Simulation of dynamical systems in discrete time Ecological and environmental examples

Luc Doyen

October 10, 2017

Contents

1	Population dynamics in ecology	1
2	Carbon cycle	2
3	An ecosystem We consider the discrete time dynamics system in \mathbb{R}^n :	2

$$x(t+1) = f(t, x(t)), \text{ for } t = t_0, ..., T-1,$$
 (1)

starting from initial state $x_0 \in \mathbb{R}^n$ at time t_0

$$x(t_0) = x_0. (2)$$

Knowing function f and (t_0, x_0) , we are able to compute the whole sequence $x(t_0), x(t_0 + 1), \ldots, x(T)$ solution of the problem.

1 Population dynamics in ecology

Consider the population dynamics

$$x(t+1) = \frac{Rx(t)}{1+Sx(t)}, t_0 = 1, T = 100, x(t_0) = x_0 = 1,$$

with parameters R = 1.2 and S = 0.02.

```
t0=1;x0=1;
x(t0)=x0;T=100;R=1.2;S=0.02;
function y=f(t,x)
y=R*x ./(1+S*x)
```

endfunction

```
for t=t0:1:T do
    x(t+1)=f(t,x(t));
end;
plot2d(t0:T+1,x(t0:T+1))
```

Question 1 Change the population dynamics with $f(t, x) = (ax)^{0.5}$ where a = 10. Compare the behavior of the solutions x(t).

2 Carbon cycle

Consider the carbon cycle

$$M(t+1) = M(t) + \alpha E_{BAU}(t)(1-a) - \delta(M(t) - M_{-\infty}),$$

starting from initial conditions $M_0 = 354$ (ppm) at year $t_0 = 1990$ with time horizon T = 100. The parameters are $\alpha = 0.471$, preindustrial concentration $M_{-\infty} = 280$, removal rate $\delta = 0.01$. It is assumed that the "business as usual" CO₂ emissions path is

$$E_{\rm BAU}(t) = E_{\rm BAU}(t_0)(1+g)^{t-t_0} \, ({\rm GtC})$$

with the emissions growth set to g = 1% and initial emissions to $E_{\text{BAU}}(1990) = 7.2$ (GtC).

```
t0=1990;T=2100;M_0=354;
alpha=0.471;M_infty=280;delta=1/120;sigma=0.519;
E_BAU=7.2;g=0.01
a=0;
function y=EBAU(t)
y=E_BAU*(1+g)^(t-t0);
endfunction
function y=f(t,M)
y=M+alpha*EBAU(t)*(1-a)-delta*(M-M_infty);
endfunction
x(t0)=M_0;
for t=t0:1:T do
x(t+1)=f(t,x(t));
end;
plot2d(t0:T+1,x(t0:T+1),rect = [t0,0,T+1,1000])
```

Question 2 Change the mitigation rate $a \ (a \in [0,1])$ to compare the behavior of the concentrations profile M(t).

3 An ecosystem

We consider two populations $x_1(t), x_2(t)$ interacting within a trophic web. The dynamics based on a Lotka-Volterra form is characterized by

$$\begin{cases} x_1(t+1) = x_1(t)(1+r_1-q_1x_2(t)) \\ x_2(t+1) = x_2(t)(1-d_2+q_2x_1(t)) \end{cases}$$
(3)

where $r_1 > 0$ is the intrinsic growth of prey while $d_2 > 0$ is the intrinsic decrease of predator. Parameters $q_1 > 0, q_2 > 0$ are related to the catchability and efficiency of trophic relations.

```
t0=1;x0=[1;1];
T=100;
r_1=0.1;d_2=0.1;q_1=0.1;q_2=0.2;
function y=f(t,x)
    x_1=x(1);x_2=x(2);
    y_1=x_1 .*(1+r_1-q_1*x_2);
    y_2=x_2 .*(1-d_2+q_2*x_1);
    y=[y_1;y_2];
endfunction
x=zeros(2,T+1);
x(:,t0)=x0;
for t=t0:1:T do
    x(:,t+1)=f(t,x(:,t));
end;
plot2d(t0:T+1,x(:,t0:T+1)')
```

Question 3 Change parameters r, d or q to compare the behavior of the populations $(x_1(t), x_2(t))$.