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Let time t be measured in discrete units (such as years). Let B(t) denote the biomass
of a population at time t (beginning of time interval [t, t + 1[). We consider the so called
Schaefer model

B(t+ 1) = Biol
(

B(t)
)

− h(t) , 0 ≤ h(t) ≤ Biol
(

B(t)
)

(1)

where Biol is the population dynamics and h(t) is the harvesting. Notice that, in the time
interval [t, t+ 1[, growth of the stock occurs first, followed by harvesting1.

The sustainable yield he = Sust(Be) solves Be = Biol(Be)− he, which gives:

Sust(B) := Biol(B)−B . (2)

The carrying capacity of the habitat is the levelK > 0 of positive biomass such that Biol(K) =
K, that is Sust(K) = 0.

The maximum sustainable yield hmse and the corresponding maximum sustainable equi-
librium Bmse are

hmse := sup
B≥0

[Biol(B)−B] and Bmse := argmax
B≥0

[Biol(B)− B] . (3)

From [1, p. 258] and numerical simulations, we shall consider the Pacific yellowfin tuna
example as in Table 1.

1Another modelling would have been B(t+ 1) = Biol
(

B(t)− h(t)
)

, 0 ≤ h(t) ≤ B(t).
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Pacific yellowfin tuna

yearly intrinsic growth R = 2.25
carrying capacity K = 250 000 metric tons
catchability q = 0.0 000 385 per SFD
price p = 600 $ per metric ton
cost c = 2 500 $ per SFD

Table 1: Pacific yellowfin tuna data for a discrete time logistic model (adapted from [1,
p. 258]). SFD: standard fishing day.

1 The Beverton-Holt model

The Beverton-Holt model is characterized by the discrete time dynamics mapping

Biol(B) =
RB

1 + bB
. (4)

We have

hmse =
(
√
R− 1)2

b
, Bmse =

√
R− 1

b
and K =

R− 1

b
. (5)

Question 1 Use the data in Table 1 to compute b in (4). Give the maximum sustainable
biomass Bmse and the maximum sustainable yield hmse as in (5).

R_tuna = 2.25 ;

K_tuna = 250000 ; // metric tons

// BEVERTON-HOLT DYNAMICS

R_BH = R_tuna ;

b_BH = (R_BH-1) / K_tuna ;

function [y]=Beverton(B)

y=(R_BH*B)./(1 + b_BH*B) ;

y=maxi(0,y) ;

endfunction;

// SUSTAINABLE YIELD MACRO

function [SY]=sust_yield(dynamic,B), SY=dynamic(B)-B, endfunction;

// MAXIMUM SUSTAINABLE EQUILIBRIUM

B_MSE = (sqrt(R_BH) - 1)/b_BH ;
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// maximum sustainable yield

h_MSE = sust_yield(Beverton,B_MSE) ;

// maximum sustainable yield

Question 2 Select one biomass level Be between the maximum sustainable biomass Bmse

and the carrying capacity K. Compute the corresponding sustainable yield he.
Draw the corresponding steady trajectory of the Schaefer model (1) with the Beverton-

Holt dynamics (4) and h(t) = he. Pick up two different initial conditions in the neighborhood
of the equilibrium biomass Be. Draw the corresponding trajectories. Does the figure confirm
or not the fact that the equilibrium biomass Be is attractive?

Recall that, for an equilibrium, being stable or attractive are unrelated notions.

Question 3 Does the figure confirm or not the fact that the equilibrium biomass Be is sta-
ble? Be specific in your justifications. What can you say about asymptotic stability of the
equilibrium biomass Be?

// SUSTAINABLE EQUILIBRIUM

alpha=rand();

Be= alpha*B_MSE + (1-alpha)*K_tuna ;

// selection of one of many possible equilibria

he=sust_yield(Beverton,Be) ;

// corresponding sustainable yield

function [y]=sequential(y0,time,f)

[one,two]=size(Binit) ;

y=zeros(one,prod(size(time))) ; // time is a vector t0, t0+1,...,T

// vector will contain the trajectories y(1),...,y(T-t0+1)

// for different initial conditions

for k=1:one

y(k,1)=y0(k);

// initialization

for s=time(1:($-1)) -time(1)+1

// runs from 1 to T-t0+1

y(k,s+1)=f(s,y(k,s));

end ;

end ;

endfunction
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// STATE TRAJECTORY UNDER DYNAMICS

function [y]=Beverton_e(t,B)

y=Beverton(B) - he ;

y=maxi(0,y) ;

endfunction

// Beverton-Holt dynamics with harvesting at equilibrium (Be,he)

T=20;

years=1:(T+1);

xset("window",31); xbasc(31);

Binit=Be;

Bt=sequential(Binit,years,Beverton_e);

plot2d2(years',Bt',1);

//

Binit=0.9*Be ;

Bt=sequential(Binit,years,Beverton_e);

plot2d2(years',Bt',2);

//

Binit=1.1*Be;

// It seems there is a bug with the previous version of 'sequential'

Bt=sequential(Binit,years,Beverton_e);

plot2d2(years',Bt',3);

//

xtitle('Trajectories with Beverton-Holt dynamics (R=' +string(R_tuna)...

+' and K=' +string(K_tuna) +')', 'years (t)','B(t)')

legends(['equilibrium biomass'],[1],'ur')

Question 4 Find an equilibrium state Be which is not attractive. Illustrate that Be is not
attractive with some trajectories. What can you say about asymptotic stability of the equilib-
rium biomass Be?

With price p, catchability coefficient q and harvesting unitary costs c, the private prop-
erty equilibrium (ppe) is the equilibrium solution (Bppe, hppe) = (Bppe, Sust(Bppe)) which
maximizes the rent as follows:

max
B≥0, h=Sust(B)

[ph−
ch

qB
] . (6)

4



0 2 4 6 8 10 12 14 16 18 20 22

120000

125000

130000

135000

140000

145000

150000

155000

Trajectories with Beverton−Holt dynamics (R=2.25 and K=250000)

years (t)

B
(t

)

equilibrium biomass

Figure 1: Pacific yellowfin tuna biomass trajectories with Beverton-Holt dynamics

The common property equilibrium Bcpe makes the rent null and is given by

Bcpe =
c

pq
. (7)

Question 5 Study the stability around the two following equilibria:

• common property equilibrium Bcpe,

• private property equilibrium

Bppe =

√

R(1 +
cb

pq
)− 1

b
. (8)

Compare your observations with the theoretical results.

// Economic parameters

c_tuna=2500; // unit cost of effort

p_tuna=600; // market price

q_tuna=0.0000385; // catchability

c=c_tuna;

p=p_tuna;

q=q_tuna;

5



B_PPE= ( sqrt( R_BH * (1 + (b_BH*c/(p*q)) ) ) - 1 ) / b_BH;

// private property equilibrium

B_CPE=c/(p*q) ;

// common property equilibrium

2 The logistic model

The logistic model is characterized by the discrete time dynamics mapping

Biol(B) = RB(1−
B

κ
) (9)

where R ≥ 1 and r = R− 1 ≥ 0 is the per capita rate of growth (for small populations), and
κ is related to the carrying capacity K (which solves Biol(K) = K) by:

Biol(K) = K ⇐⇒ RK(1−
K

κ
) = K ⇐⇒ κ =

R

R− 1
K ⇐⇒ K =

R− 1

R
κ . (10)

We have

hmse =
(R− 1)2

4R
κ =

R− 1

4
K and Bmse =

R− 1

2R
κ =

K

2
. (11)

Question 6 Adapt the previous Scilab code to the logistic model, and compare the results.

3 The Ricker model

The Ricker model is characterized by the discrete time dynamics mapping

Biol(B) = B exp(r(1−
B

K
)) . (12)

Question 7 Adapt the previous Scilab code to the Ricker model, and compare the results.
Try numerical procedures: type help fsolve to obtain information about Scilab solver.
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