Semiclassical Analysis of Metropolis Algorithm on Bounded Domain

L. Michel
(joint work with P. Diaconis and G. Lebeau)

Laboratoire J.-A. Dieudonné
Université de Nice
The problem of hard spheres

Consider a fixed box in \mathbb{R}^d, $B = [-1,1]^d$. We consider the problem of placement of N balls of radius $\epsilon > 0$ with centers in B under the condition that the balls do not overlap. We denote $\mathcal{O}_{N,\epsilon} \subset B^N$ the set of all possible configurations. We endowe $\mathcal{O}_{N,\epsilon}$ with the normalized Lebesgue measure $dL/vol(\mathcal{O}_{N,\epsilon})$.

Problem:

Build a sample of points $X^1, \ldots, X^r \in \mathcal{O}_{N,\epsilon}$ distributed uniformly with respect to dL.

- This problem occurs in statistical physics in phase transition studies.
- It can be formulated in a more abstract setting.
Metropolis and al (50’s) proposed the following algorithm to solve this problem. Let $h > 0$ being fixed and $X^0 \in \mathcal{O}_{N,\epsilon}$.

- Starting from $X^0 = (x_1^0, \ldots, x_N^0)$, move one of the ball say x_k^0 uniformly at random in the ball $B(x_k^0, h)$, it results in a new position x_k^1. Denote $X^1 = (x_1^0, \ldots, x_k^1, \ldots, x_N^0)$ the new configuration. If $X^1 \in \mathcal{O}_{N,\epsilon}$, keep X^1.

- If $X^1 \notin \mathcal{O}_{N,\epsilon}$, throw away X^1 and restart the procedure from X^0.

- Once, X^1 is constructed, define X^2 by the same procedure starting from X^1, etc.

As r goes to infinity, the point X^r is chosen in $\mathcal{O}_{N,\epsilon}$ uniformly with respect to the uniform distribution.
Our framework is the following:

- \(\Omega \) denotes a bounded connected open subset of \(\mathbb{R}^d \) s.t. \(\partial \Omega \) has Lipschitz regularity.
- \(\rho \) is a measurable function on \(\overline{\Omega} \) such that
 * there exists \(m, M > 0 \), s.t. \(m \leq \rho(x) \leq M, \forall x \in \Omega \).
 * \(\int_{\Omega} \rho(x) dx = 1 \)
- \(B_1 \) denotes the unit ball in \(\mathbb{R}^d \) and \(|B_1| \) its volume.

We are willing to define a Markov kernel which permit to sample from \(\rho(x) dx \).
From the point of view of Markov chain, the algorithm is the following. We construct $x_{n+1} \in \Omega$ from $x_n \in \Omega$ according to the following procedure: choose $y \in \mathbb{R}^d$ uniformly at random in $B(x_n, h)$

- if $y \notin \Omega$ then $x_{n+1} := x_n$.
- if $y \in \Omega$, compute $A(x, y) = \rho(y)/\rho(x)$.
 - If $A(x, y) > 1$, let $x_{n+1} := y$
 - If $A(x, y) \leq 1$, let $x_{n+1} := x_n$ with probability $A(x, y)$ and $x_{n+1} := y$ with probability $1 - A(x, y)$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
The kernel associated to the preceding Markov chain is defined as follows. Introduce the following kernel on Ω:

$$k_{h,\rho}(x, y) = \frac{1}{h^d|B_1|} 1_{|x-y|< h \min\left(\frac{\rho(y)}{\rho(x)}, 1\right)}$$

The Metropolis kernel on Ω is given by

$$t_{h,\rho}(x, dy) = m_{h,\rho}(x)\delta_x + k_{h,\rho}(x, y)dy.$$

with

$$m_{h,\rho}(x) = 1 - \int_{\Omega} k_{h,\rho}(x, y)dy$$

The Metropolis operator associated to this kernel is

$$T_{h,\rho}u(x) = m_{h,\rho}(x)u(x) + \int_{\Omega} u(y)k_{h,\rho}(x, y)dy$$
Basic properties

- The Metropolis kernel \(t_{h,\rho}(x, dy) \) is a Markov kernel \((T_{h,\rho}(1) = 1) \).
- The operator \(T_{h,\rho} \) is self-adjoint on \(L^2(\Omega, \rho(x)dx) \) and \(\| T_{h,\rho} \|_{L^2 \rightarrow L^2} = 1 \).
- The probability measure \(\rho(x)dx \) is stationary for \(T_{h,\rho} \).
- \(\text{Spec}(T_{h,\rho}) \) is discrete near 1 (use this).

Definition

We define the spectral gap of the Metropolis operator \(T_{h,\rho} \) as
\[
g(h, \rho) = \text{dist}(1, \text{spec}(T_h) \setminus \{1\}).
\]
This is the largest constant such that
\[
\| u \|^2_{L^2(\rho)} - \langle u, 1 \rangle^2_{L^2(\rho)} \leq \frac{1}{g(h, \rho)} \langle u - T_{h,\rho}u, u \rangle_{L^2(\rho)}
\]
General densities

Theorem 1

Let Ω be an open, connected, bounded, Lipschitz subset of \mathbb{R}^d. There exists $h_0 > 0$, $\delta_0 \in]0, 1/2[$ and constants $C_i > 0$ such that for $h \in]0, h_0]$, the following holds true:

- $\text{Spec}(T_{h,\rho}) \subset [-1 + \delta_0, 1]$
- 1 is a simple eigenvalue of $T_{h,\rho}$
- The spectral gap $g(h, \rho)$ satisfies
 $$C_1h^2 \leq g(h, \rho) \leq C_2h^2$$
- $\forall \lambda \in [0, \delta_0]$,
 $$\#(\text{Spec}(T_{h,\rho}) \cap [1 - \lambda, 1]) \leq C_3(1 + \lambda h^{-2})^{d/2}$$
If the density ρ is smooth on Ω we can give a more precise description of the spectrum of $T_{h,\rho}$. For simplicity, we assume in this section that $\partial \Omega$ is smooth. Let us introduce the unbounded operator acting on $L^2(\Omega, \rho(x)dx)$, defined by

$$L_\rho(u) = \frac{-\alpha_d}{2}(\triangle u + \frac{\nabla \rho}{\rho} \cdot \nabla u)$$

$$D(L_\rho) = \{ u \in H^2(\Omega), \partial_n u|_{\partial \Omega} = 0 \}$$

where

$$\alpha_d = \frac{1}{vol(B_1)} \int_{B_1} z_1^2 dz = \frac{1}{d+2}$$
\(L_\rho \) is the self-adjoint realization of the Dirichlet form

\[
\frac{\alpha_d}{2} \int_\Omega |\nabla u(x)|^2 \rho(x) \, dx.
\]

(1)

\(L_\rho \) has compact resolvant (thanks to Sobolev embeddings).

We denote

\[
\text{Spec}(L_\rho) = \{ \lambda_0 = 0 < \lambda_1 < \lambda_2 < \ldots \}
\]

and by \(m_j = \text{multiplicity}(\lambda_j) \). Observe that \(m_0 = 1 \) since \(\text{Ker}(L_\rho) \) is spanned by the constant function equal to 1.
Theorem 2

Let Ω be an open, connected, bounded and smooth subset of \mathbb{R}^d. Assume that the density ρ is smooth on $\overline{\Omega}$, then for any $R > 0$ and $\varepsilon > 0$ such that $\lambda_{j+1} - \lambda_j > 2\varepsilon$ for $\lambda_{j+2} < R$, there exists $h_1 > 0$ such that one has for all $h \in]0, h_1]$,

$$ Spec \left(\frac{1 - T_{h,\rho}}{h^2} \right) \cap]0, R] \subset \bigcup_{j \geq 1} [\lambda_j - \varepsilon, \lambda_j + \varepsilon], \quad (2) $$

and the number of eigenvalues of $\frac{1 - T_{h,\rho}}{h^2}$ in the interval $[\lambda_j - \varepsilon, \lambda_j + \varepsilon]$ is equal to m_j.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Variational approach

Since, \(m \leq \rho(x) \leq M \) on \(\Omega \), we can easily suppose that \(\rho = 1 \) (and we denote \(T_h \) instead of \(T_{h,\rho} \)). The spectral gap is the largest constant such that

\[
\|u\|_{L^2}^2 - \langle u, 1 \rangle_{L^2}^2 \leq \frac{1}{g(h, \rho)} \langle u - T_h u, u \rangle_{L^2}
\]

A standard computation shows that

\[
\|u\|_{L^2}^2 - \langle u, 1 \rangle_{L^2}^2 = \frac{1}{2} \int_{\Omega \times \Omega} |u(x) - u(y)|^2 dxdy := \text{Var}(u)
\]

\[
\langle u - T_h u, u \rangle_{L^2} = \frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h} |u(x) - u(y)|^2 dxdy := \mathcal{E}_h(u).
\]
The following properties are easy to prove:

- 1 is a simple eigenvalue (use this)
- $g(h, \rho) \leq Ch^2$ (take $u \in C_0(\Omega)$ such that $\int_\Omega u(x)dx = 0$, $\|u\|_{L^2} = 1$, make a Taylor expansion and use again this)
Lower bound for the spectral gap

Let us show the lower bound on the spectral gap when Ω is convex. For any $u \in L^2(\Omega)$, we have

$$
\int_{\Omega \times \Omega} |u(x) - u(y)|^2 \, dx \, dy \leq
C h^{-1} \sum_{k=0}^{K(h)-1} \int_{\Omega \times \Omega} |u(x + kh(y - x)) - u(x + (k + 1)h(y - x))|^2 \, dx \, dy,
$$

where $K(h)$ is the greatest integer $\leq h^{-1}$ and $K(h)h = 1$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
With the new variables $x' = x + kh(y - x)$, $y' = x + (k + 1)h(y - x)$, one has $dx' dy' = h^d dx dy$ and we get

$$\int_{\Omega \times \Omega} |u(x) - u(y)|^2 dx dy \leq Ch^{-d-1} K(h) \int_{\Omega \times \Omega} 1_{|x' - y'| < h\text{diam}(\Omega)} |u(x') - u(y')|^2 dx' dy',$$

This yields to

$$\text{Var}(u) \leq C'h^{-2} \mathcal{E}_h(u)$$

and proves the lower bound.
A simple quasimode calculus

Assume $\rho = 1$ and $\partial \Omega$ is smooth. Let $\lambda > 0$ and $u \in C^\infty(\overline{\Omega})$ satisfy

$\left(-\frac{\alpha_d}{2} \Delta - \lambda\right)u = 0$ in Ω and $\partial_n u|_{\partial \Omega} = 0$.

For $x \in \Omega$ s.t. $\text{dist}(x, \partial \Omega) > h$, Taylor expansion shows that

$T_h u(x) - u(x) = \frac{1}{|B_1|} \int_{|z| < 1, x + hz \in \Omega} (u(x + hz) - u(x))dz$

$= \frac{h}{|B_1|} \sum_{j=1}^{d} \partial_{x_j} u(x) \int_{|z| < 1} z_j dz + \frac{\alpha_d}{2} h^2 \Delta u(x) + O_{L^\infty}(h^4)$

$= \frac{\alpha_d}{2} h^2 \Delta u(x) + O_{L^\infty}(h^4)$

where the term of order h and h^3 vanish for parity reason.
For $x \in \Omega$ s.t. $\text{dist}(x, \partial \Omega) < h$, we use local coordinates such that $\Omega = \{(x_1, x') \in \mathbb{R}^d, x_1 > 0\}$. Taylor expansion shows that

$$T_h u(x) - u(x) = \frac{1}{|B_1|} \int_{|z|<1, x_1+hz_1>0} (u(x + hz) - u(x)) dz$$

$$= \frac{h}{|B_1|} \sum_{j=1}^{d} \partial_{x_j} u(x) \int_{|z|<1, x_1+hz_1>0} z_j dz + O_{L\infty}(h^2)$$

- Parity argument \implies term of index $j \geq 2$ vanish.
- $\partial_n u |_{\partial \Omega} = 0$ and $\text{dist}(x, \partial \Omega) < h$ \implies term of index $j = 1$ is $O_{L\infty}(h^2)$.

Since $\text{meas}(\{\text{dist}(x, \partial \Omega) < h\}) = O(h)$, it follows that

$$1_{\text{dist}(x, \partial \Omega) < h} (T_h u - u) = O_{L^2}(h^{5/2}).$$

Combining the two estimates, we get

$$T_h u - (1 - h^2 \lambda) u = O(h^{5/2}).$$
Using the min-max principle, this shows that for any eigenvalue λ_k of $-\Delta$ with Neumann condition and with multiplicity m_k, we have

$$\# \text{Spec}(\frac{1 - T_h}{h^2}) \cap [\lambda - Ch^{\frac{1}{2}}, \lambda + Ch^{\frac{1}{2}}] \geq m_k.$$

To show the converse inequality, we consider (for a fixed $R > 0$) a family $(\lambda_h, u_h) \in [0, R] \times L^2(\Omega)$ such that $\|u_h\|_{L^2} = 1$ and

$$T_h u_h = (1 - h^2 \lambda_h) u_h$$

We want to show that λ_h converges to an eigenvalue of $-\Delta$ with Neuman condition when $h \to 0$. For this purpose, we need some compactness on $(u_h)_{h \in [0, h_0]}$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Comparaison with the random walk on the torus

Since Ω is bounded, it is contained in a large box $]-A, A[^d$. We denote $\Pi = (\mathbb{R}/2A \mathbb{Z})^d$. Since Ω is Lipschitz, using local coordinates, we can define an extension map

$$ P : L^2(\Omega) \to L^2(\Pi) $$

which is also bounded from $H^1(\Omega)$ into $H^1(\Pi)$. Any function $v \in L^2(\Pi)$ can be extended in Fourier series $v(x) = \sum_{k \in \mathbb{Z}^d} c_k(v)e^{2ik\pi x/A}$. The L^2 and H^1 norm on Π can be expressed as follows

- $\|v\|_{L^2(\Pi)}^2 = (2A)^d \sum_k |c_k|^2$.
- $\|v\|_{H^1(\Pi)}^2 = (2A)^d \sum_k (1 + \frac{4\pi^2 k^2}{A^2})|c_k|^2$.
Recall that for $u \in L^2(\Omega)$,

$$\mathcal{E}_h(u) = \langle u - T_h u, u \rangle_{L^2(\Omega)} = \frac{h^{-d}}{2} \int_{\Omega \times \Omega} 1_{|x-y|<h} |u(x) - u(y)|^2 \, dx \, dy.$$

For $v \in L^2(\Pi)$, we define

$$\tilde{\mathcal{E}}_h(v) = \langle v - \tilde{T}_h v, v \rangle_{L^2(\Pi)} = \frac{h^{-d}}{2} \int_{\Pi \times \Pi} 1_{|x-y|<h} |v(x) - v(y)|^2 \, dx \, dy.$$

where \tilde{T}_h is the metropolis operator on the torus.

Remark

A simple calculus using the Fourier expansion, shows that $\tilde{T}_h = \Gamma(-h^2 \Delta)$ where Γ is a smooth function decreasing to 0 at infinity.
Lemma 1

There exist $C_0, C_1, h_0 > 0$ such that the following holds true for any $h \in]0, h_0]$ and any $u \in L^2(\Omega)$.

$$\frac{\mathcal{E}_h(u)}{C_0} \leq \tilde{\mathcal{E}}_h(P(u)) \leq C_0 \left(\mathcal{E}_h(u) + h^2 \|u\|_{L^2}^2 \right). \quad (3)$$

As a by-product, any $u \in L^2(\Omega)$ such that

$$\|u\|_{L^2(\rho)}^2 + h^{-2} \langle (1 - T_h)u, u \rangle_{L^2(\rho)} \leq 1$$

admits a decomposition $u = u_L + u_H$ with $u_L \in H^1(\Omega)$, $\|u_L\|_{H^1} \leq C_1$, and $\|u_H\|_{L^2} \leq C_1 h$.
Proof.

- The first inequality is trivial. The second one is obtained by working in local coordinates for which the boundary is an half-space.

- We observe that (thanks to Parseval identity)

\[\tilde{\mathcal{E}}(v) = \frac{(2A)^d}{2} \sum_k |c_k|^2 \theta(hk/A), \]

\[\theta(\xi) = \int_{|z| \leq 1} |e^{2i\pi \xi z} - 1|^2 dz. \]

The by-product is obtained by projecting the extension \(v = P(u) \) on low frequencies \(h|k| \leq \delta \) and high frequencies \(h|k| > \delta \) for some fixed \(\delta > 0 \). Hence, it suffices to use the fact that the function \(\theta \) is quadratic near 0 and has a positive lower bound for \(|\xi| \geq \delta \). \qed
Total variation estimate

The **total variation distance** between two probability measures μ, ν is defined by

$$\|\mu - \nu\|_{TV} = \sup_{A \text{ measurable}} |\mu(A) - \nu(A)| = \frac{1}{2} \sup_{f \in L^\infty, |f| \leq 1} |\int f d\mu - \int f d\nu|$$

Theorem 3

Under the same assumption as above, the following estimate holds true for all $n \in \mathbb{N}$:

$$C_4 e^{-ng(h, \rho)} \leq \sup_{x \in \Omega} \|t^n_{h, \rho}(x, dy) - \rho(y)dy\|_{TV} \leq C_5 e^{-ng(h, \rho)}.$$
Proof of total variation estimates

Let \(\Pi_0 \) be the orthogonal projector in \(L^2(\Omega) \) on the space of constant functions

\[
\Pi_0(u)(x) = 1_\Omega(x) \int_{\Omega} u(y) \rho(y) \, dy.
\]

(4)

Then, by definition

\[
2 \sup_{x_0 \in \Omega} \left\| t^n_h(x_0, dy) - \rho(y) \, dy \right\|_{TV} = \left\| T^n_h - \Pi_0 \right\|_{L^\infty \rightarrow L^\infty}.
\]

(5)

Thus, we have to prove that for \(h > 0 \) small and any \(n \), one has

\[
\left\| T^n_h - \Pi_0 \right\|_{L^\infty \rightarrow L^\infty} \leq C_0 e^{-ng(h, \rho)}.
\]

(6)

Since \(g(h, \rho) = O(h^2) \), we can suppose that \(nh^2 \gg 1 \).
Denote \(\lambda_{j,h} \) the eigenvalues of \(T_h \) and \(\Pi_j \) the associated spectral projector. We fix \(\alpha > 0 \) small and use the spectral decomposition
\[T_h - \Pi_0 = T_{h,1} + T_{h,2} \]
with
\[T_{h,1} = \sum_{1 - h^2 - \alpha < \lambda_{j,h} < 1} \lambda_{j,h} \Pi_j \]
and \(T_{h,2} \) spectrally localized in \([-1 + \delta_0, 1 - h^2 - \alpha] \).

It is easy to see that
\[\| T^n_h - \Pi_0 \|_{L^2 \rightarrow L^2} \leq Ce^{-ng(h,\rho)}. \]

Since, we deal with \(L^\infty \rightarrow L^\infty \) norm, we need:

- to control \(\| \Pi_j \|_{L^2 \rightarrow L^\infty} \)
- a bound on the number of eigenvalues in any interval \([\alpha_h, 1]\) with \(1 - \delta_0 < \alpha_h < 1 - Ch^2 \).
Control of small eigenvalues

For this purpose, we use Lemma 1 and show that there exists $\delta_0 > 0$ s.t.

- for any $0 \leq \lambda \leq \delta_0/h^2$,
 \[\#(\text{Spec}(T_h) \cap [1 - h^2\lambda, 1]) \leq C(1 + \lambda)^{d/2} \]

- any eigenfunction $T_h(u) = \lambda u$ with $\lambda \in [1 - \delta_0, 1]$ satisfies the bound
 \[\|u\|_{L^\infty} \leq C_2 h^{-d/2} \|u\|_{L^2}. \]

Using these estimates we get easily:

\[\|T_{2,h}^n\|_{L^\infty \to L^\infty} \leq Ch^{-3d/2} e^{-nh^2-\alpha} << e^{-ng(h,\rho)} \]

since $g(h, \rho) \sim h^2$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Nash inequality

Let \(E_\alpha = \text{span}(e_j,h, 1 - h^{2-\alpha} < \lambda_{j,h} < 1) \).

Lemma 2 (Nash inequality)

There exists \(C, D, \alpha > 0 \), s.t. any function \(u \in E_\alpha \) satisfies:

\[
\|u\|_{L^2}^{2+1/D} \leq C h^{-2}(\|u\|_{L^2}^2 - \|T_h u\|_{L^2}^2 + h^2 \|u\|_{L^2}^2) \|u\|_{L^1}^{1/D}.
\]

Proof.

- Use Lemma 1 to show that there exists \(p > 2, \alpha > 0 \) such that any function \(u \in E_\alpha \) satisfies

\[
\|u\|_{L^p}^2 \leq C h^{-2}(\mathcal{E}_h(u) + h^2 \|u\|_{L^2}^2)
\]

- Use the bound \(\mathcal{E}_h(u) \leq \langle (1 - T_h)u, u \rangle \) on \(E_\alpha \) and interpolate between \(L^p \) and \(L^1 \) to get the \(L^2 \) estimate.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Control of $T_{h,1}$

We want to control the norm $\| T_{h,1}^n \|_{L^2 \to L^\infty} = \| T_{h,1}^n \|_{L^1 \to L^2}$.

- Take $g \in L^2$ s.t. $\|g\|_{L^1} = 1$ and denote $c_n = \| T_{h,1}^n g \|_{L^2}^2$.

Thanks to the preceding Lemma:

$$c_n^{1+2D} \leq Ch^{-2}(c_n - c_{n+1} + h^2 c_n)$$

Hence, for $0 \leq n \leq h^{-2}$, $c_n \leq (h^{-2}/(1+n))^{2D}$.

- This permit to show that for some large $n \sim h^{-2}$,

$$\| T_{h,1}^n \|_{L^2 \to L^\infty} = \| T_{h,1}^n \|_{L^1 \to L^2} = O(1)$$

Combined with $\| T_h^p \|_{L^2 \to L^2} \leq Ce^{-pg(h,\rho)}$, this completes the proof.
The problem of hard spheres

Consider a fixed box in \(\mathbb{R}^d \), \(B = [-1, 1]^d \). We consider the problem of placement of \(N \) balls of radius \(\epsilon > 0 \) with centers in \(B \) under the condition that the balls do not overlap. We denote \(\mathcal{O}_{N, \epsilon} \subset B^N \) the set of all possible configurations:

\[
\mathcal{O}_{N, \epsilon} = \left\{ X = (x_1, \ldots, x_N) \in B^N, \forall 1 \leq i < j \leq N, |x_i - x_j| > \epsilon \right\}.
\]

We endow \(\mathcal{O}_{N, \epsilon} \) with the normalized Lebesgue measure \(\mu = dL/vol(\mathcal{O}_{N, \epsilon}) \).

Problem:

Build a sample of points \(X^1, \ldots, X^r \in \mathcal{O}_{N, \epsilon} \) distributed uniformly with respect to \(\mu \).

This problem occurs in statistical physics in phase transition studies.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Metropolis and al (50’s) proposed the following algorithm to solve this problem. Let $h > 0$ being fixed and $X^0 \in \mathcal{O}_N, \epsilon$.

- Starting from $X^0 = (x^0_1, \ldots, x^0_N)$, move one of the ball say x^0_k uniformly at random in the ball $B(x^0_k, h)$, it results in a new position x^1_k. Denote $X^1 = (x^0_1, \ldots, x^1_k, \ldots, x^0_N)$ the new configuration. If $X^1 \in \mathcal{O}_N, \epsilon$, keep X^1.

- If $X^1 \notin \mathcal{O}_N, \epsilon$, throw away X^1 and restart the procedure from X^0.

- Once, X^1 is constructed, define X^2 by the same procedure starting from X^1, etc.

As r goes to infinity, the point X^r is chosen in \mathcal{O}_N, ϵ uniformly with respect to the uniform distribution μ.

Question

What is the speed of convergence?
Let $\varphi = 1_{B_{\mathbb{R}^d}(0,1)}$ and introduce the following kernels for $j = 1, \ldots, N$:

$$k_{j,h}(x, dy) = \delta_{x_1} \otimes \cdots \otimes \delta_{x_{j-1}} \otimes h^{-d} \varphi \left(\frac{x_j - y_j}{h} \right) dy_j \otimes \delta_{x_{j+1}} \otimes \cdots \otimes \delta_{x_N}$$

Let $m_{j,h}(x) = \int_{\mathbb{R}^d \setminus \mathcal{O}_{N,\varepsilon}} k_{j,h}(x, dy)$ and let

$$t_{j,h}(x, dy) = m_{j,h}(x) \delta_x + k_{j,h}(x, dy).$$

Define the partial operators $T_{j,h}$ with kernel $t_{j,h}(x, dy)$, then the Metropolis operator on $L^2(\mathcal{O}_{N,\varepsilon})$ is

$$T_h = N^{-1} \sum_{j=1}^{N} T_{j,h}$$

Denote $t_h(x, dy) = \sum_j t_{j,h}(x, dy)$ the kernel of T_h. Then, T_h admits μ as stationary measure and $t_h^n(x, dy)$ converges to μ as $n \to \infty$.

L. Michel (joint work with P. Diaconis and G. Lebeau)
Proposition

There exists $\alpha > 0$ such that for $N\epsilon \leq \alpha$, the set $\Omega_{N,\epsilon}$ is connected and Lipschitz.

Proof. To prove the “Lipschitz boundary“ use the following observations:

- A domain $\Omega \subset \mathbb{R}^p$ has Lipschitz boundary iff it satisfies the following cone property:

$$\forall a \in \partial \Omega, \exists \delta > 0, \exists \nu_a \in S^{p-1}, \forall b \in B(a, \delta) \cap \partial \Omega \text{ we have}$$

$$b + \Gamma_+(\nu_a, \delta) \subset \Omega \text{ and } b + \Gamma_-(\nu_a, \delta) \subset \mathbb{R}^p \setminus \overline{\Omega}.$$

where for $\nu \in S^p$,

$$\Gamma_+(\nu_a, \delta) = \{ \xi \in \mathbb{R}^p, \pm \langle \xi, \nu \rangle > (1 - \delta)|\xi|, |\langle \xi, \nu \rangle| < \delta \}$$
For $x \in \overline{O}_{N,\epsilon}$ we set

$$R(x) = \{ i \in \mathbb{N}_N, x_i \in \partial \Omega \}$$

$$S(x) = \{ \tau = (\tau_1, \tau_2) \in \mathbb{N}_N, \tau_1 < \tau_2 \text{ and } |x_{\tau_1} - x_{\tau_2}| = \epsilon \}$$

$$r(x) = \#R(x), \quad s(x) = \#S(x)$$

Any $x \in \overline{O}_{N,\epsilon}$ belongs to $\partial O_{N,\epsilon}$ iff $r(x) + s(x) \geq 1$.

L. Michel (joint work with P. Diaconis and G. Lebeau)

Semiclassical Analysis of Metropolis Algorithm on Bounded Domain
Thanks to the preceding proposition, we can consider the Neumann Laplacian $|\Delta|_N$ on $\mathcal{O}_{N,\epsilon}$ defined by

$$|\Delta|_N = -\frac{\alpha_d}{2N} \Delta,$$

$$D(|\Delta|_N) = \{ u \in H^1(\mathcal{O}_{N,\epsilon}), -\Delta u \in L^2(\mathcal{O}_{N,\epsilon}), \partial_n u|_{\partial \mathcal{O}_{N,\epsilon}} = 0 \}.$$

We still denote $0 = \nu_0 < \nu_1 < \nu_2 < \ldots$ the spectrum of $|\Delta|_N$ and m_j the multiplicity of ν_j.
Theorem (part 1)

Let \(N \geq 2 \) and \(\epsilon > 0 \) small be fixed. Let \(R > 0 \) be given and \(\beta > 0 \) small. Then, there exists \(h_0 > 0, \delta_0 \in]0, 1/2[\) and constants \(C_i > 0 \) such that for any \(h \in]0, h_0] \), the following hold true:

i) The spectrum of \(T_h \) is a subset of \([-1 + \delta_0, 1]\), 1 is a simple eigenvalue of \(T_h \), and \(\text{Spec}(T_h) \cap [1 - \delta_0, 1] \) is discrete. Moreover,

\[
\text{Spec} \left(\frac{1 - T_h}{h^2} \right) \cap]0, R] \subset \bigcup_{j \geq 1} [\nu_j - \beta, \nu_j + \beta]; \\
\# \text{Spec} \left(\frac{1 - T_h}{h^2} \right) \cap [\nu_j - \beta, \nu_j + \beta] = m_j \quad \forall \nu_j \leq R;
\]

and for any \(0 \leq \lambda \leq \delta_0 h^{-2} \), the number of eigenvalues of \(T_h \) in \([1 - h^2 \lambda, 1]\) (with multiplicity) is bounded by \(C_1(1 + \lambda)^{dN/2} \).
Theorem (part 2)

ii) The spectral gap $g(h)$ satisfies

$$\lim_{h \to 0^+} h^{-2} g(h) = \nu_1$$

and the following estimate holds true for all $n \in \mathbb{N}$:

$$\sup_{x \in O_N, \epsilon} \left\| t_h^n(x, dy) - \frac{dy}{vol(O_N, \epsilon)} \right\|_{TV} \leq C_4 e^{-ng(h)}.$$
Simple observations

- For any smooth function u, we still have
 \[(1 - T_h)u = h^2 |\Delta|_N u + O_{L^2}(h^{5/2})\]

- The kernel of T_h inside the domain is not a smooth function anymore.

- To get regularity of eigenfunction, we still need to compare the operator with the usual random walk on the torus.

- Eigenfunctions of T_h are also eigenfunctions for T_h^M for any $M \in \mathbb{N}$.
Lemma

Let ϵ be small. There exists $h_0 > 0$, $c_0, c_1 > 0$ and $M \in \mathbb{N}^*$ such that for all $h \in]0, h_0]$, one has

$$T_h^M(x, dy) = \mu_h(x, dy) + c_0 h^{-Nd} \varphi_N d(\frac{x - y}{c_1 h}) dy$$

where for all $x \in O_{N,\epsilon}$, $\mu_h(x, dy)$ is a positive Borel measure.

Proof. We have to show that there exists $M \in \mathbb{N}$, s.t. for any u non negative

$$T_h^M u(x) \geq c_0 h^{-Nd} \int_{O_{N,\epsilon}} u(y) \varphi_N d \left(\frac{x - y}{c_1 h} \right) dy.$$

To simplify, replace $O_{N,\epsilon}$ by \mathbb{R}^{Nd}, then $M = N$ works since

$$T_h^N u(x) \geq T_{1,h} \cdots T_{N,h} u(x) \geq C h^{-Nd} \int_{x - y \in [-h, h]^{Nd}} u(y) dy.$$
Denote $\tilde{\mathcal{E}}(\nu)$ the Dirichlet form on the torus Π^{Nd}. As a consequence of the preceding lemma we get

Lemma

There exist $C_0, h_0 > 0$ such that the following holds true for any $h \in]0, h_0]$ and any $u \in L^2(\mathcal{O}_N, \epsilon)$

$$\tilde{\mathcal{E}}_h(E(u)) \leq C_0(\langle (1 - T^M_h)u, u \rangle_{L^2(\mathcal{O}_N, \epsilon)} + h^2 \|u\|_{L^2}^2)$$

From this Lemma, we can prove the following:

Lemma

For any $0 \leq \lambda \leq \delta_0/h^2$, the number of eigenvalues of T_h in $[1 - h^2 \lambda, 1]$ is bounded by $C_1(1 + \lambda)^{Nd/2}$. Moreover, any eigenfunction $T_h(u) = \lambda u$ with $\lambda \in]1 - \delta_0, 1]$ satisfies the bound

$$\|u\|_{L^\infty} \leq C_2 h^{-Nd/2} \|u\|_{L^2}$$