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Abstract

This paper is intended to be an introductory survey on credit risk models for multiname

products. We first present the intensity models for single defaults which leads up to the copula

model. We hint at its limits, especially concerning the dependence dynamics between defaults that

it induces. As an alternative, we consider loss models and present several reduced form models

that are designed to have known distributions through their Fourier transform. Last, we focus on

two forward loss models whose principle is to model directly the future loss distributions rather

than the loss itself. This simultaneous presentation makes appear similarities and differences

between them.
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Introduction

Let us begin with a short introduction to the credit risk market. Credit derivatives are
financial products that bring to their owner, under some pre-specified conditions, a cash
protection when default events occur. A default event is either the bankruptcy of a financial
entity or its inability to reimburse its debt. In general, we divide these derivatives into
two categories. The first category consists in the single-name credit derivatives that are
products that deal with only one default. The most widespread product that belongs to
that category is the Credit Default Swap (CDS for short). Let us describe here briefly
its mechanism. The owner of a CDS will receive a cash protection when a firm defaults,
if this happens before the date of maturity. This maturity and the default entity are of
course defined at the beginning of the CDS. In exchange, he will pay to the protection
seller regular payments until the default or if it does not happen until the maturity. From
a practical point of view, these products are well adapted if one has a strong exposure to an
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identified bankruptcy. However in general, financial actors have diversified investments and
are naturally exposed to many defaults. They would prefer to buy directly a product that
takes into consideration their whole aggregated default exposure, instead of buying many
single-name products. This motivates the other category of products, the multiname credit
derivatives whose payment structure depends on many defaults. The most representative
products of this category are the Collateralized Debt Obligations (CDO). For the owner,
it mainly consists of being reimbursed of its loss generated by bankruptcies when its total
loss due to defaults is between two prespecified values. In exchange, he has to give regular
payments that are proportional to the maximal cash protection that he could expect in
the future from the CDO contract. Multiname products such as CDOs are thus financial
tools that allow to be hedged according to a certain level of loss, without specifying a priori
which entities will default. Therefore, they are really fitted to control one’s exposure to
defaults. All these products were originally dealt over the counter. This is still the case for
bespoke products. Nonetheless, some of them such as CDS on large companies and CDO
on type loss have been standardized in a recent past and are traded on a market. We will
give below a precise description of these CDS and CDO.

Now, let us think about the two categories mentioned above in term of information.
It is well-known that market prices reflect some information on the economy, so what
kind of information could we grasp from the prices of single-name and multiname credit
derivatives products? Single-name prices will inform on the default probability of one
firm in the future and, through this way, on the health of that firm. Of course, the more
prices we have on a default, the more we know about its distribution and its fluctuation.
Multiname prices clearly include too that information for each underlying default. But they
also bring information on the dependence between underlying defaults. This is related to
another risk called credit risk contagion, that is the risk of interdependent failures. Though
being very simple, it is interesting to keep in mind this interpretation of prices through
information when modelling. This will indeed shed light on important issues for calibration
and pricing. For example, it helps to understand which product can be used to calibrate
a parameter or what are the products that can be priced within one model.

Now we would like to hint at the specificities of the credit risk market and especially
their implication when modelling. First of all, it is intrinsically different from the other
markets because the underlyings are unpredictable discrete events while usually under-
lyings are nonnegative paths. Obviously, the prices observed on the credit risk market
are nonnegative paths that could each be modelled as a diffusion with jumps as on the
other markets. Doing this, it would be however hard to catch the dependence between
the prices of two products taking into account the same underlying default. Indeed, pay-
off structures are often directly constituted from the discrete default events. This is why
modelling directly default events is an important issue to get consistency between prices.
Another important feature of the credit risk market is that it is a rather young market.
Therefore, there are still few products that are quoted on the market. It has to be taken
into consideration because it means that we cannot fit a model with too many refinements.
A last important feature is the similitude between the credit derivatives payoff and the
fixed-income products. This is not really a blind chance because they are often comple-
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mentary such as bonds and CDS (for a more detailed discussion on this, see Brigo and
Mercurio [4]). As a consequence, many approaches coming from the fixed-income world
have been adapted to credit risk as we will see here.

The goal of this paper is to give an overview of the modelling in credit risk when
multiname products are considered. In a first part, we introduce the copula model that
arises naturally once we start from intensity models for the single-name defaults. Then,
we point out the drawbacks of this approach and motivate the introduction of loss models.
In the second part we focus on loss models whose dynamics has a reduced-form. In the
third part, we present two forward-loss models that, though being close in their conception,
present nonetheless some differences. We hope that our parallel description will enlighten
this and thus help to understand their mechanism. Last, we briefly point out the limits of
the loss models presented here and state some main challenges that remain to address.

Through all these models, we will consider the same probabilistic background. We will
indeed assume that all the market events are described by the probabilistic filtered space
(Ω, (Gt)t≥0,G, P). Here, as usual, Gt is the σ-field that describes all the future events that
can occur before time t and G describes all the future events. We also assume that P

is a martingale measure. It means that prices of future cash flows are (Gt)-martingales
under P, and practically that prices can be computed through expectations. We will
consider m ≥ 1 defaultable entities and name τ 1, . . . , τm their time of default. We assume
they are positive (Gt)-stopping times. We will suppose also that it exists a subfiltration
(Ft)t≥0 that describes all default-risk free assets such as default-risk free zero-coupon bonds
that pay with certainty a nominal value at a fixed maturity. These are products that give
with certainty a unit payment at a fixed maturity. Let us introduce also some other
standard notations. For j ∈ {1, . . . , m}, let us denote (Hj

t )t≥0 the filtration engendered by
(τ j ∧ t)t≥0 and (F j

t )t≥0 = (Ft ∨ Hj
t )t≥0. We also use the notation F = ∨

t≥0
Ft, F

j = ∨
t≥0

F j
t

and so on. Last, we will assume that

Gt =
m
∨

j=1
F j

t ,

i.e. the market events only come from the default-free assets and the default times τ 1, . . . , τm.

1 The copula model

In that section, we will present the copula approach for multiname modelling. We will also
introduce CDS and CDO payoffs and explain how in practice this model is fitted to market
data. Let us first begin with the single default products.

1.1 Default intensity models and calibration to CDS

Intensity models (or reduced-form default models) assume that the default is explained by
an exogenous process that is called “intensity of default”.
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Definition 1.1. Let us consider τ : Ω → R+ a positive random variable. We will say
that τ follows a default intensity model with respect to the filtration (Ft)t≥0 if it exists a
nonnegative càdlàg process (λt, t ≥ 0) that is (Ft)-adapted and a random variable ξ that is
independent from F and follows an exponential law of parameter 1 such that:

τ = inf{t ≥ 0,

∫ t

0

λsds ≥ ξ}.

The process (λt, t ≥ 0) is called the extended intensity of the default τ .

Usually, we assume moreover that the extended intensity satisfy the two following
properties:

∀t ≥ 0, P(Λ(t) < +∞) = 1 and P( lim
t→+∞

Λ(t) = +∞) = 1,

where Λ(t) =
∫ t

0
λsds. They are in general satisfied by most of the intensity models

proposed in the literature. If the first one did not hold, this would mean since {Λ(t) =
+∞} ⊂ {τ ≤ t} that Ft can provide information on the default time for some t > 0. This
is in contradiction with the modelling assumption that (Ft)t≥0 describes only the default-
risk free world, and we prefer in general to avoid it. The second property just means that
every entity will collapse someday.

In all the Section 1, we will assume that τ 1, . . . , τm follow an intensity model with
respect to (Ft)t≥0 and we will denote λ1

t , . . . , λ
m
t their respective intensities and ξ1, . . . , ξm

the associated exponential random variables.
A Credit Default Swap is a product that brings a protection against the default of a firm

during a fixed period [T0, Tn]. The protection buyer must in exchange at some pre-defined
maturities T1, . . . , Tn pay an amount that is usually proportional to the time elapsed since
the last maturity. We denote by T = {T0, T1, . . . , Tn} the maturities that define a CDS
contract, αi = Ti − Ti−1 and D(t, T ) the discount factor between t and T (t < T ) that is
assumed FT -measurable. For j ∈ {1, . . . , m}, we also name Lgd

j ∈ [0, 1] the loss fraction
engendered by the default τ j and assume it deterministic. Within this framework, the
payoff of a CDS on τ j at time T0 reads (written for the protection seller):

(
n∑

i=1

D(T0, Ti)αiR1τ j>Ti

)

+ D(T0, τ
j)R(τ j − Tβ(τ j)−1)1τ j≤Tn

− Lgd
jD(T0, τ

j)1τ j≤Tn

where β(t) is the index such that t ∈ (Tβ(t)−1, Tβ(t)]. Here, R denotes the CDS rate. In
practice it is fixed such that the contract is fair for the protection buyer and the protection
seller. The payments are usually made quarterly and the standard final maturities are one,
three, five, seven and ten years. Here, we have neglected the counterparty risk, that is the
risk that one of the two protagonists may default during the contract.

Let us assume now that T0 = 0 (the current time) and that we have at our disposal
market prices of the fair CDS rate on each default τ j. Then, we can use these data to
calibrate the intensities. More precisely, under the intensity model, the fair CDS rate is
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given by (see for example [3])

Rj(T ) =
Lgd

j
E[D(0, τ j)1τ j≤Tn

]

E[
∑n

i=1 D(0, Ti)αi1τ j>Ti
+ D(0, τ j)(τ j − Tβ(τ j)−1)1τ j≤Tn

]
(1)

=
Lgd

j
E[
∫ Tn

0
D(0, t) exp(−Λj(t))λj

tdt]
∑n

i=1 E[D(0, Ti) exp(−Λj(Ti))]αi + E[
∫ Tn

0
D(0, t)(t − Tβ(t)−1)λ

j
tdt]

where Λj(t) =
∫ t

0
λj

sds. Therefore, specifying a parameterized model for the extended
intensities λj and a model for the discount factors, we are able to fit the prices given by
the market. This is the case for example if one assumes that intensities are deterministic
and piecewise linear or follow the SSRD model described in [3]. Thus, in a general manner,
intensity models are often thought to be tractable when pricing the single-name products.

1.2 Dependence between defaults and calibration to CDO

The thresholds ξ1, . . . , ξm that trigger the defaults each follow an exponential law of pa-
rameter 1. Therefore, the random variables exp(−ξ1), . . . , exp(−ξm) follow an uniform
distribution on [0, 1].

Definition 1.2. Let m ≥ 2. The cumulative distribution function of a random variable
vector (U1, . . . , Um)

(u1, . . . , um) ∈ [0, 1]m 7→ P(U1 ≤ u1, . . . , Um ≤ um)

each coordinate of which follows an uniform distribution on [0, 1] is called a (m-dimensional)
copula.

Since we focus on credit risk issues, we will not go beyond this copula definition and we
refer to the paper of Embrechts, Lindskog and Mc Neil [8] for a nice introduction to copula
functions and dependence modelling. For a further reading on this topic, we mention the
book of Nelsen [15] and hint at a recent development made by Alfonsi and Brigo [3] on a
tractable copula family.

We will denote C the copula that is the cumulative distribution function of the vector
(exp(−ξ1), . . . , exp(−ξm)). Let us remark that for t1, . . . , tm ≥ 0, we have

P(τ 1 ≥ t1, . . . , τ
m ≥ tm|F) = P(e−ξ1

≤ exp(−Λ1(t1)), . . . , e
−ξm

≤ exp(−Λm(tm))|F)

= C(exp(−Λ1(t1)), . . . , exp(−Λm(tm))).

Now, let us turn to the Collateralized Debt Obligation and describe a synthetic payoff.
To understand its practical interest in terms of hedging, we suppose that we have sold
protections against defaults τ 1, . . . , τm through CDS contracts with the same schedule of
payments T = {T0, . . . , Tn}. We assume that the number of CDS sold is the same for each
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underlying default, and our loss due to the bankruptcies at time t is thus proportional to
the loss process

L(t) =
1

m

m∑

j=1

Lgd
j1τ j≤t. (2)

Here, we have normalized the loss process (L(t), t ≥ 0) in order to have L(t) = 1 in the
worst case (i.e. Lgd

j = 1 for all j and every default before t). Let us assume for example
that we do not want to undergo a loss that exceeds 3% of the largest loss that we may have.
To do so, we conclude a contract with another firm that will reimburse the loss undergone
above 3% (i.e. when L(t) ≥ 0.03) in exchange of regular payments. Such contract is
called the [3%, 100%] tranche CDO on the basket loss process (L(t), t ≥ 0). Most often in
practice, tranches are finer (for example [3%, 6%], [6%, 9%],...) and bring protection when
the relative loss (L(t), t ≥ 0) is within two values. Let us now describe precisely the payoff
structure of a CDO tranche [a, b] for 0 ≤ a < b ≤ 1. We introduce for that scope the
function

∀x ∈ [0, 1], Hb
a(x) =

(x − a)+ − (x − b)+

b − a
.

At time T0, the cash flow value of a tranche CDO [a, b] with payment schedule T is for the
protection seller:

n∑

i=1

αiR[1 − Hb
a(L(Ti))]D(T0, Ti) +

∫ Tn

T0

R(t − Tβ(t)−1)D(T0, t)d[Hb
a(L(t))]

−

∫ Tn

T0

D(T0, t)d[Hb
a(L(t))]

Here, R is called the rate of the CDO tranche [a, b]. Let us observe here that the regular
payments are, as for the CDS, proportional to the elapsed time since the last maturity.
For the CDO tranche, they are also proportional to the maximal loss that remains to
cover within the tranche. For few years, standard CDO tranches have been quoted on the
market. As an example for the iTraxx index, there are m = 125 names and the quoted
tranches are [0%, 3%], [3%, 6%], [6%, 9%], [9%, 12%] and [12%, 22%]. The final maturities
are three, five, seven and ten years and the payments are quarterly. The riskiest tranche
([0%, 3%] for the iTraxx) is usually called equity tranche, the intermediate ones are called
mezzanine and the less risky ([12%, 22%] for the iTraxx) is called senior tranche. Except
for the equity tranche (for which an upfront payment value is quoted), the market quotes
the rate Rb

a(T ) that makes the contract fair.
Now, we turn to the valuation of that rate and assume that T0 = 0, which means that

the tranche starts at the current time. Under our assumption, the fair rate value is given
by

Rb
a(T ) =

E

[
∑n

i=1 αi[1 − Hb
a(L(Ti))]D(0, Ti) +

∫ Tn

0
(t − Tβ(t)−1)D(0, t)d[Hb

a(L(t))]
]

E

[∫ Tn

0
D(0, t)d[Hb

a(L(t))]
] . (3)
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Let us explain how we can compute this price if we know the intensities dynamics (λj
t , t ≥ 0)

and the copula C. We first calculate the above conditional expectations given the σ-
field F . An integration by parts on the integrals gives, for example on the denominator
∫ Tn

0
D(0, t)d[Hb

a(L(t))] = D(0, Tn)Hb
a(L(Tn)) −

∫ Tn

0
Hb

a(L(t))d[D(0, t)] and thus

E

[∫ Tn

0

D(0, t)d[Hb
a(L(t))]

∣
∣
∣
∣
F

]

= D(0, Tn)E[Hb
a(L(Tn))|F ] −

∫ Tn

0

E[Hb
a(L(t))|F ]d[D(0, t)]

since D(0, t) is F -measurable. Therefore, it is sufficient to know for any t the law of L(t)
conditioned to F to calculate the expectations that define each tranche. This is the case
since we have

∀x ∈ [0, 1], P(L(t) ≤ x|F) =
∑

J⊂{1,...,m}
s.t. 1

m

P

k∈J Lgdk≤x

P(∀j ∈ J, τ j ≤ t, ∀j 6∈ J, τ j > t|F) (4)

and (sieve formula)

P(∀j ∈ J, τ j ≤ t, ∀j 6∈ J, τ j > t|F) =
∑

K⊂J

(−1)#J−#K
P(∀j ∈ K, τ j > 0, ∀j 6∈ K, τ j > t|F)

=
∑

K⊂J

(−1)#J−#KC(e−116∈KΛ1(t), . . . , e−1m6∈KΛm(t)).

Then, we can calculate the expectation E

[∫ Tn

0
D(0, t)d[Hb

a(L(t))]
]

through a Monte-Carlo

method, and in the same manner the other expectations can be computed to deduce the
fair price Rb

a(T ). However, for sake of simplicity, one assumes often deterministic extended
intensities and discount factors when computing CDO prices to avoid this last step that
might be time-consuming. This is not irrelevant because the main risk that determines the
price of the CDO is the interdependence of the defaults. Fluctuations of default intensities
and risk-free interest rates play a minor role.

The formula above implicitly requires that we are able to compute the value of a
copula function although this is not always a trivial issue. For the copulas called factor
copulas (such as the Gaussian copulas), Laurent and Gregory [13] and Hull and White [11]
have proposed two rather efficient numerical integration methods. Both methods first
compute the law of L(t) conditioned to the factor(s) that define the copula C and then
use a numerical integration with respect to the factor(s). This conditioned law is obtained
through its Fourier transform in [13] and is approximated directly using a so-called “bucket
method” in [11]. Let us finally give standard special cases for which calculations above are
much simpler. First, if one assumes that the loss given defaults are identical (Lgd

j = Lgd),
the loss is proportional to the number of defaults (and the sets J in (4) are simply #J ≤
mx/Lgd). Moreover, if the copula is symmetrical in the following sense: C(u1, . . . , um) =
C(uσ(1), . . . , uσ(m)) for any permutation σ, and if the defaults have the same extended
intensity (λt, t ≥ 0), we have a simpler formula to characterize the loss distribution:

∀j ∈ {0, . . . , m}, P(L(t) =
j

m
Lgd|F) =

(
m

j

) j
∑

k=0

(
j

k

)

(−1)j−kC(1, . . . , 1
︸ ︷︷ ︸

k times

, e−Λ(t), . . . , e−Λ(t)).
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1.3 Copula model and default intensity jumps

Here we would like to hint at the evolution of the rate of default when defaults occur. To
that purpose, we need to introduce another definition of the intensity than the extended
intensity introduced before.

Definition 1.3. Let us consider (G ′
t)t≥0 a subfiltration of (Gt)t≥0 and τ a (G ′

t)-stopping

time. We will say that (λ
τ |G′

t , t ≥ 0) is the intensity of τ with respect to the filtration
(G ′

t)t≥0 if the two following properties hold:

1. (λ
τ |G′

t , t ≥ 0) is a (G ′
t)-adapted càdlàg process,

2. 1τ≤t −
∫ t

0
λ

τ |G′

s ds is a (G ′
t)-martingale.

The intuitive meaning of the intensity is the following. Let us assume that we ob-
serve some evolution and have access to the information modelled by (G ′

t)t≥0. From the
martingale property, one has

P(τ ∈ (t, t + dt]|G ′
t) = E

[∫ t+dt

t

λτ |G′

s ds
∣
∣
∣G ′

t

]

∼
dt→0

λ
τ |G′

t dt

and thus λ
τ |G′

t is the rate of probability that τ occurs in the immediate future knowing G ′
t.

In particular, λ
τ |G′

t = 0 on {τ ≤ t} and for (G ′
t)t≥0 = (Ft)t≥0∨σ(τ ∧ t, t ≥ 0), λ

τ |G′

t coincides
with the extended intensity λt for t < τ .

Let us turn now to our model for the defaults τ 1, . . . , τm. It is not hard to see that

for any j ∈ {1, . . . , m}, λ
τ j |Fj

t = λj
t1τ j>t is the intensity of τ j with respect to (F j

t )t≥0. It
is equal to the extended intensity until the default occurs and then jumps to 0. This is
the rate of default of someone that would have access only to the information modelled

by (F j
t )t≥0. However, one has in general access to the full information Gt =

m
∨

j=1
F j

t and

would like to know the intensity with respect to it. We have

λ
τ j |G
t = lim

dt→0

P(τ j ∈ (t, t + dt]|Gt)

dt

=
∑

K⊂{1,...,m}−{j}

1Deft(K) lim
dt→0

1

dt
P(τ j ∈ (t, t + dt]|Ft ∨ Deft(K) ∨ ∀k ∈ K, τ k)

where Deft(K) := {∀k ∈ K, τ k ≤ t, ∀k 6∈ K, τ k > t}. Let us consider for example j = 1
and suppose that no default has occurred at time t (K = ∅). Then we have

P(τ 1 ∈ (t, t+dt]|Ft∨Deft(∅)) = E(C(e−Λ1(t),...,e−Λm(t))−C(e−Λ1(t+dt),e−Λ2(t),...,e−Λm(t))|Ft)

C(e−Λ1(t),...,e−Λm(t))
and there-

fore

λ
τ1|G
t = λ1

t e
−Λ1(t) ∂1C(e−Λ1(t), . . . , e−Λm(t))

C(e−Λ1(t), . . . , e−Λm(t))
on Deft(∅).

Let us suppose now that τm is the only one default that has occurred before time t at
time tm (K = {m}). We have:
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P(τ 1 ∈ (t, t + dt]|Ft ∨Deft({m}), τm = tm) = 1− P(τ 1 > t + dt|Ft ∨Deft({m}), τm = tm)

= ∂mC(e−Λ1(t),...,e−Λm−1(t),e−Λm(tm))−∂mC(e−Λ1(t+dt),...,e−Λm−1(t),e−Λm(tm))

∂mC(e−Λ1(t),...,e−Λm−1(t),e−Λm(tm))
and therefore

λ
τ1|G
t = λ1

t e
−Λ1(t) ∂1∂mC(e−Λ1(t), . . . , e−Λm−1(t), e−Λm(tm))

∂mC(e−Λ1(t), . . . , e−Λm−1(t), e−Λm(tm))
on Deft({m}).

We can through this way calculate explicitly the intensity λ
τ1|G
t on the event Deft(K) for

each K, if one assumes that the copula function is regular enough. We refer to the paper
of Schönbucher and Schubert [17] for further details.

Let us make now some comments on these calculations. First, we have seen that even
without default, the current intensity of each default time depends on the copula function.
This means in practice that even single-name products such as a CDS that starts at a
future date contain some risk of interdependence of defaults. Secondly, the formulas that

define the intensity λ
τ1|G
t are not the same on Deft(∅) and Deft({m}): there is therefore

in general a jump of this intensity when the first default τm occurs. In a general manner,

λ
τ1|G
t jumps at each default time until it vanishes when τ 1 occurs itself. Intuitively, jumps

are all the more significant as the dependence between the default that happens and τ 1 is
strong.

1.4 Strength and weakness of the copula model

The main strength of the copula approach is undoubtedly its ability to catch the infor-
mation from the CDS market. Let us suppose that for each default that defines the loss
process L(t), one or more CDS are traded. We can then easily calibrate a deterministic
intensity that fits exactly the prices observed (see [3] for details). If one assumes that the
copula that describes the dependence between the defaults belong to a parametrized family
(e.g. the Gaussian copula family), one can then fit its parameters from the CDO market
prices since we are able to compute these prices in a quite efficient manner. With this
calibrated model, we can then price every credit risk products that depend on the defaults
that define the loss L(t). Thus, one has a model that is at first sight coherent with the
single risk and multiname risk markets and allow to price a rather broad set of credit risk
products.

However, the situation is unfortunately not so idyllic. First of all we have in practice
at most five CDO prices for each tranche to calibrate the copula function. It is then
likely to have a copula family with few parameters, otherwise our calibration would not
have a deep meaning. For a family parametrized by one real number, each tranche price
corresponds “ideally” to a unique parameter. In general, this property does not hold, that
is why in the one-factor Gaussian copula model, the base correlation mechanism has been
introduced to retrieve this likely property. However in that case, the fitted parameter (the
base correlation) depends in practice strongly on the tranche and the maturity. This skew
observed shows that there is no one-factor Gaussian copula matching the prices on the
market. The base correlation being a rather intuitive parametrization, the skew is used
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in practice to understand how the market anticipates the future losses. Many works have
been done to identify a copula family or an extension to the copula model that depends on
few parameters and could approximate well the tranche prices observed on the market. We
mention here the work of Burtschell, Gregory and Laurent [7] and, less directly connected,
the paper of Hull and White [12].

Nonetheless, the copula model presents some weaknesses that are deeper as only the
base correlation skew and the calibration problem. The main one is that the copula model
freezes the evolution of the dependence between the defaults. To illustrate this, let us
assume that the defaults indeed follow the copula model with stochastic default intensities
from time 0. Let us suppose for example that no default has been observed up to time t.
Using the lack of memory property, the random variables ξj − Λj(t) follow an exponential
law of parameter 1 and we name Ct the copula defined as the cumulative distribution
function of (e−(ξ1−Λ1(t)), . . . , e−(ξm−Λm(t))). Then, we have for t1, . . . , tm > t:

P(τ 1 > t1, . . . , τ
m > tm|F ∨ {∀j, τ j > t}) =

C(exp(−Λ1(t1)), . . . , exp(−Λm(tm)))

C(exp(−Λ1(t)), . . . , exp(−Λm(t)))

= Ct(exp(−(Λ1(t1) − Λ1(t))), . . . , exp(−(Λm(tm) − Λm(t)))).

The copula Ct is with this formula entirely determined by the initial copula C and the
stochastic evolution up to time t of the intensities that describe the single defaults (more
precisely Λ1(t), . . . , Λm(t)). We can have analogous formulas when defaults occur before t.
There is therefore no way through this model to get an autonomous evolution of the
copula Ct and thus of the dependence between defaults. This does not seem to be realistic.
Moreover, one would like to use (as for other financial markets) further option prices such as
forward start contracts as a tool to catch the future evolution of the dependencies between
defaults as it is seen today by the market. In a general manner, the main advantage of
market calibration in comparison with the historical estimation is its ability to grasp the
market’s idea of the future trend: this is precisely what we cannot get within the copula
model since it fixes the future interdependence between defaults from initial time. And
there is no straightforward extension of this model that allows to get rid of this deficiency.

2 Reduced form loss models

An alternative to the copula model is to try to model directly the loss process (L(t), t ≥ 0)
without taking into consideration the individual default times. This is a rather natural
idea since CDO are products that depend on the defaults only through this process. In
this section we give examples of reduced form loss models coming from the works of Errais,
Giesecke and Goldberg [9, 10] and Brigo, Pallavicini and Torresetti [5]. These examples,
as we will see, belong to the general class of Affine models [9] for which the law of L(t)
is known analytically or semi-analytically for each time t through its Fourier transform.
This ensures a rather time-efficient calibration to CDO prices. Last, we hint at the random
thinning procedure introduced in [10] that provides a mean to get single-name intensities
that are consistent with the loss model.
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2.1 Generalized Poisson Loss model (Brigo and al. [5])

We begin our little tour of reduced form models with the Generalized Poisson Loss (GPL)
model because it relies on Poisson processes that are simple and well-known processes. Let
us first assume for sake of simplicity that the loss given the default of each name are all
equal to Lgd ∈ (0, 1] and deterministic. Thus, the loss is proportional to the number of
defaults N(t) =

∑m
j=1 1τ j≤t:

L(t) =
Lgd

m
N(t).

Let us assume that there are k ≤ m independent standard Poisson processes M1(t), . . . , Mk(t)
with intensity 1 on the probability space (Ω,G, P). We suppose that we have k intensity
processes λN1

t , . . . , λNk

t that we suppose adapted to the riskless filtration (Ft)t≥0 and define

the cumulative intensities ΛNl(t) =
∫ t

0
λNl

s ds for l ∈ {1, . . . , k}. Last, we define the time
inhomogeneous Poisson processes

∀l ∈ {1, . . . , k}, Nl(t) = Ml(Λ
Nl(t))

that we assume to be adapted with respect to the filtration (Gt)t≥0. Let us consider k
integers such that 1 ≤ j1 < j2 < · · · < jk ≤ m. The GPL model assumes that the number
of defaults at time t is given by

N(t) = min(Zt, m) where Zt =
k∑

l=1

jlNl(t).

Thus, it lets the possibility of simultaneous defaults: a jump of Nl(t) induces exactly jl

defaults (if Zt ≤ m). That models in a rather extreme way the dependence between
the defaults. One knows then exactly the distribution of Zt given F through its Fourier
transform using the independence of the Poisson processes Ml:

∀u ∈ R, E[eiuZt|F ] =
k∏

l=1

exp[ΛNl(t)(eijlu − 1)] = exp

[
k∑

l=1

ΛNl(t)(eijlu − 1)

]

.

Let us now turn to the valuation of the CDO rate Rb
a(T ) defined in (3). We are

exactly in the same situation as for the copula model since we know the distribution
of the loss L(t) = Lgd

m
min(Zt, m) given F . Therefore, if one specifies a model for the

discount factors and the intensities λNl(t) we can once again calculate the expectations
in (3) using integrations by parts and conditioning first to F . Typically, one assumes
in a first implementation of this model that the discount factors and the intensities are
deterministic: this allows to compute in a rather efficient way the CDO rate value using an
inverse Fourier method. This is obviously an important point for calibration purpose to get
a reasonable computation time. A calibration procedure of this model to real CDO tranche
data is discussed in detail in [5]. It gives encouraging results: all tranche prices but the
long-term maturity CDO prices are fitted correctly. A little modification of the definition
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of the loss process (Lgd

m′ min(Zt, m
′) instead of Lgd

m
min(Zt, m) for m′ > m) is proposed in [5]

to correct this problem. Though, we lose through this way the interpretation of min(Zt, m)
as the number of defaults before t.

Last, we want to mention an easy extension to this model. As we have seen, the
main features of the GPL model are to allow multiple defaults and to have an analyti-
cally tractable loss distribution. The properties of the Poisson processes that are crucial
here are that they are unit-jump increasing processes whose Fourier transform is known.
Thus, one could extend the GPL model taking ∀l ∈ {1, . . . , k}, Nl(t) = M̃l(Λ

Nl(t)) where
the processes M̃l(t) are chosen to be independent unit-jump increasing processes with an
analytical formula for their Fourier transform u 7→ E[exp(iuM̃l(t))]. A possible way is to
take M̃l(t) = Ml(Sl(t)), where (Sl(t), t ≥ 0) is an increasing process independent from Ml.
In that case, the Fourier transform writes:

∀u ∈ R, E[exp(iuM̃l(t))] = E[exp(Sl(t)(e
iu − 1))].

If we take for Sl a Lévy subordinator such as an inverse Gaussian or a Gamma subordinator,
we have an analytical formula for it (see [5] for the Gamma case). This is also the case if
one assumes Sl(t) to be a primitive of a Cox-Ingersoll-Ross process, or more generally if
Sl(t) is a positive linear combination of these (independent) processes.

2.2 Hawkes process and affine point process loss model (Errais,

Giesecke and Goldberg [9, 10])

Contrary to the previous GPL model, the model proposed by Giesecke and Goldberg [10]
and detailed in Errais and al. [9] excludes the possibility of simultaneous defaults. To take
into consideration the contagion between defaults, they model directly the loss process as
a pure jump process whose jump intensity increases when defaults occur. Namely, they
model L(t) as a (Gt)-adapted Hawkes process. We consider here a particular case and
assume that it has an intensity of jumps that solves

dλL
t = κ(ρ(t) − λL

t )dt + δdL(t) with δ, κ, λL
0 ≥ 0, (5)

and a jump law distribution ν such that ν((0, 1/m]) = 1. This means that the instan-

taneous rate of jumps is lim
dt→0

P(L(t+dt)−L(t)>0|Gt)
dt

= λL
t and thus lim

dt→0

E[f(L(t+dt))−f(L(t))|Gt ]
dt

=

λL
t

(∫ 1/m

0
f(L(t) + x)ν(dx) − f(L(t))

)

for any bounded measurable function f . More pre-

cisely, the jump events (i.e. triggering and jump size) are supposed to be independent from
the riskless filtration (Ft)t≥0 and we assume the stronger condition:

lim
dt→0

E[f(L(t + dt)) − f(L(t))|Gt ∨ F ]

dt
= λL

t

(
∫ 1/m

0

f(L(t) + x)ν(dx) − f(L(t))

)

.

We also suppose that the process ρ(t) is positive and adapted to (Ft)t≥0. In [9], ρ(t) is
assumed to be deterministic, but we want to show here that it is easy to nest dependence
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with the riskless filtration. In a more general way, the other fixed parameters could have
been considered time-dependent and adapted to (Ft)t≥0 for what follows.

Through the choice of ν, this model let the possibility to have random recovery rate.
Taking identical deterministic recovery rate would lead to ν(dx) = δLgd/m(dx). Let us
remark also that the loss process is not bounded from above with this model. If it has
undesirable effects, one can cap it as for the GPL model. With the parametrization above,
the meaning of the parameters is rather clear: the intensity process has a mean-reversion
toward ρ(t) with a speed parametrized by κ. The parameter δ synthetizes the impact of a
default on the further bankruptcies.

Under that model, Errais and al. [9] have stated that one can calculate the Fourier
transform of the Loss distribution E[exp(iuL(t))|F ] solving numerically ODEs. This allows
to calculate as for the previous GPL or copula models the CDO rate value (3). More
precisely, we have the following result.

Proposition 2.1. Let us fix s ≥ t. Under the above setting, the Fourier transform of the
loss L(s) conditioned to Gt ∨ F is given by

∀u ∈ R, E[exp(iuL(s))|Gt ∨ F ] = exp(iuL(t) + a(u, t, s) + b(u, t, s)λL
t ) (6)

where the coefficient functions a(u, t, s) and b(u, t, s) are Fs-measurable and solve the fol-
lowing ordinary differential equations:

∂tb(u, t, s) = κb(u, t, s) + 1 −

∫

e(iu+δb(u,t,s))xν(dx) (7)

∂ta(u, t, s) = −κρ(t)b(u, t, s) (8)

with the final condition a(u, s, s) = 0 and b(u, s, s) = 0. When ρ is a deterministic function,
a(u, t, s) and b(u, t, s) are also deterministic.

This kind of result is standard and we just sketch the proof. The following process
(E[exp(iuL(s))|Gt ∨ F ], t ≤ s) is a (Gt ∨ F)-martingale. If (6) holds, one has

d exp(iuL(t) + a + bλL
t )

exp(iuL(t−) + a + bλL
t−)

= exp((iu + bδ)∆L(t)) − 1 + [∂ta + ∂tbλ
L
t + bκ(ρ(t) − λL

t )]dt

where ∆L(t) = L(t) − L(t−). It is a martingale increment if and only if

λL
t

(∫

e(iu+δb)xν(dx) − 1 + ∂tb − bκ

)

+ ∂ta + bκρ(t) = 0 a.s.,

and one deduces (7) and (8) since λL
t takes a.s. an infinite number of values.

Through this way, one can even get the Fourier transform of the joint law of J(t) :=
(L(t), N(t)), where N(t) denotes the number of jumps of the loss process up to time t.
This is done explicitly in the paper of Errais, Giesecke and Goldberg [9]. They introduce
in a more general manner d-dimensional affine point processes (J(t), t ≥ 0) for which the
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Fourier transform can be calculated in the same way as for the Hawkes process. Of course,
the Fourier transform of a sum of d-dimensional independent affine point process has
also a similar form. This broaden considerably the possible models for the loss process.
Within this framework, a time inhomogeneous Poisson process appears as a particular
one-dimensional affine point process, and the GPL model as a sum of one-dimensional
independent affine point processes. More generally, most of the extension of the GPL
model we have considered in the previous section can also be seen a sum of one-dimensional
independent affine point processes. They are interesting particular cases for which the
Fourier transform is known analytically and does not require to solve ODEs.

2.3 Loss models and single defaults

Now, we would like to conclude this section on the reduced form loss models giving some
clue on the natural question: once a loss model is given for L(t), can we find a procedure to
define the individual defaults τ 1, . . . , τm in a coherent manner with the loss process? This
might be of interest if one liked to price a credit risk product that relies on some of the
defaults that define L(t). This is the case for example of a CDO tranche whose underlying
loss brings on the default times τ 1, . . . , τ j with 1 ≤ j < m. This approach that consists in
first defining the aggregated loss and then the single defaults is called “top-down” in the
literature. Instead, in the copula model, we have a bottom-up approach: we first define
the single default events and then define the loss with the formula (2). We have not such
a problem of coherency.

We explain here the random thinning procedure that has been introduced by Giesecke
and Goldberg in [10]. Let us denote by N(t) =

∑

s≤t 1∆L(s)>0 the number of loss jumps
before time t. When N(t) ≤ m, one would like to assign to each jump one of the default
times τ 1, . . . , τm and we exclude then simultaneous defaults. Ideally, it would be nice to
have a direct relationship between N(t) and the single default indicators 1τ j≤t for j ∈
{1, . . . , m}. Giesecke and Goldberg [10] have investigated the following one called strong
random thinning:

1τ j≤t =

∫ t

0

ζj
sdN(s)

where the (ζj
t , t ≥ 0) are (Gt)-predictable processes satisfying some technical conditions.

However, as they show, this default representation is too strong and implies that one knows
before the next jump which name will default. This is rather unrealistic and one has to find
a weaker binding between the loss and the single defaults. The random thinning procedure
they propose binds the (Gt)-intensities of the single default to the (Gt)-intensity λN

t of the
counting process N(t). The last intensity is defined as the process such that:

N(t) −

∫ t

0

λN
s ds is a (Gt)-martingale.

In the Hawkes process loss model, this is also the intensity of jumps defined by (5). They
assume that there are (Gt)-adapted processes (ζ j

t , t ≥ 0) such that ζj
t λ

N
t is the (Gt)-intensity
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of the stopping time τ j according to definition (1.3). Let us remind that single intensities
vanish after their related default so that we may write ζ j

t = ζj
t 1τ j>t. Since min(N(t), m) =

∑m
j=1 1τ j≤t, the process

∫ t

0

∑m
j=1 ζj

s1τ j>sλ
N
s ds −

∫ t

0
λN

s 1N(t)≤mds is a (Gt)-martingale and
therefore we have necessarily:

m∑

j=1

ζj
t 1τ j>t = 1N(t)≤m. (9)

Reciprocally, if the processes (N(t), t ≥ 0) and (ζ j
t , t ≥ 0) are given and satisfy condi-

tion (9), it is easy to check that ζ j
t λ

N
t is the (Gt)-intensity of τ j if one assumes at each

jump that the default name is chosen independently according to the discrete probability
law (ζ1

t 1τ1>t, . . . , ζ
m
t 1τm>t) on {1, . . . , m}.

Let us give an example of processes (ζ j
t , t ≥ 0) that satisfy (9) and consider m pos-

itive deterministic functions zj(t) for j ∈ {1, . . . , m}. Then, one can simply chose ζ j
t =

zj(t)1
τj>t

Pm
j=1 zj(t)1

τj>t

on {N(t) < m} and ζ j
t = 0 on {N(t) ≥ m}. Through the random thinning

procedure, the law of τ j at time 0 is simply given by:

P(τ j ≤ t) = E

[∫ t

0

ζj
sλ

N
s ds

]

.

If one has a fast enough way to compute it, one can then calibrate the processes (ζ j
t , t ≥ 0)

using the single CDS rate prices (1). Let us suppose for example that the loss process
L(t) comes from an Hawkes process. If we assume deterministic recovery rates (ν(dx) =
δLgd/m(dx)) and cap the loss by Lgd, it has then exactly m jumps. One can then fit this
capped loss to the CDO prices and use the random thinning procedure to get a model
that is consistent with single-CDS and CDO data. If L(t) may have more than m jumps
(as for the general Hawkes process model) and is already calibrated to CDO prices, then
it will be still consistent to CDO and CDS prices if the expected loss beyond m jumps
at the larger final maturity Tmax is negligible. This will be mainly the case if the event
{N(Tmax) > m} is very rare. Otherwise, assigning a default name to each of the m first
jumps is not relevant.

Getting coherent single default events starting from the loss process is a current topic
of research. As an alternative to the random thinning, we cite here the recent work of
Brigo, Pallavicini and Torresetti [6] that consider another approach based on the Common
Poisson model [14] and extend their GPL model to take into account the single defaults.

3 Forward loss models

After having presented the copula model and some reduced form loss models, we conclude
our introduction to multiname credit risk modelling with the presentation of two forward
loss models proposed contemporaneously by Schönbucher [16] and Sidenius, Piterbarg and
Andersen [18]. Forward loss models are to reduced form models what Heath-Jarrow-Morton
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and Brace-Gatarek-Musiela models are to short interest rate models. In the fixed income
case, forward (short or LIBOR) rates are thus directly specified: these rates are mainly
the fair interest rates one should apply at a current time t for a future contract at time
T > t. The forward loss models that we consider here target to model how the future loss
distributions L(T ) is seen by the market at time t. Contrary to the previous models, the
loss itself is not directly modelled. We have decided to present here both models at the
same time with analogous notations to point out similarities and differences. We focus only
on the main construction steps of these models and refer to the original papers [16, 18] for
technical proofs and further developments. We keep the same filtered probability space as
for the previous model and make the models stick to it. Last, we will assume in this section
that the loss process is independent from the the interest rates so that the computation of
the CDO rates (3) is straightforward once we know the future loss distributions (and the
expected discount factors).

3.1 Schönbucher’s forward model [16]

3.1.1 Description of the loss

Here, we will assume that each default has a null recovery rate (Lgd = 1), so that the loss
process is given by

t ≥ 0, L(t) =
1

m

m∑

j=1

1τ j≤t (10)

and is thus normalised to 1. The law of L(T ) seen at time t ≤ T is described by π(t, T ) ∈
R

m+1 where πk(t, T ) = P(L(T ) = k/m|Gt) for k = 0, . . . , m. We have the following
straightforward properties:

(i) πk(t, T ) ≥ 0,

(ii)
∑m

k=0 πk(t, T ) = 1,

(iii) For each n ∈ {0, . . . , m}, T 7→ P(L(T ) ≤ n/m|Gt) =
∑n

k=0 πk(t, T ) is non-increasing,

(iv) πk(t, t) = 1{L(t)=k/m}.

These properties come immediately from the fact that (L(t), t ≥ 0) is an increasing (Gt)-
adapted process taking values in {0, 1/m, . . . , 1}. They are thus necessary arbitrage-free
conditions on π(t, T ).

Assumptions on the loss process (A.1). We assume that the loss process is defined
by (10), and therefore π(t, T ) satisfies properties (i-iv). Moreover, we assume that

T 7→ π(t, T ) is C1 and ∀k, πk(t, T ) > 0 =⇒ ∀T ′ ≥ T, πk(t, T
′) > 0. (11)

Under these assumptions (A.1), it is shown in [16] that there is a nondecreasing time-
inhomogeneous Markov chain (L̃t(T ), T ≥ t) on states {0, 1/m, . . . , 1} with transition
matrices (a(t, T ), T ≥ t) such that a(t, T ) is Gt-measurable and

∀T ≥ t, ∀k ∈ {0, . . . , m}, πk(t, T ) = P(L̃t(T ) = k/m|Gt). (12)
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The generator of (L̃t(T ), T ≥ t) writes for a bounded function f :

lim
dT→0

E

[

f(L̃t(T + dT )) − f(L̃t(T ))|GT

]

dT
=

m−1∑

k=0

1{L̃t(T )=k/m}

m∑

l=k+1

ak,l(t, T )

(

f(
l

m
) − f(

k

m
)

)

.

(13)
Mainly, this result says us that the Markov chain model with transition rates that are fixed
at time t (a(t, T ) ∈ Gt) is rich enough to represent the future marginal laws (π(t, T ), T ≥ t)
when the loss satisfies (A.1).

Reciprocally, if one starts from Gt-measurable transition rates a(t, T ), can we find a loss
process satisfying (A.1) that is consistent with (12)? I.e. such that

∀t ≥ 0, ∀T ≥ t, ∀k ∈ {0, . . . , m}, πk(t, T ) = P(L̃t(T ) = k/m|Gt) (14)

where (L̃t(T ), T ≥ t) is defined by L̃t(t) = L(t) and (13). If this holds, L(t + dt) and
L̃t(t + dt) have the same law conditioned to Gt, and we get from (13) taken at T = t

lim
dt→0

E [f(L(t + dt)) − f(L(t))|Gt]

dt
=

m−1∑

k=0

1{L(t)=k/m}

m∑

l=k+1

ak,l(t, t)

(

f(
l

m
) − f(

k

m
)

)

. (15)

Therefore the loss dynamics is fully characterized by the transition rates if the consistency
equality (14) holds. The idea of the Schönbucher’s model is to specify a dynamics for
the transition rates and identify conditions under which it exists a loss process that is
consistent with. The loss dynamics is then given by (15).

We will restrict the transition rate matrices that we consider. Indeed, it has been
shown in [16] that under additional assumptions on π(t, T ) that we do not specify here,
the Markov chain (L̃t(T ), T ≥ t) can be chosen to have only jumps of size 1/m. This
amounts to exclude simultaneous defaults after t. If these additional assumptions are not
satisfied, a result stated in [16] shows that one can however approximate closely the forward
loss distributions by a nondecreasing Markov chain with 1/m jumps. As a consequence, it
does not seem so much restrictive to focus on the transition matrices that allow only 1/m
jumps (ak,l(t, T ) = 0 for l ≥ k+2). We use then the shorter notation ak(t, T ) = ak,k+1(t, T )
for k < m and set am(t, T ) = 0.

Model principle: We model the dynamics for the transition rates ak(t, T ), k ∈
{0, . . .m− 1} and look for conditions under which it exists a loss process satisfying (A.1)
that is consistent in the sense of (14). The loss dynamics is then fully characterized by

lim
dt→0

E [f(L(t + dt)) − f(L(t))|Gt]

dt
=

m−1∑

k=0

1{L(t)=k/m}ak(t, t)

(

f(
k + 1

m
) − f(

k

m
)

)

. (16)

3.1.2 Consistency and option valuation

The model being precised, we would like to find forward rate dynamics for ak(t, T ) that
are consistent with the loss distribution in the sense of (14). To do so, one has first to
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compute P(L̃t(T ) = k/m|Gt) in function of the transition rates. We introduce as in [16]
Pk,l(t, T ) = P(L̃t(T ) = l/m|Gt, L̃t(t) = k/m). From (15), one gets the Kolmogorov equation
∂T Pk,l(t, T ) = Pk,l−1(t, T )al−1(t, T ) − Pk,l(t, T )al(t, T ). Since Pk,l(t, t) = 1l=k, we deduce

l < k, Pk,l(t, T ) = 0

l = k, Pk,k(t, T ) = exp

(

−

∫ T

t

ak(t, s)ds

)

(17)

l > k, Pk,l(t, T ) =

∫ T

t

Pk,l−1(t, s)al−1(t, s) exp

(

−

∫ T

s

al(t, u)du

)

ds.

Let us emphasise here that these are the transition probabilities of our representation of the
loss L̃t, not of the true loss process. The following key result stated in [16] gives necessary
and sufficient conditions to get a loss representation that is consistent with the real loss in
the sense of (14).

Proposition 3.1. Let us assume that the loss process (L(t), t ≥ 0) starts from L(0) = 0
and is such that π(t, T ) satisfy properties (i-iv) and condition (11). Let us assume that for
each k ∈ {0, . . . , m − 1}, the transition rate ak(t, T ) is nonnegative and (Gt)-adapted and
satisfies E[sup

t≤T
ak(t, T )] < ∞. Then the following conditions are equivalent:

1. ∀T ≥ t ≥ 0, ∀k ∈ {0, . . . , m}, πk(t, T ) = P(L̃t(T ) = k/m|Gt). (consistency)

2. ∀T > 0, ∀l ∈ {0, . . . , m}, (PL(t),l(t, T ))t∈[0,T ] is a (Gt)-martingale.

3. ∀T > 0, ∀l ∈ {0, . . . , m}, (al(t, T )PL(t),l(t, T ))t∈[0,T ] is a (Gt)-martingale and

lim
dt→0

P(L(t+dt)−L(t)=1/m|Gt)
dt

= amL(t)(t, t).

To give an example of option valuation, we assume null interest rate and consider a toy
CDO product between two maturities 0 < T1 < T2 that pays 1L(T1)<a,L(T2)>b at time T2 with
0 ≤ a < b ≤ 1. Its fair price at time T1 is simply given by

∑

k<ma 1L(T1)=k

∑

l>mb Pk,l(T1, T2).
A call option on this CDO with strike R values at time 0: E[

∑

k<ma 1L(T1)=k(
∑

l>mb Pk,l(T1, T2)−
R)+]. Simulating paths until T1, this can be calculated by the Monte-Carlo method.

3.1.3 Consistent transition rates dynamics and simulation

Our aim is now to specify transition rates that are consistent with the loss process. Follow-
ing [16], we assume that there is a d-dimensional (Gt)-Brownian motion and (Gt)-predictable
coefficients µk(t, T ) ∈ R and σk(t, T ) ∈ R

d such that

∀k ∈ {0, . . . , m − 1}, ak(t, T ) = ak(0, T ) +

∫ t

0

µk(s, T )ds +

∫ t

0

σk(s, T )dWs. (18)

In preparation for applying Proposition 3.1 and find a consistency condition, one has to
know the transition probability dynamics. It is shown in [16] that

∀k, l ∈ {0, . . . , m}, t ≤ T, dPk,l(t, T ) = uk,l(t, T )dt + vk,l(t, T )dWt,
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and we refer to the original paper for the recursive explicit formulas of uk,l(t, T ) and
vk,l(t, T ) in function of the transition rate dynamics. Applying Proposition 3.1, it is then
shown that the transition rates (18) are consistent with the loss if and only if

∀l ∈ {0, . . . , m}, PL(t),l(t, T )µl(t, T ) = −σl(t, T )vL(t),l(t, T ) and

lim
dt→0

P(L(t + dt) − L(t) = 1/m|Gt)

dt
= amL(t)(t, t).

Existence of coefficients µk(t, T ) and σk(t, T ) that satisfy this condition is not directly
addressed. It is however given a simulation scheme for the loss (L(t), t ≥ 0) that satisfies
asymptotically this condition once a(0, T ) and σ(t, T ) have been fixed for 0 ≤ t ≤ T .
At time 0, a(0, T ) and σ(t, T ) have to be parametrized and calibrated to market data.
Typically, since a(0, T ) fully determines π(0, T ), it is chosen to fit exactly the prices of
CDO tranches that start immediately and the volatilities σ(t, T ) should be fitted to other
products. We set L̂(0) = 0 and â(0, T ) = a(0, T ), and consider a time step ∆t. Let us
assume that we have simulated L̂ and â up to time t = q∆t so that L̂(t) and (â(t, T ), T ≥ t)
are known. Now, one should remark from (17) (resp. from vk,l’s formula in [16]) that the
transition probabilities Pk,l(t, T ) and the coefficients vk,l(t, T ) are entirely determined by
the transition rates (a(t, T ), T ≥ t) and (σ(t, T ), T ≥ t). Therefore, we can estimate these
with (â(t, T ), T ≥ t) and (σ(t, T ), T ≥ t), and we set

∀l ≥ L̂(t), ∀T ≥ t, µ̂l(t, T ) = −
v̂L̂(t),l(t, T )

P̂L̂(t),l(t, T )
σl(t, T )

and µ̂l(t, T ) = 0 for l < L̂(t). Then, we set L̂(t + ∆t) = L̂(t) + Bq/m where Bq is an
independent Bernoulli variable of parameter âmL̂(t)(t, t)∆t and:

∀l, ∀T ≥ t + ∆t, al(t + ∆t, T ) = al(t, T ) + µ̂l(t, T )∆t + σ(t, T )(Wt+∆t − Wt).

In fact, only transition rates above L̂(t+∆t) will be useful next, and we can instead simply
take al(t + ∆t, T ) = 0 for l < L̂(t + ∆t). We can then continue the iteration.

To conclude this section, one should mention that more sophisticated dynamics are
also considered in [16]. In particular, extensions are proposed to take into account possible
dependence of the loss to single defaults. In connection with that, let us mention also that
the random thinning procedure introduced in section 2.3 can be applied here to assign a
default name to each loss jump.

3.2 The SPA model [18]

3.2.1 Description of the loss

Assumptions on the loss process (A.2). Following Sidenius, Piterbarg and Andersen,
we consider a general loss process (L(t), t ≥ 0) valued in [0, 1] that is a non-decreasing
(Gt)-adapted Markov process. More precisely, we assume it satisfies L(0) = 0 and

lim
dt→0

E [f(L(t + dt)) − f(L(t))|Gt ∨ F ]

dt
= Atf(L(t))
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so that jump events (triggering and jumps) are independent from F . The generator At

is assumed to be defined on a domain D that is dense in the set of bounded measurable
functions, and to satisfy: ∀f ∈ D, ∀l ∈ [0, 1],Atf(l) is Ft-measurable.

We assume also that filtrations (Ft)t≥0 and (Gt)t≥0 are such that for each Gt integrable
variable X, E[X|F ] = E[X|Ft]. In comparison to the Schönbucher’s model, the jumps may
have different sizes which can take into account different recoveries. Their number may
also exceed m. The loss dynamics depending only on the riskless filtration and the loss
itself, there is no possible particular dependence to some single default.

Instead of dealing directly with the forward loss distributions π(t, T ) = (πx(t, T ), x ∈
[0, 1]) where πx(t, T ) = P(L(T ) ≤ x|Gt) the SPA model introduces for t, T ≥ 0 (not only
T ≥ t), p(t, T ) = (px(t, T ), x ∈ [0, 1]) where px(t, T ) = P(L(T ) ≤ x|Ft). It satisfies the
following properties:

(i) x 7→ px(t, T ) is non-decreasing,

(ii) p1(t, T ) = 1,

(iii) for each x ∈ [0, 1], T 7→ px(t, T ) is non-increasing,

(iv) (px(t, T ))t≥0 is a (Ft)-martingale.

They reflect (except the last one) that (L(t), t ≥ 0) is a non-decreasing process valued
in [0, 1] and are thus arbitrage-free conditions. For t ≥ T , 1L(T )≤x is both Gt and GT

measurable, and from ∀X ∈ L1(Gt), E[X|F ] = E[X|Ft] we deduce

(v) px(t, T ) = px(T, T ) for t ≥ T .

The SPA model proposes to model the forward loss distributions π(t, T ) through p(t, T ) =
E[π(t, T )|Ft]. Clearly, π(t, T ) cannot in general be fully characterized by p(t, T ) since we
may have π(t, T ) 6= π′(t, T ) and E[π(t, T )|Ft] = E[π′(t, T )|Ft]. Thus, one needs to specify a
model to determine in an univocal and consistent manner a loss process that satisfies (A.2)
from p(t, T ). Let us suppose that a family (p(t, T ); t, T ≥ 0) satisfying properties (i-v) is
given. A loss process (L(t), t ≥ 0) satisfying (A.2) will be consistent with it if one has

∀t, T ≥ 0, ∀x ∈ [0, 1], P(L(T ) ≤ x|Ft) = px(t, T ). (19)

This condition is analogous to (14). In the Schönbucher’s model, it characterizes the loss
dynamics and leads to overlapped conditions between the loss and the transition rates
(Proposition 3.1). Here we have two levels: the probabilities p(t, T ) are first fixed and
we look for a loss process that is consistent with them. In [18], several constructions are
proposed for the loss process and we deal in the next section with the simplest one.

Model principle: The loss process is described through p(t, T ) dynamics. To do
so, one needs to have a univocal construction of a loss process satisfying (A.2) from
(p(t, T ); t, T ≥ 0) such that consistency condition (19) holds. The choice of this construc-
tion is free, but it induces, beyond conditions (i-v), necessarily restrictions on p(t, T ) that
should be satisfied. Last, this choice is not neutral for option valuation and is thus of
importance.
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3.2.2 Consistency and option valuation

Let us consider a family (p(t, T ); t, T ≥ 0) that satisfies properties (i-v). Moreover we
assume that px(t, T ) is continuously differentiable w.r.t. T and also that there is a finite
grid x0 = 0 < x1 < ... < xq = 1 such that ∀t ≥ 0, pxi

(t, t) < pxi+1
(t, t). We will construct a

loss process (L(t), t ≥ 0) that is consistent in a slightly weaker sense as (19), i.e.

∀t, T ≥ 0, ∀i ∈ {0, . . . , q}, P(L(T ) ≤ xi|Ft) = pxi
(t, T ). (20)

Let us suppose that the loss process (L(t), t ≥ 0) takes values on the grid and has

the generator lim
dt→0

E[f(L(t+dt))−f(L(t))|Gt∨F ]
dt

=
∑q−1

i=0 1{L(t)=xi}axi
(t) (f(xi+1) − f(xi)) for any

bounded function f . Defining pL
x (t, T ) = P(L(T ) ≤ x|Ft), one deduces that ∂T pL

xi
(t, t) =

−axi
(t)(pL

xi
(t, t) − pL

xi−1
(t, t)) (with the convention pL

x−1
(t, T ) = 0). Therefore, if L is con-

sistent, one has necessarily axi
(t) =

−∂T pxi
(t,t)

pxi
(t,t)−pxi−1

(t,t)
(where px−1(t, T ) = 0).

We then define the loss process (L(t), t ≥ 0) with the generator

lim
dt→0

E [f(L(t + dt)) − f(L(t))|Gt ∨ F ]

dt
=

q−1
∑

i=0

1{L(t)=xi}
−∂T pxi

(t, t) (f(xi+1) − f(xi))

pxi
(t, t) − pxi−1

(t, t)

and the initial condition L(0) = 0. One has to check that it is consistent (i.e. ∀i, pL
xi

(t, T ) =
pxi

(t, T )). Let us fix t ≥ 0. One has pL
xi

(t, 0) = pxi
(t, 0) = 1, and for T ≤ t, ∂T pL

xi
(t, T ) =

∂T pxi
(T,T )

pxi
(T,T )−pxi−1(T,T )

(pL
xi

(t, T )− pL
xi−1

(t, T )). Since pxi
(t, T ) = pxi

(T, T ) for t ≥ T , one has also

∂T pxi
(t, T ) = ∂T pxi

(T, T ) because (pxi
(t, T )−pxi

(t, T −ε))/ε = (pxi
(T, T )−pxi

(T, T −ε))/ε
and thus

∂T pL
xi

(t, T ) =
∂T pxi

(t, T )

pxi
(t, T ) − pxi−1

(t, T )
(pL

xi
(t, T ) − pL

xi−1
(t, T )). (21)

The vector (pxi
(t, T ), i = 0, . . . , q) solving the same linear ODE (21) as (pL

xi
(t, T ), i =

0, . . . , q) with the same initial value, one deduces pxi
(t, T ) = pL

xi
(t, T ) for T ≤ t. In partic-

ular, we have pxi
(T, T ) = pL

xi
(T, T ) for any T ≥ 0 and then pxi

(t, T ) = E[pxi
(T, T )|Ft] =

E[pL
xi

(T, T )|Ft] = pL
xi

(t, T ) for t ≤ T . We have therefore shown that there is only one
Markov chain that jumps from xi to xi+1 that is consistent in the sense of (20).

Now let us turn to the valuation of our call option on the toy CDO 1L(T1)<a,L(T2)>b

introduced in section 3.1.2. Having also here a Markov chain loss process, it is very
similar and the price is given by E[

∑

k,xk<a 1L(T1)=xk
(
∑

l,xl>b Pxk,xl
(T1, T2) − R)+] where

Pxk,xl
(t, T ) = P(L(T ) = xl|Ft, L(t) = xk). In the Schönbucher’s model, these quan-

tities could be directly calculated from the transition rates. Here, there is a priori no
formula that expresses Pxk,xl

(t, T ) in function of (p(s, u); u ≥ 0, s ≤ t) which is undesir-
able because the Monte-Carlo valuation requires then two interlocked mean valuations.
However, using Kolmogorov equations, one has similarly to (17) explicit formulas for
(P(L(T ) = xl|F , L(t) = xk), T ≥ t) in function of (pxi

(u, u), u ∈ [t, T ]) with l − 1 ≤ i ≤ k.
For the Monte-Carlo valuation of P(L(T ) = xl|Ft, L(t) = xk), it is thus sufficient to simu-
late (pxi

(u, u), u ∈ [t, T ]), not the whole loss process.
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Other constructions of loss process are investigated in [18]. Let us stress that each
construction may require additional assumptions on p(t, T ) beyond properties (i-v). In
the case above, these are the continuous differentiation w.r.t. T and ∀t ≥ 0, pxi

(t, t) <
pxi+1

(t, t). When specifying dynamics for the probabilities px(t, T ), one has then to be
careful that these assumptions are also satisfied.

3.2.3 Probability rates dynamics and simulation

In this section, we are concerned in specifying dynamics for the probabilities (px(t, T ), t ≤
T ) that satisfy the conditions (i-v). In [18], two parametrizations of these probabilities
are considered. The first one (HJM-like) models px(t, T ) through the forward short rate

process fx(t, T ) = −∂T px(t,T )
px(t,T )

, while the second one (BGM-like) describes them using the

“Libor” rates Fx(t, n) = px(t,Tn)−px(t,Tn+1)
px(t,Tn+1)(Tn+1−Tn)

where T0 < T1 < . . . are fixed maturities.

We focus here on the HJM-like parametrisation and consider a countable family (W ν, ν ≥
1) of independent (Ft)-Brownian motion. To satisfy property (iv) and (v), we assume

∀t ≤ T, dpx(t, T ) = px(t, T )

∞∑

ν=1

Σν
x(t, T )dW ν

t

with px(0, T ) = 1 and px(t, T ) = px(T, T ) for t ≥ T . Coefficients Σν
x(t, T ) are Ft measurable

and supposed regular enough for what follows. We also assume Σν
x(T, T ) = 0. We then

easily get the forward rate dynamics:

t ≤ T, dfx(t, T ) =

∞∑

ν=1

(

σν
x(t, T )

(∫ T

t

σν
x(t, u)du

)

dt + σν
x(t, T )dW ν

t

)

where σν
x(t, T ) = −∂T Σν

x(t, T ). From fx(t, T ) = −∂T px(t,T )
px(t,T )

, we get for T ≥ t, px(t, T ) =

px(t, t) exp(−
∫ T

t
fx(t, u)du). For u ≤ t, one has px(t, u) = px(u, u) and then fx(u, u) =

−∂T ln(px(t, u)) so that px(t, t) = exp(−
∫ t

0
fx(u, u)du). Therefore, we get

∀t, T ≥ 0, px(t, T ) = exp

(

−

∫ t∧T

0

fx(u, u)du−

∫ T

t∧T

fx(t, u)du

)

.

Therefore we can rewrite properties (i-iii) with the forward rates (fx(t, T ), 0 ≤ t ≤ T ):

(i) x 7→
∫ t

0
fx(u, u)du +

∫ T

t
fx(t, u)du is non-increasing,

(ii) f1(t, T ) = 0,

(iii) for each x ∈ [0, 1], fx(t, T ) ≥ 0.

The property (i) is clearly satisfied if x 7→ fx(t, T ) is non-increasing. In [18], the authors
look for coefficients that write σν

x(t, T ) = ϕν(t, T, fx(t, T )) and give sufficient conditions on
ϕν such that these three conditions hold. Some practical examples are also presented.

Let us now address quickly to the simulation issue. Once a forward rate dynamics has
been selected to calibrate market data, one can simulate the forward rates up to a final
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maturity Tmax using a Euler scheme. Typically, since p(0, T ) = π(0, T ) (F0 = G0), f(0, T )
is chosen to fit exactly the prices of CDO tranches that start at the current time and the
dynamics of f(t, T ) should be fitted to other products. Then, p(t, T ) can be deduced easily
for t ≥ 0 and T ≤ Tmax. Finally, one has to simulate the chosen loss process. If it is the
one described in the previous section, this is a simple Markov chain that jumps from xi to

xi+1 with the intensity
−∂T pxi

(t,t)

pxi
(t,t)−pxi−1 (t,t)

.

Further issues in credit modelling

Though not being exhaustive, we have presented here several main research directions in
credit risk. We have focused on the default modelling and have skipped some topics related
to credit risk such as the recovery modelling. All the models presented here allow, at least
theoretically, to price any option derivative on the loss process since they are designed for.
All of them can be calibrated quite easily to the prices of CDO that start at the current
time. However, the calibration to other prices such as options on forward-start CDO often
requires Monte-Carlo simulation and is thus more time consuming. Research on loss model
is nowadays very active. The diversity of traded products being in expansion, it will go
on to create models that fit easily the market data. The robustness of the calibration
procedure is also an important issue to investigate. Last, we have not treated here the
hedging problem in credit risk. This is of course another main topic of research. We
mention here the connected work of Bielecki, Jeanblanc and Rutkowski [2].

The models that we have introduced here are related mainly to only one aggregated loss,
but they do not cover all the credit products that are dealt over the counter. Indeed, all
these models need to be calibrated with some market data and are thus linked to a specific
loss process L(t). However in practice, one has to price products such as bespoke CDO
whose associated loss is not traded on the markets. This loss may come from a sub-basket
of L(t), may have only some common names with L(t) or may have no name in common.
In each case, how can we make use of the information on L(t) to price our product? This
is a tough question, and it is theoretically treated here only in the sub-basket case because
one can have a model for single defaults consistent with L(t) (e.g. copula model or random
thinning procedure). Other credit risk products such as CDO squared bring on many
loss processes that may or not have names in common. Each of them may have common
names with the calibrated loss L(t). Once again, how can we price such products using
for the best the market information? Currently, heuristic arguments (such as classification
of the firms by size or sector), economic analysis and historical data are used to fill the
lack of market prices and price these products. Nonetheless, beyond the problem of the
information available on the market, designing an efficient and coherent model for many
loss processes is certainly an important issue for the next coming year.
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