A Continuous Time Approach for the Asymptotic Value in Two-Person Zero-Sum Repeated Games

Rida Laraki
Ecole Polytechnique-CNRS

Joint work with Pierre Cardaliaguet and Sylvain Sorin

CERMICS
Novembre, 2011
Contents

1 Introduction

2 Repeated Games with Incomplete Information

3 Absorbing games
A stochastic game is a repeated game in discrete time where the state changes from stage to stage according to a transition depending on the current state and the moves of the players.
A **stochastic game** is a repeated game in discrete time where the state changes from stage to stage according to a transition depending on the current state and the moves of the players.

The game is specified by a state space Ω, move sets I and J and a transition probability Q from $I \times J \times \Omega \rightarrow \Omega$.
A **stochastic game** is a repeated game in discrete time where the state changes from stage to stage according to a transition depending on the current state and the moves of the players.

The game is specified by a state space Ω, move sets I and J and a transition probability Q from $I \times J \times \Omega \to \Omega$.

For simplicity, all sets under consideration are supposed to be finite. $\Delta(X)$ is the set of probabilities over X.

Rida Laraki
A Continuous Time Approach for the Asymptotic Value in
A **stochastic game** is a repeated game in discrete time where the state changes from stage to stage according to a transition depending on the current state and the moves of the players.

The game is specified by a state space Ω, move sets I and J and a transition probability Q from $I \times J \times \Omega \rightarrow \Omega$.

For simplicity, all sets under consideration are supposed to be finite. $\Delta(X)$ is the set of probabilities over X.

The stochastic game is **absorbing** if only one state ω_0 is non-absorbing, $Q(i,j,\omega)(\omega) = 1$ for all states except ω_0.

Rida Laraki

A Continuous Time Approach for the Asymptotic Value in
How the game is played

- The game is of incomplete information: before the game starts (stage 0), nature chooses $k \in K$ according to $p \in \Delta(K)$ and chooses $l \in L$ according to $q \in \Delta(L)$, player I privately learns k and player J learns l.

Rida Laraki

A Continuous Time Approach for the Asymptotic Value in
How the game is played

- The game is of **incomplete information**: before the game starts (stage 0), nature chooses $k \in K$ according to $p \in \Delta(K)$ and chooses $l \in L$ according to $q \in \Delta(L)$, player I privately learns k and player J learns l.
- Both know the initial state $\omega_1 = \omega$.
Introduction
Repeated Games with Incomplete Information
Absorbing games

How the game is played

- The game is of **incomplete information**: before the game starts (stage 0), nature chooses $k \in K$ according to $p \in \Delta(K)$ and chooses $l \in L$ according to $q \in \Delta(L)$, player I privately learns k and player J learns l.

- Both know the initial state $\omega_1 = \omega$.

- Inductively, at stage $t = 1, \ldots,,$ knowing the past history $h_t = (\omega_1, i_1, j_1, \ldots, i_{t-1}, j_{t-1}, \omega_t)$, and each player his private information, player I chooses at random $i_t \in I$ according to $x_t \in \Delta(I)$ and player J chooses $j_t \in J$ according to $y_t \in \Delta(J)$.
How the game is played

- The game is of incomplete information: before the game starts (stage 0), nature chooses $k \in K$ according to $p \in \Delta(K)$ and chooses $l \in L$ according to $q \in \Delta(L)$, player I privately learns k and player J learns l.
- Both know the initial state $\omega_1 = \omega$.
- Inductively, at stage $t = 1, \ldots$, knowing the past history $h_t = (\omega_1, i_1, j_1, \ldots, i_{t-1}, j_{t-1}, \omega_t)$, and each player his private information, player I chooses at random $i_t \in I$ according to $x_t \in \Delta(I)$ and player J chooses $j_t \in J$ according to $y_t \in \Delta(J)$.
- The payoff at stage t is $g(k, l, i_t, j_t, \omega_t) = g_t$. It is not observed.
How the game is played

- The game is of **incomplete information**: before the game starts (stage 0), nature chooses $k \in K$ according to $p \in \Delta(K)$ and chooses $l \in L$ according to $q \in \Delta(L)$, player I privately learns k and player J learns l.
- Both know the initial state $\omega_1 = \omega$.
- Inductively, at stage $t = 1, \ldots$, knowing the past history $h_t = (\omega_1, i_1, j_1, \ldots, i_{t-1}, j_{t-1}, \omega_t)$, and each player his private information, player I chooses at random $i_t \in I$ according to $x_t \in \Delta(I)$ and player J chooses $j_t \in J$ according to $y_t \in \Delta(J)$.
- The payoff at stage t is $g(k, l, i_t, j_t, \omega_t) = g_t$. It is not observed.
- The new state ω_{t+1} is drawn according to a probability distribution $Q(i_t, j_t, \omega_t)(\cdot)$.
How the game is played

- The game is of incomplete information: before the game starts (stage 0), nature chooses \(k \in K \) according to \(p \in \Delta(K) \) and chooses \(l \in L \) according to \(q \in \Delta(L) \), player I privately learns \(k \) and player J learns \(l \).

- Both know the initial state \(\omega_1 = \omega \).

- Inductively, at stage \(t = 1, \ldots \), knowing the past history \(h_t = (\omega_1, i_1, j_1, \ldots, i_{t-1}, j_{t-1}, \omega_t) \), and each player his private information, player I chooses at random \(i_t \in I \) according to \(x_t \in \Delta(I) \) and player J chooses \(j_t \in J \) according to \(y_t \in \Delta(J) \).

- The payoff at stage \(t \) is \(g(k, l, i_t, j_t, \omega_t) = g_t \). It is not observed.

- The new state \(\omega_{t+1} \) is drawn according to a probability distribution \(Q(i_t, j_t, \omega_t)(\cdot) \).

- \((i_t, j_t, \omega_{t+1})\) are announced and the situation is repeated.
Evaluating Payoffs

Consider a probability distribution over the integers
\[\mu = (\mu_1, \ldots, \mu_t, \ldots) : \mu_t \geq 0 \text{ and } \sum_t \mu_t = 1. \]
Evaluating Payoffs

- Consider a probability distribution over the integers
 \(\mu = (\mu_1, \ldots, \mu_t, \ldots) \): \(\mu_t \geq 0 \) and \(\sum_t \mu_t = 1 \).
- The stream of payoffs in the repeated game is evaluated according to \(\mu \): \(\sum_t \mu_t g_t \).
Evaluating Payoffs

- Consider a probability distribution over the integers $\mu = (\mu_1, \ldots, \mu_t, \ldots)$: $\mu_t \geq 0$ and $\sum_t \mu_t = 1$.
- The stream of payoffs in the repeated game is evaluated according to μ: $\sum_t \mu_t g_t$.
- Sion Minmax theorem shows that the value $v_{\mu}(p, q, \omega)$ exists.
Consider a probability distribution over the integers \(\mu = (\mu_1, \ldots, \mu_t, \ldots) \): \(\mu_t \geq 0 \) and \(\sum_t \mu_t = 1 \).

The stream of payoffs in the repeated game is evaluated according to \(\mu \): \(\sum_t \mu_t g_t \).

Sion Minmax theorem shows that the value \(\nu_{\mu}(p, q, \omega) \) exists.

Main questions: (1) existence of \(\lim \nu_{\mu} \) as \(|\mu| := \sup_t \mu_t \to 0 \), (2) characterization of the limit.
Evaluating Payoffs

- Consider a probability distribution over the integers $\mu = (\mu_1, ..., \mu_t, ...)$: $\mu_t \geq 0$ and $\sum_t \mu_t = 1$.
- The stream of payoffs in the repeated game is evaluated according to μ: $\sum_t \mu_t g_t$.
- Sion Minmax theorem shows that the value $v_\mu(p, q, \omega)$ exists.
- **Main questions:** (1) existence of $\lim v_\mu$ as $|\mu| := \sup_t \mu_t \to 0$, (2) characterization of the limit.
- **Idea of the proof:** the game is extended to continuous time and viscosity solution tools are used.
Evaluating Payoffs

- Consider a probability distribution over the integers \(\mu = (\mu_1, ..., \mu_t, ...) \): \(\mu_t \geq 0 \) and \(\sum_t \mu_t = 1 \).
- The stream of payoffs in the repeated game is evaluated according to \(\mu \): \(\sum_t \mu_t g_t \).
- Sion Minmax theorem shows that the value \(v_\mu(p, q, \omega) \) exists.
- **Main questions:** (1) existence of \(\lim v_\mu \) as \(|\mu| := \sup_t \mu_t \to 0 \), (2) characterization of the limit.
- **Idea of the proof:** the game is extended to continuous time and viscosity solution tools are used.
- The paper solves repeated games with incomplete information (\(\Omega \) is a singleton) and absorbing games (\(K \) and \(L \) are singleton) and splitting games (each player controls a martingale).
Asymptotic analysis: previous results

- Literature mainly concerns finitely repeated games ($\mu_k = 1/n$, for $k = 1, \ldots, n$) with values denoted v_n and discounted games ($\mu_n = \lambda(1 - \lambda)^{n-1}$) with values denoted v_λ.
Asymptotic analysis: previous results

- Literature mainly concerns finitely repeated games ($\mu_k = 1/n$, for $k = 1, ..., n$) with values denoted v_n and discounted games ($\mu_n = \lambda(1 - \lambda)^{n-1}$) with values denoted v_λ.
- For repeated games with incomplete information on one side, Aumann and Maschler proved the existence of $\lim v_n$ and $\lim v_\lambda$ using martingale tools, and identify it as $Cav_{\Delta(K)}u$, where u is the value of non revealing game.
Asymptotic analysis: previous results

- Literature mainly concerns finitely repeated games ($\mu_k = 1/n$, for $k = 1, \ldots, n$) with values denoted v_n and discounted games ($\mu_n = \lambda(1 - \lambda)^{n-1}$) with values denoted v_λ.

- For repeated games with incomplete information on one side, Aumann and Maschler proved the existence of $\lim v_n$ and $\lim v_\lambda$ using martingale tools, and identify it as $Cav_{\Delta(K)}u$, where u is the value of non-revealing game.

- The result has been extended to incomplete information on both sides by Mertens and Zamir. They identified the limit as the unique solution of the system with unknown ϕ:

\[
\phi(p, q) = Cav_{p \in \Delta(K)} \min \{\phi, u\}(p, q), \quad (1)
\]

\[
\phi(p, q) = Vex_{q \in \Delta(L)} \max \{\phi, u\}(p, q) \quad (2)
\]
Asymptotic analysis: previous results

- Literature mainly concerns finitely repeated games ($\mu_k = 1/n$, for $k = 1, \ldots, n$) with values denoted v_n and discounted games ($\mu_n = \lambda(1 - \lambda)^{n-1}$) with values denoted v_λ.
- For repeated games with incomplete information on one side, Aumann and Maschler proved the existence of $\lim v_n$ and $\lim v_\lambda$ using martingale tools, and identify it as $Cav_{\Delta(K)}u$, where u is the value of non revealing game.
- The result has been extended to incomplete information on both sides by Mertens and Zamir. They identified the limit as the unique solution of the system with unknown ϕ:
 \[
 \phi(p, q) = Cav_{p \in \Delta(K)} \min \{\phi, u\}(p, q), \tag{1}
 \]
 \[
 \phi(p, q) = Vex_{q \in \Delta(L)} \max \{\phi, u\}(p, q) \tag{2}
 \]
- For stochastic game with complete information, existence is due to Bewley and Kohlberg using semi-algebraic tools.
Aumann-Maschler: repeated game incomplete information

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

p

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$1 - p$
Aumann-Maschler: repeated game incomplete information

The non-revealing game is:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0 (p)</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>1 (-p)</td>
</tr>
</tbody>
</table>
Aumann-Maschler: repeated game incomplete information

The non-revealing game is:

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

\[p \]

\[1 - p \]

The value of the non-revealing game is \[u(p) = p(1 - p) \].
The non-revealing game is:

\[
\begin{array}{c|cc}
 & L & R \\
\hline
T & 1 & 0 \\
B & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cc}
 & L & R \\
\hline
T & 0 & 0 \\
B & 0 & 1 \\
\end{array}
\]

The value of the non-revealing game is \(u(p) = p(1 - p) \).

\[\lim v_\lambda(p) = \lim v_n(p) = Cavu(p) = p(1 - p)\]
Sorin, Big-Match with incomplete information

\[
\begin{array}{c|cc}
 & L & R \\
\hline
T & 1^* & 0^* \\
B & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{c|cc}
 & L & R \\
\hline
T & 0^* & 0^* \\
B & 0 & 1 \\
\end{array}
\]

\[1 - p\]
The value of the non-revealing game is $u(p) = p(1 - p)$.

\begin{align*}
\begin{array}{c|cc}
L & R \\
\hline
T & 1^* & 0^* \\
B & 0 & 0 \\
\end{array}
\end{align*}

\begin{align*}
\begin{array}{c|cc}
L & R \\
\hline
T & 0^* & 0^* \\
B & 0 & 1 \\
\end{array}
\end{align*}
The value of the non-revealing game is $u(p) = p(1 - p)$.

$$\lim_{\lambda} v_\lambda(p) = \lim_{n} v_n(p) = (1 - p)(1 - \exp(-\frac{p}{1-p})).$$ This is not an algebraic function!
The dynamic programming principle

- $\mu = (\mu_1, \ldots, \mu_t, \ldots)$ induces a partition $\Pi = \{t_n\}$ of $[0, 1]$ with $t_0 = 0$ and $t_n = \sum_{m=1}^{n} \mu_m$.

Rida Laraki
A Continuous Time Approach for the Asymptotic Value in...
The dynamic programming principle

- \(\mu = (\mu_1, \ldots, \mu_t, \ldots) \) induces a partition \(\Pi = \{t_n\} \) of \([0, 1]\) with \(t_0 = 0 \) and \(t_n = \sum_{m=1}^{n} \mu_m \).
- The repeated game is naturally represented as a discretization of a game in continuous time on \([0, 1]\), where the actions are constant on \((t_{n-1}, t_n)\) which length \(\mu_n \) is the weight of stage \(n \) in the original game.
The dynamic programming principle

- $\mu = (\mu_1, \ldots, \mu_t, \ldots)$ induces a partition $\Pi = \{t_n\}$ of $[0, 1]$ with $t_0 = 0$ and $t_n = \sum_{m=1}^{n} \mu_m$.
- The repeated game is naturally represented as a discretization of a game in continuous time on $[0, 1]$, where the actions are constant on (t_{n-1}, t_n) which length μ_n is the weight of stage n in the original game.
- Let $v_\Pi = v_\mu$ denotes its value.
The dynamic programming principle

- \(\mu = (\mu_1, ..., \mu_t, ...) \) induces a partition \(\Pi = \{t_n\} \) of \([0, 1]\) with \(t_0 = 0 \) and \(t_n = \sum_{m=1}^{n} \mu_m \).
- The repeated game is naturally represented as a discretization of a game in continuous time on \([0, 1]\), where the actions are constant on \((t_{n-1}, t_n)\) which length \(\mu_n \) is the weight of stage \(n \) in the original game.
- Let \(v_{\Pi} = v_{\mu} \) denotes its value.
- The Shapley dynamic programming principle shows that:
 \[
 v_{\Pi}(p, q, \omega) = \text{Val}_{(x,y) \in \Delta(I)^{K} \times \Delta(J)^{L}} \{ t_1 g_1 + (1-t_1) E_{x,y} v_{\Pi_{t_1}}(\tilde{p}, \tilde{q}, \tilde{\omega}) \}
 \]
The dynamic programming principle

- $\mu = (\mu_1, ..., \mu_t, ...) \text{ induces a partition } \Pi = \{t_n\} \text{ of } [0, 1] \text{ with } t_0 = 0 \text{ and } t_n = \sum_{m=1}^{n} \mu_m$.
- The repeated game is naturally represented as a discretization of a game in continuous time on $[0, 1]$, where the actions are constant on (t_{n-1}, t_n) which length μ_n is the weight of stage n in the original game.
- Let $\nu_\Pi = \nu_\mu$ denotes its value.
- The Shapley dynamic programming principle shows that:

$$\nu_\Pi(p, q, \omega) = \text{Val}_{(x, y) \in \Delta(I)^K \times \Delta(J)^L} \{ t_1g_1 + (1-t_1)E_{x,y} \nu_{\Pi_{t_1}}(\tilde{p}, \tilde{q}, \tilde{\omega}) \}$$

where

$$\text{Val}_{x,y} = \max_{x \in \Delta(I)^K} \min_{y \in \Delta(J)^L} = \min_{y \in \Delta(J)^L} \max_{x \in \Delta(I)^K}$$
The dynamic programming principle

- $\mu = (\mu_1, \ldots, \mu_t, \ldots)$ induces a partition $\Pi = \{t_n\}$ of $[0, 1]$ with $t_0 = 0$ and $t_n = \sum_{m=1}^{n} \mu_m$.
- The repeated game is naturally represented as a discretization of a game in continuous time on $[0, 1]$, where the actions are constant on (t_{n-1}, t_n) which length μ_n is the weight of stage n in the original game.
- Let $\nu_\Pi = \nu_\mu$ denotes its value.
- The Shapley dynamic programming principle shows that:

$$
\nu_\Pi(p, q, \omega) = \text{Val}_{x, y} \in \Delta(I)^K \times \Delta(J)^L \left\{ t_1 g_1 + (1-t_1) E_{x, y} \nu_{\Pi_{t_1}} (\tilde{p}, \tilde{q}, \tilde{\omega}) \right\}
$$

where

$$
\text{Val}_{x, y} = \max_{x \in \Delta(I)^K} \min_{y \in \Delta(J)^L} \text{val}_{x, y} = \min_{y \in \Delta(J)^L} \max_{x \in \Delta(I)^K}
$$

and Π_{t_1} is the normalization on $[0, 1]$ of Π on $[t_1, 1]$.
Define $W_{\Pi}(t_n)$ as the value of the game starting at time t_n with duration is $1 - t_n$.

$$W_{\Pi}(t_n)(p, q, \omega) = \max_{x \in \Delta(I)^K} \min_{y \in \Delta(J)^L} \{ \mu_{n+1} g_1 + E_{x, y} W_{\Pi}(t_{n+1})(\tilde{p}, \tilde{q}, \tilde{\omega}) \}.$$
Define $W_\Pi(t_n)$ as the value of the game starting at time t_n with duration is $1 - t_n$.

$$W_\Pi(t_n)(p, q, \omega) = \max_{x \in \Delta(I)^K} \min_{y \in \Delta(J)^L} \{\mu_{n+1} g_1 + E_{x, y} W_\Pi(t_{n+1})(\tilde{p}, \tilde{q}, \tilde{\omega})\}.$$

By taking the linear extension of $\{W_\Pi(t_n, p, q, \omega)\}_n$, we define a function $W_\Pi(t, p, q, \omega)$ on $[0, 1] \times \Delta(K) \times \Delta(L) \times \Omega$.
Continuous time extension

- Define $W_\Pi(t_n)$ as the value of the game starting at time t_n with duration is $1 - t_n$.

$$W_\Pi(t_n)(p, q, \omega) = \max_{x \in \Delta(I)^K} \min_{y \in \Delta(J)^L} \{ \mu_{n+1} g_1 + E_{x,y} W_\Pi(t_{n+1})(\tilde{p}, \tilde{q}, \tilde{\omega}) \}.$$

- By taking the linear extension of $\{W_\Pi(t_n, p, q, \omega)\}_n$, we define a function $W_\Pi(t, p, q, \omega)$ on $[0, 1] \times \Delta(K) \times \Delta(L) \times \Omega$.

- Standard arguments shows that the family of functions W_Π is concave in p, convex in q and uniformly Lipschitz in (p, q).

Rida Laraki
A Continuous Time Approach for the Asymptotic Value in...
Define $W_\Pi(t_n)$ as the value of the game starting at time t_n with duration is $1 - t_n$.

$$W_\Pi(t_n)(p, q, \omega) = \max_{x \in \Delta(I^K)} \min_{y \in \Delta(J^L)} \{\mu_{n+1}g_1 + E_{x,y} W_\Pi(t_{n+1})(\tilde{p}, \tilde{q}, \tilde{\omega})\}.$$

By taking the linear extension of $\{W_\Pi(t_n, p, q, \omega)\}_n$, we define a function $W_\Pi(t, p, q, \omega)$ on $[0, 1] \times \Delta(K) \times \Delta(L) \times \Omega$.

Standard arguments shows that the family of functions W_Π is concave in p, convex in q and uniformly Lipschitz in (p, q).

It may be proved that when μ_m is decreasing in m, W is uniformly Lipschitz in t.

Rida Laraki A Continuous Time Approach for the Asymptotic Value in
Contents

1 Introduction

2 Repeated Games with Incomplete Information

3 Absorbing games
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i, j, k, l} p^k q^l x(i)y(j)g(k, l, i, j) \right).$$
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_Π has a unique cluster point.
Here Ω is reduced to a singleton. Let
\[
u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i) y(j) g(k, l, i, j) \right).
\]

Theorem

The equi-continuous family W_Π has a unique cluster point. The uniform limit is the unique continuous function that satisfies:
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_Π has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:
Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_{Π} has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1:** If, p is extreme of the hypograph of $W(t, p, q)$
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i)y(j)g(k, l, i, j) \right).$$

Theorem

*The equi-continuous family W_{Π} has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1:** If, p is extreme of the hypograph of $W(t, \cdot; q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t,
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i,j,k,l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_Π has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1**: If, p is extreme of the hypograph of $W(t, ; q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t, then $u(p, q) + \phi'(t) \geq 0$.
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i, j, k, l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_Π has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1**: If, p is extreme of the hypograph of $W(t, \cdot, q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t, then $u(p, q) + \phi'(t) \geq 0$.

- **P2**: If, q is extreme of the epigraph of $W(t, \cdot, p)$.
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i, j, k, l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_{Π} has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1:** If, p is extreme of the hypograph of $W(t, ; q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t, then $u(p, q) + \phi'(t) \geq 0$.

- **P2:** If, q is extreme of the epigraph of $W(t, p, \cdot)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global minimum at t,

Rida Laraki
Main result

Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i, j, k, l} p^k q^l x(i)y(j)g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_Π has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \to \mathbb{R}$:

- **P1:** If, p is extreme of the hypograph of $W(t, ;, q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t, then $u(p, q) + \phi'(t) \geq 0$.

- **P2:** If, q is extreme of the epigraph of $W(t, p, \cdot)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global minimum at t, then $u(p, q) + \phi'(t) \leq 0$.
Here Ω is reduced to a singleton. Let

$$u(p, q) = \max_{x \in \Delta(I)} \min_{y \in \Delta(J)} \left(\sum_{i, j, k, l} p^k q^l x(i) y(j) g(k, l, i, j) \right).$$

Theorem

The equi-continuous family W_{Π} has a unique cluster point. The uniform limit is the unique continuous function that satisfies: for all (t, p, q) and all C^1 test function $\phi : [0, 1] \rightarrow \mathbb{R}$:

- **P1:** If, p is extreme of the hypograph of $W(t, \cdot, q)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global maximum at t, then $u(p, q) + \phi'(t) \geq 0$.

- **P2:** If, q is extreme of the epigraph of $W(t, p, \cdot)$ and $W(\cdot, p, q) - \phi(\cdot)$ has a global minimum at t, then $u(p, q) + \phi'(t) \leq 0$.

As a corollary, one obtains the Mertens-Zamir’s result.
Contents

1 Introduction

2 Repeated Games with Incomplete Information

3 Absorbing games
Consider two finite sets I and J and functions f, g and p from $I \times J$ to $[0, 1]$.

Rida Laraki
A Continuous Time Approach for the Asymptotic Value in
Consider two finite sets I and J and functions f, g and p from $I \times J$ to $[0, 1]$.

At stage $t = 1, 2, \ldots$, player I chooses $i_t \in I$ using some lottery $x_t \in \Delta (I)$. Simultaneously, player J chooses $j_t \in J$ using some lottery $y_t \in \Delta (J)$.

Rida Laraki

A Continuous Time Approach for the Asymptotic Value in
Consider two finite sets I and J and functions f, g and p from $I \times J$ to $[0, 1]$.

At stage $t = 1, 2, \ldots$, player I chooses $i_t \in I$ using some lottery $x_t \in \Delta(I)$. Simultaneously, player J chooses $j_t \in J$ using some lottery $y_t \in \Delta(J)$.

Payoff at stage t is $f(i_t, j_t)$.
Model

- Consider two finite sets I and J and functions f, g and p from $I \times J$ to $[0, 1]$.
- At stage $t = 1, 2, ..., \text{player I}$ chooses $i_t \in I$ using some lottery $x_t \in \Delta (I)$. Simultaneously, \text{player J} chooses $j_t \in J$ using some lottery $y_t \in \Delta (J)$.
- Payoff at stage t is $f(i_t, j_t)$.
- with probability $1 - \pi(i_t, j_t)$ the game is absorbed and the payoff in all future stages is $g(i_t, j_t)$.

Rida Laraki

A Continuous Time Approach for the Asymptotic Value in
Introduction
Repeated Games with Incomplete Information
Absorbing games

Model

Consider two finite sets I and J and functions f, g and p from $I \times J$ to $[0, 1]$.

At stage $t = 1, 2, \ldots$, player I chooses $i_t \in I$ using some lottery $x_t \in \Delta (I)$. Simultaneously, player J chooses $j_t \in J$ using some lottery $y_t \in \Delta (J)$.

Payoff at stage t is $f(i_t, j_t)$.

with probability $1 - \pi(i_t, j_t)$ the game is absorbed and the payoff in all future stages is $g(i_t, j_t)$.

with probability $\pi(i_t, j_t)$ the interaction is repeated.
Main Result

Theorem

\(v_\mu \) converges to \(v \) given by:

\[
VAL((x,\alpha),(y,\beta)) \in (\Delta(I) \times R_+^I) \times (\Delta(J) \times R_+^J) \quad \frac{f(x, y) + f^*(\alpha, y) + f^*(x, \beta)}{1 + \pi^*(\alpha, y) + \pi^*(x, \beta)}
\]
Theorem

\(\nu_\mu \) converges to \(\nu \) given by:

\[
VAL_{((x,\alpha),(y,\beta))}\in(\Delta(I)\times R^I_+)(\Delta(J)\times R^J_+) \quad \frac{f(x, y) + f^*(\alpha, y) + f^*(x, \beta)}{1 + \pi^*(\alpha, y) + \pi^*(x, \beta)}
\]

where

\[\pi^*(i, j) = 1 - \pi(i, j), \quad f^*(i, j) = \pi^*(i, j) \times g(i, j)\]
Main Result

Theorem

\(v_\mu \) converges to \(v \) given by:

\[
\text{VAL}((x, \alpha), (y, \beta)) \in (\Delta(I) \times R^I_+) \times (\Delta(J) \times R^J_+)
\]

\[
\frac{f(x, y) + f^*(\alpha, y) + f^*(x, \beta)}{1 + \pi^* (\alpha, y) + \pi^* (x, \beta)}
\]

where

\[
\pi^*(i, j) = 1 - \pi(i, j), \quad f^*(i, j) = \pi^*(i, j) \times g(i, j)
\]

and \(\varphi(\alpha, \beta) = \sum_{i \in I, j \in J} \alpha^i \beta^j \varphi(i, j) \).
Idea of the Proof

Denote by $W_\mu(t_m)$ the value of the game starting at time t_m. Then

$$W_\mu(t_m) = Val(x, y) \left[\mu_{m+1} f(x, y) + \pi(x, y) W_\mu(t_{m+1}) + (1 - t_{m+1}) f^*(x, y)\right].$$
Idea of the Proof

Denote by $W_\mu(t_m)$ the value of the game starting at time t_m. Then

$$W_\mu(t_m) = \text{VAL}_{(x,y)} \left[\mu_{m+1} f(x,y) + \pi(x,y) W_\mu(t_{m+1}) + (1 - t_{m+1})f^*(x,y) \right].$$

Define for any

$$(t, a, b, x, \alpha, y, \beta) \in [0, 1] \times \mathbb{R} \times \mathbb{R} \times \Delta(I) \times \mathbb{R}_+^I \times \Delta(J) \times \mathbb{R}_+^J,$$

$$h(t, a, b, x, \alpha, y, \beta) = f(x,y) + (1 - t)[f^*(\alpha,y) + f^*(x,\beta)] - [\pi^*(\alpha,y) + \pi^*(x,\beta)] a + b \frac{1 + \pi^*(\alpha,y) + \pi^*(x,\beta)}{1 + \pi^*(\alpha,y) + \pi^*(x,\beta)}.$$
Idea of the Proof

Denote by $W_{\mu}(t_m)$ the value of the game starting at time t_m. Then $W_{\mu}(t_m) =$

$$VAL_{(x,y)} [\mu m+1 f(x, y) + \pi(x, y) W_{\mu}(t_{m+1}) + (1 - t_{m+1}) f^*(x, y)] .$$

Define for any

$$(t, a, b, x, \alpha, y, \beta) \in [0, 1] \times \mathbb{R} \times \mathbb{R} \times \Delta(I) \times \mathbb{R}_+^I \times \Delta(J) \times \mathbb{R}_+^J,$$

$$h(t, a, b, x, \alpha, y, \beta) =$$

$$f(x, y) + (1 - t)[f^*(\alpha, y) + f^*(x, \beta)] - [\pi^*(\alpha, y) + \pi^*(x, \beta)] a + b$$

$$1 + \pi^*(\alpha, y) + \pi^*(x, \beta)$$

The Hamiltonian of the continuous time game is $H(t, a, b) =$

$$VALUE_{((x, \alpha), (y, \beta)) \in (\Delta(I) \times \mathbb{R}_+^I) \times (\Delta(J) \times \mathbb{R}_+^J)} h(t, a, b, x, \alpha, y, \beta)$$
Theorem

The family W_μ uniformly converges to the unique continuous functions satisfying the two properties:
Theorem

The family W_{μ} uniformly converges to the unique continuous functions satisfying the two properties: for all t and any C^1 function $\phi : [0, 1] \rightarrow \mathbb{R}$:
Theorem

The family W_μ uniformly converges to the unique continuous
functions satisfying the two properties: for all t and any C^1
function $\phi : [0, 1] \rightarrow \mathbb{R}$:

- **R1:** If $U(\cdot) - \phi(\cdot)$ admits a global maximum at $t \in [0, 1)$
 then $H(t, U(t), \phi'(t)) \geq 0$.
Theorem

The family W_μ uniformly converges to the unique continuous functions satisfying the two properties: for all t and any C^1 function $\phi : [0, 1] \to \mathbb{R}$:

- **R1:** If $U(\cdot) - \phi(\cdot)$ admits a global maximum at $t \in [0, 1)$ then $H(t, U(t), \phi'(t)) \geq 0$.
- **R2:** If $U(\cdot) - \phi(\cdot)$ admits a global minimum at $t \in [0, 1)$ then $H(t, U(t), \phi'(t)) \leq 0$.