Resonant effects in random dielectric structure

Christophe Bourel
31 Janvier 2012
LMPA, Calais
1. Metamaterials in optic
2. Homogenization of Maxwell equations
3. Dielectric random structure
4. Stochastic Framework
5. Dissipation Limit
6. Perspectives
1. Metamaterials in optic
2. Homogenization of Maxwell equations
3. Dielectric random structure
4. Stochastic Framework
5. Dissipation Limit
6. Perspectives
The behavior of materials is described by two parameters:

- **Permittivity**: \(\varepsilon_r = \varepsilon_r(\omega) \)
- **Permeability**: \(\mu_r = \mu_r(\omega) \)

Optic regime: frequency between 375 and 750 THz (wavelength in [400, 800] nm).

- \(\mu_r(\omega) \approx 1 \)
- \(\varepsilon_r(\omega) = \varepsilon' + i\varepsilon'' \)
 - **Metal**: \(\varepsilon' \in \mathbb{R} \), \(\varepsilon'' > 0 \) (\(\varepsilon'' \approx 1 \))
 - **Dielectric**: \(\varepsilon' > 0 \), \(\varepsilon'' = 0 \) linked to dissipation.

Goal: build artificial composite structures made of metal (\(\varepsilon'' \gg 1 \)) or dielectric (\(\varepsilon' \gg 1 \)) such that for some frequencies:

- \(\varepsilon_{\text{eff}}(\omega) < 0 \)
- \(\mu_{\text{eff}}(\omega) < 0 \) (magnetic activity)

Both (negative refractive index)
Electromagnetic parameters

The behavior of materials is described by two parameters:

\[\varepsilon_r = \varepsilon_r(\omega) \quad , \quad \mu_r = \mu_r(\omega) . \]

Optic regime:

frequency between 375 and 750 THz (wavelength in [400, 800] nm).

\[\mu_r(\omega) \simeq 1 \quad , \quad \varepsilon_r(\omega) = \varepsilon' + i\varepsilon'' \]

- **Metal:** \(\varepsilon' \in \mathbb{R} \quad , \quad \varepsilon'' > 0 \quad (\varepsilon'' \gg 1) \)
- **Dielectric:** \(\varepsilon' > 0 \), \(\varepsilon'' = 0 \) linked to dissipation.

Goal: build artificial composite structures made of metal \((\varepsilon'' \gg 1)\) or dielectric \((\varepsilon' \gg 1)\) such that for some frequencies:

- \(\varepsilon^{\text{eff}}(\omega) < 0 \)
- \(\mu^{\text{eff}}(\omega) < 0 \) (magnetic activity)
- **Both** (negative refractive index)
Metamaterial with $\varepsilon < 0$ and $\mu < 0$ (in microwave regime)

Negative refraction

Application 1: plane lens Veselago

Theoric description

Numerical simulation

Invisibility device

Structure permitting invisibility (microwave)

1. Metamaterials in optic

2. Homogenization of Maxwell equations

3. Dielectric random structure

4. Stochastic Framework

5. Dissipation Limit

6. Perspectives
The small parameter η (the period) characterize the structure (in practice $\eta \sim \frac{\text{wavelength}}{10}$).

Permittivity ε_{η} is very high on inclusion in metallic case: filling ratio must be infinitesimal (to keep finite dissipation).
Maxwell system

Total Field \((E_\eta, H_\eta)\) solve \(\mathbb{R}^3\)

\[
\begin{align*}
\text{rot } E_\eta &= i\omega \mu_0 H_\eta \\
\text{rot } H_\eta &= -i\omega \varepsilon_0 \varepsilon_\eta(x) E_\eta
\end{align*}
\]

+ outgoing wave conditions of Silver-Müller \(|x| \to +\infty\):

\[
(E^d_\eta, H^d_\eta) = O \left(\frac{1}{|x|} \right), \quad \omega \varepsilon_0 \left(\frac{x}{|x|} \wedge E^d_\eta \right) - k_0 H^d_\eta = o \left(\frac{1}{|x|} \right).
\]

\((E^d_\eta, H^d_\eta) = (E_\eta - E^i, H_\eta - H^i)\) is the diffracted field.

Goal: Pass to the limit \(\eta \to 0\)

We have to take account fast oscillations of electromagnetic field
1. Metamaterials in optic
2. Homogenization of Maxwell equations
3. Dielectric random structure
4. Stochastic Framework
5. Dissipation Limit
6. Perspectives
The structure is invariant in direction e_3 and we describe only its intersection by an horizontal plane.

Ω is the probability space and $\omega \in \Omega$ a fixed random event.

$$D_{\eta}(\omega) = \bigcup_{i \in J_\eta} D^i_{\eta}(\omega), \quad D^i_{\eta} := \eta[i - y(\omega) + B(\theta_i(\omega), \rho_i(\omega))]$$

$y(\omega)$ consists in a random translation of the lattice.
Physical parameters

\[\mu = 1 \]

\[\varepsilon_{\eta}(x, \omega) := 1_{\mathbb{R}^2 \setminus \mathcal{D}_{\eta}}(x) + \sum_{i \in J_{\eta}} \frac{\varepsilon_i(\omega)}{\eta^2} 1_{\mathcal{D}_i}(x), \quad a_{\eta}(x, \omega) := 1/\varepsilon_{\eta}. \]

- The diffracting obstacle is illuminated by a monochromatic incident wave travelling in the $H\parallel$ mode.
- The magnetic field takes the form $\mathbf{H}(x, t) = u(x_1, x_2) e^{-i\omega t} \mathbf{e}_3$.

Maxwell’s equations reduce to

\[
\begin{cases}
\text{div} \left(a_{\eta}(x, \omega) \nabla u_{\eta}(x, \omega) \right) + k_0^2 u_{\eta}(x, \omega) = 0 \\
\lim_{r \to \infty} \sqrt{r} \left(\frac{\partial u_{\eta}^d}{\partial r} - i k_0 u_{\eta}^d \right) = 0
\end{cases}
\]

u_{η}^d is the diffracted field.
Outline

1. Metamaterials in optic
2. Homogenization of Maxwell equations
3. Dielectric random structure
4. Stochastic Framework
5. Dissipation Limit
6. Perspectives
We consider for \(\delta > 0 \) and \(Y = [0, 1]^2 \) the set \(M \) describing each inclusion

\[
M := \left\{ \left(\theta, \rho, \varepsilon \right) \in Y \times \left[0, \frac{1}{2} \right] \times \mathbb{C}^+ : d(\theta, \partial Y) \geq \rho + \delta \right\}.
\]

The law of repartition of radius, center and permittivity is given by a probability \(p \) on \(M \). We introduce

\[
\Omega := \left(\prod_{\mathbb{Z}^2} M \right) \times Y, \quad \mathbb{P} := \left(\bigotimes_{\mathbb{Z}^2} p \right) \otimes L^2
\]

So

\[
\omega \in \Omega \iff \omega = \left((m_j)_{j \in \mathbb{Z}^2}, y \right)
\]

with \(m_j = (\theta_j, \rho_j, \varepsilon_j) \in M \) \(\forall j \in \mathbb{Z}^2, \ y \in Y \).
Dynamical system

On the probability space \((\Omega, \mathbb{P})\) we define the group of transformations \(T_x : \Omega \rightarrow \Omega, \quad x \in \mathbb{R}^2\)

\[
T_x \left((m_j)_{j \in \mathbb{Z}^2}, y \right) := \left((m_j + [x + y])_{j \in \mathbb{Z}^2}, x + y - [x + y] \right).
\]

Now let

\[
\Sigma := \{\omega \in \Omega : |y - \theta_0| < \rho_0\}, \quad \Sigma^* := \Omega \setminus \Sigma.
\]

Properties

- The dynamical system preserves the measure and is ergodic.
- \(x \in D_\eta(\omega) \iff T_x^{\eta} \omega \in \Sigma.\)
- \(\partial_i^s f(\omega) = \lim_{h \to 0} \frac{f(T_{hei} \omega) - f(\omega)}{h} = \partial_y f(m, y), \quad \omega = (m, y).\)
Two scale convergence

Definition (Stochastic two scale convergence)

\[f_\eta(x) \overset{\ast}{\rightharpoonup} f_0(x, \omega), \text{ if for some } \tilde{\omega} \in \Omega \text{ it holds} \]

\[
\int_{\mathbb{R}^2} f_\eta(x) \varphi(x, T^x_\eta \tilde{\omega}) \, dx \rightarrow \int_{\mathbb{R}^2 \times \Omega} f_0(x, \omega) \varphi(x, \omega) \, dx \, \mathbb{P}(d\omega)
\]

for any \(\varphi \in C_c^\infty(\mathbb{R}^2; C^1(\Omega)) \).

Properties

- \(\| f_\eta \|_{L^2(\Omega)} \leq C \implies \exists f_0 \text{ such that } u_\eta \rightharpoonup u_0 \text{ (up to a subsequence)}. \)
Two scale convergence

Definition (Stochastic two scale convergence)

\[f_\eta(x) \rightharpoonup f_0(x, \omega), \text{ if for some } \tilde{\omega} \in \Omega \text{ it holds} \]

\[
\int_{\mathbb{R}^2} f_\eta(x) \varphi(x, T^x_\eta \tilde{\omega}) dx \to \int_{\mathbb{R}^2 \times \Omega} f_0(x, \omega) \varphi(x, \omega) dx \mathbb{P}(d\omega)
\]

for any \(\varphi \in C^\infty_c(\mathbb{R}^2; C^1(\Omega)) \).

Properties

- \(\| f_\eta \|_{L^2(\Omega)} \leq C \Rightarrow \exists f_0 \text{ such that } u_\eta \rightharpoonup u_0 \text{ (up to a subsequence)}. \)

A priori Hypothesis

For almost every \(\tilde{\omega} \in \Omega, \)

\[
\int_B |u_\eta(x, \tilde{\omega})|^2 dx < +\infty.
\]
Identification of tow-scale limits

Thus \(\forall x \in \mathcal{B} \)

\[
a_\eta(x, \omega) = \left(\frac{\eta^2}{\varepsilon_0(T_{x, \omega})} 1\Sigma(T_{x, \omega}) + 1\Sigma^*(T_{x, \omega}) \right).
\]

Problem become

\[
\text{div} \left(a_\eta(x, \omega) \nabla u_\eta(x, \omega) \right) + k_0^2 u_\eta(x, \omega) = 0
\]

Two-scale limits

- \(u_\eta(x, \tilde{\omega}) \rightarrow u_0(x, \omega) \)
- \(\eta \nabla u_\eta(x, \tilde{\omega}) \rightarrow \nabla_s u_0(x, \omega) \)
- \(1_{B_R \setminus \mathcal{D}_\eta(\tilde{\omega})}(x) \nabla u_\eta(x, \tilde{\omega}) \rightarrow \chi_0(x, \omega) \)
Identification of limit

Micro-resonator problem

\[
\begin{cases}
 u_0(x, \omega) = u(x) & \text{in } B \times \Sigma^* \\
 \Delta_s u_0(x, \omega) + \varepsilon_0(\omega) k_0^2 u_0(x, \omega) = 0 & \text{in } B \times \Sigma,
\end{cases}
\]

\(\Im(\varepsilon_0(\omega)) > 0\) is important here

We denote by \(0 < \lambda_1 < \cdots\), eigenvalues of Dirichlet problem on the ball \(B(0, 1)\)

\[-\Delta \varphi_n = \lambda_n \varphi_n\]

and \(\{\varphi_n, n \in \mathbb{N}\}\) an associated orthonormal basis.

Thus \(u_0(x, \omega) = u(x)\Lambda(\omega)\) with

\[
\Lambda(\omega) = \begin{cases}
 1 & \text{if } \omega \in \Omega \setminus \Sigma \\
 1 + \sum_{n \in \mathbb{N}} \frac{k_0^2 \varepsilon_0(\omega) \rho_0^2(\omega)}{\lambda_n - k_0^2 \varepsilon_0(\omega) \rho_0^2(\omega)} \int_{B_1} \varphi_n(y) dy \varphi_n \left(\frac{y - \theta_0(\omega)}{\rho_0(\omega)}\right) & \text{if } \omega \in \Omega \setminus \Sigma
\end{cases}
\]
Effective parameters

- **Permeability tensor**

\[
\mu^{\text{eff}}(k_0) = \mathbb{E}(\Lambda) = 1 + \sum_n \mathbb{E} \left[\frac{\varepsilon \rho^4 k_0^2}{\lambda_n - \varepsilon \rho^2 k_0^2} \right] \left(\int_Y \varphi_n \right)^2
\]

- **Permittivity tensor**

\[
\varepsilon^{\text{eff}} = \mathbb{E} \left[\frac{1}{A(\rho)} \right] \text{ where }
A(\rho) = \inf_v \left\{ \int_{Y \setminus B(\theta, \rho)} |e + \nabla v|^2 : v \text{ Y-periodic} \right\}
\]

Limit problem (deterministic)

\[
\begin{cases}
\text{div} \left(\frac{1}{\varepsilon^{\text{eff}}(x)} \nabla u(x) \right) + k_0^2 \mu^{\text{eff}}(x, k_0) u(x) = 0 \quad \text{in} \quad \mathbb{R}^2 \\
(u - u^{\text{inc}}) \quad \text{satisfies Somerfield condition}
\end{cases}
\]
Hypothesis

- $\Im(\varepsilon) > 0$ almost surely (for uniqueness in the limit problem)

- $\exists \ h > 0$ such that

$$
\mathbb{E} \left[\left| \frac{\varepsilon \rho}{\text{dist}(\varepsilon \rho^2 k_0^2, \sigma_0)} \right|^{2+h} \right] < \infty
$$

(1)

with $\sigma_0 = \{\lambda_n, n \in \mathbb{N}\}$ the spectrum of the Laplace operator in the unit disk.

Homogenization results

- Condition (1) implies $\int_{\mathcal{B}} |u_\eta(x, \tilde{\omega})|^2 \, dx < +\infty$ almost surely.

- We have strong two scale convergence

$$
\int_{\mathcal{B}} |u_\eta(x, \tilde{\omega}) - u_0(x, T_{\frac{x}{\eta}} \tilde{\omega})|^2 \, dx \to 0.
$$
Representation of μ^{eff} in term of the characteristic wavelength: the radius of inclusions follows an uniform law between 0, 3 and 0, 4 and permittivity law is a Dirac mass in $100 + 5i$.
1. Metamaterials in optic
2. Homogenization of Maxwell equations
3. Dielectric random structure
4. Stochastic Framework
5. Dissipation Limit
6. Perspectives
What happens when the law of $\varepsilon(\omega)$ is supported in real axis?

We consider for $\varepsilon = a + ib$

- non-random geometry: $\theta = \theta_0$ et $\rho = \rho_0$
- Distribution of $\varepsilon = a + i0$ on real axes with density $g(a)$.

$$p_0(\theta, \rho, a + ib) = \delta(\theta - \theta_0, \rho - \rho_0) \otimes g(a) \, da \otimes \delta(b)$$

- Approached by the following sequence of law with dissipation

$$p_h := \delta(\theta - \theta_0, \rho - \rho_0) \otimes g(a) \, da \otimes \frac{1}{h} \zeta\left(\frac{b}{h}\right)$$

where ζ is a probability on $]0,1[$ compatible with (2).
For $h > 0$, the homogenization result yield to

$$\mu_h^{\text{eff}} := 1 + \sum_n l_{h,n} \left(\int_{B_1} \varphi_n \right)^2, \quad l_{h,n} := \int \frac{k_0^2 \varepsilon \rho^4}{\lambda_n - \rho^2 \varepsilon k_0^2} dp_h$$

Non-vanishing dissipation

$$\mu_h^{\text{eff}} \to \mu_0^{\text{eff}} := 1 + \sum_n l_n(k_0) \left(\int_{B_1} \varphi_n \right)^2$$

$$\Re(l_n(k_0)) = \text{VP} \left(\int \frac{a k_0^2 \rho_0^4}{\lambda_n - a k_0^2 \rho_0^2} g(a) \, da \right)$$

$$\Im(l_n(k_0)) = \frac{\pi \lambda_n}{k_0^2} g \left(\frac{\lambda_n}{k_0^2 \rho_0^2} \right) > 0 \quad \text{if} \quad \text{supp}(g) \ni \left\{ \frac{\lambda_n}{k_0^2 \rho^2} \right\}$$
$\Im(\varepsilon_r) = 0$
$\Im(\varepsilon_r) = 1$
$\Im(\varepsilon_r) = 5$

μ_h^{eff} and μ_0^{eff} when $h \to 0$
1 Metamaterials in optic
2 Homogenization of Maxwell equations
3 Dielectric random structure
4 Stochastic Framework
5 Dissipation Limit
6 Perspectives
Perspectives

Random 3D structure: Collaboration with G. Bouchitté and L. Manca

Comparaison effective law/real structure: Collaboration with D. Felbacq (GES. Montpellier)

- Multiscattering code for real structure

Diffracted field for homogenized structure (left) and for real structure (right).
More general structures