,be);

// we can also use quapro if available with a 0 quadratic term

if exists('quapro','callable') then

A=[Ae;Ai];b=[be;bi];

[xopt_q,lagr_q,fopt_q]=quapro(zeros(S+1,S+1),c,A,b,[],[],size(be,'*'))

end

else

// scicoslab version with linpro

A=[Ae;Ai];b=[be;bi];

[xopt,lopt,fopt]=linpro(c,A,b,[],[],size(be,'*'))

end

B Additional code for “Formulation on a tree with

quadratic convex costs”

// Formulation on a tree with quadratic costs

// Numerical resolution by brute force quadratic programming

// using nsp quapro or optim

if exists('%nsp') then

load_toolbox('quapro');

end

// just to get common data

exec('tp_q1.sce');

// the problem is now quadratic; we use a quadratic solver if available

A=[Ae;Ai];b=[be;bi];

KK0=10;KK1=1;

KK=diag([KK0,KK1*Pr' .*ones(1,S)]);

if exists('%nsp') then

// we can also use quapro if available with a 0 quadratic term

if exists('quapro','callable') then

[xopt_q,lagr_q,fopt_q]=quapro(KK,c,A,b,[],[],size(be,'*'))
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end

else

// scicoslab version with quapro

[xopt,lopt,fopt]=quapro(KK,c,A,b,[],[],size(be,'*'))

end

// BEWARE: using a global optim if quapro is not available

// we eliminate the equality constraint to use optim on q0

function [f,g,ind]=costf(q0,ind)

q1=max(0,(D-q0));

// expression of the cost

f=sum(Pr .*(ll0*q0+ll1*q1))+(1/2)*[q0;q1]'*KK*[q0;q1]

// expression of the cost derivative

g=sum(Pr .*(ll0-ll1*(D-q0 >= 0)))+KK(1,1)*q0+-sum((D-q0 >= 0) .*(KK(2:$,2:$)*q1))

endfunction

if exists('%nsp') then

Q0=optim(costf,0,xinf = 0,xsup = q0m)

else

[fo,Q0]=optim(costf,'b',0,q0m,0)

end

// solution (Q0,Q1)

Q1=max(0,(D-Q0))
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