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Hydroelectricity is the main renewable energy which is produced in France (over 10% of the country

annual production). It provides a clean (no greenhouse gases emissions) and fast-usable energy that is cheap

and substitutable for the thermal one. We address the question of the production management of cascade-

interconnected dams by means of a finite-horizon Markov decision process. Solving such a problem is not

straightforward since it displays a large size, so is likely to suffer from the curse of dimensionality. We handle

it with a decomposition-coordination algorithm that we adapt by approximation to the stochastic case.
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Introduction

This pratical work will follow the lecture entitled Decomposition-coordination methods in
stochastic optimal control (P. Carpentier). The computations will be performed using

nsp and only nsp. In order to launch nsp write nsp & in a terminal. Type pwd to see the
current repertory and then download the practical work material from the Internet to this
repertory. Since we will use a three dimension dynamic programming algorithm, a part of
the programming functions had to be written in C. Moreover, we have to load some scenarios
datas. Thus, we will need a specific nsp toolbox called COURSES/stochdec. In order to load
it, go to the stochdec repertory and type exec('loader.sce');.
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1 Description of the problem

1.1 Dynamics of a single dam and dams cascade

Let time t vary in {0, ..., T}. The following real valued random variables are defined on a
probability space (Ω, F , P):

• Xi
t is the storage level at the beginning of period [t, t+ 1); (state)

• Ui
t is the hydroturbine outflow during [t, t+ 1); (production control)

• Zi
t is the inflow from dam i− 1 into dam i during [t, t+ 1); (coordination control)

• Wi
t is the exogeneous inflow into dam i during [t, t+ 1).; (noise)

The dynamics of the dam reads:

Xi
t+1 = min

{
Xi

t +Wi
t + Zi

t −Ui
t, xi

}
with Xi

0 := xi0. (1)

When Xi
t +Wi

t +Zi
t −Ui

t is greater than xi, the difference is spilled from dam i to dam
i + 1 so that the upper bound constraint on dam i is directly handled by the dynamics.
Therefore the total outflow from dam i to dam i+ 1 is given by:

git
(
Xi

t, U
i
t, W

i
t, Z

i
t

)
:= max

{
Xi

t +Wi
t + Zi

t − xi, Ui
t

}
.

The bounds constraints are:

xi ≤ Xi
t+1 and 0 ≤ Ui

t ≤ min{ui
t, X

i
t +Wi

t + Zi
t − xi}, ∀t ∈ {0, . . . , T − 1}. (2)

Figure 1: Dynamics of dam i

Each dam i ∈ {2, . . . , N} receives from the dam i−1 outflows gi−1
t

(
Xi−1

t , Ui−1
t , Wi−1

t , Zi−1
t

)

as inflows Zi
t and sends its own outflows into the dam i+1 reservoir, at every t ∈ {0, . . . , T}.

With the notation Z1
t ≡ 0, this leads to the following coupling constraints:

Zi
t = gi−1

t

(
Xi−1

t , Ui−1
t , Wi−1

t , Zi−1
t

)
∀(i, t) ∈ {2, . . . , N} × {0, . . . , T − 1}. (3)
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Figure 2: Dynamics of three cascade-interconnected dams

1.2 The optimization problem

We assume that the noise random variable Wt = (W1
t ,W

2
t ,W

3
t ) are independent over time.

The hydroelectric production obeys the following valorization mechanism for every dam:

• the production at time t, Ui
t, is pt linearly retributed and a quadratic cost to produce

ε×Ui
t

2
has to be considered,

Li
t(X

i
t, U

i
t, W

i
t) := −pt ×Ui

t + ε×Ui
t

2
;

• a final storage level appreciation function Ki(Xi
T ) prevents the reservoir from being

lower than a target storage level x̂i at the end of the study period,

Ki(Xi
T ) := ai ×max{x̂i −Xi

T , 0}
2
.

We consider the expected value of the sum of every dam total gain as the problem criterion:

E

(
N∑

i=1

(
T−1∑

t=0

−pt ×Ui
t + ε×Ui

t

2
+ ai ×max{x̂i −Xi

T , 0}
2

))
. (4)

Note that this criterion is both time and space separable. The control U = (Ui
0, . . . , U

i
T−1)i

must satisfy the non anticipativity constraint in the hazard-decision framework. So, Ui
t has

to be measurable with respect to the noises up to time t:

Ui
t � Ft where Ft := (X0,W0, . . . , Wt) ∀t ∈ {0, . . . , T − 1}. (5)

The problem consists in minimizing the criterion (4) under the dynamics (1), the coupling
(3), the bounds (2) and the measurability (5) constraints.
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1.3 Numerical instance

We will test algorithms on a valley composed of three cascade-interconnected dams over a
T = 12 time steps period. The problem is of a discrete type and the dams share the following
common characteristics:

• the volumeXi
t of every dam i at t belongs to the forty one integers set {0, 2, . . . , 78, 80};

• the space in which every control Ui
t takes its values is discretized over the six integers

set {0, 8, . . . , 32, 40};

• the noise random variables Wi
t are considered as being interstage independent and

uniformely distributed over a finite set of ten integers.

The simulation part is based on 500 intakes scenarios.

Question 1 Execute the script answer-question1.sce which is stored in the directory
COURSES/stochdec. This script will draw N simulation scenarios for the dam number 1.
Take a look at the script and change it to draw the scenarios of the other dams.

The contents of the script answer-question1.sce is reproduced here:

// You should be in COURSES/stochdec to run this script

exec('loader.sce');

SIMSCEN=dp_get_simulation_scenarios();

// get the inflows law on dam 1

M=fscanfMat('Datas/Generated_datas/generated_intakes_0.txt');

// QUESTION 1:

xclear();

[nss,v]=size(SIMSCEN)

N=10

// Draw N scenarions of intakes of dam 1

Sim=SIMSCEN(1:N,:)+1;// take care to add one

T=dp_horizon();

res=Sim;

for t=1:T-1 do

res(:,t)=M(Sim(:,t),t);

end;

xset('colormap',jetcolormap(N));

plot2d([],res');

xtitle(sprintf('first %d simulation scenarios',N));
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2 Exact solution by dynamic programming

The noises Wi
t are independent over time, so that the problem can be theoretically solved by

stochastic dynamic programming (DP). Although, DP is prone to face the curse of dimen-
sionality (the method is not numerically tractable as soon as the number of dams is larger
than 5 ) you will first solve the three cascade interconnected dams problem by DP since it
is numerically possible (as N = 3). Note that the discretization of the problem avoids us to
use an interpolation scheme to implement the method.

Question 2 Running DP on the cascade of three connected dams is obtained using the func-
tion dp_run(). Then call the function dp_simu() as follows [cost, stocks, controls]=dp_simu()

to obtain the expected cost and the stocks and the controls trajectories. Plot the stocks trajec-
tories and show the optimal expected cost. Note that, for example, you will obtain the stocks
evolution of dam 1 by using S1=stocks{1}.

Question 3 For the most sceptical of you, just try to beat the DP-computed strategy by
building your own strategy ! ;) For example, you may want to multiply the optimal con-
trol mapping by a scalar γ ∈ [0, 1] to get a new control U (you can use dp_getu(U) and
dp_setu(U) to obtain or set the current used control table). Simulate the strategies obtained
with your control strategy by using dadp_simu() and compare to what you had obtained
before.

Question 4 You can also design your own strategy using function dp_f2u and simulate your
strategy as seen in question3. How far is your solution expected cost from the optimal one?

The next script gives some hints on how to use dp_f2u:

function u=myfeedback(t,w,x)

// scalar t, vector w of size 4 (three inflows and a price)

//, vector x of size 3 (water levels of the dams)

u=sin(t)*x(1)*w(4)*[0;1;0]+x(3);

endfunction

// dp_f2u(fn): use a feedback function given as

// argument to fill a control array U.

U=dp_f2u(myfeedback)

...

3 Approximate solution by dual approximate dynamic

programming

In a few words, we decompose the three dimension dynamic state problem into three one dimension dynamic
state problems. This is done by:

1. dualizing the coupling constraints;

2. coordinating the local optimal solutions to got the global optimal one using an Uzawa algorithm.
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3.1 Dualization of the coupling constraint and DADP

We aim at dualizing (3) and at solving the problem by using an Uzawa algorithm: at iteration

k, the associated multiplier is a fixed Ft-measurable random variable
(
λ

i+1
t

)(k)
, and the term

(under the expectation) induced by duality in the cost function is

(
λ

i+1
t

)(k)
.
(
Z

i+1
t − git

(
Xi

t,U
i
t,W

i
t,Z

i
t

))
,

It can be decomposed as

•
(
λ

i+1
t

)(k)
.Zi+1

t : term pertaining to dam i+ 1.

• −
(
λ

i+1
t

)(k)
.git
(
Xi

t,U
i
t,W

i
t,Z

i
t

)
: term pertaining to dam i.

Finally, the following term is added to the cost of dam i

(
λ

i
t

)(k)
.Zi

t −
(
λ

i+1
t

)(k)
.git
(
Xi

t,U
i
t,W

i
t,Z

i
t

)
.

The main idea of the price decomposition of the problem is to see Zi
t as an independent

control variable as shown in figures 3. As Ui
t does, Zi

t has to observe the (3) constraint.
Then, we would like to solve the resulting N independent one-dam subproblems by DP1,

(a) (b)

Figure 3: (a): Whole Problem (b): Decomposed Problem
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min
Ui,Zi,Xi

E

( T−1∑

t=0

(
Li
t

(
. . .
)
+
(
λ

i
t

)(k)
.Zi

t −
(
λ

i+1
t

)(k)
.git
(
. . .
))

+Ki
(
xi
T

))

s.t. (1)|i, (2)|i and (5)|i.

(6)

But, the presence of the random variables
(
λ

i
t

)(k)
t=0,...,T−1

prevents to use dynamic pro-

gramming in a straightforward manner since the random variables λi
t are not independent

over time. The idea of DADP is to replace the multipliers
(
λ

i
t

)(k)
by their conditional

expectations w.r.t. chosen information variable Yi
t, namely

(
λ̂

i

t

)(k)
:= E

((
λ

i
t

)(k) ∣∣ Yi
t

)
.

Note that this is equivalent to replace the (3) constraint by E

(
Z

i

t
−g

i−1

t
(. . .)

∣∣∣ Yi

t

)
= 0 . In prac-

tice, Yi
t is a short-memory process that will enter the state variables of the subproblems. In

the sequel we will consider that Yi
t ≡ const, so that

(
λ̂

i

t

)(k)
:= E

((
λ

i
t

)(k))
.

Thus, the Uzawa algorithm reads:

1. initialization: choose initial values for the multipliers
(
λ̂

i

t

)(0)
for all i and t,

2. minimization: solve N independent one dimensional subproblems by dynamic pro-
gramming,

min
Ui,Zi,Xi

E

( T−1∑

t=0

(
Li
t

(
. . .
)
+
(
λ

i
t

)(k)
.Zi

t −
(
λ

i+1
t

)(k)
.git
(
. . .
))

+Ki
(
xi
T

))

s.t. (1)|i, (2)|i and (5)|i.

3. coordination: update the multipliers by a gradient step as follows:

simulation: apply the current strategy on a sample of n noise trajectories ωl, to
get n realizations of the random variables (git(. . .))

(k+1)(ωl) by time step, compute
all discrepancies (δit)(ωl) in the coupling constraints given by:

(δit)(ωl) := Zi
t(ωl)− gi−1

t

(
Xi−1

t ,Ui−1
t ,Wi−1

t ,Zi−1
t

)
(ωl),

gradient step: update the multipliers by taking the average of the discrepancies
(δit)(ωl)

(
λ̂

i+1

t

)(k+1)
=
(
λ̂

i+1

t

)(k)
+

ρit
n

×

n∑

l=1

δit(ωl)

1These subproblems are one dimensional problems and could have been numerically solved this way if
the multipliers random variables would have been known.

7



4. stopping condition: go to step (2) until convergence of the algorithm.

Question 5 Run the script job.sce to see iterations of the DADP algorithm solving the
three cascade interconnected dams problem. You should observe the multipliers expected val-
ues and the dual costs converging in about three thousand iterations. At the end of iterations
you can obtain the optimal multipliers expected values using the function dadp_get_lambda().
Use this function to store this values in matrix OPT_LAMBDA by calling OPT_LAMBDA=dadp_get_lambda().

Figure 4: Uzawa algorithm

Question 6 Have a look at the Uzawa algorithm figure Figure 4. Implement your own
gradient step process and make the gradient step size values vary to see how it affects the
convergence of the algorithm. You can use the following program skeleton.

exec loader.sce

nspsoc('load_data');

l1=[];l2=[];cost=[],costa=[],costaa=[],costab=[];

dadp_set_gstep([1*ones(11,1),0.1*ones(11,1)]);

for i=1:200

dadp_minimization_step(); // DP for each dam given lambdas

// now you should update the lambdas using the following functions

// dadp_coordination(): computes the lambda gradients that you can then

// obtain with dadp_get_dlambda();

// then dadp_get_gstepsize() returns the gradient stepsizes.

// you can get or set the current values of lambda with

// L=dadp_get_lambda();

// or

// dadp_set_lambda(L);

end

Question 7 Write your own dadp_coordination() function using the following code skele-
ton and then compare your code to the reference one.
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function [dl,dc]=dadp_coordination1()

ndams = dadp_ndams();

T = dadp_horizon();

Nu = dadp_n_uzawa_scenarios();

// dc: used to store the dual cost

// dl: used to accumulate the average gradients it should be of size

// zeros(2,T-1);

for ksimul=0:Nu-1

// dadp_x0(); // gives the initial stocks

for t=0:T-2

// dadp_get_noise(ksimul,t); // get the intakes and price

// [xp,u,g,costs]=dadp_dynamics(ksimul,t,x,w);

...

end

// dadp_final_cost(x); // returns the final cost for each dam

end

dc =- dc /Nu; // average

dl = dl/Nu; // average

endfunction

Question 8 You can change the previous function dadp_coordination1 in order to get
the deviations from the coupling constraints trajectories at the optimal multipliers expected
values. Compute these values when at the optimal multipliers expected values that you have
stored before.

The approximation Yi
t ≡ const is a relaxation of the problem (as the constraint is loos-

ened). Thus, the strategies that we derive may not be feasible, even if the algorithm con-
verges: we have to design a method to go back to a feasible strategy.

3.2 A heuristic to construct an admissible solution

Once the algorithm has converged we have feedbacks laws that verify the constraint

E

(
Zi

t − gi−1
t

(
Xi−1

t ,Ui−1
t ,Wi−1

t ,Zi−1
t

))
= 0 .

But, this means that the physical constraint Zi
t = gi−1

t

(
. . .
)
a.s. is not verified. Consequently

one has to define an heuristic to turn this strategies into an admissible one.
We first note that the optimal control to apply along a given noise trajectory may be

computed using the Bellman function. The way to do this is the following: suppose that you
have the three dimension DP-computed Bellman function

For every scenario

For t=0:1:T-1
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get the current state and the inflow value for every dam;

set a variable opt_cost to infinity;

For u_i=0:4:40 (a loop a dam, three loops here thus)

set the corresponding instant cost to a variable cost;

apply the dynamic to get the reached states;

add the reached states t+1 Bellman function value to cost;

If cost < opt_cost then

opt_cost=cost and set the u_i values to a vector opt_u;

apply the dynamics with u=opt_u and collect the new current states;

Question 9 Use the simulation part of the previous coordination function to implement the
simulation using the Bellman function you get by DP and compare it to the dp_simu()

results.

We don’t have the three dimension Bellman function but we can construct an approximate
Bellman’s value function for the global problem as the sum of the Bellman’s value function of
each subproblem. Consequently we obtain a global admissible strategy by doing a one time
step optimization of the global problem. More precisely if we write V i

t (x
i
t) the Bellman’s

function obtained for subproblem i when the DADP algorithm has converged, we define
Ṽt(xt) =

∑N

i=1 V
i
t (x

i−1
t , xi

t, x
i+1
t ), with the convention that¡ xt

0 = 0. Then the control we
choose at time t when the cascade of dams is in the state xt and the wt is observed is the
optimum of

min
ut

N∑

i=1

Li
t

(
xi
t, u

i
t, w

i
t

)
+ Ṽt+1(f(xt, ut, wt)) .

This problem is global on the cascade but only done on one time-step, so numerically
tractable.

Question 10 Apply the heuristic to the optimal strategy we computed using dadp_admissible()
and simulate with [cost, stocks, controls]=dadp_simv(). Use the function which checked
for the feasibility of the DADP computed strategy to see that the strategy is now feasible.
Compare the results with those we get by the application of the exact optimal strategy.
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