Stochastic Variational Inequalities and Random Mechanics

Presentation at CERMICS, Ecole des Ponts Paristech.

Laurent Mertz, Department of Statistics,
The Chinese University of Hong Kong

April 30, 2012
Mathematical interest and connection with applications

- **Risk analysis of failure:** for mechanical structures under random vibrations
Mathematical interest and connection with applications

- Risk analysis of failure: for mechanical structures under random vibrations

- Main application in Earthquake engineering:
Mathematical interest and connection with applications

- **Risk analysis of failure:** for mechanical structures under random vibrations

- **Main application in Earthquake engineering:**
 - **Collaboration CEA:** Cyril Feau & Laurent Borsoi
 - study the elastic perfectly plastic oscillator excited by a white noise

Reference:
Karnopp & Scharton, 1966
Feau, 2007
Probabilistic response of an elastic-perfectly-plastic oscillator excitation white noise

Bensoussan & Turi 2007
Degenerate Dirichlet problems related to the Elasto-Plastic Oscillators, AMO
Mathematical interest and connection with applications

- **Risk analysis of failure:** for mechanical structures under random vibrations

Main application in **Earthquake engineering**:

- **Collaboration CEA:** Cyril Feau & Laurent Borsoi
 → study the elastic perfectly plastic oscillator excited by a white noise
- **Reference:**
Mathematical interest and connection with applications

- **Risk analysis of failure:** for mechanical structures under random vibrations

- **Main application in **Earthquake engineering:**
 - **Collaboration CEA:** Cyril Feau & Laurent Borsoi
 → study the elastic perfectly plastic oscillator excited by a white noise
 - **Reference:**
Mathematical interest and connection with applications

- Risk analysis of failure: for mechanical structures under random vibrations

Main application in Earthquake engineering:

- **Collaboration CEA:** Cyril Feau & Laurent Borsoi
 → study the elastic perfectly plastic oscillator excited by a white noise

- **Reference:**

- **Mathematical Interest:** Connection between this 1D elasto-plastic model and a Stochastic Variational Inequality
 - Bensoussan & Turi 2007 *Degenerate Dirichlet problems related to the Elasto-Plastic Oscillators*, AMO
Outline of the presentation

1. Motivation: An elasto-plastic problem in probabilistic engineering mechanics

2. SVI for the elasto-plastic problem (characterization and computation of the stationary distribution)

3. Short cycles related to the SVI

4. Long cycles related to the SVI

5. Conclusion & open problems
Motivation: An elasto-plastic problem in probabilistic engineering mechanics
Illustrative example: piping system

For a class of structures: A one dimensional (1d) model
 - global behavior of the structure

Seismic excitation (left) / Mass displacement (right): Test vs 1d model results

- nonlinear oscillator with memory
Elastic behavior: start with a linear oscillator ...

$c_0 > 0$: damping coefficient

$k > 0$: stiffness

\[
\frac{d w(t)}{d t} : \text{external force white noise}
\]

\[
x(t) : \text{response of the oscillator}
\]
Elastic behavior: start with a linear oscillator ...

\[c_0 > 0 : \text{damping coefficient} \]
\[k > 0 : \text{stiffness} \]

\["\frac{dw(t)}{dt}" : \text{external force white noise} \]
\[x(t) : \text{response of the oscillator} \]

Linear case: \(x(t) \) solves

\[\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = kx(t) \]
elasto-perfectly-plastic case: $x(t)$ solves

$$\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}$$

$|F(t)| \leq kY, \ Y :$ elasto-plastic bound

$\theta_1 :$ first time going into plastic phase
Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: $x(t)$ solves

$$\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = k(x(t) - \Delta(t))$$

→ a plastic deformation $\Delta(t)$ occurs in $x(t)$ when $|F(t)| = kY$.

τ_1: first time going out of plastic phase

![Diagram showing plastic deformation and infimum conditions](image reference)
Elastic-perfectly-plastic behavior

elasto-perfectly-plastic case: $x(t)$ solves

$$
\ddot{x}(t) + c_0 \dot{x}(t) + F(t) = \frac{dw(t)}{dt}, \quad F(t) = k(x(t) - \Delta(t))
$$

$\Delta(t)$ stops increasing when $x(t)$ stops increasing.
Balance between elastic and plastic

Denote

\[y(t) = \dot{x}(t), \quad z(t) = x(t) - \Delta(t) \]

then

\[\ddot{x}(t) + c_0 \dot{x}(t) + k z(t) = \frac{\text{"d}w(t)\text{"}}{dt} \]

becomes

- **elastic** \(|z(t)| < Y \):

 \[
 \begin{cases}
 \dot{y}(t) = -(c_0 y(t) + k z(t)) + \frac{\text{"d}w(t)\text{"}}{dt}, \\
 \dot{z}(t) = y(t)
 \end{cases}
 \]

- **plastic** \(z(t) = Y, y(t) > 0 \) or \(z(t) = -Y, y(t) < 0 \):

 \[
 \begin{cases}
 \dot{y}(t) = -(c_0 y(t) \pm kY) + \frac{\text{"d}w(t)\text{"}}{dt}, \\
 \dot{z}(t) = 0
 \end{cases}
 \]

Key idea: Switching between elastic and plastic phases
An example of phases transition

\[
\begin{align*}
1^{st} \text{ elastic phase: } & [0, \theta_1) \\
\dot{y}(t) &= -(c_0 y(t) + k z(t)) + \frac{d w(t)}{d t} \\
\dot{z}(t) &= y(t)
\end{align*}
\]

\[
\begin{align*}
1^{st} \text{ plastic phase: } & [\theta_1, \tau_1) \\
\dot{y}(t) &= -(c_0 y(t) + k Y) + \frac{d w(t)}{d t} \\
\dot{z}(t) &= Y
\end{align*}
\]

\[y(t) := \dot{x}(t)\]

\[\theta_1 := \inf\{t > 0, |z(t)| = Y\}\]

\[\tau_1 := \inf\{t > \theta_1, y(t) = 0\}\]
An example of phases transition

\[
\begin{align*}
\text{2}\text{st} \text{ elastic phase: } & [\tau_1, \theta_2] \\
\dot{y}(t) &= -(c_0 y(t) + k z(t)) + \frac{dw(t)}{dt}, \\
\dot{z}(t) &= y(t)
\end{align*}
\]

\[
\begin{align*}
\text{2}\text{nd} \text{ plastic phase: } & [\theta_2, \tau_2] \\
\dot{y}(t) &= -(c_0 y(t) - k Y) + \frac{dw(t)}{dt}, \\
z(t) &= -Y
\end{align*}
\]

\[
\begin{align*}
\tau_2 &= \inf\{t > \theta_2, y(t) = 0\} \\
\theta_2 &= \inf\{t > \tau_1, |z(t)| = Y\} \\
\tau_1 &= \inf\{t > \theta_1, y(t) = 0\} \\
\theta_1 &= \inf\{t > 0, |z(t)| = Y\}
\end{align*}
\]
An example of the plastic drift of the oscillator

Figure: on the top $t, x(t)$ (red) $t, \Delta(t)$ (black : plastic deformation) and at the bottom $t, z(t)$ for $c_0 = 1, k = 1, Y = 1$
Part 2: Stochastic variational inequality for the elasto-plastic problem
Mathematical tool to describe the right dynamic: the stochastic variational inequality

The problem can be reformulated

- without the plastic deformation $\Delta(t)$,
- without the instants of phase transition.

Theorem (Bensoussan-Turi 2007)

The process $(y(t), z(t))$ is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

$$
dy(t) = -(c_0 y(t) + k z(t)) dt + dw(t),
(\Delta z(t) - y(t) dt)(\phi - z(t)) \geq 0, \quad \forall |\phi| \leq Y, \quad |z(t)| \leq Y
$$

References:

SVIs: [Bensoussan-Lions1982].

The variational inequality: nicely adapted to plastic/elastic transition. → noise effect at the transition from plastic to elastic
Mathematical tool to describe the right dynamic: the stochastic variational inequality

The problem can be reformulated

- without the plastic deformation $\Delta(t)$,
- without the instants of phase transition.

Theorem (Bensoussan-Turi 2007)

The process $(y(t), z(t))$ is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

\[
dy(t) = -(c_0 y(t) + k z(t))dt + dw(t), \\
(dz(t) - y(t)dt)(\phi - z(t)) \geq 0, \quad \forall |\phi| \leq Y, \quad |z(t)| \leq Y
\]

- $(y(t), z(t))$ reflected diffusion, $\Delta(t)$: reflection process

References:
SVIs: [Bensoussan-Lions1982].
Mathematical tool to describe the right dynamic: the stochastic variational inequality

The problem can be reformulated

- without the plastic deformation $\Delta(t)$,
- without the instants of phase transition.

Theorem (Bensoussan-Turi 2007)

The process $(y(t), z(t))$ is the unique solution of the stochastic variational inequality (SVI) defined by the following conditions

$$
\frac{dy(t)}{dt} = -(c_0 y(t) + kz(t))dt + dw(t),
$$

$$(dz(t) - y(t)dt)(\phi - z(t)) \geq 0, \quad \forall |\phi| \leq Y, \quad |z(t)| \leq Y$$

- $(y(t), z(t))$ reflected diffusion, $\Delta(t)$: reflection process
- Reference:
 - SVIs: [Bensoussan-Lions1982].

- The variational inequality: nicely adapted to plastic/elastic transition.
 - Noise effect at the transition from plastic to elastic
Characterization of the stationary state (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)

\[(y(t), z(t)) \text{ ergodic Markov process}\]

- unique invariant probability distribution \(\nu\) for \((y(t), z(t))\) and \((y(t), z(t)) \xrightarrow{\mathcal{L}} \nu\) (independently of the initial condition).

- elastic domain: \(D := (-\infty, +\infty) \times (-Y, Y)\)
Characterization of the stationary state (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)

$(y(t), z(t))$ _ergodic_ Markov process

- unique invariant probability distribution ν for $(y(t), z(t))$ and $(y(t), z(t)) \xrightarrow{\mathcal{L}} \nu$ (independently of the initial condition).

- elastic domain: $D := (-\infty, +\infty) \times (-Y, Y)$

- plastic domains: $D^+ := (-\infty, 0) \times \{-Y\}$ and $D^- := (0, +\infty) \times \{Y\}$
Characterization of the stationary state (balance between elastic and plastic state)

Theorem (Bensoussan-Turi 2007)

\[(y(t), z(t)) \text{ ergodic Markov process}\]

- **unique invariant probability distribution** \(\nu\) for \((y(t), z(t))\) and \((y(t), z(t)) \overset{\mathcal{L}}{\underset{t \to \infty}{\longrightarrow}} \nu\) (independently of the initial condition).

- elastic domain: \(D := (-\infty, +\infty) \times (-Y, Y)\)
- plastic domains: \(D^+ := (-\infty, 0) \times \{-Y\}\) and \(D^- := (0, +\infty) \times \{Y\}\)
- \(\nu\) has a density denoted by \(m\) is characterized by: \(\forall \varphi\) smooth,

\[
\begin{align*}
\int_D m(y, z) \{ y \varphi_z - (c_0 y + k z) \varphi_y + \frac{1}{2} \varphi_{yy} \} dydz \\
+ \int_{D^+} m(y, Y) \{ -(c_0 y + k Y) \varphi_y(y, Y) + \frac{1}{2} \varphi_{yy}(y, Y) \} dy \\
+ \int_{D^-} m(y, -Y) \{ -(c_0 y - k Y) \varphi_y(y, -Y) + \frac{1}{2} \varphi_{yy}(y, -Y) \} dy &= 0
\end{align*}
\]
Alternative method to the Monte-Carlo simulation (1): Start of my PhD research

From ergodic theory, we know the limiting behavior of \((y(t), z(t))\).

- For all bounded function \(f\) and \(\forall (y_0, z_0) \in \tilde{D},\)

\[
\lim_{t \to \infty} \mathbb{E} f(y_0(t), z_0(t)) = \int_{D} f(y, z)m(y, z)dydz + \int_{D^+} f(Y, y)m(Y, y)dy \\
+ \int_{D^-} f(-Y, y)m(-Y, y)dy.
\]
Alternative method to the Monte-Carlo simulation (1): Start of my PhD research

From ergodic theory, we know the limiting behavior of \((y(t), z(t))\).

- For all bounded function \(f\) and \(\forall (y_0, z_0) \in \tilde{D}\),
 \[
 \lim_{t \to \infty} \mathbb{E}f(y^{y_0}(t), z^{z_0}(t)) = \int_{D} f(y, z)m(y, z)dydz + \int_{D^+} f(Y, y)m(Y, y)dy + \int_{D^-} f(-Y, y)m(-Y, y)dy.
 \]

- But, it is also well known that
 \[
 \lim_{t \to \infty} \mathbb{E}f(y^{y_0}(t), z^{z_0}(t)) = \lim_{\lambda \to 0} \lambda \int_{0}^{\infty} e^{-\lambda t} \mathbb{E}f(y^{y_0}(t), z^{z_0}(t))dt.
 \]
Alternative method to the Monte-Carlo simulation (2)

Denote $u_\lambda(y_0, z_0; f) = \mathbb{E} \left[\int_0^\infty \exp(-\lambda t)f(y_{y_0}(t), z_{z_0}(t))dt \right]$.

Alternative method to the Monte-Carlo simulation (2)

Denote $u_\lambda(y_0, z_0; f) = E \left[\int_0^\infty \exp(-\lambda t) f(y^{y_0}(t), z^{z_0}(t)) dt \right].$

Equivalent characterization of the asymptotic limit:

\[
\begin{align*}
\lambda u_\lambda + Au_\lambda &= f(y, z) \quad \text{in } D \\
\lambda u_\lambda + B_+ u_\lambda &= f(y, Y) \quad \text{in } D^+ \\
\lambda u_\lambda + B_- u_\lambda &= f(y, -Y) \quad \text{in } D^-
\end{align*}
\]

Nonlocal problem: $y \to u_\lambda(y, \pm Y; f)$ are continuous.

$\forall (y_0, z_0) \in \bar{D}$

\[
\lim_{\lambda \to 0} \lambda u_\lambda(y_0, z_0; f) = \int_D f(y, z)m(y, z)dydz
\]
\[
+ \int_{D^+} f(y, Y)m(y, Y)dy + \int_{D^-} f(y, -Y)m(y, -Y)dy
\]
Alternative method to the Monte-Carlo simulation (2)

- Denote \(u_\lambda(y_0, z_0; f) = \mathbb{E} \left[\int_0^\infty \exp(-\lambda t)f(y_{t_0}(t), z_{t_0}(t))dt \right] \).

- Equivalent characterization of the asymptotic limit:
 \[
 \begin{align*}
 \lambda u_\lambda + Au_\lambda &= f(y, z) \quad \text{in } D \\
 \lambda u_\lambda + B_+ u_\lambda &= f(y, Y) \quad \text{in } D^+ \\
 \lambda u_\lambda + B_- u_\lambda &= f(y, -Y) \quad \text{in } D^-
 \end{align*}
 \]

- **Nonlocal problem:** \(y \rightarrow u_\lambda(y, \pm Y; f) \) are continuous.

- **Publications:**
 \[\text{Bensoussan, Mertz, Pironneau, Turi 2009, SIAM Journal on Numerical Analysis, Volume 47 Issue 5}\]

 This result is fundamental for the numerical resolution of \(m \): alternative method to Monte-Carlo, that requires simulations for long durations.
Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

\[
\begin{align*}
\lambda \nu_\lambda + A\nu_\lambda &= f \quad \text{in } D, \\
\lambda \nu_\lambda + B_+ \nu_\lambda &= f_+ \quad \text{in } D^+, \\
\lambda \nu_\lambda + B_- \nu_\lambda &= f_- \quad \text{in } D^-, \\
\end{align*}
\]

with \(\nu_\lambda(0^+, Y) = 0, \nu_\lambda(0^-, -Y) = 0, \)
Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

\[
\begin{aligned}
\lambda v_\lambda + Av_\lambda &= f \quad \text{in } D, \\
\lambda v_\lambda + B_+ v_\lambda &= f_+ \quad \text{in } D^+, \\
\lambda v_\lambda + B_- v_\lambda &= f_- \quad \text{in } D^-, \\
\end{aligned}
\]

with \(v_\lambda(0^+, Y) = 0, v_\lambda(0^-, -Y) = 0, \)

\[
\begin{aligned}
\lambda \pi^+_\lambda + A\pi^+_\lambda &= 0 \quad \text{in } D, \\
\lambda \pi^+_\lambda + B_+ \pi^+_\lambda &= 0 \quad \text{in } D^+, \\
\lambda \pi^+_\lambda + B_- \pi^+_\lambda &= 0 \quad \text{in } D^-, \\
\end{aligned}
\]

with \(\pi^+(0^+, Y) = 1, \pi^+(0^-, -Y) = 0, \)
Alternative method to the Monte-Carlo simulation (3)

Superposition of three local problems:

\[
\begin{aligned}
\lambda v_\lambda + Av_\lambda &= f \quad \text{in } D, \\
\lambda v_\lambda + B_+ v_\lambda &= f_+ \quad \text{in } D^+, \\
\lambda v_\lambda + B_- v_\lambda &= f_- \quad \text{in } D^-,
\end{aligned}
\]

with \(v_\lambda(0^+, Y) = 0, \, v_\lambda(0^-, -Y) = 0, \)

\[
\begin{aligned}
\lambda \pi_\lambda^+ + A \pi_\lambda^+ &= 0 \quad \text{in } D, \\
\lambda \pi_\lambda^+ + B_+ \pi_\lambda^+ &= 0 \quad \text{in } D^+, \\
\lambda \pi_\lambda^+ + B_- \pi_\lambda^+ &= 0 \quad \text{in } D^-,
\end{aligned}
\]

with \(\pi^+(0^+, Y) = 1, \pi^+(0^-, -Y) = 0, \)

\[
\begin{aligned}
\lambda \pi_\lambda^- + A \pi_\lambda^- &= 0 \quad \text{in } D, \\
\lambda \pi_\lambda^- + B_+ \pi_\lambda^- &= 0 \quad \text{in } D^+, \\
\lambda \pi_\lambda^- + B_- \pi_\lambda^- &= 0 \quad \text{in } D^-,
\end{aligned}
\]

with \(\pi^+(0^+, Y) = 0, \pi^-(0^-, -Y) = 1. \)
We look for p_+ and p_-:

\[v_\lambda + p_+ \pi^+_\lambda + p_- \pi^-_\lambda \]

continuous in $(0, \pm Y)$
Alternative method to the Monte-Carlo simulation (4)

- We look for p_+ and p_-:

\[v_\lambda + p_+ \pi^+_\lambda + p_- \pi^-_\lambda \quad \text{continuous in } (0, \pm Y) \]

- Finally, we solve the following linear system:

\[
\Pi := \begin{pmatrix}
\pi^+ (0^+, Y) - \pi^+(0^-, Y) & \pi^- (0^+, Y) - \pi^- (0^-, Y) \\
\pi^- (-0^+, -Y) - \pi^- (0^-, -Y) & \pi^- (0^+, -Y) - \pi^- (0^-, -Y)
\end{pmatrix}
\]

then

\[
\Pi \begin{pmatrix} p_+ \\ p_- \end{pmatrix} = \begin{pmatrix}
v_\lambda (0^-, Y) - v_\lambda (0^+, Y) \\
v_\lambda (0^-, -Y) - v_\lambda (0^+, -Y)
\end{pmatrix}
\]
Numerical result Vs Monte Carlo method:

\[Y = 1 \]

- **left:** plot of \(m \) with the deterministic method,
- **right:** plot of \(m \) with the Monte Carlo method,

\(T = 10, \ MC = 10^7 \)(number of trajectories),

\(-1 \leq z \leq 1, \ -7 \leq y \leq 7.\)
Numerical result Vs Monte Carlo method: \(Y = 2 \)

- **left:** plot of \(m \) with the deterministic method,
- **right:** plot of \(m \) with the Monte Carlo method,

\[T = 10, \ MC = 10^7 \text{(number of trajectories),} \]

\[-2 \leq z \leq 2, -7 \leq y \leq 7. \]
Part 3: Short cycles related to the stochastic variational inequality
Short cycle behavior

Short cycle: path, solution of the SVI, starting from a point \((y, z) \in D\) and which contains
- only one phase evolving in \(D\) (elastic domain)
- and only one phase evolving in \(D^+\) or \(D^-\) (plastic domains).

\[
y(t) := \dot{x}(t)
\]

\[
\tau := \inf\{t > 0, |z(t)| = Y, y(t) = 0\}
\]

\[
-y(0), z(0)
\]

\[
-Y, Y
\]

\[
y(t), z(t)
\]

Short cycle
Short cycle behavior

- Short cycles: a new analytic characterization to the invariant measure of \((y(t), z(t))\).

- **Key finding:** connection between local problems and nonlocal problems.
 → interpretation of local problems in terms of trajectory of \((y(t), z(t))\).
Definition and analysis of short cycles

Let f be a bounded function on D, define $v(y, z; f)$ the solution of

\[\begin{align*}
Av &= f \text{ in } D, \\
B_+ v &= f \text{ in } D^+, \\
B_- v &= f \text{ in } D^-
\end{align*} \]

(P$_v$)

with the local boundary conditions

\[v(0^+, Y) = 0 \text{ and } v(0^-, -Y) = 0 \]

We call $v(y, z; f)$ a short cycle.
Definition and analysis of short cycles

Let \(f \) be a bounded function on \(D \), define \(v(y, z; f) \) the solution of

\[
Av = f \text{ in } D, \quad B_+ v = f \text{ in } D^+, \quad B_- v = f \text{ in } D^-
\]

\((P_v) \)

with the local boundary conditions

\[
v(0^+, Y) = 0 \text{ and } v(0^-, -Y) = 0
\]

We call \(v(y, z; f) \) a short cycle.

Theorem (Analysis of short cycles, A. Bensoussan, L.M.)

There exists a unique solution to \((P_v) \) of the form

\[
v(y, z; f) = \varphi^+(y; f)1_{\{y>0\}} + \varphi^-(y; f)1_{\{y<0\}} + w(y, z; f)
\]

where

- \(w \) is a bounded function
- \(B_+ \varphi^+ = f(y, Y), \quad y > 0, \quad \varphi^+(0^+; f) = 0 \)
- \(B_- \varphi^- = f(y, -Y), \quad y < 0, \quad \varphi^-(0^-; f) = 0 \).
New ergodic theorem: Statement of the result

Theorem (New ergodic theorem, A. Bensoussan, L. M.)

A new characterization of the invariant distribution:

\[\nu(f) = \frac{\nu(0^-, Y; f) + \nu(0^+, -Y; f)}{2\nu(0^-, Y; 1)} \]

A new characterization of the invariant distribution:

\[\nu(f) = \frac{\nu(0^-, Y; f) + \nu(0^+, -Y; f)}{2\nu(0^-, Y; 1)} \]

Expansion of \(u_\lambda \)

\[u_\lambda(y, z; f) = u(y, z; f) + \frac{\nu(f)}{\lambda} + o\left(\frac{1}{\lambda}\right) \]

where

\[Au = f - \nu(f) \text{ in } D \quad B_+u = f - \nu(f) \text{ in } D^+ \quad B_-u = f - \nu(f) \text{ in } D^- \]

with the non local boundary condition given by the fact that \(y \to u(y, \pm Y; f) \) are continuous.
Probabilistic interpretation of the new characterization

Figure: $Av = f, B_+ v = f, B_- v = f$ and $v(0^+, -Y) = 0, v(0^-, Y) = 0$

$y(t) := \dot{x}(t)$

$\tau := \inf\{t > 0, |z(t)| = Y, y(t) = 0\}$

A new characterization of the invariant distribution:

$$\nu(f) = \frac{v(0^-, Y; f) + v(0^+, -Y; f)}{2v(0^-, Y; 1)}$$
Probabilistic interpretation of the new characterization

Figure: \(\dot{A}v = f, B_\pm v = f \) and \(\nu(0^+, -Y) = 0, \nu(0^-, Y) = 0 \)

\[
y(t) := \dot{x}(t)
\]

\[
\tau := \inf\{t > 0, |z(t)| = Y, y(t) = 0\}
\]

A new characterization of the invariant distribution:

\[
\nu(f) = \frac{\nu(0^-, Y; f) + \nu(0^+, -Y; f)}{2\nu(0^-, Y; 1)}
\]

means “formally”

\[
\nu(f) = \frac{1}{2} \mathbb{E}_{(0^-, Y)} \left(\int_0^\tau f(y(s), z(s))ds \right) + \frac{1}{2} \mathbb{E}_{(0^+, -Y)} \left(\int_0^\tau f(y(s), z(s))ds \right)
\]
Part 4: Long cycles related to the stochastic variational inequality
Long cycle behavior

- Independent sequences in the trajectory.
Long cycle behavior

- Independent sequences in the trajectory.

- Long cycle: path, solution of the SVI, starting and ending in one of the two points of \{(0, Y), (0, -Y)\}, knowing that the trajectory had a stop by the other point.
Long cycle behavior

- Independent sequences in the trajectory.

- Long cycle: path, solution of the SVI, starting and ending in one of the two points of \{(0, Y), (0, -Y)\}, knowing that the trajectory had a stop by the other point.

- Long cycles help to characterize the plastic behavior.
Definition and analysis of long cycles

Define

\[
\begin{align*}
t_0 &= \inf\{t > 0, \quad y(t) = 0, \quad |z(t)| = Y\}, \\
\delta &= \text{sign}(z(t_0)), \\
s_0 &= \inf\{t > t_0, \quad y(t) = 0, \quad z(t) = -\delta Y\}.
\end{align*}
\]
Definition and analysis of long cycles

- Define

\[t_1 = \inf\{ t > s_0, \ y(t) = 0, \ z(t) = \delta Y \} , \]

\[s_0 = \inf\{ t > t_0, \ y(t) = 0, \ z(t) = -\delta Y \} \]

\[t_0 = \inf\{ t > 0, \ y(t) = 0, |z(t)| = Y \} \]

\[\delta = \text{sign}(z(t_0)) \]

Long cycle

\[t_1 = \inf\{ t > 0, \ y(t) = 0, \ z(t) = \delta Y \} \]
Definition and analysis of long cycles

Then in a recurrent manner, knowing \(t_n \), we can define for \(n \geq 0 \)

\[
\begin{align*}
 t_{n+1} &= \inf\{t > s_n, \quad y(t) = 0, \quad z(t) = \delta Y \}, \\
 s_{n+1} &= \inf\{t > t_{n+1}, \quad y(t) = 0, \quad z(t) = -\delta Y \}.
\end{align*}
\]

Accordingly to these settings, we can define the \(n \)-th long cycle as the piece of trajectory enclosed by \([t_n, t_{n+1}) \).
Definition and analysis of long cycles

Theorem (Long cycle behavior, A. Bensoussan, L.M.)

In this context, we have

\[
\lim_{t \to +\infty} \frac{\sigma^2(x(t))}{t} = \frac{\mathbb{E}(\int_{t_0}^{t_1} y(s)ds)^2}{\mathbb{E}(t_1 - t_0)}
\]

Key idea: PDEs related to long cycles and connection with short cycles.

submitted: [Bensoussan, Mertz 2011] Behavior of the plastic deformation of an elasto-perfectly-plastic oscillator with noise
PDEs related to Long cycles (type one way)

\[t_0 = \inf \{ t > 0, y(t) = 0, \left| z(t) \right| = Y \} \]
\[\delta = \text{sign}(z(t_0)) \]

\[\bar{v}(0, -Y) = \mathbb{E}_{(0, -Y)} \left(\int_{t_0}^{s_0} f(y(s), z(s))ds \right) \]

where nonlocal problem: \(y \rightarrow \bar{v}(y, -Y) \) is continuous
PDEs related to Long cycles (type return)

\[t_0 = \inf \{ t > 0, y(t) = 0, |z(t)| = Y \} \]

\[\delta = \text{sign}(z(t_0)) \]

\[t_1 = \inf \{ t > 0, y(t) = 0, z(t) = \delta Y \} \]

\[\delta = \text{sign}(z(t_0)) \]

Long cycle

\[A \bar{v} = f, \quad B_+ \bar{v} = f, \quad B_- \bar{v} = f \text{ and } \bar{v}(0^+, -Y) = 0 \]

where nonlocal problem: \(y \rightarrow \bar{v}(y, Y) \) is continuous

\[\bar{v}(0, Y) = \mathbb{E}_{(0,Y)} \left(\int_{s_0}^{t_1} f(y(s), z(s)) ds \right) \]
In this section, we provide computational results which confirm our theoretical results.

\[
\sigma^2(x(t)) \frac{t}{\sigma^2(x(t))}, \ t = 500
\]

\[
\mathbb{E}(\int_{t_0}^{t_1} y(s) ds)^2 \frac{\mathbb{E}(t_1 - t_0)}{\mathbb{E}(t_1 - t_0)}
\]

\[
\mathbb{E}(t_1 - t_0)
\]

<table>
<thead>
<tr>
<th>c_0 = 1, k = 1</th>
<th>Relative error %</th>
</tr>
</thead>
</table>
| \begin{array}{cccc}
0.1 & 0.807 \pm 0.031 & 0.834 \pm 0.069 & 6.61 \pm 0.11 & 3.2 \\
0.2 & 0.649 \pm 0.026 & 0.624 \pm 0.047 & 8.74 \pm 0.13 & 3.8 \\
0.3 & 0.493 \pm 0.020 & 0.464 \pm 0.034 & 10.45 \pm 0.16 & 5.8 \\
0.4 & 0.361 \pm 0.014 & 0.355 \pm 0.026 & 12.12 \pm 0.18 & 1.7 \\
0.5 & 0.266 \pm 0.011 & 0.257 \pm 0.019 & 13.80 \pm 0.21 & 3.3 \\
0.6 & 0.195 \pm 0.008 & 0.198 \pm 0.014 & 16.15 \pm 0.26 & 1.5 \\
0.7 & 0.137 \pm 0.005 & 0.149 \pm 0.011 & 18.84 \pm 0.31 & 8 \\
0.8 & 0.103 \pm 0.004 & 0.112 \pm 0.008 & 22.80 \pm 0.39 & 8 \\
0.9 & 0.071 \pm 0.003 & 0.086 \pm 0.006 & 26.79 \pm 0.47 & 15 \\
\end{array}
\]

Table: Monte-Carlo simulations \(t = 500 \), \(\delta t = 10^{-4} \) and \(MC = 5000 \).
Part 5: Conclusion and open problems
to summarize:

- 1: Presentation of a stochastic variational inequality modeling an elasto-plastic problem with noise
to summarize:

1: Presentation of a stochastic variational inequality modeling an elasto-plastic problem with noise

2: Numerical analysis of the invariant distribution related to the solution
to summarize:

1: Presentation of a stochastic variational inequality modeling an elasto-plastic problem with noise

2: Numerical analysis of the invariant distribution related to the solution

3: New characterization of the invariant distribution by short cycles
to summarize:

1: Presentation of a stochastic variational inequality modeling an elasto-plastic problem with noise

2: Numerical analysis of the invariant distribution related to the solution

3: New characterization of the invariant distribution by short cycles

4: Characterization of the plastic drift by long cycles
Now, we wish to extend our work to the following:

- Short and long cycles in the case of the elastic-plastic problem excited with a filtered noise?
 → previous arguments can not be applied.
Now, we wish to extend our work to the following:

- Ergodicity for an elasto-plastic oscillator with bilinear force?

- Morally, seems to be more ergodic, but much more challenging mathematically.
Fin.

Merci de votre attention.