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Abstract

In the present paper we introduce a two-dimensional shifted square-root
diffusion (SSRD) model for interest rate derivatives and single-name credit
derivatives, in a stochastic intensity framework. The SSRD is the unique model,
to the best of our knowledge, allowing for an automatic calibration of the term
structure of interest rates and of credit default swaps (CDS’s). Moreover, the
model retains free dynamics parameters that can be used to calibrate option
data, such as caps for the interest rate market and options on CDS’s in the
credit market. The calibrations to the interest-rate market and to the credit
market can be kept separate, thus realizing a superposition that is of practical
value. We discuss the impact of interest-rate and default-intensity correlation
on calibration and pricing, and test it by means of Monte Carlo simulation. We
use a variant of Jamshidian’s decomposition to derive an analytical formula
for CDS options under CIR++ stochastic intensity. Finally, we develop an
analytical approximation based on a Gaussian dependence mapping for some
basic credit derivatives terms involving correlated CIR processes.
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1 Credit Default Swaps

A credit default swap is a contract ensuring protection against default. This contract

is specified by a number of parameters. Let us start by assigning a maturity T .

Consider two companies “A” and “B” who agree on the following:

If a third reference company “C” defaults at time τ < T , “B” pays to “A” a

certain cash amount Z, supposed to be deterministic in the present paper, either

at maturity T or at the default time τ itself. This cash amount is a protection for

“A” in case “C” defaults. A typical case occurs when “A” has bought a corporate

bond issued from “C” and is waiting for the coupons and final notional payment

from this bond: If “C” defaults before the corporate bond maturity, “A” does not

receive such payments. “A” then goes to “B” and buys some protection against this

danger, asking “B” a payment that roughly amounts to the bond notional in case

“C” defaults.

In case the protection payment occurs at T we talk about “protection at ma-

turity”, whereas in the second case, with a payment occurring at τ , we talk about

“protection at default”.

Typically Z is equal to a notional amount, or to a notional amount minus a

recovery rate.

In exchange for this protection, company “A” agrees to pay periodically to “B” a

fixed amount Rf . Payments occur at times T = {T1, . . . , Tn}, αi = Ti−Ti−1, T0 = 0,

fixed in advance at time 0 up to default time τ if this occurs before maturity T , or

until maturity T if no default occurs. We assume Tn ≤ T , typically Tn = T .

Assume we are dealing with “protection at default”, as is more frequent in the

market. Formally we may write the CDS discounted value to “B” at time t as

1{τ>t}


D(t, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn} +

n∑

i=β(t)

D(t, Ti)αiRf1{τ>Ti} − 1{τ<T}D(t, τ) Z




(1)

where t ∈ [Tβ(t)−1, Tβ(t)), i.e. Tβ(t) is the first date of T1, . . . , Tn following t.

The stochastic discount factor at time t for maturity T is denoted by D(t, T ) =

B(t)/B(T ), where B(t) = exp(
∫ t

0
rudu) denotes the bank-account numeraire, r being

the instantaneous short interest rate.

We denote by CDS(t, T , T, Rf , Z) the price at time t of the above CDS. The

pricing formula for this product depends on the assumptions on interest-rate dynamics

and on the default time τ .

In general, we can compute the CDS price according to risk-neutral valuation (see

for example Bielecki and Rutkowski (2002)):

CDS(t, T , T, Rf , Z) = 1{τ>t}E
{
D(t, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn} (2)

+
n∑

i=β(t)

D(t, Ti)αiRf1{τ>Ti} − 1{τ<T}D(t, τ) Z

∣∣∣∣∣∣
Ft ∨ σ({τ < u}, u ≤ t)
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where Ft is the basic filtration without default, typically representing the information

flow of interest rates, intensities and possibly other default-free market quantities (see

Bielecki and Rutkowski (2001)), and E denotes the risk-neutral expectation in the

enlarged probability space supporting τ . Finally, we explain shortly how the market

quotes CDS prices. Usually at time t, provided default has not yet occurred, the

market sets Rf to a value RMID
f (t, T ) that makes the CDS fair at time t, i.e. such that

CDS(t, T , T, RMID
f (t, T ), Z) = 0. In fact, in the market CDS’s are quoted at a time

t through a bid and an ask value for this “fair” RMID
f (t, T ), for a set of canonical

maturities T = t + 1y up to T = t + 10y.

2 A deterministic-intensity model

We consider the following model for default times. We denote by τ the default time

and assume it to be the first jump-time of a time-inhomogeneous Poisson process with

strictly increasing, continuous (and thus invertible) hazard function Γ and hazard rate

(deterministic intensity) γ, with
∫ T

0
γ(t)dt = Γ(T ). We place ourselves under the

risk-neutral measure Q, so that all expected values and probabilities in the following

concern the risk neutral world.

In general intensity can be stochastic, as we will see later on. In such a case it is

denoted by λ and the related hazard process is denoted by Λ(T ) =
∫ T

0
λtdt.

In this section we consider the time-inhomogeneous Poisson process with deter-

ministic intensity γ. Such a process Nt has the following well known properties: the

related process Mt = NΓ−1(t) is a time-homogeneous Poisson process with constant

intensity equal to γ̄ = 1. This means that M is a unit-jump increasing, right con-

tinuous process with stationary independent increments and M0 = 0. Moreover we

know that

Mt −Ms ∼ P(γ̄(t− s)),

with P(a) denoting the Poisson law with parameter a.

Notice that we can also write Nt = MΓ(t). It follows that if N jumps the first time

at τ , then M jumps the first time at time Γ(τ). But since M is Poisson with intensity

one, its first jump time Γ(τ) is distributed as an exponential random variable with

parameter 1, so that

Q{Γ(τ) < s} = 1− exp(−s).

In particular, notice that since Γ is strictly increasing,

Q{s < τ ≤ t} = Q{Γ(s) < Γ(τ) ≤ Γ(t)} = exp(−Γ(s))− exp(−Γ(t)).

Finally, if we assume for example interest rates to come from a diffusion process

for the short-rate,

drt = µ(t, rt)dt + σ(t, rt)dWt,

with W a Brownian motion under the risk-neutral measure Q, we have the following.

Since a Poisson process and a Brownian motion defined on a common probability
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space are independent (see for example Bielecki and Rutkowski (2001), p. 188),

this means that the processes N and r are independent. We can thus assume the

stochastic discount factor for rates, D(s, t) = exp(− ∫ t

s
rudu), and the default time τ

to be independent whenever intensities are deterministic. We will be able to introduce

dependence between interest rates and default by means of a stochastic intensity that

will be correlated with the short rate.

2.1 Pricing and calibrating CDS with deterministic intensity

models

Consider the CDS payoff (1) and price (2) in the context of deterministic intensities.

Since interest rates are independent of τ , we can set τ = Γ−1(ξ), with ξ an exponential

random variable of parameter 1 independent of interest rates.

Consider first

1{t<τ}E
{

D(t, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn}
∣∣Ft ∨ σ({τ < u}, u ≤ t)

}
=

1{t<τ}E
{
E

{
D(t, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn}

∣∣Ft ∨ τ
}∣∣Ft ∨ σ({τ < u}, u ≤ t)

}
=

1{t<τ}E
{

P (t, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn}
∣∣Ft ∨ σ({τ < u}, u ≤ t)

}
=

1{t<τ}Rf

∫ Tn

t

P (t, u)(u− Tβ(u)−1)dQ{τ ≤ u|σ({τ < s}, s ≤ t)} =

1{t<τ}Rf

∫ Tn

t

P (t, u)(Tβ(u)−1 − u)du(e
−(Γ(u)−Γ(t))).

Also, by similar arguments,

1{t<τ}E
{

ZD(t, τ)1{τ<T}
∣∣Ft ∨ σ({τ < u}, u ≤ t)

}
= −1{t<τ}Z

∫ T

t

P (t, u)du(e
−(Γ(u)−Γ(t))),

and, finally,

1{t<τ}E
{

D(t, Ti)1{τ>Ti}
∣∣Ft ∨ σ({τ < u}, u ≤ t)

}
=

1{t<τ}E {D(t, Ti)| Ft}E
{
1{τ>Ti}

∣∣ σ({τ < u}, u ≤ t)
}

=

1{t<τ}P (t, Ti)e
Γ(t)−Γ(Ti),

so that the CDS price (2) is in this case

CDS(t, T , T, Rf , Z; Γ(·)) = 1{t<τ}

[
Rf

∫ Tn

t

P (t, u)(Tβ(u)−1 − u)du(e
−(Γ(u)−Γ(t)))+ (3)

n∑

i=β(t)

P (t, Ti)Rfαie
Γ(t)−Γ(Ti) + Z

∫ T

t

P (t, u)du(e
−(Γ(u)−Γ(t)))


 .

One may wish to calibrate the determinisic-intensity model to CDS market quotes

RMID
f (0, T ) in order to value different payoffs. To do so, one has to invert the model
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Figure 1: Graph of the implied deterministic intensity t 7→ γmkt(t) for Merrill-Lynch CDS’s
of several maturities on October 25, 2002 (continuous line) and the best approximating
hazard rate coming from a time-homogeneous CIR model (dashed line) that we will extend
to CIR++ to recover exactly γmkt

formula and find the Γ’s that match the given CDS market quotes, by solving in Γ a

set of equations for increasing T : Solve

CDS(0, T , T, RMID

f (0, T ), Z; Γ(·)) = 0

in Γ for different T ’s.

We can assume a piecewise constant intensity γ, constant among different maturi-

ties T , and invert prices in an iterative way as T increases, deriving each time the new

part of γ that is consistent with the CDS quote Rf for the new maturity. Other pos-

sibilities include a piecewise linear γ (Prampolini (2002)) or some parametric forms

for γ such as Nelson and Siegel or extensions thereof. In all such cases CDS prices in

γ with the quoted RMID
f have to be set to zero and such equations or error minimiza-

tions in γ have to be solved. In the following we denote by γmkt and Γmkt respectively

the hazard rate and hazard function that are obtained in a deterministic model when

calibrating CDS market data as above. We close this section by giving an example

in Figure 1 of a piecewise linear hazard rate γmkt(t) obtained by calibrating the 1y,

3y, 5y, 7y and 10y CDS’s on Merrill-Lynch on October 2002. In Figure 2 the related

risk-neutral default probabilities are given. These are equal, first order in the hazard

function, to the hazard function Γ(t) itself, since Q{τ < t} = 1− exp(−Γ(t)) ≈ Γ(t)

for small Γ.

3 A two-factor shifted square-root diffusion model

for intensity and interest rates

In this section we consider a model with stochastic intensity and interest rates.

In this kind of models λ is a stochastic process but, conditional on the filtration

generated by λ itself, N remains a time-inhomogeneous Poisson process with intensity
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Figure 2: Graph of the implied hazard function t 7→ Γmkt(t) and implied risk-neutral default
probability for Merrill-Lynch CDS’s of several maturities on October 25, 2002

λ, and conditional on this filtration all results seen at the beginning of Section 2 on

survival and default probabilities are still valid. N is called a Cox process.

We now describe our assumptions on the short-rate process r and on the intensity

dynamics. For more details on the use of the shifted dynamics, on a default-free

interest rate context, see for example Avellaneda and Newman (1998), or Brigo and

Mercurio (2001, 2001b).

3.1 CIR++ short-rate model

We write the short-rate rt as the sum of a deterministic function ϕ and of a Markovian

process xα
t :

rt = xα
t + ϕ(t; α) , t ≥ 0, (4)

where ϕ depends on the parameter vector α (which includes xα
0 ) and is integrable on

closed intervals. Notice that xα
0 is indeed one more parameter at our disposal: we are

free to select its value as long as

ϕ(0; α) = r0 − x0 .

We take as reference model for x the Cox-Ingersoll-Ross (1985) process:

dxα
t = k(θ − xα

t )dt + σ
√

xα
t dWt,
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where the parameter vector is α = (k, θ, σ, xα
0 ), with k, θ, σ, xα

0 positive deterministic

constants. The condition

2kθ > σ2

ensures that the origin is inaccessible to the reference model, so that the process

xα remains positive. As is well known, this process xα features a noncentral chi-

square distribution, and yields an affine term-structure of interest rates. Accordingly,

analytical formulae for prices of zero-coupon bond options, caps and floors, and,

through Jamshidian’s decomposition, coupon-bearing bond options and swaptions,

can be derived. We can therefore consider the CIR++ model, consisting of our

extension (4), and calculate the analytical formulae implied by such a model, by

simply adapting the analogous explicit expressions for the reference CIR model as

given in Cox et al. (1985). Denote by f instantaneous forward rates, i.e. f(t, T ) =

−∂ ln P (t, T )/∂T .

The initial market zero-coupon interest-rate curve T 7→ PM(0, T ) is automatically

calibrated by our model if we set ϕ(t; α) = ϕCIR(t; α) where

ϕCIR(t; α) = fM(0, t)− fCIR(0, t; α),

fCIR(0, t; α) = 2kθ
(exp{th} − 1)

2h + (k + h)(exp{th} − 1)

+ x0
4h2 exp{th}

[2h + (k + h)(exp{th} − 1)]2

with

h =
√

k2 + 2σ2.

For restrictions on the α’s that keep r positive see Brigo and Mercurio (2001, 2001b).

Moreover, the price at time t of a zero-coupon bond maturing at time T is

P (t, T ) =
PM(0, T )A(0, t; α) exp{−B(0, t; α)x0}
PM(0, t)A(0, T ; α) exp{−B(0, T ; α)x0}P CIR(t, T, rt − ϕCIR(t; α); α),(5)

where

P CIR(t, T, xt; α) = Et(e
− R T

t xα(u)du) = A(t, T ; α) exp{−B(t, T ; α)xt}

is the bond price formula for the basic CIR model, with

A(t, T ; α) =

[
2h exp{(k + h)(T − t)/2}

2h + (k + h)(exp{(T − t)h} − 1)

]2kθ/σ2

,

B(t, T ; α) =
2(exp{(T − t)h} − 1)

2h + (k + h)(exp{(T − t)h} − 1)
,

from which the continuously compound spot rate R(t, T ) (still affine in rt), the spot

LIBOR rate L(t, T ), forward LIBOR rates F (t, T, S) and all other kind of rates can
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be easily computed as explicit functions of rt. We omit the argument α when clear

from the context.

The cap option price formula for the CIR++ model can be derived easily in

closed form from the corresponding formula for the basic CIR model. This formula

is a function of the parameters α. In our application we will calibrate the parameters

α to cap prices, by inverting the analytical CIR++ formula, so that our interest rate

model is calibrated to the initial zero coupon curve through φ and to the cap market

through α. For more details, see Brigo and Mercurio (2001, 2001b).

3.2 CIR++ intensity model

For the intensity model we adopt a similar approach, in that we set

λt = yβ
t + ψ(t; β) , t ≥ 0, (6)

where ψ is a deterministic function, depending on the parameter vector β (which

includes yβ
0 ), that is integrable on closed intervals. As before, yβ

0 is indeed one more

parameter at our disposal: We are free to select its value as long as

ψ(0; β) = λ0 − y0 .

We take y again of the form:

dyβ
t = κ(µ− yβ

t )dt + ν

√
yβ

t dZt,

where the parameter vector is β = (κ, µ, ν, yβ
0 ), with κ, µ, ν, yβ

0 positive deterministic

constants. Again we assume the origin to be inaccessible, i.e.

2κµ > ν2.

For restrictions on the β’s that keep λ positive, as is required in intensity models, see

Brigo and Mercurio (2001, 2001b). We will often use the integrated process, that is

Λ(t) =
∫ t

0
λsds, and also Y β(t) =

∫ t

0
yβ

s ds and Ψ(t, β) =
∫ t

0
ψ(s, β)ds.

We take the short interest-rate and the intensity processes to be correlated, by

assuming the driving Brownian motions W and Z to be instantaneously correlated

according to

dWt dZt = ρ dt.

This way to model the intensity and the short interest rate can be viewed as a

generalization of a particular case of the Lando’s (1998) approach, and can also be

seen as a generalization of a particular case of the Duffie and Singleton (1997, 1999)

square-root diffusion model (see for example Bielecki and Rutkowski (2001), pp 253-

258). In both cases we add a non homogeneous term to recover exactly fundamental

market data in the spirit of Brigo and Mercurio (2001, 2001b).
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3.3 Calibrating the joint stochastic model to CDS: Separa-

bility

With the above choice for λ, in the credit derivatives world we have formulae that

are analogous to the ones for interest-rate derivatives products. Consider for example

the risk-neutral survival probability. We have easily

E(1τ>t) = E[E(1τ>t|Fλ)] = E[E(1Λ(τ)>Λ(t)|Fλ)] = Ee−Λ(t) = E(e−
R t
0 λ(u)du),

since, conditional on λ, Λ(τ) is an exponential random variable with parameter one.

Notice that, if λ were a short-rate process, the last expectation of the “stochastic

discount factor” would simply be the zero-coupon bond price in our interest-rate

model. So we see that survival probabilities for the λ model are the analogous of

zero-coupon bond prices P in the r model. Thus if we choose for λ a CIR++ process,

survival probabilities will be given by the CIR++ model bond price formula.

In particular, by expressing credit default swaps data through the implied hazard

function Γmkt, according to the method described in Section 2.1, we see that in order

to reproduce such data with our λ model we need have, in case ρ = 0 (independence

between interest-rates r and default intensities λ),

Q(τ > t)model = E(e−Λ(t)) = e−Γmkt(t) = Q(τ > t)market.

Taking into account our particular specification (6) of λ, the central equality reads

exp(−Γmkt(t)) = E exp
(−Ψ(t, β)− Y β(t)

)

from which

Ψ(t, β) = Γmkt(t) + ln(E(e−Y β(t))) = Γmkt(t) + ln(P CIR(0, t, y0; β)), (7)

where we choose the parameters β in order to have a positive function ψ (i.e. an

increasing Ψ). Thus, if ψ is selected according to this last formula, as we will assume

from now on, the model is calibrated to the market implied hazard function Γmkt, i.e.

to CDS data.

Recall that in the above calibration procedure we assumed ρ = 0. Indeed, it is

easy to show via iterated conditioning that in such a case calibrating the implied

hazard function to the model survival probabilities is equivalent to directly calibrate

the (r, λ)-model by setting to zero CDS prices corresponding to the market quoted

Rf ’s. More precisely, one can show by straightforward calculations that if ρ = 0 and

ψ(·; β) is selected according to (7), then the price of the CDS under the stochastic

intensity model λ is the same price obtained under deterministic intensity γmkt and

is given by (3). So in a sense when ρ = 0 the CDS price does not depend on the

dynamics of (λ, r), and in particular it does not depend on k, θ, σ, κ, ν and µ. We will

verify this also numerically in Table 6: by amplifying instensity randomness through

an increase of κ, ν and µ we do not substantially affect the CDS price in case ρ = 0.
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However, if ρ 6= 0, the CDS becomes in principle dependent on the dynamics, and

the two procedures are not equivalent, and the correct one would be to equate to

zero the model CDS prices (now depending on ρ, given the nonlinear nature of some

terms in the payoff) corresponding to market quoted Rf ’s.

This is rather annoying, since the attractive feature of the model is the separate

and semi-automatic calibration of the interest-rate part to interest-rate data and of

the intensity part to credit market data. Indeed, in the separable case the credit

derivatives desk might ask for the α parameters and the φ(·; α) curve to the interest-

rate derivatives desk, and then proceed with finding β and ψ(·; β) from CDS data.

This ensures also a consistency of the interest rate model that is used in credit deriva-

tives evaluation with the interest rate model that is used for default-free derivatives.

This separate automatic calibration no longer holds if we introduce ρ, since now the

dynamics of interest rates is also affecting the CDS price.

However, we will see below in table 6 that the impact of ρ is typically negligible

on CDSs, even in case intensity randomness is increased by a factor from 3 to 5.

We can thus calibrate CDS data with ρ = 0, using the separate calibration proce-

dure outlined above, and then set ρ to a desired value.

After calibrating CDS data through ψ(·, β), we are left with the parameters β,

which can be used to calibrate further products, similarly to the way the α parameters

of the r model are used to calibrate cap prices after calibration of the zero-coupon

curve in the interest rate market. However, this will be interesting when option

data on the credit derivatives market will become more liquid. Even as we write,

the first proposals for CDS options have reached our bank through Bloomberg, but

the bid-ask spreads are very large and suggest to consider these first quotes with

caution (Prampolini (2002)). At the moment we content ourselves of calibrating only

CDS’s for the credit part. To help specifying β without further data we impose a

constraint on the calibration of CDS’s. We require the β’s to be found that keep Ψ

positive and increasing and that minimize
∫ T

0
ψ(s, β)2ds. This minimization amounts

to contain the departure of λ from its time-homogeneous component yβ as much as

possible. Indeed, if we take as criterion the integrated squared difference between

“instantaneous forward rates” γmkt in the market and fCIR(·; β) in our homogeneous

CIR model with β parameters, constraining these differences to be positive at all

points, the related minimization gives us the time-homogeneous CIR model β that is

closest to market data under the given constraints.

We calibrated the same CDS data as at the end of Section 2.1 up to a ten years

maturity and obtained the following results

β : κ = 0.354201, µ = 0.00121853, ν = 0.0238186; y0 = 0.0181,

with the ψ function plotted in Fig 3. The interest-rate model part has been cal-

ibrated to the initial zero curve and to cap prices, along the lines of Brigo and

Mercurio (2001, 2001b), which we do not repeat here. The parameters are

α : k = 0.528905, θ = 0.0319904, σ = 0.130035, x0 = 8.32349× 10−5.
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Figure 3: ψ function for the CIR++ model for λ calibrated to Merrill-Lynch CDS’s of
maturities up to 10y on October 25, 2002

To check that, as anticipated above, the impact of the correlation ρ is negligible on

CDS’s we reprice the 5y CDS we used in the above calibration with ρ = 0, ceteris

paribus, by setting first ρ = −1 and then ρ = 1. As usual, the amount Rf renders

the CDS fair at time 0, thus giving CDS(0, T , T, Rf , Z) = 0 with the deterministic

model or with the stochastic model when ρ = 0. In our case (market data of October

25, 2002) the MID value Rf corresponding to RBID
f = 0.009 and RASK

f = 0.0098 is

Rf = 0.0094, while Z = 0.593, corresponding to a recovery rate of 0.407. With

this Rf and the above (r, λ) model calibrated with ρ = 0 we now set ρ to different

values and, by the “Gaussian mapping” approximation technique described below to

model (r, λ), we obtain the results given in Table 5. It is evident that the impact of

rates/intensities correlation is almost negligible on CDS’s, and typically well within

a small fraction of the bid-ask spread (Prampolini (2002)). Indeed, with the above

market quotes, in the case ρ = 0, we have

CDS(0, T , T, RBID

f , Z) = −17.14E − 4, CDS(0, T , T, RASK

f , Z) = 17.16E − 4. (8)

So we see that the possible excursion of the CDS value due to correlation as from

Table 5 is less than one tenth of the CDS excursion corresponding to the market

bid-ask spread, and is thus negligible. This is further confirmed when Monte Carlo

valuation replaces the Gaussian dependence mapping approximation, as one can see

from Table 6.

3.4 Euler and Milstein explicit schemes for simulating (λ, r)

The SSRD model allows for known non-central chi-squared transition densities in the

case with 0 correlation. However, when ρ is not zero we need to resort to numerical

methods to obtain the joint distribution of r and λ and of their functionals needed

for discounting and evaluating payoffs. The typical technique consists in adopting a

discretization scheme for the relevant SDEs and then to simulate the Gaussian shocks

corresponding to the joint Brownian motions increments in the discretized dynamics.
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The easiest choice is given by the Euler Scheme. Let t0 = 0 < t1 < ... < tn = T

be a discretization of the interval [0, T ]. We write Z as Zt = ρWt +
√

1− ρ2W ′
t

(Cholesky decomposition), where W ′
t is a Brownian motion independent of W , and

we obtain the increments of (W,Z) between ti and ti+1 through simulation of the

increments of W and W ′ (independent, centered Gaussian variables with variance

ti+1 − ti). We thus obtain:

x̃α
ti+1

= x̃α
ti

+ k(θ − x̃α
ti
)(ti+1 − ti) + σ

√
x̃α

ti(Wti+1
−Wti)

ỹβ
ti+1

= ỹβ
ti + κ(µ− ỹβ

ti)(ti+1 − ti) + ν

√
ỹβ

ti(Zti+1
− Zti).

Although the regularity conditions that ensure a better convergence for the Milstein

scheme are not satisfied here (the diffusion coefficient is not Lipschitz), one may try

to apply it anyway. The related equations for (x̃α
ti
, ỹβ

ti) are as follows:

x̃α
ti+1

= x̃α
ti

+ k(θ − x̃α
ti
)(ti+1 − ti) + σ

√
x̃α

ti(Wti+1
−Wti) +

1

4
σ2[(Wti+1

−Wti)
2 − (ti+1 − ti)]

ỹβ
ti+1

= ỹβ
ti + κ(µ− ỹβ

ti)(ti+1 − ti) + ν

√
ỹβ

ti(Zti+1
− Zti) +

1

4
ν2[(Zti+1

− Zti)
2 − (ti+1 − ti)]

However, for the SSRD model and for CIR processes in general we may obtain a more

effective ad-hoc scheme as follows.

3.5 The Euler Implicit Positivity-Preserving Scheme

The previous explicit schemes present us with two major drawbacks. The first one is

that such schemes do not ensure positivity of x̃α
ti

(resp. ỹβ
ti). It is possible to correct

the above problem as follows: when we obtain a negative value, we can simulate a

Brownian bridge on [ti, ti+1], with a time step small enough to retrieve the positivity

which is ensured in the continuous case when 2kθ > σ2. The related second drawback

is that the above basic explicit schemes do not preserve the following property of

positivity. Let ᾱ = (k, θ, σ, x̄0), corresponding to a different initial condition x̄0 for

x. “For a given path (Wti(ω))i, x0 ≤ x̄0 implies x̃α
ti
(ω) ≤ x̃ᾱ

ti
(ω) for all ti’s”. This

property is important, since by taking a positive initial condition we would be sure

that the simulation keeps the process positive. This positivity preserving property

holds for the original process in continuous time1. We then set to find a scheme

satisfying this property.

Let us remark that, for a sufficiently regular partition of [0, T ], when max{ti+1 −

1Indeed, if we set δt = xᾱ
t − xα

t with x̄0 > x0, we have dδt = δt(−kdt + σ/(
√

xα
t +

√
xᾱ

t )dWt).
Thus, δt appears as a Doleans exponential process and remains positive for all t.



D. Brigo, A. Alfonsi: Credit derivatives with shifted square root diffusion models 13

ti, 0 ≤ i ≤ n} → 0 we have

xα
t = xα

0 +

∫ t

0

k(θ − xs)ds + σ

∫ t

0

√
xα

s dWs

= xα
0 +

∑
i;ti<t

k(θ − xti)(ti+1 − ti) + σ
∑
i;ti<t

√
xα

ti(Wti+1
−Wti) + O((max

i
(ti+1 − ti))

1/2)

= xα
0 +

∑
i;ti<t

k(θ − xti+1
)(ti+1 − ti) + σ

∑
i;ti<t

√
xα

ti+1
(Wti+1

−Wti)

−σ
∑
i;ti<t

(
√

xα
ti+1

−√
xα

ti)(Wti+1
−Wti) + O((max

i
(ti+1 − ti))

1/2)

= xα
0 +

∑
i;ti<t

(kθ − σ2

2
− kxti+1

)(ti+1 − ti) + σ
∑
i;ti<t

√
xα

ti+1
(Wti+1

−Wti)

+O((max
i

(ti+1 − ti))
1/2),

in L2, since d〈√xα
t ,Wt〉 = σ dt/2. We will then introduce the following implicit

scheme:

x̃α
ti+1

= x̃α
ti

+ (kθ − σ2

2
− kx̃α

ti+1
)(ti+1 − ti) + σ

√
x̃α

ti+1
(Wti+1

−Wti)

ỹβ
ti+1

= ỹβ
ti + (κµ− ν2

2
− κỹβ

ti+1
)(ti+1 − ti) + ν

√
ỹβ

ti+1
(Zti+1

− Zti).

It follows that
√

x̃α
ti+1

is the unique positive root (when 2kθ > σ2) of the second-degree

polynomial P (X) = (1+k(ti+1−ti))X
2−σ(Wti+1

−Wti)X−(x̃α
ti
+(kθ− σ2

2
)(ti+1−ti)),

and we get x̃α
ti+1

:=


σ(Wti+1

−Wti) +
√

σ2(Wti+1
−Wti)

2 + 4(x̃α
ti + (kθ − σ2

2
)(ti+1 − ti))(1 + k(ti+1 − ti))

2(1 + k(ti+1 − ti))




2

,

(9)

with a similar formula for ỹβ
ti+1

. Since this expression is clearly increasing in x̃α
ti
,

we obtain the positivity preserving property above, and the positivity of x̃α
ti+1

is

guaranteed by construction. Thus, this Euler implicit positivity preserving scheme

may be preferred to the explicit ones. We note here that it is also possible to construct

other implicit schemes with a convex combination of the Euler explicit scheme and the

implicit one described above. Finally, we briefly mention that control variate variance

reduction techniques may be used to reduce the number of paths. As control variables

one may use exponentials of integrals of λ and r, whose expectations are known in

closed form.

3.6 Gaussian dependence mapping: A tractable approximated

SSRD

To obtain an acceptable precision with a Monte-Carlo algorithm, it is unfortunately

necessary to simulate a quite large number of scenarios. Indeed, the variance of
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the CDS is quite large in relative terms, due essentially to the indicator term in

1{τ<T}ZD(0, τ). A quick example can help us to clarify this important point. Com-

pute the variance

Var(1{τ<T}) = E12
{τ<T} − (E1{τ<T})

2 = E1{τ<T} − (E1{τ<T})
2.

Consider for example the ML data given in Fig 2 and take T = 5y. Notice that

E1{τ<T} is the risk neutral probability to default in 5y for ML. From the graph we

see that this is about 0.07. Then the above variance is about 0.07− 0.072 = 0.0651,

and the standard deviation is
√

0.0651 = 0.2551. We know that the standard error

in the Monte Carlo method is given by the standard deviation of the object we are

simulating divided by the square root of the number of paths. So we have that the

standard error is about 0.2551/
√

npaths. Now, we are estimating a quantity that is

about 0.07 and we would like to have a standard error below one basis point. But

if we wish our standard error to be below one basis point (i.e. 1/10000) we need set

npaths> (10000 ∗ 0.2551)2 = 6507601.

We may slightly improve the situation by using a threshold barrier B̄ such that

Q(Λ(T ) < B̄) ' 1. We thus assume that default may occur only when Λ(τ) < B̄.

The idea is then to simulate default times conditional on ξ := Λ(τ) < B̄. Indeed, we

see that if “DCDS” is the CDS discounted payoff, recalling that Λ(τ) is exponential

with parameter 1 independent of F , we have that

E DCDS = E[DCDS|Λ(τ) < B̄](1− e−B̄) + E[DCDS|Λ(τ) ≥ B̄]e−B̄.

The CDS value is known in case ξ > B̄, since in this case default has not occurred

and the price is Rf

∑n
i=1 P (0, Ti)αi. Our simulations then need concern only the first

term, so if ξ is an exponential random variable with parameter one we just simulate

ξ|ξ < B̄, whose density is easily seen to be

pξ|ξ<B̄(u) = 1{u<B̄}e
−u/(1− e−B̄).

From the exponential distribution we see that simulating N scenarios for ξ amounts

to simulate N(1 − e−B̄) scenarios with ξ < B̄ and Ne−B̄ with ξ ≥ B̄. So in turn

simulating M = N(1− e−B̄) scenarios for ξ < B̄, as we will do, amounts to simulate

in total N = M/(1− e−B̄) scenarios, the extra scenarios corresponding to the known

value Rf

∑n
i=1 P (0, Ti)αi of the CDS in case of default. Dividing by 1−e−B̄ may help

us increase efficiency (in our examples typically it increases the number of scenarios

by a factor 10), but a large amount of scenarios remains to be generated, and the

time needed for Monte Carlo simulation remains large.

With the SSRD, using the independence of ξ = Λ(τ) from F (and thus λ and r),
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the value of the CDS at time 0 can be written, by simple passages, as:

E

{
D(0, τ)(τ − Tβ(τ)−1)Rf1{τ<Tn} +

n∑
i=1

D(0, Ti)αiRf1{τ>Ti} − 1{τ<T}D(0, τ) Z

}

= E
∫ T

0

{
D(0, u)(u− Tβ(u)−1)Rf1{u<Tn} +

n∑
i=1

D(0, Ti)αiRf1{u>Ti}

−1{u<T}D(0, u) Z
}

d1{τ≤u}

= E
{

Rf

∫ Tn

0

exp

(
−

∫ u

0

(rs + λs)ds

)
λu(u− Tβ(u)−1)du

+
n∑

i=1

αiRf exp

(
−

∫ Ti

0

(rs + λs)ds

)

−Z

∫ T

0

exp

(
−

∫ u

0

(rs + λs)ds

)
λudu

}

= Rf

∫ Tn

0

E
[
exp

(
−

∫ u

0

(rs + λs)ds

)
λu

]
(u− Tβ(u)−1)du

+
n∑

i=1

αiRfE
[
exp

(
−

∫ Ti

0

(rs + λs)ds

)]
− Z

∫ T

0

E
[
exp

(
−

∫ u

0

(rs + λs)ds

)
λu

]
du,

where we have used iterated conditioning with respect to FT . The terms in λ and

r appearing in the above formula are quite common in credit derivatives evaluation

and it would be a good idea to have an approximated formula to compute them when

ρ 6= 0.

Our idea is to “map” the two-dimensional CIR dynamics in an analogous tractable

two-dimensional Gaussian dynamics that preserves as much as possible of the original

CIR structure, and then do calculations with the Gaussian model. Recall that the CIR

process and the Vasicek process for interest rates give both affine models. The first

one is more convenient because it ensures positive values while the second one is more

analytically tractable. Indeed, in the SSRD we have no formula for E[exp(− ∫ T

0
(xα

s +

yβ
s )ds)] and E[exp(− ∫ T

0
(xα

s + yβ
s )ds)yβ

T ] when ρ 6= 0, while in the Vasicek case, we

can easily derive such formulae from the following

Lemma 3.1. Let A = mA + σANA and B = mB + σBNB be two random variables

such that NA and NB are two correlated standard Gaussian random variables with

[NA, NB] jointly Gaussian vector with correlation ρ̄. Then,

E(e−AB) = mBe−mA+ 1
2
σ2

A − ρ̄σAσBe−mA+ 1−ρ̄2

2
σ2

A (10)

Lemma 3.2. Let xα,V
t and yβ,V

t be two Vasicek processes as follows:

dyβ,V
t = κ(µ− yβ,V

t )dt + νdZt,

dxα,V
t = k(θ − xα,V

t )dt + σdWt (11)
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with dWt dZt = ρ dt. Then A =
∫ T

0
(xα,V

t + yβ,V
t )dt and B = yβ,V

T are Gaussian

random variables with respective means:

mA = (µ + θ)T − [(θ − x0)g(k, T ) + (µ− y0)g(κ, T )]

mB = µ− (µ− y0)e
−κT

respective variances:

σ2
A =

(ν

κ

)2

(T − 2g(κ, T ) + g(2κ, T )) +
2ρνσ

kκ
(T − g(κ, T )− g(k, T ) + g(κ + k, T ))

+
(σ

k

)2

(T − 2g(k, T ) + g(2k, T ))

σ2
B = ν2g(2κ, T )

and correlation:

ρ̄ =
1

σAσB

[
ν2

κ
(g(κ, T )− g(2κ, T )) +

ρσν

k
(g(κ, T )− g(κ + k, T ))

]

where g(k, T ) = (1− e−kT )/k.

Thus, we are able to calculate E[exp(− ∫ T

0
(xα,V

t + yβ,V
t )dt)yβ,V

T ] and

E[exp(− ∫ T

0
(xα,V

t + yβ,V
t )dt)] (taking mB = 1 and σB = 0); and taking for yV a

degenerated case (µ = κ = y0 = 1, ν = 0), we obtain the well known formula for the

bond price in the Vasicek model, which in our notation reads

E
[
exp(−

∫ T

0

xα,V
s ds)

]
= AV (0, T ; α) exp(−BV (0, T ; α)x0) (12)

= exp

(
−θt + (θ − x0)g(k, t) +

1

2

(σ

k

)2

(t− 2g(k, t) + g(2k, t))

)
.

The idea is then to approximate the expectation by these formulae. More precisely, on

[0, T ] we consider a particular Vasicek volatility in the dynamics (11), corresponding

to taking αT := (x0, k, θ, σV,T ) (resp. βT = (y0, κ, µ, νV,T )) such that

E
[
exp

(
−

∫ T

0

xαT ,V
s ds

)]
= E

[
exp

(
−

∫ T

0

xα
s ds

)]

(resp. E
[
exp

(
−

∫ T

0

yβT ,V
s ds

)]
= E

[
exp

(
−

∫ T

0

yβ
s ds

)]
)

where on the right hand sides we have the CIR processes. In the above equations

expectations on both sides are analytically known, being bond price formulae for

the Vasicek and CIR models respectively, and the inversions needed to retrieve σV,T

and νV,T are quite easy since the expression (12) is monotone with respect to σ.

In practical cases, these volatilities exist, and can be seen as some sort of means
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of time-averages of σ
√

xα
s (resp. ν

√
yβ

s ) on [0, T ]. We then adopt the following

approximations to estimate the impact of correlation:

E
[
exp

(
−

∫ T

0

(xα
s + yβ

s )ds

)]
≈ E

[
exp

(
−

∫ T

0

(xαT ,V
s + yβT ,V

s )ds

)]
(13)

E
[
exp

(
−

∫ T

0

(xα
s + yβ

s )ds

)
yβ

T

]
≈ E

[
exp

(
−

∫ T

0

(xαT ,V
s + yβT ,V

s )ds

)
yβT ,V

T

]
+ ∆ (14)

where

∆ = E
[
exp

(
−

∫ T

0

xα
s ds

)]
E

[
exp

(
−

∫ T

0

yβ
s ds

)
yβ

T

]

−E
[
exp

(
−

∫ T

0

xα,T,V
s ds

)]
E

[
exp

(
−

∫ T

0

yβ,T,V
s ds

)
yβ,T,V

T

]

and where we use the known analytical expressions for the right-hand sides.

3.7 Numerical Tests

We perform numerical tests for formulae (13) and (14) and for the related CDS

prices, based on Monte Carlo simulations of the left-hand sides. We take the α and β

parameters as from Section 3.3, and assume T = 5y. We obtain the results of Tables 1

and 2. The Vasicek mapped volatilities are σV,5y = 0.016580 and νV,5y = 0.0025675.

To check the quality of the approximation under stress, we multiply all parameters

k, θ, σ and κ, µ, ν by three and check again the approximation. We obtain the results

shown in Tables 3 and 4, and now the Vasicek mapped volatilities are σV,5y = 0.108596

and νV,5y = 0.0060675.

ρ = -1 ρ =1

LHS of (13) 0.86191 (0.861815 0.862004) 0.8624 ( 0.862272 0.862529)

RHS of (13) 0.861762, 0.862554

Table 1: MC simulation for the quality of the approximation (13)

If the values in Table 1 were interpreted as bond prices, the corresponding continu-

ously compounded spot rates would be− ln(0.86191)/5 = 0.02972 and− ln(0.861762)/5 =

0.029755, respectively, giving a small difference.

ρ = -1 ρ =1

LHS of (14) 3.5848E-3 (3.57946 3.59014) 3.44852E-3 (3.44408 3.45295)

RHS of (14) 3.59831E-3 3.43174E-3

Table 2: MC simulation for the quality of the approximation (14)

If the values in Table 3 were interpreted as bond prices, the corresponding con-

tinuously compounded spot rates would be instead − ln(0.64232)/5 = 0.088534 and
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ρ = -1 ρ =1

LHS of (13) 0.64232 (0.642106 0.642534) 0.644151 (0.643909 0.644393)

RHS of (13) 0.641989 0.643904

Table 3: MC simulation for the quality of the approximation (13) under stress

ρ = -1 ρ =1

LHS of (14) 2.4757E-3 (2.46991 2.48149) 2.27465E-3 (2.27018 2.27913)

RHS of (14) 2.53527 2.24435

Table 4: MC simulation for the quality of the approximation (14) under stress

− ln(0.641989)/5 = 0.088637, so that we see a larger difference than before, ranging

around 1 basis point, which is however still contained.

So we may trust the approximation to work well within the typical market bid-

ask spreads for CDS’s. Indeed, we consider the valuation of CDS’s both by Monte

Carlo simulation and by the Gaussian dependence mapped model, where we apply

formulae (13) and (14) each time with the most convenient maturity T for that part

of the CDS payoff we are evaluating.

In Table 5 we give the results of the application of the approximations (13)

and (14) to CDS valuation in presence of correlation ρ 6= 0 under the parameters

given in Section 3.3. In Table 6 we give instead the corresponding Monte Carlo sim-

ulation for the extreme cases ρ = −1 and ρ = 1 and the known case ρ = 0, based

on 140.000 paths with control variate variance reduction technique, both under the

usual parameters of Section 3.3 and under some amplified λ parameters, increasing

stochasticity. The Gaussian mapping approximation, even in the case of increased

randomness, remains well within a small fraction of the CDS bid-ask spread (8).

ρ -1 -0.5 0 0.5 1

cds -1.12E-4 -0.554E-4 0.012E-4 0.578E-4 1.14E-4

Table 5: 5y CDS price as a function of ρ with Gaussian mapping

3.8 The impact of correlation

It can be interesting to study the main terms that appear in basic payoffs of the credit

derivatives world from the point of view of the impact of the correlation ρ between

interest rates r and stochastic default intensities λ. Precisely, we will study here the

influence of the correlation ρ in the following payoffs

A = L(T − 1y, T )D(0, T )1{τ<T}, B = D(0, τ)1{τ<T} (15)

C = D(0, τ ∧ T ), D = D(0, T )L(T − 1y, T )1{τ∈[T−1y,T ]},
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CDS prices Gaussian Mapping Monte Carlo value and 95% window

ρ = −1 -1.12E-4 -1.48625E-4 (-1.79586 -1.17664)

ρ = 0 0.012E-4 0.17708E-4 (-0.142444 0.496605)

ρ = 1 1.14E-4 1.25475E-4 (0.922997 1.5865)

Same run with κ, ν increased by a factor 5 and µ by a factor 3 :

CDS prices Gaussian Mapping Monte Carlo value and 95% window

ρ = −1 -1.03E-4 -1.77E-4 (-2.02 -1.51)

ρ = 0 0.021E-4 0.143E-4 (-0.138 0.424)

ρ = 1 1.07E-4 1.08E-4 (0.78 1.37)

Table 6: 5y CDS prices as a function of ρ with MC simulation

under the SSRD correlated model. We will see that in all cases even high correlations

between r and λ induce a small effect on the particular functional forms of D(0, ·) in

r and of indicators of the default times τ in λ. Higher effects are observed, in relative

terms, when terms such as L(T − 1y, T ) and 1{τ∈[T−1y,T ]} are included in the payoff.

Indeed, the indicator isolates λ between T − 1y and T , while L isolates r between

T − 1y and T . Thus we have a sort of more direct correlation between r and λ in

the same interval, and this explains the highest percentage influcence of correlation

observed in this case. Results are summarized in Table 7. As expected, D is the case

where the correlation influence is most visible in relative terms. We have used the

same paths for W and Z when changing ρ from −1 to 1, and we have taken T = 5y

and the same parameters in the dynamics as in Section 3.3.

To check that indeed it is the “localization” of λ and r in the same interval

[T − 1y, T ] = [4y, 5y] that generates the high relative influence of ρ, we consider also

the terms

E = D(0, 5)L(4, 5)1{τ∈[3,4]}, F = D(0, 5)L(4, 5)1{τ∈[2,3]}, (16)

G = D(0, 5)L(4, 5)1{τ∈[1,2]}, H = D(0, 5)L(4, 5)1{τ∈[0,1]}

and check that the correlation decreases as τ gets far from the 4y LIBOR reset date.

This is indeed the case, as one can see from Table 8.

ρ = −1 ρ = 1 relative variation absolute variation

A 30.3672E-4 31.1962 +2.73% +0.829E-4

B 679.197E-4 676.208 -0.44% -2.989E-4

C 8207.23E-4 8209.61 +0.03% +2.38E-4

D 2.77376E-4 3.10889 +12.08% +0.34E-4

Table 7: Influence of ρ on the terms A,B,C and D defined in (15)
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ρ = −1 ρ = 1 relative variation absolute variation

E 5.6E-4 5.88E-4 +5.010% +0.281E-4

F 7.16E-4 7.31 E-4 +2.09% +0.149E-4

G 7.41E-4 7.44E-4 +0.36% 2.66E-6

H 7.55E-4 7.56E-4 +0.056% 4.26 E-7

Table 8: Influence of ρ on the terms E,F,G and H defined in (16)

4 Pricing with the calibrated SSRD model.

In this final section we present examples of payoffs that can be valued with the

calibrated (λ, r) model. The first example we consider is a sort of cancellable swap

with a recovery value.

4.1 A Cancellable Structure

A first company “A” owns a bond issued by Merrill Lynch (ML), and receives from

ML once an year at time Ti a payment consisting of L(Ti − 1, Ti) + s, where s is a

spread (s = 50 basis points), up to a final date T = Tn = 5y. We assume unit year

fractions for simplicity.

ML (until possible default) → L(Ti − 1y, Ti) + s → “A”,

In turn, “A” has a swap with a bank “B”, where “A” turns the payment

L(Ti − 1y, Ti) + s to “B”,

“A” → L(Ti − 1, Ti) + s → “B”,

and, in exchange for this, the bank “A” receives from “B” some fixed payments

that we express as the percentages of the unit nominal value given in (17).

“A” ←

Year %

T1 = 1 α1 = 4.20

T2 = 2 α2 = 3.75

T3 = 3 α3 = 3.25

T4 = 4 α4 = 0.50

T5 = Tn = T = 5 α5 = 0.50

← “B” (17)

However, if ML defaults, “A” receives a recovery rate Z̃ from ML (typically one

recovers from Z̃ = 0 to 0.5 out of 1), and still has to pay the remaining payments

L(Ti − 1, Ti) + s to “B”.

“A” wishes to have the possibility to cancel the swap with “B” in case both ML

defaults and the recovery rate Z̃ is not enough to close the swap with “B” without

incurring in a loss.
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Continuing the swap after the default τ implies for “A” to pay cash flows whose

total discounted value at time τ is (including the recovery rate Z̃):

−Z̃ +
n∑

i=β(τ)

P (τ, Ti) (−αi + s + F (τ ; Ti−1, Ti)) (18)

where F (τ ; Ti−1, Ti) = (P (τ, Ti−1)/P (τ, Ti) − 1)/(Ti − Ti−1) is the forward LIBOR

rate at time τ between Ti−1 and Ti. “A” wishes to cancel this payment when it is

positive. By simple algebra, and substituting the definition of F , this cancellation

has the following value at time τ :




5∑

i=β(τ)

(P (τ, Ti)(s− αi) + P (τ, Ti−1)− P (τ, Ti))− Z̃




+

.

Thus we need computing

E



D(0, τ)1{τ<Tn}




5∑

i=β(τ)

(P (τ, Ti)(s− αi) + P (τ, Ti−1)− P (τ, Ti))− Z̃




+

 . (19)

By a joint simulation of (λ, r) this payoff can be easily valued. Indeed, from the

simulation of Λ and ξ = Λ(τ) one obtains a simulation of τ , and thus, through the

joint simulation of r, is able to build scenarios of rτ . Since all bonds P (τ, T ) are

known functions of rτ in the SSRD CIR++ model, we simply have to discount these

scenarios from τ to 0 and then average along scenarios.

Our results, with the same interest-rate and default-intensity dynamics (r, λ) as

in Section 3.3 are reported in Tables 9 (recovery Z̃ = 0.1), 10 (recovery Z̃ = 0) and 11

(recovery Z̃ = 0 and stressed parameters, κ and ν increased by a factor 5 and µ by

a factor 3).

Results show that for this nonlinear payoff correlation may have a relevant impact.

It is interesting to notice that the correlation pattern is inverted when randomness

increases as in the last table, since the value decreases as the correlation increases,

contrary to the earlier cases. This may be explained qualitatively as follows. The

indicator term 1{τ<T5} selects relatively high values of λ. In case of positive correlation

ρ, high λ’s correspond to high r’s (and thus a low discount factor D(0, τ)). So in (18)

the F term is “dominating” the remaining terms and selects a high value for the

inner payoff in (19). In turn, D(0, τ) is low, and the combined effect depends on the

dynamic parameters of the model, which is what we observe in our examples.

Again in the case with amplified randomness in intensities, in Table 11, we observe

possible excursions of about 15 basis points due to correlation. So cancellable swaps

turn out to be more sensitive to correlation than the almost insensitive CDS’s.
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s ↓ ρ → -1 0 1 Det

-100 0.59 (0.56, 0.62) 0.78 (0.74, 0.82) 1.09 (1.05, 1.12) 0

-50 1.075 (1.03, 1.12) 1.45 (1.40, 1.50) 1.92 (1.86, 1.98) 0

0 2.1 (2.04, 2.17) 2.68 (2.61, 2.75) 3.40 (3.31, 3.48) 0

+50 4.56 (4.47, 4.65) 5.53 (5.43, 5.63) 6.63 (6.52, 6.75) 2.35

+100 11.61 (11.47, 11.75) 12.92 (12.77 13.07) 14.45 (14.28, 14.62) 11.87

Table 9: Cancellable swap price in basis points (10−4) as a function of ρ and s with

MC simulation, Z̃ = 0.1, “Det” for deterministic model

s ↓ ρ → -1 0 1 Det

-100 32.56 (32.15, 32.97) 34.26 (33.83, 34.69) 36.24 (35.78, 36.70) 34.38

-50 43.48 (42.96, 44.00) 45.19 (44.65, 45.74) 47.03 (46.46, 47.59) 45.08

0 54.351 (53.71, 54.99) 55.59 (54.94, 56.25) 57.40 (56.72, 58.08) 55.79

+50 64.91 (64.15, 65.67) 66.26 (65.48, 67.04) 68.25 (67.45, 69.05) 66.49

+100 75.64 (74.76, 76.53) 76.78 (75.88 77.68) 78.81 (77.89, 79.73) 77.20

Table 10: Cancellable swap price in basis points (10−4) as a function of ρ and s with

MC simulation, Z̃ = 0, “Det” for deterministic model

s ↓ ρ → -1 0 1 Det

-100 59.06 (58.63, 59.49) 50.23 (49.86, 50.60) 44.92 (44.58, 45.26) 34.38

-50 74.11 (73.59, 74.63) 65.58 (65.12, 66.03) 60.17 (59.75, 60.60) 45.08

0 89.60 (88.99, 90.22) 80.97 (80.41, 81.52) 75.56 (75.04, 76.08) 55.79

+50 104.76 (104.04, 105.48) 96.55 (95.89, 97.20) 91.21 (90.58, 91.83) 66.49

+100 119.99 (119.18, 120.81) 111.50 (110.75 112.26) 106.40 (105.68, 107.13) 77.20

Table 11: Cancellable swap price in basis points (10−4) as a function of ρ with stressed

parameters and s with MC simulation, Z̃ = 0, “Det” for deterministic model
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4.2 CDS Options and Jamshidian’s Decomposition

We developed this formula by an initial hint of Ouyang (2003). Consider the option

to enter a CDS at a future time Ta > 0, Ta < Tb, receiving protection Z against

default up to time Tb, in exchange for a fixed rate K. At Ta there is the option of

entering a CDS paying a fixed rate K at times Ta,b = Ta+1, . . . , Tb or until default,

in exchange for protection against a possible default in [Ta, Tb]. If default occurs a

protection payment Z is received. By noticing that the market CDS rate Rf (Ta, Tb)

at Ta will set the CDS value in Ta to 0, the payoff can be written as the discounted

difference between said CDS and the corresponding CDS with rate K. We have that

the payoff at Ta reads

Πa := [CDS(Ta, Ta,b, Tb, Rf (Ta, Tb), Z)− CDS(Ta, Ta,b, Tb, K, Z)]+

= [−CDS(Ta, Ta,b, Tb, K, Z)]+ =

1{τ>Ta}

(
E

{
−D(Ta, τ)(τ − Tβ(τ)−1)K1{τ<Tb}

−
b∑

i=a+1

D(Ta, Ti)αiK1{τ>Ti} + 1{τ<Tb}D(Ta, τ) Z|GTa

})+

= 1{τ>Ta}

{
−K

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
(u− Tβ(u)−1)du

−K

b∑
i=a+1

αiE
[
exp

(
−

∫ Ti

Ta

(rs + λs)ds

)
|FTa

]

+Z

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

(rs + λs)ds

)
λu|FTa

]
du

}+

If we take deterministic interest rates r this reads

Πa = 1{τ>Ta}

{
−K

∫ Tb

Ta

E
[
exp

(
−

∫ u

Ta

λsds

)
λu|FTa

]
P (Ta, u)(u− Tβ(u)−1)du

−K

b∑
i=a+1

αiP (Ta, Ti)E
[
exp

(
−

∫ Ti

Ta

λsds

)
|FTa

]

+Z

∫ Tb

Ta

P (Ta, u)E
[
exp

(
−

∫ u

Ta

λsds

)
λu|FTa

]
du

}+

Define

H(t, T ; yβ
t ) := E

[
exp

(
−

∫ T

t

λsds

)
|Ft

]

and notice that

E
[
exp

(
−

∫ T

t

λsds

)
λT |Ft

]
= − d

dT
E

[
exp

(
−

∫ T

t

λsds

)
|Ft

]
= − d

dT
H(t, T )
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Write then

Πa = 1{τ>Ta}

{
K

∫ Tb

Ta

P (Ta, u)(u− Tβ(u)−1)
d

du
H(Ta, u)du

−K

b∑
i=a+1

αiP (Ta, Ti)H(Ta, Ti)− Z

∫ Tb

Ta

P (Ta, u)
d

du
H(Ta, u)du

}+

Note that the first two summations add up to a positive quantity, since they are

expectations of positive terms.

By integrating by parts in the first and third integral, we obtain, by defining

q(u) := −dP (Ta, u)/du,

Πa = 1{τ>Ta}

{
Z −

∫ Tb

Ta

[
Zq(u) + KP (Ta, Tβ(u))δTβ(u)

(u)−K(u− Tβ(u)−1)q(u)

−KP (Ta, Tβ(u))δTβ(u)
(u) + ZδTb

(u)P (Ta, u) + KP (Ta, u)
]
H(Ta, u)du

}+

Define

h(u) := Zq(u)−K(u− Tβ(u)−1)q(u) + ZδTb
(u)P (Ta, u) + KP (Ta, u)

so that

Πa = 1{τ>Ta}

{
Z −

∫ Tb

Ta

h(u)H(Ta, u; yβ
Ta

)du

}+

(20)

It is easy to check, by remembering the signs of the terms of which the above coeffi-

cients are expectations, that

h(u) > 0 for all u.

Now we look for a term y∗ such that
∫ Tb

Ta

h(u)H(Ta, u; y∗)du = Z. (21)

It is easy to see that in general H(t, T ; y) is decreasing in y for all t, T . This

equation can be solved, since h(u) is known and deterministic and since H is given

in terms of the CIR bond price formula. Furthermore, either a solution exists or the

option valuation is not necessary. Indeed, consider first the limit of the left hand side

for y∗ →∞. We have

lim
y∗→∞

∫ Tb

Ta

h(u)H(Ta, u; y∗)du = 0 < Z,

which shows that for y∗ large enough we always go below the value Z. Then consider

the limit of the left hand side for y∗ → 0:

lim
y∗→0+

∫ Tb

Ta

h(u)H(Ta, u; y∗)du =



D. Brigo, A. Alfonsi: Credit derivatives with shifted square root diffusion models 25

= Z +

∫ Tb

Ta

[ZP (Ta, u)
∂H(Ta, u; 0)

∂u
+ (K(u− Tβ(u)−1)q(u) + KP (Ta, u))H(Ta, u; 0)]du

Now if the integral in the last expression is positive then we have that the limit is

larger than Z and by continuity and monotonicity there is always a solution y∗ giving

Z. If instead the integral in the last expression is negative, then the limit is smaller

than Z and we have that (21) admits no solution, in that its left hand side is always

smaller than the right hand side. However, this implies in turn that the expression

inside curly brackets in the payoff (20) is always positive and thus the contract loses

its optionality and can be valued by taking the expectation without positive part,

giving as option price simply −CDS(t, Ta,b, Tb, K, Z) > 0, the opposite of a forward

start CDS. In case y∗ exists, instead, we may rewrite our discounted payoff as

Πa = 1{τ>Ta}

{ ∫ Tb

Ta

h(u)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))du

}+

Since H(t, T ; y) is decreasing in y for all t, T , all terms (H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))

have the same sign, which will be positive if yβ
Ta

> y∗ or negative otherwise. Since all

such terms have the same sign, we may write

Πa =: 1{τ>Ta}Qa = 1{τ>Ta}

{ ∫ Tb

Ta

h(u)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))+du

}

Now compute the price as

E[D(0, Ta)Πa] = P (0, Ta)E[1{τ>Ta}Qa] = P (0, Ta)E[exp(−
∫ Ta

0

λsds)Qa] =

=

∫ Tb

Ta

h(u)E[exp(−
∫ Ta

0

λsds)(H(Ta, u; y∗)−H(Ta, u; yβ
Ta

))+]du

From a structural point of view, H(Ta, u; yβ
Ta

) are like zero coupon bond prices in a

CIR++ model with short term interest rate λ, for maturity Ta on bonds maturing

at u. Thus, each term in the summation is h(u) times a zero-coupon bond like call

option with strike K∗
u = H(Ta, u; y∗). A formula for such options is given for example

in (3.78) p. 94 of Brigo and Mercurio (2001b).

If one maintains stochastic interest rates with possibly non-null ρ, then a possi-

bility is to use the Gaussian mapped processes xV and yV introduced earlier and to

reason as for pricing swaptions with the G2++ model through Jamshidian’s decom-

position and one-dimensional Gaussian numerical integration, along the lines of the

procedures leading to (4.31) in Brigo and Mercurio (2001b). Clearly the resulting

formula has to be tested against Monte Carlo simulation.

5 Conclusions and further research

In this work we have introduced a two-dimensional shifted square-root diffusion

(SSRD) model for interest rate derivatives and single-name credit derivatives, in
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a stochastic intensity framework. This model offers the only known case, to the best

of our knowledge, allowing for an automatic calibration of the term structure of in-

terest rates and of credit default swaps (CDS’s). Additional parameters can be set

so as to calibrate option data from the interest rate market and option data on the

credit market, although we do not use the latter, due to the fact that the related

products appeared very recently and are characterized by wide bid-ask spreads. The

interest-rate calibration and the credit market calibration are separate, which can

be helpful in splitting competence. We discussed numerically the impact of interest-

rate and default-intensity correlation on calibration and pricing. We also introduced

an analytical approximation based on a Gaussian dependence mapping for some ba-

sic credit derivatives terms involving correlated CIR processes. We used a variant

of Jamshidian’s decomposition to derive an analytical formula for CDS options un-

der CIR++ stochastic intensity. Further research includes checking future default

structures implied by a calibration and related diagnostics, analysis of the impact of

correlation on more involved payoffs, possible extensions to multiname credit deriva-

tives, and analyzing hedging strategies associated with the model, for example in the

framework of Blanchet-Scaillet and Jeanblanc (2001).
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