Fermer X

Contents

We consider the discrete time dynamics system in n:

x(t + 1) = f (t,x (t)), for t = t0,..,T − 1,
(1)

starting from initial state x0 n at time t 0

x (t0) = x0.
(2)

Knowing function f and (t0,x0), we are able to compute the whole sequence x(t0),x(t0 + 1),,x(T) solution of the problem.

1 Population dynamics in ecology

Consider the population dynamics

           --Rx-(t)--
x (t + 1) = 1 + Sx (t),t0 = 1,T = 100, x(t0) = x0 = 1,

with parameters R = 1.2 and S = 0.02.

  t0=1;x0=1;
  x(t0)=x0;T=100;R=1.2;S=0.02;
  
  function y=f(t,x)
    y=R*x ./(1+S*x)
  endfunction
  
  for t=t0:1:T do
    x(t+1)=f(t,x(t));
  end;
  plot2d(t0:T+1,x(t0:T+1))

Question 1 Change the population dynamics with f(t,x) = (ax)0.5 where a = 10. Compare the behavior of the solutions x(t).

2 Carbon cycle

Consider the carbon cycle

M  (t + 1) = M (t) + αEBAU  (t)(1 − a) − δ(M (t) − M −∞ ),

starting from initial conditions M0 = 354 (ppm) at year t0 = 1990 with time horizon T = 100. The parameters are α = 0.471, preindustrial concentration M−∞ = 280, removal rate δ = 0.01. It is assumed that the ”business as usual” CO2 emissions path is

E    (t) = E    (t )(1 + g)t−t0 (GtC )
 BAU         BAU  0
with the emissions growth set to g = 1% and initial emissions to EBAU(1990) = 7.2 (GtC).

  t0=1990;T=2100;M_0=354;
  alpha=0.471;M_infty=280;delta=1/120;sigma=0.519;
  E_BAU=7.2;g=0.01
  a=0;
  
  function y=EBAU(t)
    y=E_BAU*(1+g)^(t-t0);
  endfunction
  
  function y=f(t,M)
    y=M+alpha*EBAU(t)*(1-a)-delta*(M-M_infty);
  endfunction
  
  x(t0)=M_0;
  for t=t0:1:T do
    x(t+1)=f(t,x(t));
  end;
  plot2d(t0:T+1,x(t0:T+1),rect = [t0,0,T+1,1000])

Question 2 Change the mitigation rate a (a [0, 1]) to compare the behavior of the concentrations profile M(t).

3 An ecosystem

We consider two populations x1(t),x2(t) interacting within a trophic web. The dynamics based on a Lotka-Volterra form is characterized by

{
  x1(t + 1)  =  x1 (t)(1 + r1 − q1x2 (t))
  x2(t + 1)  =  x2 (t)(1 − d2 + q2x1(t))
(3)

where r1 > 0 is the intrinsic growth of prey while d2 > 0 is the intrinsic decrease of predator. Parameters q1 > 0,q2 > 0 are related to the catchability and efficiency of trophic relations.

  t0=1;x0=[1;1];
  T=100;
  r_1=0.1;d_2=0.1;q_1=0.1;q_2=0.2;
  
  function y=f(t,x)
    x_1=x(1);x_2=x(2);
    y_1=x_1 .*(1+r_1-q_1*x_2);
    y_2=x_2 .*(1-d_2+q_2*x_1);
    y=[y_1;y_2];
  endfunction
  
  x=zeros(2,T+1);
  x(:,t0)=x0;
  for t=t0:1:T do
    x(:,t+1)=f(t,x(:,t));
  end;
  plot2d(t0:T+1,x(:,t0:T+1)')

Question 3 Change parameters r,d or q to compare the behavior of the populations (x1(t),x2(t)).

L'École des Ponts ParisTech est membre fondateur de

L'École des Ponts ParisTech est certifiée 

ParisTech ParisEst ParisTech

 

Copyright 2014
École des Ponts ParisTech
All rights reserved