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Introduction

This pratical work will follow the example worked out in M. De Lara’s first lecture. The
computations will be performed using nsp (a Matlab like simulation language). In order to
launch nsp just use the Nsp entry in the menu Applications/Science. You will need a specific
nsp toolbox called qhull to perform Voronoi tesselation. In order to load it, just type within
nsp:
exec('COURSES/qhullnsp/loader.sce');

1 The Problem

Consider two independent random variables W 0 and W 1, each with a uniform probability
distribution over [−1, 1] (zero mean, variance 1/3). The unique decision variable U may
only use the observation of W 0 (which we view as the initial state X0). The final state X1
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is equal to W 0+U +W 1. The goal is to minimize E(εU 2+X
2
1), where ε is a given “small”

positive number (“cheap control”). The statement is thus

min
U�W 0

E
(

εU 2 + (W 0 +U +W 1)
2
)

. (1)

2 Exact Solution

We have that

E
(

εU 2 + (W 0 +U +W 1)
2
)

= E
(

W
2
0 +W

2
1 + (1 + ε)U 2

+ 2UW 0 + 2UW 1 + 2W 0W 1

)

.

The last two terms in the right-hand side yield zero in expectation since W 0 and W 1 are
centered independent random variables and since U is measurable with respect to W 0. The
first two terms yield twice the variance 1/3 of the noises. Therefore, we remain with the
problem of minimizing

2

3
+ E

(

(1 + ε)U 2 + 2UW 0

)

(2)

by choosing U as a measurable function of W 0. One can see that the solution is given by

U = −
W 0

1 + ε
,

and the corresponding optimal cost is readily calculated to be

1

3

1 + 2ε

1 + ε
≈

1

3
. (3)

Question 1 Use the following code to recover previous results by both numerical integration
(nsp function intg) and Monte Carlo simulations. Choose and code an other feedback and
compare the associated cost with the optimal cost.

epsilon=1.E-2;

// we define here the optimal feedback

function u=feed(w0) u=-w0/(1+epsilon);endfunction;

// the cost under expectation

function y=fcost(w0,feedback)

u=feedback(w0);

y=2/3+(1+epsilon)*u .^2+2*u .*w0;

endfunction;

// numerical integration

[cost,ea_estim]=intg(-1,1,fcost,args = feed,vecteval = %t);
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cost=cost/2;

// Monte Carlo simulations

W=grand(1,2500,'unf',-1,1);

Y=fcost(W,feed);

costmc=mean(Y);

3 Naive Monte Carlo Discretization

W 0

W 1

w
i

0

w
i

1

We now proceed to some discretization of this problem. To that purpose, we first consider
N noise trajectories (wi

0, w
i
1), i = 1, . . . , N, which are N sample of the two-dimensional vector

(W 0,W 1). Those samples will serve to approximate the cost expectation by a usual Monte
Carlo averaging.

However, in this process, we must also consider N corresponding realizations {ui}i=1,...,N

of the random decision variable U . But we must keep in mind that this random variable
should be measurable with respect to the first component W 0 of the previous vector.

To that purpose, we impose the constraint

∀i, j, wi
0 = wj

0 ⇒ ui = uj , (4)

which prevents U from taking different values whenever W 0 assumes the same value in any
two sample trajectories.

When Constraint (4) is never active, then we have to compute a different control value
for each sample and the cost is:

ε(ui)2 + (wi
0 + ui + wi

1)
2 = (ε+ 1)(ui)2 + 2(wi

0 + wi
1)u

i + (wi
0 + wi

1)
2 . (5)

This expression must be minimized in ui for every i = 1, . . . , N, under the constraint (4).
This yields the optimal value

ui = −
wi

0 + wi
1

1 + ε
(6)
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and the corresponding contribution to the cost ε(wi
0 + wi

1)
2/(1 + ε). This is of order ε, and

so is the average over N samples

1

N(1 + ε)

N
∑

i=1

ε(wi
0 + wi

1)
2 (7)

even when N goes to infinity. This is far from the actual optimal cost given by (3).

Question 2 Use the function grand to obtain a set of N=2500 samples of (W 0,W 1). As-
suming that the N values that you obtain for W 0 are one by one distinct, compute the optimal
cost of the discrete problem.
Optional question: set N=1000000 and check if all the values for W 0 are one by one distinct
(use function unique and type help unique to get the online manual). If not, propose a
modification of the code to handle this case in order to compute the discrete optimal cost.

// to be filled

4 What Is the Real Value of this “Solution”?

However, any admissible solution (any U such that U is measurable w.r.t. W 0) cannot
achieve a cost which is better than the optimal cost (3). The value (7) is just a “fake” cost
estimation. The resolution of the discretized problem derived from the previous Monte Carlo
procedure yielded an optimal value ui (see (6)) associated with each sample noise trajectory
represented by a point (wi

0, w
i
1) in the square [−1, 1]2. Hence, before trying to evaluate the

cost associated with this “solution”, we must first derive from it an admissible solution for
the original problem, that is, a random variable U over Ω = [−1, 1]2, but with constant value
along every vertical line of this square (since the abscissa represents the first component W 0

of the 2-dimensional noise (W 0,W 1)).
A natural choice is as follows:

• we first renumber the N sample points so that the first component wi
0 is increasing

with i;

• then, we divide the square into N vertical strips by drawing vertical lines in the middle
of segments [wi

0, w
i+1
0 ], that is, the i-th strip is [ai−1, ai]×[−1, 1] with ai = (wi

0+wi+1
0 )/2

for i = 2, . . . , N − 1, a0 = −1, and aN = 1;

• then, we define the solution U as the function of (w0, w1) which is piecewise constant
over the square divided into those N strips, using of course the optimal value ui given
by (6) in strip i; that is, we consider

U (w) =
N
∑

i=1

ui1[ai−1,ai]×[−1,1](w) , (8)

where w ranges in the square [−1, 1]2 and 1A(·) is the function which takes the value
1 in A and 0 elsewhere.
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Since this is an admissible solution for the original (continuous) problem, the correspond-
ing cost value E(εU 2+X

2
1) can be evaluated. Here, the expectation is over the argument w

considered as a random variable over the square with uniform distribution (the calculation
of this expectation is done analytically).

According to (2), this expected cost is easily evaluated as

2

3
+

N
∑

i=1

(

(1 + ε)(ui)2
∫ ai

ai−1

1

2
dw0 + 2ui

∫ ai

ai−1

w0

2
dw0

)

=
2

3
+

N
∑

i=1

(

(1 + ε)(ui)2
ai − ai−1

2
+ ui (a

i)2 − (ai−1)2

2

)

. (9)

Question 3 Compute the optimal cost for the real problem obtained with the feedback (8)
for a given sample of (W 0,W 1). You will have to do the following steps:

• sort the values of W 0 (use function gsort).

• compute the midpoints of the intervals and do not forget to add the endpoints −1 and
1.

• use the permutation obtained when sorting the W 0 values to associate the correct value
of the control to each interval.

Although this is an “expected” cost, it is still a random variable since ui and ai are functions
of the wi

0’s which result from random drawings (ui also depends upon the wj
1’s). The optimal

cost being itself a random variable, compute by Monte Carlo its mean and standard deviation
for different values of N.

epsilon=1.E-2;

N=2500;

W=grand(2,N,'unf',-1,1);

U=-(W(1,:)+W(2,:))/(1+epsilon);

// compute the mid-points vector a

// compute the cost depending on a

cost=ZZZ,// ...
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5 Scenario Tree-based Discretization
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The question is thus: how
to formulate another constraint translating the informational constraint in the discretized
problem more effective than (4)? An obvious answer is that, in our collection of sample
trajectories used in the discrete optimization problem, there should really be distinct samples
with the same value of component w0.

Admittedly, if the scenarios are produced randomly (according to the joint uniform prob-
ability law of (W 0,W 1) over the square [−1, 1]× [−1, 1]), or if they have been recorded from
real life observations, there is a probability zero that a tree shape will pop up spontaneously,
for any arbitrary large but finite N .

In the case of our example, since W 0 and W 1 are known to be independent (the white
noise case), any element in a set of N0 samples of W 0 can be combined with the same, or
N0 distinct, sets of N1 samples of W 1 to produce such a tree. Even if W 0 and W 1 were
not independent, one could first generate N0 samples of W 0 using the marginal probability
law of this variable, and then, using each sample w0j and the conditional probability law of
W 1 knowing that W 0 assumes the value wj

0, one could generate N1 associated samples wk
1

of W 1 (“sons” of that wj
0).

To fix notations, we consider scenarios {(wj
0, w

jk
1 )}k=1,...,N1

j=1,...,N0
and we introduce the following

additional symbols:

wj
1 =

1

N1

N1
∑

k=1

wjk
1 , (σj

1)
2 =

1

N1

N1
∑

k=1

(wjk
1 )2 . (10)

Notice that wj
1 can be interpreted as an estimate of the conditional expectation of W 1

knowing that W 0 = wj
0. Likewise, (σ

j
1)

2 can be interpreted as an estimate of the conditional
second order moment.

The cost of the discretized problem is

1

N0

N0
∑

j=1

(

ε(uj)2 +
1

N1

N1
∑

k=1

(uj + wj
0 + wjk

1 )2
)

.
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The minimizer is

uj = −
wj

0 + wj
1

1 + ε
, j = 1, . . . , N0 , (11)

to be compared with (6). This yields the optimal cost

1

N0(1 + ε)

N0
∑

j=1

(

ε(wj
0)

2 + 2εwj
0w

j
1 − (wj

1)
2 + (1 + ε)(σj

1)
2
)

, (12)

to be compared with (7) and (3). If we assume that the estimates (10) converge towards
their right values (respectively, 0 and 1/3) as N1 goes to infinity, then (12) gets close to

1

N0(1 + ε)

N0
∑

j=1

(

ε(wj
0)

2 +
1 + ε

3

)

.

Now, the expression (1/N0)
∑N0

j=1(w
j
0)

2 can also be viewed as an estimate of the second order
moment of W 0 and, if we assume that it converges to the true value 1/3 when N0 goes to
infinity, then we recover, in the limit, the true optimal cost (3). Therefore, unlike with the
previous naive Monte Carlo method (see (7)), here the optimal cost obtained in the discrete
problem appears to converge to the right value.

As we did earlier (see (9)), it is also interesting to evaluate the real cost associated with
an admissible solution derived from the collection of “optimal” values (11) by plugging those
values into the formula (8) (with N replaced by N0). Again, we have appealed to a computer
program using 100 experiments, each consisting in:

• drawing N0 values wj
0 at random;

• associated with each of those values, drawing a set of N1 values wjk
1 at random;

• computing the wj
1’s (see (10)), the uj’s (see (11)) and forming the admissible solution

(8) (N replaced by N0) with those values after reordering the indices j so that wj
0 is

increasing with j;

• evaluating the true cost E(εU 2 + X
2
1) by analytic integration w.r.t. the couple w =

(w0, w1) with uniform probability distribution over the square [−1, 1]2.

Question 4 Compute the optimal cost for the real problem obtained with the feedback (8) for
a given tree sample of (W 0,W 1). The optimal cost being itself a random variable, compute
by Monte Carlo its mean and standard deviation for different values of N.

epsilon=1.E-2;

N0=50;

W0=grand(1,N0,'unf',-1,1);

N1=50;

// each column of W1 is associated to a value W0
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W1=grand(N1,N0,'unf',-1,1);

// compute the mean for each column

W1m=mean(W1,1);

// compute the variance for each column

sig=mean(W1 .*W1,1);

// the optimal discrete control

// ...

6 Independent Discretizations of Noise and Informa-

tion
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We consider now an alternative approach consisting in independent discretizations of
noise and information. The noise is discretized using a voronoi tesselation (Nc cells) and the
control is discretized using vertical strips (Ns strips). As shown in the slides, we need to
solve Ns optimization problems (one problem for each strip), formulated as follows :

• Denoting j(u, w0, w1) = εu2 + (w0 + u+ w1)
2

• The discretized optimization problem on strip k giving the optimal uk is

min
uk

Nc
∑

i=1

pik j(uk, wi
0, w

i
1)

• in which pik is the probability weight of the intersection of cell i with strip k.

Question 5 • Draw a sample of size 2500 value of (w0, w1) and plot the Voronoi diagram
using the voronoi function.

• Discretize uniformly the interval (−1, 1) to define the vertical strips (use 100 strips
and use function linspace).

• Find a closed form formula for the optimal uk.
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• Use the function SquareBV to obtain the pik and compute the optimal value of uk.

• Draw the obtained feedback, that is, u as a piecewise constant function of w0 and
graphically compare it to the optimal feedback defined at §2.

• compute the real cost associated to the obtained feedback.
Note that you can use the macro SquareBV in order to compute the surfaces of the

intersections of the cells of a voronoi tesselation and of a given rectangle.

// voronoi(x,y); // draw a tesselation diagram

// compute the surfaces for the strip [xmin,xmax]x[-1,1].

// [Surfaces]=SquareBV(x,y,rect=[xmin,xmax,-1,1]);

// ....
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