Aircraft routing: complexity and algorithms

MPRO - Axel Parmentier

CERMICS

October 1, 2013
Table of contents

1 Problem statement
 - Aircraft and crew schedule problems
 - Aircraft routing problem statement

2 Equigraph problem
 - Aircraft routing as a graph cover problem
 - Equigraph properties

3 Polynomially solvable when fleet size is fixed

4 NP-completeness

5 Conclusion
Applications of Operations Research to Air Transport

Airline company management

- Aircraft and crew scheduling
 - Schedule design
 - Fleeting
 - Aircraft routing
 - Crew pairing
 - Matriculation
 - Crew scheduling

Revenue management

- Yield management
 - Fare classes
 - Overbooking
 - Varying prices
 - Go/No shows
 - etc.

Traffic management

- Air traffic management
- Airport management
The four successive aircraft and crew schedule problems

1. Schedule planning

Inputs:
OD time dependent demand estimations, previous schedule, etc.

Outputs:
A schedule
The four successive aircraft and crew schedule problems

1. Schedule planning
2. Fleet assignment

Fleet assignment

Inputs:
A schedule, flights cost (depending on demand and airplane type), fleet sizes

Outputs:
A fleeting
The four successive aircraft and crew schedule problems

1. Schedule planning
2. Fleet assignment
3. Aircraft routing

Aircraft routing

Inputs:
A one-fleet schedule, maintenance constraints, border conditions

Outputs:
A feasible routing
The four successive aircraft and crew schedule problems

1. Schedule planning
2. Fleet assignment
3. Aircraft routing
4. Crew pairing

Crew pairing

Inputs:
A one-fleet schedule, a routing, crew working rules

Outputs:
A feasible pairing
Feasible string and feasible routing

Day 1

Day 2

Day 3

Day 4

Paris

NY - Base

Flight
Feasible string and feasible routing

- Cover constraint
Feasible string and feasible routing

- Cover constraint
- Maintenance constraint
- Initial and final conditions
Aircraft routing problem

Instance:
- Horizon H, Time discretization T
- Set of airports A, Set of bases $B \subseteq A$
- Set of flights $F \subseteq (A \times [T] \times [H])^2$
- Maintenance constraint D
- Initial and final conditions S^o_a, T^o_a

Question:
- Does a feasible routing exist?
From aircraft routing to graph cover
Equigraph problem

Aircraft routing as a graph cover problem

Equigraph definition

An acyclic directed graph is an *equigraph* if its vertices can be partitioned in three sets:

- **Sources** $v \in S$ satisfying $\delta^-(v) = \emptyset$ and $\delta^+(v) \neq \emptyset$.
- **Internal vertices** $v \in I$ satisfying $\delta^-(v) = \delta^+(v) > 0$.
- **Sinks** $v \in S$ satisfying $\delta^-(v) \neq \emptyset$ and $\delta^+(v) = \emptyset$.

![Equigraph Definition Diagram](image-url)
Directed cuts and nights

A set $C \subseteq A$ is a **directed cut** if there exists a set $U \subseteq V$ such that $C = \delta^-(U)$ and $\delta^+(U) = \emptyset$.

A collection of d directed cuts $N_i = \delta^-(U_i)$ is a collection of **nights** if $T = U_d \subseteq U_{d-1} \subseteq \ldots \subseteq U_1$.
Equigraph routing problem

Instance:
- An equigraph \(((S, I, T), A)\)
- Night sets \(N_d\) and maintenance night sets \(M_d \subseteq N_d\)
- Maintenance constraint \(D\)
- Initial and final constraints \(S_s^o, T_t^o\)

Question:
- Does a feasible routing exist?

Theorem:
Aircraft routing problem and equigraph routing problem are equivalent.
Equigraph cover problem and greedy algorithm

Instance:
- An equigraph
 $((S, I, T), A)$

Solution:
- An arc cover of G by arc-disjoint $S - T$ paths.

Greedy algorithm lemma

If P is a path from S to T, then $G \setminus P$ is still an equigraph.
Equigraph characterization by directed cuts

A directed cut \(C = \delta^-(U) \) is *terminal* if \(T \subseteq U \).

Characterization

\(G \) is an equigraph \(\iff \) All terminal directed cuts have the same cardinal \(|S| \)

Proof.

\(\Rightarrow \) Let \(P \) be a source sink path, then \(|P \cap C| = 1 \)

\(\Leftarrow \) Consider a vertex \(v \) such that \(\delta^+(v) \neq \delta^-(v) \) and maximal directed cuts \(\delta^-(U) \) and \(\delta^-(U \cup \{v\}) \)

\(\square \)
Aircraft routing problem complexity

Theorem

Aircraft routing problem is polynomial when fleet size k is fixed. It can be solved in $O(|F|D^k)$.

Theorem

Aircraft routing problem is NP-complete in the general case.
Equigraph routing problem – Equigraph coloring problem

Instance:
- An equigraph \(((S, I, T), A)\)
- Night sets \(N_d\) and maintenance night sets \(M_d \subseteq N_d\)
- Maintenance constraint \(D\)
- Initial and final conditions \(S^o, T^o\)

Question:
- Does a feasible routing exist?
Equigraph routing problem – Equigraph coloring problem

Instance:
- An equigraph \(((S, I, T), A)\)
- Night sets \(N_d\) and maintenance night sets \(M_d \subseteq N_d\)
- Maintenance constraint \(D\)
- Initial and final constraints \(S_s^o, T_t^o\)

Question:
- Does a feasible coloring exist?

Theorem:
- Aircraft routing \(\Leftrightarrow\) Equigraph coloring
Proposition: feasible coloring characterization

A coloring is feasible if and only if it satisfies the following properties:

1. **D colors:** $c : A \rightarrow [D]$.

2. **Border conditions:**
 - if s is a source, then $|c^{-1}(d) \cap \delta^+(s)| = S^d_s$ for all $d \in [D]$,
 - if t is a terminal, then $|c^{-1}([d]) \cap \delta^-(t)| \geq \sum_{o=1}^{d} S^d_t$

3. **Color changes happen at nights.**
 - if $a \in B$ is the successor of a maintenance night arc, then $c(a) = 1$
 - if $\delta^-(v) \subseteq (\cup_o N^o) \setminus B$, then $|\delta^-(v) \cap c^{-1}(d)| = |\delta^+(v) \cap c^{-1}(d + 1)|$ for $d \in [D - 1]$
 - if $v \in A \setminus \cup_o N^o$, then $|\delta^-(v) \cap c^{-1}(d)| = |\delta^+(v) \cap c^{-1}(d)|$ for $d \in [D]$
Polynomially solvable when fleet size is fixed

D-graph

![Diagram of D-graph with non-maintenance and maintenance night arcs, and labels o = 1, 2, 3.]
D-graph path

A path in the D-graph is a feasible path in the original graph.
Polynomially solvable when fleet size is fixed

Simplified D-graph

![Diagram of a simplified D-graph with nodes and edges labeled $o = 1$, $o = 2$, and $o = 3$.]
Directed ordering

An ordering is a *Directed ordering* if

\[(v_i \rightarrow v_j) \Rightarrow v_i \prec v_j\] \hspace{1cm} (1)
Pebbling game

Game goal:
Move k identical pebbles from the source configuration to the sink configurations set using legal moves.

Vertices are enumerated using a level-respecting ordering. For each vertex u, one legal move is done:

1. Pebble initially on u_{d_u} can be moved to v_{d_v} if (u_{d_u}, v_{d_v}) is in G_D

2. Exactly one copy of each $a \in \delta^-(v)$ is traversed by a pebble.

Lemma

Pebbling game \Leftrightarrow Equigraph coloring can be won is feasible

Initial position
Final position
Unmoved pebble
Polynomially solvable when fleet size is fixed

Pebble configurations

Directed ordering: a set of induced subgraphs $G_i = (V_i, A_i)$ where $V_i = \{v_j | j \geq i\}$

Number of pebbles on v

- Before playing v_i: $|\delta^-(G)(v)| - |\delta^-(G_i)(v)|$
- After playing v_i: $|\delta^-(G)(v)| - |\delta^-(G_{i+1})(v)|$
Algorithm complexity

The configuration graph G_C is defined as follows:

- Vertices V_C: Pebble configurations
- Arcs A_C: Legal moves. $|A_C| \leq |V| \cdot D^k$

A path from the source configuration to the sink configurations set gives a solution to the pebbling game

Theorem

Aircraft routing problem is polynomial when k is fixed. Pebbling game algorithm gives a solution in $O(|F| \cdot D^k)$

Proof.

A path finding algorithm is linear in the number of arcs in an acyclic directed graph.
NP-completeness

Theorem
Aircraft routing is NP-complete

Proof.
Reduction from the two commodity arc disjoint paths on acyclic directed graph.

\(S_1 \) \(S_2 \) \(s_1 \) \(s_2 \) \(t_1 \) \(t_2 \) \(T_1 \) \(T_2 \)

- Arcs of initial graph \(H \)
- Initial and terminal arcs
- Balance arcs to obtain an equigraph
Research actually performed

- Generalized framework (network graph / state graph)
 - Crew pairing
 - Aircraft routing with delay
- Integer linear program with fewer variables
- Statistical treatment on delay
- Simultaneous aircraft routing and crew pairing